ggml.c 671 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. // note: do not use these inside ggml.c
  271. // these are meant to be used via the ggml.h API
  272. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  273. return (float) GGML_FP16_TO_FP32(x);
  274. }
  275. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  276. return GGML_FP32_TO_FP16(x);
  277. }
  278. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  279. for (int i = 0; i < n; i++) {
  280. y[i] = GGML_FP16_TO_FP32(x[i]);
  281. }
  282. }
  283. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  284. int i = 0;
  285. #if defined(__F16C__)
  286. for (; i + 7 < n; i += 8) {
  287. __m256 x_vec = _mm256_loadu_ps(x + i);
  288. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  290. }
  291. for(; i + 3 < n; i += 4) {
  292. __m128 x_vec = _mm_loadu_ps(x + i);
  293. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  294. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  295. }
  296. #endif
  297. for (; i < n; i++) {
  298. y[i] = GGML_FP32_TO_FP16(x[i]);
  299. }
  300. }
  301. //
  302. // timing
  303. //
  304. #if defined(_MSC_VER) || defined(__MINGW32__)
  305. static int64_t timer_freq, timer_start;
  306. void ggml_time_init(void) {
  307. LARGE_INTEGER t;
  308. QueryPerformanceFrequency(&t);
  309. timer_freq = t.QuadPart;
  310. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  311. // and the uptime is high enough.
  312. // We subtract the program start time to reduce the likelihood of that happening.
  313. QueryPerformanceCounter(&t);
  314. timer_start = t.QuadPart;
  315. }
  316. int64_t ggml_time_ms(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceCounter(&t);
  319. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  320. }
  321. int64_t ggml_time_us(void) {
  322. LARGE_INTEGER t;
  323. QueryPerformanceCounter(&t);
  324. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  325. }
  326. #else
  327. void ggml_time_init(void) {}
  328. int64_t ggml_time_ms(void) {
  329. struct timespec ts;
  330. clock_gettime(CLOCK_MONOTONIC, &ts);
  331. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  332. }
  333. int64_t ggml_time_us(void) {
  334. struct timespec ts;
  335. clock_gettime(CLOCK_MONOTONIC, &ts);
  336. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  337. }
  338. #endif
  339. int64_t ggml_cycles(void) {
  340. return clock();
  341. }
  342. int64_t ggml_cycles_per_ms(void) {
  343. return CLOCKS_PER_SEC/1000;
  344. }
  345. #ifdef GGML_PERF
  346. #define ggml_perf_time_ms() ggml_time_ms()
  347. #define ggml_perf_time_us() ggml_time_us()
  348. #define ggml_perf_cycles() ggml_cycles()
  349. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  350. #else
  351. #define ggml_perf_time_ms() 0
  352. #define ggml_perf_time_us() 0
  353. #define ggml_perf_cycles() 0
  354. #define ggml_perf_cycles_per_ms() 0
  355. #endif
  356. //
  357. // cache line
  358. //
  359. #if defined(__cpp_lib_hardware_interference_size)
  360. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  361. #else
  362. #if defined(__POWER9_VECTOR__)
  363. #define CACHE_LINE_SIZE 128
  364. #else
  365. #define CACHE_LINE_SIZE 64
  366. #endif
  367. #endif
  368. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  369. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  370. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  371. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  372. [GGML_TYPE_I8] = {
  373. .type_name = "i8",
  374. .blck_size = 1,
  375. .type_size = sizeof(int8_t),
  376. .is_quantized = false,
  377. },
  378. [GGML_TYPE_I16] = {
  379. .type_name = "i16",
  380. .blck_size = 1,
  381. .type_size = sizeof(int16_t),
  382. .is_quantized = false,
  383. },
  384. [GGML_TYPE_I32] = {
  385. .type_name = "i32",
  386. .blck_size = 1,
  387. .type_size = sizeof(int32_t),
  388. .is_quantized = false,
  389. },
  390. [GGML_TYPE_F32] = {
  391. .type_name = "f32",
  392. .blck_size = 1,
  393. .type_size = sizeof(float),
  394. .is_quantized = false,
  395. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  396. .vec_dot_type = GGML_TYPE_F32,
  397. .nrows = 1,
  398. },
  399. [GGML_TYPE_F16] = {
  400. .type_name = "f16",
  401. .blck_size = 1,
  402. .type_size = sizeof(ggml_fp16_t),
  403. .is_quantized = false,
  404. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  405. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  406. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  407. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  408. .vec_dot_type = GGML_TYPE_F16,
  409. .nrows = 1,
  410. },
  411. [GGML_TYPE_Q4_0] = {
  412. .type_name = "q4_0",
  413. .blck_size = QK4_0,
  414. .type_size = sizeof(block_q4_0),
  415. .is_quantized = true,
  416. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  417. .from_float = quantize_row_q4_0,
  418. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  419. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  420. .vec_dot_type = GGML_TYPE_Q8_0,
  421. #if defined (__ARM_FEATURE_MATMUL_INT8)
  422. .nrows = 2,
  423. #else
  424. .nrows = 1,
  425. #endif
  426. },
  427. [GGML_TYPE_Q4_1] = {
  428. .type_name = "q4_1",
  429. .blck_size = QK4_1,
  430. .type_size = sizeof(block_q4_1),
  431. .is_quantized = true,
  432. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  433. .from_float = quantize_row_q4_1,
  434. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  435. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  436. .vec_dot_type = GGML_TYPE_Q8_1,
  437. #if defined (__ARM_FEATURE_MATMUL_INT8)
  438. .nrows = 2,
  439. #else
  440. .nrows = 1,
  441. #endif
  442. },
  443. [4] = { // GGML_TYPE_Q4_2
  444. .type_name = "DEPRECATED",
  445. .blck_size = 0,
  446. .type_size = 0,
  447. .is_quantized = false,
  448. .to_float = NULL,
  449. .from_float = NULL,
  450. .from_float_reference = NULL,
  451. .vec_dot = NULL,
  452. .vec_dot_type = GGML_TYPE_COUNT,
  453. .nrows = 1,
  454. },
  455. [5] = { // GGML_TYPE_Q4_3
  456. .type_name = "DEPRECATED",
  457. .blck_size = 0,
  458. .type_size = 0,
  459. .is_quantized = false,
  460. .to_float = NULL,
  461. .from_float = NULL,
  462. .from_float_reference = NULL,
  463. .vec_dot = NULL,
  464. .vec_dot_type = GGML_TYPE_COUNT,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_Q5_0] = {
  468. .type_name = "q5_0",
  469. .blck_size = QK5_0,
  470. .type_size = sizeof(block_q5_0),
  471. .is_quantized = true,
  472. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  473. .from_float = quantize_row_q5_0,
  474. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  475. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  476. .vec_dot_type = GGML_TYPE_Q8_0,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q5_1] = {
  480. .type_name = "q5_1",
  481. .blck_size = QK5_1,
  482. .type_size = sizeof(block_q5_1),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  485. .from_float = quantize_row_q5_1,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  487. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  488. .vec_dot_type = GGML_TYPE_Q8_1,
  489. .nrows = 1,
  490. },
  491. [GGML_TYPE_Q8_0] = {
  492. .type_name = "q8_0",
  493. .blck_size = QK8_0,
  494. .type_size = sizeof(block_q8_0),
  495. .is_quantized = true,
  496. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  497. .from_float = quantize_row_q8_0,
  498. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  499. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  500. .vec_dot_type = GGML_TYPE_Q8_0,
  501. #if defined (__ARM_FEATURE_MATMUL_INT8)
  502. .nrows = 2,
  503. #else
  504. .nrows = 1,
  505. #endif
  506. },
  507. [GGML_TYPE_Q8_1] = {
  508. .type_name = "q8_1",
  509. .blck_size = QK8_1,
  510. .type_size = sizeof(block_q8_1),
  511. .is_quantized = true,
  512. .from_float = quantize_row_q8_1,
  513. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  514. .vec_dot_type = GGML_TYPE_Q8_1,
  515. .nrows = 1,
  516. },
  517. [GGML_TYPE_Q2_K] = {
  518. .type_name = "q2_K",
  519. .blck_size = QK_K,
  520. .type_size = sizeof(block_q2_K),
  521. .is_quantized = true,
  522. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  523. .from_float = quantize_row_q2_K,
  524. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  525. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  526. .vec_dot_type = GGML_TYPE_Q8_K,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_Q3_K] = {
  530. .type_name = "q3_K",
  531. .blck_size = QK_K,
  532. .type_size = sizeof(block_q3_K),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  535. .from_float = quantize_row_q3_K,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  537. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  538. .vec_dot_type = GGML_TYPE_Q8_K,
  539. .nrows = 1,
  540. },
  541. [GGML_TYPE_Q4_K] = {
  542. .type_name = "q4_K",
  543. .blck_size = QK_K,
  544. .type_size = sizeof(block_q4_K),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  547. .from_float = quantize_row_q4_K,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  549. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  550. .vec_dot_type = GGML_TYPE_Q8_K,
  551. .nrows = 1,
  552. },
  553. [GGML_TYPE_Q5_K] = {
  554. .type_name = "q5_K",
  555. .blck_size = QK_K,
  556. .type_size = sizeof(block_q5_K),
  557. .is_quantized = true,
  558. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  559. .from_float = quantize_row_q5_K,
  560. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  561. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  562. .vec_dot_type = GGML_TYPE_Q8_K,
  563. .nrows = 1,
  564. },
  565. [GGML_TYPE_Q6_K] = {
  566. .type_name = "q6_K",
  567. .blck_size = QK_K,
  568. .type_size = sizeof(block_q6_K),
  569. .is_quantized = true,
  570. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  571. .from_float = quantize_row_q6_K,
  572. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  573. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  574. .vec_dot_type = GGML_TYPE_Q8_K,
  575. .nrows = 1,
  576. },
  577. [GGML_TYPE_IQ2_XXS] = {
  578. .type_name = "iq2_xxs",
  579. .blck_size = QK_K,
  580. .type_size = sizeof(block_iq2_xxs),
  581. .is_quantized = true,
  582. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  583. .from_float = NULL,
  584. .from_float_reference = NULL,
  585. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  586. .vec_dot_type = GGML_TYPE_Q8_K,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_IQ2_XS] = {
  590. .type_name = "iq2_xs",
  591. .blck_size = QK_K,
  592. .type_size = sizeof(block_iq2_xs),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  595. .from_float = NULL,
  596. .from_float_reference = NULL,
  597. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  598. .vec_dot_type = GGML_TYPE_Q8_K,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_IQ3_XXS] = {
  602. .type_name = "iq3_xxs",
  603. .blck_size = QK_K,
  604. .type_size = sizeof(block_iq3_xxs),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  607. .from_float = quantize_row_iq3_xxs,
  608. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  609. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  610. .vec_dot_type = GGML_TYPE_Q8_K,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_IQ1_S] = {
  614. .type_name = "iq1_s",
  615. .blck_size = QK_K,
  616. .type_size = sizeof(block_iq1_s),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  619. .from_float = NULL,
  620. .from_float_reference = NULL,
  621. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  622. .vec_dot_type = GGML_TYPE_Q8_K,
  623. .nrows = 1,
  624. },
  625. [GGML_TYPE_Q8_K] = {
  626. .type_name = "q8_K",
  627. .blck_size = QK_K,
  628. .type_size = sizeof(block_q8_K),
  629. .is_quantized = true,
  630. .from_float = quantize_row_q8_K,
  631. }
  632. };
  633. // For internal test use
  634. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  635. GGML_ASSERT(type < GGML_TYPE_COUNT);
  636. return type_traits[type];
  637. }
  638. //
  639. // simd mappings
  640. //
  641. #if defined(__ARM_NEON)
  642. #if !defined(__aarch64__)
  643. // 64-bit compatibility
  644. inline static float vaddvq_f32(float32x4_t v) {
  645. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  646. }
  647. #endif
  648. #endif
  649. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  650. // we then implement the fundamental computation operations below using only these macros
  651. // adding support for new architectures requires to define the corresponding SIMD macros
  652. //
  653. // GGML_F32_STEP / GGML_F16_STEP
  654. // number of elements to process in a single step
  655. //
  656. // GGML_F32_EPR / GGML_F16_EPR
  657. // number of elements to fit in a single register
  658. //
  659. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  660. #define GGML_SIMD
  661. // F32 NEON
  662. #define GGML_F32_STEP 16
  663. #define GGML_F32_EPR 4
  664. #define GGML_F32x4 float32x4_t
  665. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  666. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  667. #define GGML_F32x4_LOAD vld1q_f32
  668. #define GGML_F32x4_STORE vst1q_f32
  669. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  670. #define GGML_F32x4_ADD vaddq_f32
  671. #define GGML_F32x4_MUL vmulq_f32
  672. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  673. #define GGML_F32x4_REDUCE(res, x) \
  674. { \
  675. int offset = GGML_F32_ARR >> 1; \
  676. for (int i = 0; i < offset; ++i) { \
  677. x[i] = vaddq_f32(x[i], x[offset+i]); \
  678. } \
  679. offset >>= 1; \
  680. for (int i = 0; i < offset; ++i) { \
  681. x[i] = vaddq_f32(x[i], x[offset+i]); \
  682. } \
  683. offset >>= 1; \
  684. for (int i = 0; i < offset; ++i) { \
  685. x[i] = vaddq_f32(x[i], x[offset+i]); \
  686. } \
  687. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  688. }
  689. #define GGML_F32_VEC GGML_F32x4
  690. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  691. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  692. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  693. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  694. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  695. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  696. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  697. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  698. // F16 NEON
  699. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  700. #define GGML_F16_STEP 32
  701. #define GGML_F16_EPR 8
  702. #define GGML_F16x8 float16x8_t
  703. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  704. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  705. #define GGML_F16x8_LOAD vld1q_f16
  706. #define GGML_F16x8_STORE vst1q_f16
  707. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  708. #define GGML_F16x8_ADD vaddq_f16
  709. #define GGML_F16x8_MUL vmulq_f16
  710. #define GGML_F16x8_REDUCE(res, x) \
  711. do { \
  712. int offset = GGML_F16_ARR >> 1; \
  713. for (int i = 0; i < offset; ++i) { \
  714. x[i] = vaddq_f16(x[i], x[offset+i]); \
  715. } \
  716. offset >>= 1; \
  717. for (int i = 0; i < offset; ++i) { \
  718. x[i] = vaddq_f16(x[i], x[offset+i]); \
  719. } \
  720. offset >>= 1; \
  721. for (int i = 0; i < offset; ++i) { \
  722. x[i] = vaddq_f16(x[i], x[offset+i]); \
  723. } \
  724. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  725. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  726. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  727. } while (0)
  728. #define GGML_F16_VEC GGML_F16x8
  729. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  730. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  731. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  732. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  733. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  734. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  735. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  736. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  737. #else
  738. // if FP16 vector arithmetic is not supported, we use FP32 instead
  739. // and take advantage of the vcvt_ functions to convert to/from FP16
  740. #define GGML_F16_STEP 16
  741. #define GGML_F16_EPR 4
  742. #define GGML_F32Cx4 float32x4_t
  743. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  744. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  745. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  746. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  747. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  748. #define GGML_F32Cx4_ADD vaddq_f32
  749. #define GGML_F32Cx4_MUL vmulq_f32
  750. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  751. #define GGML_F16_VEC GGML_F32Cx4
  752. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  753. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  754. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  755. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  756. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  757. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  758. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  759. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  760. #endif
  761. #elif defined(__AVX__)
  762. #define GGML_SIMD
  763. // F32 AVX
  764. #define GGML_F32_STEP 32
  765. #define GGML_F32_EPR 8
  766. #define GGML_F32x8 __m256
  767. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  768. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  769. #define GGML_F32x8_LOAD _mm256_loadu_ps
  770. #define GGML_F32x8_STORE _mm256_storeu_ps
  771. #if defined(__FMA__)
  772. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  773. #else
  774. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  775. #endif
  776. #define GGML_F32x8_ADD _mm256_add_ps
  777. #define GGML_F32x8_MUL _mm256_mul_ps
  778. #define GGML_F32x8_REDUCE(res, x) \
  779. do { \
  780. int offset = GGML_F32_ARR >> 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  783. } \
  784. offset >>= 1; \
  785. for (int i = 0; i < offset; ++i) { \
  786. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  787. } \
  788. offset >>= 1; \
  789. for (int i = 0; i < offset; ++i) { \
  790. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  791. } \
  792. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  793. _mm256_extractf128_ps(x[0], 1)); \
  794. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  795. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  796. } while (0)
  797. // TODO: is this optimal ?
  798. #define GGML_F32_VEC GGML_F32x8
  799. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  800. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  801. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  802. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  803. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  804. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  805. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  806. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  807. // F16 AVX
  808. #define GGML_F16_STEP 32
  809. #define GGML_F16_EPR 8
  810. // F16 arithmetic is not supported by AVX, so we use F32 instead
  811. #define GGML_F32Cx8 __m256
  812. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  813. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  814. #if defined(__F16C__)
  815. // the _mm256_cvt intrinsics require F16C
  816. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  817. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  818. #else
  819. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  820. float tmp[8];
  821. for (int i = 0; i < 8; i++) {
  822. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  823. }
  824. return _mm256_loadu_ps(tmp);
  825. }
  826. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  827. float arr[8];
  828. _mm256_storeu_ps(arr, y);
  829. for (int i = 0; i < 8; i++)
  830. x[i] = GGML_FP32_TO_FP16(arr[i]);
  831. }
  832. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  833. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  834. #endif
  835. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  836. #define GGML_F32Cx8_ADD _mm256_add_ps
  837. #define GGML_F32Cx8_MUL _mm256_mul_ps
  838. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  839. #define GGML_F16_VEC GGML_F32Cx8
  840. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  841. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  842. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  843. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  844. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  845. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  846. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  847. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  848. #elif defined(__POWER9_VECTOR__)
  849. #define GGML_SIMD
  850. // F32 POWER9
  851. #define GGML_F32_STEP 32
  852. #define GGML_F32_EPR 4
  853. #define GGML_F32x4 vector float
  854. #define GGML_F32x4_ZERO 0.0f
  855. #define GGML_F32x4_SET1 vec_splats
  856. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  857. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  858. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  859. #define GGML_F32x4_ADD vec_add
  860. #define GGML_F32x4_MUL vec_mul
  861. #define GGML_F32x4_REDUCE(res, x) \
  862. { \
  863. int offset = GGML_F32_ARR >> 1; \
  864. for (int i = 0; i < offset; ++i) { \
  865. x[i] = vec_add(x[i], x[offset+i]); \
  866. } \
  867. offset >>= 1; \
  868. for (int i = 0; i < offset; ++i) { \
  869. x[i] = vec_add(x[i], x[offset+i]); \
  870. } \
  871. offset >>= 1; \
  872. for (int i = 0; i < offset; ++i) { \
  873. x[i] = vec_add(x[i], x[offset+i]); \
  874. } \
  875. res = vec_extract(x[0], 0) + \
  876. vec_extract(x[0], 1) + \
  877. vec_extract(x[0], 2) + \
  878. vec_extract(x[0], 3); \
  879. }
  880. #define GGML_F32_VEC GGML_F32x4
  881. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  882. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  883. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  884. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  885. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  886. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  887. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  888. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  889. // F16 POWER9
  890. #define GGML_F16_STEP GGML_F32_STEP
  891. #define GGML_F16_EPR GGML_F32_EPR
  892. #define GGML_F16_VEC GGML_F32x4
  893. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  894. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  895. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  896. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  897. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  898. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  899. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  900. vec_extract_fp32_from_shortl(vec_xl(0, p))
  901. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  902. #define GGML_F16_VEC_STORE(p, r, i) \
  903. if (i & 0x1) \
  904. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  905. r[i - GGML_ENDIAN_BYTE(0)]), \
  906. 0, p - GGML_F16_EPR)
  907. #elif defined(__wasm_simd128__)
  908. #define GGML_SIMD
  909. // F32 WASM
  910. #define GGML_F32_STEP 16
  911. #define GGML_F32_EPR 4
  912. #define GGML_F32x4 v128_t
  913. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  914. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  915. #define GGML_F32x4_LOAD wasm_v128_load
  916. #define GGML_F32x4_STORE wasm_v128_store
  917. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  918. #define GGML_F32x4_ADD wasm_f32x4_add
  919. #define GGML_F32x4_MUL wasm_f32x4_mul
  920. #define GGML_F32x4_REDUCE(res, x) \
  921. { \
  922. int offset = GGML_F32_ARR >> 1; \
  923. for (int i = 0; i < offset; ++i) { \
  924. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  925. } \
  926. offset >>= 1; \
  927. for (int i = 0; i < offset; ++i) { \
  928. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  929. } \
  930. offset >>= 1; \
  931. for (int i = 0; i < offset; ++i) { \
  932. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  933. } \
  934. res = wasm_f32x4_extract_lane(x[0], 0) + \
  935. wasm_f32x4_extract_lane(x[0], 1) + \
  936. wasm_f32x4_extract_lane(x[0], 2) + \
  937. wasm_f32x4_extract_lane(x[0], 3); \
  938. }
  939. #define GGML_F32_VEC GGML_F32x4
  940. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  941. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  942. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  943. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  944. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  945. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  946. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  947. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  948. // F16 WASM
  949. #define GGML_F16_STEP 16
  950. #define GGML_F16_EPR 4
  951. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  952. float tmp[4];
  953. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  954. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  955. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  956. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  957. return wasm_v128_load(tmp);
  958. }
  959. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  960. float tmp[4];
  961. wasm_v128_store(tmp, x);
  962. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  963. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  964. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  965. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  966. }
  967. #define GGML_F16x4 v128_t
  968. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  969. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  970. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  971. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  972. #define GGML_F16x4_FMA GGML_F32x4_FMA
  973. #define GGML_F16x4_ADD wasm_f32x4_add
  974. #define GGML_F16x4_MUL wasm_f32x4_mul
  975. #define GGML_F16x4_REDUCE(res, x) \
  976. { \
  977. int offset = GGML_F16_ARR >> 1; \
  978. for (int i = 0; i < offset; ++i) { \
  979. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  980. } \
  981. offset >>= 1; \
  982. for (int i = 0; i < offset; ++i) { \
  983. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  984. } \
  985. offset >>= 1; \
  986. for (int i = 0; i < offset; ++i) { \
  987. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  988. } \
  989. res = wasm_f32x4_extract_lane(x[0], 0) + \
  990. wasm_f32x4_extract_lane(x[0], 1) + \
  991. wasm_f32x4_extract_lane(x[0], 2) + \
  992. wasm_f32x4_extract_lane(x[0], 3); \
  993. }
  994. #define GGML_F16_VEC GGML_F16x4
  995. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  996. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  997. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  998. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  999. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1000. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1001. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1002. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1003. #elif defined(__SSE3__)
  1004. #define GGML_SIMD
  1005. // F32 SSE
  1006. #define GGML_F32_STEP 32
  1007. #define GGML_F32_EPR 4
  1008. #define GGML_F32x4 __m128
  1009. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1010. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1011. #define GGML_F32x4_LOAD _mm_loadu_ps
  1012. #define GGML_F32x4_STORE _mm_storeu_ps
  1013. #if defined(__FMA__)
  1014. // TODO: Does this work?
  1015. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1016. #else
  1017. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1018. #endif
  1019. #define GGML_F32x4_ADD _mm_add_ps
  1020. #define GGML_F32x4_MUL _mm_mul_ps
  1021. #define GGML_F32x4_REDUCE(res, x) \
  1022. { \
  1023. int offset = GGML_F32_ARR >> 1; \
  1024. for (int i = 0; i < offset; ++i) { \
  1025. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1026. } \
  1027. offset >>= 1; \
  1028. for (int i = 0; i < offset; ++i) { \
  1029. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1030. } \
  1031. offset >>= 1; \
  1032. for (int i = 0; i < offset; ++i) { \
  1033. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1034. } \
  1035. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1036. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1037. }
  1038. // TODO: is this optimal ?
  1039. #define GGML_F32_VEC GGML_F32x4
  1040. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1041. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1042. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1043. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1044. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1045. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1046. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1047. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1048. // F16 SSE
  1049. #define GGML_F16_STEP 32
  1050. #define GGML_F16_EPR 4
  1051. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1052. float tmp[4];
  1053. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1054. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1055. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1056. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1057. return _mm_loadu_ps(tmp);
  1058. }
  1059. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1060. float arr[4];
  1061. _mm_storeu_ps(arr, y);
  1062. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1063. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1064. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1065. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1066. }
  1067. #define GGML_F32Cx4 __m128
  1068. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1069. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1070. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1071. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1072. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1073. #define GGML_F32Cx4_ADD _mm_add_ps
  1074. #define GGML_F32Cx4_MUL _mm_mul_ps
  1075. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1076. #define GGML_F16_VEC GGML_F32Cx4
  1077. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1078. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1079. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1080. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1081. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1082. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1083. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1084. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1085. #endif
  1086. // GGML_F32_ARR / GGML_F16_ARR
  1087. // number of registers to use per step
  1088. #ifdef GGML_SIMD
  1089. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1090. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1091. #endif
  1092. //
  1093. // fundamental operations
  1094. //
  1095. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1096. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1097. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1098. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1099. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1100. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1101. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1102. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1103. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1104. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1105. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1106. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1107. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1108. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1109. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1110. assert(nrc == 1);
  1111. UNUSED(nrc);
  1112. UNUSED(bx);
  1113. UNUSED(by);
  1114. UNUSED(bs);
  1115. #ifdef GGML_SIMD
  1116. float sumf = 0.0f;
  1117. const int np = (n & ~(GGML_F32_STEP - 1));
  1118. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1119. GGML_F32_VEC ax[GGML_F32_ARR];
  1120. GGML_F32_VEC ay[GGML_F32_ARR];
  1121. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1122. for (int j = 0; j < GGML_F32_ARR; j++) {
  1123. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1124. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1125. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1126. }
  1127. }
  1128. // reduce sum0..sum3 to sum0
  1129. GGML_F32_VEC_REDUCE(sumf, sum);
  1130. // leftovers
  1131. for (int i = np; i < n; ++i) {
  1132. sumf += x[i]*y[i];
  1133. }
  1134. #else
  1135. // scalar
  1136. ggml_float sumf = 0.0;
  1137. for (int i = 0; i < n; ++i) {
  1138. sumf += (ggml_float)(x[i]*y[i]);
  1139. }
  1140. #endif
  1141. *s = sumf;
  1142. }
  1143. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1144. assert(nrc == 1);
  1145. UNUSED(nrc);
  1146. UNUSED(bx);
  1147. UNUSED(by);
  1148. UNUSED(bs);
  1149. ggml_float sumf = 0.0;
  1150. #if defined(GGML_SIMD)
  1151. const int np = (n & ~(GGML_F16_STEP - 1));
  1152. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1153. GGML_F16_VEC ax[GGML_F16_ARR];
  1154. GGML_F16_VEC ay[GGML_F16_ARR];
  1155. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1156. for (int j = 0; j < GGML_F16_ARR; j++) {
  1157. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1158. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1159. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1160. }
  1161. }
  1162. // reduce sum0..sum3 to sum0
  1163. GGML_F16_VEC_REDUCE(sumf, sum);
  1164. // leftovers
  1165. for (int i = np; i < n; ++i) {
  1166. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1167. }
  1168. #else
  1169. for (int i = 0; i < n; ++i) {
  1170. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1171. }
  1172. #endif
  1173. *s = sumf;
  1174. }
  1175. // compute GGML_VEC_DOT_UNROLL dot products at once
  1176. // xs - x row stride in bytes
  1177. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1178. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1179. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1180. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1181. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1182. }
  1183. #if defined(GGML_SIMD)
  1184. const int np = (n & ~(GGML_F16_STEP - 1));
  1185. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1186. GGML_F16_VEC ax[GGML_F16_ARR];
  1187. GGML_F16_VEC ay[GGML_F16_ARR];
  1188. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1189. for (int j = 0; j < GGML_F16_ARR; j++) {
  1190. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1191. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1192. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1193. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1194. }
  1195. }
  1196. }
  1197. // reduce sum0..sum3 to sum0
  1198. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1199. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1200. }
  1201. // leftovers
  1202. for (int i = np; i < n; ++i) {
  1203. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1204. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1205. }
  1206. }
  1207. #else
  1208. for (int i = 0; i < n; ++i) {
  1209. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1210. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1211. }
  1212. }
  1213. #endif
  1214. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1215. s[i] = sumf[i];
  1216. }
  1217. }
  1218. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1219. #if defined(GGML_SIMD)
  1220. const int np = (n & ~(GGML_F32_STEP - 1));
  1221. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1222. GGML_F32_VEC ax[GGML_F32_ARR];
  1223. GGML_F32_VEC ay[GGML_F32_ARR];
  1224. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1225. for (int j = 0; j < GGML_F32_ARR; j++) {
  1226. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1227. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1228. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1229. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1230. }
  1231. }
  1232. // leftovers
  1233. for (int i = np; i < n; ++i) {
  1234. y[i] += x[i]*v;
  1235. }
  1236. #else
  1237. // scalar
  1238. for (int i = 0; i < n; ++i) {
  1239. y[i] += x[i]*v;
  1240. }
  1241. #endif
  1242. }
  1243. // xs and vs are byte strides of x and v
  1244. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1245. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1246. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1247. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1248. x[i] = (const float *) ((const char *) xv + i*xs);
  1249. v[i] = (const float *) ((const char *) vv + i*vs);
  1250. }
  1251. #if defined(GGML_SIMD)
  1252. const int np = (n & ~(GGML_F32_STEP - 1));
  1253. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1254. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1255. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1256. }
  1257. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1258. GGML_F32_VEC ay[GGML_F32_ARR];
  1259. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1260. for (int j = 0; j < GGML_F32_ARR; j++) {
  1261. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1262. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1263. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1264. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1265. }
  1266. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1267. }
  1268. }
  1269. // leftovers
  1270. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1271. for (int i = np; i < n; ++i) {
  1272. y[i] += x[k][i]*v[k][0];
  1273. }
  1274. }
  1275. #else
  1276. // scalar
  1277. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1278. for (int i = 0; i < n; ++i) {
  1279. y[i] += x[k][i]*v[k][0];
  1280. }
  1281. }
  1282. #endif
  1283. }
  1284. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1285. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1286. #if defined(GGML_USE_ACCELERATE)
  1287. vDSP_vsmul(y, 1, &v, y, 1, n);
  1288. #elif defined(GGML_SIMD)
  1289. const int np = (n & ~(GGML_F32_STEP - 1));
  1290. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1291. GGML_F32_VEC ay[GGML_F32_ARR];
  1292. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1293. for (int j = 0; j < GGML_F32_ARR; j++) {
  1294. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1295. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1296. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1297. }
  1298. }
  1299. // leftovers
  1300. for (int i = np; i < n; ++i) {
  1301. y[i] *= v;
  1302. }
  1303. #else
  1304. // scalar
  1305. for (int i = 0; i < n; ++i) {
  1306. y[i] *= v;
  1307. }
  1308. #endif
  1309. }
  1310. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1311. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1312. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1313. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1314. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1315. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1316. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1317. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1318. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1319. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1320. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1321. // TODO: optimize performance
  1322. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1323. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1324. static const float GELU_COEF_A = 0.044715f;
  1325. static const float GELU_QUICK_COEF = -1.702f;
  1326. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1327. inline static float ggml_gelu_f32(float x) {
  1328. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1329. }
  1330. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1331. const uint16_t * i16 = (const uint16_t *) x;
  1332. for (int i = 0; i < n; ++i) {
  1333. y[i] = ggml_table_gelu_f16[i16[i]];
  1334. }
  1335. }
  1336. #ifdef GGML_GELU_FP16
  1337. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1338. uint16_t t;
  1339. for (int i = 0; i < n; ++i) {
  1340. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1341. memcpy(&t, &fp16, sizeof(uint16_t));
  1342. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1343. }
  1344. }
  1345. #else
  1346. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1347. for (int i = 0; i < n; ++i) {
  1348. y[i] = ggml_gelu_f32(x[i]);
  1349. }
  1350. }
  1351. #endif
  1352. inline static float ggml_gelu_quick_f32(float x) {
  1353. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1354. }
  1355. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1356. // const uint16_t * i16 = (const uint16_t *) x;
  1357. // for (int i = 0; i < n; ++i) {
  1358. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1359. // }
  1360. //}
  1361. #ifdef GGML_GELU_QUICK_FP16
  1362. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1363. uint16_t t;
  1364. for (int i = 0; i < n; ++i) {
  1365. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1366. memcpy(&t, &fp16, sizeof(uint16_t));
  1367. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1368. }
  1369. }
  1370. #else
  1371. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1372. for (int i = 0; i < n; ++i) {
  1373. y[i] = ggml_gelu_quick_f32(x[i]);
  1374. }
  1375. }
  1376. #endif
  1377. // Sigmoid Linear Unit (SiLU) function
  1378. inline static float ggml_silu_f32(float x) {
  1379. return x/(1.0f + expf(-x));
  1380. }
  1381. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1382. // const uint16_t * i16 = (const uint16_t *) x;
  1383. // for (int i = 0; i < n; ++i) {
  1384. // y[i] = ggml_table_silu_f16[i16[i]];
  1385. // }
  1386. //}
  1387. #ifdef GGML_SILU_FP16
  1388. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1389. uint16_t t;
  1390. for (int i = 0; i < n; ++i) {
  1391. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1392. memcpy(&t, &fp16, sizeof(uint16_t));
  1393. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1394. }
  1395. }
  1396. #else
  1397. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1398. for (int i = 0; i < n; ++i) {
  1399. y[i] = ggml_silu_f32(x[i]);
  1400. }
  1401. }
  1402. #endif
  1403. inline static float ggml_silu_backward_f32(float x, float dy) {
  1404. const float s = 1.0f/(1.0f + expf(-x));
  1405. return dy*s*(1.0f + x*(1.0f - s));
  1406. }
  1407. #ifdef GGML_SILU_FP16
  1408. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1409. for (int i = 0; i < n; ++i) {
  1410. // we did not use x[i] to compute forward silu but its f16 equivalent
  1411. // take derivative at f16 of x[i]:
  1412. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1413. float usedx = GGML_FP16_TO_FP32(fp16);
  1414. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1415. }
  1416. }
  1417. #else
  1418. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1419. for (int i = 0; i < n; ++i) {
  1420. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1421. }
  1422. }
  1423. #endif
  1424. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1425. #ifndef GGML_USE_ACCELERATE
  1426. ggml_float sum = 0.0;
  1427. for (int i = 0; i < n; ++i) {
  1428. sum += (ggml_float)x[i];
  1429. }
  1430. *s = sum;
  1431. #else
  1432. vDSP_sve(x, 1, s, n);
  1433. #endif
  1434. }
  1435. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1436. ggml_float sum = 0.0;
  1437. for (int i = 0; i < n; ++i) {
  1438. sum += (ggml_float)x[i];
  1439. }
  1440. *s = sum;
  1441. }
  1442. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1443. float sum = 0.0f;
  1444. for (int i = 0; i < n; ++i) {
  1445. sum += GGML_FP16_TO_FP32(x[i]);
  1446. }
  1447. *s = sum;
  1448. }
  1449. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1450. #ifndef GGML_USE_ACCELERATE
  1451. float max = -INFINITY;
  1452. for (int i = 0; i < n; ++i) {
  1453. max = MAX(max, x[i]);
  1454. }
  1455. *s = max;
  1456. #else
  1457. vDSP_maxv(x, 1, s, n);
  1458. #endif
  1459. }
  1460. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1461. ggml_vec_norm_f32(n, s, x);
  1462. *s = 1.f/(*s);
  1463. }
  1464. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1465. float max = -INFINITY;
  1466. int idx = 0;
  1467. for (int i = 0; i < n; ++i) {
  1468. max = MAX(max, x[i]);
  1469. if (max == x[i]) { idx = i; }
  1470. }
  1471. *s = idx;
  1472. }
  1473. //
  1474. // data types
  1475. //
  1476. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1477. "NONE",
  1478. "DUP",
  1479. "ADD",
  1480. "ADD1",
  1481. "ACC",
  1482. "SUB",
  1483. "MUL",
  1484. "DIV",
  1485. "SQR",
  1486. "SQRT",
  1487. "LOG",
  1488. "SUM",
  1489. "SUM_ROWS",
  1490. "MEAN",
  1491. "ARGMAX",
  1492. "REPEAT",
  1493. "REPEAT_BACK",
  1494. "CONCAT",
  1495. "SILU_BACK",
  1496. "NORM",
  1497. "RMS_NORM",
  1498. "RMS_NORM_BACK",
  1499. "GROUP_NORM",
  1500. "MUL_MAT",
  1501. "MUL_MAT_ID",
  1502. "OUT_PROD",
  1503. "SCALE",
  1504. "SET",
  1505. "CPY",
  1506. "CONT",
  1507. "RESHAPE",
  1508. "VIEW",
  1509. "PERMUTE",
  1510. "TRANSPOSE",
  1511. "GET_ROWS",
  1512. "GET_ROWS_BACK",
  1513. "DIAG",
  1514. "DIAG_MASK_INF",
  1515. "DIAG_MASK_ZERO",
  1516. "SOFT_MAX",
  1517. "SOFT_MAX_BACK",
  1518. "ROPE",
  1519. "ROPE_BACK",
  1520. "ALIBI",
  1521. "CLAMP",
  1522. "CONV_TRANSPOSE_1D",
  1523. "IM2COL",
  1524. "CONV_TRANSPOSE_2D",
  1525. "POOL_1D",
  1526. "POOL_2D",
  1527. "UPSCALE",
  1528. "PAD",
  1529. "ARGSORT",
  1530. "LEAKY_RELU",
  1531. "FLASH_ATTN",
  1532. "FLASH_FF",
  1533. "FLASH_ATTN_BACK",
  1534. "WIN_PART",
  1535. "WIN_UNPART",
  1536. "GET_REL_POS",
  1537. "ADD_REL_POS",
  1538. "UNARY",
  1539. "MAP_UNARY",
  1540. "MAP_BINARY",
  1541. "MAP_CUSTOM1_F32",
  1542. "MAP_CUSTOM2_F32",
  1543. "MAP_CUSTOM3_F32",
  1544. "MAP_CUSTOM1",
  1545. "MAP_CUSTOM2",
  1546. "MAP_CUSTOM3",
  1547. "CROSS_ENTROPY_LOSS",
  1548. "CROSS_ENTROPY_LOSS_BACK",
  1549. };
  1550. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1551. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1552. "none",
  1553. "x",
  1554. "x+y",
  1555. "x+y",
  1556. "view(x,nb,offset)+=y->x",
  1557. "x-y",
  1558. "x*y",
  1559. "x/y",
  1560. "x^2",
  1561. "√x",
  1562. "log(x)",
  1563. "Σx",
  1564. "Σx_k",
  1565. "Σx/n",
  1566. "argmax(x)",
  1567. "repeat(x)",
  1568. "repeat_back(x)",
  1569. "concat(x, y)",
  1570. "silu_back(x)",
  1571. "norm(x)",
  1572. "rms_norm(x)",
  1573. "rms_norm_back(x)",
  1574. "group_norm(x)",
  1575. "X*Y",
  1576. "X[i]*Y",
  1577. "X*Y",
  1578. "x*v",
  1579. "y-\\>view(x)",
  1580. "x-\\>y",
  1581. "cont(x)",
  1582. "reshape(x)",
  1583. "view(x)",
  1584. "permute(x)",
  1585. "transpose(x)",
  1586. "get_rows(x)",
  1587. "get_rows_back(x)",
  1588. "diag(x)",
  1589. "diag_mask_inf(x)",
  1590. "diag_mask_zero(x)",
  1591. "soft_max(x)",
  1592. "soft_max_back(x)",
  1593. "rope(x)",
  1594. "rope_back(x)",
  1595. "alibi(x)",
  1596. "clamp(x)",
  1597. "conv_transpose_1d(x)",
  1598. "im2col(x)",
  1599. "conv_transpose_2d(x)",
  1600. "pool_1d(x)",
  1601. "pool_2d(x)",
  1602. "upscale(x)",
  1603. "pad(x)",
  1604. "argsort(x)",
  1605. "leaky_relu(x)",
  1606. "flash_attn(x)",
  1607. "flash_ff(x)",
  1608. "flash_attn_back(x)",
  1609. "win_part(x)",
  1610. "win_unpart(x)",
  1611. "get_rel_pos(x)",
  1612. "add_rel_pos(x)",
  1613. "unary(x)",
  1614. "f(x)",
  1615. "f(x,y)",
  1616. "custom_f32(x)",
  1617. "custom_f32(x,y)",
  1618. "custom_f32(x,y,z)",
  1619. "custom(x)",
  1620. "custom(x,y)",
  1621. "custom(x,y,z)",
  1622. "cross_entropy_loss(x,y)",
  1623. "cross_entropy_loss_back(x,y)",
  1624. };
  1625. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1626. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1627. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1628. "ABS",
  1629. "SGN",
  1630. "NEG",
  1631. "STEP",
  1632. "TANH",
  1633. "ELU",
  1634. "RELU",
  1635. "GELU",
  1636. "GELU_QUICK",
  1637. "SILU",
  1638. "HARDSWISH",
  1639. "HARDSIGMOID",
  1640. };
  1641. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1642. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1643. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1644. // WARN:
  1645. // Mis-configuration can lead to problem that's hard to reason about:
  1646. // * At best it crash or talks nosense.
  1647. // * At worst it talks slightly difference but hard to perceive.
  1648. //
  1649. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1650. // Take care about compile options (e.g., GGML_USE_xxx).
  1651. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1652. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1653. static void ggml_setup_op_has_task_pass(void) {
  1654. { // INIT
  1655. bool * p = GGML_OP_HAS_INIT;
  1656. p[GGML_OP_ACC ] = true;
  1657. p[GGML_OP_MUL_MAT ] = true;
  1658. p[GGML_OP_MUL_MAT_ID ] = true;
  1659. p[GGML_OP_OUT_PROD ] = true;
  1660. p[GGML_OP_SET ] = true;
  1661. p[GGML_OP_GET_ROWS_BACK ] = true;
  1662. p[GGML_OP_DIAG_MASK_INF ] = true;
  1663. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1664. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1665. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1666. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1667. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1668. p[GGML_OP_ADD_REL_POS ] = true;
  1669. }
  1670. { // FINALIZE
  1671. bool * p = GGML_OP_HAS_FINALIZE;
  1672. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1673. }
  1674. }
  1675. //
  1676. // ggml context
  1677. //
  1678. struct ggml_context {
  1679. size_t mem_size;
  1680. void * mem_buffer;
  1681. bool mem_buffer_owned;
  1682. bool no_alloc;
  1683. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1684. int n_objects;
  1685. struct ggml_object * objects_begin;
  1686. struct ggml_object * objects_end;
  1687. struct ggml_scratch scratch;
  1688. struct ggml_scratch scratch_save;
  1689. };
  1690. struct ggml_context_container {
  1691. bool used;
  1692. struct ggml_context context;
  1693. };
  1694. //
  1695. // NUMA support
  1696. //
  1697. #define GGML_NUMA_MAX_NODES 8
  1698. #define GGML_NUMA_MAX_CPUS 512
  1699. struct ggml_numa_node {
  1700. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1701. uint32_t n_cpus;
  1702. };
  1703. struct ggml_numa_nodes {
  1704. enum ggml_numa_strategy numa_strategy;
  1705. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1706. uint32_t n_nodes;
  1707. uint32_t total_cpus; // hardware threads on system
  1708. uint32_t current_node; // node on which main process is execting
  1709. #if defined(__gnu_linux__)
  1710. cpu_set_t cpuset; // cpuset from numactl
  1711. #else
  1712. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1713. #endif
  1714. };
  1715. //
  1716. // ggml state
  1717. //
  1718. struct ggml_state {
  1719. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1720. struct ggml_numa_nodes numa;
  1721. };
  1722. // global state
  1723. static struct ggml_state g_state;
  1724. static atomic_int g_state_barrier = 0;
  1725. // barrier via spin lock
  1726. inline static void ggml_critical_section_start(void) {
  1727. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1728. while (processing > 0) {
  1729. // wait for other threads to finish
  1730. atomic_fetch_sub(&g_state_barrier, 1);
  1731. sched_yield(); // TODO: reconsider this
  1732. processing = atomic_fetch_add(&g_state_barrier, 1);
  1733. }
  1734. }
  1735. // TODO: make this somehow automatically executed
  1736. // some sort of "sentry" mechanism
  1737. inline static void ggml_critical_section_end(void) {
  1738. atomic_fetch_sub(&g_state_barrier, 1);
  1739. }
  1740. #if defined(__gnu_linux__)
  1741. static cpu_set_t ggml_get_numa_affinity(void) {
  1742. cpu_set_t cpuset;
  1743. pthread_t thread;
  1744. thread = pthread_self();
  1745. CPU_ZERO(&cpuset);
  1746. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1747. return cpuset;
  1748. }
  1749. #else
  1750. static uint32_t ggml_get_numa_affinity(void) {
  1751. return 0; // no NUMA support
  1752. }
  1753. #endif
  1754. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1755. if (g_state.numa.n_nodes > 0) {
  1756. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1757. return;
  1758. }
  1759. #if defined(__gnu_linux__)
  1760. struct stat st;
  1761. char path[256];
  1762. int rv;
  1763. // set numa scheme
  1764. g_state.numa.numa_strategy = numa_flag;
  1765. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1766. g_state.numa.cpuset = ggml_get_numa_affinity();
  1767. // enumerate nodes
  1768. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1769. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1770. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1771. if (stat(path, &st) != 0) { break; }
  1772. ++g_state.numa.n_nodes;
  1773. }
  1774. // enumerate CPUs
  1775. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1776. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1777. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1778. if (stat(path, &st) != 0) { break; }
  1779. ++g_state.numa.total_cpus;
  1780. }
  1781. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1782. // figure out which node we're on
  1783. uint current_cpu;
  1784. int getcpu_ret = 0;
  1785. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1786. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1787. #else
  1788. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1789. getcpu_ret = syscall(SYS_getcpu,&current_cpu,&g_state.numa.current_node);
  1790. #endif
  1791. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1792. g_state.numa.n_nodes = 0;
  1793. return;
  1794. }
  1795. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1796. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1797. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1798. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1799. node->n_cpus = 0;
  1800. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1801. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1802. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1803. if (stat(path, &st) == 0) {
  1804. node->cpus[node->n_cpus++] = c;
  1805. GGML_PRINT_DEBUG(" %u", c);
  1806. }
  1807. }
  1808. GGML_PRINT_DEBUG("\n");
  1809. }
  1810. if (ggml_is_numa()) {
  1811. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1812. if (fptr != NULL) {
  1813. char buf[42];
  1814. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1815. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1816. }
  1817. fclose(fptr);
  1818. }
  1819. }
  1820. #else
  1821. GGML_UNUSED(numa_flag);
  1822. // TODO
  1823. #endif
  1824. }
  1825. bool ggml_is_numa(void) {
  1826. return g_state.numa.n_nodes > 1;
  1827. }
  1828. ////////////////////////////////////////////////////////////////////////////////
  1829. void ggml_print_object(const struct ggml_object * obj) {
  1830. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1831. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1832. }
  1833. void ggml_print_objects(const struct ggml_context * ctx) {
  1834. struct ggml_object * obj = ctx->objects_begin;
  1835. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1836. while (obj != NULL) {
  1837. ggml_print_object(obj);
  1838. obj = obj->next;
  1839. }
  1840. GGML_PRINT("%s: --- end ---\n", __func__);
  1841. }
  1842. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1843. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1844. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1845. }
  1846. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1847. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1848. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1849. }
  1850. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1851. size_t nbytes;
  1852. size_t blck_size = ggml_blck_size(tensor->type);
  1853. if (blck_size == 1) {
  1854. nbytes = ggml_type_size(tensor->type);
  1855. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1856. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1857. }
  1858. }
  1859. else {
  1860. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1861. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1862. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1863. }
  1864. }
  1865. return nbytes;
  1866. }
  1867. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1868. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1869. }
  1870. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1871. return type_traits[type].blck_size;
  1872. }
  1873. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1874. return type_traits[type].type_size;
  1875. }
  1876. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1877. assert(ne % ggml_blck_size(type) == 0);
  1878. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1879. }
  1880. double ggml_type_sizef(enum ggml_type type) {
  1881. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1882. }
  1883. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1884. return type_traits[type].type_name;
  1885. }
  1886. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1887. return type_traits[type].is_quantized;
  1888. }
  1889. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1890. return GGML_OP_NAME[op];
  1891. }
  1892. const char * ggml_op_symbol(enum ggml_op op) {
  1893. return GGML_OP_SYMBOL[op];
  1894. }
  1895. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1896. return GGML_UNARY_OP_NAME[op];
  1897. }
  1898. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1899. if (t->op == GGML_OP_UNARY) {
  1900. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1901. return ggml_unary_op_name(uop);
  1902. }
  1903. else {
  1904. return ggml_op_name(t->op);
  1905. }
  1906. }
  1907. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1908. return ggml_type_size(tensor->type);
  1909. }
  1910. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1911. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1912. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1913. }
  1914. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1915. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1916. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1917. }
  1918. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1919. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1920. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1921. }
  1922. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1923. return tensor->ne[3] == 1;
  1924. }
  1925. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1926. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1927. if (tensor->ne[i] > 1) {
  1928. return i + 1;
  1929. }
  1930. }
  1931. return 1;
  1932. }
  1933. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1934. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1935. return (t0->ne[0] == t1->ne[0]) &&
  1936. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1937. (t1->ne[3]%t0->ne[3] == 0);
  1938. }
  1939. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1940. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1941. return (t0->ne[1] == t1->ne[1]) &&
  1942. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1943. (t1->ne[3]%t0->ne[3] == 0);
  1944. }
  1945. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1946. enum ggml_type wtype = GGML_TYPE_COUNT;
  1947. switch (ftype) {
  1948. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1949. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1950. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1951. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1952. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1953. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1954. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1955. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1956. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1957. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1958. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1959. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1960. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1961. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1962. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  1963. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  1964. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1965. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1966. }
  1967. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1968. return wtype;
  1969. }
  1970. size_t ggml_tensor_overhead(void) {
  1971. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1972. }
  1973. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1974. return tensor->nb[0] > tensor->nb[1];
  1975. }
  1976. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1977. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1978. return
  1979. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1980. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1981. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1982. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1983. }
  1984. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1985. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1986. return
  1987. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1988. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1989. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1990. }
  1991. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1992. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1993. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1994. }
  1995. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1996. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1997. return
  1998. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1999. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2000. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2001. }
  2002. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2003. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2004. return
  2005. (t0->ne[0] == t1->ne[0] ) &&
  2006. (t0->ne[1] == t1->ne[1] ) &&
  2007. (t0->ne[2] == t1->ne[2] ) &&
  2008. (t0->ne[3] == t1->ne[3] );
  2009. }
  2010. // check if t1 can be represented as a repeatition of t0
  2011. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2012. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2013. return
  2014. (t1->ne[0]%t0->ne[0] == 0) &&
  2015. (t1->ne[1]%t0->ne[1] == 0) &&
  2016. (t1->ne[2]%t0->ne[2] == 0) &&
  2017. (t1->ne[3]%t0->ne[3] == 0);
  2018. }
  2019. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2020. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2021. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2022. }
  2023. static inline int ggml_up32(int n) {
  2024. return (n + 31) & ~31;
  2025. }
  2026. //static inline int ggml_up64(int n) {
  2027. // return (n + 63) & ~63;
  2028. //}
  2029. static inline int ggml_up(int n, int m) {
  2030. // assert m is a power of 2
  2031. GGML_ASSERT((m & (m - 1)) == 0);
  2032. return (n + m - 1) & ~(m - 1);
  2033. }
  2034. // assert that pointer is aligned to GGML_MEM_ALIGN
  2035. #define ggml_assert_aligned(ptr) \
  2036. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2037. ////////////////////////////////////////////////////////////////////////////////
  2038. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2039. // make this function thread safe
  2040. ggml_critical_section_start();
  2041. static bool is_first_call = true;
  2042. if (is_first_call) {
  2043. // initialize time system (required on Windows)
  2044. ggml_time_init();
  2045. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2046. {
  2047. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2048. ggml_fp16_t ii;
  2049. for (int i = 0; i < (1 << 16); ++i) {
  2050. uint16_t ui = i;
  2051. memcpy(&ii, &ui, sizeof(ii));
  2052. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2053. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2054. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2055. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2056. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2057. }
  2058. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2059. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2060. }
  2061. // initialize g_state
  2062. {
  2063. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2064. g_state = (struct ggml_state) {
  2065. /*.contexts =*/ { { 0 } },
  2066. /*.numa =*/ {
  2067. .n_nodes = 0,
  2068. .total_cpus = 0,
  2069. },
  2070. };
  2071. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2072. g_state.contexts[i].used = false;
  2073. }
  2074. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2075. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2076. }
  2077. #if defined(GGML_USE_CUBLAS)
  2078. ggml_init_cublas();
  2079. #elif defined(GGML_USE_CLBLAST)
  2080. ggml_cl_init();
  2081. #elif defined(GGML_USE_VULKAN)
  2082. ggml_vk_init_cpu_assist();
  2083. #elif defined(GGML_USE_SYCL)
  2084. ggml_init_sycl();
  2085. #endif
  2086. ggml_setup_op_has_task_pass();
  2087. is_first_call = false;
  2088. }
  2089. // find non-used context in g_state
  2090. struct ggml_context * ctx = NULL;
  2091. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2092. if (!g_state.contexts[i].used) {
  2093. g_state.contexts[i].used = true;
  2094. ctx = &g_state.contexts[i].context;
  2095. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2096. break;
  2097. }
  2098. }
  2099. if (ctx == NULL) {
  2100. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2101. ggml_critical_section_end();
  2102. return NULL;
  2103. }
  2104. // allow to call ggml_init with 0 size
  2105. if (params.mem_size == 0) {
  2106. params.mem_size = GGML_MEM_ALIGN;
  2107. }
  2108. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2109. *ctx = (struct ggml_context) {
  2110. /*.mem_size =*/ mem_size,
  2111. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2112. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2113. /*.no_alloc =*/ params.no_alloc,
  2114. /*.no_alloc_save =*/ params.no_alloc,
  2115. /*.n_objects =*/ 0,
  2116. /*.objects_begin =*/ NULL,
  2117. /*.objects_end =*/ NULL,
  2118. /*.scratch =*/ { 0, 0, NULL, },
  2119. /*.scratch_save =*/ { 0, 0, NULL, },
  2120. };
  2121. GGML_ASSERT(ctx->mem_buffer != NULL);
  2122. ggml_assert_aligned(ctx->mem_buffer);
  2123. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2124. ggml_critical_section_end();
  2125. return ctx;
  2126. }
  2127. void ggml_free(struct ggml_context * ctx) {
  2128. if (ctx == NULL) {
  2129. return;
  2130. }
  2131. // make this function thread safe
  2132. ggml_critical_section_start();
  2133. bool found = false;
  2134. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2135. if (&g_state.contexts[i].context == ctx) {
  2136. g_state.contexts[i].used = false;
  2137. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2138. __func__, i, ggml_used_mem(ctx));
  2139. if (ctx->mem_buffer_owned) {
  2140. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2141. }
  2142. found = true;
  2143. break;
  2144. }
  2145. }
  2146. if (!found) {
  2147. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2148. }
  2149. ggml_critical_section_end();
  2150. }
  2151. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2152. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2153. }
  2154. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2155. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2156. ctx->scratch = scratch;
  2157. return result;
  2158. }
  2159. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2160. return ctx->no_alloc;
  2161. }
  2162. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2163. ctx->no_alloc = no_alloc;
  2164. }
  2165. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2166. return ctx->mem_buffer;
  2167. }
  2168. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2169. return ctx->mem_size;
  2170. }
  2171. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2172. size_t max_size = 0;
  2173. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2174. size_t bytes = ggml_nbytes(tensor);
  2175. max_size = MAX(max_size, bytes);
  2176. }
  2177. return max_size;
  2178. }
  2179. // IMPORTANT:
  2180. // when creating "opt" tensors, always save and load the scratch buffer
  2181. // this is an error prone process, but it is necessary to support inplace
  2182. // operators when using scratch buffers
  2183. // TODO: implement a better way
  2184. static void ggml_scratch_save(struct ggml_context * ctx) {
  2185. // this is needed to allow opt tensors to store their data
  2186. // TODO: again, need to find a better way
  2187. ctx->no_alloc_save = ctx->no_alloc;
  2188. ctx->no_alloc = false;
  2189. ctx->scratch_save = ctx->scratch;
  2190. ctx->scratch.data = NULL;
  2191. }
  2192. static void ggml_scratch_load(struct ggml_context * ctx) {
  2193. ctx->no_alloc = ctx->no_alloc_save;
  2194. ctx->scratch = ctx->scratch_save;
  2195. }
  2196. ////////////////////////////////////////////////////////////////////////////////
  2197. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2198. // always insert objects at the end of the context's memory pool
  2199. struct ggml_object * obj_cur = ctx->objects_end;
  2200. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2201. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2202. const size_t cur_end = cur_offs + cur_size;
  2203. // align to GGML_MEM_ALIGN
  2204. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2205. char * const mem_buffer = ctx->mem_buffer;
  2206. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2207. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2208. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2209. __func__, cur_end + size_needed, ctx->mem_size);
  2210. assert(false);
  2211. return NULL;
  2212. }
  2213. *obj_new = (struct ggml_object) {
  2214. .offs = cur_end + GGML_OBJECT_SIZE,
  2215. .size = size_needed,
  2216. .next = NULL,
  2217. .type = type,
  2218. };
  2219. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2220. if (obj_cur != NULL) {
  2221. obj_cur->next = obj_new;
  2222. } else {
  2223. // this is the first object in this context
  2224. ctx->objects_begin = obj_new;
  2225. }
  2226. ctx->objects_end = obj_new;
  2227. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2228. return obj_new;
  2229. }
  2230. static struct ggml_tensor * ggml_new_tensor_impl(
  2231. struct ggml_context * ctx,
  2232. enum ggml_type type,
  2233. int n_dims,
  2234. const int64_t * ne,
  2235. struct ggml_tensor * view_src,
  2236. size_t view_offs) {
  2237. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2238. // find the base tensor and absolute offset
  2239. if (view_src != NULL && view_src->view_src != NULL) {
  2240. view_offs += view_src->view_offs;
  2241. view_src = view_src->view_src;
  2242. }
  2243. size_t data_size = ggml_row_size(type, ne[0]);
  2244. for (int i = 1; i < n_dims; i++) {
  2245. data_size *= ne[i];
  2246. }
  2247. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2248. void * data = view_src != NULL ? view_src->data : NULL;
  2249. if (data != NULL) {
  2250. data = (char *) data + view_offs;
  2251. }
  2252. size_t obj_alloc_size = 0;
  2253. if (view_src == NULL && !ctx->no_alloc) {
  2254. if (ctx->scratch.data != NULL) {
  2255. // allocate tensor data in the scratch buffer
  2256. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2257. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2258. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2259. assert(false);
  2260. return NULL;
  2261. }
  2262. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2263. ctx->scratch.offs += data_size;
  2264. } else {
  2265. // allocate tensor data in the context's memory pool
  2266. obj_alloc_size = data_size;
  2267. }
  2268. }
  2269. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2270. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2271. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2272. *result = (struct ggml_tensor) {
  2273. /*.type =*/ type,
  2274. /*.backend =*/ GGML_BACKEND_CPU,
  2275. /*.buffer =*/ NULL,
  2276. /*.ne =*/ { 1, 1, 1, 1 },
  2277. /*.nb =*/ { 0, 0, 0, 0 },
  2278. /*.op =*/ GGML_OP_NONE,
  2279. /*.op_params =*/ { 0 },
  2280. /*.flags =*/ 0,
  2281. /*.grad =*/ NULL,
  2282. /*.src =*/ { NULL },
  2283. /*.perf_runs =*/ 0,
  2284. /*.perf_cycles =*/ 0,
  2285. /*.perf_time_us =*/ 0,
  2286. /*.view_src =*/ view_src,
  2287. /*.view_offs =*/ view_offs,
  2288. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2289. /*.name =*/ { 0 },
  2290. /*.extra =*/ NULL,
  2291. /*.padding =*/ { 0 },
  2292. };
  2293. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2294. //ggml_assert_aligned(result->data);
  2295. for (int i = 0; i < n_dims; i++) {
  2296. result->ne[i] = ne[i];
  2297. }
  2298. result->nb[0] = ggml_type_size(type);
  2299. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2300. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2301. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2302. }
  2303. ctx->n_objects++;
  2304. return result;
  2305. }
  2306. struct ggml_tensor * ggml_new_tensor(
  2307. struct ggml_context * ctx,
  2308. enum ggml_type type,
  2309. int n_dims,
  2310. const int64_t * ne) {
  2311. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2312. }
  2313. struct ggml_tensor * ggml_new_tensor_1d(
  2314. struct ggml_context * ctx,
  2315. enum ggml_type type,
  2316. int64_t ne0) {
  2317. return ggml_new_tensor(ctx, type, 1, &ne0);
  2318. }
  2319. struct ggml_tensor * ggml_new_tensor_2d(
  2320. struct ggml_context * ctx,
  2321. enum ggml_type type,
  2322. int64_t ne0,
  2323. int64_t ne1) {
  2324. const int64_t ne[2] = { ne0, ne1 };
  2325. return ggml_new_tensor(ctx, type, 2, ne);
  2326. }
  2327. struct ggml_tensor * ggml_new_tensor_3d(
  2328. struct ggml_context * ctx,
  2329. enum ggml_type type,
  2330. int64_t ne0,
  2331. int64_t ne1,
  2332. int64_t ne2) {
  2333. const int64_t ne[3] = { ne0, ne1, ne2 };
  2334. return ggml_new_tensor(ctx, type, 3, ne);
  2335. }
  2336. struct ggml_tensor * ggml_new_tensor_4d(
  2337. struct ggml_context * ctx,
  2338. enum ggml_type type,
  2339. int64_t ne0,
  2340. int64_t ne1,
  2341. int64_t ne2,
  2342. int64_t ne3) {
  2343. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2344. return ggml_new_tensor(ctx, type, 4, ne);
  2345. }
  2346. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2347. ggml_scratch_save(ctx);
  2348. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2349. ggml_scratch_load(ctx);
  2350. ggml_set_i32(result, value);
  2351. return result;
  2352. }
  2353. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2354. ggml_scratch_save(ctx);
  2355. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2356. ggml_scratch_load(ctx);
  2357. ggml_set_f32(result, value);
  2358. return result;
  2359. }
  2360. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2361. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2362. }
  2363. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2364. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2365. assert(params_size <= GGML_MAX_OP_PARAMS);
  2366. memcpy(tensor->op_params, params, params_size);
  2367. }
  2368. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2369. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2370. return ((const int32_t *)(tensor->op_params))[i];
  2371. }
  2372. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2373. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2374. ((int32_t *)(tensor->op_params))[i] = value;
  2375. }
  2376. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2377. memset(tensor->data, 0, ggml_nbytes(tensor));
  2378. return tensor;
  2379. }
  2380. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2381. const int n = ggml_nrows(tensor);
  2382. const int nc = tensor->ne[0];
  2383. const size_t n1 = tensor->nb[1];
  2384. char * const data = tensor->data;
  2385. switch (tensor->type) {
  2386. case GGML_TYPE_I8:
  2387. {
  2388. assert(tensor->nb[0] == sizeof(int8_t));
  2389. for (int i = 0; i < n; i++) {
  2390. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2391. }
  2392. } break;
  2393. case GGML_TYPE_I16:
  2394. {
  2395. assert(tensor->nb[0] == sizeof(int16_t));
  2396. for (int i = 0; i < n; i++) {
  2397. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2398. }
  2399. } break;
  2400. case GGML_TYPE_I32:
  2401. {
  2402. assert(tensor->nb[0] == sizeof(int32_t));
  2403. for (int i = 0; i < n; i++) {
  2404. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2405. }
  2406. } break;
  2407. case GGML_TYPE_F16:
  2408. {
  2409. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2410. for (int i = 0; i < n; i++) {
  2411. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2412. }
  2413. } break;
  2414. case GGML_TYPE_F32:
  2415. {
  2416. assert(tensor->nb[0] == sizeof(float));
  2417. for (int i = 0; i < n; i++) {
  2418. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2419. }
  2420. } break;
  2421. default:
  2422. {
  2423. GGML_ASSERT(false);
  2424. } break;
  2425. }
  2426. return tensor;
  2427. }
  2428. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2429. const int n = ggml_nrows(tensor);
  2430. const int nc = tensor->ne[0];
  2431. const size_t n1 = tensor->nb[1];
  2432. char * const data = tensor->data;
  2433. switch (tensor->type) {
  2434. case GGML_TYPE_I8:
  2435. {
  2436. assert(tensor->nb[0] == sizeof(int8_t));
  2437. for (int i = 0; i < n; i++) {
  2438. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2439. }
  2440. } break;
  2441. case GGML_TYPE_I16:
  2442. {
  2443. assert(tensor->nb[0] == sizeof(int16_t));
  2444. for (int i = 0; i < n; i++) {
  2445. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2446. }
  2447. } break;
  2448. case GGML_TYPE_I32:
  2449. {
  2450. assert(tensor->nb[0] == sizeof(int32_t));
  2451. for (int i = 0; i < n; i++) {
  2452. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2453. }
  2454. } break;
  2455. case GGML_TYPE_F16:
  2456. {
  2457. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2458. for (int i = 0; i < n; i++) {
