ggml.c 664 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. #define GGML_SOFT_MAX_UNROLL 4
  106. #define GGML_VEC_DOT_UNROLL 2
  107. //
  108. // logging
  109. //
  110. #if (GGML_DEBUG >= 1)
  111. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  112. #else
  113. #define GGML_PRINT_DEBUG(...)
  114. #endif
  115. #if (GGML_DEBUG >= 5)
  116. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  117. #else
  118. #define GGML_PRINT_DEBUG_5(...)
  119. #endif
  120. #if (GGML_DEBUG >= 10)
  121. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG_10(...)
  124. #endif
  125. #define GGML_PRINT(...) printf(__VA_ARGS__)
  126. #ifdef GGML_USE_ACCELERATE
  127. // uncomment to use vDSP for soft max computation
  128. // note: not sure if it is actually faster
  129. //#define GGML_SOFT_MAX_ACCELERATE
  130. #endif
  131. #if UINTPTR_MAX == 0xFFFFFFFF
  132. #define GGML_MEM_ALIGN 4
  133. #else
  134. #define GGML_MEM_ALIGN 16
  135. #endif
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. void * aligned_memory = NULL;
  164. #ifdef GGML_USE_METAL
  165. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  166. #else
  167. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  168. #endif
  169. if (result != 0) {
  170. // Handle allocation failure
  171. const char *error_desc = "unknown allocation error";
  172. switch (result) {
  173. case EINVAL:
  174. error_desc = "invalid alignment value";
  175. break;
  176. case ENOMEM:
  177. error_desc = "insufficient memory";
  178. break;
  179. }
  180. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  181. return NULL;
  182. }
  183. return aligned_memory;
  184. }
  185. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  186. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  187. #endif
  188. #define UNUSED GGML_UNUSED
  189. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  190. //
  191. // tensor access macros
  192. //
  193. #define GGML_TENSOR_UNARY_OP_LOCALS \
  194. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  195. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  196. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  198. #define GGML_TENSOR_BINARY_OP_LOCALS \
  199. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  200. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  201. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  202. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  203. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  204. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  205. #if defined(GGML_USE_ACCELERATE)
  206. #include <Accelerate/Accelerate.h>
  207. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  208. #include "ggml-opencl.h"
  209. #endif
  210. #elif defined(GGML_USE_OPENBLAS)
  211. #if defined(GGML_BLAS_USE_MKL)
  212. #include <mkl.h>
  213. #else
  214. #include <cblas.h>
  215. #endif
  216. #elif defined(GGML_USE_CUBLAS)
  217. #include "ggml-cuda.h"
  218. #elif defined(GGML_USE_CLBLAST)
  219. #include "ggml-opencl.h"
  220. #endif
  221. #undef MIN
  222. #undef MAX
  223. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  224. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  225. // floating point type used to accumulate sums
  226. typedef double ggml_float;
  227. // 16-bit float
  228. // on Arm, we use __fp16
  229. // on x86, we use uint16_t
  230. #ifdef __ARM_NEON
  231. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  232. //
  233. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  234. //
  235. #include <arm_neon.h>
  236. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  237. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  238. #define GGML_FP16_TO_FP32(x) ((float) (x))
  239. #define GGML_FP32_TO_FP16(x) (x)
  240. #else
  241. #ifdef __wasm_simd128__
  242. #include <wasm_simd128.h>
  243. #else
  244. #ifdef __POWER9_VECTOR__
  245. #include <altivec.h>
  246. #undef bool
  247. #define bool _Bool
  248. #else
  249. #if defined(_MSC_VER) || defined(__MINGW32__)
  250. #include <intrin.h>
  251. #else
  252. #if !defined(__riscv)
  253. #include <immintrin.h>
  254. #endif
  255. #endif
  256. #endif
  257. #endif
  258. #ifdef __F16C__
  259. #ifdef _MSC_VER
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  262. #else
  263. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  264. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  265. #endif
  266. #elif defined(__POWER9_VECTOR__)
  267. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  268. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  269. /* the inline asm below is about 12% faster than the lookup method */
  270. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  271. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  272. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  273. register float f;
  274. register double d;
  275. __asm__(
  276. "mtfprd %0,%2\n"
  277. "xscvhpdp %0,%0\n"
  278. "frsp %1,%0\n" :
  279. /* temp */ "=d"(d),
  280. /* out */ "=f"(f):
  281. /* in */ "r"(h));
  282. return f;
  283. }
  284. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  285. register double d;
  286. register ggml_fp16_t r;
  287. __asm__( /* xscvdphp can work on double or single precision */
  288. "xscvdphp %0,%2\n"
  289. "mffprd %1,%0\n" :
  290. /* temp */ "=d"(d),
  291. /* out */ "=r"(r):
  292. /* in */ "f"(f));
  293. return r;
  294. }
  295. #else
  296. // FP16 <-> FP32
  297. // ref: https://github.com/Maratyszcza/FP16
  298. static inline float fp32_from_bits(uint32_t w) {
  299. union {
  300. uint32_t as_bits;
  301. float as_value;
  302. } fp32;
  303. fp32.as_bits = w;
  304. return fp32.as_value;
  305. }
  306. static inline uint32_t fp32_to_bits(float f) {
  307. union {
  308. float as_value;
  309. uint32_t as_bits;
  310. } fp32;
  311. fp32.as_value = f;
  312. return fp32.as_bits;
  313. }
  314. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  315. const uint32_t w = (uint32_t) h << 16;
  316. const uint32_t sign = w & UINT32_C(0x80000000);
  317. const uint32_t two_w = w + w;
  318. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  319. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  320. const float exp_scale = 0x1.0p-112f;
  321. #else
  322. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  323. #endif
  324. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  325. const uint32_t magic_mask = UINT32_C(126) << 23;
  326. const float magic_bias = 0.5f;
  327. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  328. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  329. const uint32_t result = sign |
  330. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  331. return fp32_from_bits(result);
  332. }
  333. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  334. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  335. const float scale_to_inf = 0x1.0p+112f;
  336. const float scale_to_zero = 0x1.0p-110f;
  337. #else
  338. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  339. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  340. #endif
  341. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  342. const uint32_t w = fp32_to_bits(f);
  343. const uint32_t shl1_w = w + w;
  344. const uint32_t sign = w & UINT32_C(0x80000000);
  345. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  346. if (bias < UINT32_C(0x71000000)) {
  347. bias = UINT32_C(0x71000000);
  348. }
  349. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  350. const uint32_t bits = fp32_to_bits(base);
  351. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  352. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  353. const uint32_t nonsign = exp_bits + mantissa_bits;
  354. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  355. }
  356. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  357. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  358. #endif // __F16C__
  359. #endif // __ARM_NEON
  360. //
  361. // global data
  362. //
  363. // precomputed gelu table for f16 (128 KB)
  364. static ggml_fp16_t table_gelu_f16[1 << 16];
  365. // precomputed quick gelu table for f16 (128 KB)
  366. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  367. // precomputed silu table for f16 (128 KB)
  368. static ggml_fp16_t table_silu_f16[1 << 16];
  369. // precomputed exp table for f16 (128 KB)
  370. static ggml_fp16_t table_exp_f16[1 << 16];
  371. // precomputed f32 table for f16 (256 KB)
  372. static float table_f32_f16[1 << 16];
  373. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  374. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  375. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  376. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  377. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  378. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  379. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  380. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  381. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  382. // precomputed tables for expanding 8bits to 8 bytes:
  383. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  384. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  385. #endif
  386. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  387. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  388. // This is also true for POWER9.
  389. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  390. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  391. uint16_t s;
  392. memcpy(&s, &f, sizeof(uint16_t));
  393. return table_f32_f16[s];
  394. }
  395. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  396. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  397. #endif
  398. // note: do not use these inside ggml.c
  399. // these are meant to be used via the ggml.h API
  400. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  401. return (float) GGML_FP16_TO_FP32(x);
  402. }
  403. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  404. return GGML_FP32_TO_FP16(x);
  405. }
  406. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  407. for (int i = 0; i < n; i++) {
  408. y[i] = GGML_FP16_TO_FP32(x[i]);
  409. }
  410. }
  411. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  412. int i = 0;
  413. #if defined(__F16C__)
  414. for (; i + 7 < n; i += 8) {
  415. __m256 x_vec = _mm256_loadu_ps(x + i);
  416. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  417. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  418. }
  419. for(; i + 3 < n; i += 4) {
  420. __m128 x_vec = _mm_loadu_ps(x + i);
  421. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  422. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  423. }
  424. #endif
  425. for (; i < n; i++) {
  426. y[i] = GGML_FP32_TO_FP16(x[i]);
  427. }
  428. }
  429. //
  430. // timing
  431. //
  432. #if defined(_MSC_VER) || defined(__MINGW32__)
  433. static int64_t timer_freq, timer_start;
  434. void ggml_time_init(void) {
  435. LARGE_INTEGER t;
  436. QueryPerformanceFrequency(&t);
  437. timer_freq = t.QuadPart;
  438. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  439. // and the uptime is high enough.
  440. // We subtract the program start time to reduce the likelihood of that happening.
  441. QueryPerformanceCounter(&t);
  442. timer_start = t.QuadPart;
  443. }
  444. int64_t ggml_time_ms(void) {
  445. LARGE_INTEGER t;
  446. QueryPerformanceCounter(&t);
  447. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  448. }
  449. int64_t ggml_time_us(void) {
  450. LARGE_INTEGER t;
  451. QueryPerformanceCounter(&t);
  452. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  453. }
  454. #else
  455. void ggml_time_init(void) {}
  456. int64_t ggml_time_ms(void) {
  457. struct timespec ts;
  458. clock_gettime(CLOCK_MONOTONIC, &ts);
  459. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  460. }
  461. int64_t ggml_time_us(void) {
  462. struct timespec ts;
  463. clock_gettime(CLOCK_MONOTONIC, &ts);
  464. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  465. }
  466. #endif
  467. int64_t ggml_cycles(void) {
  468. return clock();
  469. }
  470. int64_t ggml_cycles_per_ms(void) {
  471. return CLOCKS_PER_SEC/1000;
  472. }
  473. #ifdef GGML_PERF
  474. #define ggml_perf_time_ms() ggml_time_ms()
  475. #define ggml_perf_time_us() ggml_time_us()
  476. #define ggml_perf_cycles() ggml_cycles()
  477. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  478. #else
  479. #define ggml_perf_time_ms() 0
  480. #define ggml_perf_time_us() 0
  481. #define ggml_perf_cycles() 0
  482. #define ggml_perf_cycles_per_ms() 0
  483. #endif
  484. //
  485. // cache line
  486. //
  487. #if defined(__cpp_lib_hardware_interference_size)
  488. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  489. #else
  490. #if defined(__POWER9_VECTOR__)
  491. #define CACHE_LINE_SIZE 128
  492. #else
  493. #define CACHE_LINE_SIZE 64
  494. #endif
  495. #endif
  496. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  497. //
  498. // quantization
  499. //
  500. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  501. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  502. // multiply int8_t, add results pairwise twice
  503. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  504. // Get absolute values of x vectors
  505. const __m128i ax = _mm_sign_epi8(x, x);
  506. // Sign the values of the y vectors
  507. const __m128i sy = _mm_sign_epi8(y, x);
  508. // Perform multiplication and create 16-bit values
  509. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  510. const __m128i ones = _mm_set1_epi16(1);
  511. return _mm_madd_epi16(ones, dot);
  512. }
  513. #if __AVX__ || __AVX2__ || __AVX512F__
  514. // horizontally add 8 floats
  515. static inline float hsum_float_8(const __m256 x) {
  516. __m128 res = _mm256_extractf128_ps(x, 1);
  517. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  518. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  519. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  520. return _mm_cvtss_f32(res);
  521. }
  522. // horizontally add 8 int32_t
  523. static inline int hsum_i32_8(const __m256i a) {
  524. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  525. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  526. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  527. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  528. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  529. }
  530. // horizontally add 4 int32_t
  531. static inline int hsum_i32_4(const __m128i a) {
  532. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  533. const __m128i sum64 = _mm_add_epi32(hi64, a);
  534. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  535. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  536. }
  537. #if defined(__AVX2__) || defined(__AVX512F__)
  538. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  539. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  540. uint32_t x32;
  541. memcpy(&x32, x, sizeof(uint32_t));
  542. const __m256i shuf_mask = _mm256_set_epi64x(
  543. 0x0303030303030303, 0x0202020202020202,
  544. 0x0101010101010101, 0x0000000000000000);
  545. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  546. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  547. bytes = _mm256_or_si256(bytes, bit_mask);
  548. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  549. }
  550. // Unpack 32 4-bit fields into 32 bytes
  551. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  552. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  553. {
  554. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  555. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  556. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  557. return _mm256_and_si256(lowMask, bytes);
  558. }
  559. // add int16_t pairwise and return as float vector
  560. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  561. const __m256i ones = _mm256_set1_epi16(1);
  562. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  563. return _mm256_cvtepi32_ps(summed_pairs);
  564. }
  565. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  566. #if __AVXVNNI__
  567. const __m256i zero = _mm256_setzero_si256();
  568. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  569. return _mm256_cvtepi32_ps(summed_pairs);
  570. #else
  571. // Perform multiplication and create 16-bit values
  572. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  573. return sum_i16_pairs_float(dot);
  574. #endif
  575. }
  576. // multiply int8_t, add results pairwise twice and return as float vector
  577. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  578. #if __AVXVNNIINT8__
  579. const __m256i zero = _mm256_setzero_si256();
  580. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  581. return _mm256_cvtepi32_ps(summed_pairs);
  582. #else
  583. // Get absolute values of x vectors
  584. const __m256i ax = _mm256_sign_epi8(x, x);
  585. // Sign the values of the y vectors
  586. const __m256i sy = _mm256_sign_epi8(y, x);
  587. return mul_sum_us8_pairs_float(ax, sy);
  588. #endif
  589. }
  590. static inline __m128i packNibbles( __m256i bytes )
  591. {
  592. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  593. #if __AVX512F__
  594. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  595. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  596. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  597. #else
  598. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  599. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  600. __m256i low = _mm256_and_si256( lowByte, bytes );
  601. high = _mm256_srli_epi16( high, 4 );
  602. bytes = _mm256_or_si256( low, high );
  603. // Compress uint16_t lanes into bytes
  604. __m128i r0 = _mm256_castsi256_si128( bytes );
  605. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  606. return _mm_packus_epi16( r0, r1 );
  607. #endif
  608. }
  609. #elif defined(__AVX__)
  610. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  611. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  612. uint32_t x32;
  613. memcpy(&x32, x, sizeof(uint32_t));
  614. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  615. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  616. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  617. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  618. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  619. bytesl = _mm_or_si128(bytesl, bit_mask);
  620. bytesh = _mm_or_si128(bytesh, bit_mask);
  621. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  622. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  623. return MM256_SET_M128I(bytesh, bytesl);
  624. }
  625. // Unpack 32 4-bit fields into 32 bytes
  626. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  627. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  628. {
  629. // Load 16 bytes from memory
  630. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  631. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  632. const __m128i lowMask = _mm_set1_epi8(0xF);
  633. tmpl = _mm_and_si128(lowMask, tmpl);
  634. tmph = _mm_and_si128(lowMask, tmph);
  635. return MM256_SET_M128I(tmph, tmpl);
  636. }
  637. // add int16_t pairwise and return as float vector
  638. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  639. const __m128i ones = _mm_set1_epi16(1);
  640. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  641. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  642. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  643. return _mm256_cvtepi32_ps(summed_pairs);
  644. }
  645. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  646. const __m128i axl = _mm256_castsi256_si128(ax);
  647. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  648. const __m128i syl = _mm256_castsi256_si128(sy);
  649. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  650. // Perform multiplication and create 16-bit values
  651. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  652. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  653. return sum_i16_pairs_float(doth, dotl);
  654. }
  655. // multiply int8_t, add results pairwise twice and return as float vector
  656. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  657. const __m128i xl = _mm256_castsi256_si128(x);
  658. const __m128i xh = _mm256_extractf128_si256(x, 1);
  659. const __m128i yl = _mm256_castsi256_si128(y);
  660. const __m128i yh = _mm256_extractf128_si256(y, 1);
  661. // Get absolute values of x vectors
  662. const __m128i axl = _mm_sign_epi8(xl, xl);
  663. const __m128i axh = _mm_sign_epi8(xh, xh);
  664. // Sign the values of the y vectors
  665. const __m128i syl = _mm_sign_epi8(yl, xl);
  666. const __m128i syh = _mm_sign_epi8(yh, xh);
  667. // Perform multiplication and create 16-bit values
  668. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  669. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  670. return sum_i16_pairs_float(doth, dotl);
  671. }
  672. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  673. {
  674. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  675. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  676. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  677. __m128i low = _mm_and_si128( lowByte, bytes1 );
  678. high = _mm_srli_epi16( high, 4 );
  679. bytes1 = _mm_or_si128( low, high );
  680. high = _mm_andnot_si128( lowByte, bytes2 );
  681. low = _mm_and_si128( lowByte, bytes2 );
  682. high = _mm_srli_epi16( high, 4 );
  683. bytes2 = _mm_or_si128( low, high );
  684. return _mm_packus_epi16( bytes1, bytes2);
  685. }
  686. #endif
  687. #elif defined(__SSSE3__)
  688. // horizontally add 4x4 floats
  689. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  690. __m128 res_0 =_mm_hadd_ps(a, b);
  691. __m128 res_1 =_mm_hadd_ps(c, d);
  692. __m128 res =_mm_hadd_ps(res_0, res_1);
  693. res =_mm_hadd_ps(res, res);
  694. res =_mm_hadd_ps(res, res);
  695. return _mm_cvtss_f32(res);
  696. }
  697. #endif // __AVX__ || __AVX2__ || __AVX512F__
  698. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  699. #if defined(__ARM_NEON)
  700. #if !defined(__aarch64__)
  701. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  702. return
  703. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  704. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  705. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  706. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  707. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  708. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  709. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  710. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  711. }
  712. inline static int16_t vaddvq_s8(int8x16_t v) {
  713. return
  714. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  715. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  716. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  717. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  718. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  719. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  720. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  721. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  722. }
  723. inline static int32_t vaddvq_s16(int16x8_t v) {
  724. return
  725. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  726. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  727. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  728. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  729. }
  730. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  731. return