  2459. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2460. }
  2461. } break;
  2462. case GGML_TYPE_F32:
  2463. {
  2464. assert(tensor->nb[0] == sizeof(float));
  2465. for (int i = 0; i < n; i++) {
  2466. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2467. }
  2468. } break;
  2469. default:
  2470. {
  2471. GGML_ASSERT(false);
  2472. } break;
  2473. }
  2474. return tensor;
  2475. }
  2476. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2477. const int64_t ne2 = tensor->ne[2];
  2478. const int64_t ne1 = tensor->ne[1];
  2479. const int64_t ne0 = tensor->ne[0];
  2480. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2481. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2482. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2483. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2484. if (i0) {
  2485. * i0 = i0_;
  2486. }
  2487. if (i1) {
  2488. * i1 = i1_;
  2489. }
  2490. if (i2) {
  2491. * i2 = i2_;
  2492. }
  2493. if (i3) {
  2494. * i3 = i3_;
  2495. }
  2496. }
  2497. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2498. if (!ggml_is_contiguous(tensor)) {
  2499. int64_t id[4] = { 0, 0, 0, 0 };
  2500. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2501. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2502. }
  2503. switch (tensor->type) {
  2504. case GGML_TYPE_I8:
  2505. {
  2506. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2507. return ((int8_t *)(tensor->data))[i];
  2508. }
  2509. case GGML_TYPE_I16:
  2510. {
  2511. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2512. return ((int16_t *)(tensor->data))[i];
  2513. }
  2514. case GGML_TYPE_I32:
  2515. {
  2516. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2517. return ((int32_t *)(tensor->data))[i];
  2518. }
  2519. case GGML_TYPE_F16:
  2520. {
  2521. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2522. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2523. }
  2524. case GGML_TYPE_F32:
  2525. {
  2526. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2527. return ((float *)(tensor->data))[i];
  2528. }
  2529. default:
  2530. {
  2531. GGML_ASSERT(false);
  2532. }
  2533. }
  2534. return 0.0f;
  2535. }
  2536. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2537. if (!ggml_is_contiguous(tensor)) {
  2538. int64_t id[4] = { 0, 0, 0, 0 };
  2539. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2540. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2541. return;
  2542. }
  2543. switch (tensor->type) {
  2544. case GGML_TYPE_I8:
  2545. {
  2546. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2547. ((int8_t *)(tensor->data))[i] = value;
  2548. } break;
  2549. case GGML_TYPE_I16:
  2550. {
  2551. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2552. ((int16_t *)(tensor->data))[i] = value;
  2553. } break;
  2554. case GGML_TYPE_I32:
  2555. {
  2556. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2557. ((int32_t *)(tensor->data))[i] = value;
  2558. } break;
  2559. case GGML_TYPE_F16:
  2560. {
  2561. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2562. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2563. } break;
  2564. case GGML_TYPE_F32:
  2565. {
  2566. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2567. ((float *)(tensor->data))[i] = value;
  2568. } break;
  2569. default:
  2570. {
  2571. GGML_ASSERT(false);
  2572. } break;
  2573. }
  2574. }
  2575. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2576. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2577. switch (tensor->type) {
  2578. case GGML_TYPE_I8:
  2579. return ((int8_t *) data)[0];
  2580. case GGML_TYPE_I16:
  2581. return ((int16_t *) data)[0];
  2582. case GGML_TYPE_I32:
  2583. return ((int32_t *) data)[0];
  2584. case GGML_TYPE_F16:
  2585. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2586. case GGML_TYPE_F32:
  2587. return ((float *) data)[0];
  2588. default:
  2589. GGML_ASSERT(false);
  2590. }
  2591. return 0.0f;
  2592. }
  2593. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2594. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2595. switch (tensor->type) {
  2596. case GGML_TYPE_I8:
  2597. {
  2598. ((int8_t *)(data))[0] = value;
  2599. } break;
  2600. case GGML_TYPE_I16:
  2601. {
  2602. ((int16_t *)(data))[0] = value;
  2603. } break;
  2604. case GGML_TYPE_I32:
  2605. {
  2606. ((int32_t *)(data))[0] = value;
  2607. } break;
  2608. case GGML_TYPE_F16:
  2609. {
  2610. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2611. } break;
  2612. case GGML_TYPE_F32:
  2613. {
  2614. ((float *)(data))[0] = value;
  2615. } break;
  2616. default:
  2617. {
  2618. GGML_ASSERT(false);
  2619. } break;
  2620. }
  2621. }
  2622. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2623. if (!ggml_is_contiguous(tensor)) {
  2624. int64_t id[4] = { 0, 0, 0, 0 };
  2625. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2626. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2627. }
  2628. switch (tensor->type) {
  2629. case GGML_TYPE_I8:
  2630. {
  2631. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2632. return ((int8_t *)(tensor->data))[i];
  2633. }
  2634. case GGML_TYPE_I16:
  2635. {
  2636. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2637. return ((int16_t *)(tensor->data))[i];
  2638. }
  2639. case GGML_TYPE_I32:
  2640. {
  2641. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2642. return ((int32_t *)(tensor->data))[i];
  2643. }
  2644. case GGML_TYPE_F16:
  2645. {
  2646. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2647. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2648. }
  2649. case GGML_TYPE_F32:
  2650. {
  2651. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2652. return ((float *)(tensor->data))[i];
  2653. }
  2654. default:
  2655. {
  2656. GGML_ASSERT(false);
  2657. }
  2658. }
  2659. return 0.0f;
  2660. }
  2661. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2662. if (!ggml_is_contiguous(tensor)) {
  2663. int64_t id[4] = { 0, 0, 0, 0 };
  2664. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2665. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2666. return;
  2667. }
  2668. switch (tensor->type) {
  2669. case GGML_TYPE_I8:
  2670. {
  2671. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2672. ((int8_t *)(tensor->data))[i] = value;
  2673. } break;
  2674. case GGML_TYPE_I16:
  2675. {
  2676. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2677. ((int16_t *)(tensor->data))[i] = value;
  2678. } break;
  2679. case GGML_TYPE_I32:
  2680. {
  2681. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2682. ((int32_t *)(tensor->data))[i] = value;
  2683. } break;
  2684. case GGML_TYPE_F16:
  2685. {
  2686. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2687. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2688. } break;
  2689. case GGML_TYPE_F32:
  2690. {
  2691. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2692. ((float *)(tensor->data))[i] = value;
  2693. } break;
  2694. default:
  2695. {
  2696. GGML_ASSERT(false);
  2697. } break;
  2698. }
  2699. }
  2700. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2701. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2702. switch (tensor->type) {
  2703. case GGML_TYPE_I8:
  2704. return ((int8_t *) data)[0];
  2705. case GGML_TYPE_I16:
  2706. return ((int16_t *) data)[0];
  2707. case GGML_TYPE_I32:
  2708. return ((int32_t *) data)[0];
  2709. case GGML_TYPE_F16:
  2710. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2711. case GGML_TYPE_F32:
  2712. return ((float *) data)[0];
  2713. default:
  2714. GGML_ASSERT(false);
  2715. }
  2716. return 0.0f;
  2717. }
  2718. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2719. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2720. switch (tensor->type) {
  2721. case GGML_TYPE_I8:
  2722. {
  2723. ((int8_t *)(data))[0] = value;
  2724. } break;
  2725. case GGML_TYPE_I16:
  2726. {
  2727. ((int16_t *)(data))[0] = value;
  2728. } break;
  2729. case GGML_TYPE_I32:
  2730. {
  2731. ((int32_t *)(data))[0] = value;
  2732. } break;
  2733. case GGML_TYPE_F16:
  2734. {
  2735. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2736. } break;
  2737. case GGML_TYPE_F32:
  2738. {
  2739. ((float *)(data))[0] = value;
  2740. } break;
  2741. default:
  2742. {
  2743. GGML_ASSERT(false);
  2744. } break;
  2745. }
  2746. }
  2747. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2748. return tensor->data;
  2749. }
  2750. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2751. assert(tensor->type == GGML_TYPE_F32);
  2752. return (float *)(tensor->data);
  2753. }
  2754. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2755. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2756. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2757. }
  2758. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2759. return tensor->name;
  2760. }
  2761. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2762. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2763. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2764. return tensor;
  2765. }
  2766. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2767. va_list args;
  2768. va_start(args, fmt);
  2769. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2770. va_end(args);
  2771. return tensor;
  2772. }
  2773. struct ggml_tensor * ggml_view_tensor(
  2774. struct ggml_context * ctx,
  2775. struct ggml_tensor * src) {
  2776. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2777. ggml_format_name(result, "%s (view)", src->name);
  2778. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2779. result->nb[i] = src->nb[i];
  2780. }
  2781. return result;
  2782. }
  2783. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2784. struct ggml_object * obj = ctx->objects_begin;
  2785. char * const mem_buffer = ctx->mem_buffer;
  2786. while (obj != NULL) {
  2787. if (obj->type == GGML_OBJECT_TENSOR) {
  2788. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2789. }
  2790. obj = obj->next;
  2791. }
  2792. return NULL;
  2793. }
  2794. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2795. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2796. obj = obj->next;
  2797. char * const mem_buffer = ctx->mem_buffer;
  2798. while (obj != NULL) {
  2799. if (obj->type == GGML_OBJECT_TENSOR) {
  2800. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2801. }
  2802. obj = obj->next;
  2803. }
  2804. return NULL;
  2805. }
  2806. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2807. struct ggml_object * obj = ctx->objects_begin;
  2808. char * const mem_buffer = ctx->mem_buffer;
  2809. while (obj != NULL) {
  2810. if (obj->type == GGML_OBJECT_TENSOR) {
  2811. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2812. if (strcmp(cur->name, name) == 0) {
  2813. return cur;
  2814. }
  2815. }
  2816. obj = obj->next;
  2817. }
  2818. return NULL;
  2819. }
  2820. ////////////////////////////////////////////////////////////////////////////////
  2821. // ggml_dup
  2822. static struct ggml_tensor * ggml_dup_impl(
  2823. struct ggml_context * ctx,
  2824. struct ggml_tensor * a,
  2825. bool inplace) {
  2826. bool is_node = false;
  2827. if (!inplace && (a->grad)) {
  2828. is_node = true;
  2829. }
  2830. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2831. result->op = GGML_OP_DUP;
  2832. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2833. result->src[0] = a;
  2834. return result;
  2835. }
  2836. struct ggml_tensor * ggml_dup(
  2837. struct ggml_context * ctx,
  2838. struct ggml_tensor * a) {
  2839. return ggml_dup_impl(ctx, a, false);
  2840. }
  2841. struct ggml_tensor * ggml_dup_inplace(
  2842. struct ggml_context * ctx,
  2843. struct ggml_tensor * a) {
  2844. return ggml_dup_impl(ctx, a, true);
  2845. }
  2846. // ggml_add
  2847. static struct ggml_tensor * ggml_add_impl(
  2848. struct ggml_context * ctx,
  2849. struct ggml_tensor * a,
  2850. struct ggml_tensor * b,
  2851. bool inplace) {
  2852. GGML_ASSERT(ggml_can_repeat(b, a));
  2853. bool is_node = false;
  2854. if (!inplace && (a->grad || b->grad)) {
  2855. // TODO: support backward pass for broadcasting
  2856. GGML_ASSERT(ggml_are_same_shape(a, b));
  2857. is_node = true;
  2858. }
  2859. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2860. result->op = GGML_OP_ADD;
  2861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2862. result->src[0] = a;
  2863. result->src[1] = b;
  2864. return result;
  2865. }
  2866. struct ggml_tensor * ggml_add(
  2867. struct ggml_context * ctx,
  2868. struct ggml_tensor * a,
  2869. struct ggml_tensor * b) {
  2870. return ggml_add_impl(ctx, a, b, false);
  2871. }
  2872. struct ggml_tensor * ggml_add_inplace(
  2873. struct ggml_context * ctx,
  2874. struct ggml_tensor * a,
  2875. struct ggml_tensor * b) {
  2876. return ggml_add_impl(ctx, a, b, true);
  2877. }
  2878. // ggml_add_cast
  2879. static struct ggml_tensor * ggml_add_cast_impl(
  2880. struct ggml_context * ctx,
  2881. struct ggml_tensor * a,
  2882. struct ggml_tensor * b,
  2883. enum ggml_type type) {
  2884. // TODO: support less-strict constraint
  2885. // GGML_ASSERT(ggml_can_repeat(b, a));
  2886. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2887. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2888. bool is_node = false;
  2889. if (a->grad || b->grad) {
  2890. // TODO: support backward pass for broadcasting
  2891. GGML_ASSERT(ggml_are_same_shape(a, b));
  2892. is_node = true;
  2893. }
  2894. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2895. result->op = GGML_OP_ADD;
  2896. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2897. result->src[0] = a;
  2898. result->src[1] = b;
  2899. return result;
  2900. }
  2901. struct ggml_tensor * ggml_add_cast(
  2902. struct ggml_context * ctx,
  2903. struct ggml_tensor * a,
  2904. struct ggml_tensor * b,
  2905. enum ggml_type type) {
  2906. return ggml_add_cast_impl(ctx, a, b, type);
  2907. }
  2908. // ggml_add1
  2909. static struct ggml_tensor * ggml_add1_impl(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a,
  2912. struct ggml_tensor * b,
  2913. bool inplace) {
  2914. GGML_ASSERT(ggml_is_scalar(b));
  2915. GGML_ASSERT(ggml_is_padded_1d(a));
  2916. bool is_node = false;
  2917. if (a->grad || b->grad) {
  2918. is_node = true;
  2919. }
  2920. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2921. result->op = GGML_OP_ADD1;
  2922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2923. result->src[0] = a;
  2924. result->src[1] = b;
  2925. return result;
  2926. }
  2927. struct ggml_tensor * ggml_add1(
  2928. struct ggml_context * ctx,
  2929. struct ggml_tensor * a,
  2930. struct ggml_tensor * b) {
  2931. return ggml_add1_impl(ctx, a, b, false);
  2932. }
  2933. struct ggml_tensor * ggml_add1_inplace(
  2934. struct ggml_context * ctx,
  2935. struct ggml_tensor * a,
  2936. struct ggml_tensor * b) {
  2937. return ggml_add1_impl(ctx, a, b, true);
  2938. }
  2939. // ggml_acc
  2940. static struct ggml_tensor * ggml_acc_impl(
  2941. struct ggml_context * ctx,
  2942. struct ggml_tensor * a,
  2943. struct ggml_tensor * b,
  2944. size_t nb1,
  2945. size_t nb2,
  2946. size_t nb3,
  2947. size_t offset,
  2948. bool inplace) {
  2949. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2950. GGML_ASSERT(ggml_is_contiguous(a));
  2951. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2952. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2953. bool is_node = false;
  2954. if (!inplace && (a->grad || b->grad)) {
  2955. is_node = true;
  2956. }
  2957. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2958. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2959. ggml_set_op_params(result, params, sizeof(params));
  2960. result->op = GGML_OP_ACC;
  2961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2962. result->src[0] = a;
  2963. result->src[1] = b;
  2964. return result;
  2965. }
  2966. struct ggml_tensor * ggml_acc(
  2967. struct ggml_context * ctx,
  2968. struct ggml_tensor * a,
  2969. struct ggml_tensor * b,
  2970. size_t nb1,
  2971. size_t nb2,
  2972. size_t nb3,
  2973. size_t offset) {
  2974. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2975. }
  2976. struct ggml_tensor * ggml_acc_inplace(
  2977. struct ggml_context * ctx,
  2978. struct ggml_tensor * a,
  2979. struct ggml_tensor * b,
  2980. size_t nb1,
  2981. size_t nb2,
  2982. size_t nb3,
  2983. size_t offset) {
  2984. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2985. }
  2986. // ggml_sub
  2987. static struct ggml_tensor * ggml_sub_impl(
  2988. struct ggml_context * ctx,
  2989. struct ggml_tensor * a,
  2990. struct ggml_tensor * b,
  2991. bool inplace) {
  2992. GGML_ASSERT(ggml_are_same_shape(a, b));
  2993. bool is_node = false;
  2994. if (!inplace && (a->grad || b->grad)) {
  2995. is_node = true;
  2996. }
  2997. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2998. result->op = GGML_OP_SUB;
  2999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3000. result->src[0] = a;
  3001. result->src[1] = b;
  3002. return result;
  3003. }
  3004. struct ggml_tensor * ggml_sub(
  3005. struct ggml_context * ctx,
  3006. struct ggml_tensor * a,
  3007. struct ggml_tensor * b) {
  3008. return ggml_sub_impl(ctx, a, b, false);
  3009. }
  3010. struct ggml_tensor * ggml_sub_inplace(
  3011. struct ggml_context * ctx,
  3012. struct ggml_tensor * a,
  3013. struct ggml_tensor * b) {
  3014. return ggml_sub_impl(ctx, a, b, true);
  3015. }
  3016. // ggml_mul
  3017. static struct ggml_tensor * ggml_mul_impl(
  3018. struct ggml_context * ctx,
  3019. struct ggml_tensor * a,
  3020. struct ggml_tensor * b,
  3021. bool inplace) {
  3022. GGML_ASSERT(ggml_can_repeat(b, a));
  3023. bool is_node = false;
  3024. if (!inplace && (a->grad || b->grad)) {
  3025. // TODO: support backward pass for broadcasting
  3026. GGML_ASSERT(ggml_are_same_shape(a, b));
  3027. is_node = true;
  3028. }
  3029. if (inplace) {
  3030. GGML_ASSERT(!is_node);
  3031. }
  3032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3033. result->op = GGML_OP_MUL;
  3034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3035. result->src[0] = a;
  3036. result->src[1] = b;
  3037. return result;
  3038. }
  3039. struct ggml_tensor * ggml_mul(
  3040. struct ggml_context * ctx,
  3041. struct ggml_tensor * a,
  3042. struct ggml_tensor * b) {
  3043. return ggml_mul_impl(ctx, a, b, false);
  3044. }
  3045. struct ggml_tensor * ggml_mul_inplace(
  3046. struct ggml_context * ctx,
  3047. struct ggml_tensor * a,
  3048. struct ggml_tensor * b) {
  3049. return ggml_mul_impl(ctx, a, b, true);
  3050. }
  3051. // ggml_div
  3052. static struct ggml_tensor * ggml_div_impl(
  3053. struct ggml_context * ctx,
  3054. struct ggml_tensor * a,
  3055. struct ggml_tensor * b,
  3056. bool inplace) {
  3057. GGML_ASSERT(ggml_can_repeat(b, a));
  3058. bool is_node = false;
  3059. if (!inplace && (a->grad || b->grad)) {
  3060. is_node = true;
  3061. }
  3062. if (inplace) {
  3063. GGML_ASSERT(!is_node);
  3064. }
  3065. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3066. result->op = GGML_OP_DIV;
  3067. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3068. result->src[0] = a;
  3069. result->src[1] = b;
  3070. return result;
  3071. }
  3072. struct ggml_tensor * ggml_div(
  3073. struct ggml_context * ctx,
  3074. struct ggml_tensor * a,
  3075. struct ggml_tensor * b) {
  3076. return ggml_div_impl(ctx, a, b, false);
  3077. }
  3078. struct ggml_tensor * ggml_div_inplace(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a,
  3081. struct ggml_tensor * b) {
  3082. return ggml_div_impl(ctx, a, b, true);
  3083. }
  3084. // ggml_sqr
  3085. static struct ggml_tensor * ggml_sqr_impl(
  3086. struct ggml_context * ctx,
  3087. struct ggml_tensor * a,
  3088. bool inplace) {
  3089. bool is_node = false;
  3090. if (!inplace && (a->grad)) {
  3091. is_node = true;
  3092. }
  3093. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3094. result->op = GGML_OP_SQR;
  3095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3096. result->src[0] = a;
  3097. return result;
  3098. }
  3099. struct ggml_tensor * ggml_sqr(
  3100. struct ggml_context * ctx,
  3101. struct ggml_tensor * a) {
  3102. return ggml_sqr_impl(ctx, a, false);
  3103. }
  3104. struct ggml_tensor * ggml_sqr_inplace(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a) {
  3107. return ggml_sqr_impl(ctx, a, true);
  3108. }
  3109. // ggml_sqrt
  3110. static struct ggml_tensor * ggml_sqrt_impl(
  3111. struct ggml_context * ctx,
  3112. struct ggml_tensor * a,
  3113. bool inplace) {
  3114. bool is_node = false;
  3115. if (!inplace && (a->grad)) {
  3116. is_node = true;
  3117. }
  3118. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3119. result->op = GGML_OP_SQRT;
  3120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3121. result->src[0] = a;
  3122. return result;
  3123. }
  3124. struct ggml_tensor * ggml_sqrt(
  3125. struct ggml_context * ctx,
  3126. struct ggml_tensor * a) {
  3127. return ggml_sqrt_impl(ctx, a, false);
  3128. }
  3129. struct ggml_tensor * ggml_sqrt_inplace(
  3130. struct ggml_context * ctx,
  3131. struct ggml_tensor * a) {
  3132. return ggml_sqrt_impl(ctx, a, true);
  3133. }
  3134. // ggml_log
  3135. static struct ggml_tensor * ggml_log_impl(
  3136. struct ggml_context * ctx,
  3137. struct ggml_tensor * a,
  3138. bool inplace) {
  3139. bool is_node = false;
  3140. if (!inplace && (a->grad)) {
  3141. is_node = true;
  3142. }
  3143. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3144. result->op = GGML_OP_LOG;
  3145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3146. result->src[0] = a;
  3147. return result;
  3148. }
  3149. struct ggml_tensor * ggml_log(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a) {
  3152. return ggml_log_impl(ctx, a, false);
  3153. }
  3154. struct ggml_tensor * ggml_log_inplace(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a) {
  3157. return ggml_log_impl(ctx, a, true);
  3158. }
  3159. // ggml_sum
  3160. struct ggml_tensor * ggml_sum(
  3161. struct ggml_context * ctx,
  3162. struct ggml_tensor * a) {
  3163. bool is_node = false;
  3164. if (a->grad) {
  3165. is_node = true;
  3166. }
  3167. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3168. result->op = GGML_OP_SUM;
  3169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3170. result->src[0] = a;
  3171. return result;
  3172. }
  3173. // ggml_sum_rows
  3174. struct ggml_tensor * ggml_sum_rows(
  3175. struct ggml_context * ctx,
  3176. struct ggml_tensor * a) {
  3177. bool is_node = false;
  3178. if (a->grad) {
  3179. is_node = true;
  3180. }
  3181. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3182. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3183. ne[i] = a->ne[i];
  3184. }
  3185. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3186. result->op = GGML_OP_SUM_ROWS;
  3187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3188. result->src[0] = a;
  3189. return result;
  3190. }
  3191. // ggml_mean
  3192. struct ggml_tensor * ggml_mean(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. bool is_node = false;
  3196. if (a->grad) {
  3197. GGML_ASSERT(false); // TODO: implement
  3198. is_node = true;
  3199. }
  3200. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3201. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3202. result->op = GGML_OP_MEAN;
  3203. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3204. result->src[0] = a;
  3205. return result;
  3206. }
  3207. // ggml_argmax
  3208. struct ggml_tensor * ggml_argmax(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a) {
  3211. GGML_ASSERT(ggml_is_matrix(a));
  3212. bool is_node = false;
  3213. if (a->grad) {
  3214. GGML_ASSERT(false);
  3215. is_node = true;
  3216. }
  3217. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3218. result->op = GGML_OP_ARGMAX;
  3219. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3220. result->src[0] = a;
  3221. return result;
  3222. }
  3223. // ggml_repeat
  3224. struct ggml_tensor * ggml_repeat(
  3225. struct ggml_context * ctx,
  3226. struct ggml_tensor * a,
  3227. struct ggml_tensor * b) {
  3228. GGML_ASSERT(ggml_can_repeat(a, b));
  3229. bool is_node = false;
  3230. if (a->grad) {
  3231. is_node = true;
  3232. }
  3233. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3234. result->op = GGML_OP_REPEAT;
  3235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3236. result->src[0] = a;
  3237. return result;
  3238. }
  3239. // ggml_repeat_back
  3240. struct ggml_tensor * ggml_repeat_back(
  3241. struct ggml_context * ctx,
  3242. struct ggml_tensor * a,
  3243. struct ggml_tensor * b) {
  3244. GGML_ASSERT(ggml_can_repeat(b, a));
  3245. bool is_node = false;
  3246. if (a->grad) {
  3247. is_node = true;
  3248. }
  3249. if (ggml_are_same_shape(a, b) && !is_node) {
  3250. return a;
  3251. }
  3252. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3253. result->op = GGML_OP_REPEAT_BACK;
  3254. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3255. result->src[0] = a;
  3256. return result;
  3257. }
  3258. // ggml_concat
  3259. struct ggml_tensor * ggml_concat(
  3260. struct ggml_context* ctx,
  3261. struct ggml_tensor* a,
  3262. struct ggml_tensor* b) {
  3263. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3264. bool is_node = false;
  3265. if (a->grad || b->grad) {
  3266. is_node = true;
  3267. }
  3268. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3269. result->op = GGML_OP_CONCAT;
  3270. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3271. result->src[0] = a;
  3272. result->src[1] = b;
  3273. return result;
  3274. }
  3275. // ggml_abs
  3276. struct ggml_tensor * ggml_abs(
  3277. struct ggml_context * ctx,
  3278. struct ggml_tensor * a) {
  3279. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3280. }
  3281. struct ggml_tensor * ggml_abs_inplace(
  3282. struct ggml_context * ctx,
  3283. struct ggml_tensor * a) {
  3284. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3285. }
  3286. // ggml_sgn
  3287. struct ggml_tensor * ggml_sgn(
  3288. struct ggml_context * ctx,
  3289. struct ggml_tensor * a) {
  3290. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3291. }
  3292. struct ggml_tensor * ggml_sgn_inplace(
  3293. struct ggml_context * ctx,
  3294. struct ggml_tensor * a) {
  3295. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3296. }
  3297. // ggml_neg
  3298. struct ggml_tensor * ggml_neg(
  3299. struct ggml_context * ctx,
  3300. struct ggml_tensor * a) {
  3301. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3302. }
  3303. struct ggml_tensor * ggml_neg_inplace(
  3304. struct ggml_context * ctx,
  3305. struct ggml_tensor * a) {
  3306. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3307. }
  3308. // ggml_step
  3309. struct ggml_tensor * ggml_step(
  3310. struct ggml_context * ctx,
  3311. struct ggml_tensor * a) {
  3312. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3313. }
  3314. struct ggml_tensor * ggml_step_inplace(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a) {
  3317. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3318. }
  3319. // ggml_tanh
  3320. struct ggml_tensor * ggml_tanh(
  3321. struct ggml_context * ctx,
  3322. struct ggml_tensor * a) {
  3323. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3324. }
  3325. struct ggml_tensor * ggml_tanh_inplace(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a) {
  3328. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3329. }
  3330. // ggml_elu
  3331. struct ggml_tensor * ggml_elu(
  3332. struct ggml_context * ctx,
  3333. struct ggml_tensor * a) {
  3334. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3335. }
  3336. struct ggml_tensor * ggml_elu_inplace(
  3337. struct ggml_context * ctx,
  3338. struct ggml_tensor * a) {
  3339. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3340. }
  3341. // ggml_relu
  3342. struct ggml_tensor * ggml_relu(
  3343. struct ggml_context * ctx,
  3344. struct ggml_tensor * a) {
  3345. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3346. }
  3347. struct ggml_tensor * ggml_relu_inplace(
  3348. struct ggml_context * ctx,
  3349. struct ggml_tensor * a) {
  3350. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3351. }
  3352. // ggml_leaky_relu
  3353. struct ggml_tensor * ggml_leaky_relu(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3356. bool is_node = false;
  3357. if (!inplace && (a->grad)) {
  3358. is_node = true;
  3359. }
  3360. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3361. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3362. result->op = GGML_OP_LEAKY_RELU;
  3363. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3364. result->src[0] = a;
  3365. return result;
  3366. }
  3367. // ggml_gelu
  3368. struct ggml_tensor * ggml_gelu(
  3369. struct ggml_context * ctx,
  3370. struct ggml_tensor * a) {
  3371. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3372. }
  3373. struct ggml_tensor * ggml_gelu_inplace(
  3374. struct ggml_context * ctx,
  3375. struct ggml_tensor * a) {
  3376. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3377. }
  3378. // ggml_gelu_quick
  3379. struct ggml_tensor * ggml_gelu_quick(
  3380. struct ggml_context * ctx,
  3381. struct ggml_tensor * a) {
  3382. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3383. }
  3384. struct ggml_tensor * ggml_gelu_quick_inplace(
  3385. struct ggml_context * ctx,
  3386. struct ggml_tensor * a) {
  3387. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3388. }
  3389. // ggml_silu
  3390. struct ggml_tensor * ggml_silu(
  3391. struct ggml_context * ctx,
  3392. struct ggml_tensor * a) {
  3393. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3394. }
  3395. struct ggml_tensor * ggml_silu_inplace(
  3396. struct ggml_context * ctx,
  3397. struct ggml_tensor * a) {
  3398. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3399. }
  3400. // ggml_silu_back
  3401. struct ggml_tensor * ggml_silu_back(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a,
  3404. struct ggml_tensor * b) {
  3405. bool is_node = false;
  3406. if (a->grad || b->grad) {
  3407. // TODO: implement backward
  3408. is_node = true;
  3409. }
  3410. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3411. result->op = GGML_OP_SILU_BACK;
  3412. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3413. result->src[0] = a;
  3414. result->src[1] = b;
  3415. return result;
  3416. }
  3417. // ggml hardswish
  3418. struct ggml_tensor * ggml_hardswish(
  3419. struct ggml_context * ctx,
  3420. struct ggml_tensor * a) {
  3421. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3422. }
  3423. // ggml hardsigmoid
  3424. struct ggml_tensor * ggml_hardsigmoid(
  3425. struct ggml_context * ctx,
  3426. struct ggml_tensor * a) {
  3427. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3428. }
  3429. // ggml_norm
  3430. static struct ggml_tensor * ggml_norm_impl(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. float eps,
  3434. bool inplace) {
  3435. bool is_node = false;
  3436. if (!inplace && (a->grad)) {
  3437. GGML_ASSERT(false); // TODO: implement backward
  3438. is_node = true;
  3439. }
  3440. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3441. ggml_set_op_params(result, &eps, sizeof(eps));
  3442. result->op = GGML_OP_NORM;
  3443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3444. result->src[0] = a;
  3445. return result;
  3446. }
  3447. struct ggml_tensor * ggml_norm(
  3448. struct ggml_context * ctx,
  3449. struct ggml_tensor * a,
  3450. float eps) {
  3451. return ggml_norm_impl(ctx, a, eps, false);
  3452. }
  3453. struct ggml_tensor * ggml_norm_inplace(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a,
  3456. float eps) {
  3457. return ggml_norm_impl(ctx, a, eps, true);
  3458. }
  3459. // ggml_rms_norm
  3460. static struct ggml_tensor * ggml_rms_norm_impl(
  3461. struct ggml_context * ctx,
  3462. struct ggml_tensor * a,
  3463. float eps,
  3464. bool inplace) {
  3465. bool is_node = false;
  3466. if (!inplace && (a->grad)) {
  3467. is_node = true;
  3468. }
  3469. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3470. ggml_set_op_params(result, &eps, sizeof(eps));
  3471. result->op = GGML_OP_RMS_NORM;
  3472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3473. result->src[0] = a;
  3474. return result;
  3475. }
  3476. struct ggml_tensor * ggml_rms_norm(
  3477. struct ggml_context * ctx,
  3478. struct ggml_tensor * a,
  3479. float eps) {
  3480. return ggml_rms_norm_impl(ctx, a, eps, false);
  3481. }
  3482. struct ggml_tensor * ggml_rms_norm_inplace(
  3483. struct ggml_context * ctx,
  3484. struct ggml_tensor * a,
  3485. float eps) {
  3486. return ggml_rms_norm_impl(ctx, a, eps, true);
  3487. }
  3488. // ggml_rms_norm_back
  3489. struct ggml_tensor * ggml_rms_norm_back(
  3490. struct ggml_context * ctx,
  3491. struct ggml_tensor * a,
  3492. struct ggml_tensor * b,
  3493. float eps) {
  3494. bool is_node = false;
  3495. if (a->grad) {
  3496. // TODO: implement backward
  3497. is_node = true;
  3498. }
  3499. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3500. ggml_set_op_params(result, &eps, sizeof(eps));
  3501. result->op = GGML_OP_RMS_NORM_BACK;
  3502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3503. result->src[0] = a;
  3504. result->src[1] = b;
  3505. return result;
  3506. }
  3507. // ggml_group_norm
  3508. static struct ggml_tensor * ggml_group_norm_impl(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * a,
  3511. int n_groups,
  3512. bool inplace) {
  3513. bool is_node = false;
  3514. if (!inplace && (a->grad)) {
  3515. GGML_ASSERT(false); // TODO: implement backward
  3516. is_node = true;
  3517. }
  3518. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3519. result->op_params[0] = n_groups;
  3520. result->op = GGML_OP_GROUP_NORM;
  3521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3522. result->src[0] = a;
  3523. return result;
  3524. }
  3525. struct ggml_tensor * ggml_group_norm(
  3526. struct ggml_context * ctx,
  3527. struct ggml_tensor * a,
  3528. int n_groups) {
  3529. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3530. }
  3531. struct ggml_tensor * ggml_group_norm_inplace(
  3532. struct ggml_context * ctx,
  3533. struct ggml_tensor * a,
  3534. int n_groups) {
  3535. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3536. }
  3537. // ggml_mul_mat
  3538. struct ggml_tensor * ggml_mul_mat(
  3539. struct ggml_context * ctx,
  3540. struct ggml_tensor * a,
  3541. struct ggml_tensor * b) {
  3542. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3543. GGML_ASSERT(!ggml_is_transposed(a));
  3544. bool is_node = false;
  3545. if (a->grad || b->grad) {
  3546. is_node = true;
  3547. }
  3548. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3549. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3550. result->op = GGML_OP_MUL_MAT;
  3551. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3552. result->src[0] = a;
  3553. result->src[1] = b;
  3554. return result;
  3555. }
  3556. void ggml_mul_mat_set_prec(
  3557. struct ggml_tensor * a,
  3558. enum ggml_prec prec) {
  3559. const int32_t prec_i32 = (int32_t) prec;
  3560. ggml_set_op_params_i32(a, 0, prec_i32);
  3561. }
  3562. // ggml_mul_mat_id
  3563. struct ggml_tensor * ggml_mul_mat_id(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * const as[],
  3566. int n_as,
  3567. struct ggml_tensor * ids,
  3568. int id,
  3569. struct ggml_tensor * b) {
  3570. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3571. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3572. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3573. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3574. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3575. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3576. bool is_node = false;
  3577. if (as[0]->grad || b->grad) {
  3578. is_node = true;
  3579. }
  3580. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3581. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3582. ggml_set_op_params_i32(result, 0, id);
  3583. ggml_set_op_params_i32(result, 1, n_as);
  3584. result->op = GGML_OP_MUL_MAT_ID;
  3585. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3586. result->src[0] = ids;
  3587. result->src[1] = b;
  3588. for (int i = 0; i < n_as; i++) {
  3589. struct ggml_tensor * a = as[i];
  3590. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3591. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3592. GGML_ASSERT(!ggml_is_transposed(a));
  3593. result->src[i + 2] = a;
  3594. }
  3595. return result;
  3596. }
  3597. // ggml_out_prod
  3598. struct ggml_tensor * ggml_out_prod(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a,
  3601. struct ggml_tensor * b) {
  3602. GGML_ASSERT(ggml_can_out_prod(a, b));
  3603. GGML_ASSERT(!ggml_is_transposed(a));
  3604. bool is_node = false;
  3605. if (a->grad || b->grad) {
  3606. is_node = true;
  3607. }
  3608. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3609. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3610. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3611. result->op = GGML_OP_OUT_PROD;
  3612. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3613. result->src[0] = a;
  3614. result->src[1] = b;
  3615. return result;
  3616. }
  3617. // ggml_scale
  3618. static struct ggml_tensor * ggml_scale_impl(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a,
  3621. float s,
  3622. bool inplace) {
  3623. GGML_ASSERT(ggml_is_padded_1d(a));
  3624. bool is_node = false;
  3625. if (a->grad) {
  3626. is_node = true;
  3627. }
  3628. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3629. ggml_set_op_params(result, &s, sizeof(s));
  3630. result->op = GGML_OP_SCALE;
  3631. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3632. result->src[0] = a;
  3633. return result;
  3634. }
  3635. struct ggml_tensor * ggml_scale(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. float s) {
  3639. return ggml_scale_impl(ctx, a, s, false);
  3640. }
  3641. struct ggml_tensor * ggml_scale_inplace(
  3642. struct ggml_context * ctx,
  3643. struct ggml_tensor * a,
  3644. float s) {
  3645. return ggml_scale_impl(ctx, a, s, true);
  3646. }
  3647. // ggml_set
  3648. static struct ggml_tensor * ggml_set_impl(
  3649. struct ggml_context * ctx,
  3650. struct ggml_tensor * a,
  3651. struct ggml_tensor * b,
  3652. size_t nb1,
  3653. size_t nb2,
  3654. size_t nb3,
  3655. size_t offset,
  3656. bool inplace) {
  3657. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3658. bool is_node = false;
  3659. if (a->grad || b->grad) {
  3660. is_node = true;
  3661. }
  3662. // make a view of the destination
  3663. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3664. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3665. ggml_set_op_params(result, params, sizeof(params));
  3666. result->op = GGML_OP_SET;
  3667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3668. result->src[0] = a;
  3669. result->src[1] = b;
  3670. return result;
  3671. }
  3672. struct ggml_tensor * ggml_set(
  3673. struct ggml_context * ctx,
  3674. struct ggml_tensor * a,
  3675. struct ggml_tensor * b,
  3676. size_t nb1,
  3677. size_t nb2,
  3678. size_t nb3,
  3679. size_t offset) {
  3680. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3681. }
  3682. struct ggml_tensor * ggml_set_inplace(
  3683. struct ggml_context * ctx,
  3684. struct ggml_tensor * a,
  3685. struct ggml_tensor * b,
  3686. size_t nb1,
  3687. size_t nb2,
  3688. size_t nb3,
  3689. size_t offset) {
  3690. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3691. }
  3692. struct ggml_tensor * ggml_set_1d(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a,
  3695. struct ggml_tensor * b,
  3696. size_t offset) {
  3697. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3698. }
  3699. struct ggml_tensor * ggml_set_1d_inplace(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a,
  3702. struct ggml_tensor * b,
  3703. size_t offset) {
  3704. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3705. }
  3706. struct ggml_tensor * ggml_set_2d(
  3707. struct ggml_context * ctx,
  3708. struct ggml_tensor * a,
  3709. struct ggml_tensor * b,
  3710. size_t nb1,
  3711. size_t offset) {
  3712. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3713. }
  3714. struct ggml_tensor * ggml_set_2d_inplace(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. struct ggml_tensor * b,
  3718. size_t nb1,
  3719. size_t offset) {
  3720. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3721. }
  3722. // ggml_cpy
  3723. static struct ggml_tensor * ggml_cpy_impl(
  3724. struct ggml_context * ctx,
  3725. struct ggml_tensor * a,
  3726. struct ggml_tensor * b) {
  3727. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3728. bool is_node = false;
  3729. if (a->grad || b->grad) {
  3730. // inplace is false and either one have a grad
  3731. is_node = true;
  3732. }
  3733. // make a view of the destination
  3734. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3735. if (strlen(b->name) > 0) {
  3736. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3737. } else {
  3738. ggml_format_name(result, "%s (copy)", a->name);
  3739. }
  3740. result->op = GGML_OP_CPY;
  3741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3742. result->src[0] = a;
  3743. result->src[1] = b;
  3744. return result;
  3745. }
  3746. struct ggml_tensor * ggml_cpy(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a,
  3749. struct ggml_tensor * b) {
  3750. return ggml_cpy_impl(ctx, a, b);
  3751. }
  3752. struct ggml_tensor * ggml_cast(
  3753. struct ggml_context * ctx,
  3754. struct ggml_tensor * a,
  3755. enum ggml_type type) {
  3756. bool is_node = false;
  3757. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3758. ggml_format_name(result, "%s (copy)", a->name);
  3759. result->op = GGML_OP_CPY;
  3760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3761. result->src[0] = a;
  3762. result->src[1] = result;
  3763. return result;
  3764. }
  3765. // ggml_cont
  3766. static struct ggml_tensor * ggml_cont_impl(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a) {
  3769. bool is_node = false;
  3770. if (a->grad) {
  3771. is_node = true;
  3772. }
  3773. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3774. ggml_format_name(result, "%s (cont)", a->name);
  3775. result->op = GGML_OP_CONT;
  3776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3777. result->src[0] = a;
  3778. return result;
  3779. }
  3780. struct ggml_tensor * ggml_cont(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a) {
  3783. return ggml_cont_impl(ctx, a);
  3784. }
  3785. // make contiguous, with new shape
  3786. GGML_API struct ggml_tensor * ggml_cont_1d(
  3787. struct ggml_context * ctx,
  3788. struct ggml_tensor * a,
  3789. int64_t ne0) {
  3790. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3791. }
  3792. GGML_API struct ggml_tensor * ggml_cont_2d(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * a,
  3795. int64_t ne0,
  3796. int64_t ne1) {
  3797. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3798. }
  3799. GGML_API struct ggml_tensor * ggml_cont_3d(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. int64_t ne0,
  3803. int64_t ne1,
  3804. int64_t ne2) {
  3805. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3806. }
  3807. struct ggml_tensor * ggml_cont_4d(
  3808. struct ggml_context * ctx,
  3809. struct ggml_tensor * a,
  3810. int64_t ne0,
  3811. int64_t ne1,
  3812. int64_t ne2,
  3813. int64_t ne3) {
  3814. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3815. bool is_node = false;
  3816. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3817. ggml_format_name(result, "%s (cont)", a->name);
  3818. result->op = GGML_OP_CONT;
  3819. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3820. result->src[0] = a;
  3821. return result;
  3822. }
  3823. // ggml_reshape
  3824. struct ggml_tensor * ggml_reshape(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a,
  3827. struct ggml_tensor * b) {
  3828. GGML_ASSERT(ggml_is_contiguous(a));
  3829. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3830. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3831. bool is_node = false;
  3832. if (a->grad) {
  3833. is_node = true;
  3834. }
  3835. if (b->grad) {
  3836. // gradient propagation is not supported
  3837. //GGML_ASSERT(false);
  3838. }
  3839. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3840. ggml_format_name(result, "%s (reshaped)", a->name);
  3841. result->op = GGML_OP_RESHAPE;
  3842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3843. result->src[0] = a;
  3844. return result;
  3845. }
  3846. struct ggml_tensor * ggml_reshape_1d(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a,
  3849. int64_t ne0) {
  3850. GGML_ASSERT(ggml_is_contiguous(a));
  3851. GGML_ASSERT(ggml_nelements(a) == ne0);
  3852. bool is_node = false;
  3853. if (a->grad) {
  3854. is_node = true;
  3855. }
  3856. const int64_t ne[1] = { ne0 };
  3857. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3858. ggml_format_name(result, "%s (reshaped)", a->name);
  3859. result->op = GGML_OP_RESHAPE;
  3860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3861. result->src[0] = a;
  3862. return result;
  3863. }
  3864. struct ggml_tensor * ggml_reshape_2d(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a,
  3867. int64_t ne0,
  3868. int64_t ne1) {
  3869. GGML_ASSERT(ggml_is_contiguous(a));
  3870. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3871. bool is_node = false;
  3872. if (a->grad) {
  3873. is_node = true;
  3874. }
  3875. const int64_t ne[2] = { ne0, ne1 };
  3876. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3877. ggml_format_name(result, "%s (reshaped)", a->name);
  3878. result->op = GGML_OP_RESHAPE;
  3879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3880. result->src[0] = a;
  3881. return result;
  3882. }
  3883. struct ggml_tensor * ggml_reshape_3d(
  3884. struct ggml_context * ctx,
  3885. struct ggml_tensor * a,
  3886. int64_t ne0,
  3887. int64_t ne1,
  3888. int64_t ne2) {
  3889. GGML_ASSERT(ggml_is_contiguous(a));
  3890. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3891. bool is_node = false;
  3892. if (a->grad) {
  3893. is_node = true;
  3894. }
  3895. const int64_t ne[3] = { ne0, ne1, ne2 };
  3896. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3897. ggml_format_name(result, "%s (reshaped)", a->name);
  3898. result->op = GGML_OP_RESHAPE;
  3899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3900. result->src[0] = a;
  3901. return result;
  3902. }
  3903. struct ggml_tensor * ggml_reshape_4d(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a,
  3906. int64_t ne0,
  3907. int64_t ne1,
  3908. int64_t ne2,
  3909. int64_t ne3) {
  3910. GGML_ASSERT(ggml_is_contiguous(a));
  3911. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3912. bool is_node = false;
  3913. if (a->grad) {
  3914. is_node = true;
  3915. }
  3916. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3917. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3918. ggml_format_name(result, "%s (reshaped)", a->name);
  3919. result->op = GGML_OP_RESHAPE;
  3920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3921. result->src[0] = a;
  3922. return result;
  3923. }
  3924. static struct ggml_tensor * ggml_view_impl(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a,
  3927. int n_dims,
  3928. const int64_t * ne,
  3929. size_t offset) {
  3930. bool is_node = false;
  3931. if (a->grad) {
  3932. is_node = true;
  3933. }
  3934. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3935. ggml_format_name(result, "%s (view)", a->name);
  3936. ggml_set_op_params(result, &offset, sizeof(offset));
  3937. result->op = GGML_OP_VIEW;
  3938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3939. result->src[0] = a;
  3940. return result;
  3941. }
  3942. // ggml_view_1d
  3943. struct ggml_tensor * ggml_view_1d(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. int64_t ne0,
  3947. size_t offset) {
  3948. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3949. return result;
  3950. }
  3951. // ggml_view_2d
  3952. struct ggml_tensor * ggml_view_2d(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a,
  3955. int64_t ne0,
  3956. int64_t ne1,
  3957. size_t nb1,
  3958. size_t offset) {
  3959. const int64_t ne[2] = { ne0, ne1 };
  3960. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3961. result->nb[1] = nb1;
  3962. result->nb[2] = result->nb[1]*ne1;
  3963. result->nb[3] = result->nb[2];
  3964. return result;
  3965. }
  3966. // ggml_view_3d
  3967. struct ggml_tensor * ggml_view_3d(
  3968. struct ggml_context * ctx,
  3969. struct ggml_tensor * a,
  3970. int64_t ne0,
  3971. int64_t ne1,
  3972. int64_t ne2,
  3973. size_t nb1,
  3974. size_t nb2,
  3975. size_t offset) {
  3976. const int64_t ne[3] = { ne0, ne1, ne2 };
  3977. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3978. result->nb[1] = nb1;
  3979. result->nb[2] = nb2;
  3980. result->nb[3] = result->nb[2]*ne2;
  3981. return result;
  3982. }
  3983. // ggml_view_4d
  3984. struct ggml_tensor * ggml_view_4d(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a,
  3987. int64_t ne0,
  3988. int64_t ne1,
  3989. int64_t ne2,
  3990. int64_t ne3,
  3991. size_t nb1,
  3992. size_t nb2,
  3993. size_t nb3,
  3994. size_t offset) {
  3995. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3996. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3997. result->nb[1] = nb1;
  3998. result->nb[2] = nb2;
  3999. result->nb[3] = nb3;
  4000. return result;
  4001. }
  4002. // ggml_permute
  4003. struct ggml_tensor * ggml_permute(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. int axis0,
  4007. int axis1,
  4008. int axis2,
  4009. int axis3) {
  4010. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4011. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4012. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4013. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4014. GGML_ASSERT(axis0 != axis1);
  4015. GGML_ASSERT(axis0 != axis2);
  4016. GGML_ASSERT(axis0 != axis3);
  4017. GGML_ASSERT(axis1 != axis2);
  4018. GGML_ASSERT(axis1 != axis3);
  4019. GGML_ASSERT(axis2 != axis3);
  4020. bool is_node = false;
  4021. if (a->grad) {
  4022. is_node = true;
  4023. }
  4024. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4025. ggml_format_name(result, "%s (permuted)", a->name);
  4026. int ne[GGML_MAX_DIMS];
  4027. int nb[GGML_MAX_DIMS];
  4028. ne[axis0] = a->ne[0];
  4029. ne[axis1] = a->ne[1];
  4030. ne[axis2] = a->ne[2];
  4031. ne[axis3] = a->ne[3];
  4032. nb[axis0] = a->nb[0];
  4033. nb[axis1] = a->nb[1];
  4034. nb[axis2] = a->nb[2];
  4035. nb[axis3] = a->nb[3];
  4036. result->ne[0] = ne[0];
  4037. result->ne[1] = ne[1];
  4038. result->ne[2] = ne[2];
  4039. result->ne[3] = ne[3];
  4040. result->nb[0] = nb[0];
  4041. result->nb[1] = nb[1];
  4042. result->nb[2] = nb[2];
  4043. result->nb[3] = nb[3];
  4044. result->op = GGML_OP_PERMUTE;
  4045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4046. result->src[0] = a;
  4047. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4048. ggml_set_op_params(result, params, sizeof(params));
  4049. return result;
  4050. }
  4051. // ggml_transpose
  4052. struct ggml_tensor * ggml_transpose(
  4053. struct ggml_context * ctx,
  4054. struct ggml_tensor * a) {
  4055. bool is_node = false;
  4056. if (a->grad) {
  4057. is_node = true;
  4058. }
  4059. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4060. ggml_format_name(result, "%s (transposed)", a->name);
  4061. result->ne[0] = a->ne[1];
  4062. result->ne[1] = a->ne[0];
  4063. result->nb[0] = a->nb[1];
  4064. result->nb[1] = a->nb[0];
  4065. result->op = GGML_OP_TRANSPOSE;
  4066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4067. result->src[0] = a;
  4068. return result;
  4069. }
  4070. // ggml_get_rows
  4071. struct ggml_tensor * ggml_get_rows(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a,
  4074. struct ggml_tensor * b) {
  4075. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4076. GGML_ASSERT(b->ne[3] == 1);
  4077. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4078. bool is_node = false;
  4079. if (a->grad || b->grad) {
  4080. is_node = true;
  4081. }
  4082. // TODO: implement non F32 return
  4083. enum ggml_type type = GGML_TYPE_F32;
  4084. if (a->type == GGML_TYPE_I32) {
  4085. type = a->type;
  4086. }
  4087. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4088. result->op = GGML_OP_GET_ROWS;
  4089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4090. result->src[0] = a;
  4091. result->src[1] = b;
  4092. return result;
  4093. }
  4094. // ggml_get_rows_back
  4095. struct ggml_tensor * ggml_get_rows_back(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a,
  4098. struct ggml_tensor * b,
  4099. struct ggml_tensor * c) {
  4100. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4101. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4102. bool is_node = false;
  4103. if (a->grad || b->grad) {
  4104. is_node = true;
  4105. }
  4106. // TODO: implement non F32 return
  4107. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4108. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4109. result->op = GGML_OP_GET_ROWS_BACK;
  4110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4111. result->src[0] = a;
  4112. result->src[1] = b;
  4113. return result;
  4114. }
  4115. // ggml_diag
  4116. struct ggml_tensor * ggml_diag(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a) {
  4119. GGML_ASSERT(a->ne[1] == 1);
  4120. bool is_node = false;
  4121. if (a->grad) {
  4122. is_node = true;
  4123. }
  4124. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4125. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4126. result->op = GGML_OP_DIAG;
  4127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4128. result->src[0] = a;
  4129. return result;
  4130. }
  4131. // ggml_diag_mask_inf
  4132. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4133. struct ggml_context * ctx,
  4134. struct ggml_tensor * a,
  4135. int n_past,
  4136. bool inplace) {
  4137. bool is_node = false;
  4138. if (a->grad) {
  4139. is_node = true;
  4140. }
  4141. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4142. int32_t params[] = { n_past };
  4143. ggml_set_op_params(result, params, sizeof(params));
  4144. result->op = GGML_OP_DIAG_MASK_INF;
  4145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4146. result->src[0] = a;
  4147. return result;
  4148. }
  4149. struct ggml_tensor * ggml_diag_mask_inf(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a,
  4152. int n_past) {
  4153. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4154. }
  4155. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. int n_past) {
  4159. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4160. }
  4161. // ggml_diag_mask_zero
  4162. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a,
  4165. int n_past,
  4166. bool inplace) {
  4167. bool is_node = false;
  4168. if (a->grad) {
  4169. is_node = true;
  4170. }
  4171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4172. int32_t params[] = { n_past };
  4173. ggml_set_op_params(result, params, sizeof(params));
  4174. result->op = GGML_OP_DIAG_MASK_ZERO;
  4175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4176. result->src[0] = a;
  4177. return result;
  4178. }
  4179. struct ggml_tensor * ggml_diag_mask_zero(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a,
  4182. int n_past) {
  4183. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4184. }
  4185. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a,
  4188. int n_past) {
  4189. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4190. }
  4191. // ggml_soft_max
  4192. static struct ggml_tensor * ggml_soft_max_impl(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. struct ggml_tensor * mask,
  4196. struct ggml_tensor * pos,
  4197. float scale,
  4198. float max_bias,
  4199. bool inplace) {
  4200. GGML_ASSERT(ggml_is_contiguous(a));
  4201. if (mask) {
  4202. GGML_ASSERT(ggml_is_contiguous(mask));
  4203. GGML_ASSERT(ggml_is_matrix(mask));
  4204. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4205. }
  4206. if (pos) {
  4207. GGML_ASSERT(ggml_is_vector(pos));
  4208. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4209. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4210. }
  4211. if (max_bias > 0.0f) {
  4212. GGML_ASSERT(pos);
  4213. }
  4214. bool is_node = false;
  4215. if (a->grad) {
  4216. is_node = true;
  4217. }
  4218. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4219. float params[] = { scale, max_bias };
  4220. ggml_set_op_params(result, params, sizeof(params));
  4221. result->op = GGML_OP_SOFT_MAX;
  4222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4223. result->src[0] = a;
  4224. result->src[1] = mask;
  4225. result->src[2] = pos;
  4226. return result;
  4227. }
  4228. struct ggml_tensor * ggml_soft_max(
  4229. struct ggml_context * ctx,
  4230. struct ggml_tensor * a) {
  4231. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4232. }
  4233. struct ggml_tensor * ggml_soft_max_inplace(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a) {
  4236. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4237. }
  4238. struct ggml_tensor * ggml_soft_max_ext(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a,
  4241. struct ggml_tensor * mask,
  4242. struct ggml_tensor * pos,
  4243. float scale,
  4244. float max_bias) {
  4245. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4246. }
  4247. // ggml_soft_max_back
  4248. static struct ggml_tensor * ggml_soft_max_back_impl(
  4249. struct ggml_context * ctx,
  4250. struct ggml_tensor * a,
  4251. struct ggml_tensor * b,
  4252. bool inplace) {
  4253. bool is_node = false;
  4254. if (a->grad || b->grad) {
  4255. is_node = true; // TODO : implement backward pass
  4256. }
  4257. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4258. result->op = GGML_OP_SOFT_MAX_BACK;
  4259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4260. result->src[0] = a;
  4261. result->src[1] = b;
  4262. return result;
  4263. }
  4264. struct ggml_tensor * ggml_soft_max_back(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a,
  4267. struct ggml_tensor * b) {
  4268. return ggml_soft_max_back_impl(ctx, a, b, false);
  4269. }
  4270. struct ggml_tensor * ggml_soft_max_back_inplace(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a,
  4273. struct ggml_tensor * b) {
  4274. return ggml_soft_max_back_impl(ctx, a, b, true);
  4275. }
  4276. // ggml_rope
  4277. static struct ggml_tensor * ggml_rope_impl(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a,
  4280. struct ggml_tensor * b,
  4281. int n_dims,
  4282. int mode,
  4283. int n_ctx,
  4284. int n_orig_ctx,
  4285. float freq_base,
  4286. float freq_scale,
  4287. float ext_factor,
  4288. float attn_factor,
  4289. float beta_fast,
  4290. float beta_slow,
  4291. float xpos_base,
  4292. bool xpos_down,
  4293. bool inplace) {
  4294. GGML_ASSERT(ggml_is_vector(b));
  4295. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4296. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4297. bool is_node = false;
  4298. if (a->grad) {
  4299. is_node = true;
  4300. }
  4301. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4302. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4303. memcpy(params + 5, &freq_base, sizeof(float));
  4304. memcpy(params + 6, &freq_scale, sizeof(float));
  4305. memcpy(params + 7, &ext_factor, sizeof(float));
  4306. memcpy(params + 8, &attn_factor, sizeof(float));
  4307. memcpy(params + 9, &beta_fast, sizeof(float));
  4308. memcpy(params + 10, &beta_slow, sizeof(float));
  4309. memcpy(params + 11, &xpos_base, sizeof(float));
  4310. memcpy(params + 12, &xpos_down, sizeof(bool));
  4311. ggml_set_op_params(result, params, sizeof(params));
  4312. result->op = GGML_OP_ROPE;
  4313. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4314. result->src[0] = a;
  4315. result->src[1] = b;
  4316. return result;
  4317. }
  4318. struct ggml_tensor * ggml_rope(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a,
  4321. struct ggml_tensor * b,
  4322. int n_dims,
  4323. int mode,
  4324. int n_ctx) {
  4325. return ggml_rope_impl(
  4326. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4327. );
  4328. }
  4329. struct ggml_tensor * ggml_rope_inplace(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. struct ggml_tensor * b,
  4333. int n_dims,
  4334. int mode,
  4335. int n_ctx) {
  4336. return ggml_rope_impl(
  4337. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4338. );
  4339. }
  4340. struct ggml_tensor * ggml_rope_custom(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a,
  4343. struct ggml_tensor * b,
  4344. int n_dims,
  4345. int mode,
  4346. int n_ctx,
  4347. int n_orig_ctx,
  4348. float freq_base,
  4349. float freq_scale,
  4350. float ext_factor,
  4351. float attn_factor,
  4352. float beta_fast,
  4353. float beta_slow) {
  4354. return ggml_rope_impl(
  4355. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4356. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4357. );
  4358. }
  4359. struct ggml_tensor * ggml_rope_custom_inplace(
  4360. struct ggml_context * ctx,
  4361. struct ggml_tensor * a,
  4362. struct ggml_tensor * b,
  4363. int n_dims,
  4364. int mode,
  4365. int n_ctx,
  4366. int n_orig_ctx,
  4367. float freq_base,
  4368. float freq_scale,
  4369. float ext_factor,
  4370. float attn_factor,
  4371. float beta_fast,
  4372. float beta_slow) {
  4373. return ggml_rope_impl(
  4374. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4375. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4376. );
  4377. }
  4378. struct ggml_tensor * ggml_rope_xpos_inplace(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * a,
  4381. struct ggml_tensor * b,
  4382. int n_dims,
  4383. float base,
  4384. bool down) {
  4385. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4386. }
  4387. // ggml_rope_back
  4388. struct ggml_tensor * ggml_rope_back(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. struct ggml_tensor * b,
  4392. int n_dims,
  4393. int mode,
  4394. int n_ctx,
  4395. int n_orig_ctx,
  4396. float freq_base,
  4397. float freq_scale,
  4398. float ext_factor,
  4399. float attn_factor,
  4400. float beta_fast,
  4401. float beta_slow,
  4402. float xpos_base,
  4403. bool xpos_down) {
  4404. GGML_ASSERT(ggml_is_vector(b));
  4405. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4406. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4407. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4408. bool is_node = false;
  4409. if (a->grad) {
  4410. is_node = false; // TODO: implement backward
  4411. }
  4412. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4413. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4414. memcpy(params + 5, &freq_base, sizeof(float));
  4415. memcpy(params + 6, &freq_scale, sizeof(float));
  4416. memcpy(params + 7, &ext_factor, sizeof(float));
  4417. memcpy(params + 8, &attn_factor, sizeof(float));
  4418. memcpy(params + 9, &beta_fast, sizeof(float));
  4419. memcpy(params + 10, &beta_slow, sizeof(float));
  4420. memcpy(params + 11, &xpos_base, sizeof(float));
  4421. memcpy(params + 12, &xpos_down, sizeof(bool));
  4422. ggml_set_op_params(result, params, sizeof(params));
  4423. result->op = GGML_OP_ROPE_BACK;
  4424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4425. result->src[0] = a;
  4426. result->src[1] = b;
  4427. return result;
  4428. }
  4429. // ggml_alibi
  4430. struct ggml_tensor * ggml_alibi(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. int n_past,
  4434. int n_head,
  4435. float bias_max) {
  4436. GGML_ASSERT(n_past >= 0);
  4437. bool is_node = false;
  4438. if (a->grad) {
  4439. GGML_ASSERT(false); // TODO: implement backward
  4440. is_node = true;
  4441. }
  4442. // TODO: when implement backward, fix this:
  4443. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4444. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4445. int32_t op_params[3] = { n_past, n_head };
  4446. memcpy(op_params + 2, &bias_max, sizeof(float));
  4447. ggml_set_op_params(result, op_params, sizeof(op_params));
  4448. result->op = GGML_OP_ALIBI;
  4449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4450. result->src[0] = a;
  4451. return result;
  4452. }
  4453. // ggml_clamp
  4454. struct ggml_tensor * ggml_clamp(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * a,
  4457. float min,
  4458. float max) {
  4459. bool is_node = false;
  4460. if (a->grad) {
  4461. GGML_ASSERT(false); // TODO: implement backward
  4462. is_node = true;
  4463. }
  4464. // TODO: when implement backward, fix this:
  4465. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4466. float params[] = { min, max };
  4467. ggml_set_op_params(result, params, sizeof(params));
  4468. result->op = GGML_OP_CLAMP;
  4469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4470. result->src[0] = a;
  4471. return result;
  4472. }
  4473. // ggml_conv_1d
  4474. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4475. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4476. }
  4477. GGML_API struct ggml_tensor * ggml_conv_1d(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a,
  4480. struct ggml_tensor * b,
  4481. int s0,
  4482. int p0,
  4483. int d0) {
  4484. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4485. struct ggml_tensor * result =
  4486. ggml_mul_mat(ctx,
  4487. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4488. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4489. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4490. return result;
  4491. }
  4492. // ggml_conv_1d_ph
  4493. struct ggml_tensor* ggml_conv_1d_ph(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b,
  4497. int s,
  4498. int d) {
  4499. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4500. }
  4501. // ggml_conv_transpose_1d
  4502. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4503. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4504. }
  4505. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4506. struct ggml_context * ctx,
  4507. struct ggml_tensor * a,
  4508. struct ggml_tensor * b,
  4509. int s0,
  4510. int p0,
  4511. int d0) {
  4512. GGML_ASSERT(ggml_is_matrix(b));
  4513. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4514. GGML_ASSERT(a->ne[3] == 1);
  4515. GGML_ASSERT(p0 == 0);
  4516. GGML_ASSERT(d0 == 1);
  4517. bool is_node = false;
  4518. if (a->grad || b->grad) {
  4519. GGML_ASSERT(false); // TODO: implement backward
  4520. is_node = true;
  4521. }
  4522. const int64_t ne[4] = {
  4523. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4524. a->ne[1], b->ne[2], 1,
  4525. };
  4526. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4527. int32_t params[] = { s0, p0, d0 };
  4528. ggml_set_op_params(result, params, sizeof(params));
  4529. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4530. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4531. result->src[0] = a;
  4532. result->src[1] = b;
  4533. return result;
  4534. }
  4535. // ggml_conv_depthwise
  4536. struct ggml_tensor * ggml_conv_depthwise_2d(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. struct ggml_tensor * b,
  4540. int s0,
  4541. int s1,
  4542. int p0,
  4543. int p1,
  4544. int d0,
  4545. int d1) {
  4546. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4547. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4548. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4549. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4550. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4551. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4552. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4553. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4554. return result;
  4555. }
  4556. // ggml_conv_2d
  4557. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4558. // a: [OC,IC, KH, KW]
  4559. // b: [N, IC, IH, IW]
  4560. // result: [N, OH, OW, IC*KH*KW]
  4561. struct ggml_tensor * ggml_im2col(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. struct ggml_tensor * b,
  4565. int s0,
  4566. int s1,
  4567. int p0,
  4568. int p1,
  4569. int d0,
  4570. int d1,
  4571. bool is_2D,
  4572. enum ggml_type dst_type) {
  4573. if(is_2D) {
  4574. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4575. } else {
  4576. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4577. }
  4578. bool is_node = false;
  4579. if (a->grad || b->grad) {
  4580. GGML_ASSERT(false); // TODO: implement backward
  4581. is_node = true;
  4582. }
  4583. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4584. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4585. const int64_t ne[4] = {
  4586. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4587. OW,
  4588. is_2D ? OH : b->ne[2],
  4589. is_2D ? b->ne[3] : 1,
  4590. };
  4591. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4592. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4593. ggml_set_op_params(result, params, sizeof(params));
  4594. result->op = GGML_OP_IM2COL;
  4595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4596. result->src[0] = a;
  4597. result->src[1] = b;
  4598. return result;
  4599. }
  4600. // a: [OC,IC, KH, KW]
  4601. // b: [N, IC, IH, IW]
  4602. // result: [N, OC, OH, OW]
  4603. struct ggml_tensor * ggml_conv_2d(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a,
  4606. struct ggml_tensor * b,
  4607. int s0,
  4608. int s1,
  4609. int p0,
  4610. int p1,
  4611. int d0,
  4612. int d1) {
  4613. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4614. struct ggml_tensor * result =
  4615. ggml_mul_mat(ctx,
  4616. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4617. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4618. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4619. return result;
  4620. }
  4621. // ggml_conv_2d_sk_p0
  4622. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a,
  4625. struct ggml_tensor * b) {
  4626. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4627. }
  4628. // ggml_conv_2d_s1_ph
  4629. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a,
  4632. struct ggml_tensor * b) {
  4633. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4634. }
  4635. // ggml_conv_transpose_2d_p0
  4636. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4637. return (ins - 1) * s - 2 * p + ks;
  4638. }
  4639. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4640. struct ggml_context * ctx,
  4641. struct ggml_tensor * a,
  4642. struct ggml_tensor * b,
  4643. int stride) {
  4644. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4645. bool is_node = false;
  4646. if (a->grad || b->grad) {
  4647. GGML_ASSERT(false); // TODO: implement backward
  4648. is_node = true;
  4649. }
  4650. const int64_t ne[4] = {
  4651. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4652. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4653. a->ne[2], b->ne[3],
  4654. };
  4655. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4656. ggml_set_op_params_i32(result, 0, stride);
  4657. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4659. result->src[0] = a;
  4660. result->src[1] = b;
  4661. return result;
  4662. }
  4663. // ggml_pool_*
  4664. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4665. return (ins + 2 * p - ks) / s + 1;
  4666. }
  4667. // ggml_pool_1d
  4668. struct ggml_tensor * ggml_pool_1d(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a,
  4671. enum ggml_op_pool op,
  4672. int k0,
  4673. int s0,
  4674. int p0) {
  4675. bool is_node = false;
  4676. if (a->grad) {
  4677. GGML_ASSERT(false); // TODO: implement backward
  4678. is_node = true;
  4679. }
  4680. const int64_t ne[2] = {
  4681. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4682. a->ne[1],
  4683. };
  4684. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4685. int32_t params[] = { op, k0, s0, p0 };
  4686. ggml_set_op_params(result, params, sizeof(params));
  4687. result->op = GGML_OP_POOL_1D;
  4688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4689. result->src[0] = a;
  4690. return result;
  4691. }
  4692. // ggml_pool_2d
  4693. struct ggml_tensor * ggml_pool_2d(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. enum ggml_op_pool op,
  4697. int k0,
  4698. int k1,
  4699. int s0,
  4700. int s1,
  4701. float p0,
  4702. float p1) {
  4703. bool is_node = false;
  4704. if (a->grad) {
  4705. GGML_ASSERT(false); // TODO: implement backward
  4706. is_node = true;
  4707. }
  4708. struct ggml_tensor * result;
  4709. const int64_t ne[3] = {
  4710. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4711. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4712. a->ne[2],
  4713. };
  4714. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4715. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4716. ggml_set_op_params(result, params, sizeof(params));
  4717. result->op = GGML_OP_POOL_2D;
  4718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4719. result->src[0] = a;
  4720. return result;
  4721. }
  4722. // ggml_upscale
  4723. static struct ggml_tensor * ggml_upscale_impl(
  4724. struct ggml_context * ctx,
  4725. struct ggml_tensor * a,
  4726. int scale_factor) {
  4727. bool is_node = false;
  4728. if (a->grad) {
  4729. GGML_ASSERT(false); // TODO: implement backward
  4730. is_node = true;
  4731. }
  4732. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4733. a->ne[0] * scale_factor,
  4734. a->ne[1] * scale_factor,
  4735. a->ne[2], a->ne[3]);
  4736. result->op = GGML_OP_UPSCALE;
  4737. result->op_params[0] = scale_factor;
  4738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4739. result->src[0] = a;
  4740. return result;
  4741. }
  4742. struct ggml_tensor * ggml_pad(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a,
  4745. int p0, int p1, int p2, int p3) {
  4746. bool is_node = false;
  4747. if (a->grad) {
  4748. GGML_ASSERT(false); // TODO: implement backward
  4749. is_node = true;
  4750. }
  4751. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4752. a->ne[0] + p0,
  4753. a->ne[1] + p1,
  4754. a->ne[2] + p2,
  4755. a->ne[3] + p3);
  4756. result->op = GGML_OP_PAD;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src[0] = a;
  4759. return result;
  4760. }
  4761. struct ggml_tensor * ggml_upscale(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a,
  4764. int scale_factor) {
  4765. return ggml_upscale_impl(ctx, a, scale_factor);
  4766. }
  4767. // ggml_argsort
  4768. struct ggml_tensor * ggml_argsort(
  4769. struct ggml_context * ctx,
  4770. struct ggml_tensor * a,
  4771. enum ggml_sort_order order) {
  4772. bool is_node = false;
  4773. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4774. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4775. result->op = GGML_OP_ARGSORT;
  4776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4777. result->src[0] = a;
  4778. return result;
  4779. }
  4780. // ggml_top_k
  4781. struct ggml_tensor * ggml_top_k(
  4782. struct ggml_context * ctx,
  4783. struct ggml_tensor * a,
  4784. int k) {
  4785. GGML_ASSERT(a->ne[0] >= k);
  4786. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4787. result = ggml_view_4d(ctx, result,
  4788. k, result->ne[1], result->ne[2], result->ne[3],
  4789. result->nb[1], result->nb[2], result->nb[3],
  4790. 0);
  4791. return result;
  4792. }
  4793. // ggml_flash_attn
  4794. struct ggml_tensor * ggml_flash_attn(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * q,
  4797. struct ggml_tensor * k,
  4798. struct ggml_tensor * v,
  4799. bool masked) {
  4800. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4801. // TODO: check if vT can be multiplied by (k*qT)
  4802. bool is_node = false;
  4803. if (q->grad || k->grad || v->grad) {
  4804. is_node = true;
  4805. }
  4806. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4807. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4808. int32_t t = masked ? 1 : 0;
  4809. ggml_set_op_params(result, &t, sizeof(t));
  4810. result->op = GGML_OP_FLASH_ATTN;
  4811. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4812. result->src[0] = q;
  4813. result->src[1] = k;
  4814. result->src[2] = v;
  4815. return result;
  4816. }
  4817. // ggml_flash_ff
  4818. struct ggml_tensor * ggml_flash_ff(
  4819. struct ggml_context * ctx,
  4820. struct ggml_tensor * a,
  4821. struct ggml_tensor * b0,
  4822. struct ggml_tensor * b1,
  4823. struct ggml_tensor * c0,
  4824. struct ggml_tensor * c1) {
  4825. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4826. // TODO: more checks
  4827. bool is_node = false;
  4828. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4829. is_node = true;
  4830. }
  4831. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4832. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4833. result->op = GGML_OP_FLASH_FF;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src[0] = a;
  4836. result->src[1] = b0;
  4837. result->src[2] = b1;
  4838. result->src[3] = c0;
  4839. result->src[4] = c1;
  4840. return result;
  4841. }
  4842. // ggml_flash_attn_back
  4843. struct ggml_tensor * ggml_flash_attn_back(
  4844. struct ggml_context * ctx,
  4845. struct ggml_tensor * q,
  4846. struct ggml_tensor * k,
  4847. struct ggml_tensor * v,
  4848. struct ggml_tensor * d,
  4849. bool masked) {
  4850. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4851. // TODO: check if vT can be multiplied by (k*qT)
  4852. // d shape [D,N,ne2,ne3]
  4853. // q shape [D,N,ne2,ne3]
  4854. // k shape [D,M,kvne2,ne3]
  4855. // v shape [M,D,kvne2,ne3]
  4856. const int64_t D = q->ne[0];
  4857. const int64_t N = q->ne[1];
  4858. const int64_t M = k->ne[1];
  4859. const int64_t ne2 = q->ne[2];
  4860. const int64_t ne3 = q->ne[3];
  4861. const int64_t kvne2 = k->ne[2];
  4862. GGML_ASSERT(k->ne[0] == D);
  4863. GGML_ASSERT(v->ne[0] == M);
  4864. GGML_ASSERT(v->ne[1] == D);
  4865. GGML_ASSERT(d->ne[0] == D);
  4866. GGML_ASSERT(d->ne[1] == N);
  4867. GGML_ASSERT(k->ne[2] == kvne2);
  4868. GGML_ASSERT(k->ne[3] == ne3);
  4869. GGML_ASSERT(v->ne[2] == kvne2);
  4870. GGML_ASSERT(v->ne[3] == ne3);
  4871. GGML_ASSERT(d->ne[2] == ne2);
  4872. GGML_ASSERT(d->ne[3] == ne3);
  4873. GGML_ASSERT(ne2 % kvne2 == 0);
  4874. bool is_node = false;
  4875. if (q->grad || k->grad || v->grad) {
  4876. // when using this operation (in backwards pass) these grads are set.
  4877. // we don't want to create (big) grad of our result, so is_node is false.
  4878. is_node = false;
  4879. }
  4880. // store gradients of q, k and v as continuous tensors concatenated in result.
  4881. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4882. const int64_t elem_q = ggml_nelements(q);
  4883. const int64_t elem_k = ggml_nelements(k);
  4884. const int64_t elem_v = ggml_nelements(v);
  4885. enum ggml_type result_type = GGML_TYPE_F32;
  4886. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4887. const size_t tsize = ggml_type_size(result_type);
  4888. const size_t offs_q = 0;
  4889. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4890. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4891. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4892. const size_t nelements = (end + tsize - 1)/tsize;
  4893. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4894. int32_t masked_i = masked ? 1 : 0;
  4895. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4896. result->op = GGML_OP_FLASH_ATTN_BACK;
  4897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4898. result->src[0] = q;
  4899. result->src[1] = k;
  4900. result->src[2] = v;
  4901. result->src[3] = d;
  4902. return result;
  4903. }
  4904. // ggml_win_part
  4905. struct ggml_tensor * ggml_win_part(
  4906. struct ggml_context * ctx,
  4907. struct ggml_tensor * a,
  4908. int w) {
  4909. GGML_ASSERT(a->ne[3] == 1);
  4910. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4911. bool is_node = false;
  4912. if (a->grad) {
  4913. GGML_ASSERT(false); // TODO: implement backward
  4914. is_node = true;
  4915. }
  4916. // padding
  4917. const int px = (w - a->ne[1]%w)%w;
  4918. const int py = (w - a->ne[2]%w)%w;
  4919. const int npx = (px + a->ne[1])/w;
  4920. const int npy = (py + a->ne[2])/w;
  4921. const int np = npx*npy;
  4922. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4923. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4924. int32_t params[] = { npx, npy, w };
  4925. ggml_set_op_params(result, params, sizeof(params));
  4926. result->op = GGML_OP_WIN_PART;
  4927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4928. result->src[0] = a;
  4929. return result;
  4930. }
  4931. // ggml_win_unpart
  4932. struct ggml_tensor * ggml_win_unpart(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. int w0,
  4936. int h0,
  4937. int w) {
  4938. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4939. bool is_node = false;
  4940. if (a->grad) {
  4941. GGML_ASSERT(false); // TODO: implement backward
  4942. is_node = true;
  4943. }
  4944. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4945. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4946. int32_t params[] = { w };
  4947. ggml_set_op_params(result, params, sizeof(params));
  4948. result->op = GGML_OP_WIN_UNPART;
  4949. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4950. result->src[0] = a;
  4951. return result;
  4952. }
  4953. // ggml_get_rel_pos
  4954. struct ggml_tensor * ggml_get_rel_pos(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. int qh,
  4958. int kh) {
  4959. GGML_ASSERT(qh == kh);
  4960. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4961. bool is_node = false;
  4962. if (a->grad) {
  4963. GGML_ASSERT(false); // TODO: implement backward
  4964. is_node = true;
  4965. }
  4966. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4967. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4968. result->op = GGML_OP_GET_REL_POS;
  4969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4970. result->src[0] = a;
  4971. return result;
  4972. }
  4973. // ggml_add_rel_pos
  4974. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4975. struct ggml_context * ctx,
  4976. struct ggml_tensor * a,
  4977. struct ggml_tensor * pw,
  4978. struct ggml_tensor * ph,
  4979. bool inplace) {
  4980. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4981. GGML_ASSERT(ggml_is_contiguous(a));
  4982. GGML_ASSERT(ggml_is_contiguous(pw));
  4983. GGML_ASSERT(ggml_is_contiguous(ph));
  4984. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4985. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4986. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4987. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4988. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4989. bool is_node = false;
  4990. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4991. is_node = true;
  4992. }
  4993. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4994. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4995. result->op = GGML_OP_ADD_REL_POS;
  4996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4997. result->src[0] = a;
  4998. result->src[1] = pw;
  4999. result->src[2] = ph;
  5000. return result;
  5001. }
  5002. struct ggml_tensor * ggml_add_rel_pos(
  5003. struct ggml_context * ctx,
  5004. struct ggml_tensor * a,
  5005. struct ggml_tensor * pw,
  5006. struct ggml_tensor * ph) {
  5007. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5008. }
  5009. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5010. struct ggml_context * ctx,
  5011. struct ggml_tensor * a,
  5012. struct ggml_tensor * pw,
  5013. struct ggml_tensor * ph) {
  5014. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5015. }
  5016. // gmml_unary
  5017. static struct ggml_tensor * ggml_unary_impl(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. enum ggml_unary_op op,
  5021. bool inplace) {
  5022. bool is_node = false;
  5023. if (!inplace && (a->grad)) {
  5024. is_node = true;
  5025. }
  5026. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5027. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5028. result->op = GGML_OP_UNARY;
  5029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5030. result->src[0] = a;
  5031. return result;
  5032. }
  5033. struct ggml_tensor * ggml_unary(
  5034. struct ggml_context * ctx,
  5035. struct ggml_tensor * a,
  5036. enum ggml_unary_op op) {
  5037. return ggml_unary_impl(ctx, a, op, false);
  5038. }
  5039. struct ggml_tensor * ggml_unary_inplace(
  5040. struct ggml_context * ctx,
  5041. struct ggml_tensor * a,
  5042. enum ggml_unary_op op) {
  5043. return ggml_unary_impl(ctx, a, op, true);
  5044. }
  5045. // ggml_map_unary
  5046. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. const ggml_unary_op_f32_t fun,
  5050. bool inplace) {
  5051. bool is_node = false;
  5052. if (!inplace && a->grad) {
  5053. is_node = true;
  5054. }
  5055. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5056. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5057. result->op = GGML_OP_MAP_UNARY;
  5058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5059. result->src[0] = a;
  5060. return result;
  5061. }
  5062. struct ggml_tensor * ggml_map_unary_f32(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. const ggml_unary_op_f32_t fun) {
  5066. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5067. }
  5068. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a,
  5071. const ggml_unary_op_f32_t fun) {
  5072. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5073. }
  5074. // ggml_map_binary
  5075. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. struct ggml_tensor * b,
  5079. const ggml_binary_op_f32_t fun,
  5080. bool inplace) {
  5081. GGML_ASSERT(ggml_are_same_shape(a, b));
  5082. bool is_node = false;
  5083. if (!inplace && (a->grad || b->grad)) {
  5084. is_node = true;
  5085. }
  5086. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5087. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5088. result->op = GGML_OP_MAP_BINARY;
  5089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5090. result->src[0] = a;
  5091. result->src[1] = b;
  5092. return result;
  5093. }
  5094. struct ggml_tensor * ggml_map_binary_f32(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. struct ggml_tensor * b,
  5098. const ggml_binary_op_f32_t fun) {
  5099. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5100. }
  5101. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5102. struct ggml_context * ctx,
  5103. struct ggml_tensor * a,
  5104. struct ggml_tensor * b,
  5105. const ggml_binary_op_f32_t fun) {
  5106. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5107. }
  5108. // ggml_map_custom1_f32
  5109. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5110. struct ggml_context * ctx,
  5111. struct ggml_tensor * a,
  5112. const ggml_custom1_op_f32_t fun,
  5113. bool inplace) {
  5114. bool is_node = false;
  5115. if (!inplace && a->grad) {
  5116. is_node = true;
  5117. }
  5118. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5119. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5120. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5122. result->src[0] = a;
  5123. return result;
  5124. }
  5125. struct ggml_tensor * ggml_map_custom1_f32(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. const ggml_custom1_op_f32_t fun) {
  5129. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5130. }
  5131. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5132. struct ggml_context * ctx,
  5133. struct ggml_tensor * a,
  5134. const ggml_custom1_op_f32_t fun) {
  5135. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5136. }
  5137. // ggml_map_custom2_f32
  5138. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a,
  5141. struct ggml_tensor * b,
  5142. const ggml_custom2_op_f32_t fun,
  5143. bool inplace) {
  5144. bool is_node = false;
  5145. if (!inplace && (a->grad || b->grad)) {
  5146. is_node = true;
  5147. }
  5148. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5149. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5150. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5151. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5152. result->src[0] = a;
  5153. result->src[1] = b;
  5154. return result;
  5155. }
  5156. struct ggml_tensor * ggml_map_custom2_f32(
  5157. struct ggml_context * ctx,
  5158. struct ggml_tensor * a,
  5159. struct ggml_tensor * b,
  5160. const ggml_custom2_op_f32_t fun) {
  5161. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5162. }
  5163. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5164. struct ggml_context * ctx,
  5165. struct ggml_tensor * a,
  5166. struct ggml_tensor * b,
  5167. const ggml_custom2_op_f32_t fun) {
  5168. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5169. }
  5170. // ggml_map_custom3_f32
  5171. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5172. struct ggml_context * ctx,
  5173. struct ggml_tensor * a,
  5174. struct ggml_tensor * b,
  5175. struct ggml_tensor * c,
  5176. const ggml_custom3_op_f32_t fun,
  5177. bool inplace) {
  5178. bool is_node = false;
  5179. if (!inplace && (a->grad || b->grad || c->grad)) {
  5180. is_node = true;
  5181. }
  5182. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5183. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5184. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5186. result->src[0] = a;
  5187. result->src[1] = b;
  5188. result->src[2] = c;
  5189. return result;
  5190. }
  5191. struct ggml_tensor * ggml_map_custom3_f32(
  5192. struct ggml_context * ctx,
  5193. struct ggml_tensor * a,
  5194. struct ggml_tensor * b,
  5195. struct ggml_tensor * c,
  5196. const ggml_custom3_op_f32_t fun) {
  5197. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5198. }
  5199. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5200. struct ggml_context * ctx,
  5201. struct ggml_tensor * a,
  5202. struct ggml_tensor * b,
  5203. struct ggml_tensor * c,
  5204. const ggml_custom3_op_f32_t fun) {
  5205. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5206. }
  5207. // ggml_map_custom1
  5208. struct ggml_map_custom1_op_params {
  5209. ggml_custom1_op_t fun;
  5210. int n_tasks;
  5211. void * userdata;
  5212. };
  5213. static struct ggml_tensor * ggml_map_custom1_impl(
  5214. struct ggml_context * ctx,
  5215. struct ggml_tensor * a,
  5216. const ggml_custom1_op_t fun,
  5217. int n_tasks,
  5218. void * userdata,
  5219. bool inplace) {
  5220. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5221. bool is_node = false;
  5222. if (!inplace && a->grad) {
  5223. is_node = true;
  5224. }
  5225. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5226. struct ggml_map_custom1_op_params params = {
  5227. /*.fun =*/ fun,
  5228. /*.n_tasks =*/ n_tasks,
  5229. /*.userdata =*/ userdata
  5230. };
  5231. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5232. result->op = GGML_OP_MAP_CUSTOM1;
  5233. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5234. result->src[0] = a;
  5235. return result;
  5236. }
  5237. struct ggml_tensor * ggml_map_custom1(
  5238. struct ggml_context * ctx,
  5239. struct ggml_tensor * a,
  5240. const ggml_custom1_op_t fun,
  5241. int n_tasks,
  5242. void * userdata) {
  5243. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5244. }
  5245. struct ggml_tensor * ggml_map_custom1_inplace(
  5246. struct ggml_context * ctx,
  5247. struct ggml_tensor * a,
  5248. const ggml_custom1_op_t fun,
  5249. int n_tasks,
  5250. void * userdata) {
  5251. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5252. }
  5253. // ggml_map_custom2
  5254. struct ggml_map_custom2_op_params {
  5255. ggml_custom2_op_t fun;
  5256. int n_tasks;
  5257. void * userdata;
  5258. };
  5259. static struct ggml_tensor * ggml_map_custom2_impl(
  5260. struct ggml_context * ctx,
  5261. struct ggml_tensor * a,
  5262. struct ggml_tensor * b,
  5263. const ggml_custom2_op_t fun,
  5264. int n_tasks,
  5265. void * userdata,
  5266. bool inplace) {
  5267. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5268. bool is_node = false;
  5269. if (!inplace && (a->grad || b->grad)) {
  5270. is_node = true;
  5271. }
  5272. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5273. struct ggml_map_custom2_op_params params = {
  5274. /*.fun =*/ fun,
  5275. /*.n_tasks =*/ n_tasks,
  5276. /*.userdata =*/ userdata
  5277. };
  5278. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5279. result->op = GGML_OP_MAP_CUSTOM2;
  5280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5281. result->src[0] = a;
  5282. result->src[1] = b;
  5283. return result;
  5284. }
  5285. struct ggml_tensor * ggml_map_custom2(
  5286. struct ggml_context * ctx,
  5287. struct ggml_tensor * a,
  5288. struct ggml_tensor * b,
  5289. const ggml_custom2_op_t fun,
  5290. int n_tasks,
  5291. void * userdata) {
  5292. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5293. }
  5294. struct ggml_tensor * ggml_map_custom2_inplace(
  5295. struct ggml_context * ctx,
  5296. struct ggml_tensor * a,
  5297. struct ggml_tensor * b,
  5298. const ggml_custom2_op_t fun,
  5299. int n_tasks,
  5300. void * userdata) {
  5301. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5302. }
  5303. // ggml_map_custom3
  5304. struct ggml_map_custom3_op_params {
  5305. ggml_custom3_op_t fun;
  5306. int n_tasks;
  5307. void * userdata;
  5308. };
  5309. static struct ggml_tensor * ggml_map_custom3_impl(
  5310. struct ggml_context * ctx,
  5311. struct ggml_tensor * a,
  5312. struct ggml_tensor * b,
  5313. struct ggml_tensor * c,
  5314. const ggml_custom3_op_t fun,
  5315. int n_tasks,
  5316. void * userdata,
  5317. bool inplace) {
  5318. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5319. bool is_node = false;
  5320. if (!inplace && (a->grad || b->grad || c->grad)) {
  5321. is_node = true;
  5322. }
  5323. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5324. struct ggml_map_custom3_op_params params = {
  5325. /*.fun =*/ fun,
  5326. /*.n_tasks =*/ n_tasks,
  5327. /*.userdata =*/ userdata
  5328. };
  5329. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5330. result->op = GGML_OP_MAP_CUSTOM3;
  5331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5332. result->src[0] = a;
  5333. result->src[1] = b;
  5334. result->src[2] = c;
  5335. return result;
  5336. }
  5337. struct ggml_tensor * ggml_map_custom3(
  5338. struct ggml_context * ctx,
  5339. struct ggml_tensor * a,
  5340. struct ggml_tensor * b,
  5341. struct ggml_tensor * c,
  5342. const ggml_custom3_op_t fun,
  5343. int n_tasks,
  5344. void * userdata) {
  5345. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5346. }
  5347. struct ggml_tensor * ggml_map_custom3_inplace(
  5348. struct ggml_context * ctx,
  5349. struct ggml_tensor * a,
  5350. struct ggml_tensor * b,
  5351. struct ggml_tensor * c,
  5352. const ggml_custom3_op_t fun,
  5353. int n_tasks,
  5354. void * userdata) {
  5355. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5356. }
  5357. // ggml_cross_entropy_loss
  5358. struct ggml_tensor * ggml_cross_entropy_loss(
  5359. struct ggml_context * ctx,
  5360. struct ggml_tensor * a,
  5361. struct ggml_tensor * b) {
  5362. GGML_ASSERT(ggml_are_same_shape(a, b));
  5363. bool is_node = false;
  5364. if (a->grad || b->grad) {
  5365. is_node = true;
  5366. }
  5367. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5368. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5370. result->src[0] = a;
  5371. result->src[1] = b;
  5372. return result;
  5373. }
  5374. // ggml_cross_entropy_loss_back
  5375. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5376. struct ggml_context * ctx,
  5377. struct ggml_tensor * a,
  5378. struct ggml_tensor * b,
  5379. struct ggml_tensor * c) {
  5380. GGML_ASSERT(ggml_are_same_shape(a, b));
  5381. GGML_ASSERT(ggml_is_scalar(c));
  5382. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5383. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5384. result->grad = NULL;
  5385. result->src[0] = a;
  5386. result->src[1] = b;
  5387. result->src[2] = c;
  5388. return result;
  5389. }
  5390. ////////////////////////////////////////////////////////////////////////////////
  5391. void ggml_set_param(
  5392. struct ggml_context * ctx,
  5393. struct ggml_tensor * tensor) {
  5394. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5395. GGML_ASSERT(tensor->grad == NULL);
  5396. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5397. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5398. }
  5399. // ggml_compute_forward_dup
  5400. static void ggml_compute_forward_dup_same_cont(
  5401. const struct ggml_compute_params * params,
  5402. const struct ggml_tensor * src0,
  5403. struct ggml_tensor * dst) {
  5404. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5405. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5406. GGML_ASSERT(src0->type == dst->type);
  5407. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5408. return;
  5409. }
  5410. const size_t nb00 = src0->nb[0];
  5411. const size_t nb0 = dst->nb[0];
  5412. const int ith = params->ith; // thread index
  5413. const int nth = params->nth; // number of threads
  5414. // parallelize by elements
  5415. const int ne = ggml_nelements(dst);
  5416. const int dr = (ne + nth - 1) / nth;
  5417. const int ie0 = dr * ith;
  5418. const int ie1 = MIN(ie0 + dr, ne);
  5419. if (ie0 < ie1) {
  5420. memcpy(
  5421. ((char *) dst->data + ie0*nb0),
  5422. ((char *) src0->data + ie0*nb00),
  5423. (ie1 - ie0) * ggml_type_size(src0->type));
  5424. }
  5425. }
  5426. static void ggml_compute_forward_dup_f16(
  5427. const struct ggml_compute_params * params,
  5428. const struct ggml_tensor * src0,
  5429. struct ggml_tensor * dst) {
  5430. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5432. return;
  5433. }
  5434. GGML_TENSOR_UNARY_OP_LOCALS
  5435. const int ith = params->ith; // thread index
  5436. const int nth = params->nth; // number of threads
  5437. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5438. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5439. return;
  5440. }
  5441. // parallelize by rows
  5442. const int nr = ne01;
  5443. // number of rows per thread
  5444. const int dr = (nr + nth - 1) / nth;
  5445. // row range for this thread
  5446. const int ir0 = dr * ith;
  5447. const int ir1 = MIN(ir0 + dr, nr);
  5448. if (src0->type == dst->type &&
  5449. ne00 == ne0 &&
  5450. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5451. // copy by rows
  5452. const size_t rs = ne00*nb00;
  5453. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5454. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5455. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5456. memcpy(
  5457. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5458. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5459. rs);
  5460. }
  5461. }
  5462. }
  5463. return;
  5464. }
  5465. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5466. if (ggml_is_contiguous(dst)) {
  5467. if (nb00 == sizeof(ggml_fp16_t)) {
  5468. if (dst->type == GGML_TYPE_F16) {
  5469. size_t id = 0;
  5470. const size_t rs = ne00 * nb00;
  5471. char * dst_ptr = (char *) dst->data;
  5472. for (int i03 = 0; i03 < ne03; i03++) {
  5473. for (int i02 = 0; i02 < ne02; i02++) {
  5474. id += rs * ir0;
  5475. for (int i01 = ir0; i01 < ir1; i01++) {
  5476. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5477. memcpy(dst_ptr + id, src0_ptr, rs);
  5478. id += rs;
  5479. }
  5480. id += rs * (ne01 - ir1);
  5481. }
  5482. }
  5483. } else if (dst->type == GGML_TYPE_F32) {
  5484. size_t id = 0;
  5485. float * dst_ptr = (float *) dst->data;
  5486. for (int i03 = 0; i03 < ne03; i03++) {
  5487. for (int i02 = 0; i02 < ne02; i02++) {
  5488. id += ne00 * ir0;
  5489. for (int i01 = ir0; i01 < ir1; i01++) {
  5490. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5491. for (int i00 = 0; i00 < ne00; i00++) {
  5492. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5493. id++;
  5494. }
  5495. }
  5496. id += ne00 * (ne01 - ir1);
  5497. }
  5498. }
  5499. } else if (type_traits[dst->type].from_float) {
  5500. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5501. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5502. size_t id = 0;
  5503. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5504. char * dst_ptr = (char *) dst->data;
  5505. for (int i03 = 0; i03 < ne03; i03++) {
  5506. for (int i02 = 0; i02 < ne02; i02++) {
  5507. id += rs * ir0;
  5508. for (int i01 = ir0; i01 < ir1; i01++) {
  5509. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5510. for (int i00 = 0; i00 < ne00; i00++) {
  5511. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5512. }
  5513. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5514. id += rs;
  5515. }
  5516. id += rs * (ne01 - ir1);
  5517. }
  5518. }
  5519. } else {
  5520. GGML_ASSERT(false); // TODO: implement
  5521. }
  5522. } else {
  5523. //printf("%s: this is not optimal - fix me\n", __func__);
  5524. if (dst->type == GGML_TYPE_F32) {
  5525. size_t id = 0;
  5526. float * dst_ptr = (float *) dst->data;
  5527. for (int i03 = 0; i03 < ne03; i03++) {
  5528. for (int i02 = 0; i02 < ne02; i02++) {
  5529. id += ne00 * ir0;
  5530. for (int i01 = ir0; i01 < ir1; i01++) {
  5531. for (int i00 = 0; i00 < ne00; i00++) {
  5532. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5533. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5534. id++;
  5535. }
  5536. }
  5537. id += ne00 * (ne01 - ir1);
  5538. }
  5539. }
  5540. } else if (dst->type == GGML_TYPE_F16) {
  5541. size_t id = 0;
  5542. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5543. for (int i03 = 0; i03 < ne03; i03++) {
  5544. for (int i02 = 0; i02 < ne02; i02++) {
  5545. id += ne00 * ir0;
  5546. for (int i01 = ir0; i01 < ir1; i01++) {
  5547. for (int i00 = 0; i00 < ne00; i00++) {
  5548. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5549. dst_ptr[id] = *src0_ptr;
  5550. id++;
  5551. }
  5552. }
  5553. id += ne00 * (ne01 - ir1);
  5554. }
  5555. }
  5556. } else {
  5557. GGML_ASSERT(false); // TODO: implement
  5558. }
  5559. }
  5560. return;
  5561. }
  5562. // dst counters
  5563. int64_t i10 = 0;
  5564. int64_t i11 = 0;
  5565. int64_t i12 = 0;
  5566. int64_t i13 = 0;
  5567. if (dst->type == GGML_TYPE_F16) {
  5568. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5569. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5570. i10 += ne00 * ir0;
  5571. while (i10 >= ne0) {
  5572. i10 -= ne0;
  5573. if (++i11 == ne1) {
  5574. i11 = 0;
  5575. if (++i12 == ne2) {
  5576. i12 = 0;
  5577. if (++i13 == ne3) {
  5578. i13 = 0;
  5579. }
  5580. }
  5581. }
  5582. }
  5583. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5584. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5585. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5586. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5587. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5588. if (++i10 == ne00) {
  5589. i10 = 0;
  5590. if (++i11 == ne01) {
  5591. i11 = 0;
  5592. if (++i12 == ne02) {
  5593. i12 = 0;
  5594. if (++i13 == ne03) {
  5595. i13 = 0;
  5596. }
  5597. }
  5598. }
  5599. }
  5600. }
  5601. }
  5602. i10 += ne00 * (ne01 - ir1);
  5603. while (i10 >= ne0) {
  5604. i10 -= ne0;
  5605. if (++i11 == ne1) {
  5606. i11 = 0;
  5607. if (++i12 == ne2) {
  5608. i12 = 0;
  5609. if (++i13 == ne3) {
  5610. i13 = 0;
  5611. }
  5612. }
  5613. }
  5614. }
  5615. }
  5616. }
  5617. } else if (dst->type == GGML_TYPE_F32) {
  5618. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5619. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5620. i10 += ne00 * ir0;
  5621. while (i10 >= ne0) {
  5622. i10 -= ne0;
  5623. if (++i11 == ne1) {
  5624. i11 = 0;
  5625. if (++i12 == ne2) {
  5626. i12 = 0;
  5627. if (++i13 == ne3) {
  5628. i13 = 0;
  5629. }
  5630. }
  5631. }
  5632. }
  5633. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5634. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5635. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5636. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5637. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5638. if (++i10 == ne0) {
  5639. i10 = 0;
  5640. if (++i11 == ne1) {
  5641. i11 = 0;
  5642. if (++i12 == ne2) {
  5643. i12 = 0;
  5644. if (++i13 == ne3) {
  5645. i13 = 0;
  5646. }
  5647. }
  5648. }
  5649. }
  5650. }
  5651. }
  5652. i10 += ne00 * (ne01 - ir1);
  5653. while (i10 >= ne0) {
  5654. i10 -= ne0;
  5655. if (++i11 == ne1) {
  5656. i11 = 0;
  5657. if (++i12 == ne2) {
  5658. i12 = 0;
  5659. if (++i13 == ne3) {
  5660. i13 = 0;
  5661. }
  5662. }
  5663. }
  5664. }
  5665. }
  5666. }
  5667. } else {
  5668. GGML_ASSERT(false); // TODO: implement
  5669. }
  5670. }
  5671. static void ggml_compute_forward_dup_f32(
  5672. const struct ggml_compute_params * params,
  5673. const struct ggml_tensor * src0,
  5674. struct ggml_tensor * dst) {
  5675. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5676. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5677. return;
  5678. }
  5679. GGML_TENSOR_UNARY_OP_LOCALS
  5680. const int ith = params->ith; // thread index
  5681. const int nth = params->nth; // number of threads
  5682. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5683. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5684. return;
  5685. }
  5686. // parallelize by rows
  5687. const int nr = ne01;
  5688. // number of rows per thread
  5689. const int dr = (nr + nth - 1) / nth;
  5690. // row range for this thread
  5691. const int ir0 = dr * ith;
  5692. const int ir1 = MIN(ir0 + dr, nr);
  5693. if (src0->type == dst->type &&
  5694. ne00 == ne0 &&
  5695. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5696. // copy by rows
  5697. const size_t rs = ne00*nb00;
  5698. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5699. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5700. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5701. memcpy(
  5702. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5703. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5704. rs);
  5705. }
  5706. }
  5707. }
  5708. return;
  5709. }
  5710. if (ggml_is_contiguous(dst)) {
  5711. // TODO: simplify
  5712. if (nb00 == sizeof(float)) {
  5713. if (dst->type == GGML_TYPE_F32) {
  5714. size_t id = 0;
  5715. const size_t rs = ne00 * nb00;
  5716. char * dst_ptr = (char *) dst->data;
  5717. for (int i03 = 0; i03 < ne03; i03++) {
  5718. for (int i02 = 0; i02 < ne02; i02++) {
  5719. id += rs * ir0;
  5720. for (int i01 = ir0; i01 < ir1; i01++) {
  5721. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5722. memcpy(dst_ptr + id, src0_ptr, rs);
  5723. id += rs;
  5724. }
  5725. id += rs * (ne01 - ir1);
  5726. }
  5727. }
  5728. } else if (type_traits[dst->type].from_float) {
  5729. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5730. size_t id = 0;
  5731. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5732. char * dst_ptr = (char *) dst->data;
  5733. for (int i03 = 0; i03 < ne03; i03++) {
  5734. for (int i02 = 0; i02 < ne02; i02++) {
  5735. id += rs * ir0;
  5736. for (int i01 = ir0; i01 < ir1; i01++) {
  5737. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5738. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5739. id += rs;
  5740. }
  5741. id += rs * (ne01 - ir1);
  5742. }
  5743. }
  5744. } else {
  5745. GGML_ASSERT(false); // TODO: implement
  5746. }
  5747. } else {
  5748. //printf("%s: this is not optimal - fix me\n", __func__);
  5749. if (dst->type == GGML_TYPE_F32) {
  5750. size_t id = 0;
  5751. float * dst_ptr = (float *) dst->data;
  5752. for (int i03 = 0; i03 < ne03; i03++) {
  5753. for (int i02 = 0; i02 < ne02; i02++) {
  5754. id += ne00 * ir0;
  5755. for (int i01 = ir0; i01 < ir1; i01++) {
  5756. for (int i00 = 0; i00 < ne00; i00++) {
  5757. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5758. dst_ptr[id] = *src0_ptr;
  5759. id++;
  5760. }
  5761. }
  5762. id += ne00 * (ne01 - ir1);
  5763. }
  5764. }
  5765. } else if (dst->type == GGML_TYPE_F16) {
  5766. size_t id = 0;
  5767. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5768. for (int i03 = 0; i03 < ne03; i03++) {
  5769. for (int i02 = 0; i02 < ne02; i02++) {
  5770. id += ne00 * ir0;
  5771. for (int i01 = ir0; i01 < ir1; i01++) {
  5772. for (int i00 = 0; i00 < ne00; i00++) {
  5773. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5774. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5775. id++;
  5776. }
  5777. }
  5778. id += ne00 * (ne01 - ir1);
  5779. }
  5780. }
  5781. } else {
  5782. GGML_ASSERT(false); // TODO: implement
  5783. }
  5784. }
  5785. return;
  5786. }
  5787. // dst counters
  5788. int64_t i10 = 0;
  5789. int64_t i11 = 0;
  5790. int64_t i12 = 0;
  5791. int64_t i13 = 0;
  5792. if (dst->type == GGML_TYPE_F32) {
  5793. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5794. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5795. i10 += ne00 * ir0;
  5796. while (i10 >= ne0) {
  5797. i10 -= ne0;
  5798. if (++i11 == ne1) {
  5799. i11 = 0;
  5800. if (++i12 == ne2) {
  5801. i12 = 0;
  5802. if (++i13 == ne3) {
  5803. i13 = 0;
  5804. }
  5805. }
  5806. }
  5807. }
  5808. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5809. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5810. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5811. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5812. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5813. if (++i10 == ne0) {
  5814. i10 = 0;
  5815. if (++i11 == ne1) {
  5816. i11 = 0;
  5817. if (++i12 == ne2) {
  5818. i12 = 0;
  5819. if (++i13 == ne3) {
  5820. i13 = 0;
  5821. }
  5822. }
  5823. }
  5824. }
  5825. }
  5826. }
  5827. i10 += ne00 * (ne01 - ir1);
  5828. while (i10 >= ne0) {
  5829. i10 -= ne0;
  5830. if (++i11 == ne1) {
  5831. i11 = 0;
  5832. if (++i12 == ne2) {
  5833. i12 = 0;
  5834. if (++i13 == ne3) {
  5835. i13 = 0;
  5836. }
  5837. }
  5838. }
  5839. }
  5840. }
  5841. }
  5842. } else if (dst->type == GGML_TYPE_F16) {
  5843. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5844. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5845. i10 += ne00 * ir0;
  5846. while (i10 >= ne0) {
  5847. i10 -= ne0;
  5848. if (++i11 == ne1) {
  5849. i11 = 0;
  5850. if (++i12 == ne2) {
  5851. i12 = 0;
  5852. if (++i13 == ne3) {
  5853. i13 = 0;
  5854. }
  5855. }
  5856. }
  5857. }
  5858. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5859. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5860. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5861. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5862. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5863. if (++i10 == ne0) {
  5864. i10 = 0;
  5865. if (++i11 == ne1) {
  5866. i11 = 0;
  5867. if (++i12 == ne2) {
  5868. i12 = 0;
  5869. if (++i13 == ne3) {
  5870. i13 = 0;
  5871. }
  5872. }
  5873. }
  5874. }
  5875. }
  5876. }
  5877. i10 += ne00 * (ne01 - ir1);
  5878. while (i10 >= ne0) {
  5879. i10 -= ne0;
  5880. if (++i11 == ne1) {
  5881. i11 = 0;
  5882. if (++i12 == ne2) {
  5883. i12 = 0;
  5884. if (++i13 == ne3) {
  5885. i13 = 0;
  5886. }
  5887. }
  5888. }
  5889. }
  5890. }
  5891. }
  5892. } else {
  5893. GGML_ASSERT(false); // TODO: implement
  5894. }
  5895. }
  5896. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5897. static void ggml_compute_forward_dup_bytes(
  5898. const struct ggml_compute_params * params,
  5899. const struct ggml_tensor * src0,
  5900. struct ggml_tensor * dst) {
  5901. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5902. GGML_ASSERT(src0->type == dst->type);
  5903. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5904. return;
  5905. }
  5906. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5907. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5908. return;
  5909. }
  5910. GGML_TENSOR_UNARY_OP_LOCALS;
  5911. const size_t type_size = ggml_type_size(src0->type);
  5912. const int ith = params->ith; // thread index
  5913. const int nth = params->nth; // number of threads
  5914. // parallelize by rows
  5915. const int nr = ne01;
  5916. // number of rows per thread
  5917. const int dr = (nr + nth - 1) / nth;
  5918. // row range for this thread
  5919. const int ir0 = dr * ith;
  5920. const int ir1 = MIN(ir0 + dr, nr);
  5921. if (src0->type == dst->type &&
  5922. ne00 == ne0 &&
  5923. nb00 == type_size && nb0 == type_size) {
  5924. // copy by rows
  5925. const size_t rs = ne00 * type_size;
  5926. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5927. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5928. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5929. memcpy(
  5930. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5931. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5932. rs);
  5933. }
  5934. }
  5935. }
  5936. return;
  5937. }
  5938. if (ggml_is_contiguous(dst)) {
  5939. size_t id = 0;
  5940. char * dst_ptr = (char *) dst->data;
  5941. const size_t rs = ne00 * type_size;
  5942. if (nb00 == type_size) {
  5943. // src0 is contigous on first dimension, copy by rows
  5944. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5945. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5946. id += rs * ir0;
  5947. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5948. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5949. memcpy(dst_ptr + id, src0_ptr, rs);
  5950. id += rs;
  5951. }
  5952. id += rs * (ne01 - ir1);
  5953. }
  5954. }
  5955. } else {
  5956. //printf("%s: this is not optimal - fix me\n", __func__);
  5957. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5958. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5959. id += rs * ir0;
  5960. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5961. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5962. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5963. memcpy(dst_ptr + id, src0_ptr, type_size);
  5964. id += type_size;
  5965. }
  5966. }
  5967. id += rs * (ne01 - ir1);
  5968. }
  5969. }
  5970. }
  5971. return;
  5972. }
  5973. // dst counters
  5974. int64_t i10 = 0;
  5975. int64_t i11 = 0;
  5976. int64_t i12 = 0;
  5977. int64_t i13 = 0;
  5978. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5979. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5980. i10 += ne00 * ir0;
  5981. while (i10 >= ne0) {
  5982. i10 -= ne0;
  5983. if (++i11 == ne1) {
  5984. i11 = 0;
  5985. if (++i12 == ne2) {
  5986. i12 = 0;
  5987. if (++i13 == ne3) {
  5988. i13 = 0;
  5989. }
  5990. }
  5991. }
  5992. }
  5993. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5994. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5995. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5996. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5997. memcpy(dst_ptr, src0_ptr, type_size);
  5998. if (++i10 == ne0) {
  5999. i10 = 0;
  6000. if (++i11 == ne1) {
  6001. i11 = 0;
  6002. if (++i12 == ne2) {
  6003. i12 = 0;
  6004. if (++i13 == ne3) {
  6005. i13 = 0;
  6006. }
  6007. }
  6008. }
  6009. }
  6010. }
  6011. }
  6012. i10 += ne00 * (ne01 - ir1);
  6013. while (i10 >= ne0) {
  6014. i10 -= ne0;
  6015. if (++i11 == ne1) {
  6016. i11 = 0;
  6017. if (++i12 == ne2) {
  6018. i12 = 0;
  6019. if (++i13 == ne3) {
  6020. i13 = 0;
  6021. }
  6022. }
  6023. }
  6024. }
  6025. }
  6026. }
  6027. }
  6028. static void ggml_compute_forward_dup(
  6029. const struct ggml_compute_params * params,
  6030. const struct ggml_tensor * src0,
  6031. struct ggml_tensor * dst) {
  6032. if (src0->type == dst->type) {
  6033. ggml_compute_forward_dup_bytes(params, src0, dst);
  6034. return;
  6035. }
  6036. switch (src0->type) {
  6037. case GGML_TYPE_F16:
  6038. {
  6039. ggml_compute_forward_dup_f16(params, src0, dst);
  6040. } break;
  6041. case GGML_TYPE_F32:
  6042. {
  6043. ggml_compute_forward_dup_f32(params, src0, dst);
  6044. } break;
  6045. default:
  6046. {
  6047. GGML_ASSERT(false);
  6048. } break;
  6049. }
  6050. }
  6051. // ggml_compute_forward_add
  6052. static void ggml_compute_forward_add_f32(
  6053. const struct ggml_compute_params * params,
  6054. const struct ggml_tensor * src0,
  6055. const struct ggml_tensor * src1,
  6056. struct ggml_tensor * dst) {
  6057. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6058. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6059. return;
  6060. }
  6061. const int ith = params->ith;
  6062. const int nth = params->nth;
  6063. #ifdef GGML_USE_CLBLAST
  6064. if (src1->backend == GGML_BACKEND_GPU) {
  6065. // TODO: OpenCL kernel support full broadcast
  6066. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6067. if (ith == 0) {
  6068. ggml_cl_add(src0, src1, dst);
  6069. }
  6070. return;
  6071. }
  6072. #endif
  6073. const int nr = ggml_nrows(src0);
  6074. GGML_TENSOR_BINARY_OP_LOCALS
  6075. GGML_ASSERT( nb0 == sizeof(float));
  6076. GGML_ASSERT(nb00 == sizeof(float));
  6077. // rows per thread
  6078. const int dr = (nr + nth - 1)/nth;
  6079. // row range for this thread
  6080. const int ir0 = dr*ith;
  6081. const int ir1 = MIN(ir0 + dr, nr);
  6082. if (nb10 == sizeof(float)) {
  6083. for (int ir = ir0; ir < ir1; ++ir) {
  6084. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6085. const int64_t i03 = ir/(ne02*ne01);
  6086. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6087. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6088. const int64_t i13 = i03 % ne13;
  6089. const int64_t i12 = i02 % ne12;
  6090. const int64_t i11 = i01 % ne11;
  6091. const int64_t nr0 = ne00 / ne10;
  6092. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6093. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6094. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6095. for (int64_t r = 0; r < nr0; ++r) {
  6096. #ifdef GGML_USE_ACCELERATE
  6097. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6098. #else
  6099. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6100. #endif
  6101. }
  6102. }
  6103. } else {
  6104. // src1 is not contiguous
  6105. for (int ir = ir0; ir < ir1; ++ir) {
  6106. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6107. const int64_t i03 = ir/(ne02*ne01);
  6108. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6109. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6110. const int64_t i13 = i03 % ne13;
  6111. const int64_t i12 = i02 % ne12;
  6112. const int64_t i11 = i01 % ne11;
  6113. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6114. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6115. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6116. const int64_t i10 = i0 % ne10;
  6117. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6118. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6119. }
  6120. }
  6121. }
  6122. }
  6123. static void ggml_compute_forward_add_f16_f32(
  6124. const struct ggml_compute_params * params,
  6125. const struct ggml_tensor * src0,
  6126. const struct ggml_tensor * src1,
  6127. struct ggml_tensor * dst) {
  6128. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6129. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6130. return;
  6131. }
  6132. const int ith = params->ith;
  6133. const int nth = params->nth;
  6134. const int nr = ggml_nrows(src0);
  6135. GGML_TENSOR_BINARY_OP_LOCALS
  6136. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6137. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6138. if (dst->type == GGML_TYPE_F32) {
  6139. GGML_ASSERT( nb0 == sizeof(float));
  6140. }
  6141. else {
  6142. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6143. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6144. }
  6145. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6146. // rows per thread
  6147. const int dr = (nr + nth - 1)/nth;
  6148. // row range for this thread
  6149. const int ir0 = dr*ith;
  6150. const int ir1 = MIN(ir0 + dr, nr);
  6151. if (nb10 == sizeof(float)) {
  6152. if (dst->type == GGML_TYPE_F16) {
  6153. for (int ir = ir0; ir < ir1; ++ir) {
  6154. // src0, src1 and dst are same shape => same indices
  6155. const int i3 = ir/(ne2*ne1);
  6156. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6157. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6158. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6159. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6160. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6161. for (int i = 0; i < ne0; i++) {
  6162. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6163. }
  6164. }
  6165. } else {
  6166. for (int ir = ir0; ir < ir1; ++ir) {
  6167. // src0, src1 and dst are same shape => same indices
  6168. const int i3 = ir/(ne2*ne1);
  6169. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6170. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6171. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6172. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6173. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6174. for (int i = 0; i < ne0; i++) {
  6175. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6176. }
  6177. }
  6178. }
  6179. }
  6180. else {
  6181. // src1 is not contiguous
  6182. GGML_ASSERT(false);
  6183. }
  6184. }
  6185. static void ggml_compute_forward_add_f16_f16(
  6186. const struct ggml_compute_params * params,
  6187. const struct ggml_tensor * src0,
  6188. const struct ggml_tensor * src1,
  6189. struct ggml_tensor * dst) {
  6190. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6191. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6192. return;
  6193. }
  6194. const int ith = params->ith;
  6195. const int nth = params->nth;
  6196. const int nr = ggml_nrows(src0);
  6197. GGML_TENSOR_BINARY_OP_LOCALS
  6198. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6199. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6200. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6201. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6202. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6203. // rows per thread
  6204. const int dr = (nr + nth - 1)/nth;
  6205. // row range for this thread
  6206. const int ir0 = dr*ith;
  6207. const int ir1 = MIN(ir0 + dr, nr);
  6208. if (nb10 == sizeof(ggml_fp16_t)) {
  6209. for (int ir = ir0; ir < ir1; ++ir) {
  6210. // src0, src1 and dst are same shape => same indices
  6211. const int i3 = ir/(ne2*ne1);
  6212. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6213. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6214. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6215. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6216. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6217. for (int i = 0; i < ne0; i++) {
  6218. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6219. }
  6220. }
  6221. }
  6222. else {
  6223. // src1 is not contiguous
  6224. GGML_ASSERT(false);
  6225. }
  6226. }
  6227. static void ggml_compute_forward_add_q_f32(
  6228. const struct ggml_compute_params * params,
  6229. const struct ggml_tensor * src0,
  6230. const struct ggml_tensor * src1,
  6231. struct ggml_tensor * dst) {
  6232. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6233. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6234. return;
  6235. }
  6236. const int nr = ggml_nrows(src0);
  6237. GGML_TENSOR_BINARY_OP_LOCALS
  6238. const int ith = params->ith;
  6239. const int nth = params->nth;
  6240. const enum ggml_type type = src0->type;
  6241. const enum ggml_type dtype = dst->type;
  6242. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6243. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6244. // we don't support permuted src0 or src1
  6245. GGML_ASSERT(nb00 == ggml_type_size(type));
  6246. GGML_ASSERT(nb10 == sizeof(float));
  6247. // dst cannot be transposed or permuted
  6248. GGML_ASSERT(nb0 <= nb1);
  6249. GGML_ASSERT(nb1 <= nb2);
  6250. GGML_ASSERT(nb2 <= nb3);
  6251. GGML_ASSERT(ggml_is_quantized(src0->type));
  6252. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6253. // rows per thread
  6254. const int dr = (nr + nth - 1)/nth;
  6255. // row range for this thread
  6256. const int ir0 = dr*ith;
  6257. const int ir1 = MIN(ir0 + dr, nr);
  6258. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6259. for (int ir = ir0; ir < ir1; ++ir) {
  6260. // src0 indices
  6261. const int i03 = ir/(ne02*ne01);
  6262. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6263. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6264. // src1 and dst are same shape as src0 => same indices
  6265. const int i13 = i03;
  6266. const int i12 = i02;
  6267. const int i11 = i01;
  6268. const int i3 = i03;
  6269. const int i2 = i02;
  6270. const int i1 = i01;
  6271. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6272. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6273. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6274. assert(ne00 % 32 == 0);
  6275. // unquantize row from src0 to temp buffer
  6276. dequantize_row_q(src0_row, wdata, ne00);
  6277. // add src1
  6278. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6279. // quantize row to dst
  6280. if (quantize_row_q != NULL) {
  6281. quantize_row_q(wdata, dst_row, ne00);
  6282. } else {
  6283. memcpy(dst_row, wdata, ne0*nb0);
  6284. }
  6285. }
  6286. }
  6287. static void ggml_compute_forward_add(
  6288. const struct ggml_compute_params * params,
  6289. const struct ggml_tensor * src0,
  6290. const struct ggml_tensor * src1,
  6291. struct ggml_tensor * dst) {
  6292. switch (src0->type) {
  6293. case GGML_TYPE_F32:
  6294. {
  6295. if (src1->type == GGML_TYPE_F32) {
  6296. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6297. }
  6298. else {
  6299. GGML_ASSERT(false);
  6300. }
  6301. } break;
  6302. case GGML_TYPE_F16:
  6303. {
  6304. if (src1->type == GGML_TYPE_F16) {
  6305. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6306. }
  6307. else if (src1->type == GGML_TYPE_F32) {
  6308. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6309. }
  6310. else {
  6311. GGML_ASSERT(false);
  6312. }
  6313. } break;
  6314. case GGML_TYPE_Q4_0:
  6315. case GGML_TYPE_Q4_1:
  6316. case GGML_TYPE_Q5_0:
  6317. case GGML_TYPE_Q5_1:
  6318. case GGML_TYPE_Q8_0:
  6319. case GGML_TYPE_Q2_K:
  6320. case GGML_TYPE_Q3_K:
  6321. case GGML_TYPE_Q4_K:
  6322. case GGML_TYPE_Q5_K:
  6323. case GGML_TYPE_Q6_K:
  6324. case GGML_TYPE_IQ2_XXS:
  6325. case GGML_TYPE_IQ2_XS:
  6326. case GGML_TYPE_IQ3_XXS:
  6327. case GGML_TYPE_IQ1_S:
  6328. {
  6329. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6330. } break;
  6331. default:
  6332. {
  6333. GGML_ASSERT(false);
  6334. } break;
  6335. }
  6336. }
  6337. // ggml_compute_forward_add1
  6338. static void ggml_compute_forward_add1_f32(
  6339. const struct ggml_compute_params * params,
  6340. const struct ggml_tensor * src0,
  6341. const struct ggml_tensor * src1,
  6342. struct ggml_tensor * dst) {
  6343. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6344. GGML_ASSERT(ggml_is_scalar(src1));
  6345. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6346. return;
  6347. }
  6348. const int ith = params->ith;
  6349. const int nth = params->nth;
  6350. const int nr = ggml_nrows(src0);
  6351. GGML_TENSOR_UNARY_OP_LOCALS
  6352. GGML_ASSERT( nb0 == sizeof(float));
  6353. GGML_ASSERT(nb00 == sizeof(float));
  6354. // rows per thread
  6355. const int dr = (nr + nth - 1)/nth;
  6356. // row range for this thread
  6357. const int ir0 = dr*ith;
  6358. const int ir1 = MIN(ir0 + dr, nr);
  6359. for (int ir = ir0; ir < ir1; ++ir) {
  6360. // src0 and dst are same shape => same indices
  6361. const int i3 = ir/(ne2*ne1);
  6362. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6363. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6364. #ifdef GGML_USE_ACCELERATE
  6365. UNUSED(ggml_vec_add1_f32);
  6366. vDSP_vadd(
  6367. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6368. (float *) ((char *) src1->data), 0,
  6369. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6370. ne0);
  6371. #else
  6372. ggml_vec_add1_f32(ne0,
  6373. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6374. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6375. *(float *) src1->data);
  6376. #endif
  6377. }
  6378. }
  6379. static void ggml_compute_forward_add1_f16_f32(
  6380. const struct ggml_compute_params * params,
  6381. const struct ggml_tensor * src0,
  6382. const struct ggml_tensor * src1,
  6383. struct ggml_tensor * dst) {
  6384. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6385. GGML_ASSERT(ggml_is_scalar(src1));
  6386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6387. return;
  6388. }
  6389. // scalar to add
  6390. const float v = *(float *) src1->data;
  6391. const int ith = params->ith;
  6392. const int nth = params->nth;
  6393. const int nr = ggml_nrows(src0);
  6394. GGML_TENSOR_UNARY_OP_LOCALS
  6395. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6396. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6397. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6398. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6399. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6400. // rows per thread
  6401. const int dr = (nr + nth - 1)/nth;
  6402. // row range for this thread
  6403. const int ir0 = dr*ith;
  6404. const int ir1 = MIN(ir0 + dr, nr);
  6405. for (int ir = ir0; ir < ir1; ++ir) {
  6406. // src0 and dst are same shape => same indices
  6407. const int i3 = ir/(ne2*ne1);
  6408. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6409. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6410. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6411. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6412. for (int i = 0; i < ne0; i++) {
  6413. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6414. }
  6415. }
  6416. }
  6417. static void ggml_compute_forward_add1_f16_f16(
  6418. const struct ggml_compute_params * params,
  6419. const struct ggml_tensor * src0,
  6420. const struct ggml_tensor * src1,
  6421. struct ggml_tensor * dst) {
  6422. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6423. GGML_ASSERT(ggml_is_scalar(src1));
  6424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6425. return;
  6426. }
  6427. // scalar to add
  6428. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6429. const int ith = params->ith;
  6430. const int nth = params->nth;
  6431. const int nr = ggml_nrows(src0);
  6432. GGML_TENSOR_UNARY_OP_LOCALS
  6433. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6434. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6435. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6436. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6437. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6438. // rows per thread
  6439. const int dr = (nr + nth - 1)/nth;
  6440. // row range for this thread
  6441. const int ir0 = dr*ith;
  6442. const int ir1 = MIN(ir0 + dr, nr);
  6443. for (int ir = ir0; ir < ir1; ++ir) {
  6444. // src0 and dst are same shape => same indices
  6445. const int i3 = ir/(ne2*ne1);
  6446. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6447. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6448. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6449. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6450. for (int i = 0; i < ne0; i++) {
  6451. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6452. }
  6453. }
  6454. }
  6455. static void ggml_compute_forward_add1_q_f32(
  6456. const struct ggml_compute_params * params,
  6457. const struct ggml_tensor * src0,
  6458. const struct ggml_tensor * src1,
  6459. struct ggml_tensor * dst) {
  6460. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6461. GGML_ASSERT(ggml_is_scalar(src1));
  6462. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6463. return;
  6464. }
  6465. // scalar to add
  6466. const float v = *(float *) src1->data;
  6467. const int ith = params->ith;
  6468. const int nth = params->nth;
  6469. const int nr = ggml_nrows(src0);
  6470. GGML_TENSOR_UNARY_OP_LOCALS
  6471. const enum ggml_type type = src0->type;
  6472. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6473. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6474. // we don't support permuted src0
  6475. GGML_ASSERT(nb00 == ggml_type_size(type));
  6476. // dst cannot be transposed or permuted
  6477. GGML_ASSERT(nb0 <= nb1);
  6478. GGML_ASSERT(nb1 <= nb2);
  6479. GGML_ASSERT(nb2 <= nb3);
  6480. GGML_ASSERT(ggml_is_quantized(src0->type));
  6481. GGML_ASSERT(dst->type == src0->type);
  6482. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6483. // rows per thread
  6484. const int dr = (nr + nth - 1)/nth;
  6485. // row range for this thread
  6486. const int ir0 = dr*ith;
  6487. const int ir1 = MIN(ir0 + dr, nr);
  6488. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6489. for (int ir = ir0; ir < ir1; ++ir) {
  6490. // src0 and dst are same shape => same indices
  6491. const int i3 = ir/(ne2*ne1);
  6492. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6493. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6494. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6495. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6496. assert(ne0 % 32 == 0);
  6497. // unquantize row from src0 to temp buffer
  6498. dequantize_row_q(src0_row, wdata, ne0);
  6499. // add src1
  6500. ggml_vec_acc1_f32(ne0, wdata, v);
  6501. // quantize row to dst
  6502. quantize_row_q(wdata, dst_row, ne0);
  6503. }
  6504. }
  6505. static void ggml_compute_forward_add1(
  6506. const struct ggml_compute_params * params,
  6507. const struct ggml_tensor * src0,
  6508. const struct ggml_tensor * src1,
  6509. struct ggml_tensor * dst) {
  6510. switch (src0->type) {
  6511. case GGML_TYPE_F32:
  6512. {
  6513. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6514. } break;
  6515. case GGML_TYPE_F16:
  6516. {
  6517. if (src1->type == GGML_TYPE_F16) {
  6518. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6519. }
  6520. else if (src1->type == GGML_TYPE_F32) {
  6521. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6522. }
  6523. else {
  6524. GGML_ASSERT(false);
  6525. }
  6526. } break;
  6527. case GGML_TYPE_Q4_0:
  6528. case GGML_TYPE_Q4_1:
  6529. case GGML_TYPE_Q5_0:
  6530. case GGML_TYPE_Q5_1:
  6531. case GGML_TYPE_Q8_0:
  6532. case GGML_TYPE_Q8_1:
  6533. case GGML_TYPE_Q2_K:
  6534. case GGML_TYPE_Q3_K:
  6535. case GGML_TYPE_Q4_K:
  6536. case GGML_TYPE_Q5_K:
  6537. case GGML_TYPE_Q6_K:
  6538. case GGML_TYPE_IQ2_XXS:
  6539. case GGML_TYPE_IQ2_XS:
  6540. case GGML_TYPE_IQ3_XXS:
  6541. case GGML_TYPE_IQ1_S:
  6542. {
  6543. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6544. } break;
  6545. default:
  6546. {
  6547. GGML_ASSERT(false);
  6548. } break;
  6549. }
  6550. }
  6551. // ggml_compute_forward_acc
  6552. static void ggml_compute_forward_acc_f32(
  6553. const struct ggml_compute_params * params,
  6554. const struct ggml_tensor * src0,
  6555. const struct ggml_tensor * src1,
  6556. struct ggml_tensor * dst) {
  6557. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6558. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6559. // view src0 and dst with these strides and data offset inbytes during acc
  6560. // nb0 is implicitly element_size because src0 and dst are contiguous
  6561. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6562. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6563. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6564. size_t offset = ((int32_t *) dst->op_params)[3];
  6565. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6566. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6567. if (params->ith != 0) {
  6568. return;
  6569. }
  6570. // memcpy needs to be synchronized across threads to avoid race conditions.