  732. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  733. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  734. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  735. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  736. }
  737. inline static int32_t vaddvq_s32(int32x4_t v) {
  738. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  739. }
  740. inline static float vaddvq_f32(float32x4_t v) {
  741. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  742. }
  743. inline static float vminvq_f32(float32x4_t v) {
  744. return
  745. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  746. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  747. }
  748. inline static float vmaxvq_f32(float32x4_t v) {
  749. return
  750. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  751. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  752. }
  753. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  754. int32x4_t res;
  755. res[0] = roundf(vgetq_lane_f32(v, 0));
  756. res[1] = roundf(vgetq_lane_f32(v, 1));
  757. res[2] = roundf(vgetq_lane_f32(v, 2));
  758. res[3] = roundf(vgetq_lane_f32(v, 3));
  759. return res;
  760. }
  761. #endif
  762. #endif
  763. #define QK4_0 32
  764. typedef struct {
  765. ggml_fp16_t d; // delta
  766. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  767. } block_q4_0;
  768. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  769. #define QK4_1 32
  770. typedef struct {
  771. ggml_fp16_t d; // delta
  772. ggml_fp16_t m; // min
  773. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  774. } block_q4_1;
  775. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  776. #define QK5_0 32
  777. typedef struct {
  778. ggml_fp16_t d; // delta
  779. uint8_t qh[4]; // 5-th bit of quants
  780. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  781. } block_q5_0;
  782. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  783. #define QK5_1 32
  784. typedef struct {
  785. ggml_fp16_t d; // delta
  786. ggml_fp16_t m; // min
  787. uint8_t qh[4]; // 5-th bit of quants
  788. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  789. } block_q5_1;
  790. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  791. #define QK8_0 32
  792. typedef struct {
  793. ggml_fp16_t d; // delta
  794. int8_t qs[QK8_0]; // quants
  795. } block_q8_0;
  796. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  797. #define QK8_1 32
  798. typedef struct {
  799. float d; // delta
  800. float s; // d * sum(qs[i])
  801. int8_t qs[QK8_1]; // quants
  802. } block_q8_1;
  803. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  804. // reference implementation for deterministic creation of model files
  805. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  806. static const int qk = QK4_0;
  807. assert(k % qk == 0);
  808. const int nb = k / qk;
  809. for (int i = 0; i < nb; i++) {
  810. float amax = 0.0f; // absolute max
  811. float max = 0.0f;
  812. for (int j = 0; j < qk; j++) {
  813. const float v = x[i*qk + j];
  814. if (amax < fabsf(v)) {
  815. amax = fabsf(v);
  816. max = v;
  817. }
  818. }
  819. const float d = max / -8;
  820. const float id = d ? 1.0f/d : 0.0f;
  821. y[i].d = GGML_FP32_TO_FP16(d);
  822. for (int j = 0; j < qk/2; ++j) {
  823. const float x0 = x[i*qk + 0 + j]*id;
  824. const float x1 = x[i*qk + qk/2 + j]*id;
  825. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  826. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  827. y[i].qs[j] = xi0;
  828. y[i].qs[j] |= xi1 << 4;
  829. }
  830. }
  831. }
  832. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  833. quantize_row_q4_0_reference(x, y, k);
  834. }
  835. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  836. const int qk = QK4_1;
  837. assert(k % qk == 0);
  838. const int nb = k / qk;
  839. for (int i = 0; i < nb; i++) {
  840. float min = FLT_MAX;
  841. float max = -FLT_MAX;
  842. for (int j = 0; j < qk; j++) {
  843. const float v = x[i*qk + j];
  844. if (v < min) min = v;
  845. if (v > max) max = v;
  846. }
  847. const float d = (max - min) / ((1 << 4) - 1);
  848. const float id = d ? 1.0f/d : 0.0f;
  849. y[i].d = GGML_FP32_TO_FP16(d);
  850. y[i].m = GGML_FP32_TO_FP16(min);
  851. for (int j = 0; j < qk/2; ++j) {
  852. const float x0 = (x[i*qk + 0 + j] - min)*id;
  853. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  854. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  855. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  856. y[i].qs[j] = xi0;
  857. y[i].qs[j] |= xi1 << 4;
  858. }
  859. }
  860. }
  861. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  862. quantize_row_q4_1_reference(x, y, k);
  863. }
  864. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  865. static const int qk = QK5_0;
  866. assert(k % qk == 0);
  867. const int nb = k / qk;
  868. for (int i = 0; i < nb; i++) {
  869. float amax = 0.0f; // absolute max
  870. float max = 0.0f;
  871. for (int j = 0; j < qk; j++) {
  872. const float v = x[i*qk + j];
  873. if (amax < fabsf(v)) {
  874. amax = fabsf(v);
  875. max = v;
  876. }
  877. }
  878. const float d = max / -16;
  879. const float id = d ? 1.0f/d : 0.0f;
  880. y[i].d = GGML_FP32_TO_FP16(d);
  881. uint32_t qh = 0;
  882. for (int j = 0; j < qk/2; ++j) {
  883. const float x0 = x[i*qk + 0 + j]*id;
  884. const float x1 = x[i*qk + qk/2 + j]*id;
  885. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  886. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  887. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  888. // get the 5-th bit and store it in qh at the right position
  889. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  890. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  891. }
  892. memcpy(&y[i].qh, &qh, sizeof(qh));
  893. }
  894. }
  895. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  896. quantize_row_q5_0_reference(x, y, k);
  897. }
  898. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  899. const int qk = QK5_1;
  900. assert(k % qk == 0);
  901. const int nb = k / qk;
  902. for (int i = 0; i < nb; i++) {
  903. float min = FLT_MAX;
  904. float max = -FLT_MAX;
  905. for (int j = 0; j < qk; j++) {
  906. const float v = x[i*qk + j];
  907. if (v < min) min = v;
  908. if (v > max) max = v;
  909. }
  910. const float d = (max - min) / ((1 << 5) - 1);
  911. const float id = d ? 1.0f/d : 0.0f;
  912. y[i].d = GGML_FP32_TO_FP16(d);
  913. y[i].m = GGML_FP32_TO_FP16(min);
  914. uint32_t qh = 0;
  915. for (int j = 0; j < qk/2; ++j) {
  916. const float x0 = (x[i*qk + 0 + j] - min)*id;
  917. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  918. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  919. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  920. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  921. // get the 5-th bit and store it in qh at the right position
  922. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  923. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  924. }
  925. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  926. }
  927. }
  928. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  929. quantize_row_q5_1_reference(x, y, k);
  930. }
  931. // reference implementation for deterministic creation of model files
  932. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  933. assert(k % QK8_0 == 0);
  934. const int nb = k / QK8_0;
  935. for (int i = 0; i < nb; i++) {
  936. float amax = 0.0f; // absolute max
  937. for (int j = 0; j < QK8_0; j++) {
  938. const float v = x[i*QK8_0 + j];
  939. amax = MAX(amax, fabsf(v));
  940. }
  941. const float d = amax / ((1 << 7) - 1);
  942. const float id = d ? 1.0f/d : 0.0f;
  943. y[i].d = GGML_FP32_TO_FP16(d);
  944. for (int j = 0; j < QK8_0; ++j) {
  945. const float x0 = x[i*QK8_0 + j]*id;
  946. y[i].qs[j] = roundf(x0);
  947. }
  948. }
  949. }
  950. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  951. assert(QK8_0 == 32);
  952. assert(k % QK8_0 == 0);
  953. const int nb = k / QK8_0;
  954. block_q8_0 * restrict y = vy;
  955. #if defined(__ARM_NEON)
  956. for (int i = 0; i < nb; i++) {
  957. float32x4_t srcv [8];
  958. float32x4_t asrcv[8];
  959. float32x4_t amaxv[8];
  960. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  961. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  962. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  963. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  964. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  965. const float amax = vmaxvq_f32(amaxv[0]);
  966. const float d = amax / ((1 << 7) - 1);
  967. const float id = d ? 1.0f/d : 0.0f;
  968. y[i].d = GGML_FP32_TO_FP16(d);
  969. for (int j = 0; j < 8; j++) {
  970. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  971. const int32x4_t vi = vcvtnq_s32_f32(v);
  972. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  973. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  974. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  975. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  976. }
  977. }
  978. #elif defined(__wasm_simd128__)
  979. for (int i = 0; i < nb; i++) {
  980. v128_t srcv [8];
  981. v128_t asrcv[8];
  982. v128_t amaxv[8];
  983. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  984. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  985. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  986. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  987. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  988. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  989. wasm_f32x4_extract_lane(amaxv[0], 1)),
  990. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  991. wasm_f32x4_extract_lane(amaxv[0], 3)));
  992. const float d = amax / ((1 << 7) - 1);
  993. const float id = d ? 1.0f/d : 0.0f;
  994. y[i].d = GGML_FP32_TO_FP16(d);
  995. for (int j = 0; j < 8; j++) {
  996. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  997. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  998. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  999. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1000. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1001. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1002. }
  1003. }
  1004. #elif defined(__AVX2__) || defined(__AVX__)
  1005. for (int i = 0; i < nb; i++) {
  1006. // Load elements into 4 AVX vectors
  1007. __m256 v0 = _mm256_loadu_ps( x );
  1008. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1009. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1010. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1011. x += 32;
  1012. // Compute max(abs(e)) for the block
  1013. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1014. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1015. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1016. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1017. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1018. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1019. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1020. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1021. const float maxScalar = _mm_cvtss_f32( max4 );
  1022. // Quantize these floats
  1023. const float d = maxScalar / 127.f;
  1024. y[i].d = GGML_FP32_TO_FP16(d);
  1025. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1026. const __m256 mul = _mm256_set1_ps( id );
  1027. // Apply the multiplier
  1028. v0 = _mm256_mul_ps( v0, mul );
  1029. v1 = _mm256_mul_ps( v1, mul );
  1030. v2 = _mm256_mul_ps( v2, mul );
  1031. v3 = _mm256_mul_ps( v3, mul );
  1032. // Round to nearest integer
  1033. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1034. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1035. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1036. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1037. // Convert floats to integers
  1038. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1039. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1040. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1041. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1042. #if defined(__AVX2__)
  1043. // Convert int32 to int16
  1044. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1045. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1046. // Convert int16 to int8
  1047. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1048. // We got our precious signed bytes, but the order is now wrong
  1049. // These AVX2 pack instructions process 16-byte pieces independently
  1050. // The following instruction is fixing the order
  1051. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1052. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1053. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1054. #else
  1055. // Since we don't have in AVX some necessary functions,
  1056. // we split the registers in half and call AVX2 analogs from SSE
  1057. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1058. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1059. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1060. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1061. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1062. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1063. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1064. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1065. // Convert int32 to int16
  1066. ni0 = _mm_packs_epi32( ni0, ni1 );
  1067. ni2 = _mm_packs_epi32( ni2, ni3 );
  1068. ni4 = _mm_packs_epi32( ni4, ni5 );
  1069. ni6 = _mm_packs_epi32( ni6, ni7 );
  1070. // Convert int16 to int8
  1071. ni0 = _mm_packs_epi16( ni0, ni2 );
  1072. ni4 = _mm_packs_epi16( ni4, ni6 );
  1073. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1074. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1075. #endif
  1076. }
  1077. #else
  1078. // scalar
  1079. quantize_row_q8_0_reference(x, y, k);
  1080. #endif
  1081. }
  1082. // reference implementation for deterministic creation of model files
  1083. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1084. assert(QK8_1 == 32);
  1085. assert(k % QK8_1 == 0);
  1086. const int nb = k / QK8_1;
  1087. for (int i = 0; i < nb; i++) {
  1088. float amax = 0.0f; // absolute max
  1089. for (int j = 0; j < QK8_1; j++) {
  1090. const float v = x[i*QK8_1 + j];
  1091. amax = MAX(amax, fabsf(v));
  1092. }
  1093. const float d = amax / ((1 << 7) - 1);
  1094. const float id = d ? 1.0f/d : 0.0f;
  1095. y[i].d = d;
  1096. int sum = 0;
  1097. for (int j = 0; j < QK8_1/2; ++j) {
  1098. const float v0 = x[i*QK8_1 + j]*id;
  1099. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1100. y[i].qs[ j] = roundf(v0);
  1101. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1102. sum += y[i].qs[ j];
  1103. sum += y[i].qs[QK8_1/2 + j];
  1104. }
  1105. y[i].s = sum*d;
  1106. }
  1107. }
  1108. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1109. assert(k % QK8_1 == 0);
  1110. const int nb = k / QK8_1;
  1111. block_q8_1 * restrict y = vy;
  1112. #if defined(__ARM_NEON)
  1113. for (int i = 0; i < nb; i++) {
  1114. float32x4_t srcv [8];
  1115. float32x4_t asrcv[8];
  1116. float32x4_t amaxv[8];
  1117. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1118. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1119. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1120. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1121. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1122. const float amax = vmaxvq_f32(amaxv[0]);
  1123. const float d = amax / ((1 << 7) - 1);
  1124. const float id = d ? 1.0f/d : 0.0f;
  1125. y[i].d = d;
  1126. int32x4_t accv = vdupq_n_s32(0);
  1127. for (int j = 0; j < 8; j++) {
  1128. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1129. const int32x4_t vi = vcvtnq_s32_f32(v);
  1130. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1131. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1132. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1133. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1134. accv = vaddq_s32(accv, vi);
  1135. }
  1136. y[i].s = d * vaddvq_s32(accv);
  1137. }
  1138. #elif defined(__wasm_simd128__)
  1139. for (int i = 0; i < nb; i++) {
  1140. v128_t srcv [8];
  1141. v128_t asrcv[8];
  1142. v128_t amaxv[8];
  1143. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1144. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1145. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1146. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1147. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1148. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1149. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1150. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1151. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1152. const float d = amax / ((1 << 7) - 1);
  1153. const float id = d ? 1.0f/d : 0.0f;
  1154. y[i].d = d;
  1155. v128_t accv = wasm_i32x4_splat(0);
  1156. for (int j = 0; j < 8; j++) {
  1157. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1158. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1159. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1160. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1161. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1162. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1163. accv = wasm_i32x4_add(accv, vi);
  1164. }
  1165. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1166. wasm_i32x4_extract_lane(accv, 1) +
  1167. wasm_i32x4_extract_lane(accv, 2) +
  1168. wasm_i32x4_extract_lane(accv, 3));
  1169. }
  1170. #elif defined(__AVX2__) || defined(__AVX__)
  1171. for (int i = 0; i < nb; i++) {
  1172. // Load elements into 4 AVX vectors
  1173. __m256 v0 = _mm256_loadu_ps( x );
  1174. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1175. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1176. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1177. x += 32;
  1178. // Compute max(abs(e)) for the block
  1179. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1180. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1181. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1182. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1183. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1184. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1185. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1186. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1187. const float maxScalar = _mm_cvtss_f32( max4 );
  1188. // Quantize these floats
  1189. const float d = maxScalar / 127.f;
  1190. y[i].d = d;
  1191. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1192. const __m256 mul = _mm256_set1_ps( id );
  1193. // Apply the multiplier
  1194. v0 = _mm256_mul_ps( v0, mul );
  1195. v1 = _mm256_mul_ps( v1, mul );
  1196. v2 = _mm256_mul_ps( v2, mul );
  1197. v3 = _mm256_mul_ps( v3, mul );
  1198. // Round to nearest integer
  1199. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1200. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1201. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1202. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1203. // Convert floats to integers
  1204. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1205. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1206. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1207. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1208. #if defined(__AVX2__)
  1209. // Compute the sum of the quants and set y[i].s
  1210. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1211. // Convert int32 to int16
  1212. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1213. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1214. // Convert int16 to int8
  1215. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1216. // We got our precious signed bytes, but the order is now wrong
  1217. // These AVX2 pack instructions process 16-byte pieces independently
  1218. // The following instruction is fixing the order
  1219. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1220. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1221. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1222. #else
  1223. // Since we don't have in AVX some necessary functions,
  1224. // we split the registers in half and call AVX2 analogs from SSE
  1225. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1226. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1227. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1228. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1229. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1230. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1231. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1232. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1233. // Compute the sum of the quants and set y[i].s
  1234. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1235. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1236. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1237. // Convert int32 to int16
  1238. ni0 = _mm_packs_epi32( ni0, ni1 );
  1239. ni2 = _mm_packs_epi32( ni2, ni3 );
  1240. ni4 = _mm_packs_epi32( ni4, ni5 );
  1241. ni6 = _mm_packs_epi32( ni6, ni7 );
  1242. // Convert int16 to int8
  1243. ni0 = _mm_packs_epi16( ni0, ni2 );
  1244. ni4 = _mm_packs_epi16( ni4, ni6 );
  1245. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1246. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1247. #endif
  1248. }
  1249. #else
  1250. // scalar
  1251. quantize_row_q8_1_reference(x, y, k);
  1252. #endif
  1253. }
  1254. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1255. static const int qk = QK4_0;
  1256. assert(k % qk == 0);
  1257. const int nb = k / qk;
  1258. for (int i = 0; i < nb; i++) {
  1259. const float d = GGML_FP16_TO_FP32(x[i].d);
  1260. for (int j = 0; j < qk/2; ++j) {
  1261. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1262. const int x1 = (x[i].qs[j] >> 4) - 8;
  1263. y[i*qk + j + 0 ] = x0*d;
  1264. y[i*qk + j + qk/2] = x1*d;
  1265. }
  1266. }
  1267. }
  1268. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1269. static const int qk = QK4_1;
  1270. assert(k % qk == 0);
  1271. const int nb = k / qk;
  1272. for (int i = 0; i < nb; i++) {
  1273. const float d = GGML_FP16_TO_FP32(x[i].d);
  1274. const float m = GGML_FP16_TO_FP32(x[i].m);
  1275. for (int j = 0; j < qk/2; ++j) {
  1276. const int x0 = (x[i].qs[j] & 0x0F);
  1277. const int x1 = (x[i].qs[j] >> 4);
  1278. y[i*qk + j + 0 ] = x0*d + m;
  1279. y[i*qk + j + qk/2] = x1*d + m;
  1280. }
  1281. }
  1282. }
  1283. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1284. static const int qk = QK5_0;
  1285. assert(k % qk == 0);
  1286. const int nb = k / qk;
  1287. for (int i = 0; i < nb; i++) {
  1288. const float d = GGML_FP16_TO_FP32(x[i].d);
  1289. uint32_t qh;
  1290. memcpy(&qh, x[i].qh, sizeof(qh));
  1291. for (int j = 0; j < qk/2; ++j) {
  1292. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1293. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1294. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1295. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1296. y[i*qk + j + 0 ] = x0*d;
  1297. y[i*qk + j + qk/2] = x1*d;
  1298. }
  1299. }
  1300. }
  1301. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1302. static const int qk = QK5_1;
  1303. assert(k % qk == 0);
  1304. const int nb = k / qk;
  1305. for (int i = 0; i < nb; i++) {
  1306. const float d = GGML_FP16_TO_FP32(x[i].d);
  1307. const float m = GGML_FP16_TO_FP32(x[i].m);
  1308. uint32_t qh;
  1309. memcpy(&qh, x[i].qh, sizeof(qh));
  1310. for (int j = 0; j < qk/2; ++j) {