  6571. // => do it in INIT phase
  6572. memcpy(
  6573. ((char *) dst->data),
  6574. ((char *) src0->data),
  6575. ggml_nbytes(dst));
  6576. }
  6577. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6578. return;
  6579. }
  6580. const int ith = params->ith;
  6581. const int nth = params->nth;
  6582. const int nr = ggml_nrows(src1);
  6583. const int nc = src1->ne[0];
  6584. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6585. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6586. // src0 and dst as viewed during acc
  6587. const size_t nb0 = ggml_element_size(src0);
  6588. const size_t nb00 = nb0;
  6589. const size_t nb01 = nb1;
  6590. const size_t nb02 = nb2;
  6591. const size_t nb03 = nb3;
  6592. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6593. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6594. GGML_ASSERT(nb10 == sizeof(float));
  6595. // rows per thread
  6596. const int dr = (nr + nth - 1)/nth;
  6597. // row range for this thread
  6598. const int ir0 = dr*ith;
  6599. const int ir1 = MIN(ir0 + dr, nr);
  6600. for (int ir = ir0; ir < ir1; ++ir) {
  6601. // src0 and dst are viewed with shape of src1 and offset
  6602. // => same indices
  6603. const int i3 = ir/(ne12*ne11);
  6604. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6605. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6606. #ifdef GGML_USE_ACCELERATE
  6607. vDSP_vadd(
  6608. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6609. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6610. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6611. #else
  6612. ggml_vec_add_f32(nc,
  6613. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6614. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6615. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6616. #endif
  6617. }
  6618. }
  6619. static void ggml_compute_forward_acc(
  6620. const struct ggml_compute_params * params,
  6621. const struct ggml_tensor * src0,
  6622. const struct ggml_tensor * src1,
  6623. struct ggml_tensor * dst) {
  6624. switch (src0->type) {
  6625. case GGML_TYPE_F32:
  6626. {
  6627. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6628. } break;
  6629. case GGML_TYPE_F16:
  6630. case GGML_TYPE_Q4_0:
  6631. case GGML_TYPE_Q4_1:
  6632. case GGML_TYPE_Q5_0:
  6633. case GGML_TYPE_Q5_1:
  6634. case GGML_TYPE_Q8_0:
  6635. case GGML_TYPE_Q8_1:
  6636. case GGML_TYPE_Q2_K:
  6637. case GGML_TYPE_Q3_K:
  6638. case GGML_TYPE_Q4_K:
  6639. case GGML_TYPE_Q5_K:
  6640. case GGML_TYPE_Q6_K:
  6641. case GGML_TYPE_IQ2_XXS:
  6642. case GGML_TYPE_IQ2_XS:
  6643. case GGML_TYPE_IQ3_XXS:
  6644. case GGML_TYPE_IQ1_S:
  6645. default:
  6646. {
  6647. GGML_ASSERT(false);
  6648. } break;
  6649. }
  6650. }
  6651. // ggml_compute_forward_sub
  6652. static void ggml_compute_forward_sub_f32(
  6653. const struct ggml_compute_params * params,
  6654. const struct ggml_tensor * src0,
  6655. const struct ggml_tensor * src1,
  6656. struct ggml_tensor * dst) {
  6657. assert(params->ith == 0);
  6658. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6659. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6660. return;
  6661. }
  6662. const int nr = ggml_nrows(src0);
  6663. GGML_TENSOR_BINARY_OP_LOCALS
  6664. GGML_ASSERT( nb0 == sizeof(float));
  6665. GGML_ASSERT(nb00 == sizeof(float));
  6666. if (nb10 == sizeof(float)) {
  6667. for (int ir = 0; ir < nr; ++ir) {
  6668. // src0, src1 and dst are same shape => same indices
  6669. const int i3 = ir/(ne2*ne1);
  6670. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6671. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6672. #ifdef GGML_USE_ACCELERATE
  6673. vDSP_vsub(
  6674. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6675. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6676. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6677. ne0);
  6678. #else
  6679. ggml_vec_sub_f32(ne0,
  6680. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6681. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6682. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6683. #endif
  6684. // }
  6685. // }
  6686. }
  6687. } else {
  6688. // src1 is not contiguous
  6689. for (int ir = 0; ir < nr; ++ir) {
  6690. // src0, src1 and dst are same shape => same indices
  6691. const int i3 = ir/(ne2*ne1);
  6692. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6693. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6694. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6695. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6696. for (int i0 = 0; i0 < ne0; i0++) {
  6697. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6698. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6699. }
  6700. }
  6701. }
  6702. }
  6703. static void ggml_compute_forward_sub(
  6704. const struct ggml_compute_params * params,
  6705. const struct ggml_tensor * src0,
  6706. const struct ggml_tensor * src1,
  6707. struct ggml_tensor * dst) {
  6708. switch (src0->type) {
  6709. case GGML_TYPE_F32:
  6710. {
  6711. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6712. } break;
  6713. default:
  6714. {
  6715. GGML_ASSERT(false);
  6716. } break;
  6717. }
  6718. }
  6719. // ggml_compute_forward_mul
  6720. static void ggml_compute_forward_mul_f32(
  6721. const struct ggml_compute_params * params,
  6722. const struct ggml_tensor * src0,
  6723. const struct ggml_tensor * src1,
  6724. struct ggml_tensor * dst) {
  6725. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6726. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6727. return;
  6728. }
  6729. const int ith = params->ith;
  6730. const int nth = params->nth;
  6731. #if defined(GGML_USE_CLBLAST)
  6732. if (src1->backend == GGML_BACKEND_GPU) {
  6733. // TODO: OpenCL kernel support full broadcast
  6734. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6735. if (ith == 0) {
  6736. ggml_cl_mul(src0, src1, dst);
  6737. }
  6738. return;
  6739. }
  6740. #endif
  6741. const int64_t nr = ggml_nrows(src0);
  6742. GGML_TENSOR_BINARY_OP_LOCALS
  6743. GGML_ASSERT( nb0 == sizeof(float));
  6744. GGML_ASSERT(nb00 == sizeof(float));
  6745. if (nb10 == sizeof(float)) {
  6746. for (int64_t ir = ith; ir < nr; ir += nth) {
  6747. // src0 and dst are same shape => same indices
  6748. const int64_t i03 = ir/(ne02*ne01);
  6749. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6750. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6751. const int64_t i13 = i03 % ne13;
  6752. const int64_t i12 = i02 % ne12;
  6753. const int64_t i11 = i01 % ne11;
  6754. const int64_t nr0 = ne00 / ne10;
  6755. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6756. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6757. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6758. for (int64_t r = 0 ; r < nr0; ++r) {
  6759. #ifdef GGML_USE_ACCELERATE
  6760. UNUSED(ggml_vec_mul_f32);
  6761. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6762. #else
  6763. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6764. #endif
  6765. }
  6766. }
  6767. } else {
  6768. // src1 is not contiguous
  6769. for (int64_t ir = ith; ir < nr; ir += nth) {
  6770. // src0 and dst are same shape => same indices
  6771. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6772. const int64_t i03 = ir/(ne02*ne01);
  6773. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6774. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6775. const int64_t i13 = i03 % ne13;
  6776. const int64_t i12 = i02 % ne12;
  6777. const int64_t i11 = i01 % ne11;
  6778. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6779. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6780. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6781. const int64_t i10 = i0 % ne10;
  6782. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6783. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6784. }
  6785. }
  6786. }
  6787. }
  6788. static void ggml_compute_forward_mul(
  6789. const struct ggml_compute_params * params,
  6790. const struct ggml_tensor * src0,
  6791. const struct ggml_tensor * src1,
  6792. struct ggml_tensor * dst) {
  6793. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6794. switch (src0->type) {
  6795. case GGML_TYPE_F32:
  6796. {
  6797. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6798. } break;
  6799. default:
  6800. {
  6801. GGML_ASSERT(false);
  6802. } break;
  6803. }
  6804. }
  6805. // ggml_compute_forward_div
  6806. static void ggml_compute_forward_div_f32(
  6807. const struct ggml_compute_params * params,
  6808. const struct ggml_tensor * src0,
  6809. const struct ggml_tensor * src1,
  6810. struct ggml_tensor * dst) {
  6811. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6813. return;
  6814. }
  6815. const int ith = params->ith;
  6816. const int nth = params->nth;
  6817. const int64_t nr = ggml_nrows(src0);
  6818. GGML_TENSOR_BINARY_OP_LOCALS
  6819. GGML_ASSERT( nb0 == sizeof(float));
  6820. GGML_ASSERT(nb00 == sizeof(float));
  6821. if (nb10 == sizeof(float)) {
  6822. for (int64_t ir = ith; ir < nr; ir += nth) {
  6823. // src0 and dst are same shape => same indices
  6824. const int64_t i03 = ir/(ne02*ne01);
  6825. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6826. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6827. const int64_t i13 = i03 % ne13;
  6828. const int64_t i12 = i02 % ne12;
  6829. const int64_t i11 = i01 % ne11;
  6830. const int64_t nr0 = ne00 / ne10;
  6831. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6832. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6833. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6834. for (int64_t r = 0; r < nr0; ++r) {
  6835. #ifdef GGML_USE_ACCELERATE
  6836. UNUSED(ggml_vec_div_f32);
  6837. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6838. #else
  6839. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6840. #endif
  6841. }
  6842. }
  6843. } else {
  6844. // src1 is not contiguous
  6845. for (int64_t ir = ith; ir < nr; ir += nth) {
  6846. // src0 and dst are same shape => same indices
  6847. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6848. const int64_t i03 = ir/(ne02*ne01);
  6849. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6850. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6851. const int64_t i13 = i03 % ne13;
  6852. const int64_t i12 = i02 % ne12;
  6853. const int64_t i11 = i01 % ne11;
  6854. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6855. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6856. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6857. const int64_t i10 = i0 % ne10;
  6858. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6859. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6860. }
  6861. }
  6862. }
  6863. }
  6864. static void ggml_compute_forward_div(
  6865. const struct ggml_compute_params * params,
  6866. const struct ggml_tensor * src0,
  6867. const struct ggml_tensor * src1,
  6868. struct ggml_tensor * dst) {
  6869. switch (src0->type) {
  6870. case GGML_TYPE_F32:
  6871. {
  6872. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6873. } break;
  6874. default:
  6875. {
  6876. GGML_ASSERT(false);
  6877. } break;
  6878. }
  6879. }
  6880. // ggml_compute_forward_sqr
  6881. static void ggml_compute_forward_sqr_f32(
  6882. const struct ggml_compute_params * params,
  6883. const struct ggml_tensor * src0,
  6884. struct ggml_tensor * dst) {
  6885. assert(params->ith == 0);
  6886. assert(ggml_are_same_shape(src0, dst));
  6887. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6888. return;
  6889. }
  6890. const int n = ggml_nrows(src0);
  6891. const int nc = src0->ne[0];
  6892. assert( dst->nb[0] == sizeof(float));
  6893. assert(src0->nb[0] == sizeof(float));
  6894. for (int i = 0; i < n; i++) {
  6895. ggml_vec_sqr_f32(nc,
  6896. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6897. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6898. }
  6899. }
  6900. static void ggml_compute_forward_sqr(
  6901. const struct ggml_compute_params * params,
  6902. const struct ggml_tensor * src0,
  6903. struct ggml_tensor * dst) {
  6904. switch (src0->type) {
  6905. case GGML_TYPE_F32:
  6906. {
  6907. ggml_compute_forward_sqr_f32(params, src0, dst);
  6908. } break;
  6909. default:
  6910. {
  6911. GGML_ASSERT(false);
  6912. } break;
  6913. }
  6914. }
  6915. // ggml_compute_forward_sqrt
  6916. static void ggml_compute_forward_sqrt_f32(
  6917. const struct ggml_compute_params * params,
  6918. const struct ggml_tensor * src0,
  6919. struct ggml_tensor * dst) {
  6920. assert(params->ith == 0);
  6921. assert(ggml_are_same_shape(src0, dst));
  6922. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6923. return;
  6924. }
  6925. const int n = ggml_nrows(src0);
  6926. const int nc = src0->ne[0];
  6927. assert( dst->nb[0] == sizeof(float));
  6928. assert(src0->nb[0] == sizeof(float));
  6929. for (int i = 0; i < n; i++) {
  6930. ggml_vec_sqrt_f32(nc,
  6931. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6932. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6933. }
  6934. }
  6935. static void ggml_compute_forward_sqrt(
  6936. const struct ggml_compute_params * params,
  6937. const struct ggml_tensor * src0,
  6938. struct ggml_tensor * dst) {
  6939. switch (src0->type) {
  6940. case GGML_TYPE_F32:
  6941. {
  6942. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6943. } break;
  6944. default:
  6945. {
  6946. GGML_ASSERT(false);
  6947. } break;
  6948. }
  6949. }
  6950. // ggml_compute_forward_log
  6951. static void ggml_compute_forward_log_f32(
  6952. const struct ggml_compute_params * params,
  6953. const struct ggml_tensor * src0,
  6954. struct ggml_tensor * dst) {
  6955. GGML_ASSERT(params->ith == 0);
  6956. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6957. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6958. return;
  6959. }
  6960. const int n = ggml_nrows(src0);
  6961. const int nc = src0->ne[0];
  6962. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6963. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6964. for (int i = 0; i < n; i++) {
  6965. ggml_vec_log_f32(nc,
  6966. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6967. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6968. }
  6969. }
  6970. static void ggml_compute_forward_log(
  6971. const struct ggml_compute_params * params,
  6972. const struct ggml_tensor * src0,
  6973. struct ggml_tensor * dst) {
  6974. switch (src0->type) {
  6975. case GGML_TYPE_F32:
  6976. {
  6977. ggml_compute_forward_log_f32(params, src0, dst);
  6978. } break;
  6979. default:
  6980. {
  6981. GGML_ASSERT(false);
  6982. } break;
  6983. }
  6984. }
  6985. // ggml_compute_forward_sum
  6986. static void ggml_compute_forward_sum_f32(
  6987. const struct ggml_compute_params * params,
  6988. const struct ggml_tensor * src0,
  6989. struct ggml_tensor * dst) {
  6990. assert(params->ith == 0);
  6991. assert(ggml_is_scalar(dst));
  6992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6993. return;
  6994. }
  6995. assert(ggml_is_scalar(dst));
  6996. assert(src0->nb[0] == sizeof(float));
  6997. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6998. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6999. ggml_float sum = 0;
  7000. ggml_float row_sum = 0;
  7001. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7002. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7003. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7004. ggml_vec_sum_f32_ggf(ne00,
  7005. &row_sum,
  7006. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7007. sum += row_sum;
  7008. }
  7009. }
  7010. }
  7011. ((float *) dst->data)[0] = sum;
  7012. }
  7013. static void ggml_compute_forward_sum_f16(
  7014. const struct ggml_compute_params * params,
  7015. const struct ggml_tensor * src0,
  7016. struct ggml_tensor * dst) {
  7017. assert(params->ith == 0);
  7018. assert(ggml_is_scalar(dst));
  7019. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7020. return;
  7021. }
  7022. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7023. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7024. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7025. float sum = 0;
  7026. float row_sum = 0;
  7027. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7028. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7029. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7030. ggml_vec_sum_f16_ggf(ne00,
  7031. &row_sum,
  7032. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7033. sum += row_sum;
  7034. }
  7035. }
  7036. }
  7037. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7038. }
  7039. static void ggml_compute_forward_sum(
  7040. const struct ggml_compute_params * params,
  7041. const struct ggml_tensor * src0,
  7042. struct ggml_tensor * dst) {
  7043. switch (src0->type) {
  7044. case GGML_TYPE_F32:
  7045. {
  7046. ggml_compute_forward_sum_f32(params, src0, dst);
  7047. } break;
  7048. case GGML_TYPE_F16:
  7049. {
  7050. ggml_compute_forward_sum_f16(params, src0, dst);
  7051. } break;
  7052. default:
  7053. {
  7054. GGML_ASSERT(false);
  7055. } break;
  7056. }
  7057. }
  7058. // ggml_compute_forward_sum_rows
  7059. static void ggml_compute_forward_sum_rows_f32(
  7060. const struct ggml_compute_params * params,
  7061. const struct ggml_tensor * src0,
  7062. struct ggml_tensor * dst) {
  7063. GGML_ASSERT(params->ith == 0);
  7064. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7065. return;
  7066. }
  7067. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7068. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7069. GGML_TENSOR_UNARY_OP_LOCALS
  7070. GGML_ASSERT(ne0 == 1);
  7071. GGML_ASSERT(ne1 == ne01);
  7072. GGML_ASSERT(ne2 == ne02);
  7073. GGML_ASSERT(ne3 == ne03);
  7074. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7075. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7076. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7077. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7078. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7079. float row_sum = 0;
  7080. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7081. dst_row[0] = row_sum;
  7082. }
  7083. }
  7084. }
  7085. }
  7086. static void ggml_compute_forward_sum_rows(
  7087. const struct ggml_compute_params * params,
  7088. const struct ggml_tensor * src0,
  7089. struct ggml_tensor * dst) {
  7090. switch (src0->type) {
  7091. case GGML_TYPE_F32:
  7092. {
  7093. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7094. } break;
  7095. default:
  7096. {
  7097. GGML_ASSERT(false);
  7098. } break;
  7099. }
  7100. }
  7101. // ggml_compute_forward_mean
  7102. static void ggml_compute_forward_mean_f32(
  7103. const struct ggml_compute_params * params,
  7104. const struct ggml_tensor * src0,
  7105. struct ggml_tensor * dst) {
  7106. assert(params->ith == 0);
  7107. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7108. return;
  7109. }
  7110. assert(src0->nb[0] == sizeof(float));
  7111. GGML_TENSOR_UNARY_OP_LOCALS
  7112. assert(ne0 == 1);
  7113. assert(ne1 == ne01);
  7114. assert(ne2 == ne02);
  7115. assert(ne3 == ne03);
  7116. UNUSED(ne0);
  7117. UNUSED(ne1);
  7118. UNUSED(ne2);
  7119. UNUSED(ne3);
  7120. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7121. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7122. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7123. ggml_vec_sum_f32(ne00,
  7124. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7125. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7126. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7127. }
  7128. }
  7129. }
  7130. }
  7131. static void ggml_compute_forward_mean(
  7132. const struct ggml_compute_params * params,
  7133. const struct ggml_tensor * src0,
  7134. struct ggml_tensor * dst) {
  7135. switch (src0->type) {
  7136. case GGML_TYPE_F32:
  7137. {
  7138. ggml_compute_forward_mean_f32(params, src0, dst);
  7139. } break;
  7140. default:
  7141. {
  7142. GGML_ASSERT(false);
  7143. } break;
  7144. }
  7145. }
  7146. // ggml_compute_forward_argmax
  7147. static void ggml_compute_forward_argmax_f32(
  7148. const struct ggml_compute_params * params,
  7149. const struct ggml_tensor * src0,
  7150. struct ggml_tensor * dst) {
  7151. assert(params->ith == 0);
  7152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7153. return;
  7154. }
  7155. assert(src0->nb[0] == sizeof(float));
  7156. assert(dst->nb[0] == sizeof(float));
  7157. const int64_t ne00 = src0->ne[0];
  7158. const int64_t ne01 = src0->ne[1];
  7159. const size_t nb01 = src0->nb[1];
  7160. const size_t nb0 = dst->nb[0];
  7161. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7162. float * src = (float *) ((char *) src0->data + i1*nb01);
  7163. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7164. int v = 0;
  7165. ggml_vec_argmax_f32(ne00, &v, src);
  7166. dst_[0] = v;
  7167. }
  7168. }
  7169. static void ggml_compute_forward_argmax(
  7170. const struct ggml_compute_params * params,
  7171. const struct ggml_tensor * src0,
  7172. struct ggml_tensor * dst) {
  7173. switch (src0->type) {
  7174. case GGML_TYPE_F32:
  7175. {
  7176. ggml_compute_forward_argmax_f32(params, src0, dst);
  7177. } break;
  7178. default:
  7179. {
  7180. GGML_ASSERT(false);
  7181. } break;
  7182. }
  7183. }
  7184. // ggml_compute_forward_repeat
  7185. static void ggml_compute_forward_repeat_f32(
  7186. const struct ggml_compute_params * params,
  7187. const struct ggml_tensor * src0,
  7188. struct ggml_tensor * dst) {
  7189. GGML_ASSERT(params->ith == 0);
  7190. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7191. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7192. return;
  7193. }
  7194. GGML_TENSOR_UNARY_OP_LOCALS
  7195. // guaranteed to be an integer due to the check in ggml_can_repeat
  7196. const int nr0 = (int)(ne0/ne00);
  7197. const int nr1 = (int)(ne1/ne01);
  7198. const int nr2 = (int)(ne2/ne02);
  7199. const int nr3 = (int)(ne3/ne03);
  7200. // TODO: support for transposed / permuted tensors
  7201. GGML_ASSERT(nb0 == sizeof(float));
  7202. GGML_ASSERT(nb00 == sizeof(float));
  7203. // TODO: maybe this is not optimal?
  7204. for (int i3 = 0; i3 < nr3; i3++) {
  7205. for (int k3 = 0; k3 < ne03; k3++) {
  7206. for (int i2 = 0; i2 < nr2; i2++) {
  7207. for (int k2 = 0; k2 < ne02; k2++) {
  7208. for (int i1 = 0; i1 < nr1; i1++) {
  7209. for (int k1 = 0; k1 < ne01; k1++) {
  7210. for (int i0 = 0; i0 < nr0; i0++) {
  7211. ggml_vec_cpy_f32(ne00,
  7212. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7213. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7214. }
  7215. }
  7216. }
  7217. }
  7218. }
  7219. }
  7220. }
  7221. }
  7222. static void ggml_compute_forward_repeat_f16(
  7223. const struct ggml_compute_params * params,
  7224. const struct ggml_tensor * src0,
  7225. struct ggml_tensor * dst) {
  7226. GGML_ASSERT(params->ith == 0);
  7227. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7228. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7229. return;
  7230. }
  7231. GGML_TENSOR_UNARY_OP_LOCALS
  7232. // guaranteed to be an integer due to the check in ggml_can_repeat
  7233. const int nr0 = (int)(ne0/ne00);
  7234. const int nr1 = (int)(ne1/ne01);
  7235. const int nr2 = (int)(ne2/ne02);
  7236. const int nr3 = (int)(ne3/ne03);
  7237. // TODO: support for transposed / permuted tensors
  7238. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7239. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7240. // TODO: maybe this is not optimal?
  7241. for (int i3 = 0; i3 < nr3; i3++) {
  7242. for (int k3 = 0; k3 < ne03; k3++) {
  7243. for (int i2 = 0; i2 < nr2; i2++) {
  7244. for (int k2 = 0; k2 < ne02; k2++) {
  7245. for (int i1 = 0; i1 < nr1; i1++) {
  7246. for (int k1 = 0; k1 < ne01; k1++) {
  7247. for (int i0 = 0; i0 < nr0; i0++) {
  7248. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7249. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7250. // ggml_vec_cpy_f16(ne00, y, x)
  7251. for (int i = 0; i < ne00; ++i) {
  7252. y[i] = x[i];
  7253. }
  7254. }
  7255. }
  7256. }
  7257. }
  7258. }
  7259. }
  7260. }
  7261. }
  7262. static void ggml_compute_forward_repeat(
  7263. const struct ggml_compute_params * params,
  7264. const struct ggml_tensor * src0,
  7265. struct ggml_tensor * dst) {
  7266. switch (src0->type) {
  7267. case GGML_TYPE_F16:
  7268. case GGML_TYPE_I16:
  7269. {
  7270. ggml_compute_forward_repeat_f16(params, src0, dst);
  7271. } break;
  7272. case GGML_TYPE_F32:
  7273. case GGML_TYPE_I32:
  7274. {
  7275. ggml_compute_forward_repeat_f32(params, src0, dst);
  7276. } break;
  7277. default:
  7278. {
  7279. GGML_ASSERT(false);
  7280. } break;
  7281. }
  7282. }
  7283. // ggml_compute_forward_repeat_back
  7284. static void ggml_compute_forward_repeat_back_f32(
  7285. const struct ggml_compute_params * params,
  7286. const struct ggml_tensor * src0,
  7287. struct ggml_tensor * dst) {
  7288. GGML_ASSERT(params->ith == 0);
  7289. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7290. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7291. return;
  7292. }
  7293. GGML_TENSOR_UNARY_OP_LOCALS
  7294. // guaranteed to be an integer due to the check in ggml_can_repeat
  7295. const int nr0 = (int)(ne00/ne0);
  7296. const int nr1 = (int)(ne01/ne1);
  7297. const int nr2 = (int)(ne02/ne2);
  7298. const int nr3 = (int)(ne03/ne3);
  7299. // TODO: support for transposed / permuted tensors
  7300. GGML_ASSERT(nb0 == sizeof(float));
  7301. GGML_ASSERT(nb00 == sizeof(float));
  7302. if (ggml_is_contiguous(dst)) {
  7303. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7304. } else {
  7305. for (int k3 = 0; k3 < ne3; k3++) {
  7306. for (int k2 = 0; k2 < ne2; k2++) {
  7307. for (int k1 = 0; k1 < ne1; k1++) {
  7308. ggml_vec_set_f32(ne0,
  7309. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7310. 0);
  7311. }
  7312. }
  7313. }
  7314. }
  7315. // TODO: maybe this is not optimal?
  7316. for (int i3 = 0; i3 < nr3; i3++) {
  7317. for (int k3 = 0; k3 < ne3; k3++) {
  7318. for (int i2 = 0; i2 < nr2; i2++) {
  7319. for (int k2 = 0; k2 < ne2; k2++) {
  7320. for (int i1 = 0; i1 < nr1; i1++) {
  7321. for (int k1 = 0; k1 < ne1; k1++) {
  7322. for (int i0 = 0; i0 < nr0; i0++) {
  7323. ggml_vec_acc_f32(ne0,
  7324. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7325. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7326. }
  7327. }
  7328. }
  7329. }
  7330. }
  7331. }
  7332. }
  7333. }
  7334. static void ggml_compute_forward_repeat_back(
  7335. const struct ggml_compute_params * params,
  7336. const struct ggml_tensor * src0,
  7337. struct ggml_tensor * dst) {
  7338. switch (src0->type) {
  7339. case GGML_TYPE_F32:
  7340. {
  7341. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7342. } break;
  7343. default:
  7344. {
  7345. GGML_ASSERT(false);
  7346. } break;
  7347. }
  7348. }
  7349. // ggml_compute_forward_concat
  7350. static void ggml_compute_forward_concat_f32(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. const struct ggml_tensor * src1,
  7354. struct ggml_tensor * dst) {
  7355. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7356. return;
  7357. }
  7358. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7359. const int ith = params->ith;
  7360. const int nth = params->nth;
  7361. GGML_TENSOR_BINARY_OP_LOCALS
  7362. // TODO: support for transposed / permuted tensors
  7363. GGML_ASSERT(nb0 == sizeof(float));
  7364. GGML_ASSERT(nb00 == sizeof(float));
  7365. GGML_ASSERT(nb10 == sizeof(float));
  7366. for (int i3 = 0; i3 < ne3; i3++) {
  7367. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7368. if (i2 < ne02) { // src0
  7369. for (int i1 = 0; i1 < ne1; i1++) {
  7370. for (int i0 = 0; i0 < ne0; i0++) {
  7371. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7372. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7373. *y = *x;
  7374. }
  7375. }
  7376. } // src1
  7377. else {
  7378. for (int i1 = 0; i1 < ne1; i1++) {
  7379. for (int i0 = 0; i0 < ne0; i0++) {
  7380. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7381. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7382. *y = *x;
  7383. }
  7384. }
  7385. }
  7386. }
  7387. }
  7388. }
  7389. static void ggml_compute_forward_concat(
  7390. const struct ggml_compute_params* params,
  7391. const struct ggml_tensor* src0,
  7392. const struct ggml_tensor* src1,
  7393. struct ggml_tensor* dst) {
  7394. switch (src0->type) {
  7395. case GGML_TYPE_F32:
  7396. case GGML_TYPE_I32:
  7397. {
  7398. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7399. } break;
  7400. default:
  7401. {
  7402. GGML_ASSERT(false);
  7403. } break;
  7404. }
  7405. }
  7406. // ggml_compute_forward_abs
  7407. static void ggml_compute_forward_abs_f32(
  7408. const struct ggml_compute_params * params,
  7409. const struct ggml_tensor * src0,
  7410. struct ggml_tensor * dst) {
  7411. assert(params->ith == 0);
  7412. assert(ggml_are_same_shape(src0, dst));
  7413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7414. return;
  7415. }
  7416. const int n = ggml_nrows(src0);
  7417. const int nc = src0->ne[0];
  7418. assert(dst->nb[0] == sizeof(float));
  7419. assert(src0->nb[0] == sizeof(float));
  7420. for (int i = 0; i < n; i++) {
  7421. ggml_vec_abs_f32(nc,
  7422. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7423. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7424. }
  7425. }
  7426. static void ggml_compute_forward_abs(
  7427. const struct ggml_compute_params * params,
  7428. const struct ggml_tensor * src0,
  7429. struct ggml_tensor * dst) {
  7430. switch (src0->type) {
  7431. case GGML_TYPE_F32:
  7432. {
  7433. ggml_compute_forward_abs_f32(params, src0, dst);
  7434. } break;
  7435. default:
  7436. {
  7437. GGML_ASSERT(false);
  7438. } break;
  7439. }
  7440. }
  7441. // ggml_compute_forward_sgn
  7442. static void ggml_compute_forward_sgn_f32(
  7443. const struct ggml_compute_params * params,
  7444. const struct ggml_tensor * src0,
  7445. struct ggml_tensor * dst) {
  7446. assert(params->ith == 0);
  7447. assert(ggml_are_same_shape(src0, dst));
  7448. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7449. return;
  7450. }
  7451. const int n = ggml_nrows(src0);
  7452. const int nc = src0->ne[0];
  7453. assert(dst->nb[0] == sizeof(float));
  7454. assert(src0->nb[0] == sizeof(float));
  7455. for (int i = 0; i < n; i++) {
  7456. ggml_vec_sgn_f32(nc,
  7457. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7458. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7459. }
  7460. }
  7461. static void ggml_compute_forward_sgn(
  7462. const struct ggml_compute_params * params,
  7463. const struct ggml_tensor * src0,
  7464. struct ggml_tensor * dst) {
  7465. switch (src0->type) {
  7466. case GGML_TYPE_F32:
  7467. {
  7468. ggml_compute_forward_sgn_f32(params, src0, dst);
  7469. } break;
  7470. default:
  7471. {
  7472. GGML_ASSERT(false);
  7473. } break;
  7474. }
  7475. }
  7476. // ggml_compute_forward_neg
  7477. static void ggml_compute_forward_neg_f32(
  7478. const struct ggml_compute_params * params,
  7479. const struct ggml_tensor * src0,
  7480. struct ggml_tensor * dst) {
  7481. assert(params->ith == 0);
  7482. assert(ggml_are_same_shape(src0, dst));
  7483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7484. return;
  7485. }
  7486. const int n = ggml_nrows(src0);
  7487. const int nc = src0->ne[0];
  7488. assert(dst->nb[0] == sizeof(float));
  7489. assert(src0->nb[0] == sizeof(float));
  7490. for (int i = 0; i < n; i++) {
  7491. ggml_vec_neg_f32(nc,
  7492. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7493. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7494. }
  7495. }
  7496. static void ggml_compute_forward_neg(
  7497. const struct ggml_compute_params * params,
  7498. const struct ggml_tensor * src0,
  7499. struct ggml_tensor * dst) {
  7500. switch (src0->type) {
  7501. case GGML_TYPE_F32:
  7502. {
  7503. ggml_compute_forward_neg_f32(params, src0, dst);
  7504. } break;
  7505. default:
  7506. {
  7507. GGML_ASSERT(false);
  7508. } break;
  7509. }
  7510. }
  7511. // ggml_compute_forward_step
  7512. static void ggml_compute_forward_step_f32(
  7513. const struct ggml_compute_params * params,
  7514. const struct ggml_tensor * src0,
  7515. struct ggml_tensor * dst) {
  7516. assert(params->ith == 0);
  7517. assert(ggml_are_same_shape(src0, dst));
  7518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7519. return;
  7520. }
  7521. const int n = ggml_nrows(src0);
  7522. const int nc = src0->ne[0];
  7523. assert(dst->nb[0] == sizeof(float));
  7524. assert(src0->nb[0] == sizeof(float));
  7525. for (int i = 0; i < n; i++) {
  7526. ggml_vec_step_f32(nc,
  7527. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7528. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7529. }
  7530. }
  7531. static void ggml_compute_forward_step(
  7532. const struct ggml_compute_params * params,
  7533. const struct ggml_tensor * src0,
  7534. struct ggml_tensor * dst) {
  7535. switch (src0->type) {
  7536. case GGML_TYPE_F32:
  7537. {
  7538. ggml_compute_forward_step_f32(params, src0, dst);
  7539. } break;
  7540. default:
  7541. {
  7542. GGML_ASSERT(false);
  7543. } break;
  7544. }
  7545. }
  7546. // ggml_compute_forward_tanh
  7547. static void ggml_compute_forward_tanh_f32(
  7548. const struct ggml_compute_params * params,
  7549. const struct ggml_tensor * src0,
  7550. struct ggml_tensor * dst) {
  7551. assert(params->ith == 0);
  7552. assert(ggml_are_same_shape(src0, dst));
  7553. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7554. return;
  7555. }
  7556. const int n = ggml_nrows(src0);
  7557. const int nc = src0->ne[0];
  7558. assert(dst->nb[0] == sizeof(float));
  7559. assert(src0->nb[0] == sizeof(float));
  7560. for (int i = 0; i < n; i++) {
  7561. ggml_vec_tanh_f32(nc,
  7562. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7563. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7564. }
  7565. }
  7566. static void ggml_compute_forward_tanh(
  7567. const struct ggml_compute_params * params,
  7568. const struct ggml_tensor * src0,
  7569. struct ggml_tensor * dst) {
  7570. switch (src0->type) {
  7571. case GGML_TYPE_F32:
  7572. {
  7573. ggml_compute_forward_tanh_f32(params, src0, dst);
  7574. } break;
  7575. default:
  7576. {
  7577. GGML_ASSERT(false);
  7578. } break;
  7579. }
  7580. }
  7581. // ggml_compute_forward_elu
  7582. static void ggml_compute_forward_elu_f32(
  7583. const struct ggml_compute_params * params,
  7584. const struct ggml_tensor * src0,
  7585. struct ggml_tensor * dst) {
  7586. assert(params->ith == 0);
  7587. assert(ggml_are_same_shape(src0, dst));
  7588. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7589. return;
  7590. }
  7591. const int n = ggml_nrows(src0);
  7592. const int nc = src0->ne[0];
  7593. assert(dst->nb[0] == sizeof(float));
  7594. assert(src0->nb[0] == sizeof(float));
  7595. for (int i = 0; i < n; i++) {
  7596. ggml_vec_elu_f32(nc,
  7597. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7598. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7599. }
  7600. }
  7601. static void ggml_compute_forward_elu(
  7602. const struct ggml_compute_params * params,
  7603. const struct ggml_tensor * src0,
  7604. struct ggml_tensor * dst) {
  7605. switch (src0->type) {
  7606. case GGML_TYPE_F32:
  7607. {
  7608. ggml_compute_forward_elu_f32(params, src0, dst);
  7609. } break;
  7610. default:
  7611. {
  7612. GGML_ASSERT(false);
  7613. } break;
  7614. }
  7615. }
  7616. // ggml_compute_forward_relu
  7617. static void ggml_compute_forward_relu_f32(
  7618. const struct ggml_compute_params * params,
  7619. const struct ggml_tensor * src0,
  7620. struct ggml_tensor * dst) {
  7621. assert(params->ith == 0);
  7622. assert(ggml_are_same_shape(src0, dst));
  7623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7624. return;
  7625. }
  7626. const int n = ggml_nrows(src0);
  7627. const int nc = src0->ne[0];
  7628. assert(dst->nb[0] == sizeof(float));
  7629. assert(src0->nb[0] == sizeof(float));
  7630. for (int i = 0; i < n; i++) {
  7631. ggml_vec_relu_f32(nc,
  7632. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7633. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7634. }
  7635. }
  7636. static void ggml_compute_forward_relu(
  7637. const struct ggml_compute_params * params,
  7638. const struct ggml_tensor * src0,
  7639. struct ggml_tensor * dst) {
  7640. switch (src0->type) {
  7641. case GGML_TYPE_F32:
  7642. {
  7643. ggml_compute_forward_relu_f32(params, src0, dst);
  7644. } break;
  7645. default:
  7646. {
  7647. GGML_ASSERT(false);
  7648. } break;
  7649. }
  7650. }
  7651. // ggml_compute_forward_gelu
  7652. static void ggml_compute_forward_gelu_f32(
  7653. const struct ggml_compute_params * params,
  7654. const struct ggml_tensor * src0,
  7655. struct ggml_tensor * dst) {
  7656. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7657. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7658. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7659. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7660. return;
  7661. }
  7662. const int ith = params->ith;
  7663. const int nth = params->nth;
  7664. const int nc = src0->ne[0];
  7665. const int nr = ggml_nrows(src0);
  7666. // rows per thread
  7667. const int dr = (nr + nth - 1)/nth;
  7668. // row range for this thread
  7669. const int ir0 = dr*ith;
  7670. const int ir1 = MIN(ir0 + dr, nr);
  7671. for (int i1 = ir0; i1 < ir1; i1++) {
  7672. ggml_vec_gelu_f32(nc,
  7673. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7674. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7675. #ifndef NDEBUG
  7676. for (int k = 0; k < nc; k++) {
  7677. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7678. UNUSED(x);
  7679. assert(!isnan(x));
  7680. assert(!isinf(x));
  7681. }
  7682. #endif
  7683. }
  7684. }
  7685. static void ggml_compute_forward_gelu(
  7686. const struct ggml_compute_params * params,
  7687. const struct ggml_tensor * src0,
  7688. struct ggml_tensor * dst) {
  7689. switch (src0->type) {
  7690. case GGML_TYPE_F32:
  7691. {
  7692. ggml_compute_forward_gelu_f32(params, src0, dst);
  7693. } break;
  7694. default:
  7695. {
  7696. GGML_ASSERT(false);
  7697. } break;
  7698. }
  7699. }
  7700. // ggml_compute_forward_gelu_quick
  7701. static void ggml_compute_forward_gelu_quick_f32(
  7702. const struct ggml_compute_params * params,
  7703. const struct ggml_tensor * src0,
  7704. struct ggml_tensor * dst) {
  7705. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7706. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7707. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7708. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7709. return;
  7710. }
  7711. const int ith = params->ith;
  7712. const int nth = params->nth;
  7713. const int nc = src0->ne[0];
  7714. const int nr = ggml_nrows(src0);
  7715. // rows per thread
  7716. const int dr = (nr + nth - 1)/nth;
  7717. // row range for this thread
  7718. const int ir0 = dr*ith;
  7719. const int ir1 = MIN(ir0 + dr, nr);
  7720. for (int i1 = ir0; i1 < ir1; i1++) {
  7721. ggml_vec_gelu_quick_f32(nc,
  7722. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7723. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7724. #ifndef NDEBUG
  7725. for (int k = 0; k < nc; k++) {
  7726. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7727. UNUSED(x);
  7728. assert(!isnan(x));
  7729. assert(!isinf(x));
  7730. }
  7731. #endif
  7732. }
  7733. }
  7734. static void ggml_compute_forward_gelu_quick(
  7735. const struct ggml_compute_params * params,
  7736. const struct ggml_tensor * src0,
  7737. struct ggml_tensor * dst) {
  7738. switch (src0->type) {
  7739. case GGML_TYPE_F32:
  7740. {
  7741. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7742. } break;
  7743. default:
  7744. {
  7745. GGML_ASSERT(false);
  7746. } break;
  7747. }
  7748. }
  7749. // ggml_compute_forward_silu
  7750. static void ggml_compute_forward_silu_f32(
  7751. const struct ggml_compute_params * params,
  7752. const struct ggml_tensor * src0,
  7753. struct ggml_tensor * dst) {
  7754. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7755. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7756. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7757. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7758. return;
  7759. }
  7760. const int ith = params->ith;
  7761. const int nth = params->nth;
  7762. const int nc = src0->ne[0];
  7763. const int nr = ggml_nrows(src0);
  7764. // rows per thread
  7765. const int dr = (nr + nth - 1)/nth;
  7766. // row range for this thread
  7767. const int ir0 = dr*ith;
  7768. const int ir1 = MIN(ir0 + dr, nr);
  7769. for (int i1 = ir0; i1 < ir1; i1++) {
  7770. ggml_vec_silu_f32(nc,
  7771. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7772. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7773. #ifndef NDEBUG
  7774. for (int k = 0; k < nc; k++) {
  7775. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7776. UNUSED(x);
  7777. assert(!isnan(x));
  7778. assert(!isinf(x));
  7779. }
  7780. #endif
  7781. }
  7782. }
  7783. static void ggml_compute_forward_silu(
  7784. const struct ggml_compute_params * params,
  7785. const struct ggml_tensor * src0,
  7786. struct ggml_tensor * dst) {
  7787. switch (src0->type) {
  7788. case GGML_TYPE_F32:
  7789. {
  7790. ggml_compute_forward_silu_f32(params, src0, dst);
  7791. } break;
  7792. default:
  7793. {
  7794. GGML_ASSERT(false);
  7795. } break;
  7796. }
  7797. }
  7798. // ggml_compute_forward_leaky_relu
  7799. static void ggml_compute_forward_leaky_relu_f32(
  7800. const struct ggml_compute_params * params,
  7801. const struct ggml_tensor * src0,
  7802. struct ggml_tensor * dst) {
  7803. assert(params->ith == 0);
  7804. assert(ggml_are_same_shape(src0, dst));
  7805. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7806. return;
  7807. }
  7808. const int n = ggml_nrows(src0);
  7809. const int nc = src0->ne[0];
  7810. float negative_slope;
  7811. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7812. assert(dst->nb[0] == sizeof(float));
  7813. assert(src0->nb[0] == sizeof(float));
  7814. for (int i = 0; i < n; i++) {
  7815. ggml_vec_leaky_relu_f32(nc,
  7816. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7817. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7818. }
  7819. }
  7820. static void ggml_compute_forward_leaky_relu(
  7821. const struct ggml_compute_params * params,
  7822. const struct ggml_tensor * src0,
  7823. struct ggml_tensor * dst) {
  7824. switch (src0->type) {
  7825. case GGML_TYPE_F32:
  7826. {
  7827. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7828. } break;
  7829. default:
  7830. {
  7831. GGML_ASSERT(false);
  7832. } break;
  7833. }
  7834. }
  7835. // ggml_compute_forward_silu_back
  7836. static void ggml_compute_forward_silu_back_f32(
  7837. const struct ggml_compute_params * params,
  7838. const struct ggml_tensor * src0,
  7839. const struct ggml_tensor * grad,
  7840. struct ggml_tensor * dst) {
  7841. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7842. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7843. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7844. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7845. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7846. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7847. return;
  7848. }
  7849. const int ith = params->ith;
  7850. const int nth = params->nth;
  7851. const int nc = src0->ne[0];
  7852. const int nr = ggml_nrows(src0);
  7853. // rows per thread
  7854. const int dr = (nr + nth - 1)/nth;
  7855. // row range for this thread
  7856. const int ir0 = dr*ith;
  7857. const int ir1 = MIN(ir0 + dr, nr);
  7858. for (int i1 = ir0; i1 < ir1; i1++) {
  7859. ggml_vec_silu_backward_f32(nc,
  7860. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7861. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7862. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7863. #ifndef NDEBUG
  7864. for (int k = 0; k < nc; k++) {
  7865. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7866. UNUSED(x);
  7867. assert(!isnan(x));
  7868. assert(!isinf(x));
  7869. }
  7870. #endif
  7871. }
  7872. }
  7873. static void ggml_compute_forward_silu_back(
  7874. const struct ggml_compute_params * params,
  7875. const struct ggml_tensor * src0,
  7876. const struct ggml_tensor * grad,
  7877. struct ggml_tensor * dst) {
  7878. switch (src0->type) {
  7879. case GGML_TYPE_F32:
  7880. {
  7881. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7882. } break;
  7883. default:
  7884. {
  7885. GGML_ASSERT(false);
  7886. } break;
  7887. }
  7888. }
  7889. static void ggml_compute_forward_hardswish_f32(
  7890. const struct ggml_compute_params * params,
  7891. const struct ggml_tensor * src0,
  7892. struct ggml_tensor * dst) {
  7893. assert(params->ith == 0);
  7894. assert(ggml_are_same_shape(src0, dst));
  7895. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7896. return;
  7897. }
  7898. const int n = ggml_nrows(src0);
  7899. const int nc = src0->ne[0];
  7900. assert(dst->nb[0] == sizeof(float));
  7901. assert(src0->nb[0] == sizeof(float));
  7902. for (int i = 0; i < n; i++) {
  7903. ggml_vec_hardswish_f32(nc,
  7904. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7905. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7906. }
  7907. }
  7908. static void ggml_compute_forward_hardswish(
  7909. const struct ggml_compute_params * params,
  7910. const struct ggml_tensor * src0,
  7911. struct ggml_tensor * dst) {
  7912. switch (src0->type) {
  7913. case GGML_TYPE_F32:
  7914. {
  7915. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7916. } break;
  7917. default:
  7918. {
  7919. GGML_ASSERT(false);
  7920. } break;
  7921. }
  7922. }
  7923. static void ggml_compute_forward_hardsigmoid_f32(
  7924. const struct ggml_compute_params * params,
  7925. const struct ggml_tensor * src0,
  7926. struct ggml_tensor * dst) {
  7927. assert(params->ith == 0);
  7928. assert(ggml_are_same_shape(src0, dst));
  7929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7930. return;
  7931. }
  7932. const int n = ggml_nrows(src0);
  7933. const int nc = src0->ne[0];
  7934. assert(dst->nb[0] == sizeof(float));
  7935. assert(src0->nb[0] == sizeof(float));
  7936. for (int i = 0; i < n; i++) {
  7937. ggml_vec_hardsigmoid_f32(nc,
  7938. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7939. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7940. }
  7941. }
  7942. static void ggml_compute_forward_hardsigmoid(
  7943. const struct ggml_compute_params * params,
  7944. const struct ggml_tensor * src0,
  7945. struct ggml_tensor * dst) {
  7946. switch (src0->type) {
  7947. case GGML_TYPE_F32:
  7948. {
  7949. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7950. } break;
  7951. default:
  7952. {
  7953. GGML_ASSERT(false);
  7954. } break;
  7955. }
  7956. }
  7957. // ggml_compute_forward_norm
  7958. static void ggml_compute_forward_norm_f32(
  7959. const struct ggml_compute_params * params,
  7960. const struct ggml_tensor * src0,
  7961. struct ggml_tensor * dst) {
  7962. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7963. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7964. return;
  7965. }
  7966. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7967. const int ith = params->ith;
  7968. const int nth = params->nth;
  7969. GGML_TENSOR_UNARY_OP_LOCALS
  7970. float eps;
  7971. memcpy(&eps, dst->op_params, sizeof(float));
  7972. GGML_ASSERT(eps > 0.0f);
  7973. // TODO: optimize
  7974. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7975. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7976. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7977. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7978. ggml_float sum = 0.0;
  7979. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7980. sum += (ggml_float)x[i00];
  7981. }
  7982. float mean = sum/ne00;
  7983. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7984. ggml_float sum2 = 0.0;
  7985. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7986. float v = x[i00] - mean;
  7987. y[i00] = v;
  7988. sum2 += (ggml_float)(v*v);
  7989. }
  7990. float variance = sum2/ne00;
  7991. const float scale = 1.0f/sqrtf(variance + eps);
  7992. ggml_vec_scale_f32(ne00, y, scale);
  7993. }
  7994. }
  7995. }
  7996. }
  7997. static void ggml_compute_forward_norm(
  7998. const struct ggml_compute_params * params,
  7999. const struct ggml_tensor * src0,
  8000. struct ggml_tensor * dst) {
  8001. switch (src0->type) {
  8002. case GGML_TYPE_F32:
  8003. {
  8004. ggml_compute_forward_norm_f32(params, src0, dst);
  8005. } break;
  8006. default:
  8007. {
  8008. GGML_ASSERT(false);
  8009. } break;
  8010. }
  8011. }
  8012. // ggml_compute_forward_group_rms_norm
  8013. static void ggml_compute_forward_rms_norm_f32(
  8014. const struct ggml_compute_params * params,
  8015. const struct ggml_tensor * src0,
  8016. struct ggml_tensor * dst) {
  8017. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8018. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8019. return;
  8020. }
  8021. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8022. const int ith = params->ith;
  8023. const int nth = params->nth;
  8024. GGML_TENSOR_UNARY_OP_LOCALS
  8025. float eps;
  8026. memcpy(&eps, dst->op_params, sizeof(float));
  8027. GGML_ASSERT(eps > 0.0f);
  8028. // TODO: optimize
  8029. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8030. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8031. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8032. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8033. ggml_float sum = 0.0;
  8034. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8035. sum += (ggml_float)(x[i00] * x[i00]);
  8036. }
  8037. const float mean = sum/ne00;
  8038. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8039. memcpy(y, x, ne00 * sizeof(float));
  8040. // for (int i00 = 0; i00 < ne00; i00++) {
  8041. // y[i00] = x[i00];
  8042. // }
  8043. const float scale = 1.0f/sqrtf(mean + eps);
  8044. ggml_vec_scale_f32(ne00, y, scale);
  8045. }
  8046. }
  8047. }
  8048. }
  8049. static void ggml_compute_forward_rms_norm(
  8050. const struct ggml_compute_params * params,
  8051. const struct ggml_tensor * src0,
  8052. struct ggml_tensor * dst) {
  8053. switch (src0->type) {
  8054. case GGML_TYPE_F32:
  8055. {
  8056. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8057. } break;
  8058. default:
  8059. {
  8060. GGML_ASSERT(false);
  8061. } break;
  8062. }
  8063. }
  8064. static void ggml_compute_forward_rms_norm_back_f32(
  8065. const struct ggml_compute_params * params,
  8066. const struct ggml_tensor * src0,
  8067. const struct ggml_tensor * src1,
  8068. struct ggml_tensor * dst) {
  8069. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8070. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8071. return;
  8072. }
  8073. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8074. const int ith = params->ith;
  8075. const int nth = params->nth;
  8076. GGML_TENSOR_BINARY_OP_LOCALS
  8077. float eps;
  8078. memcpy(&eps, dst->op_params, sizeof(float));
  8079. // TODO: optimize
  8080. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8081. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8082. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8083. // src1 is same shape as src0 => same indices
  8084. const int64_t i11 = i01;
  8085. const int64_t i12 = i02;
  8086. const int64_t i13 = i03;
  8087. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8088. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8089. ggml_float sum_xx = 0.0;
  8090. ggml_float sum_xdz = 0.0;
  8091. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8092. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8093. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8094. }
  8095. //const float mean = (float)(sum_xx)/ne00;
  8096. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8097. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8098. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8099. // we could cache rms from forward pass to improve performance.
  8100. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8101. //const float rms = sqrtf(mean_eps);
  8102. const float rrms = 1.0f / sqrtf(mean_eps);
  8103. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8104. {
  8105. // z = rms_norm(x)
  8106. //
  8107. // rms_norm(src0) =
  8108. // scale(
  8109. // src0,
  8110. // div(
  8111. // 1,
  8112. // sqrt(
  8113. // add(
  8114. // scale(
  8115. // sum(
  8116. // sqr(
  8117. // src0)),
  8118. // (1.0/N)),
  8119. // eps))));
  8120. // postorder:
  8121. // ## op args grad
  8122. // 00 param src0 grad[#00]
  8123. // 01 const 1
  8124. // 02 sqr (#00) grad[#02]
  8125. // 03 sum (#02) grad[#03]
  8126. // 04 const 1/N
  8127. // 05 scale (#03, #04) grad[#05]
  8128. // 06 const eps
  8129. // 07 add (#05, #06) grad[#07]
  8130. // 08 sqrt (#07) grad[#08]
  8131. // 09 div (#01,#08) grad[#09]
  8132. // 10 scale (#00,#09) grad[#10]
  8133. //
  8134. // backward pass, given grad[#10]
  8135. // #10: scale
  8136. // grad[#00] += scale(grad[#10],#09)
  8137. // grad[#09] += sum(mul(grad[#10],#00))
  8138. // #09: div
  8139. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8140. // #08: sqrt
  8141. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8142. // #07: add
  8143. // grad[#05] += grad[#07]
  8144. // #05: scale
  8145. // grad[#03] += scale(grad[#05],#04)
  8146. // #03: sum
  8147. // grad[#02] += repeat(grad[#03], #02)
  8148. // #02:
  8149. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8150. //
  8151. // substitute and simplify:
  8152. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8153. // grad[#02] = repeat(grad[#03], #02)
  8154. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8155. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8156. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8157. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8158. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8159. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8160. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8161. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8162. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8163. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8164. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8165. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8166. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8167. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8168. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8169. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8170. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8171. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8172. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8173. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8174. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8175. // a = b*c + d*e
  8176. // a = b*c*f/f + d*e*f/f
  8177. // a = (b*c*f + d*e*f)*(1/f)
  8178. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8179. // a = (b + d*e/c)*c
  8180. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8181. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8182. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8183. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8184. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8185. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8186. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8187. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8188. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8189. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8190. }
  8191. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8192. // post-order:
  8193. // dx := x
  8194. // dx := scale(dx,-mean_xdz/mean_eps)
  8195. // dx := add(dx, dz)
  8196. // dx := scale(dx, rrms)
  8197. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8198. ggml_vec_cpy_f32 (ne00, dx, x);
  8199. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8200. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8201. ggml_vec_acc_f32 (ne00, dx, dz);
  8202. ggml_vec_scale_f32(ne00, dx, rrms);
  8203. }
  8204. }
  8205. }
  8206. }
  8207. static void ggml_compute_forward_rms_norm_back(
  8208. const struct ggml_compute_params * params,
  8209. const struct ggml_tensor * src0,
  8210. const struct ggml_tensor * src1,
  8211. struct ggml_tensor * dst) {
  8212. switch (src0->type) {
  8213. case GGML_TYPE_F32:
  8214. {
  8215. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8216. } break;
  8217. default:
  8218. {
  8219. GGML_ASSERT(false);
  8220. } break;
  8221. }
  8222. }
  8223. // ggml_compute_forward_group_norm
  8224. static void ggml_compute_forward_group_norm_f32(
  8225. const struct ggml_compute_params * params,
  8226. const struct ggml_tensor * src0,
  8227. struct ggml_tensor * dst) {
  8228. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8230. return;
  8231. }
  8232. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8233. const int ith = params->ith;
  8234. const int nth = params->nth;
  8235. GGML_TENSOR_UNARY_OP_LOCALS
  8236. const float eps = 1e-6f; // TODO: make this a parameter
  8237. // TODO: optimize
  8238. int n_channels = src0->ne[2];
  8239. int n_groups = dst->op_params[0];
  8240. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8241. for (int i = ith; i < n_groups; i+=nth) {
  8242. int start = i * n_channels_per_group;
  8243. int end = start + n_channels_per_group;
  8244. if (end > n_channels) {
  8245. end = n_channels;
  8246. }
  8247. int step = end - start;
  8248. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8249. ggml_float sum = 0.0;
  8250. for (int64_t i02 = start; i02 < end; i02++) {
  8251. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8252. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8253. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8254. sum += (ggml_float)x[i00];
  8255. }
  8256. }
  8257. }
  8258. float mean = sum / (ne00 * ne01 * step);
  8259. ggml_float sum2 = 0.0;
  8260. for (int64_t i02 = start; i02 < end; i02++) {
  8261. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8262. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8263. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8264. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8265. float v = x[i00] - mean;
  8266. y[i00] = v;
  8267. sum2 += (ggml_float)(v * v);
  8268. }
  8269. }
  8270. }
  8271. float variance = sum2 / (ne00 * ne01 * step);
  8272. const float scale = 1.0f / sqrtf(variance + eps);
  8273. for (int64_t i02 = start; i02 < end; i02++) {
  8274. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8275. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8276. ggml_vec_scale_f32(ne00, y, scale);
  8277. }
  8278. }
  8279. }
  8280. }
  8281. }
  8282. static void ggml_compute_forward_group_norm(
  8283. const struct ggml_compute_params * params,
  8284. const struct ggml_tensor * src0,
  8285. struct ggml_tensor * dst) {
  8286. switch (src0->type) {
  8287. case GGML_TYPE_F32:
  8288. {
  8289. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8290. } break;
  8291. default:
  8292. {
  8293. GGML_ASSERT(false);
  8294. } break;
  8295. }
  8296. }
  8297. // ggml_compute_forward_mul_mat
  8298. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8299. // helper function to determine if it is better to use BLAS or not
  8300. // for large matrices, BLAS is faster
  8301. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8302. const struct ggml_tensor * src0 = dst->src[0];
  8303. const struct ggml_tensor * src1 = dst->src[1];
  8304. //const int64_t ne00 = src0->ne[0];
  8305. //const int64_t ne01 = src0->ne[1];
  8306. const int64_t ne10 = src1->ne[0];
  8307. const int64_t ne0 = dst->ne[0];
  8308. const int64_t ne1 = dst->ne[1];
  8309. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8310. // all the experts for each batch element and the processing would become incredibly slow
  8311. // TODO: find the optimal values for these
  8312. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8313. ggml_is_contiguous(src0) &&
  8314. ggml_is_contiguous(src1) &&
  8315. //src0->type == GGML_TYPE_F32 &&
  8316. src1->type == GGML_TYPE_F32 &&
  8317. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8318. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8319. return true;
  8320. }
  8321. return false;
  8322. }
  8323. #endif
  8324. static void ggml_compute_forward_mul_mat(
  8325. const struct ggml_compute_params * params,
  8326. const struct ggml_tensor * src0,
  8327. const struct ggml_tensor * src1,
  8328. struct ggml_tensor * dst) {
  8329. int64_t t0 = ggml_perf_time_us();
  8330. UNUSED(t0);
  8331. GGML_TENSOR_BINARY_OP_LOCALS
  8332. const int ith = params->ith;
  8333. const int nth = params->nth;
  8334. const enum ggml_type type = src0->type;
  8335. const bool src1_cont = ggml_is_contiguous(src1);
  8336. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8337. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8338. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8339. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8340. GGML_ASSERT(ne0 == ne01);
  8341. GGML_ASSERT(ne1 == ne11);
  8342. GGML_ASSERT(ne2 == ne12);
  8343. GGML_ASSERT(ne3 == ne13);
  8344. // we don't support permuted src0 or src1
  8345. GGML_ASSERT(nb00 == ggml_type_size(type));
  8346. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8347. // dst cannot be transposed or permuted
  8348. GGML_ASSERT(nb0 == sizeof(float));
  8349. GGML_ASSERT(nb0 <= nb1);
  8350. GGML_ASSERT(nb1 <= nb2);
  8351. GGML_ASSERT(nb2 <= nb3);
  8352. // broadcast factors
  8353. const int64_t r2 = ne12/ne02;
  8354. const int64_t r3 = ne13/ne03;
  8355. // nb01 >= nb00 - src0 is not transposed
  8356. // compute by src0 rows
  8357. #if defined(GGML_USE_CLBLAST)
  8358. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8359. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8360. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8361. }
  8362. return;
  8363. }
  8364. #endif
  8365. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8366. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8367. const int64_t ne_plane = ne01*ne00;
  8368. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8369. UNUSED(desired_wsize);
  8370. if (params->type == GGML_TASK_INIT) {
  8371. if (type != GGML_TYPE_F32) {
  8372. assert(params->wsize >= desired_wsize);
  8373. // parallelize by src0 rows
  8374. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8375. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8376. // broadcast src0 into src1 across 2nd,3rd dimension
  8377. const int64_t i03 = i13/r3;
  8378. const int64_t i02 = i12/r2;
  8379. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8380. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8381. ggml_to_float_t const to_float = type_traits[type].to_float;
  8382. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8383. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8384. }
  8385. }
  8386. }
  8387. }
  8388. return;
  8389. }
  8390. if (params->type == GGML_TASK_FINALIZE) {
  8391. return;
  8392. }
  8393. // perform sgemm, parallelization controlled by blas lib
  8394. if (ith != 0) {
  8395. return;
  8396. }
  8397. //const int64_t tgemm0 = ggml_perf_time_us();
  8398. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8399. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8400. const int64_t i03 = i13/r3;
  8401. const int64_t i02 = i12/r2;
  8402. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8403. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8404. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8405. if (type != GGML_TYPE_F32) {
  8406. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8407. }
  8408. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8409. ne1, ne01, ne10,
  8410. 1.0f, y, ne10,
  8411. x, ne00,
  8412. 0.0f, d, ne01);
  8413. }
  8414. }
  8415. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8416. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8417. return;
  8418. }
  8419. #endif
  8420. if (params->type == GGML_TASK_INIT) {
  8421. if (ith != 0) {
  8422. return;
  8423. }
  8424. if (src1->type != vec_dot_type) {
  8425. char * wdata = params->wdata;
  8426. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8427. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8428. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8429. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8430. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8431. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8432. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8433. wdata += row_size;
  8434. }
  8435. }
  8436. }
  8437. }
  8438. return;
  8439. }
  8440. if (params->type == GGML_TASK_FINALIZE) {
  8441. return;
  8442. }
  8443. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8444. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8445. const int64_t nr0 = ne01; // src0 rows
  8446. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8447. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8448. // distribute the thread work across the inner or outer loop based on which one is larger
  8449. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8450. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8451. const int64_t ith0 = ith % nth0;
  8452. const int64_t ith1 = ith / nth0;
  8453. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8454. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8455. const int64_t ir010 = dr0*ith0;
  8456. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8457. const int64_t ir110 = dr1*ith1;
  8458. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8459. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8460. // threads with no work simply yield (not sure if it helps)
  8461. if (ir010 >= ir011 || ir110 >= ir111) {
  8462. sched_yield();
  8463. return;
  8464. }
  8465. assert(ne12 % ne02 == 0);
  8466. assert(ne13 % ne03 == 0);
  8467. // block-tiling attempt
  8468. const int64_t blck_0 = 16;
  8469. const int64_t blck_1 = 16;
  8470. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8471. int64_t nrc = vec_dot_num_rows;
  8472. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8473. // this check can be removed once they are extended to support odd numbered rows/cols too
  8474. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8475. nrc = 1;
  8476. }
  8477. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8478. // attempt to reduce false-sharing (does not seem to make a difference)
  8479. // 16 * 2, accounting for mmla kernels
  8480. float tmp[32];
  8481. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8482. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8483. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8484. const int64_t i13 = (ir1/(ne12*ne1));
  8485. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8486. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8487. // broadcast src0 into src1
  8488. const int64_t i03 = i13/r3;
  8489. const int64_t i02 = i12/r2;
  8490. const int64_t i1 = i11;
  8491. const int64_t i2 = i12;
  8492. const int64_t i3 = i13;
  8493. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8494. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8495. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8496. // the original src1 data pointer, so we should index using the indices directly
  8497. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8498. const char * src1_col = (const char *) wdata +
  8499. (src1_cont || src1->type != vec_dot_type
  8500. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8501. : (i11*nb11 + i12*nb12 + i13*nb13));
  8502. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8503. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8504. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8505. //}
  8506. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8507. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8508. }
  8509. for (int cn = 0; cn < nrc; ++cn) {
  8510. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8511. }
  8512. }
  8513. }
  8514. }
  8515. }
  8516. // ggml_compute_forward_mul_mat_id
  8517. static void ggml_compute_forward_mul_mat_id(
  8518. const struct ggml_compute_params * params,
  8519. const struct ggml_tensor * ids,
  8520. const struct ggml_tensor * src1,
  8521. struct ggml_tensor * dst) {
  8522. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8523. GGML_TENSOR_BINARY_OP_LOCALS
  8524. const int ith = params->ith;
  8525. const int nth = params->nth;
  8526. const enum ggml_type type = src0->type;
  8527. const bool src1_cont = ggml_is_contiguous(src1);
  8528. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8529. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8530. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8531. GGML_ASSERT(ne0 == ne01);
  8532. GGML_ASSERT(ne1 == ne11);
  8533. GGML_ASSERT(ne2 == ne12);
  8534. GGML_ASSERT(ne3 == ne13);
  8535. // we don't support permuted src0 or src1
  8536. GGML_ASSERT(nb00 == ggml_type_size(type));
  8537. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8538. // dst cannot be transposed or permuted
  8539. GGML_ASSERT(nb0 == sizeof(float));
  8540. GGML_ASSERT(nb0 <= nb1);
  8541. GGML_ASSERT(nb1 <= nb2);
  8542. GGML_ASSERT(nb2 <= nb3);
  8543. // broadcast factors
  8544. const int64_t r2 = ne12/ne02;
  8545. const int64_t r3 = ne13/ne03;
  8546. // row groups
  8547. const int id = ggml_get_op_params_i32(dst, 0);
  8548. const int n_as = ggml_get_op_params_i32(dst, 1);
  8549. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8550. (char *) params->wdata :
  8551. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8552. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8553. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8554. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8555. if (params->type == GGML_TASK_INIT) {
  8556. if (ith != 0) {
  8557. return;
  8558. }
  8559. char * wdata = params->wdata;
  8560. if (src1->type != vec_dot_type) {
  8561. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8562. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8563. assert(src1->type == GGML_TYPE_F32);
  8564. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8565. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8566. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8567. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8568. wdata += row_size;
  8569. }
  8570. }
  8571. }
  8572. }
  8573. // initialize matrix_row_counts
  8574. GGML_ASSERT(wdata == wdata_src1_end);
  8575. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8576. // group rows by src0 matrix
  8577. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8578. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8579. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8580. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8581. matrix_row_counts[row_id] += 1;
  8582. }
  8583. return;
  8584. }
  8585. if (params->type == GGML_TASK_FINALIZE) {
  8586. return;
  8587. }
  8588. // compute each matrix multiplication in sequence
  8589. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8590. const int64_t cne1 = matrix_row_counts[cur_a];
  8591. if (cne1 == 0) {
  8592. continue;
  8593. }
  8594. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8595. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8596. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8597. const int64_t nr0 = ne01; // src0 rows
  8598. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8599. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8600. // distribute the thread work across the inner or outer loop based on which one is larger
  8601. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8602. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8603. const int64_t ith0 = ith % nth0;
  8604. const int64_t ith1 = ith / nth0;
  8605. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8606. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8607. const int64_t ir010 = dr0*ith0;
  8608. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8609. const int64_t ir110 = dr1*ith1;
  8610. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8611. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8612. // threads with no work simply yield (not sure if it helps)
  8613. if (ir010 >= ir011 || ir110 >= ir111) {
  8614. sched_yield();
  8615. continue;
  8616. }
  8617. assert(ne12 % ne02 == 0);
  8618. assert(ne13 % ne03 == 0);
  8619. // block-tiling attempt
  8620. const int64_t blck_0 = 16;
  8621. const int64_t blck_1 = 16;
  8622. // attempt to reduce false-sharing (does not seem to make a difference)
  8623. float tmp[16];
  8624. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8625. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8626. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8627. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8628. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8629. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8630. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8631. // broadcast src0 into src1
  8632. const int64_t i03 = i13/r3;
  8633. const int64_t i02 = i12/r2;
  8634. const int64_t i1 = i11;
  8635. const int64_t i2 = i12;
  8636. const int64_t i3 = i13;
  8637. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8638. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8639. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8640. // the original src1 data pointer, so we should index using the indices directly
  8641. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8642. const char * src1_col = (const char *) wdata +
  8643. (src1_cont || src1->type != vec_dot_type
  8644. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8645. : (i11*nb11 + i12*nb12 + i13*nb13));
  8646. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8647. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8648. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8649. //}
  8650. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8651. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8652. }
  8653. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8654. }
  8655. }
  8656. }
  8657. }
  8658. #undef MMID_MATRIX_ROW
  8659. }
  8660. // ggml_compute_forward_out_prod
  8661. static void ggml_compute_forward_out_prod_f32(
  8662. const struct ggml_compute_params * params,
  8663. const struct ggml_tensor * src0,
  8664. const struct ggml_tensor * src1,
  8665. struct ggml_tensor * dst) {
  8666. // int64_t t0 = ggml_perf_time_us();
  8667. // UNUSED(t0);
  8668. GGML_TENSOR_BINARY_OP_LOCALS
  8669. const int ith = params->ith;
  8670. const int nth = params->nth;
  8671. GGML_ASSERT(ne0 == ne00);
  8672. GGML_ASSERT(ne1 == ne10);
  8673. GGML_ASSERT(ne2 == ne02);
  8674. GGML_ASSERT(ne02 == ne12);
  8675. GGML_ASSERT(ne3 == ne13);
  8676. GGML_ASSERT(ne03 == ne13);
  8677. // we don't support permuted src0 or src1
  8678. GGML_ASSERT(nb00 == sizeof(float));
  8679. // dst cannot be transposed or permuted
  8680. GGML_ASSERT(nb0 == sizeof(float));
  8681. // GGML_ASSERT(nb0 <= nb1);
  8682. // GGML_ASSERT(nb1 <= nb2);
  8683. // GGML_ASSERT(nb2 <= nb3);
  8684. // nb01 >= nb00 - src0 is not transposed
  8685. // compute by src0 rows
  8686. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8687. // TODO: #if defined(GGML_USE_CLBLAST)
  8688. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8689. bool use_blas = ggml_is_matrix(src0) &&
  8690. ggml_is_matrix(src1) &&
  8691. ggml_is_contiguous(src0) &&
  8692. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8693. #endif
  8694. if (params->type == GGML_TASK_INIT) {
  8695. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8696. if (use_blas) {
  8697. return;
  8698. }
  8699. #endif
  8700. if (ith != 0) {
  8701. return;
  8702. }
  8703. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8704. return;
  8705. }
  8706. if (params->type == GGML_TASK_FINALIZE) {
  8707. return;
  8708. }
  8709. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8710. if (use_blas) {
  8711. if (params->ith != 0) { // All threads other than the first do no work.
  8712. return;
  8713. }
  8714. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8715. // src0: (k,n)
  8716. // src1: (k,m)
  8717. // dst: (m,n)
  8718. //
  8719. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8720. // Also expressed as (major,minor)
  8721. // a: (m,k): so src1 transposed
  8722. // b: (k,n): so src0
  8723. // c: (m,n)
  8724. //
  8725. // However, if ggml_is_transposed(src1) is true, then
  8726. // src1->data already contains a transposed version, so sgemm mustn't
  8727. // transpose it further.
  8728. int n = src0->ne[0];
  8729. int k = src0->ne[1];
  8730. int m = src1->ne[0];
  8731. int transposeA, lda;
  8732. if (!ggml_is_transposed(src1)) {
  8733. transposeA = CblasTrans;
  8734. lda = m;
  8735. } else {
  8736. transposeA = CblasNoTrans;
  8737. lda = k;
  8738. }
  8739. float * a = (float *) ((char *) src1->data);
  8740. float * b = (float *) ((char *) src0->data);
  8741. float * c = (float *) ((char *) dst->data);
  8742. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8743. return;
  8744. }
  8745. #endif
  8746. // dst[:,:,:,:] = 0
  8747. // for i2,i3:
  8748. // for i1:
  8749. // for i01:
  8750. // for i0:
  8751. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8752. // parallelize by last three dimensions
  8753. // total rows in dst
  8754. const int64_t nr = ne1*ne2*ne3;
  8755. // rows per thread
  8756. const int64_t dr = (nr + nth - 1)/nth;
  8757. // row range for this thread
  8758. const int64_t ir0 = dr*ith;
  8759. const int64_t ir1 = MIN(ir0 + dr, nr);
  8760. // block-tiling attempt
  8761. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8762. const int64_t blck_1 = 16;
  8763. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8764. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8765. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8766. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8767. for (int64_t ir = bir; ir < bir1; ++ir) {
  8768. // dst indices
  8769. const int64_t i3 = ir/(ne2*ne1);
  8770. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8771. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8772. const int64_t i02 = i2;
  8773. const int64_t i03 = i3;
  8774. //const int64_t i10 = i1;
  8775. const int64_t i12 = i2;
  8776. const int64_t i13 = i3;
  8777. #if GGML_VEC_MAD_UNROLL > 2
  8778. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8779. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8780. const int64_t i11 = i01;
  8781. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8782. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8783. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8784. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8785. }
  8786. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8787. const int64_t i11 = i01;
  8788. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8789. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8790. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8791. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8792. }
  8793. #else
  8794. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8795. const int64_t i11 = i01;
  8796. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8797. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8798. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8799. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8800. }
  8801. #endif
  8802. }
  8803. }
  8804. }
  8805. //int64_t t1 = ggml_perf_time_us();
  8806. //static int64_t acc = 0;
  8807. //acc += t1 - t0;
  8808. //if (t1 - t0 > 10) {
  8809. // printf("\n");
  8810. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8811. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8812. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8813. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8814. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8815. //}
  8816. }
  8817. static void ggml_compute_forward_out_prod_q_f32(
  8818. const struct ggml_compute_params * params,
  8819. const struct ggml_tensor * src0,
  8820. const struct ggml_tensor * src1,
  8821. struct ggml_tensor * dst) {
  8822. // int64_t t0 = ggml_perf_time_us();
  8823. // UNUSED(t0);
  8824. GGML_TENSOR_BINARY_OP_LOCALS;
  8825. const int ith = params->ith;
  8826. const int nth = params->nth;
  8827. const enum ggml_type type = src0->type;
  8828. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8829. GGML_ASSERT(ne02 == ne12);
  8830. GGML_ASSERT(ne03 == ne13);
  8831. GGML_ASSERT(ne2 == ne12);
  8832. GGML_ASSERT(ne3 == ne13);
  8833. // we don't support permuted src0 dim0
  8834. GGML_ASSERT(nb00 == ggml_type_size(type));
  8835. // dst dim0 cannot be transposed or permuted
  8836. GGML_ASSERT(nb0 == sizeof(float));
  8837. // GGML_ASSERT(nb0 <= nb1);
  8838. // GGML_ASSERT(nb1 <= nb2);
  8839. // GGML_ASSERT(nb2 <= nb3);
  8840. GGML_ASSERT(ne0 == ne00);
  8841. GGML_ASSERT(ne1 == ne10);
  8842. GGML_ASSERT(ne2 == ne02);
  8843. GGML_ASSERT(ne3 == ne03);
  8844. // nb01 >= nb00 - src0 is not transposed
  8845. // compute by src0 rows
  8846. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8847. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8848. if (params->type == GGML_TASK_INIT) {
  8849. if (ith != 0) {
  8850. return;
  8851. }
  8852. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8853. return;
  8854. }
  8855. if (params->type == GGML_TASK_FINALIZE) {
  8856. return;
  8857. }
  8858. // parallelize by last three dimensions
  8859. // total rows in dst
  8860. const int64_t nr = ne1*ne2*ne3;
  8861. // rows per thread
  8862. const int64_t dr = (nr + nth - 1)/nth;
  8863. // row range for this thread
  8864. const int64_t ir0 = dr*ith;
  8865. const int64_t ir1 = MIN(ir0 + dr, nr);
  8866. // dst[:,:,:,:] = 0
  8867. // for i2,i3:
  8868. // for i1:
  8869. // for i01:
  8870. // for i0:
  8871. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8872. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8873. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8874. // dst indices
  8875. const int64_t i3 = ir/(ne2*ne1);
  8876. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8877. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8878. const int64_t i02 = i2;
  8879. const int64_t i03 = i3;
  8880. //const int64_t i10 = i1;
  8881. const int64_t i12 = i2;
  8882. const int64_t i13 = i3;
  8883. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8884. const int64_t i11 = i01;
  8885. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8886. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8887. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8888. dequantize_row_q(s0, wdata, ne0);
  8889. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8890. }
  8891. }
  8892. //int64_t t1 = ggml_perf_time_us();
  8893. //static int64_t acc = 0;
  8894. //acc += t1 - t0;
  8895. //if (t1 - t0 > 10) {
  8896. // printf("\n");
  8897. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8898. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8899. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8900. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8901. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8902. //}
  8903. }
  8904. static void ggml_compute_forward_out_prod(
  8905. const struct ggml_compute_params * params,
  8906. const struct ggml_tensor * src0,
  8907. const struct ggml_tensor * src1,
  8908. struct ggml_tensor * dst) {
  8909. switch (src0->type) {
  8910. case GGML_TYPE_Q4_0:
  8911. case GGML_TYPE_Q4_1:
  8912. case GGML_TYPE_Q5_0:
  8913. case GGML_TYPE_Q5_1:
  8914. case GGML_TYPE_Q8_0:
  8915. case GGML_TYPE_Q2_K:
  8916. case GGML_TYPE_Q3_K:
  8917. case GGML_TYPE_Q4_K:
  8918. case GGML_TYPE_Q5_K:
  8919. case GGML_TYPE_Q6_K:
  8920. case GGML_TYPE_IQ2_XXS:
  8921. case GGML_TYPE_IQ2_XS:
  8922. case GGML_TYPE_IQ3_XXS:
  8923. case GGML_TYPE_IQ1_S:
  8924. {
  8925. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8926. } break;
  8927. case GGML_TYPE_F16:
  8928. {
  8929. GGML_ASSERT(false); // todo
  8930. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8931. } break;
  8932. case GGML_TYPE_F32:
  8933. {
  8934. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8935. } break;
  8936. default:
  8937. {
  8938. GGML_ASSERT(false);
  8939. } break;
  8940. }
  8941. }
  8942. // ggml_compute_forward_scale
  8943. static void ggml_compute_forward_scale_f32(
  8944. const struct ggml_compute_params * params,
  8945. const struct ggml_tensor * src0,
  8946. struct ggml_tensor * dst) {
  8947. GGML_ASSERT(ggml_is_contiguous(src0));
  8948. GGML_ASSERT(ggml_is_contiguous(dst));
  8949. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8950. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8951. return;
  8952. }
  8953. // scale factor
  8954. float v;
  8955. memcpy(&v, dst->op_params, sizeof(float));
  8956. const int ith = params->ith;
  8957. const int nth = params->nth;
  8958. const int nc = src0->ne[0];
  8959. const int nr = ggml_nrows(src0);
  8960. // rows per thread
  8961. const int dr = (nr + nth - 1)/nth;
  8962. // row range for this thread
  8963. const int ir0 = dr*ith;
  8964. const int ir1 = MIN(ir0 + dr, nr);
  8965. const size_t nb01 = src0->nb[1];
  8966. const size_t nb1 = dst->nb[1];
  8967. for (int i1 = ir0; i1 < ir1; i1++) {
  8968. if (dst->data != src0->data) {
  8969. // src0 is same shape as dst => same indices
  8970. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8971. }
  8972. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8973. }
  8974. }
  8975. static void ggml_compute_forward_scale(
  8976. const struct ggml_compute_params * params,
  8977. const struct ggml_tensor * src0,
  8978. struct ggml_tensor * dst) {
  8979. switch (src0->type) {
  8980. case GGML_TYPE_F32:
  8981. {
  8982. ggml_compute_forward_scale_f32(params, src0, dst);
  8983. } break;
  8984. default:
  8985. {
  8986. GGML_ASSERT(false);
  8987. } break;
  8988. }
  8989. }
  8990. // ggml_compute_forward_set
  8991. static void ggml_compute_forward_set_f32(
  8992. const struct ggml_compute_params * params,
  8993. const struct ggml_tensor * src0,
  8994. const struct ggml_tensor * src1,
  8995. struct ggml_tensor * dst) {
  8996. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8997. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8998. // view src0 and dst with these strides and data offset inbytes during set
  8999. // nb0 is implicitly element_size because src0 and dst are contiguous
  9000. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9001. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9002. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9003. size_t offset = ((int32_t *) dst->op_params)[3];
  9004. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9005. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9006. if (params->ith != 0) {
  9007. return;
  9008. }
  9009. // memcpy needs to be synchronized across threads to avoid race conditions.
  9010. // => do it in INIT phase
  9011. memcpy(
  9012. ((char *) dst->data),
  9013. ((char *) src0->data),
  9014. ggml_nbytes(dst));
  9015. }
  9016. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9017. return;
  9018. }
  9019. const int ith = params->ith;
  9020. const int nth = params->nth;
  9021. const int nr = ggml_nrows(src1);
  9022. const int nc = src1->ne[0];
  9023. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9024. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9025. // src0 and dst as viewed during set
  9026. const size_t nb0 = ggml_element_size(src0);
  9027. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9028. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9029. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9030. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9031. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9032. GGML_ASSERT(nb10 == sizeof(float));
  9033. // rows per thread
  9034. const int dr = (nr + nth - 1)/nth;
  9035. // row range for this thread
  9036. const int ir0 = dr*ith;
  9037. const int ir1 = MIN(ir0 + dr, nr);
  9038. for (int ir = ir0; ir < ir1; ++ir) {
  9039. // src0 and dst are viewed with shape of src1 and offset
  9040. // => same indices
  9041. const int i3 = ir/(ne12*ne11);
  9042. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9043. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9044. ggml_vec_cpy_f32(nc,
  9045. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9046. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9047. }
  9048. }
  9049. static void ggml_compute_forward_set(
  9050. const struct ggml_compute_params * params,
  9051. const struct ggml_tensor * src0,
  9052. const struct ggml_tensor * src1,
  9053. struct ggml_tensor * dst) {
  9054. switch (src0->type) {
  9055. case GGML_TYPE_F32:
  9056. {
  9057. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9058. } break;
  9059. case GGML_TYPE_F16:
  9060. case GGML_TYPE_Q4_0:
  9061. case GGML_TYPE_Q4_1:
  9062. case GGML_TYPE_Q5_0:
  9063. case GGML_TYPE_Q5_1:
  9064. case GGML_TYPE_Q8_0:
  9065. case GGML_TYPE_Q8_1:
  9066. case GGML_TYPE_Q2_K:
  9067. case GGML_TYPE_Q3_K:
  9068. case GGML_TYPE_Q4_K:
  9069. case GGML_TYPE_Q5_K:
  9070. case GGML_TYPE_Q6_K:
  9071. case GGML_TYPE_IQ2_XXS:
  9072. case GGML_TYPE_IQ2_XS:
  9073. case GGML_TYPE_IQ3_XXS:
  9074. case GGML_TYPE_IQ1_S:
  9075. default:
  9076. {
  9077. GGML_ASSERT(false);
  9078. } break;
  9079. }
  9080. }
  9081. // ggml_compute_forward_cpy
  9082. static void ggml_compute_forward_cpy(
  9083. const struct ggml_compute_params * params,
  9084. const struct ggml_tensor * src0,
  9085. struct ggml_tensor * dst) {
  9086. ggml_compute_forward_dup(params, src0, dst);
  9087. }
  9088. // ggml_compute_forward_cont
  9089. static void ggml_compute_forward_cont(
  9090. const struct ggml_compute_params * params,
  9091. const struct ggml_tensor * src0,
  9092. struct ggml_tensor * dst) {
  9093. ggml_compute_forward_dup(params, src0, dst);
  9094. }
  9095. // ggml_compute_forward_reshape
  9096. static void ggml_compute_forward_reshape(
  9097. const struct ggml_compute_params * params,
  9098. const struct ggml_tensor * src0,
  9099. struct ggml_tensor * dst) {
  9100. // NOP
  9101. UNUSED(params);
  9102. UNUSED(src0);
  9103. UNUSED(dst);
  9104. }
  9105. // ggml_compute_forward_view
  9106. static void ggml_compute_forward_view(
  9107. const struct ggml_compute_params * params,
  9108. const struct ggml_tensor * src0) {
  9109. // NOP
  9110. UNUSED(params);
  9111. UNUSED(src0);
  9112. }
  9113. // ggml_compute_forward_permute
  9114. static void ggml_compute_forward_permute(
  9115. const struct ggml_compute_params * params,
  9116. const struct ggml_tensor * src0) {
  9117. // NOP
  9118. UNUSED(params);
  9119. UNUSED(src0);
  9120. }
  9121. // ggml_compute_forward_transpose
  9122. static void ggml_compute_forward_transpose(
  9123. const struct ggml_compute_params * params,
  9124. const struct ggml_tensor * src0) {
  9125. // NOP
  9126. UNUSED(params);
  9127. UNUSED(src0);
  9128. }
  9129. // ggml_compute_forward_get_rows
  9130. static void ggml_compute_forward_get_rows_q(
  9131. const struct ggml_compute_params * params,
  9132. const struct ggml_tensor * src0,
  9133. const struct ggml_tensor * src1,
  9134. struct ggml_tensor * dst) {
  9135. assert(params->ith == 0);
  9136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9137. return;
  9138. }
  9139. GGML_TENSOR_BINARY_OP_LOCALS
  9140. const int64_t nc = ne00;
  9141. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9142. const enum ggml_type type = src0->type;
  9143. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9144. assert(ne0 == nc);
  9145. assert(ne02 == ne11);
  9146. assert(nb00 == ggml_type_size(type));
  9147. assert(ggml_nrows(dst) == nr);
  9148. // TODO: multi-thread
  9149. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9150. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9151. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9152. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9153. dequantize_row_q(
  9154. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9155. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9156. }
  9157. }
  9158. }
  9159. }
  9160. static void ggml_compute_forward_get_rows_f16(
  9161. const struct ggml_compute_params * params,
  9162. const struct ggml_tensor * src0,
  9163. const struct ggml_tensor * src1,
  9164. struct ggml_tensor * dst) {
  9165. assert(params->ith == 0);
  9166. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9167. return;
  9168. }
  9169. GGML_TENSOR_BINARY_OP_LOCALS
  9170. const int64_t nc = ne00;
  9171. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9172. assert(ne0 == nc);
  9173. assert(ne02 == ne11);
  9174. assert(nb00 == sizeof(ggml_fp16_t));
  9175. assert(ggml_nrows(dst) == nr);
  9176. // TODO: multi-thread
  9177. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9178. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9179. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9180. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9181. ggml_fp16_to_fp32_row(
  9182. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9183. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9184. }
  9185. }
  9186. }
  9187. }
  9188. static void ggml_compute_forward_get_rows_f32(
  9189. const struct ggml_compute_params * params,
  9190. const struct ggml_tensor * src0,
  9191. const struct ggml_tensor * src1,
  9192. struct ggml_tensor * dst) {
  9193. assert(params->ith == 0);
  9194. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9195. return;
  9196. }
  9197. GGML_TENSOR_BINARY_OP_LOCALS
  9198. const int64_t nc = ne00;
  9199. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9200. assert(ne0 == nc);
  9201. assert(ne02 == ne11);
  9202. assert(nb00 == sizeof(float));
  9203. assert(ggml_nrows(dst) == nr);
  9204. // TODO: multi-thread
  9205. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9206. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9207. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9208. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9209. ggml_vec_cpy_f32(nc,
  9210. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9211. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9212. }
  9213. }
  9214. }
  9215. }
  9216. static void ggml_compute_forward_get_rows(
  9217. const struct ggml_compute_params * params,
  9218. const struct ggml_tensor * src0,
  9219. const struct ggml_tensor * src1,
  9220. struct ggml_tensor * dst) {
  9221. switch (src0->type) {
  9222. case GGML_TYPE_Q4_0:
  9223. case GGML_TYPE_Q4_1:
  9224. case GGML_TYPE_Q5_0:
  9225. case GGML_TYPE_Q5_1:
  9226. case GGML_TYPE_Q8_0:
  9227. case GGML_TYPE_Q8_1:
  9228. case GGML_TYPE_Q2_K:
  9229. case GGML_TYPE_Q3_K:
  9230. case GGML_TYPE_Q4_K:
  9231. case GGML_TYPE_Q5_K:
  9232. case GGML_TYPE_Q6_K:
  9233. case GGML_TYPE_IQ2_XXS:
  9234. case GGML_TYPE_IQ2_XS:
  9235. case GGML_TYPE_IQ3_XXS:
  9236. case GGML_TYPE_IQ1_S:
  9237. {
  9238. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9239. } break;
  9240. case GGML_TYPE_F16:
  9241. {
  9242. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9243. } break;
  9244. case GGML_TYPE_F32:
  9245. case GGML_TYPE_I32:
  9246. {
  9247. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9248. } break;
  9249. default:
  9250. {
  9251. GGML_ASSERT(false);
  9252. } break;
  9253. }
  9254. //static bool first = true;
  9255. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9256. //if (first) {
  9257. // first = false;
  9258. //} else {
  9259. // for (int k = 0; k < dst->ne[1]; ++k) {
  9260. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9261. // for (int i = 0; i < 16; ++i) {
  9262. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9263. // }
  9264. // printf("\n");
  9265. // }
  9266. // printf("\n");
  9267. // }
  9268. // printf("\n");
  9269. // exit(0);
  9270. //}
  9271. }
  9272. // ggml_compute_forward_get_rows_back
  9273. static void ggml_compute_forward_get_rows_back_f32_f16(
  9274. const struct ggml_compute_params * params,
  9275. const struct ggml_tensor * src0,
  9276. const struct ggml_tensor * src1,
  9277. struct ggml_tensor * dst) {
  9278. GGML_ASSERT(params->ith == 0);
  9279. GGML_ASSERT(ggml_is_contiguous(dst));
  9280. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9281. if (params->type == GGML_TASK_INIT) {
  9282. if (params->ith != 0) {
  9283. return;
  9284. }
  9285. memset(dst->data, 0, ggml_nbytes(dst));
  9286. }
  9287. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9288. return;
  9289. }
  9290. const int nc = src0->ne[0];
  9291. const int nr = ggml_nelements(src1);
  9292. GGML_ASSERT( dst->ne[0] == nc);
  9293. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9294. for (int i = 0; i < nr; ++i) {
  9295. const int r = ((int32_t *) src1->data)[i];
  9296. for (int j = 0; j < nc; ++j) {
  9297. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9298. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9299. }
  9300. }
  9301. }
  9302. static void ggml_compute_forward_get_rows_back_f32(
  9303. const struct ggml_compute_params * params,
  9304. const struct ggml_tensor * src0,
  9305. const struct ggml_tensor * src1,
  9306. struct ggml_tensor * dst) {
  9307. GGML_ASSERT(params->ith == 0);
  9308. GGML_ASSERT(ggml_is_contiguous(dst));
  9309. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9310. if (params->type == GGML_TASK_INIT) {
  9311. if (params->ith != 0) {
  9312. return;
  9313. }
  9314. memset(dst->data, 0, ggml_nbytes(dst));
  9315. }
  9316. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9317. return;
  9318. }
  9319. const int nc = src0->ne[0];
  9320. const int nr = ggml_nelements(src1);
  9321. GGML_ASSERT( dst->ne[0] == nc);
  9322. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9323. for (int i = 0; i < nr; ++i) {
  9324. const int r = ((int32_t *) src1->data)[i];
  9325. ggml_vec_add_f32(nc,
  9326. (float *) ((char *) dst->data + r*dst->nb[1]),
  9327. (float *) ((char *) dst->data + r*dst->nb[1]),
  9328. (float *) ((char *) src0->data + i*src0->nb[1]));
  9329. }
  9330. }
  9331. static void ggml_compute_forward_get_rows_back(
  9332. const struct ggml_compute_params * params,
  9333. const struct ggml_tensor * src0,
  9334. const struct ggml_tensor * src1,
  9335. struct ggml_tensor * dst) {
  9336. switch (src0->type) {
  9337. case GGML_TYPE_F16:
  9338. {
  9339. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9340. } break;
  9341. case GGML_TYPE_F32:
  9342. {
  9343. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9344. } break;
  9345. default:
  9346. {
  9347. GGML_ASSERT(false);
  9348. } break;
  9349. }
  9350. //static bool first = true;
  9351. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9352. //if (first) {
  9353. // first = false;
  9354. //} else {
  9355. // for (int k = 0; k < dst->ne[1]; ++k) {
  9356. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9357. // for (int i = 0; i < 16; ++i) {
  9358. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9359. // }
  9360. // printf("\n");
  9361. // }
  9362. // printf("\n");
  9363. // }
  9364. // printf("\n");
  9365. // exit(0);
  9366. //}
  9367. }
  9368. // ggml_compute_forward_diag
  9369. static void ggml_compute_forward_diag_f32(
  9370. const struct ggml_compute_params * params,
  9371. const struct ggml_tensor * src0,
  9372. struct ggml_tensor * dst) {
  9373. GGML_ASSERT(params->ith == 0);
  9374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9375. return;
  9376. }
  9377. // TODO: handle transposed/permuted matrices
  9378. GGML_TENSOR_UNARY_OP_LOCALS
  9379. GGML_ASSERT(ne00 == ne0);
  9380. GGML_ASSERT(ne00 == ne1);
  9381. GGML_ASSERT(ne01 == 1);
  9382. GGML_ASSERT(ne02 == ne2);
  9383. GGML_ASSERT(ne03 == ne3);
  9384. GGML_ASSERT(nb00 == sizeof(float));
  9385. GGML_ASSERT(nb0 == sizeof(float));
  9386. for (int i3 = 0; i3 < ne3; i3++) {
  9387. for (int i2 = 0; i2 < ne2; i2++) {
  9388. for (int i1 = 0; i1 < ne1; i1++) {
  9389. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9390. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9391. for (int i0 = 0; i0 < i1; i0++) {
  9392. d[i0] = 0;
  9393. }
  9394. d[i1] = s[i1];
  9395. for (int i0 = i1+1; i0 < ne0; i0++) {
  9396. d[i0] = 0;
  9397. }
  9398. }
  9399. }
  9400. }
  9401. }
  9402. static void ggml_compute_forward_diag(
  9403. const struct ggml_compute_params * params,
  9404. const struct ggml_tensor * src0,
  9405. struct ggml_tensor * dst) {
  9406. switch (src0->type) {
  9407. case GGML_TYPE_F32:
  9408. {
  9409. ggml_compute_forward_diag_f32(params, src0, dst);
  9410. } break;
  9411. default:
  9412. {
  9413. GGML_ASSERT(false);
  9414. } break;
  9415. }
  9416. }
  9417. // ggml_compute_forward_diag_mask_inf
  9418. static void ggml_compute_forward_diag_mask_f32(
  9419. const struct ggml_compute_params * params,
  9420. const struct ggml_tensor * src0,
  9421. struct ggml_tensor * dst,
  9422. const float value) {
  9423. const int ith = params->ith;
  9424. const int nth = params->nth;
  9425. const int n_past = ((int32_t *) dst->op_params)[0];
  9426. const bool inplace = src0->data == dst->data;
  9427. GGML_ASSERT(n_past >= 0);
  9428. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9429. if (ith != 0) {
  9430. return;
  9431. }
  9432. // memcpy needs to be synchronized across threads to avoid race conditions.
  9433. // => do it in INIT phase
  9434. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9435. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9436. memcpy(
  9437. ((char *) dst->data),
  9438. ((char *) src0->data),
  9439. ggml_nbytes(dst));
  9440. }
  9441. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9442. return;
  9443. }
  9444. // TODO: handle transposed/permuted matrices
  9445. const int n = ggml_nrows(src0);
  9446. const int nc = src0->ne[0];
  9447. const int nr = src0->ne[1];
  9448. const int nz = n/nr;
  9449. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9450. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9451. for (int k = 0; k < nz; k++) {
  9452. for (int j = ith; j < nr; j += nth) {
  9453. for (int i = n_past; i < nc; i++) {
  9454. if (i > n_past + j) {
  9455. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9456. }
  9457. }
  9458. }
  9459. }
  9460. }
  9461. static void ggml_compute_forward_diag_mask_inf(
  9462. const struct ggml_compute_params * params,
  9463. const struct ggml_tensor * src0,
  9464. struct ggml_tensor * dst) {
  9465. switch (src0->type) {
  9466. case GGML_TYPE_F32:
  9467. {
  9468. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9469. } break;
  9470. default:
  9471. {
  9472. GGML_ASSERT(false);
  9473. } break;
  9474. }
  9475. }
  9476. static void ggml_compute_forward_diag_mask_zero(
  9477. const struct ggml_compute_params * params,
  9478. const struct ggml_tensor * src0,
  9479. struct ggml_tensor * dst) {
  9480. switch (src0->type) {
  9481. case GGML_TYPE_F32:
  9482. {
  9483. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9484. } break;
  9485. default:
  9486. {
  9487. GGML_ASSERT(false);
  9488. } break;
  9489. }
  9490. }
  9491. // ggml_compute_forward_soft_max
  9492. static void ggml_compute_forward_soft_max_f32(
  9493. const struct ggml_compute_params * params,
  9494. const struct ggml_tensor * src0,
  9495. const struct ggml_tensor * src1,
  9496. const struct ggml_tensor * src2,
  9497. struct ggml_tensor * dst) {
  9498. assert(ggml_is_contiguous(dst));
  9499. assert(ggml_are_same_shape(src0, dst));
  9500. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9501. return;
  9502. }
  9503. float scale = 1.0f;
  9504. float max_bias = 0.0f;
  9505. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9506. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9507. // TODO: handle transposed/permuted matrices
  9508. const int ith = params->ith;
  9509. const int nth = params->nth;
  9510. GGML_TENSOR_UNARY_OP_LOCALS
  9511. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9512. // TODO: is this supposed to be ceil instead of floor?
  9513. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9514. const uint32_t n_head_kv = ne02;
  9515. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9516. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9517. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9518. const int nc = src0->ne[0];
  9519. const int nr = ggml_nrows(src0);
  9520. // rows per thread
  9521. const int dr = (nr + nth - 1)/nth;
  9522. // row range for this thread
  9523. const int ir0 = dr*ith;
  9524. const int ir1 = MIN(ir0 + dr, nr);
  9525. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9526. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9527. float * pos = src2 ? (float *) src2->data : src0->data;
  9528. for (int i1 = ir0; i1 < ir1; i1++) {
  9529. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9530. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9531. // broadcast the mask across rows
  9532. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9533. ggml_vec_cpy_f32 (nc, wp, sp);
  9534. ggml_vec_scale_f32(nc, wp, scale);
  9535. if (mp) {
  9536. ggml_vec_acc_f32(nc, wp, mp);
  9537. }
  9538. // ALiBi bias
  9539. if (max_bias > 0.0f) {
  9540. const uint32_t h = (i1/ne01)%ne02; // head
  9541. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9542. for (int i = 0; i < nc; i++) {
  9543. wp[i] = wp[i] + slope*pos[i];
  9544. }
  9545. }
  9546. #ifndef NDEBUG
  9547. for (int i = 0; i < nc; ++i) {
  9548. //printf("p[%d] = %f\n", i, p[i]);
  9549. assert(!isnan(wp[i]));
  9550. }
  9551. #endif
  9552. float max = -INFINITY;
  9553. ggml_vec_max_f32(nc, &max, wp);
  9554. ggml_float sum = 0.0;
  9555. uint16_t scvt;
  9556. for (int i = 0; i < nc; i++) {
  9557. if (wp[i] == -INFINITY) {
  9558. dp[i] = 0.0f;
  9559. } else {
  9560. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9561. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9562. memcpy(&scvt, &s, sizeof(scvt));
  9563. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9564. sum += (ggml_float)val;
  9565. dp[i] = val;
  9566. }
  9567. }
  9568. assert(sum > 0.0);
  9569. sum = 1.0/sum;
  9570. ggml_vec_scale_f32(nc, dp, sum);
  9571. #ifndef NDEBUG
  9572. for (int i = 0; i < nc; ++i) {
  9573. assert(!isnan(dp[i]));
  9574. assert(!isinf(dp[i]));
  9575. }
  9576. #endif
  9577. }
  9578. }
  9579. static void ggml_compute_forward_soft_max(
  9580. const struct ggml_compute_params * params,
  9581. const struct ggml_tensor * src0,
  9582. const struct ggml_tensor * src1,
  9583. const struct ggml_tensor * src2,
  9584. struct ggml_tensor * dst) {
  9585. switch (src0->type) {
  9586. case GGML_TYPE_F32:
  9587. {
  9588. ggml_compute_forward_soft_max_f32(params, src0, src1, src2, dst);
  9589. } break;
  9590. default:
  9591. {
  9592. GGML_ASSERT(false);
  9593. } break;
  9594. }
  9595. }
  9596. // ggml_compute_forward_soft_max_back
  9597. static void ggml_compute_forward_soft_max_back_f32(
  9598. const struct ggml_compute_params * params,
  9599. const struct ggml_tensor * src0,
  9600. const struct ggml_tensor * src1,
  9601. struct ggml_tensor * dst) {
  9602. GGML_ASSERT(ggml_is_contiguous(src0));
  9603. GGML_ASSERT(ggml_is_contiguous(src1));
  9604. GGML_ASSERT(ggml_is_contiguous(dst));
  9605. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9606. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9607. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9608. return;
  9609. }
  9610. // TODO: handle transposed/permuted matrices
  9611. const int ith = params->ith;
  9612. const int nth = params->nth;
  9613. const int nc = src0->ne[0];
  9614. const int nr = ggml_nrows(src0);
  9615. // rows per thread
  9616. const int dr = (nr + nth - 1)/nth;
  9617. // row range for this thread
  9618. const int ir0 = dr*ith;
  9619. const int ir1 = MIN(ir0 + dr, nr);
  9620. for (int i1 = ir0; i1 < ir1; i1++) {
  9621. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9622. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9623. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9624. #ifndef NDEBUG
  9625. for (int i = 0; i < nc; ++i) {
  9626. //printf("p[%d] = %f\n", i, p[i]);
  9627. assert(!isnan(dy[i]));
  9628. assert(!isnan(y[i]));
  9629. }
  9630. #endif
  9631. // Jii = yi - yi*yi
  9632. // Jij = -yi*yj
  9633. // J = diag(y)-y.T*y
  9634. // dx = J * dy
  9635. // dxk = sum_i(Jki * dyi)
  9636. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9637. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9638. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9639. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9640. // dxk = -yk * dot(y, dy) + yk*dyk
  9641. // dxk = yk * (- dot(y, dy) + dyk)
  9642. // dxk = yk * (dyk - dot(y, dy))
  9643. //
  9644. // post-order:
  9645. // dot_y_dy := dot(y, dy)
  9646. // dx := dy
  9647. // dx := dx - dot_y_dy
  9648. // dx := dx * y
  9649. // linear runtime, no additional memory
  9650. float dot_y_dy = 0;
  9651. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9652. ggml_vec_cpy_f32 (nc, dx, dy);
  9653. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9654. ggml_vec_mul_f32 (nc, dx, dx, y);
  9655. #ifndef NDEBUG
  9656. for (int i = 0; i < nc; ++i) {
  9657. assert(!isnan(dx[i]));
  9658. assert(!isinf(dx[i]));
  9659. }
  9660. #endif
  9661. }
  9662. }
  9663. static void ggml_compute_forward_soft_max_back(
  9664. const struct ggml_compute_params * params,
  9665. const struct ggml_tensor * src0,
  9666. const struct ggml_tensor * src1,
  9667. struct ggml_tensor * dst) {
  9668. switch (src0->type) {
  9669. case GGML_TYPE_F32:
  9670. {
  9671. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9672. } break;
  9673. default:
  9674. {
  9675. GGML_ASSERT(false);
  9676. } break;
  9677. }
  9678. }
  9679. // ggml_compute_forward_alibi
  9680. static void ggml_compute_forward_alibi_f32(
  9681. const struct ggml_compute_params * params,
  9682. const struct ggml_tensor * src0,
  9683. struct ggml_tensor * dst) {
  9684. assert(params->ith == 0);
  9685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9686. return;
  9687. }
  9688. //const int n_past = ((int32_t *) dst->op_params)[0];
  9689. const int n_head = ((int32_t *) dst->op_params)[1];
  9690. float max_bias;
  9691. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9692. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9693. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9694. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9695. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9696. const int64_t n = ggml_nrows(src0);
  9697. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9698. const size_t nb0 = src0->nb[0];
  9699. const size_t nb1 = src0->nb[1];
  9700. const size_t nb2 = src0->nb[2];
  9701. //const int nb3 = src0->nb[3];
  9702. GGML_ASSERT(nb0 == sizeof(float));
  9703. GGML_ASSERT(n_head == ne2);
  9704. // add alibi to src0 (KQ_scaled)
  9705. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9706. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9707. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9708. for (int64_t k = 0; k < ne2_ne3; k++) {
  9709. // TODO: k*nb2 or k*nb3
  9710. float m_k;
  9711. if (k < n_heads_log2_floor) {
  9712. m_k = powf(m0, k + 1);
  9713. } else {
  9714. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9715. }
  9716. for (int64_t i = 0; i < ne0; i++) {
  9717. for (int64_t j = 0; j < ne1; j++) {
  9718. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9719. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9720. pdst[0] = i * m_k + src[0];
  9721. }
  9722. }
  9723. }
  9724. }
  9725. static void ggml_compute_forward_alibi_f16(
  9726. const struct ggml_compute_params * params,
  9727. const struct ggml_tensor * src0,
  9728. struct ggml_tensor * dst) {
  9729. assert(params->ith == 0);
  9730. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9731. return;
  9732. }
  9733. //const int n_past = ((int32_t *) dst->op_params)[0];
  9734. const int n_head = ((int32_t *) dst->op_params)[1];
  9735. float max_bias;
  9736. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9737. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9738. const int ne1 = src0->ne[1]; // seq_len_without_past
  9739. const int ne2 = src0->ne[2]; // n_head -> this is k
  9740. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9741. const int n = ggml_nrows(src0);
  9742. const int ne2_ne3 = n/ne1; // ne2*ne3
  9743. const int nb0 = src0->nb[0];
  9744. const int nb1 = src0->nb[1];
  9745. const int nb2 = src0->nb[2];
  9746. //const int nb3 = src0->nb[3];
  9747. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9748. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9749. GGML_ASSERT(n_head == ne2);
  9750. // add alibi to src0 (KQ_scaled)
  9751. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9752. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9753. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9754. for (int k = 0; k < ne2_ne3; k++) {
  9755. // TODO: k*nb2 or k*nb3
  9756. float m_k;
  9757. if (k < n_heads_log2_floor) {
  9758. m_k = powf(m0, k + 1);
  9759. } else {
  9760. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9761. }
  9762. for (int i = 0; i < ne0; i++) {
  9763. for (int j = 0; j < ne1; j++) {
  9764. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9765. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9766. // we return F32
  9767. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9768. }
  9769. }
  9770. }
  9771. }
  9772. static void ggml_compute_forward_alibi(
  9773. const struct ggml_compute_params * params,
  9774. const struct ggml_tensor * src0,
  9775. struct ggml_tensor * dst) {
  9776. switch (src0->type) {
  9777. case GGML_TYPE_F16:
  9778. {
  9779. ggml_compute_forward_alibi_f16(params, src0, dst);
  9780. } break;
  9781. case GGML_TYPE_F32:
  9782. {
  9783. ggml_compute_forward_alibi_f32(params, src0, dst);
  9784. } break;
  9785. case GGML_TYPE_Q4_0:
  9786. case GGML_TYPE_Q4_1:
  9787. case GGML_TYPE_Q5_0:
  9788. case GGML_TYPE_Q5_1:
  9789. case GGML_TYPE_Q8_0:
  9790. case GGML_TYPE_Q8_1:
  9791. case GGML_TYPE_Q2_K:
  9792. case GGML_TYPE_Q3_K:
  9793. case GGML_TYPE_Q4_K:
  9794. case GGML_TYPE_Q5_K:
  9795. case GGML_TYPE_Q6_K:
  9796. case GGML_TYPE_IQ2_XXS:
  9797. case GGML_TYPE_IQ2_XS:
  9798. case GGML_TYPE_IQ3_XXS:
  9799. case GGML_TYPE_IQ1_S:
  9800. case GGML_TYPE_Q8_K:
  9801. case GGML_TYPE_I8:
  9802. case GGML_TYPE_I16:
  9803. case GGML_TYPE_I32:
  9804. case GGML_TYPE_COUNT:
  9805. {
  9806. GGML_ASSERT(false);
  9807. } break;
  9808. }
  9809. }
  9810. // ggml_compute_forward_clamp
  9811. static void ggml_compute_forward_clamp_f32(
  9812. const struct ggml_compute_params * params,
  9813. const struct ggml_tensor * src0,
  9814. struct ggml_tensor * dst) {
  9815. assert(params->ith == 0);
  9816. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9817. return;
  9818. }
  9819. float min;
  9820. float max;
  9821. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9822. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9823. const int ith = params->ith;
  9824. const int nth = params->nth;
  9825. const int n = ggml_nrows(src0);
  9826. const int nc = src0->ne[0];
  9827. const size_t nb00 = src0->nb[0];
  9828. const size_t nb01 = src0->nb[1];
  9829. const size_t nb0 = dst->nb[0];
  9830. const size_t nb1 = dst->nb[1];
  9831. GGML_ASSERT( nb0 == sizeof(float));
  9832. GGML_ASSERT(nb00 == sizeof(float));
  9833. for (int j = ith; j < n; j += nth) {
  9834. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9835. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9836. for (int i = 0; i < nc; i++) {
  9837. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9838. }
  9839. }
  9840. }
  9841. static void ggml_compute_forward_clamp(
  9842. const struct ggml_compute_params * params,
  9843. const struct ggml_tensor * src0,
  9844. struct ggml_tensor * dst) {
  9845. switch (src0->type) {
  9846. case GGML_TYPE_F32:
  9847. {
  9848. ggml_compute_forward_clamp_f32(params, src0, dst);
  9849. } break;
  9850. case GGML_TYPE_F16:
  9851. case GGML_TYPE_Q4_0:
  9852. case GGML_TYPE_Q4_1:
  9853. case GGML_TYPE_Q5_0:
  9854. case GGML_TYPE_Q5_1:
  9855. case GGML_TYPE_Q8_0:
  9856. case GGML_TYPE_Q8_1:
  9857. case GGML_TYPE_Q2_K:
  9858. case GGML_TYPE_Q3_K:
  9859. case GGML_TYPE_Q4_K:
  9860. case GGML_TYPE_Q5_K:
  9861. case GGML_TYPE_Q6_K:
  9862. case GGML_TYPE_IQ2_XXS:
  9863. case GGML_TYPE_IQ2_XS:
  9864. case GGML_TYPE_IQ3_XXS:
  9865. case GGML_TYPE_IQ1_S:
  9866. case GGML_TYPE_Q8_K:
  9867. case GGML_TYPE_I8:
  9868. case GGML_TYPE_I16:
  9869. case GGML_TYPE_I32:
  9870. case GGML_TYPE_COUNT:
  9871. {
  9872. GGML_ASSERT(false);
  9873. } break;
  9874. }
  9875. }
  9876. // ggml_compute_forward_rope
  9877. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9878. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9879. return 1 - MIN(1, MAX(0, y));
  9880. }
  9881. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9882. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9883. static void rope_yarn(
  9884. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9885. float * cos_theta, float * sin_theta
  9886. ) {
  9887. // Get n-d rotational scaling corrected for extrapolation
  9888. float theta_interp = freq_scale * theta_extrap;
  9889. float theta = theta_interp;
  9890. if (ext_factor != 0.0f) {
  9891. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9892. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9893. // Get n-d magnitude scaling corrected for interpolation
  9894. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9895. }
  9896. *cos_theta = cosf(theta) * mscale;
  9897. *sin_theta = sinf(theta) * mscale;
  9898. }
  9899. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9900. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9901. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9902. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9903. }
  9904. static void ggml_rope_cache_init(
  9905. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9906. float * cache, float sin_sign, float theta_scale
  9907. ) {
  9908. float theta = theta_base;
  9909. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9910. rope_yarn(
  9911. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9912. );
  9913. cache[i0 + 1] *= sin_sign;
  9914. theta *= theta_scale;
  9915. }
  9916. }
  9917. GGML_CALL void ggml_rope_yarn_corr_dims(
  9918. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9919. ) {
  9920. // start and end correction dims
  9921. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  9922. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  9923. dims[0] = MAX(0, start);
  9924. dims[1] = MIN(n_dims - 1, end);
  9925. }
  9926. static void ggml_compute_forward_rope_f32(
  9927. const struct ggml_compute_params * params,
  9928. const struct ggml_tensor * src0,
  9929. const struct ggml_tensor * src1,
  9930. struct ggml_tensor * dst,
  9931. const bool forward) {
  9932. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9933. return;
  9934. }
  9935. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9936. // these two only relevant for xPos RoPE:
  9937. float xpos_base;
  9938. bool xpos_down;
  9939. //const int n_past = ((int32_t *) dst->op_params)[0];
  9940. const int n_dims = ((int32_t *) dst->op_params)[1];
  9941. const int mode = ((int32_t *) dst->op_params)[2];
  9942. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9943. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9944. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9945. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9946. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9947. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9948. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9949. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9950. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9951. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9952. GGML_TENSOR_UNARY_OP_LOCALS
  9953. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9954. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9955. GGML_ASSERT(nb00 == sizeof(float));
  9956. const int ith = params->ith;
  9957. const int nth = params->nth;
  9958. const int nr = ggml_nrows(dst);
  9959. GGML_ASSERT(n_dims <= ne0);
  9960. GGML_ASSERT(n_dims % 2 == 0);
  9961. // rows per thread
  9962. const int dr = (nr + nth - 1)/nth;
  9963. // row range for this thread
  9964. const int ir0 = dr*ith;
  9965. const int ir1 = MIN(ir0 + dr, nr);
  9966. // row index used to determine which thread to use
  9967. int ir = 0;
  9968. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9969. const float inv_ndims = -1.f/n_dims;
  9970. float corr_dims[2];
  9971. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9972. const bool is_neox = mode & 2;
  9973. const bool is_glm = mode & 4;
  9974. // backward process uses inverse rotation by cos and sin.
  9975. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9976. // this essentially just switches the sign of sin.
  9977. const float sin_sign = forward ? 1.0f : -1.0f;
  9978. const int32_t * pos = (const int32_t *) src1->data;
  9979. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9980. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9981. const int64_t p = pos[i2];
  9982. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9983. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9984. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9985. }
  9986. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9987. if (ir++ < ir0) continue;
  9988. if (ir > ir1) break;
  9989. float theta_base = (float)p;
  9990. if (is_glm) {
  9991. theta_base = MIN(p, n_ctx - 2);
  9992. float block_theta = MAX(p - (n_ctx - 2), 0);
  9993. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9994. const float cos_theta = cosf(theta_base);
  9995. const float sin_theta = sinf(theta_base) * sin_sign;
  9996. const float cos_block_theta = cosf(block_theta);
  9997. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9998. theta_base *= theta_scale;
  9999. block_theta *= theta_scale;
  10000. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10001. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10002. const float x0 = src[0];
  10003. const float x1 = src[n_dims/2];
  10004. const float x2 = src[n_dims];
  10005. const float x3 = src[n_dims/2*3];
  10006. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10007. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10008. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10009. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10010. }
  10011. } else if (!is_neox) {
  10012. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10013. const float cos_theta = cache[i0 + 0];
  10014. const float sin_theta = cache[i0 + 1];
  10015. // zeta scaling for xPos only:
  10016. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10017. if (xpos_down) zeta = 1.0f / zeta;
  10018. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10019. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10020. const float x0 = src[0];
  10021. const float x1 = src[1];
  10022. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10023. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10024. }
  10025. } else {
  10026. // TODO: this might be wrong for ne0 != n_dims - need double check
  10027. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10028. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10029. theta_base *= freq_scale;
  10030. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10031. if (ic < n_dims) {
  10032. const int64_t ib = 0;
  10033. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10034. float cur_rot = inv_ndims * ic - ib;
  10035. float cos_theta, sin_theta;
  10036. rope_yarn(
  10037. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10038. &cos_theta, &sin_theta
  10039. );
  10040. sin_theta *= sin_sign;
  10041. theta_base *= theta_scale;
  10042. const int64_t i0 = ib*n_dims + ic/2;
  10043. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10044. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10045. const float x0 = src[0];
  10046. const float x1 = src[n_dims/2];
  10047. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10048. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10049. } else {
  10050. const int64_t i0 = ic;
  10051. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10052. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10053. dst_data[0] = src[0];
  10054. dst_data[1] = src[1];
  10055. }
  10056. }
  10057. }
  10058. }
  10059. }
  10060. }
  10061. }
  10062. static void ggml_compute_forward_rope_f16(
  10063. const struct ggml_compute_params * params,
  10064. const struct ggml_tensor * src0,
  10065. const struct ggml_tensor * src1,
  10066. struct ggml_tensor * dst,
  10067. const bool forward) {
  10068. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10069. return;
  10070. }
  10071. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10072. //const int n_past = ((int32_t *) dst->op_params)[0];
  10073. const int n_dims = ((int32_t *) dst->op_params)[1];
  10074. const int mode = ((int32_t *) dst->op_params)[2];
  10075. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10076. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10077. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10078. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10079. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10080. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10081. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10082. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10083. GGML_TENSOR_UNARY_OP_LOCALS
  10084. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10085. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10086. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10087. const int ith = params->ith;
  10088. const int nth = params->nth;
  10089. const int nr = ggml_nrows(dst);
  10090. GGML_ASSERT(n_dims <= ne0);
  10091. GGML_ASSERT(n_dims % 2 == 0);
  10092. // rows per thread
  10093. const int dr = (nr + nth - 1)/nth;
  10094. // row range for this thread
  10095. const int ir0 = dr*ith;
  10096. const int ir1 = MIN(ir0 + dr, nr);
  10097. // row index used to determine which thread to use
  10098. int ir = 0;
  10099. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10100. const float inv_ndims = -1.f/n_dims;
  10101. float corr_dims[2];
  10102. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10103. const bool is_neox = mode & 2;
  10104. const bool is_glm = mode & 4;
  10105. // backward process uses inverse rotation by cos and sin.
  10106. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10107. // this essentially just switches the sign of sin.
  10108. const float sin_sign = forward ? 1.0f : -1.0f;
  10109. const int32_t * pos = (const int32_t *) src1->data;
  10110. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10111. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10112. const int64_t p = pos[i2];
  10113. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10114. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10115. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10116. }
  10117. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10118. if (ir++ < ir0) continue;
  10119. if (ir > ir1) break;
  10120. float theta_base = (float)p;
  10121. if (is_glm) {
  10122. theta_base = MIN(p, n_ctx - 2);
  10123. float block_theta = MAX(p - (n_ctx - 2), 0);
  10124. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10125. const float cos_theta = cosf(theta_base);
  10126. const float sin_theta = sinf(theta_base) * sin_sign;
  10127. const float cos_block_theta = cosf(block_theta);
  10128. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10129. theta_base *= theta_scale;
  10130. block_theta *= theta_scale;
  10131. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10132. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10133. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10134. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10135. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10136. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10137. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10138. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10139. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10140. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10141. }
  10142. } else if (!is_neox) {
  10143. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10144. const float cos_theta = cache[i0 + 0];
  10145. const float sin_theta = cache[i0 + 1];
  10146. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10147. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10148. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10149. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10150. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10151. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10152. }
  10153. } else {
  10154. // TODO: this might be wrong for ne0 != n_dims - need double check
  10155. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10156. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10157. theta_base *= freq_scale;
  10158. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10159. if (ic < n_dims) {
  10160. const int64_t ib = 0;
  10161. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10162. float cur_rot = inv_ndims * ic - ib;
  10163. float cos_theta, sin_theta;
  10164. rope_yarn(
  10165. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10166. &cos_theta, &sin_theta
  10167. );
  10168. sin_theta *= sin_sign;
  10169. theta_base *= theta_scale;
  10170. const int64_t i0 = ib*n_dims + ic/2;
  10171. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10172. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10173. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10174. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10175. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10176. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10177. } else {
  10178. const int64_t i0 = ic;
  10179. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10180. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10181. dst_data[0] = src[0];
  10182. dst_data[1] = src[1];
  10183. }
  10184. }
  10185. }
  10186. }
  10187. }
  10188. }
  10189. }
  10190. static void ggml_compute_forward_rope(
  10191. const struct ggml_compute_params * params,
  10192. const struct ggml_tensor * src0,
  10193. const struct ggml_tensor * src1,
  10194. struct ggml_tensor * dst) {
  10195. switch (src0->type) {
  10196. case GGML_TYPE_F16:
  10197. {
  10198. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  10199. } break;
  10200. case GGML_TYPE_F32:
  10201. {
  10202. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  10203. } break;
  10204. default:
  10205. {
  10206. GGML_ASSERT(false);
  10207. } break;
  10208. }
  10209. }
  10210. // ggml_compute_forward_rope_back
  10211. static void ggml_compute_forward_rope_back(
  10212. const struct ggml_compute_params * params,
  10213. const struct ggml_tensor * src0,
  10214. const struct ggml_tensor * src1,
  10215. struct ggml_tensor * dst) {
  10216. switch (src0->type) {
  10217. case GGML_TYPE_F16:
  10218. {
  10219. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  10220. } break;
  10221. case GGML_TYPE_F32:
  10222. {
  10223. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10224. } break;
  10225. default:
  10226. {
  10227. GGML_ASSERT(false);
  10228. } break;
  10229. }
  10230. }
  10231. // ggml_compute_forward_conv_transpose_1d
  10232. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10233. const struct ggml_compute_params * params,
  10234. const struct ggml_tensor * src0,
  10235. const struct ggml_tensor * src1,
  10236. struct ggml_tensor * dst) {
  10237. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10238. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10239. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10240. int64_t t0 = ggml_perf_time_us();
  10241. UNUSED(t0);
  10242. GGML_TENSOR_BINARY_OP_LOCALS
  10243. const int ith = params->ith;
  10244. const int nth = params->nth;
  10245. const int nk = ne00*ne01*ne02;
  10246. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10247. GGML_ASSERT(nb10 == sizeof(float));
  10248. if (params->type == GGML_TASK_INIT) {
  10249. if (ith != 0) {
  10250. return;
  10251. }
  10252. memset(params->wdata, 0, params->wsize);
  10253. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10254. {
  10255. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10256. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10257. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10258. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10259. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10260. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10261. dst_data[i00*ne02 + i02] = src[i00];
  10262. }
  10263. }
  10264. }
  10265. }
  10266. // permute source data (src1) from (L x Cin) to (Cin x L)
  10267. {
  10268. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10269. ggml_fp16_t * dst_data = wdata;
  10270. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10271. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10272. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10273. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10274. }
  10275. }
  10276. }
  10277. // need to zero dst since we are accumulating into it
  10278. memset(dst->data, 0, ggml_nbytes(dst));
  10279. return;
  10280. }
  10281. if (params->type == GGML_TASK_FINALIZE) {
  10282. return;
  10283. }
  10284. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10285. // total rows in dst
  10286. const int nr = ne1;
  10287. // rows per thread
  10288. const int dr = (nr + nth - 1)/nth;
  10289. // row range for this thread
  10290. const int ir0 = dr*ith;
  10291. const int ir1 = MIN(ir0 + dr, nr);
  10292. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10293. ggml_fp16_t * const wdata_src = wdata + nk;
  10294. for (int i1 = ir0; i1 < ir1; i1++) {
  10295. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10296. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10297. for (int i10 = 0; i10 < ne10; i10++) {
  10298. const int i1n = i10*ne11;
  10299. for (int i00 = 0; i00 < ne00; i00++) {
  10300. float v = 0;
  10301. ggml_vec_dot_f16(ne02, &v, 0,
  10302. (ggml_fp16_t *) wdata_src + i1n, 0,
  10303. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10304. dst_data[i10*s0 + i00] += v;
  10305. }
  10306. }
  10307. }
  10308. }
  10309. static void ggml_compute_forward_conv_transpose_1d_f32(
  10310. const struct ggml_compute_params * params,
  10311. const struct ggml_tensor * src0,
  10312. const struct ggml_tensor * src1,
  10313. struct ggml_tensor * dst) {
  10314. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10315. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10316. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10317. int64_t t0 = ggml_perf_time_us();
  10318. UNUSED(t0);
  10319. GGML_TENSOR_BINARY_OP_LOCALS
  10320. const int ith = params->ith;
  10321. const int nth = params->nth;
  10322. const int nk = ne00*ne01*ne02;
  10323. GGML_ASSERT(nb00 == sizeof(float));
  10324. GGML_ASSERT(nb10 == sizeof(float));
  10325. if (params->type == GGML_TASK_INIT) {
  10326. if (ith != 0) {
  10327. return;
  10328. }
  10329. memset(params->wdata, 0, params->wsize);
  10330. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10331. {
  10332. float * const wdata = (float *) params->wdata + 0;
  10333. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10334. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10335. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10336. float * dst_data = wdata + i01*ne00*ne02;
  10337. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10338. dst_data[i00*ne02 + i02] = src[i00];
  10339. }
  10340. }
  10341. }
  10342. }
  10343. // prepare source data (src1)
  10344. {
  10345. float * const wdata = (float *) params->wdata + nk;
  10346. float * dst_data = wdata;
  10347. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10348. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10349. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10350. dst_data[i10*ne11 + i11] = src[i10];
  10351. }
  10352. }
  10353. }
  10354. // need to zero dst since we are accumulating into it
  10355. memset(dst->data, 0, ggml_nbytes(dst));
  10356. return;
  10357. }
  10358. if (params->type == GGML_TASK_FINALIZE) {
  10359. return;
  10360. }
  10361. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10362. // total rows in dst
  10363. const int nr = ne1;
  10364. // rows per thread
  10365. const int dr = (nr + nth - 1)/nth;
  10366. // row range for this thread
  10367. const int ir0 = dr*ith;
  10368. const int ir1 = MIN(ir0 + dr, nr);
  10369. float * const wdata = (float *) params->wdata + 0;
  10370. float * const wdata_src = wdata + nk;
  10371. for (int i1 = ir0; i1 < ir1; i1++) {
  10372. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10373. float * wdata_kernel = wdata + i1*ne02*ne00;
  10374. for (int i10 = 0; i10 < ne10; i10++) {
  10375. const int i1n = i10*ne11;
  10376. for (int i00 = 0; i00 < ne00; i00++) {
  10377. float v = 0;
  10378. ggml_vec_dot_f32(ne02, &v, 0,
  10379. wdata_src + i1n, 0,
  10380. wdata_kernel + i00*ne02, 0, 1);
  10381. dst_data[i10*s0 + i00] += v;
  10382. }
  10383. }
  10384. }
  10385. }
  10386. static void ggml_compute_forward_conv_transpose_1d(
  10387. const struct ggml_compute_params * params,
  10388. const struct ggml_tensor * src0,
  10389. const struct ggml_tensor * src1,
  10390. struct ggml_tensor * dst) {
  10391. switch (src0->type) {
  10392. case GGML_TYPE_F16:
  10393. {
  10394. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10395. } break;
  10396. case GGML_TYPE_F32:
  10397. {
  10398. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10399. } break;
  10400. default:
  10401. {
  10402. GGML_ASSERT(false);
  10403. } break;
  10404. }
  10405. }
  10406. // src0: kernel [OC, IC, KH, KW]
  10407. // src1: image [N, IC, IH, IW]
  10408. // dst: result [N, OH, OW, IC*KH*KW]
  10409. static void ggml_compute_forward_im2col_f32(
  10410. const struct ggml_compute_params * params,
  10411. const struct ggml_tensor * src0,
  10412. const struct ggml_tensor * src1,
  10413. struct ggml_tensor * dst) {
  10414. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10415. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10416. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10417. int64_t t0 = ggml_perf_time_us();
  10418. UNUSED(t0);
  10419. GGML_TENSOR_BINARY_OP_LOCALS;
  10420. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10421. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10422. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10423. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10424. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10425. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10426. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10427. const int ith = params->ith;
  10428. const int nth = params->nth;
  10429. const int64_t N = is_2D ? ne13 : ne12;
  10430. const int64_t IC = is_2D ? ne12 : ne11;
  10431. const int64_t IH = is_2D ? ne11 : 1;
  10432. const int64_t IW = ne10;
  10433. const int64_t KH = is_2D ? ne01 : 1;
  10434. const int64_t KW = ne00;
  10435. const int64_t OH = is_2D ? ne2 : 1;
  10436. const int64_t OW = ne1;
  10437. int ofs0 = is_2D ? nb13 : nb12;
  10438. int ofs1 = is_2D ? nb12 : nb11;
  10439. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10440. GGML_ASSERT(nb10 == sizeof(float));
  10441. if (params->type == GGML_TASK_INIT) {
  10442. return;
  10443. }
  10444. if (params->type == GGML_TASK_FINALIZE) {
  10445. return;
  10446. }
  10447. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10448. {
  10449. float * const wdata = (float *) dst->data;
  10450. for (int64_t in = 0; in < N; in++) {
  10451. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10452. for (int64_t iow = 0; iow < OW; iow++) {
  10453. for (int64_t iic = ith; iic < IC; iic += nth) {
  10454. // micro kernel
  10455. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10456. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10457. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10458. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10459. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10460. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10461. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10462. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10463. } else {
  10464. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10465. }
  10466. }
  10467. }
  10468. }
  10469. }
  10470. }
  10471. }
  10472. }
  10473. }
  10474. // src0: kernel [OC, IC, KH, KW]
  10475. // src1: image [N, IC, IH, IW]
  10476. // dst: result [N, OH, OW, IC*KH*KW]
  10477. static void ggml_compute_forward_im2col_f16(
  10478. const struct ggml_compute_params * params,
  10479. const struct ggml_tensor * src0,
  10480. const struct ggml_tensor * src1,
  10481. struct ggml_tensor * dst) {
  10482. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10483. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10484. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10485. int64_t t0 = ggml_perf_time_us();
  10486. UNUSED(t0);
  10487. GGML_TENSOR_BINARY_OP_LOCALS;
  10488. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10489. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10490. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10491. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10492. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10493. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10494. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10495. const int ith = params->ith;
  10496. const int nth = params->nth;
  10497. const int64_t N = is_2D ? ne13 : ne12;
  10498. const int64_t IC = is_2D ? ne12 : ne11;
  10499. const int64_t IH = is_2D ? ne11 : 1;
  10500. const int64_t IW = ne10;
  10501. const int64_t KH = is_2D ? ne01 : 1;
  10502. const int64_t KW = ne00;
  10503. const int64_t OH = is_2D ? ne2 : 1;
  10504. const int64_t OW = ne1;
  10505. int ofs0 = is_2D ? nb13 : nb12;
  10506. int ofs1 = is_2D ? nb12 : nb11;
  10507. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10508. GGML_ASSERT(nb10 == sizeof(float));
  10509. if (params->type == GGML_TASK_INIT) {
  10510. return;
  10511. }
  10512. if (params->type == GGML_TASK_FINALIZE) {
  10513. return;
  10514. }
  10515. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10516. {
  10517. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10518. for (int64_t in = 0; in < N; in++) {
  10519. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10520. for (int64_t iow = 0; iow < OW; iow++) {
  10521. for (int64_t iic = ith; iic < IC; iic += nth) {
  10522. // micro kernel
  10523. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10524. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10525. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10526. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10527. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10528. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10529. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10530. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10531. } else {
  10532. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10533. }
  10534. }
  10535. }
  10536. }
  10537. }
  10538. }
  10539. }
  10540. }
  10541. }
  10542. static void ggml_compute_forward_im2col(
  10543. const struct ggml_compute_params * params,
  10544. const struct ggml_tensor * src0,
  10545. const struct ggml_tensor * src1,
  10546. struct ggml_tensor * dst) {
  10547. switch (dst->type) {
  10548. case GGML_TYPE_F16:
  10549. {
  10550. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10551. } break;
  10552. case GGML_TYPE_F32:
  10553. {
  10554. ggml_compute_forward_im2col_f32(params, src0, src1, dst);
  10555. } break;
  10556. default:
  10557. {
  10558. GGML_ASSERT(false);
  10559. } break;
  10560. }
  10561. }
  10562. // ggml_compute_forward_conv_transpose_2d
  10563. static void ggml_compute_forward_conv_transpose_2d(
  10564. const struct ggml_compute_params * params,
  10565. const struct ggml_tensor * src0,
  10566. const struct ggml_tensor * src1,
  10567. struct ggml_tensor * dst) {
  10568. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10569. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10570. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10571. int64_t t0 = ggml_perf_time_us();
  10572. UNUSED(t0);
  10573. GGML_TENSOR_BINARY_OP_LOCALS
  10574. const int ith = params->ith;
  10575. const int nth = params->nth;
  10576. const int nk = ne00*ne01*ne02*ne03;
  10577. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10578. GGML_ASSERT(nb10 == sizeof(float));
  10579. if (params->type == GGML_TASK_INIT) {
  10580. if (ith != 0) {
  10581. return;
  10582. }
  10583. memset(params->wdata, 0, params->wsize);
  10584. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10585. {
  10586. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10587. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10588. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10589. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10590. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10591. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10592. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10593. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10594. }
  10595. }
  10596. }
  10597. }
  10598. }
  10599. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10600. {
  10601. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10602. for (int i12 = 0; i12 < ne12; i12++) {
  10603. for (int i11 = 0; i11 < ne11; i11++) {
  10604. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10605. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10606. for (int i10 = 0; i10 < ne10; i10++) {
  10607. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10608. }
  10609. }
  10610. }
  10611. }
  10612. memset(dst->data, 0, ggml_nbytes(dst));
  10613. return;
  10614. }
  10615. if (params->type == GGML_TASK_FINALIZE) {
  10616. return;
  10617. }
  10618. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10619. // total patches in dst
  10620. const int np = ne2;
  10621. // patches per thread
  10622. const int dp = (np + nth - 1)/nth;
  10623. // patch range for this thread
  10624. const int ip0 = dp*ith;
  10625. const int ip1 = MIN(ip0 + dp, np);
  10626. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10627. ggml_fp16_t * const wdata_src = wdata + nk;
  10628. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10629. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10630. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10631. for (int i11 = 0; i11 < ne11; i11++) {
  10632. for (int i10 = 0; i10 < ne10; i10++) {
  10633. const int i1n = i11*ne10*ne12 + i10*ne12;
  10634. for (int i01 = 0; i01 < ne01; i01++) {
  10635. for (int i00 = 0; i00 < ne00; i00++) {
  10636. float v = 0;
  10637. ggml_vec_dot_f16(ne03, &v, 0,
  10638. wdata_src + i1n, 0,
  10639. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10640. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10641. }
  10642. }
  10643. }
  10644. }
  10645. }
  10646. }
  10647. // ggml_compute_forward_pool_1d_sk_p0
  10648. static void ggml_compute_forward_pool_1d_sk_p0(
  10649. const struct ggml_compute_params * params,
  10650. const enum ggml_op_pool op,
  10651. const struct ggml_tensor * src,
  10652. const int k,
  10653. struct ggml_tensor * dst) {
  10654. assert(src->type == GGML_TYPE_F32);
  10655. assert(params->ith == 0);
  10656. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10657. return;
  10658. }
  10659. const char * cdata = (const char *)src->data;
  10660. const char * const data_end = cdata + ggml_nbytes(src);
  10661. float * drow = (float *)dst->data;
  10662. const int64_t rs = dst->ne[0];
  10663. while (cdata < data_end) {
  10664. const float * const srow = (const float *)cdata;
  10665. int j = 0;
  10666. for (int64_t i = 0; i < rs; ++i) {
  10667. switch (op) {
  10668. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10669. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10670. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10671. }
  10672. for (int ki = 0; ki < k; ++ki) {
  10673. switch (op) {
  10674. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10675. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10676. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10677. }
  10678. ++j;
  10679. }
  10680. switch (op) {
  10681. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10682. case GGML_OP_POOL_MAX: break;
  10683. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10684. }
  10685. }
  10686. cdata += src->nb[1];
  10687. drow += rs;
  10688. }
  10689. }
  10690. // ggml_compute_forward_pool_1d
  10691. static void ggml_compute_forward_pool_1d(
  10692. const struct ggml_compute_params * params,
  10693. const struct ggml_tensor * src0,
  10694. struct ggml_tensor * dst) {
  10695. const int32_t * opts = (const int32_t *)dst->op_params;
  10696. enum ggml_op_pool op = opts[0];
  10697. const int k0 = opts[1];
  10698. const int s0 = opts[2];
  10699. const int p0 = opts[3];
  10700. GGML_ASSERT(p0 == 0); // padding not supported
  10701. GGML_ASSERT(k0 == s0); // only s = k supported
  10702. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10703. }
  10704. // ggml_compute_forward_pool_2d
  10705. static void ggml_compute_forward_pool_2d(
  10706. const struct ggml_compute_params * params,
  10707. const struct ggml_tensor * src,
  10708. struct ggml_tensor * dst) {
  10709. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10710. GGML_ASSERT(params->ith == 0);
  10711. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10712. return;
  10713. }
  10714. const int32_t * opts = (const int32_t *)dst->op_params;
  10715. enum ggml_op_pool op = opts[0];
  10716. const int k0 = opts[1];
  10717. const int k1 = opts[2];
  10718. const int s0 = opts[3];
  10719. const int s1 = opts[4];
  10720. const int p0 = opts[5];
  10721. const int p1 = opts[6];
  10722. const char * cdata = (const char*)src->data;
  10723. const char * const data_end = cdata + ggml_nbytes(src);
  10724. const int64_t px = dst->ne[0];
  10725. const int64_t py = dst->ne[1];
  10726. const int64_t pa = px * py;
  10727. float * dplane = (float *)dst->data;
  10728. const int ka = k0 * k1;
  10729. const int offset0 = -p0;
  10730. const int offset1 = -p1;
  10731. while (cdata < data_end) {
  10732. for (int oy = 0; oy < py; ++oy) {
  10733. float * const drow = dplane + oy * px;
  10734. for (int ox = 0; ox < px; ++ox) {
  10735. float * const out = drow + ox;
  10736. switch (op) {
  10737. case GGML_OP_POOL_AVG: *out = 0; break;
  10738. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10739. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10740. }
  10741. const int ix = offset0 + ox * s0;
  10742. const int iy = offset1 + oy * s1;
  10743. for (int ky = 0; ky < k1; ++ky) {
  10744. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10745. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10746. for (int kx = 0; kx < k0; ++kx) {
  10747. int j = ix + kx;
  10748. if (j < 0 || j >= src->ne[0]) continue;
  10749. switch (op) {
  10750. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10751. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10752. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10753. }
  10754. }
  10755. }
  10756. switch (op) {
  10757. case GGML_OP_POOL_AVG: *out /= ka; break;
  10758. case GGML_OP_POOL_MAX: break;
  10759. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10760. }
  10761. }
  10762. }
  10763. cdata += src->nb[2];
  10764. dplane += pa;
  10765. }
  10766. }
  10767. // ggml_compute_forward_upscale
  10768. static void ggml_compute_forward_upscale_f32(
  10769. const struct ggml_compute_params * params,
  10770. const struct ggml_tensor * src0,
  10771. struct ggml_tensor * dst) {
  10772. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10773. return;
  10774. }
  10775. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10776. const int ith = params->ith;
  10777. const int nth = params->nth;
  10778. GGML_TENSOR_UNARY_OP_LOCALS
  10779. const int scale_factor = dst->op_params[0];
  10780. // TODO: optimize
  10781. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10782. const int64_t i03 = i3;
  10783. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10784. const int64_t i02 = i2;
  10785. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10786. const int64_t i01 = i1 / scale_factor;
  10787. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10788. const int64_t i00 = i0 / scale_factor;
  10789. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10790. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10791. *y = *x;
  10792. }
  10793. }
  10794. }
  10795. }
  10796. }
  10797. static void ggml_compute_forward_upscale(
  10798. const struct ggml_compute_params * params,
  10799. const struct ggml_tensor * src0,
  10800. struct ggml_tensor * dst) {
  10801. switch (src0->type) {
  10802. case GGML_TYPE_F32:
  10803. {
  10804. ggml_compute_forward_upscale_f32(params, src0, dst);
  10805. } break;
  10806. default:
  10807. {
  10808. GGML_ASSERT(false);
  10809. } break;
  10810. }
  10811. }
  10812. // ggml_compute_forward_pad
  10813. static void ggml_compute_forward_pad_f32(
  10814. const struct ggml_compute_params * params,
  10815. const struct ggml_tensor * src0,
  10816. struct ggml_tensor * dst) {
  10817. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10818. return;
  10819. }
  10820. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10821. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10822. const int ith = params->ith;
  10823. const int nth = params->nth;
  10824. GGML_TENSOR_UNARY_OP_LOCALS
  10825. float * dst_ptr = (float *) dst->data;
  10826. // TODO: optimize
  10827. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10828. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10829. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10830. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10831. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10832. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10833. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10834. dst_ptr[dst_idx] = *src_ptr;
  10835. } else {
  10836. dst_ptr[dst_idx] = 0;
  10837. }
  10838. }
  10839. }
  10840. }
  10841. }
  10842. }
  10843. static void ggml_compute_forward_pad(
  10844. const struct ggml_compute_params * params,
  10845. const struct ggml_tensor * src0,
  10846. struct ggml_tensor * dst) {
  10847. switch (src0->type) {
  10848. case GGML_TYPE_F32:
  10849. {
  10850. ggml_compute_forward_pad_f32(params, src0, dst);
  10851. } break;
  10852. default:
  10853. {
  10854. GGML_ASSERT(false);
  10855. } break;
  10856. }
  10857. }
  10858. // ggml_compute_forward_argsort
  10859. static void ggml_compute_forward_argsort_f32(
  10860. const struct ggml_compute_params * params,
  10861. const struct ggml_tensor * src0,
  10862. struct ggml_tensor * dst) {
  10863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10864. return;
  10865. }
  10866. GGML_TENSOR_UNARY_OP_LOCALS
  10867. GGML_ASSERT(nb0 == sizeof(float));
  10868. const int ith = params->ith;
  10869. const int nth = params->nth;
  10870. const int64_t nr = ggml_nrows(src0);
  10871. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10872. for (int64_t i = ith; i < nr; i += nth) {
  10873. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10874. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10875. for (int64_t j = 0; j < ne0; j++) {
  10876. dst_data[j] = j;
  10877. }
  10878. // C doesn't have a functional sort, so we do a bubble sort instead
  10879. for (int64_t j = 0; j < ne0; j++) {
  10880. for (int64_t k = j + 1; k < ne0; k++) {
  10881. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10882. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10883. int32_t tmp = dst_data[j];
  10884. dst_data[j] = dst_data[k];
  10885. dst_data[k] = tmp;
  10886. }
  10887. }
  10888. }
  10889. }
  10890. }
  10891. static void ggml_compute_forward_argsort(
  10892. const struct ggml_compute_params * params,
  10893. const struct ggml_tensor * src0,
  10894. struct ggml_tensor * dst) {
  10895. switch (src0->type) {
  10896. case GGML_TYPE_F32:
  10897. {
  10898. ggml_compute_forward_argsort_f32(params, src0, dst);
  10899. } break;
  10900. default:
  10901. {
  10902. GGML_ASSERT(false);
  10903. } break;
  10904. }
  10905. }
  10906. // ggml_compute_forward_flash_attn
  10907. static void ggml_compute_forward_flash_attn_f32(
  10908. const struct ggml_compute_params * params,
  10909. const struct ggml_tensor * q,
  10910. const struct ggml_tensor * k,
  10911. const struct ggml_tensor * v,
  10912. const bool masked,
  10913. struct ggml_tensor * dst) {
  10914. int64_t t0 = ggml_perf_time_us();
  10915. UNUSED(t0);
  10916. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10917. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10918. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10919. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10920. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10921. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10922. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10923. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10924. const int ith = params->ith;
  10925. const int nth = params->nth;
  10926. const int64_t D = neq0;
  10927. const int64_t N = neq1;
  10928. const int64_t P = nek1 - N;
  10929. const int64_t M = P + N;
  10930. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10931. GGML_ASSERT(ne0 == D);
  10932. GGML_ASSERT(ne1 == N);
  10933. GGML_ASSERT(P >= 0);
  10934. GGML_ASSERT(nbq0 == sizeof(float));
  10935. GGML_ASSERT(nbk0 == sizeof(float));
  10936. GGML_ASSERT(nbv0 == sizeof(float));
  10937. GGML_ASSERT(neq0 == D);
  10938. GGML_ASSERT(nek0 == D);
  10939. GGML_ASSERT(nev1 == D);
  10940. GGML_ASSERT(neq1 == N);
  10941. GGML_ASSERT(nek1 == N + P);
  10942. GGML_ASSERT(nev1 == D);
  10943. // dst cannot be transposed or permuted
  10944. GGML_ASSERT(nb0 == sizeof(float));
  10945. GGML_ASSERT(nb0 <= nb1);
  10946. GGML_ASSERT(nb1 <= nb2);
  10947. GGML_ASSERT(nb2 <= nb3);
  10948. if (params->type == GGML_TASK_INIT) {
  10949. return;
  10950. }
  10951. if (params->type == GGML_TASK_FINALIZE) {
  10952. return;
  10953. }
  10954. // parallelize by q rows using ggml_vec_dot_f32
  10955. // total rows in q
  10956. const int nr = neq1*neq2*neq3;
  10957. // rows per thread
  10958. const int dr = (nr + nth - 1)/nth;
  10959. // row range for this thread
  10960. const int ir0 = dr*ith;
  10961. const int ir1 = MIN(ir0 + dr, nr);
  10962. const float scale = 1.0f/sqrtf(D);
  10963. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10964. for (int ir = ir0; ir < ir1; ++ir) {
  10965. // q indices
  10966. const int iq3 = ir/(neq2*neq1);
  10967. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10968. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10969. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10970. for (int i = M; i < Mup; ++i) {
  10971. S[i] = -INFINITY;
  10972. }
  10973. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10974. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10975. // k indices
  10976. const int ik3 = iq3;
  10977. const int ik2 = iq2 % nek2;
  10978. const int ik1 = ic;
  10979. // S indices
  10980. const int i1 = ik1;
  10981. ggml_vec_dot_f32(neq0,
  10982. S + i1, 0,
  10983. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  10984. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  10985. }
  10986. // scale
  10987. ggml_vec_scale_f32(masked_begin, S, scale);
  10988. for (int64_t i = masked_begin; i < M; i++) {
  10989. S[i] = -INFINITY;
  10990. }
  10991. // softmax
  10992. // exclude known -INF S[..] values from max and loop
  10993. // dont forget to set their SW values to zero
  10994. {
  10995. float max = -INFINITY;
  10996. ggml_vec_max_f32(masked_begin, &max, S);
  10997. ggml_float sum = 0.0;
  10998. {
  10999. #ifdef GGML_SOFT_MAX_ACCELERATE
  11000. max = -max;
  11001. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11002. vvexpf(S, S, &Mup);
  11003. ggml_vec_sum_f32(Mup, &sum, S);
  11004. #else
  11005. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11006. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11007. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11008. if (i >= masked_begin) {
  11009. break;
  11010. }
  11011. float * SS = S + i;
  11012. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11013. if (i + j >= masked_begin) {
  11014. break;
  11015. } else if (SS[j] == -INFINITY) {
  11016. SS[j] = 0.0f;
  11017. } else {
  11018. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11019. const float val = expf(SS[j] - max);
  11020. #else
  11021. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11022. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11023. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11024. #endif
  11025. sump[j] += (ggml_float)val;
  11026. SS[j] = val;
  11027. }
  11028. }
  11029. }
  11030. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11031. sum += sump[i];
  11032. }
  11033. #endif
  11034. }
  11035. assert(sum > 0.0);
  11036. sum = 1.0/sum;
  11037. ggml_vec_scale_f32(masked_begin, S, sum);
  11038. #ifndef NDEBUG
  11039. for (int i = 0; i < masked_begin; ++i) {
  11040. assert(!isnan(S[i]));
  11041. assert(!isinf(S[i]));
  11042. }
  11043. #endif
  11044. }
  11045. for (int64_t ic = 0; ic < nev1; ++ic) {
  11046. // dst indices
  11047. const int i1 = iq1;
  11048. const int i2 = iq2;
  11049. const int i3 = iq3;
  11050. // v indices
  11051. const int iv2 = iq2 % nev2;
  11052. const int iv3 = iq3;
  11053. ggml_vec_dot_f32(masked_begin,
  11054. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11055. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11056. S, 0, 1);
  11057. }
  11058. }
  11059. }
  11060. static void ggml_compute_forward_flash_attn_f16(
  11061. const struct ggml_compute_params * params,
  11062. const struct ggml_tensor * q,
  11063. const struct ggml_tensor * k,
  11064. const struct ggml_tensor * v,
  11065. const bool masked,
  11066. struct ggml_tensor * dst) {
  11067. int64_t t0 = ggml_perf_time_us();
  11068. UNUSED(t0);
  11069. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11070. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11071. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11072. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11073. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11074. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11075. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11076. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11077. const int ith = params->ith;
  11078. const int nth = params->nth;
  11079. const int64_t D = neq0;
  11080. const int64_t N = neq1;
  11081. const int64_t P = nek1 - N;
  11082. const int64_t M = P + N;
  11083. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11084. GGML_ASSERT(ne0 == D);
  11085. GGML_ASSERT(ne1 == N);
  11086. GGML_ASSERT(P >= 0);
  11087. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11088. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11089. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11090. GGML_ASSERT(neq0 == D);
  11091. GGML_ASSERT(nek0 == D);
  11092. GGML_ASSERT(nev1 == D);
  11093. GGML_ASSERT(neq1 == N);
  11094. GGML_ASSERT(nek1 == N + P);
  11095. GGML_ASSERT(nev1 == D);
  11096. // dst cannot be transposed or permuted
  11097. GGML_ASSERT(nb0 == sizeof(float));
  11098. GGML_ASSERT(nb0 <= nb1);
  11099. GGML_ASSERT(nb1 <= nb2);
  11100. GGML_ASSERT(nb2 <= nb3);
  11101. if (params->type == GGML_TASK_INIT) {
  11102. return;
  11103. }
  11104. if (params->type == GGML_TASK_FINALIZE) {
  11105. return;
  11106. }
  11107. // parallelize by q rows using ggml_vec_dot_f32
  11108. // total rows in q
  11109. const int nr = neq1*neq2*neq3;
  11110. // rows per thread
  11111. const int dr = (nr + nth - 1)/nth;
  11112. // row range for this thread
  11113. const int ir0 = dr*ith;
  11114. const int ir1 = MIN(ir0 + dr, nr);
  11115. const float scale = 1.0f/sqrtf(D);
  11116. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11117. for (int ir = ir0; ir < ir1; ++ir) {
  11118. // q indices
  11119. const int iq3 = ir/(neq2*neq1);
  11120. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11121. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11122. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11123. for (int i = M; i < Mup; ++i) {
  11124. S[i] = -INFINITY;
  11125. }
  11126. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11127. for (int64_t ic = 0; ic < nek1; ++ic) {
  11128. // k indices
  11129. const int ik3 = iq3;
  11130. const int ik2 = iq2 % nek2;
  11131. const int ik1 = ic;
  11132. // S indices
  11133. const int i1 = ik1;
  11134. ggml_vec_dot_f16(neq0,
  11135. S + i1, 0,
  11136. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11137. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11138. }
  11139. } else {
  11140. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11141. // k indices
  11142. const int ik3 = iq3;
  11143. const int ik2 = iq2 % nek2;
  11144. const int ik1 = ic;
  11145. // S indices
  11146. const int i1 = ik1;
  11147. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11148. S + i1,
  11149. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11150. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11151. }
  11152. }
  11153. // scale
  11154. ggml_vec_scale_f32(nek1, S, scale);
  11155. if (masked) {
  11156. for (int64_t i = P; i < M; i++) {
  11157. if (i > P + iq1) {
  11158. S[i] = -INFINITY;
  11159. }
  11160. }
  11161. }
  11162. // softmax
  11163. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11164. // dont forget to set their S values to zero
  11165. {
  11166. float max = -INFINITY;
  11167. ggml_vec_max_f32(M, &max, S);
  11168. ggml_float sum = 0.0;
  11169. {
  11170. #ifdef GGML_SOFT_MAX_ACCELERATE
  11171. max = -max;
  11172. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11173. vvexpf(S, S, &Mup);
  11174. ggml_vec_sum_f32(Mup, &sum, S);
  11175. #else
  11176. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11177. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11178. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11179. float * SS = S + i;
  11180. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11181. if (SS[j] == -INFINITY) {
  11182. SS[j] = 0.0f;
  11183. } else {
  11184. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11185. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11186. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11187. sump[j] += (ggml_float)val;
  11188. SS[j] = val;
  11189. }
  11190. }
  11191. }
  11192. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11193. sum += sump[i];
  11194. }
  11195. #endif
  11196. }
  11197. assert(sum > 0.0);
  11198. sum = 1.0/sum;
  11199. ggml_vec_scale_f32(M, S, sum);
  11200. #ifndef NDEBUG
  11201. for (int i = 0; i < M; ++i) {
  11202. assert(!isnan(S[i]));
  11203. assert(!isinf(S[i]));
  11204. }
  11205. #endif
  11206. }
  11207. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11208. for (int64_t i = 0; i < M; i++) {
  11209. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11210. }
  11211. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11212. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11213. for (int64_t ic = 0; ic < nev1; ++ic) {
  11214. // dst indices
  11215. const int i1 = iq1;
  11216. const int i2 = iq2;
  11217. const int i3 = iq3;
  11218. // v indices
  11219. const int iv2 = iq2 % nev2;
  11220. const int iv3 = iq3;
  11221. ggml_vec_dot_f16(nev0,
  11222. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11223. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11224. S16, 0, 1);
  11225. }
  11226. } else {
  11227. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11228. // dst indices
  11229. const int i1 = iq1;
  11230. const int i2 = iq2;
  11231. const int i3 = iq3;
  11232. // v indices
  11233. const int iv2 = iq2 % nev2;
  11234. const int iv3 = iq3;
  11235. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11236. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11237. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11238. S16);
  11239. }
  11240. }
  11241. }
  11242. }
  11243. static void ggml_compute_forward_flash_attn(
  11244. const struct ggml_compute_params * params,
  11245. const struct ggml_tensor * q,
  11246. const struct ggml_tensor * k,
  11247. const struct ggml_tensor * v,
  11248. const bool masked,
  11249. struct ggml_tensor * dst) {
  11250. switch (q->type) {
  11251. case GGML_TYPE_F16:
  11252. {
  11253. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11254. } break;
  11255. case GGML_TYPE_F32:
  11256. {
  11257. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11258. } break;
  11259. default:
  11260. {
  11261. GGML_ASSERT(false);
  11262. } break;
  11263. }
  11264. }
  11265. // ggml_compute_forward_flash_ff
  11266. static void ggml_compute_forward_flash_ff_f16(
  11267. const struct ggml_compute_params * params,
  11268. const struct ggml_tensor * a, // F16
  11269. const struct ggml_tensor * b0, // F16 fc_w
  11270. const struct ggml_tensor * b1, // F32 fc_b
  11271. const struct ggml_tensor * c0, // F16 proj_w
  11272. const struct ggml_tensor * c1, // F32 proj_b
  11273. struct ggml_tensor * dst) {
  11274. int64_t t0 = ggml_perf_time_us();
  11275. UNUSED(t0);
  11276. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11277. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11278. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11279. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11280. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11281. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11282. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11283. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11284. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11285. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11286. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11287. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11288. const int ith = params->ith;
  11289. const int nth = params->nth;
  11290. const int64_t D = nea0;
  11291. //const int64_t N = nea1;
  11292. const int64_t M = neb01;
  11293. GGML_ASSERT(ne0 == nea0);
  11294. GGML_ASSERT(ne1 == nea1);
  11295. GGML_ASSERT(ne2 == nea2);
  11296. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11297. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11298. GGML_ASSERT(nbb10 == sizeof(float));
  11299. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11300. GGML_ASSERT(nbc10 == sizeof(float));
  11301. GGML_ASSERT(neb00 == D);
  11302. GGML_ASSERT(neb01 == M);
  11303. GGML_ASSERT(neb10 == M);
  11304. GGML_ASSERT(neb11 == 1);
  11305. GGML_ASSERT(nec00 == M);
  11306. GGML_ASSERT(nec01 == D);
  11307. GGML_ASSERT(nec10 == D);
  11308. GGML_ASSERT(nec11 == 1);
  11309. // dst cannot be transposed or permuted
  11310. GGML_ASSERT(nb0 == sizeof(float));
  11311. GGML_ASSERT(nb0 <= nb1);
  11312. GGML_ASSERT(nb1 <= nb2);
  11313. GGML_ASSERT(nb2 <= nb3);
  11314. if (params->type == GGML_TASK_INIT) {
  11315. return;
  11316. }
  11317. if (params->type == GGML_TASK_FINALIZE) {
  11318. return;
  11319. }
  11320. // parallelize by a rows using ggml_vec_dot_f32
  11321. // total rows in a
  11322. const int nr = nea1*nea2*nea3;
  11323. // rows per thread
  11324. const int dr = (nr + nth - 1)/nth;
  11325. // row range for this thread
  11326. const int ir0 = dr*ith;
  11327. const int ir1 = MIN(ir0 + dr, nr);
  11328. for (int ir = ir0; ir < ir1; ++ir) {
  11329. // a indices
  11330. const int ia3 = ir/(nea2*nea1);
  11331. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11332. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11333. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11334. for (int64_t ic = 0; ic < neb01; ++ic) {
  11335. // b0 indices
  11336. const int ib03 = ia3;
  11337. const int ib02 = ia2;
  11338. const int ib01 = ic;
  11339. // S indices
  11340. const int i1 = ib01;
  11341. ggml_vec_dot_f16(nea0,
  11342. S + i1, 0,
  11343. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11344. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11345. }
  11346. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11347. //ggml_vec_gelu_f32(neb01, S, S);
  11348. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11349. for (int64_t i = 0; i < M; i++) {
  11350. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11351. }
  11352. ggml_vec_gelu_f16(neb01, S16, S16);
  11353. {
  11354. // dst indices
  11355. const int i1 = ia1;
  11356. const int i2 = ia2;
  11357. const int i3 = ia3;
  11358. for (int64_t ic = 0; ic < nec01; ++ic) {
  11359. ggml_vec_dot_f16(neb01,
  11360. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11361. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11362. S16, 0, 1);
  11363. }
  11364. ggml_vec_add_f32(nec01,
  11365. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11366. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11367. (float *) c1->data);
  11368. }
  11369. }
  11370. }
  11371. static void ggml_compute_forward_flash_ff(
  11372. const struct ggml_compute_params * params,
  11373. const struct ggml_tensor * a,
  11374. const struct ggml_tensor * b0,
  11375. const struct ggml_tensor * b1,
  11376. const struct ggml_tensor * c0,
  11377. const struct ggml_tensor * c1,
  11378. struct ggml_tensor * dst) {
  11379. switch (b0->type) {
  11380. case GGML_TYPE_F16:
  11381. {
  11382. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11383. } break;
  11384. case GGML_TYPE_F32:
  11385. {
  11386. GGML_ASSERT(false); // TODO
  11387. } break;
  11388. default:
  11389. {
  11390. GGML_ASSERT(false);
  11391. } break;
  11392. }
  11393. }
  11394. // ggml_compute_forward_flash_attn_back
  11395. static void ggml_compute_forward_flash_attn_back_f32(
  11396. const struct ggml_compute_params * params,
  11397. const struct ggml_tensor * q,
  11398. const struct ggml_tensor * k,
  11399. const struct ggml_tensor * v,
  11400. const struct ggml_tensor * d,
  11401. const bool masked,
  11402. struct ggml_tensor * dst) {
  11403. int64_t t0 = ggml_perf_time_us();
  11404. UNUSED(t0);
  11405. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11406. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11407. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11408. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11409. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11410. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11411. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11412. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11413. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11414. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11415. const int ith = params->ith;
  11416. const int nth = params->nth;
  11417. const int64_t D = neq0;
  11418. const int64_t N = neq1;
  11419. const int64_t P = nek1 - N;
  11420. const int64_t M = P + N;
  11421. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11422. const int mxDM = MAX(D, Mup);
  11423. // GGML_ASSERT(ne0 == D);
  11424. // GGML_ASSERT(ne1 == N);
  11425. GGML_ASSERT(P >= 0);
  11426. GGML_ASSERT(nbq0 == sizeof(float));
  11427. GGML_ASSERT(nbk0 == sizeof(float));
  11428. GGML_ASSERT(nbv0 == sizeof(float));
  11429. GGML_ASSERT(neq0 == D);
  11430. GGML_ASSERT(nek0 == D);
  11431. GGML_ASSERT(nev1 == D);
  11432. GGML_ASSERT(ned0 == D);
  11433. GGML_ASSERT(neq1 == N);
  11434. GGML_ASSERT(nek1 == N + P);
  11435. GGML_ASSERT(nev1 == D);
  11436. GGML_ASSERT(ned1 == N);
  11437. // dst cannot be transposed or permuted
  11438. GGML_ASSERT(nb0 == sizeof(float));
  11439. GGML_ASSERT(nb0 <= nb1);
  11440. GGML_ASSERT(nb1 <= nb2);
  11441. GGML_ASSERT(nb2 <= nb3);
  11442. if (params->type == GGML_TASK_INIT) {
  11443. if (ith == 0) {
  11444. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11445. }
  11446. return;
  11447. }
  11448. if (params->type == GGML_TASK_FINALIZE) {
  11449. return;
  11450. }
  11451. const int64_t elem_q = ggml_nelements(q);
  11452. const int64_t elem_k = ggml_nelements(k);
  11453. enum ggml_type result_type = dst->type;
  11454. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11455. const size_t tsize = ggml_type_size(result_type);
  11456. const size_t offs_q = 0;
  11457. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11458. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11459. void * grad_q = (char *) dst->data;
  11460. void * grad_k = (char *) dst->data + offs_k;
  11461. void * grad_v = (char *) dst->data + offs_v;
  11462. const size_t nbgq1 = nb0*neq0;
  11463. const size_t nbgq2 = nb0*neq0*neq1;
  11464. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11465. const size_t nbgk1 = nb0*nek0;
  11466. const size_t nbgk2 = nb0*nek0*nek1;
  11467. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11468. const size_t nbgv1 = nb0*nev0;
  11469. const size_t nbgv2 = nb0*nev0*nev1;
  11470. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11471. // parallelize by k rows using ggml_vec_dot_f32
  11472. // total rows in k
  11473. const int nr = nek2*nek3;
  11474. // rows per thread
  11475. const int dr = (nr + nth - 1)/nth;
  11476. // row range for this thread
  11477. const int ir0 = dr*ith;
  11478. const int ir1 = MIN(ir0 + dr, nr);
  11479. const float scale = 1.0f/sqrtf(D);
  11480. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11481. // how often k2 (and v2) is repeated in q2
  11482. int nrep = neq2/nek2;
  11483. for (int ir = ir0; ir < ir1; ++ir) {
  11484. // q indices
  11485. const int ik3 = ir/(nek2);
  11486. const int ik2 = ir - ik3*nek2;
  11487. const int iq3 = ik3;
  11488. const int id3 = ik3;
  11489. const int iv3 = ik3;
  11490. const int iv2 = ik2;
  11491. for (int irep = 0; irep < nrep; ++irep) {
  11492. const int iq2 = ik2 + irep*nek2;
  11493. const int id2 = iq2;
  11494. // (ik2 + irep*nek2) % nek2 == ik2
  11495. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11496. const int id1 = iq1;
  11497. // not sure about CACHE_LINE_SIZE_F32..