  1311. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1312. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1313. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1314. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1315. y[i*qk + j + 0 ] = x0*d + m;
  1316. y[i*qk + j + qk/2] = x1*d + m;
  1317. }
  1318. }
  1319. }
  1320. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1321. static const int qk = QK8_0;
  1322. assert(k % qk == 0);
  1323. const int nb = k / qk;
  1324. const block_q8_0 * restrict x = vx;
  1325. for (int i = 0; i < nb; i++) {
  1326. const float d = GGML_FP16_TO_FP32(x[i].d);
  1327. for (int j = 0; j < qk; ++j) {
  1328. y[i*qk + j] = x[i].qs[j]*d;
  1329. }
  1330. }
  1331. }
  1332. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1333. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1334. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1335. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1338. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1339. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1340. [GGML_TYPE_I8] = {
  1341. .type_name = "i8",
  1342. .blck_size = 1,
  1343. .type_size = sizeof(int8_t),
  1344. .is_quantized = false,
  1345. },
  1346. [GGML_TYPE_I16] = {
  1347. .type_name = "i16",
  1348. .blck_size = 1,
  1349. .type_size = sizeof(int16_t),
  1350. .is_quantized = false,
  1351. },
  1352. [GGML_TYPE_I32] = {
  1353. .type_name = "i32",
  1354. .blck_size = 1,
  1355. .type_size = sizeof(int32_t),
  1356. .is_quantized = false,
  1357. },
  1358. [GGML_TYPE_F32] = {
  1359. .type_name = "f32",
  1360. .blck_size = 1,
  1361. .type_size = sizeof(float),
  1362. .is_quantized = false,
  1363. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1364. .vec_dot_type = GGML_TYPE_F32,
  1365. },
  1366. [GGML_TYPE_F16] = {
  1367. .type_name = "f16",
  1368. .blck_size = 1,
  1369. .type_size = sizeof(ggml_fp16_t),
  1370. .is_quantized = false,
  1371. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1372. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1373. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1374. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1375. .vec_dot_type = GGML_TYPE_F16,
  1376. },
  1377. [GGML_TYPE_Q4_0] = {
  1378. .type_name = "q4_0",
  1379. .blck_size = QK4_0,
  1380. .type_size = sizeof(block_q4_0),
  1381. .is_quantized = true,
  1382. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1383. .from_float = quantize_row_q4_0,
  1384. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1385. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1386. .vec_dot_type = GGML_TYPE_Q8_0,
  1387. },
  1388. [GGML_TYPE_Q4_1] = {
  1389. .type_name = "q4_1",
  1390. .blck_size = QK4_1,
  1391. .type_size = sizeof(block_q4_1),
  1392. .is_quantized = true,
  1393. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1394. .from_float = quantize_row_q4_1,
  1395. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1396. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1397. .vec_dot_type = GGML_TYPE_Q8_1,
  1398. },
  1399. [GGML_TYPE_Q5_0] = {
  1400. .type_name = "q5_0",
  1401. .blck_size = QK5_0,
  1402. .type_size = sizeof(block_q5_0),
  1403. .is_quantized = true,
  1404. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1405. .from_float = quantize_row_q5_0,
  1406. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1407. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1408. .vec_dot_type = GGML_TYPE_Q8_0,
  1409. },
  1410. [GGML_TYPE_Q5_1] = {
  1411. .type_name = "q5_1",
  1412. .blck_size = QK5_1,
  1413. .type_size = sizeof(block_q5_1),
  1414. .is_quantized = true,
  1415. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1416. .from_float = quantize_row_q5_1,
  1417. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1418. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1419. .vec_dot_type = GGML_TYPE_Q8_1,
  1420. },
  1421. [GGML_TYPE_Q8_0] = {
  1422. .type_name = "q8_0",
  1423. .blck_size = QK8_0,
  1424. .type_size = sizeof(block_q8_0),
  1425. .is_quantized = true,
  1426. .to_float = dequantize_row_q8_0,
  1427. .from_float = quantize_row_q8_0,
  1428. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1429. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1430. .vec_dot_type = GGML_TYPE_Q8_0,
  1431. },
  1432. [GGML_TYPE_Q8_1] = {
  1433. .type_name = "q8_1",
  1434. .blck_size = QK8_1,
  1435. .type_size = sizeof(block_q8_1),
  1436. .is_quantized = true,
  1437. .from_float = quantize_row_q8_1,
  1438. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1439. .vec_dot_type = GGML_TYPE_Q8_1,
  1440. },
  1441. #ifdef GGML_USE_K_QUANTS
  1442. [GGML_TYPE_Q2_K] = {
  1443. .type_name = "q2_K",
  1444. .blck_size = QK_K,
  1445. .type_size = sizeof(block_q2_K),
  1446. .is_quantized = true,
  1447. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1448. .from_float = quantize_row_q2_K,
  1449. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1450. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1451. .vec_dot_type = GGML_TYPE_Q8_K,
  1452. },
  1453. [GGML_TYPE_Q3_K] = {
  1454. .type_name = "q3_K",
  1455. .blck_size = QK_K,
  1456. .type_size = sizeof(block_q3_K),
  1457. .is_quantized = true,
  1458. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1459. .from_float = quantize_row_q3_K,
  1460. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1461. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1462. .vec_dot_type = GGML_TYPE_Q8_K,
  1463. },
  1464. [GGML_TYPE_Q4_K] = {
  1465. .type_name = "q4_K",
  1466. .blck_size = QK_K,
  1467. .type_size = sizeof(block_q4_K),
  1468. .is_quantized = true,
  1469. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1470. .from_float = quantize_row_q4_K,
  1471. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1472. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1473. .vec_dot_type = GGML_TYPE_Q8_K,
  1474. },
  1475. [GGML_TYPE_Q5_K] = {
  1476. .type_name = "q5_K",
  1477. .blck_size = QK_K,
  1478. .type_size = sizeof(block_q5_K),
  1479. .is_quantized = true,
  1480. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1481. .from_float = quantize_row_q5_K,
  1482. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1483. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1484. .vec_dot_type = GGML_TYPE_Q8_K,
  1485. },
  1486. [GGML_TYPE_Q6_K] = {
  1487. .type_name = "q6_K",
  1488. .blck_size = QK_K,
  1489. .type_size = sizeof(block_q6_K),
  1490. .is_quantized = true,
  1491. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1492. .from_float = quantize_row_q6_K,
  1493. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1494. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1495. .vec_dot_type = GGML_TYPE_Q8_K,
  1496. },
  1497. [GGML_TYPE_Q8_K] = {
  1498. .type_name = "q8_K",
  1499. .blck_size = QK_K,
  1500. .type_size = sizeof(block_q8_K),
  1501. .is_quantized = true,
  1502. .from_float = quantize_row_q8_K,
  1503. }
  1504. #endif
  1505. };
  1506. // For internal test use
  1507. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1508. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1509. return type_traits[type];
  1510. }
  1511. //
  1512. // simd mappings
  1513. //
  1514. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1515. // we then implement the fundamental computation operations below using only these macros
  1516. // adding support for new architectures requires to define the corresponding SIMD macros
  1517. //
  1518. // GGML_F32_STEP / GGML_F16_STEP
  1519. // number of elements to process in a single step
  1520. //
  1521. // GGML_F32_EPR / GGML_F16_EPR
  1522. // number of elements to fit in a single register
  1523. //
  1524. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1525. #define GGML_SIMD
  1526. // F32 NEON
  1527. #define GGML_F32_STEP 16
  1528. #define GGML_F32_EPR 4
  1529. #define GGML_F32x4 float32x4_t
  1530. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1531. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1532. #define GGML_F32x4_LOAD vld1q_f32
  1533. #define GGML_F32x4_STORE vst1q_f32
  1534. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1535. #define GGML_F32x4_ADD vaddq_f32
  1536. #define GGML_F32x4_MUL vmulq_f32
  1537. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1538. #define GGML_F32x4_REDUCE(res, x) \
  1539. { \
  1540. int offset = GGML_F32_ARR >> 1; \
  1541. for (int i = 0; i < offset; ++i) { \
  1542. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1543. } \
  1544. offset >>= 1; \
  1545. for (int i = 0; i < offset; ++i) { \
  1546. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1547. } \
  1548. offset >>= 1; \
  1549. for (int i = 0; i < offset; ++i) { \
  1550. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1551. } \
  1552. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1553. }
  1554. #define GGML_F32_VEC GGML_F32x4
  1555. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1556. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1557. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1558. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1559. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1560. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1561. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1562. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1563. // F16 NEON
  1564. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1565. #define GGML_F16_STEP 32
  1566. #define GGML_F16_EPR 8
  1567. #define GGML_F16x8 float16x8_t
  1568. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1569. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1570. #define GGML_F16x8_LOAD vld1q_f16
  1571. #define GGML_F16x8_STORE vst1q_f16
  1572. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1573. #define GGML_F16x8_ADD vaddq_f16
  1574. #define GGML_F16x8_MUL vmulq_f16
  1575. #define GGML_F16x8_REDUCE(res, x) \
  1576. { \
  1577. int offset = GGML_F16_ARR >> 1; \
  1578. for (int i = 0; i < offset; ++i) { \
  1579. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1580. } \
  1581. offset >>= 1; \
  1582. for (int i = 0; i < offset; ++i) { \
  1583. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1584. } \
  1585. offset >>= 1; \
  1586. for (int i = 0; i < offset; ++i) { \
  1587. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1588. } \
  1589. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1590. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1591. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1592. }
  1593. #define GGML_F16_VEC GGML_F16x8
  1594. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1595. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1596. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1597. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1598. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1599. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1600. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1601. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1602. #else
  1603. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1604. // and take advantage of the vcvt_ functions to convert to/from FP16
  1605. #define GGML_F16_STEP 16
  1606. #define GGML_F16_EPR 4
  1607. #define GGML_F32Cx4 float32x4_t
  1608. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1609. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1610. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1611. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1612. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1613. #define GGML_F32Cx4_ADD vaddq_f32
  1614. #define GGML_F32Cx4_MUL vmulq_f32
  1615. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1616. #define GGML_F16_VEC GGML_F32Cx4
  1617. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1618. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1619. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1620. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1621. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1622. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1623. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1624. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1625. #endif
  1626. #elif defined(__AVX__)
  1627. #define GGML_SIMD
  1628. // F32 AVX
  1629. #define GGML_F32_STEP 32
  1630. #define GGML_F32_EPR 8
  1631. #define GGML_F32x8 __m256
  1632. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1633. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1634. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1635. #define GGML_F32x8_STORE _mm256_storeu_ps
  1636. #if defined(__FMA__)
  1637. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1638. #else
  1639. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1640. #endif
  1641. #define GGML_F32x8_ADD _mm256_add_ps
  1642. #define GGML_F32x8_MUL _mm256_mul_ps
  1643. #define GGML_F32x8_REDUCE(res, x) \
  1644. { \
  1645. int offset = GGML_F32_ARR >> 1; \
  1646. for (int i = 0; i < offset; ++i) { \
  1647. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1648. } \
  1649. offset >>= 1; \
  1650. for (int i = 0; i < offset; ++i) { \
  1651. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1652. } \
  1653. offset >>= 1; \
  1654. for (int i = 0; i < offset; ++i) { \
  1655. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1656. } \
  1657. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1658. _mm256_extractf128_ps(x[0], 1)); \
  1659. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1660. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1661. }
  1662. // TODO: is this optimal ?
  1663. #define GGML_F32_VEC GGML_F32x8
  1664. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1665. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1666. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1667. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1668. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1669. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1670. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1671. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1672. // F16 AVX
  1673. #define GGML_F16_STEP 32
  1674. #define GGML_F16_EPR 8
  1675. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1676. #define GGML_F32Cx8 __m256
  1677. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1678. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1679. #if defined(__F16C__)
  1680. // the _mm256_cvt intrinsics require F16C
  1681. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1682. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1683. #else
  1684. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1685. float tmp[8];
  1686. for (int i = 0; i < 8; i++) {
  1687. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1688. }
  1689. return _mm256_loadu_ps(tmp);
  1690. }
  1691. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1692. float arr[8];
  1693. _mm256_storeu_ps(arr, y);
  1694. for (int i = 0; i < 8; i++)
  1695. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1696. }
  1697. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1698. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1699. #endif
  1700. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1701. #define GGML_F32Cx8_ADD _mm256_add_ps
  1702. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1703. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1704. #define GGML_F16_VEC GGML_F32Cx8
  1705. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1706. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1707. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1708. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1709. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1710. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1711. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1712. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1713. #elif defined(__POWER9_VECTOR__)
  1714. #define GGML_SIMD
  1715. // F32 POWER9
  1716. #define GGML_F32_STEP 32
  1717. #define GGML_F32_EPR 4
  1718. #define GGML_F32x4 vector float
  1719. #define GGML_F32x4_ZERO 0.0f
  1720. #define GGML_F32x4_SET1 vec_splats
  1721. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1722. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1723. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1724. #define GGML_F32x4_ADD vec_add
  1725. #define GGML_F32x4_MUL vec_mul
  1726. #define GGML_F32x4_REDUCE(res, x) \
  1727. { \
  1728. int offset = GGML_F32_ARR >> 1; \
  1729. for (int i = 0; i < offset; ++i) { \
  1730. x[i] = vec_add(x[i], x[offset+i]); \
  1731. } \
  1732. offset >>= 1; \
  1733. for (int i = 0; i < offset; ++i) { \
  1734. x[i] = vec_add(x[i], x[offset+i]); \
  1735. } \
  1736. offset >>= 1; \
  1737. for (int i = 0; i < offset; ++i) { \
  1738. x[i] = vec_add(x[i], x[offset+i]); \
  1739. } \
  1740. res = vec_extract(x[0], 0) + \
  1741. vec_extract(x[0], 1) + \
  1742. vec_extract(x[0], 2) + \
  1743. vec_extract(x[0], 3); \
  1744. }
  1745. #define GGML_F32_VEC GGML_F32x4
  1746. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1747. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1748. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1749. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1750. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1751. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1752. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1753. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1754. // F16 POWER9
  1755. #define GGML_F16_STEP GGML_F32_STEP
  1756. #define GGML_F16_EPR GGML_F32_EPR
  1757. #define GGML_F16_VEC GGML_F32x4
  1758. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1759. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1760. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1761. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1762. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1763. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1764. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1765. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1766. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1767. #define GGML_F16_VEC_STORE(p, r, i) \
  1768. if (i & 0x1) \
  1769. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1770. r[i - GGML_ENDIAN_BYTE(0)]), \
  1771. 0, p - GGML_F16_EPR)
  1772. #elif defined(__wasm_simd128__)
  1773. #define GGML_SIMD
  1774. // F32 WASM
  1775. #define GGML_F32_STEP 16
  1776. #define GGML_F32_EPR 4
  1777. #define GGML_F32x4 v128_t
  1778. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1779. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1780. #define GGML_F32x4_LOAD wasm_v128_load
  1781. #define GGML_F32x4_STORE wasm_v128_store
  1782. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1783. #define GGML_F32x4_ADD wasm_f32x4_add
  1784. #define GGML_F32x4_MUL wasm_f32x4_mul
  1785. #define GGML_F32x4_REDUCE(res, x) \
  1786. { \
  1787. int offset = GGML_F32_ARR >> 1; \
  1788. for (int i = 0; i < offset; ++i) { \
  1789. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1790. } \
  1791. offset >>= 1; \
  1792. for (int i = 0; i < offset; ++i) { \
  1793. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1794. } \
  1795. offset >>= 1; \
  1796. for (int i = 0; i < offset; ++i) { \
  1797. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1798. } \
  1799. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1800. wasm_f32x4_extract_lane(x[0], 1) + \
  1801. wasm_f32x4_extract_lane(x[0], 2) + \
  1802. wasm_f32x4_extract_lane(x[0], 3); \
  1803. }
  1804. #define GGML_F32_VEC GGML_F32x4
  1805. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1806. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1807. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1808. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1809. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1810. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1811. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1812. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1813. // F16 WASM
  1814. #define GGML_F16_STEP 16
  1815. #define GGML_F16_EPR 4
  1816. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1817. float tmp[4];
  1818. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1819. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1820. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1821. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1822. return wasm_v128_load(tmp);
  1823. }
  1824. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1825. float tmp[4];
  1826. wasm_v128_store(tmp, x);
  1827. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1828. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1829. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1830. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1831. }
  1832. #define GGML_F16x4 v128_t
  1833. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1834. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1835. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1836. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1837. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1838. #define GGML_F16x4_ADD wasm_f32x4_add
  1839. #define GGML_F16x4_MUL wasm_f32x4_mul
  1840. #define GGML_F16x4_REDUCE(res, x) \
  1841. { \
  1842. int offset = GGML_F16_ARR >> 1; \
  1843. for (int i = 0; i < offset; ++i) { \
  1844. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1845. } \
  1846. offset >>= 1; \
  1847. for (int i = 0; i < offset; ++i) { \
  1848. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1849. } \
  1850. offset >>= 1; \
  1851. for (int i = 0; i < offset; ++i) { \
  1852. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1853. } \
  1854. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1855. wasm_f32x4_extract_lane(x[0], 1) + \
  1856. wasm_f32x4_extract_lane(x[0], 2) + \
  1857. wasm_f32x4_extract_lane(x[0], 3); \
  1858. }
  1859. #define GGML_F16_VEC GGML_F16x4
  1860. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1861. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1862. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1863. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1864. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1865. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1866. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1867. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1868. #elif defined(__SSE3__)
  1869. #define GGML_SIMD
  1870. // F32 SSE
  1871. #define GGML_F32_STEP 32
  1872. #define GGML_F32_EPR 4
  1873. #define GGML_F32x4 __m128
  1874. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1875. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1876. #define GGML_F32x4_LOAD _mm_loadu_ps
  1877. #define GGML_F32x4_STORE _mm_storeu_ps
  1878. #if defined(__FMA__)
  1879. // TODO: Does this work?
  1880. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1881. #else
  1882. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1883. #endif
  1884. #define GGML_F32x4_ADD _mm_add_ps
  1885. #define GGML_F32x4_MUL _mm_mul_ps
  1886. #define GGML_F32x4_REDUCE(res, x) \
  1887. { \
  1888. int offset = GGML_F32_ARR >> 1; \
  1889. for (int i = 0; i < offset; ++i) { \
  1890. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1891. } \
  1892. offset >>= 1; \
  1893. for (int i = 0; i < offset; ++i) { \
  1894. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1895. } \
  1896. offset >>= 1; \
  1897. for (int i = 0; i < offset; ++i) { \
  1898. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1899. } \
  1900. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1901. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1902. }
  1903. // TODO: is this optimal ?