  11498. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11499. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11500. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11501. for (int i = M; i < Mup; ++i) {
  11502. S[i] = -INFINITY;
  11503. }
  11504. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11505. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11506. // k indices
  11507. const int ik1 = ic;
  11508. // S indices
  11509. const int i1 = ik1;
  11510. ggml_vec_dot_f32(neq0,
  11511. S + i1, 0,
  11512. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11513. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11514. }
  11515. // scale
  11516. ggml_vec_scale_f32(masked_begin, S, scale);
  11517. for (int64_t i = masked_begin; i < M; i++) {
  11518. S[i] = -INFINITY;
  11519. }
  11520. // softmax
  11521. // exclude known -INF S[..] values from max and loop
  11522. // dont forget to set their SM values to zero
  11523. {
  11524. float max = -INFINITY;
  11525. ggml_vec_max_f32(masked_begin, &max, S);
  11526. ggml_float sum = 0.0;
  11527. {
  11528. #ifdef GGML_SOFT_MAX_ACCELERATE
  11529. max = -max;
  11530. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11531. vvexpf(SM, SM, &Mup);
  11532. ggml_vec_sum_f32(Mup, &sum, SM);
  11533. #else
  11534. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11535. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11536. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11537. if (i >= masked_begin) {
  11538. break;
  11539. }
  11540. float * SR = S + i;
  11541. float * SW = SM + i;
  11542. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11543. if (i + j >= masked_begin) {
  11544. break;
  11545. } else if (SR[j] == -INFINITY) {
  11546. SW[j] = 0.0f;
  11547. } else {
  11548. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11549. const float val = expf(SR[j] - max);
  11550. #else
  11551. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11552. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11553. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11554. #endif
  11555. sump[j] += (ggml_float)val;
  11556. SW[j] = val;
  11557. }
  11558. }
  11559. }
  11560. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11561. sum += sump[i];
  11562. }
  11563. #endif
  11564. }
  11565. assert(sum > 0.0);
  11566. sum = 1.0/sum;
  11567. ggml_vec_scale_f32(masked_begin, SM, sum);
  11568. }
  11569. // step-by-step explanation
  11570. {
  11571. // forward-process shape grads from backward process
  11572. // parallel_for ik2,ik3:
  11573. // for irep:
  11574. // iq2 = ik2 + irep*nek2
  11575. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11576. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11577. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11578. // for iq1:
  11579. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11580. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11581. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11582. // S0 = -Inf [D,1,1,1]
  11583. // ~S1[i] = dot(kcur[:D,i], qcur)
  11584. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11585. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11586. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11587. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11588. // ~S5[i] = dot(vcur[:,i], S4)
  11589. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11590. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11591. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11592. // dst backward-/ grad[dst] = d
  11593. //
  11594. // output gradients with their dependencies:
  11595. //
  11596. // grad[kcur] = grad[S1].T @ qcur
  11597. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11598. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11599. // grad[S4] = grad[S5] @ vcur
  11600. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11601. // grad[qcur] = grad[S1] @ kcur
  11602. // grad[vcur] = grad[S5].T @ S4
  11603. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11604. //
  11605. // in post-order:
  11606. //
  11607. // S1 = qcur @ kcur.T
  11608. // S2 = S1 * scale
  11609. // S3 = diag_mask_inf(S2, P)
  11610. // S4 = softmax(S3)
  11611. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11612. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11613. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11614. // grad[qcur] = grad[S1] @ kcur
  11615. // grad[kcur] = grad[S1].T @ qcur
  11616. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11617. //
  11618. // using less variables (SM=S4):
  11619. //
  11620. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11621. // SM = softmax(S)
  11622. // S = d[:D,iq1,iq2,iq3] @ vcur
  11623. // dot_SM_gradSM = dot(SM, S)
  11624. // S = SM * (S - dot(SM, S))
  11625. // S = diag_mask_zero(S, P) * scale
  11626. //
  11627. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11628. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11629. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11630. }
  11631. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11632. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11633. // for ic:
  11634. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11635. // exclude known future zero S[..] values from operation
  11636. ggml_vec_set_f32(masked_begin, S, 0);
  11637. for (int64_t ic = 0; ic < D; ++ic) {
  11638. ggml_vec_mad_f32(masked_begin,
  11639. S,
  11640. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11641. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11642. }
  11643. // S = SM * (S - dot(SM, S))
  11644. float dot_SM_gradSM = 0;
  11645. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11646. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11647. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11648. // S = diag_mask_zero(S, P) * scale
  11649. // already done by above ggml_vec_set_f32
  11650. // exclude known zero S[..] values from operation
  11651. ggml_vec_scale_f32(masked_begin, S, scale);
  11652. // S shape [M,1]
  11653. // SM shape [M,1]
  11654. // kcur shape [D,M]
  11655. // qcur shape [D,1]
  11656. // vcur shape [M,D]
  11657. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11658. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11659. // for ic:
  11660. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11661. // exclude known zero S[..] values from loop
  11662. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11663. ggml_vec_mad_f32(D,
  11664. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11665. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11666. S[ic]);
  11667. }
  11668. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11669. // for ic:
  11670. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11671. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11672. // exclude known zero S[..] values from loop
  11673. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11674. ggml_vec_mad_f32(D,
  11675. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11676. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11677. S[ic]);
  11678. }
  11679. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11680. // for ic:
  11681. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11682. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11683. // exclude known zero SM[..] values from mad
  11684. for (int64_t ic = 0; ic < D; ++ic) {
  11685. ggml_vec_mad_f32(masked_begin,
  11686. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11687. SM,
  11688. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11689. }
  11690. }
  11691. }
  11692. }
  11693. }
  11694. static void ggml_compute_forward_flash_attn_back(
  11695. const struct ggml_compute_params * params,
  11696. const struct ggml_tensor * q,
  11697. const struct ggml_tensor * k,
  11698. const struct ggml_tensor * v,
  11699. const struct ggml_tensor * d,
  11700. const bool masked,
  11701. struct ggml_tensor * dst) {
  11702. switch (q->type) {
  11703. case GGML_TYPE_F32:
  11704. {
  11705. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11706. } break;
  11707. default:
  11708. {
  11709. GGML_ASSERT(false);
  11710. } break;
  11711. }
  11712. }
  11713. // ggml_compute_forward_win_part
  11714. static void ggml_compute_forward_win_part_f32(
  11715. const struct ggml_compute_params * params,
  11716. const struct ggml_tensor * src0,
  11717. struct ggml_tensor * dst) {
  11718. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11719. return;
  11720. }
  11721. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11722. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11723. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11724. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11725. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11726. assert(ne00 == ne0);
  11727. assert(ne3 == nep0*nep1);
  11728. // TODO: optimize / multi-thread
  11729. for (int py = 0; py < nep1; ++py) {
  11730. for (int px = 0; px < nep0; ++px) {
  11731. const int64_t i3 = py*nep0 + px;
  11732. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11733. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11734. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11735. const int64_t i02 = py*w + i2;
  11736. const int64_t i01 = px*w + i1;
  11737. const int64_t i00 = i0;
  11738. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11739. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11740. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11741. ((float *) dst->data)[i] = 0.0f;
  11742. } else {
  11743. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11744. }
  11745. }
  11746. }
  11747. }
  11748. }
  11749. }
  11750. }
  11751. static void ggml_compute_forward_win_part(
  11752. const struct ggml_compute_params * params,
  11753. const struct ggml_tensor * src0,
  11754. struct ggml_tensor * dst) {
  11755. switch (src0->type) {
  11756. case GGML_TYPE_F32:
  11757. {
  11758. ggml_compute_forward_win_part_f32(params, src0, dst);
  11759. } break;
  11760. default:
  11761. {
  11762. GGML_ASSERT(false);
  11763. } break;
  11764. }
  11765. }
  11766. // ggml_compute_forward_win_unpart
  11767. static void ggml_compute_forward_win_unpart_f32(
  11768. const struct ggml_compute_params * params,
  11769. const struct ggml_tensor * src0,
  11770. struct ggml_tensor * dst) {
  11771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11772. return;
  11773. }
  11774. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11775. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11776. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11777. // padding
  11778. const int px = (w - ne1%w)%w;
  11779. //const int py = (w - ne2%w)%w;
  11780. const int npx = (px + ne1)/w;
  11781. //const int npy = (py + ne2)/w;
  11782. assert(ne0 == ne00);
  11783. // TODO: optimize / multi-thread
  11784. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11785. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11786. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11787. const int ip2 = i2/w;
  11788. const int ip1 = i1/w;
  11789. const int64_t i02 = i2%w;
  11790. const int64_t i01 = i1%w;
  11791. const int64_t i00 = i0;
  11792. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11793. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11794. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11795. }
  11796. }
  11797. }
  11798. }
  11799. static void ggml_compute_forward_win_unpart(
  11800. const struct ggml_compute_params * params,
  11801. const struct ggml_tensor * src0,
  11802. struct ggml_tensor * dst) {
  11803. switch (src0->type) {
  11804. case GGML_TYPE_F32:
  11805. {
  11806. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11807. } break;
  11808. default:
  11809. {
  11810. GGML_ASSERT(false);
  11811. } break;
  11812. }
  11813. }
  11814. //gmml_compute_forward_unary
  11815. static void ggml_compute_forward_unary(
  11816. const struct ggml_compute_params * params,
  11817. const struct ggml_tensor * src0,
  11818. struct ggml_tensor * dst) {
  11819. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11820. switch (op) {
  11821. case GGML_UNARY_OP_ABS:
  11822. {
  11823. ggml_compute_forward_abs(params, src0, dst);
  11824. } break;
  11825. case GGML_UNARY_OP_SGN:
  11826. {
  11827. ggml_compute_forward_sgn(params, src0, dst);
  11828. } break;
  11829. case GGML_UNARY_OP_NEG:
  11830. {
  11831. ggml_compute_forward_neg(params, src0, dst);
  11832. } break;
  11833. case GGML_UNARY_OP_STEP:
  11834. {
  11835. ggml_compute_forward_step(params, src0, dst);
  11836. } break;
  11837. case GGML_UNARY_OP_TANH:
  11838. {
  11839. ggml_compute_forward_tanh(params, src0, dst);
  11840. } break;
  11841. case GGML_UNARY_OP_ELU:
  11842. {
  11843. ggml_compute_forward_elu(params, src0, dst);
  11844. } break;
  11845. case GGML_UNARY_OP_RELU:
  11846. {
  11847. ggml_compute_forward_relu(params, src0, dst);
  11848. } break;
  11849. case GGML_UNARY_OP_GELU:
  11850. {
  11851. ggml_compute_forward_gelu(params, src0, dst);
  11852. } break;
  11853. case GGML_UNARY_OP_GELU_QUICK:
  11854. {
  11855. ggml_compute_forward_gelu_quick(params, src0, dst);
  11856. } break;
  11857. case GGML_UNARY_OP_SILU:
  11858. {
  11859. ggml_compute_forward_silu(params, src0, dst);
  11860. } break;
  11861. case GGML_UNARY_OP_HARDSWISH:
  11862. {
  11863. ggml_compute_forward_hardswish(params, src0, dst);
  11864. } break;
  11865. case GGML_UNARY_OP_HARDSIGMOID:
  11866. {
  11867. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11868. } break;
  11869. default:
  11870. {
  11871. GGML_ASSERT(false);
  11872. } break;
  11873. }
  11874. }
  11875. // ggml_compute_forward_get_rel_pos
  11876. static void ggml_compute_forward_get_rel_pos_f16(
  11877. const struct ggml_compute_params * params,
  11878. const struct ggml_tensor * src0,
  11879. struct ggml_tensor * dst) {
  11880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11881. return;
  11882. }
  11883. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11884. GGML_TENSOR_UNARY_OP_LOCALS
  11885. const int64_t w = ne1;
  11886. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11887. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11888. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11889. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11890. const int64_t pos = (w - i1 - 1) + i2;
  11891. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11892. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11893. }
  11894. }
  11895. }
  11896. }
  11897. static void ggml_compute_forward_get_rel_pos(
  11898. const struct ggml_compute_params * params,
  11899. const struct ggml_tensor * src0,
  11900. struct ggml_tensor * dst) {
  11901. switch (src0->type) {
  11902. case GGML_TYPE_F16:
  11903. {
  11904. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11905. } break;
  11906. default:
  11907. {
  11908. GGML_ASSERT(false);
  11909. } break;
  11910. }
  11911. }
  11912. // ggml_compute_forward_add_rel_pos
  11913. static void ggml_compute_forward_add_rel_pos_f32(
  11914. const struct ggml_compute_params * params,
  11915. const struct ggml_tensor * src0,
  11916. const struct ggml_tensor * src1,
  11917. const struct ggml_tensor * src2,
  11918. struct ggml_tensor * dst) {
  11919. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11920. if (!inplace && params->type == GGML_TASK_INIT) {
  11921. if (params->ith != 0) {
  11922. return;
  11923. }
  11924. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11925. return;
  11926. }
  11927. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11928. return;
  11929. }
  11930. int64_t t0 = ggml_perf_time_us();
  11931. UNUSED(t0);
  11932. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11933. float * src1_data = (float *) src1->data;
  11934. float * src2_data = (float *) src2->data;
  11935. float * dst_data = (float *) dst->data;
  11936. const int64_t ne10 = src1->ne[0];
  11937. const int64_t ne11 = src1->ne[1];
  11938. const int64_t ne12 = src1->ne[2];
  11939. const int64_t ne13 = src1->ne[3];
  11940. const int ith = params->ith;
  11941. const int nth = params->nth;
  11942. // total patches in dst
  11943. const int np = ne13;
  11944. // patches per thread
  11945. const int dp = (np + nth - 1)/nth;
  11946. // patch range for this thread
  11947. const int ip0 = dp*ith;
  11948. const int ip1 = MIN(ip0 + dp, np);
  11949. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11950. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11951. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11952. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11953. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11954. const int64_t jp0 = jp1 + i10;
  11955. const float src1_e = src1_data[jp0];
  11956. const float src2_e = src2_data[jp0];
  11957. const int64_t jdh = jp0 * ne10;
  11958. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11959. for (int64_t j = 0; j < ne10; ++j) {
  11960. dst_data[jdh + j ] += src2_e;
  11961. dst_data[jdw + j*ne10] += src1_e;
  11962. }
  11963. }
  11964. }
  11965. }
  11966. }
  11967. }
  11968. static void ggml_compute_forward_add_rel_pos(
  11969. const struct ggml_compute_params * params,
  11970. const struct ggml_tensor * src0,
  11971. const struct ggml_tensor * src1,
  11972. const struct ggml_tensor * src2,
  11973. struct ggml_tensor * dst) {
  11974. switch (src0->type) {
  11975. case GGML_TYPE_F32:
  11976. {
  11977. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11978. } break;
  11979. default:
  11980. {
  11981. GGML_ASSERT(false);
  11982. } break;
  11983. }
  11984. }
  11985. // ggml_compute_forward_map_unary
  11986. static void ggml_compute_forward_map_unary_f32(
  11987. const struct ggml_compute_params * params,
  11988. const struct ggml_tensor * src0,
  11989. struct ggml_tensor * dst,
  11990. const ggml_unary_op_f32_t fun) {
  11991. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11993. return;
  11994. }
  11995. const int n = ggml_nrows(src0);
  11996. const int nc = src0->ne[0];
  11997. assert( dst->nb[0] == sizeof(float));
  11998. assert(src0->nb[0] == sizeof(float));
  11999. for (int i = 0; i < n; i++) {
  12000. fun(nc,
  12001. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12002. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12003. }
  12004. }
  12005. static void ggml_compute_forward_map_unary(
  12006. const struct ggml_compute_params * params,
  12007. const struct ggml_tensor * src0,
  12008. struct ggml_tensor * dst,
  12009. const ggml_unary_op_f32_t fun) {
  12010. switch (src0->type) {
  12011. case GGML_TYPE_F32:
  12012. {
  12013. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12014. } break;
  12015. default:
  12016. {
  12017. GGML_ASSERT(false);
  12018. } break;
  12019. }
  12020. }
  12021. // ggml_compute_forward_map_binary
  12022. static void ggml_compute_forward_map_binary_f32(
  12023. const struct ggml_compute_params * params,
  12024. const struct ggml_tensor * src0,
  12025. const struct ggml_tensor * src1,
  12026. struct ggml_tensor * dst,
  12027. const ggml_binary_op_f32_t fun) {
  12028. assert(params->ith == 0);
  12029. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12030. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12031. return;
  12032. }
  12033. const int n = ggml_nrows(src0);
  12034. const int nc = src0->ne[0];
  12035. assert( dst->nb[0] == sizeof(float));
  12036. assert(src0->nb[0] == sizeof(float));
  12037. assert(src1->nb[0] == sizeof(float));
  12038. for (int i = 0; i < n; i++) {
  12039. fun(nc,
  12040. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12041. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12042. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12043. }
  12044. }
  12045. static void ggml_compute_forward_map_binary(
  12046. const struct ggml_compute_params * params,
  12047. const struct ggml_tensor * src0,
  12048. const struct ggml_tensor * src1,
  12049. struct ggml_tensor * dst,
  12050. const ggml_binary_op_f32_t fun) {
  12051. switch (src0->type) {
  12052. case GGML_TYPE_F32:
  12053. {
  12054. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12055. } break;
  12056. default:
  12057. {
  12058. GGML_ASSERT(false);
  12059. } break;
  12060. }
  12061. }
  12062. // ggml_compute_forward_map_custom1
  12063. static void ggml_compute_forward_map_custom1_f32(
  12064. const struct ggml_compute_params * params,
  12065. const struct ggml_tensor * a,
  12066. struct ggml_tensor * dst,
  12067. const ggml_custom1_op_f32_t fun) {
  12068. assert(params->ith == 0);
  12069. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12070. return;
  12071. }
  12072. fun(dst, a);
  12073. }
  12074. // ggml_compute_forward_map_custom2
  12075. static void ggml_compute_forward_map_custom2_f32(
  12076. const struct ggml_compute_params * params,
  12077. const struct ggml_tensor * a,
  12078. const struct ggml_tensor * b,
  12079. struct ggml_tensor * dst,
  12080. const ggml_custom2_op_f32_t fun) {
  12081. assert(params->ith == 0);
  12082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12083. return;
  12084. }
  12085. fun(dst, a, b);
  12086. }
  12087. // ggml_compute_forward_map_custom3
  12088. static void ggml_compute_forward_map_custom3_f32(
  12089. const struct ggml_compute_params * params,
  12090. const struct ggml_tensor * a,
  12091. const struct ggml_tensor * b,
  12092. const struct ggml_tensor * c,
  12093. struct ggml_tensor * dst,
  12094. const ggml_custom3_op_f32_t fun) {
  12095. assert(params->ith == 0);
  12096. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12097. return;
  12098. }
  12099. fun(dst, a, b, c);
  12100. }
  12101. // ggml_compute_forward_map_custom1
  12102. static void ggml_compute_forward_map_custom1(
  12103. const struct ggml_compute_params * params,
  12104. const struct ggml_tensor * a,
  12105. struct ggml_tensor * dst) {
  12106. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12107. return;
  12108. }
  12109. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12110. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12111. }
  12112. // ggml_compute_forward_map_custom2
  12113. static void ggml_compute_forward_map_custom2(
  12114. const struct ggml_compute_params * params,
  12115. const struct ggml_tensor * a,
  12116. const struct ggml_tensor * b,
  12117. struct ggml_tensor * dst) {
  12118. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12119. return;
  12120. }
  12121. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12122. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12123. }
  12124. // ggml_compute_forward_map_custom3
  12125. static void ggml_compute_forward_map_custom3(
  12126. const struct ggml_compute_params * params,
  12127. const struct ggml_tensor * a,
  12128. const struct ggml_tensor * b,
  12129. const struct ggml_tensor * c,
  12130. struct ggml_tensor * dst) {
  12131. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12132. return;
  12133. }
  12134. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12135. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12136. }
  12137. // ggml_compute_forward_cross_entropy_loss
  12138. static void ggml_compute_forward_cross_entropy_loss_f32(
  12139. const struct ggml_compute_params * params,
  12140. const struct ggml_tensor * src0,
  12141. const struct ggml_tensor * src1,
  12142. struct ggml_tensor * dst) {
  12143. GGML_ASSERT(ggml_is_contiguous(src0));
  12144. GGML_ASSERT(ggml_is_contiguous(src1));
  12145. GGML_ASSERT(ggml_is_scalar(dst));
  12146. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12147. const int ith = params->ith;
  12148. const int nth = params->nth;
  12149. float * sums = (float *) params->wdata;
  12150. // TODO: handle transposed/permuted matrices
  12151. const int nc = src0->ne[0];
  12152. const int nr = ggml_nrows(src0);
  12153. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12154. if (params->type == GGML_TASK_INIT) {
  12155. if (ith == 0) {
  12156. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12157. }
  12158. return;
  12159. }
  12160. if (params->type == GGML_TASK_FINALIZE) {
  12161. if (ith == 0) {
  12162. float * dp = (float *) dst->data;
  12163. ggml_vec_sum_f32(nth, dp, sums);
  12164. dp[0] *= -1.0f / (float) nr;
  12165. }
  12166. return;
  12167. }
  12168. const double eps = 1e-9;
  12169. // rows per thread
  12170. const int dr = (nr + nth - 1)/nth;
  12171. // row range for this thread
  12172. const int ir0 = dr*ith;
  12173. const int ir1 = MIN(ir0 + dr, nr);
  12174. for (int i1 = ir0; i1 < ir1; i1++) {
  12175. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12176. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12177. float * st = ((float *) params->wdata) + nth + ith*nc;
  12178. #ifndef NDEBUG
  12179. for (int i = 0; i < nc; ++i) {
  12180. //printf("p[%d] = %f\n", i, p[i]);
  12181. assert(!isnan(s0[i]));
  12182. assert(!isnan(s1[i]));
  12183. }
  12184. #endif
  12185. // soft_max
  12186. ggml_float sum = 0.0;
  12187. {
  12188. float max = -INFINITY;
  12189. ggml_vec_max_f32(nc, &max, s0);
  12190. uint16_t scvt; UNUSED(scvt);
  12191. for (int i = 0; i < nc; i++) {
  12192. if (s0[i] == -INFINITY) {
  12193. st[i] = 0.0f;
  12194. } else {
  12195. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12196. const float s = s0[i] - max;
  12197. const float val = expf(s);
  12198. #else
  12199. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12200. memcpy(&scvt, &s, sizeof(scvt));
  12201. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12202. #endif
  12203. sum += (ggml_float)val;
  12204. st[i] = val;
  12205. }
  12206. }
  12207. assert(sum > 0.0);
  12208. // sum = 1.0/sum;
  12209. }
  12210. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12211. sum = (1.0 - eps) / sum;
  12212. ggml_vec_scale_f32(nc, st, sum);
  12213. ggml_vec_add1_f32(nc, st, st, eps);
  12214. ggml_vec_log_f32(nc, st, st);
  12215. ggml_vec_mul_f32(nc, st, st, s1);
  12216. float st_sum = 0;
  12217. ggml_vec_sum_f32(nc, &st_sum, st);
  12218. sums[ith] += st_sum;
  12219. #ifndef NDEBUG
  12220. for (int i = 0; i < nc; ++i) {
  12221. assert(!isnan(st[i]));
  12222. assert(!isinf(st[i]));
  12223. }
  12224. #endif
  12225. }
  12226. }
  12227. static void ggml_compute_forward_cross_entropy_loss(
  12228. const struct ggml_compute_params * params,
  12229. const struct ggml_tensor * src0,
  12230. const struct ggml_tensor * src1,
  12231. struct ggml_tensor * dst) {
  12232. switch (src0->type) {
  12233. case GGML_TYPE_F32:
  12234. {
  12235. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12236. } break;
  12237. default:
  12238. {
  12239. GGML_ASSERT(false);
  12240. } break;
  12241. }
  12242. }
  12243. // ggml_compute_forward_cross_entropy_loss_back
  12244. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12245. const struct ggml_compute_params * params,
  12246. const struct ggml_tensor * src0,
  12247. const struct ggml_tensor * src1,
  12248. const struct ggml_tensor * opt0,
  12249. struct ggml_tensor * dst) {
  12250. GGML_ASSERT(ggml_is_contiguous(dst));
  12251. GGML_ASSERT(ggml_is_contiguous(src0));
  12252. GGML_ASSERT(ggml_is_contiguous(src1));
  12253. GGML_ASSERT(ggml_is_contiguous(opt0));
  12254. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12255. const int64_t ith = params->ith;
  12256. const int64_t nth = params->nth;
  12257. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12258. return;
  12259. }
  12260. const double eps = 1e-9;
  12261. // TODO: handle transposed/permuted matrices
  12262. const int64_t nc = src0->ne[0];
  12263. const int64_t nr = ggml_nrows(src0);
  12264. // rows per thread
  12265. const int64_t dr = (nr + nth - 1)/nth;
  12266. // row range for this thread
  12267. const int64_t ir0 = dr*ith;
  12268. const int64_t ir1 = MIN(ir0 + dr, nr);
  12269. float * d = (float *) opt0->data;
  12270. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12271. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12272. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12273. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12274. #ifndef NDEBUG
  12275. for (int i = 0; i < nc; ++i) {
  12276. //printf("p[%d] = %f\n", i, p[i]);
  12277. assert(!isnan(s0[i]));
  12278. assert(!isnan(s1[i]));
  12279. }
  12280. #endif
  12281. // soft_max
  12282. ggml_float sum = 0.0;
  12283. {
  12284. float max = -INFINITY;
  12285. ggml_vec_max_f32(nc, &max, s0);
  12286. uint16_t scvt; UNUSED(scvt);
  12287. for (int i = 0; i < nc; i++) {
  12288. if (s0[i] == -INFINITY) {
  12289. ds0[i] = 0.0f;
  12290. } else {
  12291. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12292. const float s = s0[i] - max;
  12293. const float val = expf(s);
  12294. #else
  12295. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12296. memcpy(&scvt, &s, sizeof(scvt));
  12297. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12298. #endif
  12299. sum += (ggml_float)val;
  12300. ds0[i] = val;
  12301. }
  12302. }
  12303. assert(sum > 0.0);
  12304. sum = (1.0 - eps)/sum;
  12305. }
  12306. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12307. ggml_vec_scale_f32(nc, ds0, sum);
  12308. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12309. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12310. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12311. #ifndef NDEBUG
  12312. for (int i = 0; i < nc; ++i) {
  12313. assert(!isnan(ds0[i]));
  12314. assert(!isinf(ds0[i]));
  12315. }
  12316. #endif
  12317. }
  12318. }
  12319. static void ggml_compute_forward_cross_entropy_loss_back(
  12320. const struct ggml_compute_params * params,
  12321. const struct ggml_tensor * src0,
  12322. const struct ggml_tensor * src1,
  12323. const struct ggml_tensor * opt0,
  12324. struct ggml_tensor * dst) {
  12325. switch (src0->type) {
  12326. case GGML_TYPE_F32:
  12327. {
  12328. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12329. } break;
  12330. default:
  12331. {
  12332. GGML_ASSERT(false);
  12333. } break;
  12334. }
  12335. }
  12336. /////////////////////////////////
  12337. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12338. GGML_ASSERT(params);
  12339. if (tensor->op == GGML_OP_NONE) {
  12340. return;
  12341. }
  12342. #ifdef GGML_USE_CUBLAS
  12343. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12344. if (skip_cpu) {
  12345. return;
  12346. }
  12347. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12348. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12349. #elif defined(GGML_USE_VULKAN)
  12350. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12351. #ifdef GGML_VULKAN_CHECK_RESULTS
  12352. if (skip_cpu) {
  12353. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12354. }
  12355. #endif
  12356. if (skip_cpu) {
  12357. return;
  12358. }
  12359. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12360. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12361. #endif // GGML_USE_CUBLAS
  12362. #ifdef GGML_USE_SYCL
  12363. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12364. if (skip_cpu) {
  12365. return;
  12366. }
  12367. #endif // GGML_USE_SYCL
  12368. switch (tensor->op) {
  12369. case GGML_OP_DUP:
  12370. {
  12371. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12372. } break;
  12373. case GGML_OP_ADD:
  12374. {
  12375. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12376. } break;
  12377. case GGML_OP_ADD1:
  12378. {
  12379. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12380. } break;
  12381. case GGML_OP_ACC:
  12382. {
  12383. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12384. } break;
  12385. case GGML_OP_SUB:
  12386. {
  12387. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12388. } break;
  12389. case GGML_OP_MUL:
  12390. {
  12391. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12392. } break;
  12393. case GGML_OP_DIV:
  12394. {
  12395. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12396. } break;
  12397. case GGML_OP_SQR:
  12398. {
  12399. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12400. } break;
  12401. case GGML_OP_SQRT:
  12402. {
  12403. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12404. } break;
  12405. case GGML_OP_LOG:
  12406. {
  12407. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12408. } break;
  12409. case GGML_OP_SUM:
  12410. {
  12411. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12412. } break;
  12413. case GGML_OP_SUM_ROWS:
  12414. {
  12415. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12416. } break;
  12417. case GGML_OP_MEAN:
  12418. {
  12419. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12420. } break;
  12421. case GGML_OP_ARGMAX:
  12422. {
  12423. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12424. } break;
  12425. case GGML_OP_REPEAT:
  12426. {
  12427. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12428. } break;
  12429. case GGML_OP_REPEAT_BACK:
  12430. {
  12431. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12432. } break;
  12433. case GGML_OP_CONCAT:
  12434. {
  12435. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12436. } break;
  12437. case GGML_OP_SILU_BACK:
  12438. {
  12439. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12440. } break;
  12441. case GGML_OP_NORM:
  12442. {
  12443. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12444. } break;
  12445. case GGML_OP_RMS_NORM:
  12446. {
  12447. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12448. } break;
  12449. case GGML_OP_RMS_NORM_BACK:
  12450. {
  12451. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12452. } break;
  12453. case GGML_OP_GROUP_NORM:
  12454. {
  12455. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12456. } break;
  12457. case GGML_OP_MUL_MAT:
  12458. {
  12459. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12460. } break;
  12461. case GGML_OP_MUL_MAT_ID:
  12462. {
  12463. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12464. } break;
  12465. case GGML_OP_OUT_PROD:
  12466. {
  12467. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12468. } break;
  12469. case GGML_OP_SCALE:
  12470. {
  12471. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12472. } break;
  12473. case GGML_OP_SET:
  12474. {
  12475. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12476. } break;
  12477. case GGML_OP_CPY:
  12478. {
  12479. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12480. } break;
  12481. case GGML_OP_CONT:
  12482. {
  12483. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12484. } break;
  12485. case GGML_OP_RESHAPE:
  12486. {
  12487. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12488. } break;
  12489. case GGML_OP_VIEW:
  12490. {
  12491. ggml_compute_forward_view(params, tensor->src[0]);
  12492. } break;
  12493. case GGML_OP_PERMUTE:
  12494. {
  12495. ggml_compute_forward_permute(params, tensor->src[0]);
  12496. } break;
  12497. case GGML_OP_TRANSPOSE:
  12498. {
  12499. ggml_compute_forward_transpose(params, tensor->src[0]);
  12500. } break;
  12501. case GGML_OP_GET_ROWS:
  12502. {
  12503. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12504. } break;
  12505. case GGML_OP_GET_ROWS_BACK:
  12506. {
  12507. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12508. } break;
  12509. case GGML_OP_DIAG:
  12510. {
  12511. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12512. } break;
  12513. case GGML_OP_DIAG_MASK_INF:
  12514. {
  12515. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12516. } break;
  12517. case GGML_OP_DIAG_MASK_ZERO:
  12518. {
  12519. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12520. } break;
  12521. case GGML_OP_SOFT_MAX:
  12522. {
  12523. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12524. } break;
  12525. case GGML_OP_SOFT_MAX_BACK:
  12526. {
  12527. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12528. } break;
  12529. case GGML_OP_ROPE:
  12530. {
  12531. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12532. } break;
  12533. case GGML_OP_ROPE_BACK:
  12534. {
  12535. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12536. } break;
  12537. case GGML_OP_ALIBI:
  12538. {
  12539. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12540. } break;
  12541. case GGML_OP_CLAMP:
  12542. {
  12543. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12544. } break;
  12545. case GGML_OP_CONV_TRANSPOSE_1D:
  12546. {
  12547. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12548. } break;
  12549. case GGML_OP_IM2COL:
  12550. {
  12551. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12552. } break;
  12553. case GGML_OP_CONV_TRANSPOSE_2D:
  12554. {
  12555. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12556. } break;
  12557. case GGML_OP_POOL_1D:
  12558. {
  12559. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12560. } break;
  12561. case GGML_OP_POOL_2D:
  12562. {
  12563. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12564. } break;
  12565. case GGML_OP_UPSCALE:
  12566. {
  12567. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12568. } break;
  12569. case GGML_OP_PAD:
  12570. {
  12571. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12572. } break;
  12573. case GGML_OP_ARGSORT:
  12574. {
  12575. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12576. } break;
  12577. case GGML_OP_LEAKY_RELU:
  12578. {
  12579. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12580. } break;
  12581. case GGML_OP_FLASH_ATTN:
  12582. {
  12583. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12584. GGML_ASSERT(t == 0 || t == 1);
  12585. const bool masked = t != 0;
  12586. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12587. } break;
  12588. case GGML_OP_FLASH_FF:
  12589. {
  12590. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12591. } break;
  12592. case GGML_OP_FLASH_ATTN_BACK:
  12593. {
  12594. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12595. GGML_ASSERT(t == 0 || t == 1);
  12596. bool masked = t != 0;
  12597. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12598. } break;
  12599. case GGML_OP_WIN_PART:
  12600. {
  12601. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12602. } break;
  12603. case GGML_OP_WIN_UNPART:
  12604. {
  12605. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12606. } break;
  12607. case GGML_OP_UNARY:
  12608. {
  12609. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12610. } break;
  12611. case GGML_OP_GET_REL_POS:
  12612. {
  12613. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12614. } break;
  12615. case GGML_OP_ADD_REL_POS:
  12616. {
  12617. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12618. } break;
  12619. case GGML_OP_MAP_UNARY:
  12620. {
  12621. ggml_unary_op_f32_t fun;
  12622. memcpy(&fun, tensor->op_params, sizeof(fun));
  12623. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12624. }
  12625. break;
  12626. case GGML_OP_MAP_BINARY:
  12627. {
  12628. ggml_binary_op_f32_t fun;
  12629. memcpy(&fun, tensor->op_params, sizeof(fun));
  12630. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12631. }
  12632. break;
  12633. case GGML_OP_MAP_CUSTOM1_F32:
  12634. {
  12635. ggml_custom1_op_f32_t fun;
  12636. memcpy(&fun, tensor->op_params, sizeof(fun));
  12637. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12638. }
  12639. break;
  12640. case GGML_OP_MAP_CUSTOM2_F32:
  12641. {
  12642. ggml_custom2_op_f32_t fun;
  12643. memcpy(&fun, tensor->op_params, sizeof(fun));
  12644. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12645. }
  12646. break;
  12647. case GGML_OP_MAP_CUSTOM3_F32:
  12648. {
  12649. ggml_custom3_op_f32_t fun;
  12650. memcpy(&fun, tensor->op_params, sizeof(fun));
  12651. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12652. }
  12653. break;
  12654. case GGML_OP_MAP_CUSTOM1:
  12655. {
  12656. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12657. }
  12658. break;
  12659. case GGML_OP_MAP_CUSTOM2:
  12660. {
  12661. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12662. }
  12663. break;
  12664. case GGML_OP_MAP_CUSTOM3:
  12665. {
  12666. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12667. }
  12668. break;
  12669. case GGML_OP_CROSS_ENTROPY_LOSS:
  12670. {
  12671. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12672. }
  12673. break;
  12674. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12675. {
  12676. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12677. }
  12678. break;
  12679. case GGML_OP_NONE:
  12680. {
  12681. // nop
  12682. } break;
  12683. case GGML_OP_COUNT:
  12684. {
  12685. GGML_ASSERT(false);
  12686. } break;
  12687. }
  12688. }
  12689. ////////////////////////////////////////////////////////////////////////////////
  12690. static size_t ggml_hash_size(size_t min_sz) {
  12691. // next primes after powers of two
  12692. static const size_t primes[] = {
  12693. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12694. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12695. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12696. 16777259, 33554467, 67108879, 134217757, 268435459,
  12697. 536870923, 1073741827, 2147483659
  12698. };
  12699. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12700. // find the smallest prime that is larger or equal to min_sz
  12701. size_t l = 0;
  12702. size_t r = n_primes;
  12703. while (l < r) {
  12704. size_t m = (l + r)/2;
  12705. if (primes[m] < min_sz) {
  12706. l = m + 1;
  12707. } else {
  12708. r = m;
  12709. }
  12710. }
  12711. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12712. return sz;
  12713. }
  12714. static size_t ggml_hash(const void * p) {
  12715. return (size_t)p;
  12716. }
  12717. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12718. size_t h = ggml_hash(key) % hash_set.size;
  12719. // linear probing
  12720. size_t i = h;
  12721. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12722. i = (i + 1) % hash_set.size;
  12723. if (i == h) {
  12724. // visited all hash table entries -> not found
  12725. return GGML_HASHTABLE_FULL;
  12726. }
  12727. }
  12728. return i;
  12729. }
  12730. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12731. size_t i = ggml_hash_find(hash_set, key);
  12732. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12733. }
  12734. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12735. size_t i = ggml_hash_find(hash_set, key);
  12736. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12737. if (hash_set.keys[i] == key) {
  12738. return GGML_HASHTABLE_ALREADY_EXISTS;
  12739. }
  12740. // insert
  12741. GGML_ASSERT(hash_set.keys[i] == NULL);
  12742. hash_set.keys[i] = key;
  12743. return i;
  12744. }
  12745. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12746. size_t i = ggml_hash_find(hash_set, key);
  12747. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12748. hash_set.keys[i] = key;
  12749. return i;
  12750. }
  12751. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12752. size = ggml_hash_size(size);
  12753. struct ggml_hash_set result;
  12754. result.size = size;
  12755. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12756. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12757. return result;
  12758. }
  12759. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12760. GGML_FREE(hash_set.keys);
  12761. }
  12762. struct hash_map {
  12763. struct ggml_hash_set set;
  12764. struct ggml_tensor ** vals;
  12765. };
  12766. static struct hash_map * ggml_new_hash_map(size_t size) {
  12767. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12768. result->set = ggml_hash_set_new(size);
  12769. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12770. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12771. return result;
  12772. }
  12773. static void ggml_hash_map_free(struct hash_map * map) {
  12774. ggml_hash_set_free(map->set);
  12775. GGML_FREE(map->vals);
  12776. GGML_FREE(map);
  12777. }
  12778. // gradient checkpointing
  12779. static struct ggml_tensor * ggml_recompute_graph_node(
  12780. struct ggml_context * ctx,
  12781. struct ggml_cgraph * graph,
  12782. struct hash_map * replacements,
  12783. struct ggml_tensor * node) {
  12784. if (node == NULL) {
  12785. return NULL;
  12786. }
  12787. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  12788. return node;
  12789. }
  12790. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12791. return node;
  12792. }
  12793. int count_children = 0;
  12794. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12795. if (node->src[k]) {
  12796. ++count_children;
  12797. }
  12798. }
  12799. if (count_children == 0) {
  12800. return node;
  12801. }
  12802. size_t i = ggml_hash_find(replacements->set, node);
  12803. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12804. if (replacements->set.keys[i] == node) {
  12805. return replacements->vals[i];
  12806. }
  12807. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12808. // insert clone into replacements
  12809. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12810. replacements->set.keys[i] = node;
  12811. replacements->vals[i] = clone;
  12812. clone->op = node->op;
  12813. clone->grad = node->grad;
  12814. clone->flags = node->flags;
  12815. clone->extra = node->extra;
  12816. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12817. clone->nb[k] = node->nb[k];
  12818. }
  12819. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12820. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12821. }
  12822. if (node->view_src != NULL) {
  12823. clone->data = (node->view_src->data == NULL)
  12824. ? NULL // view_src not yet allocated
  12825. : (char *) node->view_src->data // view_src already allocated
  12826. + node->view_offs;
  12827. clone->view_src = node->view_src;
  12828. clone->view_offs = node->view_offs;
  12829. }
  12830. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12831. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12832. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12833. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12834. return clone;
  12835. }
  12836. void ggml_build_backward_gradient_checkpointing(
  12837. struct ggml_context * ctx,
  12838. struct ggml_cgraph * gf,
  12839. struct ggml_cgraph * gb,
  12840. struct ggml_cgraph * gb_tmp,
  12841. struct ggml_tensor * * checkpoints,
  12842. int n_checkpoints) {
  12843. ggml_graph_cpy(gf, gb_tmp);
  12844. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12845. if (n_checkpoints <= 0) {
  12846. ggml_graph_cpy(gb_tmp, gb);
  12847. return;
  12848. }
  12849. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12850. // insert checkpoints in replacements
  12851. for (int i = 0; i < n_checkpoints; ++i) {
  12852. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12853. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12854. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12855. replacements->set.keys[k] = checkpoints[i];
  12856. replacements->vals[k] = checkpoints[i];
  12857. }
  12858. ggml_graph_cpy(gf, gb);
  12859. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12860. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12861. // by recomputing them from checkpoints
  12862. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12863. struct ggml_tensor * node = gb_tmp->nodes[i];
  12864. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12865. // insert new tensors recomputing src, reusing already made replacements,
  12866. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12867. // recurse for input tensors,
  12868. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12869. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12870. }
  12871. // insert rewritten backward node with replacements made into resulting backward graph gb
  12872. ggml_build_forward_expand(gb, node);
  12873. }
  12874. ggml_hash_map_free(replacements);
  12875. }
  12876. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12877. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12878. if (ggml_hash_contains(zero_table, a)) {
  12879. return b;
  12880. } else {
  12881. return ggml_add_impl(ctx, a, b, false);
  12882. }
  12883. }
  12884. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12885. if (ggml_hash_contains(zero_table, a)) {
  12886. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12887. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12888. } else {
  12889. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12890. }
  12891. }
  12892. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12893. if (ggml_hash_contains(zero_table, a)) {
  12894. return ggml_repeat(ctx, b, a);
  12895. } else {
  12896. return ggml_add1_impl(ctx, a, b, false);
  12897. }
  12898. }
  12899. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12900. if (ggml_hash_contains(zero_table, a)) {
  12901. return ggml_neg(ctx, b);
  12902. } else {
  12903. return ggml_sub_impl(ctx, a, b, false);
  12904. }
  12905. }
  12906. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12907. struct ggml_tensor * src0 = tensor->src[0];
  12908. struct ggml_tensor * src1 = tensor->src[1];
  12909. switch (tensor->op) {
  12910. case GGML_OP_DUP:
  12911. {
  12912. if (src0->grad) {
  12913. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12914. }
  12915. } break;
  12916. case GGML_OP_ADD:
  12917. {
  12918. if (src0->grad) {
  12919. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12920. }
  12921. if (src1->grad) {
  12922. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12923. }
  12924. } break;
  12925. case GGML_OP_ADD1:
  12926. {
  12927. if (src0->grad) {
  12928. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12929. }
  12930. if (src1->grad) {
  12931. src1->grad = ggml_add_or_set(ctx,
  12932. src1->grad,
  12933. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12934. zero_table);
  12935. }
  12936. } break;
  12937. case GGML_OP_ACC:
  12938. {
  12939. if (src0->grad) {
  12940. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12941. }
  12942. if (src1->grad) {
  12943. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12944. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12945. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12946. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12947. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12948. tensor->grad,
  12949. src1->grad->ne[0],
  12950. src1->grad->ne[1],
  12951. src1->grad->ne[2],
  12952. src1->grad->ne[3],
  12953. nb1, nb2, nb3, offset);
  12954. src1->grad =
  12955. ggml_add_or_set(ctx,
  12956. src1->grad,
  12957. ggml_reshape(ctx,
  12958. ggml_cont(ctx, tensor_grad_view),
  12959. src1->grad),
  12960. zero_table);
  12961. }
  12962. } break;
  12963. case GGML_OP_SUB:
  12964. {
  12965. if (src0->grad) {
  12966. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12967. }
  12968. if (src1->grad) {
  12969. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12970. }
  12971. } break;
  12972. case GGML_OP_MUL:
  12973. {
  12974. if (src0->grad) {
  12975. src0->grad =
  12976. ggml_add_or_set(ctx,
  12977. src0->grad,
  12978. ggml_mul(ctx, src1, tensor->grad),
  12979. zero_table);
  12980. }
  12981. if (src1->grad) {
  12982. src1->grad =
  12983. ggml_add_or_set(ctx,
  12984. src1->grad,
  12985. ggml_mul(ctx, src0, tensor->grad),
  12986. zero_table);
  12987. }
  12988. } break;
  12989. case GGML_OP_DIV:
  12990. {
  12991. if (src0->grad) {
  12992. src0->grad =
  12993. ggml_add_or_set(ctx,
  12994. src0->grad,
  12995. ggml_div(ctx, tensor->grad, src1),
  12996. zero_table);
  12997. }
  12998. if (src1->grad) {
  12999. src1->grad =
  13000. ggml_sub_or_set(ctx,
  13001. src1->grad,
  13002. ggml_mul(ctx,
  13003. tensor->grad,
  13004. ggml_div(ctx, tensor, src1)),
  13005. zero_table);
  13006. }
  13007. } break;
  13008. case GGML_OP_SQR:
  13009. {
  13010. if (src0->grad) {
  13011. src0->grad =
  13012. ggml_add_or_set(ctx,
  13013. src0->grad,
  13014. ggml_scale(ctx,
  13015. ggml_mul(ctx, src0, tensor->grad),
  13016. 2.0f),
  13017. zero_table);
  13018. }
  13019. } break;
  13020. case GGML_OP_SQRT:
  13021. {
  13022. if (src0->grad) {
  13023. src0->grad =
  13024. ggml_add_or_set(ctx,
  13025. src0->grad,
  13026. ggml_scale(ctx,
  13027. ggml_div(ctx,
  13028. tensor->grad,
  13029. tensor),
  13030. 0.5f),
  13031. zero_table);
  13032. }
  13033. } break;
  13034. case GGML_OP_LOG:
  13035. {
  13036. if (src0->grad) {
  13037. src0->grad =
  13038. ggml_add_or_set(ctx,
  13039. src0->grad,
  13040. ggml_div(ctx,
  13041. tensor->grad,
  13042. src0),
  13043. zero_table);
  13044. }
  13045. } break;
  13046. case GGML_OP_SUM:
  13047. {
  13048. if (src0->grad) {
  13049. src0->grad =
  13050. ggml_add1_or_set(ctx,
  13051. src0->grad,
  13052. tensor->grad,
  13053. zero_table);
  13054. }
  13055. } break;
  13056. case GGML_OP_SUM_ROWS:
  13057. {
  13058. if (src0->grad) {
  13059. src0->grad =
  13060. ggml_add_or_set(ctx,
  13061. src0->grad,
  13062. ggml_repeat(ctx,
  13063. tensor->grad,
  13064. src0->grad),
  13065. zero_table);
  13066. }
  13067. } break;
  13068. case GGML_OP_MEAN:
  13069. case GGML_OP_ARGMAX:
  13070. {
  13071. GGML_ASSERT(false); // TODO: implement
  13072. } break;
  13073. case GGML_OP_REPEAT:
  13074. {
  13075. // necessary for llama
  13076. if (src0->grad) {
  13077. src0->grad = ggml_add_or_set(ctx,
  13078. src0->grad,
  13079. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13080. zero_table);
  13081. }
  13082. } break;
  13083. case GGML_OP_REPEAT_BACK:
  13084. {
  13085. if (src0->grad) {
  13086. // TODO: test this
  13087. src0->grad = ggml_add_or_set(ctx,
  13088. src0->grad,
  13089. ggml_repeat(ctx, tensor->grad, src0->grad),
  13090. zero_table);
  13091. }
  13092. } break;
  13093. case GGML_OP_CONCAT:
  13094. {
  13095. GGML_ASSERT(false); // TODO: implement
  13096. } break;
  13097. case GGML_OP_SILU_BACK:
  13098. {
  13099. GGML_ASSERT(false); // TODO: not implemented
  13100. } break;
  13101. case GGML_OP_NORM:
  13102. {
  13103. GGML_ASSERT(false); // TODO: not implemented
  13104. } break;
  13105. case GGML_OP_RMS_NORM:
  13106. {
  13107. // necessary for llama