  1904. #define GGML_F32_VEC GGML_F32x4
  1905. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1906. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1907. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1908. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1909. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1910. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1911. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1912. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1913. // F16 SSE
  1914. #define GGML_F16_STEP 32
  1915. #define GGML_F16_EPR 4
  1916. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1917. float tmp[4];
  1918. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1919. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1920. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1921. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1922. return _mm_loadu_ps(tmp);
  1923. }
  1924. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1925. float arr[4];
  1926. _mm_storeu_ps(arr, y);
  1927. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1928. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1929. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1930. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1931. }
  1932. #define GGML_F32Cx4 __m128
  1933. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1934. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1935. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1936. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1937. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1938. #define GGML_F32Cx4_ADD _mm_add_ps
  1939. #define GGML_F32Cx4_MUL _mm_mul_ps
  1940. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1941. #define GGML_F16_VEC GGML_F32Cx4
  1942. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1943. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1944. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1945. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1946. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1947. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1948. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1949. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1950. #endif
  1951. // GGML_F32_ARR / GGML_F16_ARR
  1952. // number of registers to use per step
  1953. #ifdef GGML_SIMD
  1954. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1955. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1956. #endif
  1957. //
  1958. // fundamental operations
  1959. //
  1960. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1961. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1962. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1963. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1964. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1965. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1966. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1967. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1968. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1969. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1970. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1971. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1972. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1973. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1974. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1975. #ifdef GGML_SIMD
  1976. float sumf = 0.0f;
  1977. const int np = (n & ~(GGML_F32_STEP - 1));
  1978. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1979. GGML_F32_VEC ax[GGML_F32_ARR];
  1980. GGML_F32_VEC ay[GGML_F32_ARR];
  1981. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1982. for (int j = 0; j < GGML_F32_ARR; j++) {
  1983. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1984. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1985. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1986. }
  1987. }
  1988. // reduce sum0..sum3 to sum0
  1989. GGML_F32_VEC_REDUCE(sumf, sum);
  1990. // leftovers
  1991. for (int i = np; i < n; ++i) {
  1992. sumf += x[i]*y[i];
  1993. }
  1994. #else
  1995. // scalar
  1996. ggml_float sumf = 0.0;
  1997. for (int i = 0; i < n; ++i) {
  1998. sumf += (ggml_float)(x[i]*y[i]);
  1999. }
  2000. #endif
  2001. *s = sumf;
  2002. }
  2003. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2004. ggml_float sumf = 0.0;
  2005. #if defined(GGML_SIMD)
  2006. const int np = (n & ~(GGML_F16_STEP - 1));
  2007. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2008. GGML_F16_VEC ax[GGML_F16_ARR];
  2009. GGML_F16_VEC ay[GGML_F16_ARR];
  2010. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2011. for (int j = 0; j < GGML_F16_ARR; j++) {
  2012. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2013. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2014. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2015. }
  2016. }
  2017. // reduce sum0..sum3 to sum0
  2018. GGML_F16_VEC_REDUCE(sumf, sum);
  2019. // leftovers
  2020. for (int i = np; i < n; ++i) {
  2021. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2022. }
  2023. #else
  2024. for (int i = 0; i < n; ++i) {
  2025. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2026. }
  2027. #endif
  2028. *s = sumf;
  2029. }
  2030. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2031. const int qk = QK8_0;
  2032. const int nb = n / qk;
  2033. assert(n % qk == 0);
  2034. const block_q4_0 * restrict x = vx;
  2035. const block_q8_0 * restrict y = vy;
  2036. #if defined(__ARM_NEON)
  2037. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2038. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2039. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2040. for (int i = 0; i < nb; i += 2) {
  2041. const block_q4_0 * restrict x0 = &x[i + 0];
  2042. const block_q4_0 * restrict x1 = &x[i + 1];
  2043. const block_q8_0 * restrict y0 = &y[i + 0];
  2044. const block_q8_0 * restrict y1 = &y[i + 1];
  2045. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2046. const int8x16_t s8b = vdupq_n_s8(0x8);
  2047. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2048. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2049. // 4-bit -> 8-bit
  2050. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2051. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2052. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2053. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2054. // sub 8
  2055. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2056. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2057. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2058. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2059. // load y
  2060. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2061. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2062. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2063. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2064. #if defined(__ARM_FEATURE_DOTPROD)
  2065. // dot product into int32x4_t
  2066. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2067. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2068. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2069. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2070. #else
  2071. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2072. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2073. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2074. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2075. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2076. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2077. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2078. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2079. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2080. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2081. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2082. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2083. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2084. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2085. #endif
  2086. }
  2087. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2088. #elif defined(__AVX2__)
  2089. // Initialize accumulator with zeros
  2090. __m256 acc = _mm256_setzero_ps();
  2091. // Main loop
  2092. for (int i = 0; i < nb; ++i) {
  2093. /* Compute combined scale for the block */
  2094. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2095. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2096. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2097. const __m256i off = _mm256_set1_epi8( 8 );
  2098. bx = _mm256_sub_epi8( bx, off );
  2099. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2100. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2101. /* Multiply q with scale and accumulate */
  2102. acc = _mm256_fmadd_ps( d, q, acc );
  2103. }
  2104. *s = hsum_float_8(acc);
  2105. #elif defined(__AVX__)
  2106. // Initialize accumulator with zeros
  2107. __m256 acc = _mm256_setzero_ps();
  2108. // Main loop
  2109. for (int i = 0; i < nb; ++i) {
  2110. // Compute combined scale for the block
  2111. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2112. const __m128i lowMask = _mm_set1_epi8(0xF);
  2113. const __m128i off = _mm_set1_epi8(8);
  2114. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2115. __m128i bx = _mm_and_si128(lowMask, tmp);
  2116. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2117. bx = _mm_sub_epi8(bx, off);
  2118. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2119. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2120. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2121. bx = _mm_sub_epi8(bx, off);
  2122. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2123. // Convert int32_t to float
  2124. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2125. // Apply the scale, and accumulate
  2126. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2127. }
  2128. *s = hsum_float_8(acc);
  2129. #elif defined(__SSSE3__)
  2130. // set constants
  2131. const __m128i lowMask = _mm_set1_epi8(0xF);
  2132. const __m128i off = _mm_set1_epi8(8);
  2133. // Initialize accumulator with zeros
  2134. __m128 acc_0 = _mm_setzero_ps();
  2135. __m128 acc_1 = _mm_setzero_ps();
  2136. __m128 acc_2 = _mm_setzero_ps();
  2137. __m128 acc_3 = _mm_setzero_ps();
  2138. // First round without accumulation
  2139. {
  2140. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2141. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2142. // Compute combined scale for the block 0 and 1
  2143. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2144. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2145. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2146. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2147. bx_0 = _mm_sub_epi8(bx_0, off);
  2148. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2149. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2150. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2151. bx_1 = _mm_sub_epi8(bx_1, off);
  2152. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2153. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2154. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2155. // Compute combined scale for the block 2 and 3
  2156. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2157. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2158. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2159. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2160. bx_2 = _mm_sub_epi8(bx_2, off);
  2161. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2162. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2163. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2164. bx_3 = _mm_sub_epi8(bx_3, off);
  2165. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2166. // Convert int32_t to float
  2167. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2168. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2169. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2170. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2171. // Apply the scale
  2172. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2173. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2174. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2175. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2176. }
  2177. // Main loop
  2178. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2179. for (int i = 2; i < nb; i+=2) {
  2180. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2181. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2182. // Compute combined scale for the block 0 and 1
  2183. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2184. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2185. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2186. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2187. bx_0 = _mm_sub_epi8(bx_0, off);
  2188. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2189. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2190. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2191. bx_1 = _mm_sub_epi8(bx_1, off);
  2192. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2193. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2194. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2195. // Compute combined scale for the block 2 and 3
  2196. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2197. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2198. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2199. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2200. bx_2 = _mm_sub_epi8(bx_2, off);
  2201. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2202. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2203. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2204. bx_3 = _mm_sub_epi8(bx_3, off);
  2205. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2206. // Convert int32_t to float
  2207. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2208. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2209. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2210. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2211. // Apply the scale
  2212. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2213. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2214. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2215. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2216. // Acummulate
  2217. acc_0 = _mm_add_ps(p0_d, acc_0);
  2218. acc_1 = _mm_add_ps(p1_d, acc_1);
  2219. acc_2 = _mm_add_ps(p2_d, acc_2);
  2220. acc_3 = _mm_add_ps(p3_d, acc_3);
  2221. }
  2222. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2223. #else
  2224. // scalar
  2225. float sumf = 0.0;
  2226. for (int i = 0; i < nb; i++) {
  2227. int sumi = 0;
  2228. for (int j = 0; j < qk/2; ++j) {
  2229. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2230. const int v1 = (x[i].qs[j] >> 4) - 8;
  2231. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2232. }
  2233. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2234. }
  2235. *s = sumf;
  2236. #endif
  2237. }
  2238. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2239. const int qk = QK8_1;
  2240. const int nb = n / qk;
  2241. assert(n % qk == 0);
  2242. const block_q4_1 * restrict x = vx;
  2243. const block_q8_1 * restrict y = vy;
  2244. // TODO: add WASM SIMD
  2245. #if defined(__ARM_NEON)
  2246. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2247. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2248. float summs = 0;
  2249. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2250. for (int i = 0; i < nb; i += 2) {
  2251. const block_q4_1 * restrict x0 = &x[i + 0];
  2252. const block_q4_1 * restrict x1 = &x[i + 1];
  2253. const block_q8_1 * restrict y0 = &y[i + 0];
  2254. const block_q8_1 * restrict y1 = &y[i + 1];
  2255. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2256. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2257. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2258. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2259. // 4-bit -> 8-bit
  2260. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2261. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2262. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2263. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2264. // load y
  2265. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2266. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2267. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2268. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2269. #if defined(__ARM_FEATURE_DOTPROD)
  2270. // dot product into int32x4_t
  2271. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2272. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2273. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2274. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2275. #else
  2276. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2277. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2278. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2279. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2280. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2281. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2282. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2283. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2284. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2285. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2286. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2287. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2288. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2289. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2290. #endif
  2291. }
  2292. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2293. #elif defined(__AVX2__) || defined(__AVX__)
  2294. // Initialize accumulator with zeros
  2295. __m256 acc = _mm256_setzero_ps();
  2296. float summs = 0;
  2297. // Main loop
  2298. for (int i = 0; i < nb; ++i) {
  2299. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2300. const float d1 = y[i].d;
  2301. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2302. const __m256 d0v = _mm256_set1_ps( d0 );
  2303. const __m256 d1v = _mm256_set1_ps( d1 );
  2304. // Compute combined scales
  2305. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2306. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2307. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2308. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2309. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2310. // Accumulate d0*d1*x*y
  2311. #if defined(__AVX2__)
  2312. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2313. #else
  2314. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2315. #endif
  2316. }
  2317. *s = hsum_float_8(acc) + summs;
  2318. #else
  2319. // scalar
  2320. float sumf = 0.0;
  2321. for (int i = 0; i < nb; i++) {
  2322. int sumi = 0;
  2323. for (int j = 0; j < qk/2; ++j) {
  2324. const int v0 = (x[i].qs[j] & 0x0F);
  2325. const int v1 = (x[i].qs[j] >> 4);
  2326. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2327. }
  2328. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2329. }
  2330. *s = sumf;
  2331. #endif
  2332. }
  2333. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2334. const int qk = QK8_0;
  2335. const int nb = n / qk;
  2336. assert(n % qk == 0);
  2337. assert(qk == QK5_0);
  2338. const block_q5_0 * restrict x = vx;
  2339. const block_q8_0 * restrict y = vy;
  2340. #if defined(__ARM_NEON)
  2341. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2342. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2343. uint32_t qh0;
  2344. uint32_t qh1;
  2345. uint64_t tmp0[4];
  2346. uint64_t tmp1[4];
  2347. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2348. for (int i = 0; i < nb; i += 2) {
  2349. const block_q5_0 * restrict x0 = &x[i];
  2350. const block_q5_0 * restrict x1 = &x[i + 1];
  2351. const block_q8_0 * restrict y0 = &y[i];
  2352. const block_q8_0 * restrict y1 = &y[i + 1];
  2353. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2354. // extract the 5th bit via lookup table ((!b) << 4)
  2355. memcpy(&qh0, x0->qh, sizeof(qh0));
  2356. memcpy(&qh1, x1->qh, sizeof(qh1));
  2357. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2358. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2359. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2360. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2361. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2362. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2363. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2364. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2365. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2366. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2367. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2368. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2369. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2370. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2371. // 4-bit -> 8-bit
  2372. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2373. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2374. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2375. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2376. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2377. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2378. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2379. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2380. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2381. // load y
  2382. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2383. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2384. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2385. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2386. #if defined(__ARM_FEATURE_DOTPROD)
  2387. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2388. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2389. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2390. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2391. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2392. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2393. #else
  2394. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2395. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2396. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2397. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2398. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2399. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2400. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2401. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2402. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2403. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2404. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2405. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2406. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2407. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2408. #endif
  2409. }
  2410. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2411. #elif defined(__wasm_simd128__)
  2412. v128_t sumv = wasm_f32x4_splat(0.0f);
  2413. uint32_t qh;
  2414. uint64_t tmp[4];
  2415. // TODO: check if unrolling this is better
  2416. for (int i = 0; i < nb; ++i) {
  2417. const block_q5_0 * restrict x0 = &x[i];
  2418. const block_q8_0 * restrict y0 = &y[i];
  2419. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2420. // extract the 5th bit
  2421. memcpy(&qh, x0->qh, sizeof(qh));
  2422. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2423. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2424. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2425. tmp[3] = table_b2b_1[(qh >> 24) ];
  2426. const v128_t qhl = wasm_v128_load(tmp + 0);
  2427. const v128_t qhh = wasm_v128_load(tmp + 2);
  2428. const v128_t v0 = wasm_v128_load(x0->qs);
  2429. // 4-bit -> 8-bit
  2430. const v128_t v0l = wasm_v128_and (v0, m4b);
  2431. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2432. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2433. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2434. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2435. // load y
  2436. const v128_t v1l = wasm_v128_load(y0->qs);
  2437. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2438. // int8x16 -> int16x8
  2439. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2440. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2441. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2442. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2443. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2444. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2445. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2446. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2447. // dot product
  2448. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2449. wasm_i32x4_add(
  2450. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2451. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2452. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2453. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2454. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2455. }