  13108. if (src0->grad) {
  13109. float eps;
  13110. memcpy(&eps, tensor->op_params, sizeof(float));
  13111. src0->grad = ggml_add_or_set(ctx,
  13112. src0->grad,
  13113. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13114. zero_table);
  13115. }
  13116. } break;
  13117. case GGML_OP_RMS_NORM_BACK:
  13118. {
  13119. GGML_ASSERT(false); // TODO: not implemented
  13120. } break;
  13121. case GGML_OP_GROUP_NORM:
  13122. {
  13123. GGML_ASSERT(false); // TODO: not implemented
  13124. } break;
  13125. case GGML_OP_MUL_MAT:
  13126. {
  13127. // https://cs231n.github.io/optimization-2/#staged
  13128. // # forward pass
  13129. // s0 = np.random.randn(5, 10)
  13130. // s1 = np.random.randn(10, 3)
  13131. // t = s0.dot(s1)
  13132. // # now suppose we had the gradient on t from above in the circuit
  13133. // dt = np.random.randn(*t.shape) # same shape as t
  13134. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13135. // ds1 = t.T.dot(dt)
  13136. // tensor.shape [m,p,qq,rr]
  13137. // src0.shape [n,m,q1,r1]
  13138. // src1.shape [n,p,qq,rr]
  13139. // necessary for llama
  13140. if (src0->grad) {
  13141. struct ggml_tensor * s1_tg =
  13142. ggml_out_prod(ctx, // [n,m,qq,rr]
  13143. src1, // [n,p,qq,rr]
  13144. tensor->grad); // [m,p,qq,rr]
  13145. const int64_t qq = s1_tg->ne[2];
  13146. const int64_t rr = s1_tg->ne[3];
  13147. const int64_t q1 = src0->ne[2];
  13148. const int64_t r1 = src0->ne[3];
  13149. const bool ne2_broadcasted = qq > q1;
  13150. const bool ne3_broadcasted = rr > r1;
  13151. if (ne2_broadcasted || ne3_broadcasted) {
  13152. // sum broadcast repetitions of s1_tg into shape of src0
  13153. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13154. }
  13155. src0->grad =
  13156. ggml_add_or_set(ctx,
  13157. src0->grad, // [n,m,q1,r1]
  13158. s1_tg, // [n,m,q1,r1]
  13159. zero_table);
  13160. }
  13161. if (src1->grad) {
  13162. src1->grad =
  13163. ggml_add_or_set(ctx,
  13164. src1->grad, // [n,p,qq,rr]
  13165. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13166. // ggml_cont(ctx, // [m,n,q1,r1]
  13167. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13168. // tensor->grad), // [m,p,qq,rr]
  13169. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13170. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13171. // // and then use ggml_out_prod
  13172. ggml_out_prod(ctx, // [n,p,qq,rr]
  13173. src0, // [n,m,q1,r1]
  13174. ggml_transpose(ctx, // [p,m,qq,rr]
  13175. tensor->grad)), // [m,p,qq,rr]
  13176. zero_table);
  13177. }
  13178. } break;
  13179. case GGML_OP_MUL_MAT_ID:
  13180. {
  13181. GGML_ASSERT(false); // TODO: not implemented
  13182. } break;
  13183. case GGML_OP_OUT_PROD:
  13184. {
  13185. GGML_ASSERT(false); // TODO: not implemented
  13186. } break;
  13187. case GGML_OP_SCALE:
  13188. {
  13189. // necessary for llama
  13190. if (src0->grad) {
  13191. float s;
  13192. memcpy(&s, tensor->op_params, sizeof(float));
  13193. src0->grad =
  13194. ggml_add_or_set(ctx,
  13195. src0->grad,
  13196. ggml_scale_impl(ctx, tensor->grad, s, false),
  13197. zero_table);
  13198. }
  13199. } break;
  13200. case GGML_OP_SET:
  13201. {
  13202. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13203. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13204. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13205. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13206. struct ggml_tensor * tensor_grad_view = NULL;
  13207. if (src0->grad || src1->grad) {
  13208. GGML_ASSERT(src0->type == tensor->type);
  13209. GGML_ASSERT(tensor->grad->type == tensor->type);
  13210. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13211. tensor_grad_view = ggml_view_4d(ctx,
  13212. tensor->grad,
  13213. src1->grad->ne[0],
  13214. src1->grad->ne[1],
  13215. src1->grad->ne[2],
  13216. src1->grad->ne[3],
  13217. nb1, nb2, nb3, offset);
  13218. }
  13219. if (src0->grad) {
  13220. src0->grad = ggml_add_or_set(ctx,
  13221. src0->grad,
  13222. ggml_acc_impl(ctx,
  13223. tensor->grad,
  13224. ggml_neg(ctx, tensor_grad_view),
  13225. nb1, nb2, nb3, offset, false),
  13226. zero_table);
  13227. }
  13228. if (src1->grad) {
  13229. src1->grad =
  13230. ggml_add_or_set(ctx,
  13231. src1->grad,
  13232. ggml_reshape(ctx,
  13233. ggml_cont(ctx, tensor_grad_view),
  13234. src1->grad),
  13235. zero_table);
  13236. }
  13237. } break;
  13238. case GGML_OP_CPY:
  13239. {
  13240. // necessary for llama
  13241. // cpy overwrites value of src1 by src0 and returns view(src1)
  13242. // the overwriting is mathematically equivalent to:
  13243. // tensor = src0 * 1 + src1 * 0
  13244. if (src0->grad) {
  13245. // dsrc0 = dtensor * 1
  13246. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13247. }
  13248. if (src1->grad) {
  13249. // dsrc1 = dtensor * 0 -> noop
  13250. }
  13251. } break;
  13252. case GGML_OP_CONT:
  13253. {
  13254. // same as cpy
  13255. if (src0->grad) {
  13256. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13257. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13258. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13259. }
  13260. } break;
  13261. case GGML_OP_RESHAPE:
  13262. {
  13263. // necessary for llama
  13264. if (src0->grad) {
  13265. src0->grad =
  13266. ggml_add_or_set(ctx, src0->grad,
  13267. ggml_reshape(ctx,
  13268. ggml_is_contiguous(tensor->grad)
  13269. ? tensor->grad
  13270. : ggml_cont(ctx, tensor->grad),
  13271. src0->grad),
  13272. zero_table);
  13273. }
  13274. } break;
  13275. case GGML_OP_VIEW:
  13276. {
  13277. // necessary for llama
  13278. if (src0->grad) {
  13279. size_t offset;
  13280. memcpy(&offset, tensor->op_params, sizeof(offset));
  13281. size_t nb1 = tensor->nb[1];
  13282. size_t nb2 = tensor->nb[2];
  13283. size_t nb3 = tensor->nb[3];
  13284. if (src0->type != src0->grad->type) {
  13285. // gradient is typically F32, but src0 could be other type
  13286. size_t ng = ggml_element_size(src0->grad);
  13287. size_t n0 = ggml_element_size(src0);
  13288. GGML_ASSERT(offset % n0 == 0);
  13289. GGML_ASSERT(nb1 % n0 == 0);
  13290. GGML_ASSERT(nb2 % n0 == 0);
  13291. GGML_ASSERT(nb3 % n0 == 0);
  13292. offset = (offset / n0) * ng;
  13293. nb1 = (nb1 / n0) * ng;
  13294. nb2 = (nb2 / n0) * ng;
  13295. nb3 = (nb3 / n0) * ng;
  13296. }
  13297. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13298. }
  13299. } break;
  13300. case GGML_OP_PERMUTE:
  13301. {
  13302. // necessary for llama
  13303. if (src0->grad) {
  13304. int32_t * axes = (int32_t *) tensor->op_params;
  13305. int axis0 = axes[0] & 0x3;
  13306. int axis1 = axes[1] & 0x3;
  13307. int axis2 = axes[2] & 0x3;
  13308. int axis3 = axes[3] & 0x3;
  13309. int axes_backward[4] = {0,0,0,0};
  13310. axes_backward[axis0] = 0;
  13311. axes_backward[axis1] = 1;
  13312. axes_backward[axis2] = 2;
  13313. axes_backward[axis3] = 3;
  13314. src0->grad =
  13315. ggml_add_or_set(ctx, src0->grad,
  13316. ggml_permute(ctx,
  13317. tensor->grad,
  13318. axes_backward[0],
  13319. axes_backward[1],
  13320. axes_backward[2],
  13321. axes_backward[3]),
  13322. zero_table);
  13323. }
  13324. } break;
  13325. case GGML_OP_TRANSPOSE:
  13326. {
  13327. // necessary for llama
  13328. if (src0->grad) {
  13329. src0->grad =
  13330. ggml_add_or_set(ctx, src0->grad,
  13331. ggml_transpose(ctx, tensor->grad),
  13332. zero_table);
  13333. }
  13334. } break;
  13335. case GGML_OP_GET_ROWS:
  13336. {
  13337. // necessary for llama (only for tokenizer)
  13338. if (src0->grad) {
  13339. src0->grad =
  13340. ggml_add_or_set(ctx, src0->grad,
  13341. // last ggml_get_rows_back argument src0->grad is only
  13342. // necessary to setup correct output shape
  13343. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13344. zero_table);
  13345. }
  13346. if (src1->grad) {
  13347. // noop
  13348. }
  13349. } break;
  13350. case GGML_OP_GET_ROWS_BACK:
  13351. {
  13352. GGML_ASSERT(false); // TODO: not implemented
  13353. } break;
  13354. case GGML_OP_DIAG:
  13355. {
  13356. GGML_ASSERT(false); // TODO: not implemented
  13357. } break;
  13358. case GGML_OP_DIAG_MASK_INF:
  13359. {
  13360. // necessary for llama
  13361. if (src0->grad) {
  13362. const int n_past = ((int32_t *) tensor->op_params)[0];
  13363. src0->grad =
  13364. ggml_add_or_set(ctx, src0->grad,
  13365. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13366. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13367. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13368. zero_table);
  13369. }
  13370. } break;
  13371. case GGML_OP_DIAG_MASK_ZERO:
  13372. {
  13373. // necessary for llama
  13374. if (src0->grad) {
  13375. const int n_past = ((int32_t *) tensor->op_params)[0];
  13376. src0->grad =
  13377. ggml_add_or_set(ctx, src0->grad,
  13378. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13379. zero_table);
  13380. }
  13381. } break;
  13382. case GGML_OP_SOFT_MAX:
  13383. {
  13384. // necessary for llama
  13385. if (src0->grad) {
  13386. src0->grad =
  13387. ggml_add_or_set(ctx, src0->grad,
  13388. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13389. zero_table);
  13390. }
  13391. } break;
  13392. case GGML_OP_SOFT_MAX_BACK:
  13393. {
  13394. GGML_ASSERT(false); // TODO: not implemented
  13395. } break;
  13396. case GGML_OP_ROPE:
  13397. {
  13398. // necessary for llama
  13399. if (src0->grad) {
  13400. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13401. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13402. const int mode = ((int32_t *) tensor->op_params)[2];
  13403. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13404. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13405. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13406. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13407. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13408. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13409. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13410. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13411. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13412. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13413. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13414. src0->grad = ggml_add_or_set(ctx,
  13415. src0->grad,
  13416. ggml_rope_back(ctx,
  13417. tensor->grad,
  13418. src1,
  13419. n_dims,
  13420. mode,
  13421. n_ctx,
  13422. n_orig_ctx,
  13423. freq_base,
  13424. freq_scale,
  13425. ext_factor,
  13426. attn_factor,
  13427. beta_fast,
  13428. beta_slow,
  13429. xpos_base,
  13430. xpos_down),
  13431. zero_table);
  13432. }
  13433. } break;
  13434. case GGML_OP_ROPE_BACK:
  13435. {
  13436. if (src0->grad) {
  13437. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13438. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13439. const int mode = ((int32_t *) tensor->op_params)[2];
  13440. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13441. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13442. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13443. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13444. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13445. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13446. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13447. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13448. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13449. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13450. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13451. src0->grad = ggml_add_or_set(ctx,
  13452. src0->grad,
  13453. ggml_rope_impl(ctx,
  13454. tensor->grad,
  13455. src1,
  13456. n_dims,
  13457. mode,
  13458. n_ctx,
  13459. n_orig_ctx,
  13460. freq_base,
  13461. freq_scale,
  13462. ext_factor,
  13463. attn_factor,
  13464. beta_fast,
  13465. beta_slow,
  13466. xpos_base,
  13467. xpos_down,
  13468. false),
  13469. zero_table);
  13470. }
  13471. } break;
  13472. case GGML_OP_ALIBI:
  13473. {
  13474. GGML_ASSERT(false); // TODO: not implemented
  13475. } break;
  13476. case GGML_OP_CLAMP:
  13477. {
  13478. GGML_ASSERT(false); // TODO: not implemented
  13479. } break;
  13480. case GGML_OP_CONV_TRANSPOSE_1D:
  13481. {
  13482. GGML_ASSERT(false); // TODO: not implemented
  13483. } break;
  13484. case GGML_OP_IM2COL:
  13485. {
  13486. GGML_ASSERT(false); // TODO: not implemented
  13487. } break;
  13488. case GGML_OP_CONV_TRANSPOSE_2D:
  13489. {
  13490. GGML_ASSERT(false); // TODO: not implemented
  13491. } break;
  13492. case GGML_OP_POOL_1D:
  13493. {
  13494. GGML_ASSERT(false); // TODO: not implemented
  13495. } break;
  13496. case GGML_OP_POOL_2D:
  13497. {
  13498. GGML_ASSERT(false); // TODO: not implemented
  13499. } break;
  13500. case GGML_OP_UPSCALE:
  13501. {
  13502. GGML_ASSERT(false); // TODO: not implemented
  13503. } break;
  13504. case GGML_OP_PAD:
  13505. {
  13506. GGML_ASSERT(false); // TODO: not implemented
  13507. } break;
  13508. case GGML_OP_ARGSORT:
  13509. {
  13510. GGML_ASSERT(false); // TODO: not implemented
  13511. } break;
  13512. case GGML_OP_LEAKY_RELU:
  13513. {
  13514. GGML_ASSERT(false); // TODO: not implemented
  13515. } break;
  13516. case GGML_OP_FLASH_ATTN:
  13517. {
  13518. struct ggml_tensor * flash_grad = NULL;
  13519. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13520. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13521. GGML_ASSERT(t == 0 || t == 1);
  13522. bool masked = t != 0;
  13523. flash_grad =
  13524. ggml_flash_attn_back(ctx,
  13525. src0,
  13526. src1,
  13527. tensor->src[2],
  13528. tensor->grad,
  13529. masked);
  13530. }
  13531. struct ggml_tensor * src2 = tensor->src[2];
  13532. const int64_t elem_q = ggml_nelements(src0);
  13533. const int64_t elem_k = ggml_nelements(src1);
  13534. const int64_t elem_v = ggml_nelements(src2);
  13535. enum ggml_type result_type = flash_grad->type;
  13536. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13537. const size_t tsize = ggml_type_size(result_type);
  13538. const size_t offs_q = 0;
  13539. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13540. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13541. if (src0->grad) {
  13542. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13543. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13544. src0->grad = ggml_add_or_set(ctx,
  13545. src0->grad,
  13546. grad_q,
  13547. zero_table);
  13548. }
  13549. if (src1->grad) {
  13550. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13551. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13552. src1->grad = ggml_add_or_set(ctx,
  13553. src1->grad,
  13554. grad_k,
  13555. zero_table);
  13556. }
  13557. if (src2->grad) {
  13558. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13559. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13560. src2->grad = ggml_add_or_set(ctx,
  13561. src2->grad,
  13562. grad_v,
  13563. zero_table);
  13564. }
  13565. } break;
  13566. case GGML_OP_FLASH_FF:
  13567. {
  13568. GGML_ASSERT(false); // not supported
  13569. } break;
  13570. case GGML_OP_FLASH_ATTN_BACK:
  13571. {
  13572. GGML_ASSERT(false); // not supported
  13573. } break;
  13574. case GGML_OP_WIN_PART:
  13575. case GGML_OP_WIN_UNPART:
  13576. case GGML_OP_UNARY:
  13577. {
  13578. switch (ggml_get_unary_op(tensor)) {
  13579. case GGML_UNARY_OP_ABS:
  13580. {
  13581. if (src0->grad) {
  13582. src0->grad =
  13583. ggml_add_or_set(ctx,
  13584. src0->grad,
  13585. ggml_mul(ctx,
  13586. ggml_sgn(ctx, src0),
  13587. tensor->grad),
  13588. zero_table);
  13589. }
  13590. } break;
  13591. case GGML_UNARY_OP_SGN:
  13592. {
  13593. if (src0->grad) {
  13594. // noop
  13595. }
  13596. } break;
  13597. case GGML_UNARY_OP_NEG:
  13598. {
  13599. if (src0->grad) {
  13600. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13601. }
  13602. } break;
  13603. case GGML_UNARY_OP_STEP:
  13604. {
  13605. if (src0->grad) {
  13606. // noop
  13607. }
  13608. } break;
  13609. case GGML_UNARY_OP_TANH:
  13610. {
  13611. GGML_ASSERT(false); // TODO: not implemented
  13612. } break;
  13613. case GGML_UNARY_OP_ELU:
  13614. {
  13615. GGML_ASSERT(false); // TODO: not implemented
  13616. } break;
  13617. case GGML_UNARY_OP_RELU:
  13618. {
  13619. if (src0->grad) {
  13620. src0->grad = ggml_add_or_set(ctx,
  13621. src0->grad,
  13622. ggml_mul(ctx,
  13623. ggml_step(ctx, src0),
  13624. tensor->grad),
  13625. zero_table);
  13626. }
  13627. } break;
  13628. case GGML_UNARY_OP_GELU:
  13629. {
  13630. GGML_ASSERT(false); // TODO: not implemented
  13631. } break;
  13632. case GGML_UNARY_OP_GELU_QUICK:
  13633. {
  13634. GGML_ASSERT(false); // TODO: not implemented
  13635. } break;
  13636. case GGML_UNARY_OP_SILU:
  13637. {
  13638. // necessary for llama
  13639. if (src0->grad) {
  13640. src0->grad = ggml_add_or_set(ctx,
  13641. src0->grad,
  13642. ggml_silu_back(ctx, src0, tensor->grad),
  13643. zero_table);
  13644. }
  13645. } break;
  13646. default:
  13647. GGML_ASSERT(false);
  13648. }
  13649. } break;
  13650. case GGML_OP_GET_REL_POS:
  13651. case GGML_OP_ADD_REL_POS:
  13652. case GGML_OP_MAP_UNARY:
  13653. case GGML_OP_MAP_BINARY:
  13654. case GGML_OP_MAP_CUSTOM1_F32:
  13655. case GGML_OP_MAP_CUSTOM2_F32:
  13656. case GGML_OP_MAP_CUSTOM3_F32:
  13657. case GGML_OP_MAP_CUSTOM1:
  13658. case GGML_OP_MAP_CUSTOM2:
  13659. case GGML_OP_MAP_CUSTOM3:
  13660. {
  13661. GGML_ASSERT(false); // not supported
  13662. } break;
  13663. case GGML_OP_CROSS_ENTROPY_LOSS:
  13664. {
  13665. if (src0->grad) {
  13666. src0->grad = ggml_add_or_set(ctx,
  13667. src0->grad,
  13668. ggml_cross_entropy_loss_back(ctx,
  13669. src0,
  13670. src1,
  13671. tensor->grad),
  13672. zero_table);
  13673. }
  13674. } break;
  13675. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13676. {
  13677. GGML_ASSERT(false); // not supported
  13678. } break;
  13679. case GGML_OP_NONE:
  13680. {
  13681. // nop
  13682. } break;
  13683. case GGML_OP_COUNT:
  13684. {
  13685. GGML_ASSERT(false);
  13686. } break;
  13687. }
  13688. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13689. if (tensor->src[i] && tensor->src[i]->grad) {
  13690. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13691. }
  13692. }
  13693. }
  13694. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13695. if (node->grad == NULL) {
  13696. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13697. // it can also happen during forward pass, if the user performs computations with constants
  13698. if (node->op != GGML_OP_NONE) {
  13699. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13700. }
  13701. }
  13702. // check if already visited
  13703. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13704. return;
  13705. }
  13706. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13707. const int k =
  13708. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13709. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13710. /* unknown order, just fall back to using i*/ i;
  13711. if (node->src[k]) {
  13712. ggml_visit_parents(cgraph, node->src[k]);
  13713. }
  13714. }
  13715. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13716. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13717. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13718. if (strlen(node->name) == 0) {
  13719. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13720. }
  13721. cgraph->leafs[cgraph->n_leafs] = node;
  13722. cgraph->n_leafs++;
  13723. } else {
  13724. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13725. if (strlen(node->name) == 0) {
  13726. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13727. }
  13728. cgraph->nodes[cgraph->n_nodes] = node;
  13729. if (cgraph->grads) {
  13730. cgraph->grads[cgraph->n_nodes] = node->grad;
  13731. }
  13732. cgraph->n_nodes++;
  13733. }
  13734. }
  13735. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13736. if (!expand) {
  13737. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13738. ggml_graph_clear(cgraph);
  13739. }
  13740. const int n0 = cgraph->n_nodes;
  13741. UNUSED(n0);
  13742. ggml_visit_parents(cgraph, tensor);
  13743. const int n_new = cgraph->n_nodes - n0;
  13744. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13745. if (n_new > 0) {
  13746. // the last added node should always be starting point
  13747. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13748. }
  13749. }
  13750. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13751. ggml_build_forward_impl(cgraph, tensor, true);
  13752. }
  13753. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13754. GGML_ASSERT(gf->n_nodes > 0);
  13755. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13756. if (keep) {
  13757. for (int i = 0; i < gf->n_nodes; i++) {
  13758. struct ggml_tensor * node = gf->nodes[i];
  13759. if (node->grad) {
  13760. node->grad = ggml_dup_tensor(ctx, node);
  13761. gf->grads[i] = node->grad;
  13762. }
  13763. }
  13764. }
  13765. // remember original gradients which start with zero values
  13766. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13767. for (int i = 0; i < gf->n_nodes; i++) {
  13768. if (gf->grads[i]) {
  13769. ggml_hash_insert(zero_table, gf->grads[i]);
  13770. }
  13771. }
  13772. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13773. struct ggml_tensor * node = gf->nodes[i];
  13774. // inplace operations to add gradients are not created by ggml_compute_backward
  13775. // use allocator to automatically make inplace operations
  13776. if (node->grad) {
  13777. ggml_compute_backward(ctx, node, zero_table);
  13778. }
  13779. }
  13780. for (int i = 0; i < gf->n_nodes; i++) {
  13781. struct ggml_tensor * node = gf->nodes[i];
  13782. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13783. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13784. ggml_build_forward_expand(gb, node->grad);
  13785. }
  13786. }
  13787. ggml_hash_set_free(zero_table);
  13788. }
  13789. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13790. size_t nbytes = sizeof(struct ggml_cgraph);
  13791. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13792. if (grads) {
  13793. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13794. }
  13795. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13796. return nbytes;
  13797. }
  13798. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13799. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13800. }
  13801. size_t ggml_graph_overhead(void) {
  13802. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13803. }
  13804. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13805. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13806. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13807. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13808. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13809. size_t hash_size = ggml_hash_size(size * 2);
  13810. struct ggml_tensor ** nodes_ptr = data_start;
  13811. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13812. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13813. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13814. // check that we allocated the correct amount of memory
  13815. assert(obj_size == (size_t) (
  13816. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13817. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13818. *cgraph = (struct ggml_cgraph) {
  13819. /*.size =*/ size,
  13820. /*.n_nodes =*/ 0,
  13821. /*.n_leafs =*/ 0,
  13822. /*.nodes =*/ nodes_ptr,
  13823. /*.grads =*/ grads_ptr,
  13824. /*.leafs =*/ leafs_ptr,
  13825. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13826. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13827. /*.perf_runs =*/ 0,
  13828. /*.perf_cycles =*/ 0,
  13829. /*.perf_time_us =*/ 0,
  13830. };
  13831. return cgraph;
  13832. }
  13833. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13834. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13835. }
  13836. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13837. struct ggml_cgraph cgraph = {
  13838. /*.size =*/ 0,
  13839. /*.n_nodes =*/ i1 - i0,
  13840. /*.n_leafs =*/ 0,
  13841. /*.nodes =*/ cgraph0->nodes + i0,
  13842. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13843. /*.leafs =*/ NULL,
  13844. /*.hash_table =*/ { 0, NULL },
  13845. /*.order =*/ cgraph0->order,
  13846. /*.perf_runs =*/ 0,
  13847. /*.perf_cycles =*/ 0,
  13848. /*.perf_time_us =*/ 0,
  13849. };
  13850. return cgraph;
  13851. }
  13852. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13853. GGML_ASSERT(dst->size >= src->n_leafs);
  13854. GGML_ASSERT(dst->size >= src->n_nodes);
  13855. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13856. dst->n_leafs = src->n_leafs;
  13857. dst->n_nodes = src->n_nodes;
  13858. dst->order = src->order;
  13859. for (int i = 0; i < src->n_leafs; ++i) {
  13860. dst->leafs[i] = src->leafs[i];
  13861. }
  13862. for (int i = 0; i < src->n_nodes; ++i) {
  13863. dst->nodes[i] = src->nodes[i];
  13864. }
  13865. if (src->grads) {
  13866. GGML_ASSERT(dst->grads != NULL);
  13867. for (int i = 0; i < src->n_nodes; ++i) {
  13868. dst->grads[i] = src->grads[i];
  13869. }
  13870. }
  13871. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13872. if (src->visited_hash_table.keys[i]) {
  13873. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13874. }
  13875. }
  13876. }
  13877. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13878. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13879. ggml_graph_cpy(cgraph, result);
  13880. return result;
  13881. }
  13882. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13883. GGML_ASSERT(cgraph->grads != NULL);
  13884. for (int i = 0; i < cgraph->n_nodes; i++) {
  13885. struct ggml_tensor * grad = cgraph->grads[i];
  13886. if (grad) {
  13887. ggml_set_zero(grad);
  13888. }
  13889. }
  13890. }
  13891. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13892. cgraph->n_leafs = 0;
  13893. cgraph->n_nodes = 0;
  13894. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13895. }
  13896. //
  13897. // thread data
  13898. //
  13899. // synchronization is done via busy loops
  13900. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13901. //
  13902. #ifdef __APPLE__
  13903. //#include <os/lock.h>
  13904. //
  13905. //typedef os_unfair_lock ggml_lock_t;
  13906. //
  13907. //#define ggml_lock_init(x) UNUSED(x)
  13908. //#define ggml_lock_destroy(x) UNUSED(x)
  13909. //#define ggml_lock_lock os_unfair_lock_lock
  13910. //#define ggml_lock_unlock os_unfair_lock_unlock
  13911. //
  13912. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13913. typedef int ggml_lock_t;
  13914. #define ggml_lock_init(x) UNUSED(x)
  13915. #define ggml_lock_destroy(x) UNUSED(x)
  13916. #define ggml_lock_lock(x) UNUSED(x)
  13917. #define ggml_lock_unlock(x) UNUSED(x)
  13918. #define GGML_LOCK_INITIALIZER 0
  13919. typedef pthread_t ggml_thread_t;
  13920. #define ggml_thread_create pthread_create
  13921. #define ggml_thread_join pthread_join
  13922. #else
  13923. //typedef pthread_spinlock_t ggml_lock_t;
  13924. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13925. //#define ggml_lock_destroy pthread_spin_destroy
  13926. //#define ggml_lock_lock pthread_spin_lock
  13927. //#define ggml_lock_unlock pthread_spin_unlock
  13928. typedef int ggml_lock_t;
  13929. #define ggml_lock_init(x) UNUSED(x)
  13930. #define ggml_lock_destroy(x) UNUSED(x)
  13931. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13932. #define ggml_lock_lock(x) _mm_pause()
  13933. #else
  13934. #define ggml_lock_lock(x) UNUSED(x)
  13935. #endif
  13936. #define ggml_lock_unlock(x) UNUSED(x)
  13937. #define GGML_LOCK_INITIALIZER 0
  13938. typedef pthread_t ggml_thread_t;
  13939. #define ggml_thread_create pthread_create
  13940. #define ggml_thread_join pthread_join
  13941. #endif
  13942. // Android's libc implementation "bionic" does not support setting affinity
  13943. #if defined(__gnu_linux__)
  13944. static void set_numa_thread_affinity(int thread_n) {
  13945. if (!ggml_is_numa()) {
  13946. return;
  13947. }
  13948. int node_num;
  13949. int rv;
  13950. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13951. switch(g_state.numa.numa_strategy) {
  13952. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  13953. // run thread on node_num thread_n / (threads per node)
  13954. node_num = thread_n % g_state.numa.n_nodes;
  13955. break;
  13956. case GGML_NUMA_STRATEGY_ISOLATE:
  13957. // run thread on current_node
  13958. node_num = g_state.numa.current_node;
  13959. break;
  13960. case GGML_NUMA_STRATEGY_NUMACTL:
  13961. // use the cpuset that numactl gave us
  13962. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  13963. if (rv) {
  13964. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  13965. }
  13966. return;
  13967. default:
  13968. return;
  13969. }
  13970. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13971. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13972. CPU_ZERO_S(setsize, cpus);
  13973. for (size_t i = 0; i < node->n_cpus; ++i) {
  13974. CPU_SET_S(node->cpus[i], setsize, cpus);
  13975. }
  13976. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13977. if (rv) {
  13978. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  13979. }
  13980. CPU_FREE(cpus);
  13981. }
  13982. static void clear_numa_thread_affinity(void) {
  13983. if (!ggml_is_numa()) {
  13984. return;
  13985. }
  13986. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13987. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13988. CPU_ZERO_S(setsize, cpus);
  13989. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13990. CPU_SET_S(i, setsize, cpus);
  13991. }
  13992. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13993. if (rv) {
  13994. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  13995. }
  13996. CPU_FREE(cpus);
  13997. }
  13998. #else
  13999. // TODO: Windows etc.
  14000. // (the linux implementation may also work on BSD, someone should test)
  14001. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14002. static void clear_numa_thread_affinity(void) {}
  14003. #endif
  14004. struct ggml_compute_state_shared {
  14005. const struct ggml_cgraph * cgraph;
  14006. const struct ggml_cplan * cplan;
  14007. int64_t perf_node_start_cycles;
  14008. int64_t perf_node_start_time_us;
  14009. const int n_threads;
  14010. // synchronization primitives
  14011. atomic_int n_active; // num active threads
  14012. atomic_int node_n; // active graph node
  14013. atomic_int node_task; // active graph node task phase
  14014. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14015. void * abort_callback_data;
  14016. };
  14017. struct ggml_compute_state {
  14018. ggml_thread_t thrd;
  14019. int ith;
  14020. struct ggml_compute_state_shared * shared;
  14021. };
  14022. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14023. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14024. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14025. node->perf_runs++;
  14026. node->perf_cycles += cycles_cur;
  14027. node->perf_time_us += time_us_cur;
  14028. }
  14029. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  14030. int n_tasks = 0;
  14031. switch (node->op) {
  14032. case GGML_OP_CPY:
  14033. case GGML_OP_DUP:
  14034. case GGML_OP_ADD:
  14035. case GGML_OP_ADD1:
  14036. case GGML_OP_ACC:
  14037. {
  14038. n_tasks = n_threads;
  14039. } break;
  14040. case GGML_OP_SUB:
  14041. case GGML_OP_SQR:
  14042. case GGML_OP_SQRT:
  14043. case GGML_OP_LOG:
  14044. case GGML_OP_SUM:
  14045. case GGML_OP_SUM_ROWS:
  14046. case GGML_OP_MEAN:
  14047. case GGML_OP_ARGMAX:
  14048. case GGML_OP_REPEAT:
  14049. case GGML_OP_REPEAT_BACK:
  14050. case GGML_OP_LEAKY_RELU:
  14051. {
  14052. n_tasks = 1;
  14053. } break;
  14054. case GGML_OP_UNARY:
  14055. switch (ggml_get_unary_op(node)) {
  14056. case GGML_UNARY_OP_ABS:
  14057. case GGML_UNARY_OP_SGN:
  14058. case GGML_UNARY_OP_NEG:
  14059. case GGML_UNARY_OP_STEP:
  14060. case GGML_UNARY_OP_TANH:
  14061. case GGML_UNARY_OP_ELU:
  14062. case GGML_UNARY_OP_RELU:
  14063. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14064. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14065. {
  14066. n_tasks = 1;
  14067. } break;
  14068. case GGML_UNARY_OP_GELU:
  14069. case GGML_UNARY_OP_GELU_QUICK:
  14070. case GGML_UNARY_OP_SILU:
  14071. {
  14072. n_tasks = n_threads;
  14073. } break;
  14074. default:
  14075. GGML_ASSERT(false);
  14076. }
  14077. break;
  14078. case GGML_OP_SILU_BACK:
  14079. case GGML_OP_MUL:
  14080. case GGML_OP_DIV:
  14081. case GGML_OP_NORM:
  14082. case GGML_OP_RMS_NORM:
  14083. case GGML_OP_RMS_NORM_BACK:
  14084. case GGML_OP_GROUP_NORM:
  14085. case GGML_OP_CONCAT:
  14086. {
  14087. n_tasks = n_threads;
  14088. } break;
  14089. case GGML_OP_MUL_MAT:
  14090. {
  14091. n_tasks = n_threads;
  14092. // TODO: use different scheduling for different matrix sizes
  14093. //const int nr0 = ggml_nrows(node->src[0]);
  14094. //const int nr1 = ggml_nrows(node->src[1]);
  14095. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14096. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14097. } break;
  14098. case GGML_OP_MUL_MAT_ID:
  14099. {
  14100. n_tasks = n_threads;
  14101. } break;
  14102. case GGML_OP_OUT_PROD:
  14103. {
  14104. n_tasks = n_threads;
  14105. } break;
  14106. case GGML_OP_SCALE:
  14107. case GGML_OP_SET:
  14108. case GGML_OP_CONT:
  14109. case GGML_OP_RESHAPE:
  14110. case GGML_OP_VIEW:
  14111. case GGML_OP_PERMUTE:
  14112. case GGML_OP_TRANSPOSE:
  14113. case GGML_OP_GET_ROWS:
  14114. case GGML_OP_GET_ROWS_BACK:
  14115. case GGML_OP_DIAG:
  14116. {
  14117. n_tasks = 1;
  14118. } break;
  14119. case GGML_OP_DIAG_MASK_ZERO:
  14120. case GGML_OP_DIAG_MASK_INF:
  14121. case GGML_OP_SOFT_MAX_BACK:
  14122. case GGML_OP_ROPE:
  14123. case GGML_OP_ROPE_BACK:
  14124. case GGML_OP_ADD_REL_POS:
  14125. {
  14126. n_tasks = n_threads;
  14127. } break;
  14128. case GGML_OP_ALIBI:
  14129. {
  14130. n_tasks = 1; //TODO
  14131. } break;
  14132. case GGML_OP_CLAMP:
  14133. {
  14134. n_tasks = 1; //TODO
  14135. } break;
  14136. case GGML_OP_SOFT_MAX:
  14137. {
  14138. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14139. } break;
  14140. case GGML_OP_CONV_TRANSPOSE_1D:
  14141. {
  14142. n_tasks = n_threads;
  14143. } break;
  14144. case GGML_OP_IM2COL:
  14145. {
  14146. n_tasks = n_threads;
  14147. } break;
  14148. case GGML_OP_CONV_TRANSPOSE_2D:
  14149. {
  14150. n_tasks = n_threads;
  14151. } break;
  14152. case GGML_OP_POOL_1D:
  14153. case GGML_OP_POOL_2D:
  14154. {
  14155. n_tasks = 1;
  14156. } break;
  14157. case GGML_OP_UPSCALE:
  14158. {
  14159. n_tasks = n_threads;
  14160. } break;
  14161. case GGML_OP_PAD:
  14162. {
  14163. n_tasks = n_threads;
  14164. } break;
  14165. case GGML_OP_ARGSORT:
  14166. {
  14167. n_tasks = n_threads;
  14168. } break;
  14169. case GGML_OP_FLASH_ATTN:
  14170. {
  14171. n_tasks = n_threads;
  14172. } break;
  14173. case GGML_OP_FLASH_FF:
  14174. {
  14175. n_tasks = n_threads;
  14176. } break;
  14177. case GGML_OP_FLASH_ATTN_BACK:
  14178. {
  14179. n_tasks = n_threads;
  14180. } break;
  14181. case GGML_OP_WIN_PART:
  14182. case GGML_OP_WIN_UNPART:
  14183. case GGML_OP_GET_REL_POS:
  14184. case GGML_OP_MAP_UNARY:
  14185. case GGML_OP_MAP_BINARY:
  14186. case GGML_OP_MAP_CUSTOM1_F32:
  14187. case GGML_OP_MAP_CUSTOM2_F32:
  14188. case GGML_OP_MAP_CUSTOM3_F32:
  14189. {
  14190. n_tasks = 1;
  14191. } break;
  14192. case GGML_OP_MAP_CUSTOM1:
  14193. {
  14194. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14195. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14196. n_tasks = n_threads;
  14197. } else {
  14198. n_tasks = MIN(p->n_tasks, n_threads);
  14199. }
  14200. } break;
  14201. case GGML_OP_MAP_CUSTOM2:
  14202. {
  14203. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14204. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14205. n_tasks = n_threads;
  14206. } else {
  14207. n_tasks = MIN(p->n_tasks, n_threads);
  14208. }
  14209. } break;
  14210. case GGML_OP_MAP_CUSTOM3:
  14211. {
  14212. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14213. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14214. n_tasks = n_threads;
  14215. } else {
  14216. n_tasks = MIN(p->n_tasks, n_threads);
  14217. }
  14218. } break;
  14219. case GGML_OP_CROSS_ENTROPY_LOSS:
  14220. {
  14221. n_tasks = n_threads;
  14222. } break;
  14223. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14224. {
  14225. n_tasks = n_threads;
  14226. } break;
  14227. case GGML_OP_NONE:
  14228. {
  14229. n_tasks = 1;
  14230. } break;
  14231. case GGML_OP_COUNT:
  14232. {
  14233. GGML_ASSERT(false);
  14234. } break;
  14235. default:
  14236. {
  14237. fprintf(stderr, "%s: op not implemented: ", __func__);
  14238. if (node->op < GGML_OP_COUNT) {
  14239. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14240. } else {
  14241. fprintf(stderr, "%d\n", node->op);
  14242. }
  14243. GGML_ASSERT(false);
  14244. } break;
  14245. }
  14246. assert(n_tasks > 0);
  14247. return n_tasks;
  14248. }
  14249. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14250. // wait for other threads to finish
  14251. const int last_node_n = * node_n;
  14252. while (true) {
  14253. if (do_yield) {
  14254. sched_yield();
  14255. }
  14256. * node_n = atomic_load(&state->shared->node_n);
  14257. if (* node_n != last_node_n) break;
  14258. }
  14259. }
  14260. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14261. // wait for other threads to finish
  14262. const int last_task_phase = * task_phase;
  14263. while (true) {
  14264. if (do_yield) {
  14265. sched_yield();
  14266. }
  14267. * task_phase = atomic_load(&state->shared->node_task);
  14268. if (* task_phase != last_task_phase) break;
  14269. }
  14270. }
  14271. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14272. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14273. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14274. const struct ggml_cplan * cplan = state->shared->cplan;
  14275. const int n_threads = state->shared->n_threads;
  14276. set_numa_thread_affinity(state->ith);
  14277. int node_n = -1;
  14278. int task_phase = GGML_TASK_FINALIZE;
  14279. while (true) {
  14280. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14281. state->shared->node_n += 1;
  14282. return (thread_ret_t) GGML_EXIT_ABORTED;
  14283. }
  14284. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14285. // all other threads are finished and spinning
  14286. // do finalize and init here so we don't have synchronize again
  14287. struct ggml_compute_params params = {
  14288. /*.type =*/ GGML_TASK_FINALIZE,
  14289. /*.ith =*/ 0,
  14290. /*.nth =*/ 0,
  14291. /*.wsize =*/ cplan->work_size,
  14292. /*.wdata =*/ cplan->work_data,
  14293. };
  14294. if (node_n != -1) {
  14295. /* FINALIZE */
  14296. struct ggml_tensor * node = cgraph->nodes[node_n];
  14297. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14298. params.nth = ggml_get_n_tasks(node, n_threads);
  14299. ggml_compute_forward(&params, node);
  14300. }
  14301. ggml_graph_compute_perf_stats_node(node, state->shared);
  14302. }
  14303. // distribute new work or execute it direct if 1T
  14304. while (++node_n < cgraph->n_nodes) {
  14305. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14306. struct ggml_tensor * node = cgraph->nodes[node_n];
  14307. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14308. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14309. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14310. params.nth = n_tasks;
  14311. if (n_tasks == 1) {
  14312. /* INIT */
  14313. if (GGML_OP_HAS_INIT[node->op]) {
  14314. params.type = GGML_TASK_INIT;
  14315. ggml_compute_forward(&params, node);
  14316. }
  14317. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14318. // they do something more efficient than spinning (?)
  14319. params.type = GGML_TASK_COMPUTE;
  14320. ggml_compute_forward(&params, node);
  14321. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14322. params.type = GGML_TASK_FINALIZE;
  14323. ggml_compute_forward(&params, node);
  14324. }
  14325. ggml_graph_compute_perf_stats_node(node, state->shared);
  14326. } else {
  14327. break;
  14328. }
  14329. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14330. break;
  14331. }
  14332. }
  14333. task_phase = GGML_TASK_INIT;
  14334. atomic_store(&state->shared->n_active, n_threads);
  14335. atomic_store(&state->shared->node_n, node_n);
  14336. atomic_store(&state->shared->node_task, task_phase);
  14337. } else {
  14338. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14339. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14340. }
  14341. // check if we should stop
  14342. if (node_n >= cgraph->n_nodes) break;
  14343. /* INIT & COMPUTE */
  14344. struct ggml_tensor * node = cgraph->nodes[node_n];
  14345. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14346. struct ggml_compute_params params = {
  14347. /*.type =*/ GGML_TASK_INIT,
  14348. /*.ith =*/ state->ith,
  14349. /*.nth =*/ n_tasks,
  14350. /*.wsize =*/ cplan->work_size,
  14351. /*.wdata =*/ cplan->work_data,
  14352. };
  14353. if (state->ith < n_tasks) {
  14354. if (GGML_OP_HAS_INIT[node->op]) {
  14355. ggml_compute_forward(&params, node);
  14356. }
  14357. }
  14358. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14359. task_phase = GGML_TASK_COMPUTE;
  14360. atomic_store(&state->shared->n_active, n_threads);
  14361. atomic_store(&state->shared->node_task, task_phase);
  14362. }
  14363. else {
  14364. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14365. // depending on the workload and the operating system.
  14366. // since it is not clear what is the best approach, it should potentially become user-configurable
  14367. // ref: https://github.com/ggerganov/ggml/issues/291
  14368. // UPD: adding the do_yield flag seems to resolve the issue universally
  14369. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14370. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14371. }
  14372. if (state->ith < n_tasks) {
  14373. params.type = GGML_TASK_COMPUTE;
  14374. ggml_compute_forward(&params, node);
  14375. }
  14376. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14377. task_phase = GGML_TASK_FINALIZE;
  14378. atomic_store(&state->shared->n_active, n_threads);
  14379. atomic_store(&state->shared->node_task, task_phase);
  14380. }
  14381. else {
  14382. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14383. }
  14384. }
  14385. return GGML_EXIT_SUCCESS;
  14386. }
  14387. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14388. if (n_threads <= 0) {
  14389. n_threads = GGML_DEFAULT_N_THREADS;
  14390. }
  14391. size_t work_size = 0;
  14392. struct ggml_cplan cplan;
  14393. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14394. int max_tasks = 1;
  14395. // thread scheduling for the different operations + work buffer size estimation
  14396. for (int i = 0; i < cgraph->n_nodes; i++) {
  14397. struct ggml_tensor * node = cgraph->nodes[i];
  14398. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14399. max_tasks = MAX(max_tasks, n_tasks);
  14400. size_t cur = 0;
  14401. switch (node->op) {
  14402. case GGML_OP_CPY:
  14403. case GGML_OP_DUP:
  14404. {
  14405. if (ggml_is_quantized(node->type)) {
  14406. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14407. }
  14408. } break;
  14409. case GGML_OP_ADD:
  14410. case GGML_OP_ADD1:
  14411. {
  14412. if (ggml_is_quantized(node->src[0]->type)) {
  14413. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14414. }
  14415. } break;
  14416. case GGML_OP_ACC:
  14417. {
  14418. if (ggml_is_quantized(node->src[0]->type)) {
  14419. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14420. }
  14421. } break;
  14422. case GGML_OP_MUL_MAT:
  14423. {
  14424. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14425. #if defined(GGML_USE_CLBLAST)
  14426. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14427. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14428. } else
  14429. #endif
  14430. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14431. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14432. if (node->src[0]->type != GGML_TYPE_F32) {
  14433. // here we need memory for fully dequantized matrix from src0
  14434. // take into account that src0 can be broadcasted into src1[2,3]
  14435. cur = ggml_type_size(GGML_TYPE_F32)
  14436. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14437. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14438. }
  14439. } else
  14440. #endif
  14441. if (node->src[1]->type != vec_dot_type) {
  14442. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14443. }
  14444. } break;
  14445. case GGML_OP_MUL_MAT_ID:
  14446. {
  14447. cur = 0;
  14448. const struct ggml_tensor * src0 = node->src[2];
  14449. const struct ggml_tensor * src1 = node->src[1];
  14450. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14451. if (src1->type != vec_dot_type) {
  14452. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14453. }
  14454. const int n_as = ggml_get_op_params_i32(node, 1);
  14455. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14456. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14457. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14458. } break;
  14459. case GGML_OP_OUT_PROD:
  14460. {
  14461. if (ggml_is_quantized(node->src[0]->type)) {
  14462. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14463. }
  14464. } break;
  14465. case GGML_OP_SOFT_MAX:
  14466. case GGML_OP_ROPE:
  14467. {
  14468. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14469. } break;
  14470. case GGML_OP_CONV_TRANSPOSE_1D:
  14471. {
  14472. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14473. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14474. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14475. const int64_t ne00 = node->src[0]->ne[0]; // K
  14476. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14477. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14478. const int64_t ne10 = node->src[1]->ne[0]; // L
  14479. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14480. if (node->src[0]->type == GGML_TYPE_F16 &&
  14481. node->src[1]->type == GGML_TYPE_F32) {
  14482. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14483. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14484. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14485. node->src[1]->type == GGML_TYPE_F32) {
  14486. cur += sizeof(float)*ne00*ne01*ne02;
  14487. cur += sizeof(float)*ne10*ne11;
  14488. } else {
  14489. GGML_ASSERT(false);
  14490. }
  14491. } break;
  14492. case GGML_OP_CONV_TRANSPOSE_2D:
  14493. {
  14494. const int64_t ne00 = node->src[0]->ne[0]; // W
  14495. const int64_t ne01 = node->src[0]->ne[1]; // H
  14496. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14497. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14498. const int64_t ne10 = node->src[1]->ne[0]; // W
  14499. const int64_t ne11 = node->src[1]->ne[1]; // H
  14500. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14501. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14502. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14503. } break;
  14504. case GGML_OP_FLASH_ATTN:
  14505. {
  14506. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14507. if (node->src[1]->type == GGML_TYPE_F32) {
  14508. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14509. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14510. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14511. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14512. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14513. }
  14514. } break;
  14515. case GGML_OP_FLASH_FF:
  14516. {
  14517. if (node->src[1]->type == GGML_TYPE_F32) {
  14518. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14519. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14520. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14521. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14522. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14523. }
  14524. } break;
  14525. case GGML_OP_FLASH_ATTN_BACK:
  14526. {
  14527. const int64_t D = node->src[0]->ne[0];
  14528. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14529. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14530. if (node->src[1]->type == GGML_TYPE_F32) {
  14531. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14532. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14533. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14534. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14535. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14536. }
  14537. } break;
  14538. case GGML_OP_CROSS_ENTROPY_LOSS:
  14539. {
  14540. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14541. } break;
  14542. case GGML_OP_COUNT:
  14543. {
  14544. GGML_ASSERT(false);
  14545. } break;
  14546. default:
  14547. break;
  14548. }
  14549. work_size = MAX(work_size, cur);
  14550. }
  14551. if (work_size > 0) {
  14552. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14553. }
  14554. cplan.n_threads = MIN(max_tasks, n_threads);
  14555. cplan.work_size = work_size;
  14556. cplan.work_data = NULL;
  14557. return cplan;
  14558. }
  14559. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14560. {
  14561. GGML_ASSERT(cplan);
  14562. GGML_ASSERT(cplan->n_threads > 0);
  14563. if (cplan->work_size > 0) {
  14564. GGML_ASSERT(cplan->work_data);
  14565. }
  14566. }
  14567. #ifdef GGML_USE_VULKAN
  14568. for (int i = 0; i < cgraph->n_nodes; i++) {
  14569. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14570. }
  14571. ggml_vk_preallocate_buffers_cpu_assist();
  14572. for (int i = 0; i < cgraph->n_nodes; i++) {
  14573. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14574. }
  14575. #endif
  14576. const int n_threads = cplan->n_threads;
  14577. struct ggml_compute_state_shared state_shared = {
  14578. /*.cgraph =*/ cgraph,
  14579. /*.cgraph_plan =*/ cplan,
  14580. /*.perf_node_start_cycles =*/ 0,
  14581. /*.perf_node_start_time_us =*/ 0,
  14582. /*.n_threads =*/ n_threads,
  14583. /*.n_active =*/ n_threads,
  14584. /*.node_n =*/ -1,
  14585. /*.node_task =*/ GGML_TASK_FINALIZE,
  14586. /*.abort_callback =*/ NULL,
  14587. /*.abort_callback_data =*/ NULL,
  14588. };
  14589. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14590. // create thread pool
  14591. if (n_threads > 1) {
  14592. for (int j = 1; j < n_threads; ++j) {
  14593. workers[j] = (struct ggml_compute_state) {
  14594. .thrd = 0,
  14595. .ith = j,
  14596. .shared = &state_shared,
  14597. };
  14598. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14599. GGML_ASSERT(rc == 0);
  14600. UNUSED(rc);
  14601. }
  14602. }
  14603. workers[0].ith = 0;
  14604. workers[0].shared = &state_shared;
  14605. const int64_t perf_start_cycles = ggml_perf_cycles();
  14606. const int64_t perf_start_time_us = ggml_perf_time_us();
  14607. // this is a work thread too
  14608. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14609. // don't leave affinity set on the main thread
  14610. clear_numa_thread_affinity();
  14611. // join or kill thread pool
  14612. if (n_threads > 1) {
  14613. for (int j = 1; j < n_threads; j++) {
  14614. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14615. GGML_ASSERT(rc == 0);
  14616. }
  14617. }
  14618. #ifdef GGML_USE_VULKAN
  14619. ggml_vk_graph_cleanup_cpu_assist();
  14620. #endif
  14621. // performance stats (graph)
  14622. {
  14623. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14624. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14625. cgraph->perf_runs++;
  14626. cgraph->perf_cycles += perf_cycles_cur;
  14627. cgraph->perf_time_us += perf_time_us_cur;
  14628. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14629. __func__, cgraph->perf_runs,
  14630. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14631. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14632. (double) perf_time_us_cur / 1000.0,
  14633. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14634. }
  14635. return compute_status;
  14636. }
  14637. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14638. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14639. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14640. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14641. ggml_graph_compute(cgraph, &cplan);
  14642. }
  14643. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14644. for (int i = 0; i < cgraph->n_leafs; i++) {
  14645. struct ggml_tensor * leaf = cgraph->leafs[i];
  14646. if (strcmp(leaf->name, name) == 0) {
  14647. return leaf;
  14648. }
  14649. }
  14650. for (int i = 0; i < cgraph->n_nodes; i++) {
  14651. struct ggml_tensor * node = cgraph->nodes[i];
  14652. if (strcmp(node->name, name) == 0) {
  14653. return node;
  14654. }
  14655. }
  14656. return NULL;
  14657. }
  14658. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14659. const int64_t * ne = tensor->ne;
  14660. const size_t * nb = tensor->nb;
  14661. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14662. ggml_type_name(tensor->type),
  14663. ggml_op_name (tensor->op),
  14664. ggml_n_dims(tensor),
  14665. ne[0], ne[1], ne[2], ne[3],
  14666. nb[0], nb[1], nb[2], nb[3],
  14667. tensor->data,
  14668. tensor->name);
  14669. }
  14670. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14671. const int64_t * ne = tensor->ne;
  14672. const size_t * nb = tensor->nb;
  14673. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14674. arg,
  14675. ggml_type_name(tensor->type),
  14676. ggml_op_name (tensor->op),
  14677. ggml_n_dims(tensor),
  14678. ne[0], ne[1], ne[2], ne[3],
  14679. nb[0], nb[1], nb[2], nb[3],
  14680. tensor->data,
  14681. tensor->name);
  14682. }
  14683. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14684. uint64_t size_eval = 0;
  14685. // compute size of intermediate results
  14686. // TODO: does not take into account scratch buffers !!!!