  2456. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2457. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2458. #elif defined(__AVX2__)
  2459. // Initialize accumulator with zeros
  2460. __m256 acc = _mm256_setzero_ps();
  2461. // Main loop
  2462. for (int i = 0; i < nb; i++) {
  2463. /* Compute combined scale for the block */
  2464. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2465. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2466. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2467. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2468. bx = _mm256_or_si256(bx, bxhi);
  2469. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2470. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2471. /* Multiply q with scale and accumulate */
  2472. acc = _mm256_fmadd_ps(d, q, acc);
  2473. }
  2474. *s = hsum_float_8(acc);
  2475. #elif defined(__AVX__)
  2476. // Initialize accumulator with zeros
  2477. __m256 acc = _mm256_setzero_ps();
  2478. __m128i mask = _mm_set1_epi8((char)0xF0);
  2479. // Main loop
  2480. for (int i = 0; i < nb; i++) {
  2481. /* Compute combined scale for the block */
  2482. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2483. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2484. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2485. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2486. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2487. bxhil = _mm_andnot_si128(bxhil, mask);
  2488. bxhih = _mm_andnot_si128(bxhih, mask);
  2489. __m128i bxl = _mm256_castsi256_si128(bx);
  2490. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2491. bxl = _mm_or_si128(bxl, bxhil);
  2492. bxh = _mm_or_si128(bxh, bxhih);
  2493. bx = MM256_SET_M128I(bxh, bxl);
  2494. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2495. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2496. /* Multiply q with scale and accumulate */
  2497. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2498. }
  2499. *s = hsum_float_8(acc);
  2500. #else
  2501. // scalar
  2502. float sumf = 0.0;
  2503. for (int i = 0; i < nb; i++) {
  2504. uint32_t qh;
  2505. memcpy(&qh, x[i].qh, sizeof(qh));
  2506. int sumi = 0;
  2507. for (int j = 0; j < qk/2; ++j) {
  2508. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2509. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2510. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2511. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2512. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2513. }
  2514. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2515. }
  2516. *s = sumf;
  2517. #endif
  2518. }
  2519. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2520. const int qk = QK8_1;
  2521. const int nb = n / qk;
  2522. assert(n % qk == 0);
  2523. assert(qk == QK5_1);
  2524. const block_q5_1 * restrict x = vx;
  2525. const block_q8_1 * restrict y = vy;
  2526. #if defined(__ARM_NEON)
  2527. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2528. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2529. float summs0 = 0.0f;
  2530. float summs1 = 0.0f;
  2531. uint32_t qh0;
  2532. uint32_t qh1;
  2533. uint64_t tmp0[4];
  2534. uint64_t tmp1[4];
  2535. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2536. for (int i = 0; i < nb; i += 2) {
  2537. const block_q5_1 * restrict x0 = &x[i];
  2538. const block_q5_1 * restrict x1 = &x[i + 1];
  2539. const block_q8_1 * restrict y0 = &y[i];
  2540. const block_q8_1 * restrict y1 = &y[i + 1];
  2541. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2542. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2543. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2544. // extract the 5th bit via lookup table ((b) << 4)
  2545. memcpy(&qh0, x0->qh, sizeof(qh0));
  2546. memcpy(&qh1, x1->qh, sizeof(qh1));
  2547. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2548. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2549. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2550. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2551. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2552. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2553. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2554. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2555. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2556. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2557. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2558. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2559. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2560. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2561. // 4-bit -> 8-bit
  2562. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2563. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2564. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2565. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2566. // add high bit
  2567. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2568. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2569. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2570. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2571. // load y
  2572. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2573. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2574. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2575. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2576. #if defined(__ARM_FEATURE_DOTPROD)
  2577. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2578. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2579. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2580. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2581. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2582. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2583. #else
  2584. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2585. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2586. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2587. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2588. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2589. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2590. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2591. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2592. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2593. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2594. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2595. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2596. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2597. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2598. #endif
  2599. }
  2600. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2601. #elif defined(__wasm_simd128__)
  2602. v128_t sumv = wasm_f32x4_splat(0.0f);
  2603. float summs = 0.0f;
  2604. uint32_t qh;
  2605. uint64_t tmp[4];
  2606. // TODO: check if unrolling this is better
  2607. for (int i = 0; i < nb; ++i) {
  2608. const block_q5_1 * restrict x0 = &x[i];
  2609. const block_q8_1 * restrict y0 = &y[i];
  2610. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2611. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2612. // extract the 5th bit
  2613. memcpy(&qh, x0->qh, sizeof(qh));
  2614. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2615. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2616. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2617. tmp[3] = table_b2b_0[(qh >> 24) ];
  2618. const v128_t qhl = wasm_v128_load(tmp + 0);
  2619. const v128_t qhh = wasm_v128_load(tmp + 2);
  2620. const v128_t v0 = wasm_v128_load(x0->qs);
  2621. // 4-bit -> 8-bit
  2622. const v128_t v0l = wasm_v128_and (v0, m4b);
  2623. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2624. // add high bit
  2625. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2626. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2627. // load y
  2628. const v128_t v1l = wasm_v128_load(y0->qs);
  2629. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2630. // int8x16 -> int16x8
  2631. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2632. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2633. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2634. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2635. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2636. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2637. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2638. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2639. // dot product
  2640. sumv = wasm_f32x4_add(sumv,
  2641. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2642. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2643. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2644. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2645. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2646. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2647. }
  2648. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2649. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2650. #elif defined(__AVX2__)
  2651. // Initialize accumulator with zeros
  2652. __m256 acc = _mm256_setzero_ps();
  2653. float summs = 0.0f;
  2654. // Main loop
  2655. for (int i = 0; i < nb; i++) {
  2656. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2657. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2658. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2659. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2660. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2661. bx = _mm256_or_si256(bx, bxhi);
  2662. const __m256 dy = _mm256_set1_ps(y[i].d);
  2663. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2664. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2665. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2666. }
  2667. *s = hsum_float_8(acc) + summs;
  2668. #elif defined(__AVX__)
  2669. // Initialize accumulator with zeros
  2670. __m256 acc = _mm256_setzero_ps();
  2671. __m128i mask = _mm_set1_epi8(0x10);
  2672. float summs = 0.0f;
  2673. // Main loop
  2674. for (int i = 0; i < nb; i++) {
  2675. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2676. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2677. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2678. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2679. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2680. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2681. bxhil = _mm_and_si128(bxhil, mask);
  2682. bxhih = _mm_and_si128(bxhih, mask);
  2683. __m128i bxl = _mm256_castsi256_si128(bx);
  2684. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2685. bxl = _mm_or_si128(bxl, bxhil);
  2686. bxh = _mm_or_si128(bxh, bxhih);
  2687. bx = MM256_SET_M128I(bxh, bxl);
  2688. const __m256 dy = _mm256_set1_ps(y[i].d);
  2689. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2690. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2691. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2692. }
  2693. *s = hsum_float_8(acc) + summs;
  2694. #else
  2695. // scalar
  2696. float sumf = 0.0;
  2697. for (int i = 0; i < nb; i++) {
  2698. uint32_t qh;
  2699. memcpy(&qh, x[i].qh, sizeof(qh));
  2700. int sumi = 0;
  2701. for (int j = 0; j < qk/2; ++j) {
  2702. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2703. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2704. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2705. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2706. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2707. }
  2708. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2709. }
  2710. *s = sumf;
  2711. #endif
  2712. }
  2713. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2714. const int qk = QK8_0;
  2715. const int nb = n / qk;
  2716. assert(n % qk == 0);
  2717. const block_q8_0 * restrict x = vx;
  2718. const block_q8_0 * restrict y = vy;
  2719. #if defined(__ARM_NEON)
  2720. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2721. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2722. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2723. for (int i = 0; i < nb; i += 2) {
  2724. const block_q8_0 * restrict x0 = &x[i + 0];
  2725. const block_q8_0 * restrict x1 = &x[i + 1];
  2726. const block_q8_0 * restrict y0 = &y[i + 0];
  2727. const block_q8_0 * restrict y1 = &y[i + 1];
  2728. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2729. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2730. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2731. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2732. // load y
  2733. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2734. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2735. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2736. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2737. #if defined(__ARM_FEATURE_DOTPROD)
  2738. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2739. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2740. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2741. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2742. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2743. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2744. #else
  2745. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2746. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2747. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2748. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2749. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2750. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2751. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2752. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2753. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2754. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2755. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2756. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2757. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2758. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2759. #endif
  2760. }
  2761. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2762. #elif defined(__AVX2__) || defined(__AVX__)
  2763. // Initialize accumulator with zeros
  2764. __m256 acc = _mm256_setzero_ps();
  2765. // Main loop
  2766. for (int i = 0; i < nb; ++i) {
  2767. // Compute combined scale for the block
  2768. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2769. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2770. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2771. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2772. // Multiply q with scale and accumulate
  2773. #if defined(__AVX2__)
  2774. acc = _mm256_fmadd_ps( d, q, acc );
  2775. #else
  2776. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2777. #endif
  2778. }
  2779. *s = hsum_float_8(acc);
  2780. #else
  2781. // scalar
  2782. float sumf = 0.0;
  2783. for (int i = 0; i < nb; i++) {
  2784. int sumi = 0;
  2785. for (int j = 0; j < qk; j++) {
  2786. sumi += x[i].qs[j]*y[i].qs[j];
  2787. }
  2788. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2789. }
  2790. *s = sumf;
  2791. #endif
  2792. }
  2793. // compute GGML_VEC_DOT_UNROLL dot products at once
  2794. // xs - x row stride in bytes
  2795. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2796. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2797. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2798. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2799. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2800. }
  2801. #if defined(GGML_SIMD)
  2802. const int np = (n & ~(GGML_F16_STEP - 1));
  2803. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2804. GGML_F16_VEC ax[GGML_F16_ARR];
  2805. GGML_F16_VEC ay[GGML_F16_ARR];
  2806. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2807. for (int j = 0; j < GGML_F16_ARR; j++) {
  2808. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2809. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2810. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2811. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2812. }
  2813. }
  2814. }
  2815. // reduce sum0..sum3 to sum0
  2816. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2817. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2818. }
  2819. // leftovers
  2820. for (int i = np; i < n; ++i) {
  2821. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2822. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2823. }
  2824. }
  2825. #else
  2826. for (int i = 0; i < n; ++i) {
  2827. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2828. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2829. }
  2830. }
  2831. #endif
  2832. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2833. s[i] = sumf[i];
  2834. }
  2835. }
  2836. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2837. #if defined(GGML_SIMD)
  2838. const int np = (n & ~(GGML_F32_STEP - 1));
  2839. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2840. GGML_F32_VEC ax[GGML_F32_ARR];
  2841. GGML_F32_VEC ay[GGML_F32_ARR];
  2842. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2843. for (int j = 0; j < GGML_F32_ARR; j++) {
  2844. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2845. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2846. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2847. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2848. }
  2849. }
  2850. // leftovers
  2851. for (int i = np; i < n; ++i) {
  2852. y[i] += x[i]*v;
  2853. }
  2854. #else
  2855. // scalar
  2856. for (int i = 0; i < n; ++i) {
  2857. y[i] += x[i]*v;
  2858. }
  2859. #endif
  2860. }
  2861. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2862. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2863. #if defined(GGML_USE_ACCELERATE)
  2864. vDSP_vsmul(y, 1, &v, y, 1, n);
  2865. #elif defined(GGML_SIMD)
  2866. const int np = (n & ~(GGML_F32_STEP - 1));
  2867. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2868. GGML_F32_VEC ay[GGML_F32_ARR];
  2869. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2870. for (int j = 0; j < GGML_F32_ARR; j++) {
  2871. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2872. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2873. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2874. }
  2875. }
  2876. // leftovers
  2877. for (int i = np; i < n; ++i) {
  2878. y[i] *= v;
  2879. }
  2880. #else
  2881. // scalar
  2882. for (int i = 0; i < n; ++i) {
  2883. y[i] *= v;
  2884. }
  2885. #endif
  2886. }
  2887. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2888. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2889. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2890. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2891. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2892. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2893. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2894. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2895. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2896. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2897. static const float GELU_COEF_A = 0.044715f;
  2898. static const float GELU_QUICK_COEF = -1.702f;
  2899. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2900. inline static float ggml_gelu_f32(float x) {
  2901. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2902. }
  2903. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2904. const uint16_t * i16 = (const uint16_t *) x;
  2905. for (int i = 0; i < n; ++i) {
  2906. y[i] = table_gelu_f16[i16[i]];
  2907. }
  2908. }
  2909. #ifdef GGML_GELU_FP16
  2910. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2911. uint16_t t;
  2912. for (int i = 0; i < n; ++i) {
  2913. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2914. memcpy(&t, &fp16, sizeof(uint16_t));
  2915. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2916. }
  2917. }
  2918. #else
  2919. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2920. for (int i = 0; i < n; ++i) {
  2921. y[i] = ggml_gelu_f32(x[i]);
  2922. }
  2923. }
  2924. #endif
  2925. inline static float ggml_gelu_quick_f32(float x) {
  2926. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2927. }
  2928. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2929. // const uint16_t * i16 = (const uint16_t *) x;
  2930. // for (int i = 0; i < n; ++i) {
  2931. // y[i] = table_gelu_quick_f16[i16[i]];
  2932. // }
  2933. //}
  2934. #ifdef GGML_GELU_QUICK_FP16
  2935. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2936. uint16_t t;
  2937. for (int i = 0; i < n; ++i) {
  2938. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2939. memcpy(&t, &fp16, sizeof(uint16_t));
  2940. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2941. }
  2942. }
  2943. #else
  2944. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2945. for (int i = 0; i < n; ++i) {
  2946. y[i] = ggml_gelu_quick_f32(x[i]);
  2947. }
  2948. }
  2949. #endif
  2950. // Sigmoid Linear Unit (SiLU) function
  2951. inline static float ggml_silu_f32(float x) {
  2952. return x/(1.0f + expf(-x));
  2953. }
  2954. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2955. // const uint16_t * i16 = (const uint16_t *) x;
  2956. // for (int i = 0; i < n; ++i) {
  2957. // y[i] = table_silu_f16[i16[i]];
  2958. // }
  2959. //}
  2960. #ifdef GGML_SILU_FP16
  2961. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2962. uint16_t t;
  2963. for (int i = 0; i < n; ++i) {
  2964. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2965. memcpy(&t, &fp16, sizeof(uint16_t));
  2966. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2967. }
  2968. }
  2969. #else
  2970. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2971. for (int i = 0; i < n; ++i) {
  2972. y[i] = ggml_silu_f32(x[i]);
  2973. }
  2974. }
  2975. #endif
  2976. inline static float ggml_silu_backward_f32(float x, float dy) {
  2977. const float s = 1.0f/(1.0f + expf(-x));
  2978. return dy*s*(1.0f + x*(1.0f - s));
  2979. }
  2980. #ifdef GGML_SILU_FP16
  2981. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2982. for (int i = 0; i < n; ++i) {
  2983. // we did not use x[i] to compute forward silu but its f16 equivalent
  2984. // take derivative at f16 of x[i]:
  2985. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2986. float usedx = GGML_FP16_TO_FP32(fp16);
  2987. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2988. }
  2989. }
  2990. #else
  2991. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2992. for (int i = 0; i < n; ++i) {
  2993. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2994. }
  2995. }
  2996. #endif
  2997. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2998. #ifndef GGML_USE_ACCELERATE
  2999. ggml_float sum = 0.0;
  3000. for (int i = 0; i < n; ++i) {
  3001. sum += (ggml_float)x[i];
  3002. }
  3003. *s = sum;
  3004. #else
  3005. vDSP_sve(x, 1, s, n);
  3006. #endif
  3007. }
  3008. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3009. ggml_float sum = 0.0;
  3010. for (int i = 0; i < n; ++i) {
  3011. sum += (ggml_float)x[i];
  3012. }
  3013. *s = sum;
  3014. }
  3015. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3016. float sum = 0.0f;
  3017. for (int i = 0; i < n; ++i) {
  3018. sum += GGML_FP16_TO_FP32(x[i]);
  3019. }
  3020. *s = sum;
  3021. }
  3022. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3023. #ifndef GGML_USE_ACCELERATE
  3024. float max = -INFINITY;
  3025. for (int i = 0; i < n; ++i) {
  3026. max = MAX(max, x[i]);
  3027. }
  3028. *s = max;
  3029. #else
  3030. vDSP_maxv(x, 1, s, n);
  3031. #endif
  3032. }
  3033. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3034. ggml_vec_norm_f32(n, s, x);
  3035. *s = 1.f/(*s);
  3036. }
  3037. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3038. float max = -INFINITY;
  3039. int idx = 0;
  3040. for (int i = 0; i < n; ++i) {
  3041. max = MAX(max, x[i]);
  3042. if (max == x[i]) { idx = i; }
  3043. }
  3044. *s = idx;
  3045. }
  3046. //
  3047. // data types
  3048. //
  3049. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3050. "NONE",
  3051. "DUP",
  3052. "ADD",
  3053. "ADD1",
  3054. "ACC",
  3055. "SUB",
  3056. "MUL",
  3057. "DIV",
  3058. "SQR",
  3059. "SQRT",
  3060. "LOG",
  3061. "SUM",
  3062. "SUM_ROWS",
  3063. "MEAN",
  3064. "ARGMAX",
  3065. "REPEAT",
  3066. "REPEAT_BACK",
  3067. "CONCAT",
  3068. "SILU_BACK",
  3069. "NORM",
  3070. "RMS_NORM",
  3071. "RMS_NORM_BACK",
  3072. "GROUP_NORM",
  3073. "MUL_MAT",
  3074. "OUT_PROD",
  3075. "SCALE",
  3076. "SET",
  3077. "CPY",
  3078. "CONT",
  3079. "RESHAPE",
  3080. "VIEW",
  3081. "PERMUTE",
  3082. "TRANSPOSE",
  3083. "GET_ROWS",
  3084. "GET_ROWS_BACK",
  3085. "DIAG",
  3086. "DIAG_MASK_INF",
  3087. "DIAG_MASK_ZERO",
  3088. "SOFT_MAX",
  3089. "SOFT_MAX_BACK",
  3090. "ROPE",
  3091. "ROPE_BACK",
  3092. "ALIBI",
  3093. "CLAMP",
  3094. "CONV_1D",
  3095. "CONV_2D",
  3096. "CONV_TRANSPOSE_2D",
  3097. "POOL_1D",
  3098. "POOL_2D",
  3099. "UPSCALE",
  3100. "FLASH_ATTN",
  3101. "FLASH_FF",
  3102. "FLASH_ATTN_BACK",
  3103. "WIN_PART",
  3104. "WIN_UNPART",
  3105. "GET_REL_POS",
  3106. "ADD_REL_POS",
  3107. "UNARY",
  3108. "MAP_UNARY",
  3109. "MAP_BINARY",
  3110. "MAP_CUSTOM1_F32",
  3111. "MAP_CUSTOM2_F32",
  3112. "MAP_CUSTOM3_F32",
  3113. "MAP_CUSTOM1",
  3114. "MAP_CUSTOM2",
  3115. "MAP_CUSTOM3",
  3116. "CROSS_ENTROPY_LOSS",
  3117. "CROSS_ENTROPY_LOSS_BACK",
  3118. };
  3119. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3120. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3121. "none",
  3122. "x",
  3123. "x+y",
  3124. "x+y",
  3125. "view(x,nb,offset)+=y->x",
  3126. "x-y",
  3127. "x*y",
  3128. "x/y",
  3129. "x^2",
  3130. "√x",
  3131. "log(x)",
  3132. "Σx",
  3133. "Σx_k",
  3134. "Σx/n",
  3135. "argmax(x)",
  3136. "repeat(x)",
  3137. "repeat_back(x)",
  3138. "concat(x, y)",
  3139. "silu_back(x)",
  3140. "norm(x)",
  3141. "rms_norm(x)",
  3142. "rms_norm_back(x)",
  3143. "group_norm(x)",
  3144. "X*Y",
  3145. "X*Y",
  3146. "x*v",
  3147. "y-\\>view(x)",
  3148. "x-\\>y",
  3149. "cont(x)",
  3150. "reshape(x)",
  3151. "view(x)",
  3152. "permute(x)",
  3153. "transpose(x)",
  3154. "get_rows(x)",
  3155. "get_rows_back(x)",
  3156. "diag(x)",
  3157. "diag_mask_inf(x)",
  3158. "diag_mask_zero(x)",
  3159. "soft_max(x)",
  3160. "soft_max_back(x)",
  3161. "rope(x)",
  3162. "rope_back(x)",
  3163. "alibi(x)",
  3164. "clamp(x)",
  3165. "conv_1d(x)",
  3166. "conv_2d(x)",
  3167. "conv_transpose_2d(x)",
  3168. "pool_1d(x)",
  3169. "pool_2d(x)",
  3170. "upscale(x)",
  3171. "flash_attn(x)",
  3172. "flash_ff(x)",
  3173. "flash_attn_back(x)",
  3174. "win_part(x)",
  3175. "win_unpart(x)",
  3176. "get_rel_pos(x)",
  3177. "add_rel_pos(x)",
  3178. "unary(x)",
  3179. "f(x)",
  3180. "f(x,y)",
  3181. "custom_f32(x)",
  3182. "custom_f32(x,y)",
  3183. "custom_f32(x,y,z)",
  3184. "custom(x)",
  3185. "custom(x,y)",
  3186. "custom(x,y,z)",
  3187. "cross_entropy_loss(x,y)",
  3188. "cross_entropy_loss_back(x,y)",
  3189. };
  3190. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3191. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3192. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3193. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3194. // WARN:
  3195. // Mis-confguration can lead to problem that's hard to reason about:
  3196. // * At best it crash or talks nosense.
  3197. // * At worst it talks slightly difference but hard to perceive.
  3198. //
  3199. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3200. // Take care about compile options (e.g., GGML_USE_xxx).
  3201. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3202. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3203. static void ggml_setup_op_has_task_pass(void) {
  3204. { // INIT
  3205. bool * p = GGML_OP_HAS_INIT;
  3206. p[GGML_OP_ACC ] = true;
  3207. p[GGML_OP_MUL_MAT ] = true;
  3208. p[GGML_OP_OUT_PROD ] = true;
  3209. p[GGML_OP_SET ] = true;
  3210. p[GGML_OP_GET_ROWS_BACK ] = true;
  3211. p[GGML_OP_DIAG_MASK_INF ] = true;
  3212. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3213. p[GGML_OP_CONV_1D ] = true;
  3214. p[GGML_OP_CONV_2D ] = true;
  3215. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3216. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3217. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3218. p[GGML_OP_ADD_REL_POS ] = true;
  3219. }
  3220. { // FINALIZE
  3221. bool * p = GGML_OP_HAS_FINALIZE;
  3222. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3223. }
  3224. }
  3225. //
  3226. // ggml context
  3227. //
  3228. struct ggml_context {
  3229. size_t mem_size;
  3230. void * mem_buffer;
  3231. bool mem_buffer_owned;
  3232. bool no_alloc;
  3233. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3234. int n_objects;
  3235. struct ggml_object * objects_begin;
  3236. struct ggml_object * objects_end;
  3237. struct ggml_scratch scratch;
  3238. struct ggml_scratch scratch_save;
  3239. };
  3240. struct ggml_context_container {
  3241. bool used;
  3242. struct ggml_context context;
  3243. };
  3244. //
  3245. // NUMA support
  3246. //
  3247. #define GGML_NUMA_MAX_NODES 8
  3248. #define GGML_NUMA_MAX_CPUS 512
  3249. struct ggml_numa_node {
  3250. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3251. uint32_t n_cpus;
  3252. };
  3253. struct ggml_numa_nodes {
  3254. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3255. uint32_t n_nodes;
  3256. uint32_t total_cpus; // hardware threads on system
  3257. };
  3258. //
  3259. // ggml state
  3260. //
  3261. struct ggml_state {
  3262. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3263. struct ggml_numa_nodes numa;
  3264. };
  3265. // global state
  3266. static struct ggml_state g_state;
  3267. static atomic_int g_state_barrier = 0;
  3268. // barrier via spin lock
  3269. inline static void ggml_critical_section_start(void) {
  3270. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3271. while (processing > 0) {
  3272. // wait for other threads to finish
  3273. atomic_fetch_sub(&g_state_barrier, 1);
  3274. sched_yield(); // TODO: reconsider this
  3275. processing = atomic_fetch_add(&g_state_barrier, 1);
  3276. }
  3277. }
  3278. // TODO: make this somehow automatically executed
  3279. // some sort of "sentry" mechanism
  3280. inline static void ggml_critical_section_end(void) {
  3281. atomic_fetch_sub(&g_state_barrier, 1);
  3282. }
  3283. void ggml_numa_init(void) {
  3284. if (g_state.numa.n_nodes > 0) {
  3285. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3286. return;
  3287. }
  3288. #ifdef __linux__
  3289. struct stat st;
  3290. char path[256];
  3291. int rv;
  3292. // enumerate nodes
  3293. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3294. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3295. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3296. if (stat(path, &st) != 0) { break; }
  3297. ++g_state.numa.n_nodes;
  3298. }
  3299. // enumerate CPUs
  3300. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3301. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3302. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3303. if (stat(path, &st) != 0) { break; }
  3304. ++g_state.numa.total_cpus;
  3305. }
  3306. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3307. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3308. g_state.numa.n_nodes = 0;
  3309. return;
  3310. }
  3311. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3312. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3313. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3314. node->n_cpus = 0;
  3315. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3316. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3317. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3318. if (stat(path, &st) == 0) {
  3319. node->cpus[node->n_cpus++] = c;
  3320. GGML_PRINT_DEBUG(" %u", c);
  3321. }
  3322. }
  3323. GGML_PRINT_DEBUG("\n");
  3324. }
  3325. if (ggml_is_numa()) {
  3326. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3327. if (fptr != NULL) {
  3328. char buf[42];
  3329. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3330. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3331. }
  3332. fclose(fptr);
  3333. }
  3334. }
  3335. #else
  3336. // TODO
  3337. #endif
  3338. }
  3339. bool ggml_is_numa(void) {
  3340. return g_state.numa.n_nodes > 1;
  3341. }
  3342. ////////////////////////////////////////////////////////////////////////////////
  3343. void ggml_print_object(const struct ggml_object * obj) {
  3344. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3345. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3346. }
  3347. void ggml_print_objects(const struct ggml_context * ctx) {
  3348. struct ggml_object * obj = ctx->objects_begin;
  3349. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3350. while (obj != NULL) {
  3351. ggml_print_object(obj);
  3352. obj = obj->next;
  3353. }
  3354. GGML_PRINT("%s: --- end ---\n", __func__);
  3355. }
  3356. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3357. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3358. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3359. }
  3360. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3361. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3362. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3363. }
  3364. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3365. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3366. // this should handle cases where the tensor is not contiguous in memory
  3367. // probaby just:
  3368. //
  3369. // return tensor->ne[3]*tensor->nb[3]
  3370. //
  3371. // is enough, but just in case, adding the second part
  3372. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type));
  3373. }
  3374. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3375. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3376. }
  3377. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3378. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3379. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3380. }
  3381. int ggml_blck_size(enum ggml_type type) {
  3382. return type_traits[type].blck_size;
  3383. }
  3384. size_t ggml_type_size(enum ggml_type type) {
  3385. return type_traits[type].type_size;
  3386. }
  3387. float ggml_type_sizef(enum ggml_type type) {
  3388. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3389. }
  3390. const char * ggml_type_name(enum ggml_type type) {
  3391. return type_traits[type].type_name;
  3392. }
  3393. bool ggml_is_quantized(enum ggml_type type) {
  3394. return type_traits[type].is_quantized;
  3395. }
  3396. const char * ggml_op_name(enum ggml_op op) {
  3397. return GGML_OP_NAME[op];
  3398. }
  3399. const char * ggml_op_symbol(enum ggml_op op) {
  3400. return GGML_OP_SYMBOL[op];
  3401. }
  3402. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3403. return ggml_type_size(tensor->type);
  3404. }
  3405. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3406. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3407. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3408. }
  3409. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3410. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3411. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3412. }
  3413. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3414. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3415. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3416. }
  3417. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3418. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3419. return (t0->ne[0] == t1->ne[0]) &&
  3420. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3421. (t1->ne[3]%t0->ne[3] == 0);
  3422. }
  3423. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3424. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3425. return
  3426. (t0->ne[1] == t1->ne[1]) &&
  3427. (t0->ne[2] == t1->ne[2]) &&
  3428. (t0->ne[3] == t1->ne[3]);
  3429. }
  3430. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3431. enum ggml_type wtype = GGML_TYPE_COUNT;
  3432. switch (ftype) {
  3433. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3434. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3435. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3436. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3437. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3438. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3439. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3440. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3441. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3442. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3443. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3444. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3445. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3446. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3447. }
  3448. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3449. return wtype;
  3450. }
  3451. size_t ggml_tensor_overhead(void) {
  3452. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3453. }
  3454. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3455. return tensor->nb[0] > tensor->nb[1];
  3456. }
  3457. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3458. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3459. return
  3460. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3461. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3462. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3463. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3464. }
  3465. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3466. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3467. return
  3468. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3469. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3470. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3471. }
  3472. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3473. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3474. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3475. }
  3476. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3477. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3478. return
  3479. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3480. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3481. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3482. }
  3483. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3484. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3485. return
  3486. (t0->ne[0] == t1->ne[0] ) &&
  3487. (t0->ne[1] == t1->ne[1] ) &&
  3488. (t0->ne[2] == t1->ne[2] ) &&
  3489. (t0->ne[3] == t1->ne[3] );
  3490. }
  3491. // check if t1 can be represented as a repeatition of t0
  3492. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3493. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3494. return
  3495. (t1->ne[0]%t0->ne[0] == 0) &&
  3496. (t1->ne[1]%t0->ne[1] == 0) &&
  3497. (t1->ne[2]%t0->ne[2] == 0) &&
  3498. (t1->ne[3]%t0->ne[3] == 0);
  3499. }
  3500. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3501. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3502. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3503. }
  3504. static inline int ggml_up32(int n) {
  3505. return (n + 31) & ~31;
  3506. }
  3507. //static inline int ggml_up64(int n) {
  3508. // return (n + 63) & ~63;
  3509. //}
  3510. static inline int ggml_up(int n, int m) {
  3511. // assert m is a power of 2
  3512. GGML_ASSERT((m & (m - 1)) == 0);
  3513. return (n + m - 1) & ~(m - 1);
  3514. }
  3515. // assert that pointer is aligned to GGML_MEM_ALIGN
  3516. #define ggml_assert_aligned(ptr) \
  3517. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3518. ////////////////////////////////////////////////////////////////////////////////
  3519. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3520. // make this function thread safe
  3521. ggml_critical_section_start();
  3522. static bool is_first_call = true;
  3523. if (is_first_call) {
  3524. // initialize time system (required on Windows)
  3525. ggml_time_init();
  3526. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3527. {
  3528. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3529. ggml_fp16_t ii;
  3530. for (int i = 0; i < (1 << 16); ++i) {
  3531. uint16_t ui = i;
  3532. memcpy(&ii, &ui, sizeof(ii));
  3533. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3534. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3535. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3536. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3537. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3538. }
  3539. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3540. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3541. }
  3542. // initialize g_state
  3543. {
  3544. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3545. g_state = (struct ggml_state) {
  3546. /*.contexts =*/ { { 0 } },
  3547. /*.numa =*/ {
  3548. .n_nodes = 0,
  3549. .total_cpus = 0,
  3550. },
  3551. };
  3552. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3553. g_state.contexts[i].used = false;
  3554. }
  3555. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3556. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3557. }
  3558. #if defined(GGML_USE_CUBLAS)
  3559. ggml_init_cublas();
  3560. #elif defined(GGML_USE_CLBLAST)
  3561. ggml_cl_init();
  3562. #endif
  3563. ggml_setup_op_has_task_pass();
  3564. is_first_call = false;
  3565. }
  3566. // find non-used context in g_state
  3567. struct ggml_context * ctx = NULL;
  3568. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3569. if (!g_state.contexts[i].used) {
  3570. g_state.contexts[i].used = true;
  3571. ctx = &g_state.contexts[i].context;
  3572. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3573. break;
  3574. }
  3575. }
  3576. if (ctx == NULL) {
  3577. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3578. ggml_critical_section_end();
  3579. return NULL;
  3580. }
  3581. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3582. *ctx = (struct ggml_context) {
  3583. /*.mem_size =*/ mem_size,
  3584. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3585. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3586. /*.no_alloc =*/ params.no_alloc,
  3587. /*.no_alloc_save =*/ params.no_alloc,
  3588. /*.n_objects =*/ 0,
  3589. /*.objects_begin =*/ NULL,
  3590. /*.objects_end =*/ NULL,
  3591. /*.scratch =*/ { 0, 0, NULL, },
  3592. /*.scratch_save =*/ { 0, 0, NULL, },
  3593. };
  3594. GGML_ASSERT(ctx->mem_buffer != NULL);
  3595. ggml_assert_aligned(ctx->mem_buffer);
  3596. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3597. ggml_critical_section_end();
  3598. return ctx;
  3599. }
  3600. void ggml_free(struct ggml_context * ctx) {
  3601. // make this function thread safe
  3602. ggml_critical_section_start();
  3603. bool found = false;
  3604. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3605. if (&g_state.contexts[i].context == ctx) {
  3606. g_state.contexts[i].used = false;
  3607. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3608. __func__, i, ggml_used_mem(ctx));
  3609. if (ctx->mem_buffer_owned) {
  3610. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3611. }
  3612. found = true;
  3613. break;
  3614. }
  3615. }
  3616. if (!found) {
  3617. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3618. }
  3619. ggml_critical_section_end();
  3620. }
  3621. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3622. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3623. }
  3624. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3625. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3626. ctx->scratch = scratch;
  3627. return result;
  3628. }
  3629. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3630. return ctx->no_alloc;
  3631. }
  3632. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3633. ctx->no_alloc = no_alloc;
  3634. }
  3635. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3636. return ctx->mem_buffer;
  3637. }
  3638. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3639. return ctx->mem_size;
  3640. }
  3641. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3642. size_t max_size = 0;
  3643. struct ggml_object * obj = ctx->objects_begin;
  3644. while (obj != NULL) {
  3645. if (obj->type == GGML_OBJECT_TENSOR) {
  3646. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3647. const size_t size = ggml_nbytes(tensor);
  3648. if (max_size < size) {
  3649. max_size = size;
  3650. }
  3651. }
  3652. obj = obj->next;
  3653. }
  3654. return max_size;
  3655. }
  3656. // IMPORTANT:
  3657. // when creating "opt" tensors, always save and load the scratch buffer
  3658. // this is an error prone process, but it is necessary to support inplace
  3659. // operators when using scratch buffers
  3660. // TODO: implement a better way
  3661. static void ggml_scratch_save(struct ggml_context * ctx) {
  3662. // this is needed to allow opt tensors to store their data
  3663. // TODO: again, need to find a better way
  3664. ctx->no_alloc_save = ctx->no_alloc;
  3665. ctx->no_alloc = false;
  3666. ctx->scratch_save = ctx->scratch;
  3667. ctx->scratch.data = NULL;
  3668. }
  3669. static void ggml_scratch_load(struct ggml_context * ctx) {
  3670. ctx->no_alloc = ctx->no_alloc_save;
  3671. ctx->scratch = ctx->scratch_save;
  3672. }
  3673. ////////////////////////////////////////////////////////////////////////////////
  3674. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3675. // always insert objects at the end of the context's memory pool
  3676. struct ggml_object * obj_cur = ctx->objects_end;
  3677. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3678. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3679. const size_t cur_end = cur_offs + cur_size;
  3680. // align to GGML_MEM_ALIGN
  3681. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3682. char * const mem_buffer = ctx->mem_buffer;
  3683. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3684. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3685. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3686. __func__, cur_end + size_needed, ctx->mem_size);
  3687. assert(false);
  3688. return NULL;
  3689. }
  3690. *obj_new = (struct ggml_object) {
  3691. .offs = cur_end + GGML_OBJECT_SIZE,
  3692. .size = size_needed,
  3693. .next = NULL,
  3694. .type = type,
  3695. };
  3696. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3697. if (obj_cur != NULL) {
  3698. obj_cur->next = obj_new;
  3699. } else {
  3700. // this is the first object in this context
  3701. ctx->objects_begin = obj_new;
  3702. }
  3703. ctx->objects_end = obj_new;
  3704. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3705. return obj_new;
  3706. }
  3707. static struct ggml_tensor * ggml_new_tensor_impl(
  3708. struct ggml_context * ctx,
  3709. enum ggml_type type,
  3710. int n_dims,
  3711. const int64_t * ne,
  3712. void * data) {
  3713. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3714. size_t data_size = 0;
  3715. if (data == NULL && !ctx->no_alloc) {
  3716. data_size += ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3717. for (int i = 1; i < n_dims; i++) {
  3718. data_size *= ne[i];
  3719. }
  3720. }
  3721. if (ctx->scratch.data != NULL && data == NULL) {
  3722. // allocate tensor data in the scratch buffer
  3723. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3724. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3725. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3726. assert(false);
  3727. return NULL;
  3728. }
  3729. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3730. ctx->scratch.offs += data_size;
  3731. data_size = 0;
  3732. }
  3733. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
  3734. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3735. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3736. *result = (struct ggml_tensor) {
  3737. /*.type =*/ type,
  3738. /*.backend =*/ GGML_BACKEND_CPU,
  3739. /*.n_dims =*/ n_dims,
  3740. /*.ne =*/ { 1, 1, 1, 1 },
  3741. /*.nb =*/ { 0, 0, 0, 0 },
  3742. /*.op =*/ GGML_OP_NONE,
  3743. /*.op_params =*/ { 0 },
  3744. /*.is_param =*/ false,
  3745. /*.grad =*/ NULL,
  3746. /*.src =*/ { NULL },
  3747. /*.perf_runs =*/ 0,
  3748. /*.perf_cycles =*/ 0,
  3749. /*.perf_time_us =*/ 0,
  3750. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3751. /*.name =*/ { 0 },
  3752. /*.extra =*/ NULL,
  3753. /*.padding =*/ { 0 },
  3754. };
  3755. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3756. //ggml_assert_aligned(result->data);
  3757. for (int i = 0; i < n_dims; i++) {
  3758. result->ne[i] = ne[i];
  3759. }
  3760. result->nb[0] = ggml_type_size(type);
  3761. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3762. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3763. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3764. }
  3765. ctx->n_objects++;
  3766. return result;
  3767. }
  3768. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3769. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3770. assert(params_size <= GGML_MAX_OP_PARAMS);
  3771. memcpy(tensor->op_params, params, params_size);
  3772. }
  3773. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3774. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3775. return ((const int32_t *)(tensor->op_params))[i];
  3776. }
  3777. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3778. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3779. ((int32_t *)(tensor->op_params))[i] = value;
  3780. }
  3781. struct ggml_tensor * ggml_new_tensor(
  3782. struct ggml_context * ctx,
  3783. enum ggml_type type,
  3784. int n_dims,
  3785. const int64_t * ne) {
  3786. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3787. }
  3788. struct ggml_tensor * ggml_new_tensor_1d(
  3789. struct ggml_context * ctx,
  3790. enum ggml_type type,
  3791. int64_t ne0) {
  3792. return ggml_new_tensor(ctx, type, 1, &ne0);
  3793. }
  3794. struct ggml_tensor * ggml_new_tensor_2d(
  3795. struct ggml_context * ctx,
  3796. enum ggml_type type,
  3797. int64_t ne0,
  3798. int64_t ne1) {
  3799. const int64_t ne[2] = { ne0, ne1 };
  3800. return ggml_new_tensor(ctx, type, 2, ne);
  3801. }
  3802. struct ggml_tensor * ggml_new_tensor_3d(
  3803. struct ggml_context * ctx,
  3804. enum ggml_type type,
  3805. int64_t ne0,
  3806. int64_t ne1,