  14687. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14688. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14689. }
  14690. // print
  14691. {
  14692. FILE * fout = stdout;
  14693. fprintf(fout, "\n");
  14694. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14695. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14696. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14697. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14698. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14699. // header
  14700. fprintf(fout, "\n");
  14701. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14702. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14703. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14704. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14705. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14706. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14707. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14708. }
  14709. // header
  14710. fprintf(fout, "\n");
  14711. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14712. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14713. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14714. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14715. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14716. if (cgraph->nodes[i]->src[j]) {
  14717. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14718. }
  14719. }
  14720. fprintf(fout, "\n");
  14721. }
  14722. fprintf(fout, "\n");
  14723. }
  14724. // write binary data
  14725. {
  14726. FILE * fout = fopen(fname, "wb");
  14727. if (!fout) {
  14728. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14729. return;
  14730. }
  14731. // header
  14732. {
  14733. const uint32_t magic = GGML_FILE_MAGIC;
  14734. const uint32_t version = GGML_FILE_VERSION;
  14735. const uint32_t n_leafs = cgraph->n_leafs;
  14736. const uint32_t n_nodes = cgraph->n_nodes;
  14737. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14738. fwrite(&version, sizeof(uint32_t), 1, fout);
  14739. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14740. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14741. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14742. }
  14743. // leafs
  14744. {
  14745. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14746. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14747. const uint32_t type = tensor->type;
  14748. const uint32_t op = tensor->op;
  14749. fwrite(&type, sizeof(uint32_t), 1, fout);
  14750. fwrite(&op, sizeof(uint32_t), 1, fout);
  14751. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14752. const uint64_t ne = tensor->ne[j];
  14753. const uint64_t nb = tensor->nb[j];
  14754. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14755. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14756. }
  14757. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14758. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14759. // dump the data
  14760. // TODO: pad this to 32 byte boundary
  14761. {
  14762. const size_t size = ggml_nbytes(tensor);
  14763. fwrite(tensor->data, sizeof(char), size, fout);
  14764. }
  14765. }
  14766. }
  14767. // nodes
  14768. {
  14769. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14770. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14771. const uint32_t type = tensor->type;
  14772. const uint32_t op = tensor->op;
  14773. fwrite(&type, sizeof(uint32_t), 1, fout);
  14774. fwrite(&op, sizeof(uint32_t), 1, fout);
  14775. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14776. const uint64_t ne = tensor->ne[j];
  14777. const uint64_t nb = tensor->nb[j];
  14778. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14779. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14780. }
  14781. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14782. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14783. // output the op arguments
  14784. {
  14785. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14786. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14787. args[j] = tensor->src[j];
  14788. }
  14789. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14790. if (args[j]) {
  14791. int32_t idx = -1;
  14792. // check if leaf
  14793. {
  14794. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14795. if (args[j] == cgraph->leafs[k]) {
  14796. idx = k;
  14797. break;
  14798. }
  14799. }
  14800. }
  14801. // check if node
  14802. if (idx == -1) {
  14803. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14804. if (args[j] == cgraph->nodes[k]) {
  14805. idx = cgraph->n_leafs + k;
  14806. break;
  14807. }
  14808. }
  14809. }
  14810. if (idx == -1) {
  14811. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14812. fclose(fout);
  14813. return;
  14814. }
  14815. fwrite(&idx, sizeof(int32_t), 1, fout);
  14816. } else {
  14817. const int32_t nul = -1;
  14818. fwrite(&nul, sizeof(int32_t), 1, fout);
  14819. }
  14820. }
  14821. }
  14822. }
  14823. }
  14824. fclose(fout);
  14825. }
  14826. }
  14827. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14828. assert(*ctx_data == NULL);
  14829. assert(*ctx_eval == NULL);
  14830. struct ggml_cgraph * result = NULL;
  14831. struct ggml_tensor * data = NULL;
  14832. // read file into data
  14833. {
  14834. FILE * fin = fopen(fname, "rb");
  14835. if (!fin) {
  14836. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14837. return result;
  14838. }
  14839. size_t fsize = 0;
  14840. fseek(fin, 0, SEEK_END);
  14841. fsize = ftell(fin);
  14842. fseek(fin, 0, SEEK_SET);
  14843. // create the data context
  14844. {
  14845. const size_t overhead = 1*ggml_tensor_overhead();
  14846. struct ggml_init_params params = {
  14847. .mem_size = fsize + overhead,
  14848. .mem_buffer = NULL,
  14849. .no_alloc = false,
  14850. };
  14851. *ctx_data = ggml_init(params);
  14852. if (!*ctx_data) {
  14853. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14854. fclose(fin);
  14855. return result;
  14856. }
  14857. }
  14858. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14859. {
  14860. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14861. if (ret != fsize) {
  14862. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14863. fclose(fin);
  14864. return result;
  14865. }
  14866. }
  14867. fclose(fin);
  14868. }
  14869. // populate result
  14870. {
  14871. char * ptr = (char *) data->data;
  14872. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14873. if (magic != GGML_FILE_MAGIC) {
  14874. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14875. return result;
  14876. }
  14877. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14878. if (version != GGML_FILE_VERSION) {
  14879. fprintf(stderr, "%s: invalid version number\n", __func__);
  14880. return result;
  14881. }
  14882. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14883. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14884. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14885. const int graph_size = MAX(n_leafs, n_nodes);
  14886. // create the data context
  14887. {
  14888. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14889. struct ggml_init_params params = {
  14890. .mem_size = size_eval + overhead,
  14891. .mem_buffer = NULL,
  14892. .no_alloc = true,
  14893. };
  14894. *ctx_eval = ggml_init(params);
  14895. if (!*ctx_eval) {
  14896. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14897. return result;
  14898. }
  14899. }
  14900. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14901. result->n_leafs = n_leafs;
  14902. result->n_nodes = n_nodes;
  14903. // leafs
  14904. {
  14905. uint32_t type;
  14906. uint32_t op;
  14907. for (uint32_t i = 0; i < n_leafs; ++i) {
  14908. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14909. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14910. int64_t ne[GGML_MAX_DIMS];
  14911. size_t nb[GGML_MAX_DIMS];
  14912. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14913. uint64_t ne_cur;
  14914. uint64_t nb_cur;
  14915. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14916. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14917. ne[j] = ne_cur;
  14918. nb[j] = nb_cur;
  14919. }
  14920. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14921. tensor->op = (enum ggml_op) op;
  14922. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14923. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14924. tensor->data = (void *) ptr;
  14925. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14926. tensor->nb[j] = nb[j];
  14927. }
  14928. result->leafs[i] = tensor;
  14929. ptr += ggml_nbytes(tensor);
  14930. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14931. }
  14932. }
  14933. ggml_set_no_alloc(*ctx_eval, false);
  14934. // nodes
  14935. {
  14936. uint32_t type;
  14937. uint32_t op;
  14938. for (uint32_t i = 0; i < n_nodes; ++i) {
  14939. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14940. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14941. enum ggml_op eop = (enum ggml_op) op;
  14942. int64_t ne[GGML_MAX_DIMS];
  14943. size_t nb[GGML_MAX_DIMS];
  14944. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14945. uint64_t ne_cur;
  14946. uint64_t nb_cur;
  14947. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14948. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14949. ne[j] = ne_cur;
  14950. nb[j] = nb_cur;
  14951. }
  14952. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14953. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14954. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14955. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14956. // parse args
  14957. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14958. const int32_t arg_idx = ptr_arg_idx[j];
  14959. if (arg_idx == -1) {
  14960. continue;
  14961. }
  14962. if (arg_idx < result->n_leafs) {
  14963. args[j] = result->leafs[arg_idx];
  14964. } else {
  14965. args[j] = result->nodes[arg_idx - result->n_leafs];
  14966. }
  14967. }
  14968. // create the tensor
  14969. // "view" operations are handled differently
  14970. // TODO: handle inplace ops - currently a copy is always made
  14971. struct ggml_tensor * tensor = NULL;
  14972. switch (eop) {
  14973. // TODO: implement other view ops
  14974. case GGML_OP_RESHAPE:
  14975. {
  14976. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14977. } break;
  14978. case GGML_OP_VIEW:
  14979. {
  14980. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14981. size_t offs;
  14982. memcpy(&offs, ptr_op_params, sizeof(offs));
  14983. tensor->data = ((char *) tensor->data) + offs;
  14984. } break;
  14985. case GGML_OP_TRANSPOSE:
  14986. {
  14987. tensor = ggml_transpose(*ctx_eval, args[0]);
  14988. } break;
  14989. case GGML_OP_PERMUTE:
  14990. {
  14991. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14992. } break;
  14993. default:
  14994. {
  14995. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14996. tensor->op = eop;
  14997. } break;
  14998. }
  14999. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15000. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15001. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15002. tensor->nb[j] = nb[j];
  15003. }
  15004. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15005. tensor->src[j] = args[j];
  15006. }
  15007. result->nodes[i] = tensor;
  15008. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15009. }
  15010. }
  15011. }
  15012. return result;
  15013. }
  15014. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15015. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15016. GGML_PRINT("=== GRAPH ===\n");
  15017. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15018. for (int i = 0; i < cgraph->n_nodes; i++) {
  15019. struct ggml_tensor * node = cgraph->nodes[i];
  15020. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15021. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15022. i,
  15023. node->ne[0], node->ne[1], node->ne[2],
  15024. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15025. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15026. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15027. (double) node->perf_time_us / 1000.0,
  15028. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15029. }
  15030. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15031. for (int i = 0; i < cgraph->n_leafs; i++) {
  15032. struct ggml_tensor * node = cgraph->leafs[i];
  15033. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15034. i,
  15035. node->ne[0], node->ne[1],
  15036. ggml_op_name(node->op),
  15037. ggml_get_name(node));
  15038. }
  15039. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15040. if (perf_total_per_op_us[i] == 0) {
  15041. continue;
  15042. }
  15043. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15044. }
  15045. GGML_PRINT("========================================\n");
  15046. }
  15047. // check if node is part of the graph
  15048. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15049. if (cgraph == NULL) {
  15050. return true;
  15051. }
  15052. for (int i = 0; i < cgraph->n_nodes; i++) {
  15053. if (cgraph->nodes[i] == node) {
  15054. return true;
  15055. }
  15056. }
  15057. return false;
  15058. }
  15059. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15060. for (int i = 0; i < cgraph->n_nodes; i++) {
  15061. struct ggml_tensor * parent = cgraph->nodes[i];
  15062. if (parent->grad == node) {
  15063. return parent;
  15064. }
  15065. }
  15066. return NULL;
  15067. }
  15068. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15069. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15070. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15071. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15072. gparent0 ? (void *) gparent0 : (void *) parent,
  15073. gparent0 ? "g" : "x",
  15074. gparent ? (void *) gparent : (void *) node,
  15075. gparent ? "g" : "x",
  15076. gparent ? "empty" : "vee",
  15077. gparent ? "dashed" : "solid",
  15078. label);
  15079. }
  15080. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15081. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15082. (void *) parent, "x",
  15083. (void *) node, "x",
  15084. label);
  15085. }
  15086. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15087. char color[16];
  15088. FILE * fp = fopen(filename, "w");
  15089. GGML_ASSERT(fp);
  15090. fprintf(fp, "digraph G {\n");
  15091. fprintf(fp, " newrank = true;\n");
  15092. fprintf(fp, " rankdir = LR;\n");
  15093. for (int i = 0; i < gb->n_nodes; i++) {
  15094. struct ggml_tensor * node = gb->nodes[i];
  15095. if (ggml_graph_get_parent(gb, node) != NULL) {
  15096. continue;
  15097. }
  15098. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15099. snprintf(color, sizeof(color), "yellow");
  15100. } else if (node->grad) {
  15101. if (ggml_graph_find(gf, node)) {
  15102. snprintf(color, sizeof(color), "green");
  15103. } else {
  15104. snprintf(color, sizeof(color), "lightblue");
  15105. }
  15106. } else {
  15107. snprintf(color, sizeof(color), "white");
  15108. }
  15109. fprintf(fp, " \"%p\" [ "
  15110. "style = filled; fillcolor = %s; shape = record; "
  15111. "label=\"",
  15112. (void *) node, color);
  15113. if (strlen(node->name) > 0) {
  15114. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15115. } else {
  15116. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15117. }
  15118. if (ggml_is_matrix(node)) {
  15119. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15120. } else {
  15121. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15122. }
  15123. if (node->grad) {
  15124. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15125. } else {
  15126. fprintf(fp, "\"; ]\n");
  15127. }
  15128. }
  15129. for (int i = 0; i < gb->n_leafs; i++) {
  15130. struct ggml_tensor * node = gb->leafs[i];
  15131. snprintf(color, sizeof(color), "pink");
  15132. fprintf(fp, " \"%p\" [ "
  15133. "style = filled; fillcolor = %s; shape = record; "
  15134. "label=\"<x>",
  15135. (void *) node, color);
  15136. if (strlen(node->name) > 0) {
  15137. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15138. } else {
  15139. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15140. }
  15141. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15142. if (ggml_nelements(node) < 5) {
  15143. fprintf(fp, " | (");
  15144. for (int j = 0; j < ggml_nelements(node); j++) {
  15145. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15146. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15147. }
  15148. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15149. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15150. }
  15151. else {
  15152. fprintf(fp, "#");
  15153. }
  15154. if (j < ggml_nelements(node) - 1) {
  15155. fprintf(fp, ", ");
  15156. }
  15157. }
  15158. fprintf(fp, ")");
  15159. }
  15160. fprintf(fp, "\"; ]\n");
  15161. }
  15162. for (int i = 0; i < gb->n_nodes; i++) {
  15163. struct ggml_tensor * node = gb->nodes[i];
  15164. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15165. if (node->src[j]) {
  15166. char label[16];
  15167. snprintf(label, sizeof(label), "src %d", j);
  15168. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15169. }
  15170. }
  15171. }
  15172. for (int i = 0; i < gb->n_leafs; i++) {
  15173. struct ggml_tensor * node = gb->leafs[i];
  15174. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15175. if (node->src[j]) {
  15176. char label[16];
  15177. snprintf(label, sizeof(label), "src %d", j);
  15178. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15179. }
  15180. }
  15181. }
  15182. fprintf(fp, "}\n");
  15183. fclose(fp);
  15184. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15185. }
  15186. ////////////////////////////////////////////////////////////////////////////////
  15187. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15188. int i = 0;
  15189. for (int p = 0; p < np; ++p) {
  15190. const int64_t ne = ggml_nelements(ps[p]) ;
  15191. // TODO: add function to set tensor from array
  15192. for (int64_t j = 0; j < ne; ++j) {
  15193. ggml_set_f32_1d(ps[p], j, x[i++]);
  15194. }
  15195. }
  15196. }
  15197. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15198. int i = 0;
  15199. for (int p = 0; p < np; ++p) {
  15200. const int64_t ne = ggml_nelements(ps[p]) ;
  15201. // TODO: add function to get all elements at once
  15202. for (int64_t j = 0; j < ne; ++j) {
  15203. x[i++] = ggml_get_f32_1d(ps[p], j);
  15204. }
  15205. }
  15206. }
  15207. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15208. int64_t i = 0;
  15209. for (int p = 0; p < np; ++p) {
  15210. const int64_t ne = ggml_nelements(ps[p]) ;
  15211. // TODO: add function to get all elements at once
  15212. for (int64_t j = 0; j < ne; ++j) {
  15213. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15214. }
  15215. }
  15216. }
  15217. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15218. int64_t i = 0;
  15219. for (int p = 0; p < np; ++p) {
  15220. const int64_t ne = ggml_nelements(ps[p]) ;
  15221. // TODO: add function to get all elements at once
  15222. for (int64_t j = 0; j < ne; ++j) {
  15223. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15224. }
  15225. }
  15226. }
  15227. //
  15228. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15229. //
  15230. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15231. //
  15232. static enum ggml_opt_result ggml_opt_adam(
  15233. struct ggml_context * ctx,
  15234. struct ggml_opt_context * opt,
  15235. struct ggml_opt_params params,
  15236. struct ggml_tensor * f,
  15237. struct ggml_cgraph * gf,
  15238. struct ggml_cgraph * gb,
  15239. ggml_opt_callback callback,
  15240. void * callback_data) {
  15241. GGML_ASSERT(ggml_is_scalar(f));
  15242. // these will store the parameters we want to optimize
  15243. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15244. int np = 0;
  15245. int64_t nx = 0;
  15246. for (int i = 0; i < gf->n_nodes; ++i) {
  15247. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15248. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15249. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15250. ps[np++] = gf->nodes[i];
  15251. nx += ggml_nelements(gf->nodes[i]);
  15252. }
  15253. }
  15254. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15255. int iter = opt->iter;
  15256. ggml_opt_init(opt->ctx, opt, params, nx);
  15257. opt->iter = iter;
  15258. }
  15259. // constants
  15260. float sched = params.adam.sched;
  15261. const float alpha = params.adam.alpha;
  15262. const float decay = params.adam.decay * alpha;
  15263. const float beta1 = params.adam.beta1;
  15264. const float beta2 = params.adam.beta2;
  15265. const float eps = params.adam.eps;
  15266. const float gclip = params.adam.gclip;
  15267. const int decay_min_ndim = params.adam.decay_min_ndim;
  15268. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15269. const float accum_norm = 1.0f / (float) n_accum;
  15270. float * g = opt->adam.g->data; // gradients
  15271. float * m = opt->adam.m->data; // first moment
  15272. float * v = opt->adam.v->data; // second moment
  15273. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15274. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15275. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15276. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15277. bool cancel = false;
  15278. // compute the function value
  15279. float fx = 0;
  15280. ggml_set_zero(opt->adam.g);
  15281. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15282. if (callback) {
  15283. callback(callback_data, accum_step, &sched, &cancel);
  15284. if (cancel) {
  15285. return GGML_OPT_CANCEL;
  15286. }
  15287. }
  15288. // ggml_graph_reset (gf);
  15289. ggml_set_f32 (f->grad, 1.0f);
  15290. ggml_graph_compute(gb, &cplan);
  15291. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15292. fx += ggml_get_f32_1d(f, 0);
  15293. }
  15294. fx *= accum_norm;
  15295. opt->adam.fx_prev = fx;
  15296. opt->adam.fx_best = opt->adam.fx_prev;
  15297. if (pf) {
  15298. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15299. }
  15300. opt->loss_before = opt->adam.fx_prev;
  15301. opt->loss_after = opt->adam.fx_prev;
  15302. // initialize
  15303. if (opt->just_initialized) {
  15304. opt->adam.n_no_improvement = 0;
  15305. opt->just_initialized = false;
  15306. }
  15307. float * fx_best = &opt->adam.fx_best;
  15308. float * fx_prev = &opt->adam.fx_prev;
  15309. int * n_no_improvement = &opt->adam.n_no_improvement;
  15310. int iter0 = opt->iter;
  15311. // run the optimizer
  15312. for (int t = 0; t < params.adam.n_iter; ++t) {
  15313. opt->iter = iter0 + t + 1;
  15314. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15315. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15316. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15317. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15318. for (int i = 0; i < np; ++i) {
  15319. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15320. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15321. }
  15322. const int64_t t_start_wall = ggml_time_us();
  15323. const int64_t t_start_cpu = ggml_cycles();
  15324. UNUSED(t_start_wall);
  15325. UNUSED(t_start_cpu);
  15326. {
  15327. float gnorm = 1.0f;
  15328. if (gclip > 0.0f) {
  15329. // gradient clipping
  15330. ggml_float sum = 0.0;
  15331. for (int64_t i = 0; i < nx; ++i) {
  15332. sum += (ggml_float)(g[i]*g[i]);
  15333. }
  15334. ggml_float norm = sqrt(sum);
  15335. if (norm > (ggml_float) gclip) {
  15336. gnorm = (float) ((ggml_float) gclip / norm);
  15337. }
  15338. }
  15339. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15340. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15341. int64_t i = 0;
  15342. for (int p = 0; p < np; ++p) {
  15343. const int64_t ne = ggml_nelements(ps[p]);
  15344. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15345. for (int64_t j = 0; j < ne; ++j) {
  15346. float x = ggml_get_f32_1d(ps[p], j);
  15347. float g_ = g[i]*gnorm;
  15348. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15349. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15350. float mh = m[i]*beta1h;
  15351. float vh = v[i]*beta2h;
  15352. vh = sqrtf(vh) + eps;
  15353. x = x*(1.0f - p_decay) - mh/vh;
  15354. ggml_set_f32_1d(ps[p], j, x);
  15355. ++i;
  15356. }
  15357. }
  15358. }
  15359. fx = 0;
  15360. ggml_set_zero(opt->adam.g);
  15361. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15362. if (callback) {
  15363. callback(callback_data, accum_step, &sched, &cancel);
  15364. if (cancel) {
  15365. return GGML_OPT_CANCEL;;
  15366. }
  15367. }
  15368. // ggml_graph_reset (gf);
  15369. ggml_set_f32 (f->grad, 1.0f);
  15370. ggml_graph_compute(gb, &cplan);
  15371. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15372. fx += ggml_get_f32_1d(f, 0);
  15373. }
  15374. fx *= accum_norm;
  15375. opt->loss_after = fx;
  15376. // check convergence
  15377. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15378. GGML_PRINT_DEBUG("converged\n");
  15379. return GGML_OPT_OK;
  15380. }
  15381. // delta-based convergence test
  15382. if (pf != NULL) {
  15383. // need at least params.past iterations to start checking for convergence
  15384. if (params.past <= iter0 + t) {
  15385. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15386. if (fabsf(rate) < params.delta) {
  15387. return GGML_OPT_OK;
  15388. }
  15389. }
  15390. pf[(iter0 + t)%params.past] = fx;
  15391. }
  15392. // check for improvement
  15393. if (params.max_no_improvement > 0) {
  15394. if (fx_best[0] > fx) {
  15395. fx_best[0] = fx;
  15396. n_no_improvement[0] = 0;
  15397. } else {
  15398. ++n_no_improvement[0];
  15399. if (n_no_improvement[0] >= params.max_no_improvement) {
  15400. return GGML_OPT_OK;
  15401. }
  15402. }
  15403. }
  15404. fx_prev[0] = fx;
  15405. {
  15406. const int64_t t_end_cpu = ggml_cycles();
  15407. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15408. UNUSED(t_end_cpu);
  15409. const int64_t t_end_wall = ggml_time_us();
  15410. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15411. UNUSED(t_end_wall);
  15412. }
  15413. }
  15414. return GGML_OPT_DID_NOT_CONVERGE;
  15415. }
  15416. //
  15417. // L-BFGS
  15418. //
  15419. // the L-BFGS implementation below is based on the following implementation:
  15420. //
  15421. // https://github.com/chokkan/liblbfgs
  15422. //
  15423. struct ggml_lbfgs_iteration_data {
  15424. float alpha;
  15425. float ys;
  15426. float * s;
  15427. float * y;
  15428. };
  15429. static enum ggml_opt_result linesearch_backtracking(
  15430. const struct ggml_opt_params * params,
  15431. int nx,
  15432. float * x,
  15433. float * fx,
  15434. float * g,
  15435. float * d,
  15436. float * step,
  15437. const float * xp,
  15438. struct ggml_tensor * f,
  15439. struct ggml_cgraph * gb,
  15440. struct ggml_cplan * cplan,
  15441. const int np,
  15442. struct ggml_tensor * ps[],
  15443. bool * cancel,
  15444. ggml_opt_callback callback,
  15445. void * callback_data) {
  15446. int count = 0;
  15447. float width = 0.0f;
  15448. float dg = 0.0f;
  15449. float finit = 0.0f;
  15450. float dginit = 0.0f;
  15451. float dgtest = 0.0f;
  15452. const float dec = 0.5f;
  15453. const float inc = 2.1f;
  15454. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15455. const float accum_norm = 1.0f / (float) n_accum;
  15456. if (*step <= 0.f) {
  15457. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15458. }
  15459. // compute the initial gradient in the search direction
  15460. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15461. // make sure that d points to a descent direction
  15462. if (0 < dginit) {
  15463. return GGML_LINESEARCH_FAIL;
  15464. }
  15465. // initialize local variables
  15466. finit = *fx;
  15467. dgtest = params->lbfgs.ftol*dginit;
  15468. while (true) {
  15469. ggml_vec_cpy_f32(nx, x, xp);
  15470. ggml_vec_mad_f32(nx, x, d, *step);
  15471. // evaluate the function and gradient values
  15472. {
  15473. ggml_opt_set_params(np, ps, x);
  15474. *fx = 0;
  15475. memset(g, 0, sizeof(float)*nx);
  15476. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15477. if (callback) {
  15478. // LBFG-S does not support learning rate -> ignore learning schedule
  15479. float sched = 0;
  15480. callback(callback_data, accum_step, &sched, cancel);
  15481. if (*cancel) {
  15482. return GGML_OPT_CANCEL;
  15483. }
  15484. }
  15485. // ggml_graph_reset (gf);
  15486. ggml_set_f32 (f->grad, 1.0f);
  15487. ggml_graph_compute(gb, cplan);
  15488. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15489. *fx += ggml_get_f32_1d(f, 0);
  15490. }
  15491. *fx *= accum_norm;
  15492. }
  15493. ++count;
  15494. if (*fx > finit + (*step)*dgtest) {
  15495. width = dec;
  15496. } else {
  15497. // Armijo condition is satisfied
  15498. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15499. return count;
  15500. }
  15501. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15502. // check the Wolfe condition
  15503. if (dg < params->lbfgs.wolfe * dginit) {
  15504. width = inc;
  15505. } else {
  15506. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15507. // regular Wolfe conditions
  15508. return count;
  15509. }
  15510. if(dg > -params->lbfgs.wolfe*dginit) {
  15511. width = dec;
  15512. } else {
  15513. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15514. return count;
  15515. }
  15516. }
  15517. }
  15518. if (*step < params->lbfgs.min_step) {
  15519. return GGML_LINESEARCH_MINIMUM_STEP;
  15520. }
  15521. if (*step > params->lbfgs.max_step) {
  15522. return GGML_LINESEARCH_MAXIMUM_STEP;
  15523. }
  15524. if (params->lbfgs.max_linesearch <= count) {
  15525. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15526. }
  15527. (*step) *= width;
  15528. }
  15529. GGML_ASSERT(false && "line search failed");
  15530. return GGML_LINESEARCH_FAIL;
  15531. }
  15532. static enum ggml_opt_result ggml_opt_lbfgs(
  15533. struct ggml_context * ctx,
  15534. struct ggml_opt_context * opt,
  15535. struct ggml_opt_params params,
  15536. struct ggml_tensor * f,
  15537. struct ggml_cgraph * gf,
  15538. struct ggml_cgraph * gb,
  15539. ggml_opt_callback callback,
  15540. void * callback_data) {
  15541. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15542. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15543. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15544. return GGML_OPT_INVALID_WOLFE;
  15545. }
  15546. }
  15547. const int m = params.lbfgs.m;
  15548. // these will store the parameters we want to optimize
  15549. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15550. int np = 0;
  15551. int nx = 0;
  15552. for (int i = 0; i < gf->n_nodes; ++i) {
  15553. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15554. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15555. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15556. ps[np++] = gf->nodes[i];
  15557. nx += ggml_nelements(gf->nodes[i]);
  15558. }
  15559. }
  15560. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15561. int iter = opt->iter;
  15562. ggml_opt_init(ctx, opt, params, nx);
  15563. opt->iter = iter;
  15564. }
  15565. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15566. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15567. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15568. float * x = opt->lbfgs.x->data; // current parameters
  15569. float * xp = opt->lbfgs.xp->data; // previous parameters
  15570. float * g = opt->lbfgs.g->data; // current gradient
  15571. float * gp = opt->lbfgs.gp->data; // previous gradient
  15572. float * d = opt->lbfgs.d->data; // search direction
  15573. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15574. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15575. const float accum_norm = 1.0f / (float) n_accum;
  15576. float fx = 0.0f; // cost function value
  15577. float xnorm = 0.0f; // ||x||
  15578. float gnorm = 0.0f; // ||g||
  15579. // initialize x from the graph nodes
  15580. ggml_opt_get_params(np, ps, x);
  15581. // the L-BFGS memory
  15582. float * lm_alpha = opt->lbfgs.lmal->data;
  15583. float * lm_ys = opt->lbfgs.lmys->data;
  15584. float * lm_s = opt->lbfgs.lms->data;
  15585. float * lm_y = opt->lbfgs.lmy->data;
  15586. bool cancel = false;
  15587. // evaluate the function value and its gradient
  15588. {
  15589. ggml_opt_set_params(np, ps, x);
  15590. fx = 0;
  15591. memset(g, 0, sizeof(float)*nx);
  15592. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15593. if (callback) {
  15594. // LBFG-S does not support learning rate -> ignore learning schedule
  15595. float sched = 0;
  15596. callback(callback_data, accum_step, &sched, &cancel);
  15597. if (cancel) {
  15598. return GGML_OPT_CANCEL;
  15599. }
  15600. }
  15601. // ggml_graph_reset (gf);
  15602. ggml_set_f32 (f->grad, 1.0f);
  15603. ggml_graph_compute(gb, &cplan);
  15604. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15605. fx += ggml_get_f32_1d(f, 0);
  15606. }
  15607. fx *= accum_norm;
  15608. opt->loss_before = fx;
  15609. opt->loss_after = fx;
  15610. }
  15611. // search direction = -gradient
  15612. ggml_vec_neg_f32(nx, d, g);
  15613. // ||x||, ||g||
  15614. ggml_vec_norm_f32(nx, &xnorm, x);
  15615. ggml_vec_norm_f32(nx, &gnorm, g);
  15616. if (xnorm < 1.0f) {
  15617. xnorm = 1.0f;
  15618. }
  15619. // already optimized
  15620. if (gnorm/xnorm <= params.lbfgs.eps) {
  15621. return GGML_OPT_OK;
  15622. }
  15623. if (opt->just_initialized) {
  15624. if (pf) {
  15625. pf[0] = fx;
  15626. }
  15627. opt->lbfgs.fx_best = fx;
  15628. // initial step
  15629. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15630. opt->lbfgs.j = 0;
  15631. opt->lbfgs.k = 1;
  15632. opt->lbfgs.end = 0;
  15633. opt->lbfgs.n_no_improvement = 0;
  15634. opt->just_initialized = false;
  15635. }
  15636. float * fx_best = &opt->lbfgs.fx_best;
  15637. float * step = &opt->lbfgs.step;
  15638. int * j = &opt->lbfgs.j;
  15639. int * k = &opt->lbfgs.k;
  15640. int * end = &opt->lbfgs.end;
  15641. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15642. int ls = 0;
  15643. int bound = 0;
  15644. float ys = 0.0f;
  15645. float yy = 0.0f;
  15646. float beta = 0.0f;
  15647. int it = 0;
  15648. while (true) {
  15649. // store the current position and gradient vectors
  15650. ggml_vec_cpy_f32(nx, xp, x);
  15651. ggml_vec_cpy_f32(nx, gp, g);
  15652. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15653. // to determine if the optimization should be cancelled
  15654. // this is a simple change, but not doing this atm, since I don't have a nice
  15655. // way to test and don't want to break something with so many changes lined up
  15656. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15657. if (cancel) {
  15658. return GGML_OPT_CANCEL;
  15659. }
  15660. if (ls < 0) {
  15661. // linesearch failed - go back to the previous point and return
  15662. ggml_vec_cpy_f32(nx, x, xp);
  15663. ggml_vec_cpy_f32(nx, g, gp);
  15664. return ls;
  15665. }
  15666. opt->loss_after = fx;
  15667. ggml_vec_norm_f32(nx, &xnorm, x);
  15668. ggml_vec_norm_f32(nx, &gnorm, g);
  15669. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15670. if (xnorm < 1.0f) {
  15671. xnorm = 1.0f;
  15672. }
  15673. if (gnorm/xnorm <= params.lbfgs.eps) {
  15674. // converged
  15675. return GGML_OPT_OK;
  15676. }
  15677. // delta-based convergence test
  15678. if (pf != NULL) {
  15679. // need at least params.past iterations to start checking for convergence
  15680. if (params.past <= k[0]) {
  15681. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15682. if (fabsf(rate) < params.delta) {
  15683. return GGML_OPT_OK;
  15684. }
  15685. }
  15686. pf[k[0]%params.past] = fx;
  15687. }
  15688. // check for improvement
  15689. if (params.max_no_improvement > 0) {
  15690. if (fx < fx_best[0]) {
  15691. fx_best[0] = fx;
  15692. n_no_improvement[0] = 0;
  15693. } else {
  15694. n_no_improvement[0]++;
  15695. if (n_no_improvement[0] >= params.max_no_improvement) {
  15696. return GGML_OPT_OK;
  15697. }
  15698. }
  15699. }
  15700. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15701. // reached the maximum number of iterations
  15702. return GGML_OPT_DID_NOT_CONVERGE;
  15703. }
  15704. // update vectors s and y:
  15705. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15706. // y_{k+1} = g_{k+1} - g_{k}.
  15707. //
  15708. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15709. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15710. // compute scalars ys and yy:
  15711. // ys = y^t \cdot s -> 1 / \rho.
  15712. // yy = y^t \cdot y.
  15713. //
  15714. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15715. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15716. lm_ys[end[0]] = ys;
  15717. // find new search direction
  15718. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15719. bound = (m <= k[0]) ? m : k[0];
  15720. k[0]++;
  15721. it++;
  15722. end[0] = (end[0] + 1)%m;
  15723. // initialize search direction with -g
  15724. ggml_vec_neg_f32(nx, d, g);
  15725. j[0] = end[0];
  15726. for (int i = 0; i < bound; ++i) {
  15727. j[0] = (j[0] + m - 1) % m;
  15728. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15729. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15730. lm_alpha[j[0]] /= lm_ys[j[0]];
  15731. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15732. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15733. }
  15734. ggml_vec_scale_f32(nx, d, ys/yy);
  15735. for (int i = 0; i < bound; ++i) {
  15736. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15737. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15738. beta /= lm_ys[j[0]];
  15739. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15740. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15741. j[0] = (j[0] + 1)%m;
  15742. }
  15743. step[0] = 1.0;
  15744. }
  15745. GGML_ASSERT(false && "lbfgs failed");
  15746. return GGML_OPT_DID_NOT_CONVERGE;
  15747. }
  15748. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15749. struct ggml_opt_params result;
  15750. switch (type) {
  15751. case GGML_OPT_ADAM:
  15752. {
  15753. result = (struct ggml_opt_params) {
  15754. .type = GGML_OPT_ADAM,
  15755. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15756. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15757. .past = 0,
  15758. .delta = 1e-5f,
  15759. .max_no_improvement = 100,
  15760. .print_forward_graph = true,
  15761. .print_backward_graph = true,
  15762. .n_gradient_accumulation = 1,
  15763. .adam = {
  15764. .n_iter = 10000,
  15765. .sched = 1.000f,
  15766. .decay = 0.0f,
  15767. .decay_min_ndim = 2,
  15768. .alpha = 0.001f,
  15769. .beta1 = 0.9f,
  15770. .beta2 = 0.999f,
  15771. .eps = 1e-8f,
  15772. .eps_f = 1e-5f,
  15773. .eps_g = 1e-3f,
  15774. .gclip = 0.0f,
  15775. },
  15776. };
  15777. } break;
  15778. case GGML_OPT_LBFGS:
  15779. {
  15780. result = (struct ggml_opt_params) {
  15781. .type = GGML_OPT_LBFGS,
  15782. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15783. .n_threads = 1,
  15784. .past = 0,
  15785. .delta = 1e-5f,
  15786. .max_no_improvement = 0,
  15787. .print_forward_graph = true,
  15788. .print_backward_graph = true,
  15789. .n_gradient_accumulation = 1,
  15790. .lbfgs = {
  15791. .m = 6,
  15792. .n_iter = 100,
  15793. .max_linesearch = 20,
  15794. .eps = 1e-5f,
  15795. .ftol = 1e-4f,
  15796. .wolfe = 0.9f,
  15797. .min_step = 1e-20f,
  15798. .max_step = 1e+20f,
  15799. .linesearch = GGML_LINESEARCH_DEFAULT,
  15800. },
  15801. };
  15802. } break;
  15803. }
  15804. return result;
  15805. }
  15806. GGML_API void ggml_opt_init(
  15807. struct ggml_context * ctx,
  15808. struct ggml_opt_context * opt,
  15809. struct ggml_opt_params params,
  15810. int64_t nx) {
  15811. opt->ctx = ctx;
  15812. opt->params = params;
  15813. opt->iter = 0;
  15814. opt->nx = nx;
  15815. opt->just_initialized = true;
  15816. if (opt->ctx == NULL) {
  15817. struct ggml_init_params ctx_opt_params;
  15818. if (opt->params.type == GGML_OPT_ADAM) {
  15819. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15820. if (opt->params.past > 0) {
  15821. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15822. }
  15823. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15824. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15825. if (opt->params.past > 0) {
  15826. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15827. }
  15828. }
  15829. ctx_opt_params.mem_buffer = NULL;
  15830. ctx_opt_params.no_alloc = false;
  15831. opt->ctx = ggml_init(ctx_opt_params);
  15832. }
  15833. switch (opt->params.type) {
  15834. case GGML_OPT_ADAM:
  15835. {
  15836. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15837. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15838. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15839. opt->adam.pf = params.past > 0
  15840. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15841. : NULL;
  15842. ggml_set_zero(opt->adam.m);
  15843. ggml_set_zero(opt->adam.v);
  15844. if (opt->adam.pf) {
  15845. ggml_set_zero(opt->adam.pf);
  15846. }
  15847. } break;
  15848. case GGML_OPT_LBFGS:
  15849. {
  15850. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15851. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15852. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15853. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15854. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15855. opt->lbfgs.pf = params.past > 0
  15856. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15857. : NULL;
  15858. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15859. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15860. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15861. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15862. ggml_set_zero(opt->lbfgs.x);
  15863. ggml_set_zero(opt->lbfgs.xp);
  15864. ggml_set_zero(opt->lbfgs.g);
  15865. ggml_set_zero(opt->lbfgs.gp);
  15866. ggml_set_zero(opt->lbfgs.d);
  15867. if (opt->lbfgs.pf) {
  15868. ggml_set_zero(opt->lbfgs.pf);
  15869. }
  15870. ggml_set_zero(opt->lbfgs.lmal);
  15871. ggml_set_zero(opt->lbfgs.lmys);
  15872. ggml_set_zero(opt->lbfgs.lms);
  15873. ggml_set_zero(opt->lbfgs.lmy);
  15874. } break;
  15875. }
  15876. }
  15877. enum ggml_opt_result ggml_opt(
  15878. struct ggml_context * ctx,
  15879. struct ggml_opt_params params,
  15880. struct ggml_tensor * f) {
  15881. bool free_ctx = false;
  15882. if (ctx == NULL) {
  15883. struct ggml_init_params params_ctx = {
  15884. .mem_size = 16*1024*1024,
  15885. .mem_buffer = NULL,
  15886. .no_alloc = false,
  15887. };
  15888. ctx = ggml_init(params_ctx);
  15889. if (ctx == NULL) {
  15890. return GGML_OPT_NO_CONTEXT;
  15891. }
  15892. free_ctx = true;
  15893. }
  15894. enum ggml_opt_result result = GGML_OPT_OK;
  15895. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15896. ggml_opt_init(ctx, opt, params, 0);
  15897. result = ggml_opt_resume(ctx, opt, f);
  15898. if (free_ctx) {
  15899. ggml_free(ctx);
  15900. }
  15901. return result;
  15902. }
  15903. enum ggml_opt_result ggml_opt_resume(
  15904. struct ggml_context * ctx,
  15905. struct ggml_opt_context * opt,
  15906. struct ggml_tensor * f) {
  15907. // build forward + backward compute graphs
  15908. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15909. ggml_build_forward_expand(gf, f);
  15910. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15911. ggml_build_backward_expand(ctx, gf, gb, true);
  15912. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15913. }
  15914. enum ggml_opt_result ggml_opt_resume_g(
  15915. struct ggml_context * ctx,
  15916. struct ggml_opt_context * opt,
  15917. struct ggml_tensor * f,
  15918. struct ggml_cgraph * gf,
  15919. struct ggml_cgraph * gb,
  15920. ggml_opt_callback callback,
  15921. void * callback_data) {
  15922. // build forward + backward compute graphs
  15923. enum ggml_opt_result result = GGML_OPT_OK;
  15924. switch (opt->params.type) {
  15925. case GGML_OPT_ADAM:
  15926. {
  15927. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15928. } break;
  15929. case GGML_OPT_LBFGS:
  15930. {
  15931. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15932. } break;
  15933. }
  15934. if (opt->params.print_forward_graph) {
  15935. ggml_graph_print (gf);
  15936. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15937. }
  15938. if (opt->params.print_backward_graph) {
  15939. ggml_graph_print (gb);
  15940. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15941. }
  15942. return result;
  15943. }
  15944. ////////////////////////////////////////////////////////////////////////////////
  15945. void ggml_set_input(struct ggml_tensor * tensor) {
  15946. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  15947. }
  15948. void ggml_set_output(struct ggml_tensor * tensor) {
  15949. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  15950. }
  15951. ////////////////////////////////////////////////////////////////////////////////
  15952. void ggml_quantize_init(enum ggml_type type) {
  15953. ggml_critical_section_start();
  15954. switch (type) {
  15955. case GGML_TYPE_IQ2_XXS:
  15956. case GGML_TYPE_IQ2_XS:
  15957. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  15958. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  15959. default: // nothing
  15960. break;
  15961. }
  15962. ggml_critical_section_end();
  15963. }
  15964. void ggml_quantize_free(void) {
  15965. ggml_critical_section_start();
  15966. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  15967. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  15968. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  15969. iq3xs_free_impl(256);
  15970. ggml_critical_section_end();
  15971. }
  15972. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15973. assert(k % QK4_0 == 0);
  15974. const int nb = k / QK4_0;
  15975. for (int b = 0; b < n; b += k) {
  15976. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15977. quantize_row_q4_0_reference(src + b, y, k);
  15978. for (int i = 0; i < nb; i++) {
  15979. for (int j = 0; j < QK4_0; j += 2) {
  15980. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15981. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15982. hist[vi0]++;
  15983. hist[vi1]++;
  15984. }
  15985. }
  15986. }
  15987. return (n/QK4_0*sizeof(block_q4_0));
  15988. }
  15989. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15990. assert(k % QK4_1 == 0);
  15991. const int nb = k / QK4_1;
  15992. for (int b = 0; b < n; b += k) {
  15993. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15994. quantize_row_q4_1_reference(src + b, y, k);
  15995. for (int i = 0; i < nb; i++) {
  15996. for (int j = 0; j < QK4_1; j += 2) {
  15997. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15998. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15999. hist[vi0]++;
  16000. hist[vi1]++;
  16001. }
  16002. }
  16003. }
  16004. return (n/QK4_1*sizeof(block_q4_1));
  16005. }
  16006. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16007. assert(k % QK5_0 == 0);
  16008. const int nb = k / QK5_0;
  16009. for (int b = 0; b < n; b += k) {
  16010. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16011. quantize_row_q5_0_reference(src + b, y, k);
  16012. for (int i = 0; i < nb; i++) {
  16013. uint32_t qh;
  16014. memcpy(&qh, &y[i].qh, sizeof(qh));
  16015. for (int j = 0; j < QK5_0; j += 2) {
  16016. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16017. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16018. // cast to 16 bins
  16019. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16020. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16021. hist[vi0]++;
  16022. hist[vi1]++;
  16023. }
  16024. }
  16025. }
  16026. return (n/QK5_0*sizeof(block_q5_0));
  16027. }
  16028. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16029. assert(k % QK5_1 == 0);
  16030. const int nb = k / QK5_1;
  16031. for (int b = 0; b < n; b += k) {
  16032. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16033. quantize_row_q5_1_reference(src + b, y, k);
  16034. for (int i = 0; i < nb; i++) {
  16035. uint32_t qh;
  16036. memcpy(&qh, &y[i].qh, sizeof(qh));
  16037. for (int j = 0; j < QK5_1; j += 2) {
  16038. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16039. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16040. // cast to 16 bins
  16041. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16042. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16043. hist[vi0]++;
  16044. hist[vi1]++;
  16045. }
  16046. }
  16047. }
  16048. return (n/QK5_1*sizeof(block_q5_1));
  16049. }
  16050. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16051. assert(k % QK8_0 == 0);
  16052. const int nb = k / QK8_0;
  16053. for (int b = 0; b < n; b += k) {
  16054. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16055. quantize_row_q8_0_reference(src + b, y, k);
  16056. for (int i = 0; i < nb; i++) {
  16057. for (int j = 0; j < QK8_0; ++j) {
  16058. const int8_t vi = y[i].qs[j];
  16059. hist[vi/16 + 8]++;
  16060. }
  16061. }
  16062. }
  16063. return (n/QK8_0*sizeof(block_q8_0));
  16064. }
  16065. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16066. return
  16067. type == GGML_TYPE_IQ2_XXS ||
  16068. type == GGML_TYPE_IQ2_XS ||
  16069. type == GGML_TYPE_IQ1_S;
  16070. }
  16071. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16072. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16073. ggml_quantize_init(type); // this is noop if already initialized
  16074. size_t result = 0;
  16075. int n = nrows * n_per_row;
  16076. switch (type) {
  16077. case GGML_TYPE_Q4_0:
  16078. {
  16079. GGML_ASSERT(start % QK4_0 == 0);
  16080. GGML_ASSERT(start % n_per_row == 0);
  16081. size_t start_row = start / n_per_row;
  16082. size_t row_size = ggml_row_size(type, n_per_row);
  16083. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16084. GGML_ASSERT(result == row_size * nrows);
  16085. } break;
  16086. case GGML_TYPE_Q4_1:
  16087. {
  16088. GGML_ASSERT(start % QK4_1 == 0);
  16089. GGML_ASSERT(start % n_per_row == 0);
  16090. size_t start_row = start / n_per_row;
  16091. size_t row_size = ggml_row_size(type, n_per_row);
  16092. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16093. GGML_ASSERT(result == row_size * nrows);
  16094. } break;
  16095. case GGML_TYPE_Q5_0:
  16096. {
  16097. GGML_ASSERT(start % QK5_0 == 0);
  16098. GGML_ASSERT(start % n_per_row == 0);
  16099. size_t start_row = start / n_per_row;
  16100. size_t row_size = ggml_row_size(type, n_per_row);
  16101. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16102. GGML_ASSERT(result == row_size * nrows);
  16103. } break;
  16104. case GGML_TYPE_Q5_1:
  16105. {
  16106. GGML_ASSERT(start % QK5_1 == 0);
  16107. GGML_ASSERT(start % n_per_row == 0);
  16108. size_t start_row = start / n_per_row;
  16109. size_t row_size = ggml_row_size(type, n_per_row);
  16110. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16111. GGML_ASSERT(result == row_size * nrows);
  16112. } break;
  16113. case GGML_TYPE_Q8_0:
  16114. {
  16115. GGML_ASSERT(start % QK8_0 == 0);
  16116. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16117. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16118. } break;
  16119. case GGML_TYPE_Q2_K:
  16120. {
  16121. GGML_ASSERT(start % QK_K == 0);
  16122. GGML_ASSERT(start % n_per_row == 0);
  16123. size_t start_row = start / n_per_row;
  16124. size_t row_size = ggml_row_size(type, n_per_row);
  16125. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16126. GGML_ASSERT(result == row_size * nrows);
  16127. } break;
  16128. case GGML_TYPE_Q3_K:
  16129. {
  16130. GGML_ASSERT(start % QK_K == 0);
  16131. GGML_ASSERT(start % n_per_row == 0);
  16132. size_t start_row = start / n_per_row;
  16133. size_t row_size = ggml_row_size(type, n_per_row);
  16134. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16135. GGML_ASSERT(result == row_size * nrows);
  16136. } break;
  16137. case GGML_TYPE_Q4_K:
  16138. {
  16139. GGML_ASSERT(start % QK_K == 0);
  16140. GGML_ASSERT(start % n_per_row == 0);
  16141. size_t start_row = start / n_per_row;
  16142. size_t row_size = ggml_row_size(type, n_per_row);
  16143. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16144. GGML_ASSERT(result == row_size * nrows);
  16145. } break;
  16146. case GGML_TYPE_Q5_K:
  16147. {
  16148. GGML_ASSERT(start % QK_K == 0);
  16149. GGML_ASSERT(start % n_per_row == 0);
  16150. size_t start_row = start / n_per_row;
  16151. size_t row_size = ggml_row_size(type, n_per_row);
  16152. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16153. GGML_ASSERT(result == row_size * nrows);
  16154. } break;
  16155. case GGML_TYPE_Q6_K:
  16156. {
  16157. GGML_ASSERT(start % QK_K == 0);
  16158. GGML_ASSERT(start % n_per_row == 0);
  16159. size_t start_row = start / n_per_row;
  16160. size_t row_size = ggml_row_size(type, n_per_row);
  16161. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16162. GGML_ASSERT(result == row_size * nrows);
  16163. } break;
  16164. case GGML_TYPE_IQ2_XXS:
  16165. {
  16166. GGML_ASSERT(start % QK_K == 0);
  16167. GGML_ASSERT(start % n_per_row == 0);
  16168. GGML_ASSERT(imatrix);
  16169. size_t start_row = start / n_per_row;
  16170. size_t row_size = ggml_row_size(type, n_per_row);
  16171. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16172. GGML_ASSERT(result == row_size * nrows);
  16173. } break;
  16174. case GGML_TYPE_IQ2_XS:
  16175. {
  16176. GGML_ASSERT(start % QK_K == 0);
  16177. GGML_ASSERT(start % n_per_row == 0);
  16178. GGML_ASSERT(imatrix);
  16179. size_t start_row = start / n_per_row;
  16180. size_t row_size = ggml_row_size(type, n_per_row);
  16181. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16182. GGML_ASSERT(result == row_size * nrows);
  16183. } break;
  16184. case GGML_TYPE_IQ3_XXS:
  16185. {
  16186. GGML_ASSERT(start % QK_K == 0);
  16187. GGML_ASSERT(start % n_per_row == 0);
  16188. size_t start_row = start / n_per_row;
  16189. size_t row_size = ggml_row_size(type, n_per_row);
  16190. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16191. GGML_ASSERT(result == row_size * nrows);
  16192. } break;
  16193. case GGML_TYPE_IQ1_S:
  16194. {
  16195. GGML_ASSERT(start % QK_K == 0);
  16196. GGML_ASSERT(start % n_per_row == 0);
  16197. size_t start_row = start / n_per_row;
  16198. size_t row_size = ggml_row_size(type, n_per_row);
  16199. result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16200. GGML_ASSERT(result == row_size * nrows);
  16201. } break;
  16202. case GGML_TYPE_F16:
  16203. {
  16204. size_t elemsize = sizeof(ggml_fp16_t);
  16205. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16206. result = n * elemsize;
  16207. } break;
  16208. case GGML_TYPE_F32:
  16209. {
  16210. size_t elemsize = sizeof(float);
  16211. result = n * elemsize;
  16212. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16213. } break;
  16214. default:
  16215. assert(false);
  16216. }
  16217. return result;
  16218. }
  16219. ////////////////////////////////////////////////////////////////////////////////
  16220. struct gguf_str {
  16221. uint64_t n; // GGUFv2
  16222. char * data;
  16223. };
  16224. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16225. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16226. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16227. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16228. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16229. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16230. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16231. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16232. [GGUF_TYPE_BOOL] = sizeof(bool),
  16233. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16234. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16235. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16236. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16237. [GGUF_TYPE_ARRAY] = 0, // undefined
  16238. };
  16239. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16240. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16241. [GGUF_TYPE_UINT8] = "u8",
  16242. [GGUF_TYPE_INT8] = "i8",
  16243. [GGUF_TYPE_UINT16] = "u16",
  16244. [GGUF_TYPE_INT16] = "i16",
  16245. [GGUF_TYPE_UINT32] = "u32",
  16246. [GGUF_TYPE_INT32] = "i32",
  16247. [GGUF_TYPE_FLOAT32] = "f32",
  16248. [GGUF_TYPE_BOOL] = "bool",
  16249. [GGUF_TYPE_STRING] = "str",
  16250. [GGUF_TYPE_ARRAY] = "arr",
  16251. [GGUF_TYPE_UINT64] = "u64",
  16252. [GGUF_TYPE_INT64] = "i64",
  16253. [GGUF_TYPE_FLOAT64] = "f64",
  16254. };
  16255. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16256. union gguf_value {
  16257. uint8_t uint8;
  16258. int8_t int8;
  16259. uint16_t uint16;
  16260. int16_t int16;
  16261. uint32_t uint32;
  16262. int32_t int32;
  16263. float float32;
  16264. uint64_t uint64;
  16265. int64_t int64;
  16266. double float64;
  16267. bool bool_;
  16268. struct gguf_str str;
  16269. struct {
  16270. enum gguf_type type;
  16271. uint64_t n; // GGUFv2
  16272. void * data;
  16273. } arr;
  16274. };
  16275. struct gguf_kv {
  16276. struct gguf_str key;
  16277. enum gguf_type type;
  16278. union gguf_value value;
  16279. };
  16280. struct gguf_header {
  16281. char magic[4];
  16282. uint32_t version;
  16283. uint64_t n_tensors; // GGUFv2
  16284. uint64_t n_kv; // GGUFv2
  16285. };
  16286. struct gguf_tensor_info {
  16287. struct gguf_str name;
  16288. uint32_t n_dims;
  16289. uint64_t ne[GGML_MAX_DIMS];
  16290. enum ggml_type type;
  16291. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16292. // for writing API
  16293. const void * data;
  16294. size_t size;
  16295. };
  16296. struct gguf_context {
  16297. struct gguf_header header;
  16298. struct gguf_kv * kv;
  16299. struct gguf_tensor_info * infos;
  16300. size_t alignment;
  16301. size_t offset; // offset of `data` from beginning of file
  16302. size_t size; // size of `data` in bytes
  16303. //uint8_t * padding;
  16304. void * data;
  16305. };
  16306. static size_t gguf_type_size(enum gguf_type type) {
  16307. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16308. return GGUF_TYPE_SIZE[type];
  16309. }
  16310. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16311. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16312. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16313. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16314. GGML_ASSERT(info->ne[i] > 0);
  16315. }
  16316. // prevent overflow for total number of elements
  16317. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16318. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16319. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16320. }
  16321. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16322. const size_t n = fread(dst, 1, size, file);
  16323. *offset += n;
  16324. return n == size;
  16325. }
  16326. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16327. p->n = 0;
  16328. p->data = NULL;
  16329. bool ok = true;
  16330. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16331. // early exit if string length is invalid, prevents from integer overflow
  16332. if (p->n == SIZE_MAX) {
  16333. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16334. return false;
  16335. }
  16336. p->data = GGML_CALLOC(p->n + 1, 1);
  16337. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16338. return ok;
  16339. }
  16340. struct gguf_context * gguf_init_empty(void) {
  16341. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16342. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16343. ctx->header.version = GGUF_VERSION;
  16344. ctx->header.n_tensors = 0;
  16345. ctx->header.n_kv = 0;
  16346. ctx->kv = NULL;
  16347. ctx->infos = NULL;
  16348. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16349. ctx->offset = 0;
  16350. ctx->size = 0;
  16351. ctx->data = NULL;
  16352. return ctx;
  16353. }
  16354. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16355. FILE * file = fopen(fname, "rb");
  16356. if (!file) {
  16357. return NULL;
  16358. }
  16359. // offset from start of file
  16360. size_t offset = 0;
  16361. char magic[4];
  16362. // check the magic before making allocations
  16363. {
  16364. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16365. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16366. if (magic[i] != GGUF_MAGIC[i]) {
  16367. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16368. fclose(file);
  16369. return NULL;
  16370. }
  16371. }
  16372. }
  16373. bool ok = true;
  16374. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16375. // read the header
  16376. {
  16377. strncpy(ctx->header.magic, magic, 4);
  16378. ctx->kv = NULL;
  16379. ctx->infos = NULL;
  16380. ctx->data = NULL;
  16381. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16382. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16383. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16384. if (ctx->header.version == 1) {
  16385. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16386. fclose(file);
  16387. gguf_free(ctx);
  16388. return NULL;
  16389. }
  16390. // sanity-checks to prevent from integer/buffer overflows
  16391. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16392. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16393. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16394. if (!ok) {
  16395. fprintf(stderr, "%s: failed to read header\n", __func__);
  16396. fclose(file);
  16397. gguf_free(ctx);
  16398. return NULL;
  16399. }
  16400. }
  16401. // read the kv pairs
  16402. {
  16403. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16404. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16405. struct gguf_kv * kv = &ctx->kv[i];
  16406. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16407. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16408. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16409. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16410. switch (kv->type) {
  16411. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16412. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16413. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16414. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16415. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16416. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16417. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16418. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16419. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16420. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16421. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16422. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16423. case GGUF_TYPE_ARRAY:
  16424. {
  16425. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16426. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16427. switch (kv->value.arr.type) {
  16428. case GGUF_TYPE_UINT8:
  16429. case GGUF_TYPE_INT8:
  16430. case GGUF_TYPE_UINT16:
  16431. case GGUF_TYPE_INT16:
  16432. case GGUF_TYPE_UINT32:
  16433. case GGUF_TYPE_INT32:
  16434. case GGUF_TYPE_FLOAT32:
  16435. case GGUF_TYPE_UINT64:
  16436. case GGUF_TYPE_INT64:
  16437. case GGUF_TYPE_FLOAT64:
  16438. case GGUF_TYPE_BOOL:
  16439. {
  16440. // prevent from integer overflow in the malloc below
  16441. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16442. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16443. fclose(file);
  16444. gguf_free(ctx);
  16445. return NULL;
  16446. }
  16447. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16448. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16449. } break;
  16450. case GGUF_TYPE_STRING:
  16451. {
  16452. // prevent from integer overflow in the malloc below
  16453. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16454. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16455. fclose(file);
  16456. gguf_free(ctx);
  16457. return NULL;
  16458. }
  16459. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16460. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16461. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16462. }
  16463. } break;
  16464. case GGUF_TYPE_ARRAY:
  16465. default: GGML_ASSERT(false && "invalid type"); break;
  16466. }
  16467. } break;
  16468. default: GGML_ASSERT(false && "invalid type");
  16469. }
  16470. if (!ok) {
  16471. break;
  16472. }
  16473. }
  16474. if (!ok) {
  16475. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16476. fclose(file);
  16477. gguf_free(ctx);
  16478. return NULL;
  16479. }
  16480. }
  16481. // read the tensor infos
  16482. {
  16483. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16484. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16485. struct gguf_tensor_info * info = &ctx->infos[i];
  16486. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16487. info->ne[j] = 1;
  16488. }
  16489. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16490. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16491. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16492. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16493. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16494. }
  16495. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16496. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16497. gguf_tensor_info_sanitize(info);
  16498. if (!ok) {
  16499. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16500. fclose(file);
  16501. gguf_free(ctx);
  16502. return NULL;
  16503. }
  16504. }
  16505. }
  16506. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16507. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16508. if (alignment_idx != -1) {
  16509. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16510. }
  16511. // we require the data section to be aligned, so take into account any padding
  16512. {
  16513. const size_t offset_pad = offset % ctx->alignment;
  16514. if (offset_pad != 0) {
  16515. offset += ctx->alignment - offset_pad;
  16516. fseek(file, offset, SEEK_SET);
  16517. }
  16518. }
  16519. // store the current file offset - this is where the data section starts
  16520. ctx->offset = offset;
  16521. // compute the total size of the data section, taking into account the alignment
  16522. {
  16523. ctx->size = 0;
  16524. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16525. struct gguf_tensor_info * info = &ctx->infos[i];
  16526. const int64_t ne =
  16527. (int64_t) info->ne[0] *
  16528. (int64_t) info->ne[1] *
  16529. (int64_t) info->ne[2] *
  16530. (int64_t) info->ne[3];
  16531. if (ne % ggml_blck_size(info->type) != 0) {
  16532. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16533. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16534. fclose(file);
  16535. gguf_free(ctx);
  16536. return NULL;
  16537. }
  16538. const size_t size_cur = ggml_row_size(info->type, ne);
  16539. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16540. }
  16541. }
  16542. // load the tensor data only if requested
  16543. if (params.ctx != NULL) {
  16544. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16545. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16546. // the ggml_tensor structs to the appropriate locations in the binary blob
  16547. // compute the exact size needed for the new ggml_context
  16548. const size_t mem_size =
  16549. params.no_alloc ?
  16550. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16551. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16552. struct ggml_init_params pdata = {
  16553. .mem_size = mem_size,
  16554. .mem_buffer = NULL,
  16555. .no_alloc = params.no_alloc,
  16556. };
  16557. *params.ctx = ggml_init(pdata);
  16558. struct ggml_context * ctx_data = *params.ctx;
  16559. struct ggml_tensor * data = NULL;
  16560. if (!params.no_alloc) {
  16561. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16562. ok = ok && data != NULL;
  16563. // read the binary blob with the tensor data
  16564. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16565. if (!ok) {
  16566. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16567. fclose(file);
  16568. ggml_free(ctx_data);
  16569. gguf_free(ctx);
  16570. return NULL;
  16571. }
  16572. ctx->data = data->data;
  16573. }
  16574. ggml_set_no_alloc(ctx_data, true);
  16575. // create the tensors
  16576. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16577. const int64_t ne[GGML_MAX_DIMS] = {
  16578. ctx->infos[i].ne[0],
  16579. ctx->infos[i].ne[1],
  16580. ctx->infos[i].ne[2],
  16581. ctx->infos[i].ne[3],
  16582. };
  16583. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16584. ok = ok && cur != NULL;
  16585. ggml_set_name(cur, ctx->infos[i].name.data);
  16586. if (!ok) {
  16587. break;
  16588. }
  16589. // point the data member to the appropriate location in the binary blob using the tensor infos
  16590. if (!params.no_alloc) {
  16591. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16592. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16593. }
  16594. }
  16595. if (!ok) {
  16596. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16597. fclose(file);
  16598. ggml_free(ctx_data);
  16599. gguf_free(ctx);
  16600. return NULL;
  16601. }
  16602. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16603. }
  16604. fclose(file);
  16605. return ctx;
  16606. }
  16607. void gguf_free(struct gguf_context * ctx) {
  16608. if (ctx == NULL) {
  16609. return;
  16610. }
  16611. if (ctx->kv) {
  16612. // free string memory - not great..
  16613. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16614. struct gguf_kv * kv = &ctx->kv[i];
  16615. if (kv->key.data) {
  16616. GGML_FREE(kv->key.data);
  16617. }
  16618. if (kv->type == GGUF_TYPE_STRING) {
  16619. if (kv->value.str.data) {
  16620. GGML_FREE(kv->value.str.data);
  16621. }
  16622. }
  16623. if (kv->type == GGUF_TYPE_ARRAY) {
  16624. if (kv->value.arr.data) {
  16625. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16626. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16627. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16628. if (str->data) {
  16629. GGML_FREE(str->data);
  16630. }
  16631. }
  16632. }
  16633. GGML_FREE(kv->value.arr.data);
  16634. }
  16635. }
  16636. }
  16637. GGML_FREE(ctx->kv);
  16638. }
  16639. if (ctx->infos) {
  16640. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16641. struct gguf_tensor_info * info = &ctx->infos[i];
  16642. if (info->name.data) {
  16643. GGML_FREE(info->name.data);
  16644. }
  16645. }
  16646. GGML_FREE(ctx->infos);
  16647. }
  16648. GGML_ALIGNED_FREE(ctx);
  16649. }
  16650. const char * gguf_type_name(enum gguf_type type) {
  16651. return GGUF_TYPE_NAME[type];
  16652. }
  16653. int gguf_get_version(const struct gguf_context * ctx) {
  16654. return ctx->header.version;
  16655. }
  16656. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16657. return ctx->alignment;
  16658. }
  16659. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16660. return ctx->offset;
  16661. }
  16662. void * gguf_get_data(const struct gguf_context * ctx) {
  16663. return ctx->data;
  16664. }
  16665. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16666. return ctx->header.n_kv;
  16667. }
  16668. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16669. // return -1 if key not found
  16670. int keyfound = -1;
  16671. const int n_kv = gguf_get_n_kv(ctx);
  16672. for (int i = 0; i < n_kv; ++i) {
  16673. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16674. keyfound = i;
  16675. break;
  16676. }
  16677. }
  16678. return keyfound;
  16679. }
  16680. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16681. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16682. return ctx->kv[key_id].key.data;
  16683. }
  16684. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16685. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16686. return ctx->kv[key_id].type;
  16687. }
  16688. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16689. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16690. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16691. return ctx->kv[key_id].value.arr.type;
  16692. }
  16693. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16694. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16695. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16696. return ctx->kv[key_id].value.arr.data;
  16697. }
  16698. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16699. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16700. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16701. struct gguf_kv * kv = &ctx->kv[key_id];
  16702. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16703. return str->data;
  16704. }
  16705. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16706. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16707. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16708. return ctx->kv[key_id].value.arr.n;
  16709. }
  16710. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16711. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16712. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16713. return ctx->kv[key_id].value.uint8;
  16714. }
  16715. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16716. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16717. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16718. return ctx->kv[key_id].value.int8;
  16719. }
  16720. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16721. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16722. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16723. return ctx->kv[key_id].value.uint16;
  16724. }
  16725. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16726. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16727. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16728. return ctx->kv[key_id].value.int16;
  16729. }
  16730. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16731. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16732. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16733. return ctx->kv[key_id].value.uint32;
  16734. }
  16735. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16736. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16737. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16738. return ctx->kv[key_id].value.int32;
  16739. }
  16740. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16741. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16742. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16743. return ctx->kv[key_id].value.float32;
  16744. }
  16745. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16746. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16747. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16748. return ctx->kv[key_id].value.uint64;
  16749. }
  16750. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16751. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16752. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16753. return ctx->kv[key_id].value.int64;
  16754. }
  16755. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16756. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16757. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16758. return ctx->kv[key_id].value.float64;
  16759. }
  16760. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16761. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16762. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16763. return ctx->kv[key_id].value.bool_;
  16764. }
  16765. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16766. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16767. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16768. return ctx->kv[key_id].value.str.data;
  16769. }
  16770. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16771. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16772. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16773. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16774. return &ctx->kv[key_id].value;
  16775. }
  16776. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16777. return ctx->header.n_tensors;
  16778. }
  16779. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16780. // return -1 if tensor not found
  16781. int tensorfound = -1;
  16782. const int n_tensors = gguf_get_n_tensors(ctx);
  16783. for (int i = 0; i < n_tensors; ++i) {
  16784. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16785. tensorfound = i;
  16786. break;
  16787. }
  16788. }
  16789. return tensorfound;
  16790. }
  16791. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16792. return ctx->infos[i].offset;
  16793. }
  16794. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16795. return ctx->infos[i].name.data;
  16796. }
  16797. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16798. return ctx->infos[i].type;
  16799. }
  16800. // returns the index
  16801. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16802. const int idx = gguf_find_key(ctx, key);
  16803. if (idx >= 0) {
  16804. return idx;
  16805. }
  16806. const int n_kv = gguf_get_n_kv(ctx);
  16807. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16808. ctx->kv[n_kv].key.n = strlen(key);
  16809. ctx->kv[n_kv].key.data = strdup(key);
  16810. ctx->header.n_kv++;
  16811. return n_kv;
  16812. }
  16813. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16814. const int idx = gguf_get_or_add_key(ctx, key);
  16815. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16816. ctx->kv[idx].value.uint8 = val;
  16817. }
  16818. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16819. const int idx = gguf_get_or_add_key(ctx, key);
  16820. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16821. ctx->kv[idx].value.int8 = val;
  16822. }
  16823. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16824. const int idx = gguf_get_or_add_key(ctx, key);
  16825. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16826. ctx->kv[idx].value.uint16 = val;
  16827. }
  16828. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16829. const int idx = gguf_get_or_add_key(ctx, key);
  16830. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16831. ctx->kv[idx].value.int16 = val;
  16832. }
  16833. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16834. const int idx = gguf_get_or_add_key(ctx, key);
  16835. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16836. ctx->kv[idx].value.uint32 = val;
  16837. }
  16838. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16839. const int idx = gguf_get_or_add_key(ctx, key);
  16840. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16841. ctx->kv[idx].value.int32 = val;
  16842. }
  16843. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16844. const int idx = gguf_get_or_add_key(ctx, key);
  16845. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16846. ctx->kv[idx].value.float32 = val;
  16847. }
  16848. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16849. const int idx = gguf_get_or_add_key(ctx, key);
  16850. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16851. ctx->kv[idx].value.uint64 = val;
  16852. }
  16853. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16854. const int idx = gguf_get_or_add_key(ctx, key);
  16855. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16856. ctx->kv[idx].value.int64 = val;
  16857. }
  16858. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16859. const int idx = gguf_get_or_add_key(ctx, key);
  16860. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16861. ctx->kv[idx].value.float64 = val;
  16862. }
  16863. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16864. const int idx = gguf_get_or_add_key(ctx, key);
  16865. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16866. ctx->kv[idx].value.bool_ = val;
  16867. }
  16868. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16869. const int idx = gguf_get_or_add_key(ctx, key);
  16870. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16871. ctx->kv[idx].value.str.n = strlen(val);
  16872. ctx->kv[idx].value.str.data = strdup(val);
  16873. }
  16874. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16875. const int idx = gguf_get_or_add_key(ctx, key);
  16876. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16877. ctx->kv[idx].value.arr.type = type;
  16878. ctx->kv[idx].value.arr.n = n;
  16879. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16880. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16881. }
  16882. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16883. const int idx = gguf_get_or_add_key(ctx, key);
  16884. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16885. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16886. ctx->kv[idx].value.arr.n = n;
  16887. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16888. for (int i = 0; i < n; i++) {
  16889. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16890. str->n = strlen(data[i]);
  16891. str->data = strdup(data[i]);
  16892. }
  16893. }
  16894. // set or add KV pairs from another context
  16895. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16896. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16897. switch (src->kv[i].type) {
  16898. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16899. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16900. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16901. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16902. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16903. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16904. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16905. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16906. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16907. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16908. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16909. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16910. case GGUF_TYPE_ARRAY:
  16911. {
  16912. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16913. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  16914. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16915. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16916. }
  16917. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16918. GGML_FREE((void *)data);
  16919. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16920. GGML_ASSERT(false && "nested arrays not supported");
  16921. } else {
  16922. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16923. }
  16924. } break;
  16925. default: GGML_ASSERT(false && "invalid type"); break;
  16926. }
  16927. }
  16928. }
  16929. void gguf_add_tensor(
  16930. struct gguf_context * ctx,
  16931. const struct ggml_tensor * tensor) {
  16932. const int idx = ctx->header.n_tensors;
  16933. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16934. ctx->infos[idx].name.n = strlen(tensor->name);
  16935. ctx->infos[idx].name.data = strdup(tensor->name);
  16936. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16937. ctx->infos[idx].ne[i] = 1;
  16938. }
  16939. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16940. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16941. ctx->infos[idx].ne[i] = tensor->ne[i];
  16942. }
  16943. ctx->infos[idx].type = tensor->type;
  16944. ctx->infos[idx].offset = 0;
  16945. ctx->infos[idx].data = tensor->data;
  16946. ctx->infos[idx].size = ggml_nbytes(tensor);
  16947. if (ctx->header.n_tensors > 0) {
  16948. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16949. }
  16950. ctx->header.n_tensors++;
  16951. }
  16952. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16953. const int idx = gguf_find_tensor(ctx, name);
  16954. if (idx < 0) {
  16955. GGML_ASSERT(false && "tensor not found");
  16956. }
  16957. ctx->infos[idx].type = type;
  16958. }
  16959. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16960. const int idx = gguf_find_tensor(ctx, name);
  16961. if (idx < 0) {
  16962. GGML_ASSERT(false && "tensor not found");
  16963. }
  16964. ctx->infos[idx].data = data;
  16965. ctx->infos[idx].size = size;
  16966. // update offsets
  16967. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16968. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16969. }
  16970. }
  16971. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16972. // fwrite(&val->n, sizeof(val->n), 1, file);
  16973. // fwrite(val->data, sizeof(char), val->n, file);
  16974. //}
  16975. //
  16976. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16977. // fwrite(val, sizeof(char), size, file);
  16978. //}
  16979. struct gguf_buf {
  16980. void * data;
  16981. size_t size;
  16982. size_t offset;
  16983. };
  16984. static struct gguf_buf gguf_buf_init(size_t size) {
  16985. struct gguf_buf buf = {
  16986. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  16987. /*buf.size =*/ size,
  16988. /*buf.offset =*/ 0,
  16989. };
  16990. return buf;
  16991. }
  16992. static void gguf_buf_free(struct gguf_buf buf) {
  16993. if (buf.data) {
  16994. GGML_FREE(buf.data);
  16995. }
  16996. }
  16997. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16998. if (buf->offset + size > buf->size) {
  16999. buf->size = 1.5*(buf->offset + size);
  17000. if (buf->data) {
  17001. buf->data = realloc(buf->data, buf->size);
  17002. }
  17003. }
  17004. }
  17005. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17006. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17007. if (buf->data) {
  17008. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17009. }
  17010. buf->offset += sizeof(val->n);
  17011. if (buf->data) {
  17012. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17013. }
  17014. buf->offset += val->n;
  17015. }
  17016. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17017. gguf_buf_grow(buf, el_size);
  17018. if (buf->data) {
  17019. memcpy((char *) buf->data + buf->offset, val, el_size);
  17020. }
  17021. buf->offset += el_size;
  17022. }
  17023. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17024. // write header
  17025. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17026. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17027. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17028. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17029. // write key-value pairs
  17030. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17031. struct gguf_kv * kv = &ctx->kv[i];
  17032. gguf_bwrite_str(buf, &kv->key);
  17033. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17034. switch (kv->type) {
  17035. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17036. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17037. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17038. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17039. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17040. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17041. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17042. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17043. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17044. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17045. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17046. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17047. case GGUF_TYPE_ARRAY:
  17048. {
  17049. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17050. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17051. switch (kv->value.arr.type) {
  17052. case GGUF_TYPE_UINT8:
  17053. case GGUF_TYPE_INT8:
  17054. case GGUF_TYPE_UINT16:
  17055. case GGUF_TYPE_INT16:
  17056. case GGUF_TYPE_UINT32:
  17057. case GGUF_TYPE_INT32:
  17058. case GGUF_TYPE_FLOAT32:
  17059. case GGUF_TYPE_UINT64:
  17060. case GGUF_TYPE_INT64:
  17061. case GGUF_TYPE_FLOAT64:
  17062. case GGUF_TYPE_BOOL:
  17063. {
  17064. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17065. } break;
  17066. case GGUF_TYPE_STRING:
  17067. {
  17068. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17069. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17070. }
  17071. } break;
  17072. case GGUF_TYPE_ARRAY:
  17073. default: GGML_ASSERT(false && "invalid type"); break;
  17074. }
  17075. } break;
  17076. default: GGML_ASSERT(false && "invalid type");
  17077. }
  17078. }
  17079. // write tensor infos
  17080. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17081. struct gguf_tensor_info * info = &ctx->infos[i];
  17082. gguf_bwrite_str(buf, &info->name);
  17083. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17084. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17085. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17086. }
  17087. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17088. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17089. }
  17090. // we require the data section to be aligned, so take into account any padding
  17091. {
  17092. const size_t offset = buf->offset;
  17093. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17094. if (offset_pad != offset) {
  17095. uint8_t pad = 0;
  17096. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17097. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17098. }
  17099. }
  17100. }
  17101. if (only_meta) {
  17102. return;
  17103. }
  17104. size_t offset = 0;
  17105. // write tensor data
  17106. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17107. struct gguf_tensor_info * info = &ctx->infos[i];
  17108. const size_t size = info->size;
  17109. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17110. gguf_bwrite_el(buf, info->data, size);
  17111. if (size_pad != size) {
  17112. uint8_t pad = 0;
  17113. for (size_t j = 0; j < size_pad - size; ++j) {
  17114. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17115. }
  17116. }
  17117. GGML_ASSERT(offset == info->offset);
  17118. offset += size_pad;
  17119. }
  17120. }
  17121. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17122. FILE * file = fopen(fname, "wb");
  17123. if (!file) {
  17124. GGML_ASSERT(false && "failed to open file for writing");
  17125. }
  17126. struct gguf_buf buf = gguf_buf_init(16*1024);
  17127. gguf_write_to_buf(ctx, &buf, only_meta);
  17128. fwrite(buf.data, 1, buf.offset, file);
  17129. gguf_buf_free(buf);
  17130. fclose(file);
  17131. }
  17132. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17133. // no allocs - only compute size
  17134. struct gguf_buf buf = gguf_buf_init(0);
  17135. gguf_write_to_buf(ctx, &buf, true);
  17136. return buf.offset;
  17137. }
  17138. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17139. struct gguf_buf buf = gguf_buf_init(16*1024);
  17140. gguf_write_to_buf(ctx, &buf, true);
  17141. memcpy(data, buf.data, buf.offset);
  17142. gguf_buf_free(buf);
  17143. }
  17144. ////////////////////////////////////////////////////////////////////////////////
  17145. int ggml_cpu_has_avx(void) {
  17146. #if defined(__AVX__)
  17147. return 1;
  17148. #else
  17149. return 0;
  17150. #endif
  17151. }
  17152. int ggml_cpu_has_avx_vnni(void) {
  17153. #if defined(__AVXVNNI__)
  17154. return 1;
  17155. #else
  17156. return 0;
  17157. #endif
  17158. }
  17159. int ggml_cpu_has_avx2(void) {
  17160. #if defined(__AVX2__)
  17161. return 1;
  17162. #else
  17163. return 0;
  17164. #endif
  17165. }
  17166. int ggml_cpu_has_avx512(void) {
  17167. #if defined(__AVX512F__)
  17168. return 1;
  17169. #else
  17170. return 0;
  17171. #endif
  17172. }
  17173. int ggml_cpu_has_avx512_vbmi(void) {
  17174. #if defined(__AVX512VBMI__)
  17175. return 1;
  17176. #else
  17177. return 0;
  17178. #endif
  17179. }
  17180. int ggml_cpu_has_avx512_vnni(void) {
  17181. #if defined(__AVX512VNNI__)
  17182. return 1;
  17183. #else
  17184. return 0;
  17185. #endif
  17186. }
  17187. int ggml_cpu_has_fma(void) {
  17188. #if defined(__FMA__)
  17189. return 1;
  17190. #else
  17191. return 0;
  17192. #endif
  17193. }
  17194. int ggml_cpu_has_neon(void) {
  17195. #if defined(__ARM_NEON)
  17196. return 1;
  17197. #else
  17198. return 0;
  17199. #endif
  17200. }
  17201. int ggml_cpu_has_arm_fma(void) {
  17202. #if defined(__ARM_FEATURE_FMA)
  17203. return 1;
  17204. #else
  17205. return 0;
  17206. #endif
  17207. }
  17208. int ggml_cpu_has_metal(void) {
  17209. #if defined(GGML_USE_METAL)
  17210. return 1;
  17211. #else
  17212. return 0;
  17213. #endif
  17214. }
  17215. int ggml_cpu_has_f16c(void) {
  17216. #if defined(__F16C__)
  17217. return 1;
  17218. #else
  17219. return 0;
  17220. #endif
  17221. }
  17222. int ggml_cpu_has_fp16_va(void) {
  17223. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17224. return 1;
  17225. #else
  17226. return 0;
  17227. #endif
  17228. }
  17229. int ggml_cpu_has_wasm_simd(void) {
  17230. #if defined(__wasm_simd128__)
  17231. return 1;
  17232. #else
  17233. return 0;
  17234. #endif
  17235. }
  17236. int ggml_cpu_has_blas(void) {
  17237. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17238. return 1;
  17239. #else
  17240. return 0;
  17241. #endif
  17242. }
  17243. int ggml_cpu_has_cublas(void) {
  17244. #if defined(GGML_USE_CUBLAS)
  17245. return 1;
  17246. #else
  17247. return 0;
  17248. #endif
  17249. }
  17250. int ggml_cpu_has_clblast(void) {
  17251. #if defined(GGML_USE_CLBLAST)
  17252. return 1;
  17253. #else
  17254. return 0;
  17255. #endif
  17256. }
  17257. int ggml_cpu_has_vulkan(void) {
  17258. #if defined(GGML_USE_VULKAN)
  17259. return 1;
  17260. #else
  17261. return 0;
  17262. #endif
  17263. }
  17264. int ggml_cpu_has_kompute(void) {
  17265. #if defined(GGML_USE_KOMPUTE)
  17266. return 1;
  17267. #else
  17268. return 0;
  17269. #endif
  17270. }
  17271. int ggml_cpu_has_sycl(void) {
  17272. #if defined(GGML_USE_SYCL)
  17273. return 1;
  17274. #else
  17275. return 0;
  17276. #endif
  17277. }
  17278. int ggml_cpu_has_gpublas(void) {
  17279. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17280. ggml_cpu_has_sycl();
  17281. }
  17282. int ggml_cpu_has_sse3(void) {
  17283. #if defined(__SSE3__)
  17284. return 1;
  17285. #else
  17286. return 0;
  17287. #endif
  17288. }
  17289. int ggml_cpu_has_ssse3(void) {
  17290. #if defined(__SSSE3__)
  17291. return 1;
  17292. #else
  17293. return 0;
  17294. #endif
  17295. }
  17296. int ggml_cpu_has_vsx(void) {
  17297. #if defined(__POWER9_VECTOR__)
  17298. return 1;
  17299. #else
  17300. return 0;
  17301. #endif
  17302. }
  17303. int ggml_cpu_has_matmul_int8(void) {
  17304. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17305. return 1;
  17306. #else
  17307. return 0;
  17308. #endif
  17309. }
  17310. ////////////////////////////////////////////////////////////////////////////////