  3807. int64_t ne2) {
  3808. const int64_t ne[3] = { ne0, ne1, ne2 };
  3809. return ggml_new_tensor(ctx, type, 3, ne);
  3810. }
  3811. struct ggml_tensor * ggml_new_tensor_4d(
  3812. struct ggml_context * ctx,
  3813. enum ggml_type type,
  3814. int64_t ne0,
  3815. int64_t ne1,
  3816. int64_t ne2,
  3817. int64_t ne3) {
  3818. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3819. return ggml_new_tensor(ctx, type, 4, ne);
  3820. }
  3821. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3822. ggml_scratch_save(ctx);
  3823. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3824. ggml_scratch_load(ctx);
  3825. ggml_set_i32(result, value);
  3826. return result;
  3827. }
  3828. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3829. ggml_scratch_save(ctx);
  3830. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3831. ggml_scratch_load(ctx);
  3832. ggml_set_f32(result, value);
  3833. return result;
  3834. }
  3835. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3836. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3837. }
  3838. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3839. memset(tensor->data, 0, ggml_nbytes(tensor));
  3840. return tensor;
  3841. }
  3842. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3843. const int n = ggml_nrows(tensor);
  3844. const int nc = tensor->ne[0];
  3845. const size_t n1 = tensor->nb[1];
  3846. char * const data = tensor->data;
  3847. switch (tensor->type) {
  3848. case GGML_TYPE_I8:
  3849. {
  3850. assert(tensor->nb[0] == sizeof(int8_t));
  3851. for (int i = 0; i < n; i++) {
  3852. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3853. }
  3854. } break;
  3855. case GGML_TYPE_I16:
  3856. {
  3857. assert(tensor->nb[0] == sizeof(int16_t));
  3858. for (int i = 0; i < n; i++) {
  3859. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3860. }
  3861. } break;
  3862. case GGML_TYPE_I32:
  3863. {
  3864. assert(tensor->nb[0] == sizeof(int32_t));
  3865. for (int i = 0; i < n; i++) {
  3866. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3867. }
  3868. } break;
  3869. case GGML_TYPE_F16:
  3870. {
  3871. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3872. for (int i = 0; i < n; i++) {
  3873. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3874. }
  3875. } break;
  3876. case GGML_TYPE_F32:
  3877. {
  3878. assert(tensor->nb[0] == sizeof(float));
  3879. for (int i = 0; i < n; i++) {
  3880. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3881. }
  3882. } break;
  3883. default:
  3884. {
  3885. GGML_ASSERT(false);
  3886. } break;
  3887. }
  3888. return tensor;
  3889. }
  3890. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3891. const int n = ggml_nrows(tensor);
  3892. const int nc = tensor->ne[0];
  3893. const size_t n1 = tensor->nb[1];
  3894. char * const data = tensor->data;
  3895. switch (tensor->type) {
  3896. case GGML_TYPE_I8:
  3897. {
  3898. assert(tensor->nb[0] == sizeof(int8_t));
  3899. for (int i = 0; i < n; i++) {
  3900. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3901. }
  3902. } break;
  3903. case GGML_TYPE_I16:
  3904. {
  3905. assert(tensor->nb[0] == sizeof(int16_t));
  3906. for (int i = 0; i < n; i++) {
  3907. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3908. }
  3909. } break;
  3910. case GGML_TYPE_I32:
  3911. {
  3912. assert(tensor->nb[0] == sizeof(int32_t));
  3913. for (int i = 0; i < n; i++) {
  3914. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3915. }
  3916. } break;
  3917. case GGML_TYPE_F16:
  3918. {
  3919. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3920. for (int i = 0; i < n; i++) {
  3921. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3922. }
  3923. } break;
  3924. case GGML_TYPE_F32:
  3925. {
  3926. assert(tensor->nb[0] == sizeof(float));
  3927. for (int i = 0; i < n; i++) {
  3928. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3929. }
  3930. } break;
  3931. default:
  3932. {
  3933. GGML_ASSERT(false);
  3934. } break;
  3935. }
  3936. return tensor;
  3937. }
  3938. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3939. switch (tensor->type) {
  3940. case GGML_TYPE_I8:
  3941. {
  3942. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3943. return ((int8_t *)(tensor->data))[i];
  3944. } break;
  3945. case GGML_TYPE_I16:
  3946. {
  3947. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3948. return ((int16_t *)(tensor->data))[i];
  3949. } break;
  3950. case GGML_TYPE_I32:
  3951. {
  3952. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3953. return ((int32_t *)(tensor->data))[i];
  3954. } break;
  3955. case GGML_TYPE_F16:
  3956. {
  3957. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3958. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3959. } break;
  3960. case GGML_TYPE_F32:
  3961. {
  3962. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3963. return ((float *)(tensor->data))[i];
  3964. } break;
  3965. default:
  3966. {
  3967. GGML_ASSERT(false);
  3968. } break;
  3969. }
  3970. return 0.0f;
  3971. }
  3972. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3973. switch (tensor->type) {
  3974. case GGML_TYPE_I8:
  3975. {
  3976. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3977. ((int8_t *)(tensor->data))[i] = value;
  3978. } break;
  3979. case GGML_TYPE_I16:
  3980. {
  3981. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3982. ((int16_t *)(tensor->data))[i] = value;
  3983. } break;
  3984. case GGML_TYPE_I32:
  3985. {
  3986. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3987. ((int32_t *)(tensor->data))[i] = value;
  3988. } break;
  3989. case GGML_TYPE_F16:
  3990. {
  3991. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3992. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3993. } break;
  3994. case GGML_TYPE_F32:
  3995. {
  3996. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3997. ((float *)(tensor->data))[i] = value;
  3998. } break;
  3999. default:
  4000. {
  4001. GGML_ASSERT(false);
  4002. } break;
  4003. }
  4004. }
  4005. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4006. switch (tensor->type) {
  4007. case GGML_TYPE_I8:
  4008. {
  4009. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4010. return ((int8_t *)(tensor->data))[i];
  4011. } break;
  4012. case GGML_TYPE_I16:
  4013. {
  4014. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4015. return ((int16_t *)(tensor->data))[i];
  4016. } break;
  4017. case GGML_TYPE_I32:
  4018. {
  4019. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4020. return ((int32_t *)(tensor->data))[i];
  4021. } break;
  4022. case GGML_TYPE_F16:
  4023. {
  4024. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4025. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4026. } break;
  4027. case GGML_TYPE_F32:
  4028. {
  4029. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4030. return ((float *)(tensor->data))[i];
  4031. } break;
  4032. default:
  4033. {
  4034. GGML_ASSERT(false);
  4035. } break;
  4036. }
  4037. return 0.0f;
  4038. }
  4039. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4040. switch (tensor->type) {
  4041. case GGML_TYPE_I8:
  4042. {
  4043. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4044. ((int8_t *)(tensor->data))[i] = value;
  4045. } break;
  4046. case GGML_TYPE_I16:
  4047. {
  4048. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4049. ((int16_t *)(tensor->data))[i] = value;
  4050. } break;
  4051. case GGML_TYPE_I32:
  4052. {
  4053. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4054. ((int32_t *)(tensor->data))[i] = value;
  4055. } break;
  4056. case GGML_TYPE_F16:
  4057. {
  4058. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4059. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4060. } break;
  4061. case GGML_TYPE_F32:
  4062. {
  4063. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4064. ((float *)(tensor->data))[i] = value;
  4065. } break;
  4066. default:
  4067. {
  4068. GGML_ASSERT(false);
  4069. } break;
  4070. }
  4071. }
  4072. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4073. return tensor->data;
  4074. }
  4075. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4076. assert(tensor->type == GGML_TYPE_F32);
  4077. return (float *)(tensor->data);
  4078. }
  4079. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4080. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4081. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4082. }
  4083. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4084. return tensor->name;
  4085. }
  4086. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4087. strncpy(tensor->name, name, sizeof(tensor->name));
  4088. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4089. return tensor;
  4090. }
  4091. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4092. va_list args;
  4093. va_start(args, fmt);
  4094. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4095. va_end(args);
  4096. return tensor;
  4097. }
  4098. struct ggml_tensor * ggml_view_tensor(
  4099. struct ggml_context * ctx,
  4100. const struct ggml_tensor * src) {
  4101. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4102. ggml_format_name(result, "%s (view)", src->name);
  4103. result->nb[0] = src->nb[0];
  4104. result->nb[1] = src->nb[1];
  4105. result->nb[2] = src->nb[2];
  4106. result->nb[3] = src->nb[3];
  4107. return result;
  4108. }
  4109. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4110. struct ggml_object * obj = ctx->objects_begin;
  4111. char * const mem_buffer = ctx->mem_buffer;
  4112. while (obj != NULL) {
  4113. if (obj->type == GGML_OBJECT_TENSOR) {
  4114. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4115. if (strcmp(cur->name, name) == 0) {
  4116. return cur;
  4117. }
  4118. }
  4119. obj = obj->next;
  4120. }
  4121. return NULL;
  4122. }
  4123. ////////////////////////////////////////////////////////////////////////////////
  4124. // ggml_dup
  4125. static struct ggml_tensor * ggml_dup_impl(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. bool inplace) {
  4129. bool is_node = false;
  4130. if (!inplace && (a->grad)) {
  4131. is_node = true;
  4132. }
  4133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4134. result->op = GGML_OP_DUP;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src[0] = a;
  4137. return result;
  4138. }
  4139. struct ggml_tensor * ggml_dup(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a) {
  4142. return ggml_dup_impl(ctx, a, false);
  4143. }
  4144. struct ggml_tensor * ggml_dup_inplace(
  4145. struct ggml_context * ctx,
  4146. struct ggml_tensor * a) {
  4147. return ggml_dup_impl(ctx, a, true);
  4148. }
  4149. // ggml_add
  4150. static struct ggml_tensor * ggml_add_impl(
  4151. struct ggml_context * ctx,
  4152. struct ggml_tensor * a,
  4153. struct ggml_tensor * b,
  4154. bool inplace) {
  4155. // TODO: support less-strict constraint
  4156. // GGML_ASSERT(ggml_can_repeat(b, a));
  4157. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4158. bool is_node = false;
  4159. if (!inplace && (a->grad || b->grad)) {
  4160. // TODO: support backward pass for broadcasting
  4161. GGML_ASSERT(ggml_are_same_shape(a, b));
  4162. is_node = true;
  4163. }
  4164. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4165. result->op = GGML_OP_ADD;
  4166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4167. result->src[0] = a;
  4168. result->src[1] = b;
  4169. return result;
  4170. }
  4171. struct ggml_tensor * ggml_add(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. struct ggml_tensor * b) {
  4175. return ggml_add_impl(ctx, a, b, false);
  4176. }
  4177. struct ggml_tensor * ggml_add_inplace(
  4178. struct ggml_context * ctx,
  4179. struct ggml_tensor * a,
  4180. struct ggml_tensor * b) {
  4181. return ggml_add_impl(ctx, a, b, true);
  4182. }
  4183. // ggml_add1
  4184. static struct ggml_tensor * ggml_add1_impl(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a,
  4187. struct ggml_tensor * b,
  4188. bool inplace) {
  4189. GGML_ASSERT(ggml_is_scalar(b));
  4190. GGML_ASSERT(ggml_is_padded_1d(a));
  4191. bool is_node = false;
  4192. if (a->grad || b->grad) {
  4193. is_node = true;
  4194. }
  4195. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4196. result->op = GGML_OP_ADD1;
  4197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4198. result->src[0] = a;
  4199. result->src[1] = b;
  4200. return result;
  4201. }
  4202. struct ggml_tensor * ggml_add1(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a,
  4205. struct ggml_tensor * b) {
  4206. return ggml_add1_impl(ctx, a, b, false);
  4207. }
  4208. struct ggml_tensor * ggml_add1_inplace(
  4209. struct ggml_context * ctx,
  4210. struct ggml_tensor * a,
  4211. struct ggml_tensor * b) {
  4212. return ggml_add1_impl(ctx, a, b, true);
  4213. }
  4214. // ggml_acc
  4215. static struct ggml_tensor * ggml_acc_impl(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a,
  4218. struct ggml_tensor * b,
  4219. size_t nb1,
  4220. size_t nb2,
  4221. size_t nb3,
  4222. size_t offset,
  4223. bool inplace) {
  4224. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4225. GGML_ASSERT(ggml_is_contiguous(a));
  4226. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4227. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4228. bool is_node = false;
  4229. if (!inplace && (a->grad || b->grad)) {
  4230. is_node = true;
  4231. }
  4232. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4233. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4234. ggml_set_op_params(result, params, sizeof(params));
  4235. result->op = GGML_OP_ACC;
  4236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4237. result->src[0] = a;
  4238. result->src[1] = b;
  4239. return result;
  4240. }
  4241. struct ggml_tensor * ggml_acc(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a,
  4244. struct ggml_tensor * b,
  4245. size_t nb1,
  4246. size_t nb2,
  4247. size_t nb3,
  4248. size_t offset) {
  4249. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4250. }
  4251. struct ggml_tensor * ggml_acc_inplace(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a,
  4254. struct ggml_tensor * b,
  4255. size_t nb1,
  4256. size_t nb2,
  4257. size_t nb3,
  4258. size_t offset) {
  4259. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4260. }
  4261. // ggml_sub
  4262. static struct ggml_tensor * ggml_sub_impl(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a,
  4265. struct ggml_tensor * b,
  4266. bool inplace) {
  4267. GGML_ASSERT(ggml_are_same_shape(a, b));
  4268. bool is_node = false;
  4269. if (!inplace && (a->grad || b->grad)) {
  4270. is_node = true;
  4271. }
  4272. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4273. result->op = GGML_OP_SUB;
  4274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4275. result->src[0] = a;
  4276. result->src[1] = b;
  4277. return result;
  4278. }
  4279. struct ggml_tensor * ggml_sub(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a,
  4282. struct ggml_tensor * b) {
  4283. return ggml_sub_impl(ctx, a, b, false);
  4284. }
  4285. struct ggml_tensor * ggml_sub_inplace(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a,
  4288. struct ggml_tensor * b) {
  4289. return ggml_sub_impl(ctx, a, b, true);
  4290. }
  4291. // ggml_mul
  4292. static struct ggml_tensor * ggml_mul_impl(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. struct ggml_tensor * b,
  4296. bool inplace) {
  4297. // TODO: support less-strict constraint
  4298. // GGML_ASSERT(ggml_can_repeat(b, a));
  4299. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4300. bool is_node = false;
  4301. if (!inplace && (a->grad || b->grad)) {
  4302. // TODO: support backward pass for broadcasting
  4303. GGML_ASSERT(ggml_are_same_shape(a, b));
  4304. is_node = true;
  4305. }
  4306. if (inplace) {
  4307. GGML_ASSERT(is_node == false);
  4308. }
  4309. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4310. result->op = GGML_OP_MUL;
  4311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4312. result->src[0] = a;
  4313. result->src[1] = b;
  4314. return result;
  4315. }
  4316. struct ggml_tensor * ggml_mul(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b) {
  4320. return ggml_mul_impl(ctx, a, b, false);
  4321. }
  4322. struct ggml_tensor * ggml_mul_inplace(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. struct ggml_tensor * b) {
  4326. return ggml_mul_impl(ctx, a, b, true);
  4327. }
  4328. // ggml_div
  4329. static struct ggml_tensor * ggml_div_impl(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. struct ggml_tensor * b,
  4333. bool inplace) {
  4334. GGML_ASSERT(ggml_are_same_shape(a, b));
  4335. bool is_node = false;
  4336. if (!inplace && (a->grad || b->grad)) {
  4337. is_node = true;
  4338. }
  4339. if (inplace) {
  4340. GGML_ASSERT(is_node == false);
  4341. }
  4342. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4343. result->op = GGML_OP_DIV;
  4344. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4345. result->src[0] = a;
  4346. result->src[1] = b;
  4347. return result;
  4348. }
  4349. struct ggml_tensor * ggml_div(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a,
  4352. struct ggml_tensor * b) {
  4353. return ggml_div_impl(ctx, a, b, false);
  4354. }
  4355. struct ggml_tensor * ggml_div_inplace(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. struct ggml_tensor * b) {
  4359. return ggml_div_impl(ctx, a, b, true);
  4360. }
  4361. // ggml_sqr
  4362. static struct ggml_tensor * ggml_sqr_impl(
  4363. struct ggml_context * ctx,
  4364. struct ggml_tensor * a,
  4365. bool inplace) {
  4366. bool is_node = false;
  4367. if (!inplace && (a->grad)) {
  4368. is_node = true;
  4369. }
  4370. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4371. result->op = GGML_OP_SQR;
  4372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4373. result->src[0] = a;
  4374. return result;
  4375. }
  4376. struct ggml_tensor * ggml_sqr(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a) {
  4379. return ggml_sqr_impl(ctx, a, false);
  4380. }
  4381. struct ggml_tensor * ggml_sqr_inplace(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a) {
  4384. return ggml_sqr_impl(ctx, a, true);
  4385. }
  4386. // ggml_sqrt
  4387. static struct ggml_tensor * ggml_sqrt_impl(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a,
  4390. bool inplace) {
  4391. bool is_node = false;
  4392. if (!inplace && (a->grad)) {
  4393. is_node = true;
  4394. }
  4395. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4396. result->op = GGML_OP_SQRT;
  4397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4398. result->src[0] = a;
  4399. return result;
  4400. }
  4401. struct ggml_tensor * ggml_sqrt(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a) {
  4404. return ggml_sqrt_impl(ctx, a, false);
  4405. }
  4406. struct ggml_tensor * ggml_sqrt_inplace(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a) {
  4409. return ggml_sqrt_impl(ctx, a, true);
  4410. }
  4411. // ggml_log
  4412. static struct ggml_tensor * ggml_log_impl(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a,
  4415. bool inplace) {
  4416. bool is_node = false;
  4417. if (!inplace && (a->grad)) {
  4418. is_node = true;
  4419. }
  4420. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4421. result->op = GGML_OP_LOG;
  4422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4423. result->src[0] = a;
  4424. return result;
  4425. }
  4426. struct ggml_tensor * ggml_log(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a) {
  4429. return ggml_log_impl(ctx, a, false);
  4430. }
  4431. struct ggml_tensor * ggml_log_inplace(
  4432. struct ggml_context * ctx,
  4433. struct ggml_tensor * a) {
  4434. return ggml_log_impl(ctx, a, true);
  4435. }
  4436. // ggml_sum
  4437. struct ggml_tensor * ggml_sum(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a) {
  4440. bool is_node = false;
  4441. if (a->grad) {
  4442. is_node = true;
  4443. }
  4444. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4445. result->op = GGML_OP_SUM;
  4446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4447. result->src[0] = a;
  4448. return result;
  4449. }
  4450. // ggml_sum_rows
  4451. struct ggml_tensor * ggml_sum_rows(
  4452. struct ggml_context * ctx,
  4453. struct ggml_tensor * a) {
  4454. bool is_node = false;
  4455. if (a->grad) {
  4456. is_node = true;
  4457. }
  4458. int64_t ne[4] = {1,1,1,1};
  4459. for (int i=1; i<a->n_dims; ++i) {
  4460. ne[i] = a->ne[i];
  4461. }
  4462. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4463. result->op = GGML_OP_SUM_ROWS;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src[0] = a;
  4466. return result;
  4467. }
  4468. // ggml_mean
  4469. struct ggml_tensor * ggml_mean(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a) {
  4472. bool is_node = false;
  4473. if (a->grad) {
  4474. GGML_ASSERT(false); // TODO: implement
  4475. is_node = true;
  4476. }
  4477. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4478. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4479. result->op = GGML_OP_MEAN;
  4480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4481. result->src[0] = a;
  4482. return result;
  4483. }
  4484. // ggml_argmax
  4485. struct ggml_tensor * ggml_argmax(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a) {
  4488. GGML_ASSERT(ggml_is_matrix(a));
  4489. bool is_node = false;
  4490. if (a->grad) {
  4491. GGML_ASSERT(false);
  4492. is_node = true;
  4493. }
  4494. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4495. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4496. result->op = GGML_OP_ARGMAX;
  4497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4498. result->src[0] = a;
  4499. return result;
  4500. }
  4501. // ggml_repeat
  4502. struct ggml_tensor * ggml_repeat(
  4503. struct ggml_context * ctx,
  4504. struct ggml_tensor * a,
  4505. struct ggml_tensor * b) {
  4506. GGML_ASSERT(ggml_can_repeat(a, b));
  4507. bool is_node = false;
  4508. if (a->grad) {
  4509. is_node = true;
  4510. }
  4511. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4512. result->op = GGML_OP_REPEAT;
  4513. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4514. result->src[0] = a;
  4515. result->src[1] = b;
  4516. return result;
  4517. }
  4518. // ggml_repeat_back
  4519. struct ggml_tensor * ggml_repeat_back(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. struct ggml_tensor * b) {
  4523. GGML_ASSERT(ggml_can_repeat(b, a));
  4524. bool is_node = false;
  4525. if (a->grad) {
  4526. is_node = true;
  4527. }
  4528. if (ggml_are_same_shape(a, b) && !is_node) {
  4529. return a;
  4530. }
  4531. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4532. result->op = GGML_OP_REPEAT_BACK;
  4533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4534. result->src[0] = a;
  4535. result->src[1] = b;
  4536. return result;
  4537. }
  4538. // ggml_concat
  4539. struct ggml_tensor* ggml_concat(
  4540. struct ggml_context* ctx,
  4541. struct ggml_tensor* a,
  4542. struct ggml_tensor* b) {
  4543. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4544. bool is_node = false;
  4545. if (a->grad || b->grad) {
  4546. is_node = true;
  4547. }
  4548. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4549. result->op = GGML_OP_CONCAT;
  4550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4551. result->src[0] = a;
  4552. result->src[1] = b;
  4553. return result;
  4554. }
  4555. // ggml_abs
  4556. struct ggml_tensor * ggml_abs(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a) {
  4559. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4560. }
  4561. struct ggml_tensor * ggml_abs_inplace(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a) {
  4564. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4565. }
  4566. // ggml_sgn
  4567. struct ggml_tensor * ggml_sgn(
  4568. struct ggml_context * ctx,
  4569. struct ggml_tensor * a) {
  4570. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4571. }
  4572. struct ggml_tensor * ggml_sgn_inplace(
  4573. struct ggml_context * ctx,
  4574. struct ggml_tensor * a) {
  4575. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4576. }
  4577. // ggml_neg
  4578. struct ggml_tensor * ggml_neg(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a) {
  4581. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4582. }
  4583. struct ggml_tensor * ggml_neg_inplace(
  4584. struct ggml_context * ctx,
  4585. struct ggml_tensor * a) {
  4586. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4587. }
  4588. // ggml_step
  4589. struct ggml_tensor * ggml_step(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a) {
  4592. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4593. }
  4594. struct ggml_tensor * ggml_step_inplace(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a) {
  4597. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4598. }
  4599. // ggml_tanh
  4600. struct ggml_tensor * ggml_tanh(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a) {
  4603. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4604. }
  4605. struct ggml_tensor * ggml_tanh_inplace(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a) {
  4608. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4609. }
  4610. // ggml_elu
  4611. struct ggml_tensor * ggml_elu(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a) {
  4614. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4615. }
  4616. struct ggml_tensor * ggml_elu_inplace(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a) {
  4619. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4620. }
  4621. // ggml_relu
  4622. struct ggml_tensor * ggml_relu(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a) {
  4625. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4626. }
  4627. struct ggml_tensor * ggml_relu_inplace(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a) {
  4630. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4631. }
  4632. // ggml_gelu
  4633. struct ggml_tensor * ggml_gelu(
  4634. struct ggml_context * ctx,
  4635. struct ggml_tensor * a) {
  4636. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4637. }
  4638. struct ggml_tensor * ggml_gelu_inplace(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a) {
  4641. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4642. }
  4643. // ggml_gelu_quick
  4644. struct ggml_tensor * ggml_gelu_quick(
  4645. struct ggml_context * ctx,
  4646. struct ggml_tensor * a) {
  4647. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4648. }
  4649. struct ggml_tensor * ggml_gelu_quick_inplace(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a) {
  4652. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4653. }
  4654. // ggml_silu
  4655. struct ggml_tensor * ggml_silu(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a) {
  4658. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4659. }
  4660. struct ggml_tensor * ggml_silu_inplace(
  4661. struct ggml_context * ctx,
  4662. struct ggml_tensor * a) {
  4663. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4664. }
  4665. // ggml_silu_back
  4666. struct ggml_tensor * ggml_silu_back(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * a,
  4669. struct ggml_tensor * b) {
  4670. bool is_node = false;
  4671. if (a->grad || b->grad) {
  4672. // TODO: implement backward
  4673. is_node = true;
  4674. }
  4675. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4676. result->op = GGML_OP_SILU_BACK;
  4677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4678. result->src[0] = a;
  4679. result->src[1] = b;
  4680. return result;
  4681. }
  4682. // ggml_norm
  4683. static struct ggml_tensor * ggml_norm_impl(
  4684. struct ggml_context * ctx,
  4685. struct ggml_tensor * a,
  4686. float eps,
  4687. bool inplace) {
  4688. bool is_node = false;
  4689. if (!inplace && (a->grad)) {
  4690. GGML_ASSERT(false); // TODO: implement backward
  4691. is_node = true;
  4692. }
  4693. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4694. ggml_set_op_params(result, &eps, sizeof(eps));
  4695. result->op = GGML_OP_NORM;
  4696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4697. result->src[0] = a;
  4698. return result;
  4699. }
  4700. struct ggml_tensor * ggml_norm(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a,
  4703. float eps) {
  4704. return ggml_norm_impl(ctx, a, eps, false);
  4705. }
  4706. struct ggml_tensor * ggml_norm_inplace(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a,
  4709. float eps) {
  4710. return ggml_norm_impl(ctx, a, eps, true);
  4711. }
  4712. // ggml_rms_norm
  4713. static struct ggml_tensor * ggml_rms_norm_impl(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. float eps,
  4717. bool inplace) {
  4718. bool is_node = false;
  4719. if (!inplace && (a->grad)) {
  4720. is_node = true;
  4721. }
  4722. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4723. ggml_set_op_params(result, &eps, sizeof(eps));
  4724. result->op = GGML_OP_RMS_NORM;
  4725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4726. result->src[0] = a;
  4727. return result;
  4728. }
  4729. struct ggml_tensor * ggml_rms_norm(
  4730. struct ggml_context * ctx,
  4731. struct ggml_tensor * a,
  4732. float eps) {
  4733. return ggml_rms_norm_impl(ctx, a, eps, false);
  4734. }
  4735. struct ggml_tensor * ggml_rms_norm_inplace(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * a,
  4738. float eps) {
  4739. return ggml_rms_norm_impl(ctx, a, eps, true);
  4740. }
  4741. // ggml_rms_norm_back
  4742. struct ggml_tensor * ggml_rms_norm_back(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a,
  4745. struct ggml_tensor * b) {
  4746. bool is_node = false;
  4747. if (a->grad) {
  4748. // TODO: implement backward
  4749. is_node = true;
  4750. }
  4751. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4752. result->op = GGML_OP_RMS_NORM_BACK;
  4753. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4754. result->src[0] = a;
  4755. result->src[1] = b;
  4756. return result;
  4757. }
  4758. // ggml_group_norm
  4759. static struct ggml_tensor * ggml_group_norm_impl(
  4760. struct ggml_context * ctx,
  4761. struct ggml_tensor * a,
  4762. int n_groups,
  4763. bool inplace) {
  4764. bool is_node = false;
  4765. if (!inplace && (a->grad)) {
  4766. GGML_ASSERT(false); // TODO: implement backward
  4767. is_node = true;
  4768. }
  4769. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4770. result->op = GGML_OP_GROUP_NORM;
  4771. result->op_params[0] = n_groups;
  4772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4773. result->src[0] = a;
  4774. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4775. return result;
  4776. }
  4777. struct ggml_tensor * ggml_group_norm(
  4778. struct ggml_context * ctx,
  4779. struct ggml_tensor * a,
  4780. int n_groups) {
  4781. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4782. }
  4783. struct ggml_tensor * ggml_group_norm_inplace(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. int n_groups) {
  4787. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4788. }
  4789. // ggml_mul_mat
  4790. struct ggml_tensor * ggml_mul_mat(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a,
  4793. struct ggml_tensor * b) {
  4794. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4795. GGML_ASSERT(!ggml_is_transposed(a));
  4796. bool is_node = false;
  4797. if (a->grad || b->grad) {
  4798. is_node = true;
  4799. }
  4800. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4801. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4802. result->op = GGML_OP_MUL_MAT;
  4803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4804. result->src[0] = a;
  4805. result->src[1] = b;
  4806. return result;
  4807. }
  4808. // ggml_out_prod
  4809. struct ggml_tensor * ggml_out_prod(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. struct ggml_tensor * b) {
  4813. GGML_ASSERT(ggml_can_out_prod(a, b));
  4814. GGML_ASSERT(!ggml_is_transposed(a));
  4815. bool is_node = false;
  4816. if (a->grad || b->grad) {
  4817. is_node = true;
  4818. }
  4819. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4820. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4821. result->op = GGML_OP_OUT_PROD;
  4822. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4823. result->src[0] = a;
  4824. result->src[1] = b;
  4825. return result;
  4826. }
  4827. // ggml_scale
  4828. static struct ggml_tensor * ggml_scale_impl(
  4829. struct ggml_context * ctx,
  4830. struct ggml_tensor * a,
  4831. struct ggml_tensor * b,
  4832. bool inplace) {
  4833. GGML_ASSERT(ggml_is_scalar(b));
  4834. GGML_ASSERT(ggml_is_padded_1d(a));
  4835. bool is_node = false;
  4836. if (a->grad || b->grad) {
  4837. is_node = true;
  4838. }
  4839. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4840. result->op = GGML_OP_SCALE;
  4841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4842. result->src[0] = a;
  4843. result->src[1] = b;
  4844. return result;
  4845. }
  4846. struct ggml_tensor * ggml_scale(
  4847. struct ggml_context * ctx,
  4848. struct ggml_tensor * a,
  4849. struct ggml_tensor * b) {
  4850. return ggml_scale_impl(ctx, a, b, false);
  4851. }
  4852. struct ggml_tensor * ggml_scale_inplace(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. struct ggml_tensor * b) {
  4856. return ggml_scale_impl(ctx, a, b, true);
  4857. }
  4858. // ggml_set
  4859. static struct ggml_tensor * ggml_set_impl(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. struct ggml_tensor * b,
  4863. size_t nb1,
  4864. size_t nb2,
  4865. size_t nb3,
  4866. size_t offset,
  4867. bool inplace) {
  4868. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4869. bool is_node = false;
  4870. if (a->grad || b->grad) {
  4871. is_node = true;
  4872. }
  4873. // make a view of the destination
  4874. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4875. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4876. ggml_set_op_params(result, params, sizeof(params));
  4877. result->op = GGML_OP_SET;
  4878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4879. result->src[0] = a;
  4880. result->src[1] = b;
  4881. return result;
  4882. }
  4883. struct ggml_tensor * ggml_set(
  4884. struct ggml_context * ctx,
  4885. struct ggml_tensor * a,
  4886. struct ggml_tensor * b,
  4887. size_t nb1,
  4888. size_t nb2,
  4889. size_t nb3,
  4890. size_t offset) {
  4891. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4892. }
  4893. struct ggml_tensor * ggml_set_inplace(
  4894. struct ggml_context * ctx,
  4895. struct ggml_tensor * a,
  4896. struct ggml_tensor * b,
  4897. size_t nb1,
  4898. size_t nb2,
  4899. size_t nb3,
  4900. size_t offset) {
  4901. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4902. }
  4903. struct ggml_tensor * ggml_set_1d(
  4904. struct ggml_context * ctx,
  4905. struct ggml_tensor * a,
  4906. struct ggml_tensor * b,
  4907. size_t offset) {
  4908. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4909. }
  4910. struct ggml_tensor * ggml_set_1d_inplace(
  4911. struct ggml_context * ctx,
  4912. struct ggml_tensor * a,
  4913. struct ggml_tensor * b,
  4914. size_t offset) {
  4915. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4916. }
  4917. struct ggml_tensor * ggml_set_2d(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. struct ggml_tensor * b,
  4921. size_t nb1,
  4922. size_t offset) {
  4923. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4924. }
  4925. struct ggml_tensor * ggml_set_2d_inplace(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. struct ggml_tensor * b,
  4929. size_t nb1,
  4930. size_t offset) {
  4931. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4932. }
  4933. // ggml_cpy
  4934. static struct ggml_tensor * ggml_cpy_impl(
  4935. struct ggml_context * ctx,
  4936. struct ggml_tensor * a,
  4937. struct ggml_tensor * b,
  4938. bool inplace) {
  4939. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4940. bool is_node = false;
  4941. if (!inplace && (a->grad || b->grad)) {
  4942. is_node = true;
  4943. }
  4944. // make a view of the destination
  4945. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4946. if (strlen(b->name) > 0) {
  4947. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4948. } else {
  4949. ggml_format_name(result, "%s (copy)", a->name);
  4950. }
  4951. result->op = GGML_OP_CPY;
  4952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4953. result->src[0] = a;
  4954. result->src[1] = b;
  4955. return result;
  4956. }
  4957. struct ggml_tensor * ggml_cpy(
  4958. struct ggml_context * ctx,
  4959. struct ggml_tensor * a,
  4960. struct ggml_tensor * b) {
  4961. return ggml_cpy_impl(ctx, a, b, false);
  4962. }
  4963. struct ggml_tensor * ggml_cpy_inplace(
  4964. struct ggml_context * ctx,
  4965. struct ggml_tensor * a,
  4966. struct ggml_tensor * b) {
  4967. return ggml_cpy_impl(ctx, a, b, true);
  4968. }
  4969. // ggml_cont
  4970. static struct ggml_tensor * ggml_cont_impl(
  4971. struct ggml_context * ctx,
  4972. struct ggml_tensor * a,
  4973. bool inplace) {
  4974. bool is_node = false;
  4975. if (!inplace && a->grad) {
  4976. is_node = true;
  4977. }
  4978. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4979. ggml_format_name(result, "%s (cont)", a->name);
  4980. result->op = GGML_OP_CONT;
  4981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4982. result->src[0] = a;
  4983. return result;
  4984. }
  4985. struct ggml_tensor * ggml_cont(
  4986. struct ggml_context * ctx,
  4987. struct ggml_tensor * a) {
  4988. return ggml_cont_impl(ctx, a, false);
  4989. }
  4990. struct ggml_tensor * ggml_cont_inplace(
  4991. struct ggml_context * ctx,
  4992. struct ggml_tensor * a) {
  4993. return ggml_cont_impl(ctx, a, true);
  4994. }
  4995. // ggml_reshape
  4996. struct ggml_tensor * ggml_reshape(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a,
  4999. struct ggml_tensor * b) {
  5000. GGML_ASSERT(ggml_is_contiguous(a));
  5001. GGML_ASSERT(ggml_is_contiguous(b));
  5002. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5003. bool is_node = false;
  5004. if (a->grad) {
  5005. is_node = true;
  5006. }
  5007. if (b->grad) {
  5008. // gradient propagation is not supported
  5009. //GGML_ASSERT(false);
  5010. }
  5011. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5012. ggml_format_name(result, "%s (reshaped)", a->name);
  5013. result->op = GGML_OP_RESHAPE;
  5014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5015. result->src[0] = a;
  5016. return result;
  5017. }
  5018. struct ggml_tensor * ggml_reshape_1d(
  5019. struct ggml_context * ctx,
  5020. struct ggml_tensor * a,
  5021. int64_t ne0) {
  5022. GGML_ASSERT(ggml_is_contiguous(a));
  5023. GGML_ASSERT(ggml_nelements(a) == ne0);
  5024. bool is_node = false;
  5025. if (a->grad) {
  5026. is_node = true;
  5027. }
  5028. const int64_t ne[1] = { ne0 };
  5029. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5030. ggml_format_name(result, "%s (reshaped)", a->name);
  5031. result->op = GGML_OP_RESHAPE;
  5032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5033. result->src[0] = a;
  5034. return result;
  5035. }
  5036. struct ggml_tensor * ggml_reshape_2d(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a,
  5039. int64_t ne0,
  5040. int64_t ne1) {
  5041. GGML_ASSERT(ggml_is_contiguous(a));
  5042. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5043. bool is_node = false;
  5044. if (a->grad) {
  5045. is_node = true;
  5046. }
  5047. const int64_t ne[2] = { ne0, ne1 };
  5048. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5049. ggml_format_name(result, "%s (reshaped)", a->name);
  5050. result->op = GGML_OP_RESHAPE;
  5051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5052. result->src[0] = a;
  5053. return result;
  5054. }
  5055. struct ggml_tensor * ggml_reshape_3d(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a,
  5058. int64_t ne0,
  5059. int64_t ne1,
  5060. int64_t ne2) {
  5061. GGML_ASSERT(ggml_is_contiguous(a));
  5062. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5063. bool is_node = false;
  5064. if (a->grad) {
  5065. is_node = true;
  5066. }
  5067. const int64_t ne[3] = { ne0, ne1, ne2 };
  5068. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5069. ggml_format_name(result, "%s (reshaped)", a->name);
  5070. result->op = GGML_OP_RESHAPE;
  5071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5072. result->src[0] = a;
  5073. return result;
  5074. }
  5075. struct ggml_tensor * ggml_reshape_4d(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. int64_t ne0,
  5079. int64_t ne1,
  5080. int64_t ne2,
  5081. int64_t ne3) {
  5082. GGML_ASSERT(ggml_is_contiguous(a));
  5083. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5084. bool is_node = false;
  5085. if (a->grad) {
  5086. is_node = true;
  5087. }
  5088. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5089. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5090. ggml_format_name(result, "%s (reshaped)", a->name);
  5091. result->op = GGML_OP_RESHAPE;
  5092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5093. result->src[0] = a;
  5094. return result;
  5095. }
  5096. // ggml_view_1d
  5097. static struct ggml_tensor * ggml_view_tensor_offset(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. int n_dims,
  5101. const int64_t * ne,
  5102. size_t offset) {
  5103. // don't calculate an offset from an unallocated tensor
  5104. void * data = NULL;
  5105. if (a->data != NULL) {
  5106. data = (char *) a->data + offset;
  5107. }
  5108. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
  5109. ggml_format_name(result, "%s (view)", a->name);
  5110. ggml_set_op_params(result, &offset, sizeof(offset));
  5111. return result;
  5112. }
  5113. struct ggml_tensor * ggml_view_1d(
  5114. struct ggml_context * ctx,
  5115. struct ggml_tensor * a,
  5116. int64_t ne0,
  5117. size_t offset) {
  5118. bool is_node = false;
  5119. if (a->grad) {
  5120. is_node = true;
  5121. }
  5122. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
  5123. result->op = GGML_OP_VIEW;
  5124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5125. result->src[0] = a;
  5126. return result;
  5127. }
  5128. // ggml_view_2d
  5129. struct ggml_tensor * ggml_view_2d(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a,
  5132. int64_t ne0,
  5133. int64_t ne1,
  5134. size_t nb1,
  5135. size_t offset) {
  5136. bool is_node = false;
  5137. if (a->grad) {
  5138. is_node = true;
  5139. }
  5140. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5141. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
  5142. result->nb[1] = nb1;
  5143. result->nb[2] = result->nb[1]*ne1;
  5144. result->nb[3] = result->nb[2];
  5145. result->op = GGML_OP_VIEW;
  5146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5147. result->src[0] = a;
  5148. return result;
  5149. }
  5150. // ggml_view_3d
  5151. struct ggml_tensor * ggml_view_3d(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a,
  5154. int64_t ne0,
  5155. int64_t ne1,
  5156. int64_t ne2,
  5157. size_t nb1,
  5158. size_t nb2,
  5159. size_t offset) {
  5160. bool is_node = false;
  5161. if (a->grad) {
  5162. is_node = true;
  5163. }
  5164. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5165. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
  5166. result->nb[1] = nb1;
  5167. result->nb[2] = nb2;
  5168. result->nb[3] = result->nb[2]*ne2;
  5169. result->op = GGML_OP_VIEW;
  5170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5171. result->src[0] = a;
  5172. return result;
  5173. }
  5174. // ggml_view_4d
  5175. struct ggml_tensor * ggml_view_4d(
  5176. struct ggml_context * ctx,
  5177. struct ggml_tensor * a,
  5178. int64_t ne0,
  5179. int64_t ne1,
  5180. int64_t ne2,
  5181. int64_t ne3,
  5182. size_t nb1,
  5183. size_t nb2,
  5184. size_t nb3,
  5185. size_t offset) {
  5186. bool is_node = false;
  5187. if (a->grad) {
  5188. is_node = true;
  5189. }
  5190. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5191. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
  5192. result->nb[1] = nb1;
  5193. result->nb[2] = nb2;
  5194. result->nb[3] = nb3;
  5195. result->op = GGML_OP_VIEW;
  5196. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5197. result->src[0] = a;
  5198. return result;
  5199. }
  5200. // ggml_permute
  5201. struct ggml_tensor * ggml_permute(
  5202. struct ggml_context * ctx,
  5203. struct ggml_tensor * a,
  5204. int axis0,
  5205. int axis1,
  5206. int axis2,
  5207. int axis3) {
  5208. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5209. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5210. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5211. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5212. GGML_ASSERT(axis0 != axis1);
  5213. GGML_ASSERT(axis0 != axis2);
  5214. GGML_ASSERT(axis0 != axis3);
  5215. GGML_ASSERT(axis1 != axis2);
  5216. GGML_ASSERT(axis1 != axis3);
  5217. GGML_ASSERT(axis2 != axis3);
  5218. bool is_node = false;
  5219. if (a->grad) {
  5220. is_node = true;
  5221. }
  5222. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5223. ggml_format_name(result, "%s (permuted)", a->name);
  5224. int ne[GGML_MAX_DIMS];
  5225. int nb[GGML_MAX_DIMS];
  5226. ne[axis0] = a->ne[0];
  5227. ne[axis1] = a->ne[1];
  5228. ne[axis2] = a->ne[2];
  5229. ne[axis3] = a->ne[3];
  5230. nb[axis0] = a->nb[0];
  5231. nb[axis1] = a->nb[1];
  5232. nb[axis2] = a->nb[2];
  5233. nb[axis3] = a->nb[3];
  5234. result->ne[0] = ne[0];
  5235. result->ne[1] = ne[1];
  5236. result->ne[2] = ne[2];
  5237. result->ne[3] = ne[3];
  5238. result->nb[0] = nb[0];
  5239. result->nb[1] = nb[1];
  5240. result->nb[2] = nb[2];
  5241. result->nb[3] = nb[3];
  5242. result->op = GGML_OP_PERMUTE;
  5243. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5244. result->src[0] = a;
  5245. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5246. ggml_set_op_params(result, params, sizeof(params));
  5247. return result;
  5248. }
  5249. // ggml_transpose
  5250. struct ggml_tensor * ggml_transpose(
  5251. struct ggml_context * ctx,
  5252. struct ggml_tensor * a) {
  5253. bool is_node = false;
  5254. if (a->grad) {
  5255. is_node = true;
  5256. }
  5257. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5258. ggml_format_name(result, "%s (transposed)", a->name);
  5259. result->ne[0] = a->ne[1];
  5260. result->ne[1] = a->ne[0];
  5261. result->nb[0] = a->nb[1];
  5262. result->nb[1] = a->nb[0];
  5263. result->op = GGML_OP_TRANSPOSE;
  5264. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5265. result->src[0] = a;
  5266. return result;
  5267. }
  5268. // ggml_get_rows
  5269. struct ggml_tensor * ggml_get_rows(
  5270. struct ggml_context * ctx,
  5271. struct ggml_tensor * a,
  5272. struct ggml_tensor * b) {
  5273. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5274. bool is_node = false;
  5275. if (a->grad || b->grad) {
  5276. is_node = true;
  5277. }
  5278. // TODO: implement non F32 return
  5279. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5280. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5281. result->op = GGML_OP_GET_ROWS;
  5282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5283. result->src[0] = a;
  5284. result->src[1] = b;
  5285. return result;
  5286. }
  5287. // ggml_get_rows_back
  5288. struct ggml_tensor * ggml_get_rows_back(
  5289. struct ggml_context * ctx,
  5290. struct ggml_tensor * a,
  5291. struct ggml_tensor * b,
  5292. struct ggml_tensor * c) {
  5293. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5294. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5295. bool is_node = false;
  5296. if (a->grad || b->grad) {
  5297. is_node = true;
  5298. }
  5299. // TODO: implement non F32 return
  5300. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5301. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5302. result->op = GGML_OP_GET_ROWS_BACK;
  5303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5304. result->src[0] = a;
  5305. result->src[1] = b;
  5306. result->src[2] = c;
  5307. return result;
  5308. }
  5309. // ggml_diag
  5310. struct ggml_tensor * ggml_diag(
  5311. struct ggml_context * ctx,
  5312. struct ggml_tensor * a) {
  5313. GGML_ASSERT(a->ne[1] == 1);
  5314. bool is_node = false;
  5315. if (a->grad) {
  5316. is_node = true;
  5317. }
  5318. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5319. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5320. result->op = GGML_OP_DIAG;
  5321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5322. result->src[0] = a;
  5323. return result;
  5324. }
  5325. // ggml_diag_mask_inf
  5326. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5327. struct ggml_context * ctx,
  5328. struct ggml_tensor * a,
  5329. int n_past,
  5330. bool inplace) {
  5331. bool is_node = false;
  5332. if (a->grad) {
  5333. is_node = true;
  5334. }
  5335. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5336. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5337. ggml_set_op_params(result, params, sizeof(params));
  5338. result->op = GGML_OP_DIAG_MASK_INF;
  5339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5340. result->src[0] = a;
  5341. return result;
  5342. }
  5343. struct ggml_tensor * ggml_diag_mask_inf(
  5344. struct ggml_context * ctx,
  5345. struct ggml_tensor * a,
  5346. int n_past) {
  5347. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5348. }
  5349. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5350. struct ggml_context * ctx,
  5351. struct ggml_tensor * a,
  5352. int n_past) {
  5353. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5354. }
  5355. // ggml_diag_mask_zero
  5356. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5357. struct ggml_context * ctx,
  5358. struct ggml_tensor * a,
  5359. int n_past,
  5360. bool inplace) {
  5361. bool is_node = false;
  5362. if (a->grad) {
  5363. is_node = true;
  5364. }
  5365. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5366. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5367. ggml_set_op_params(result, params, sizeof(params));
  5368. result->op = GGML_OP_DIAG_MASK_ZERO;
  5369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5370. result->src[0] = a;
  5371. return result;
  5372. }
  5373. struct ggml_tensor * ggml_diag_mask_zero(
  5374. struct ggml_context * ctx,
  5375. struct ggml_tensor * a,
  5376. int n_past) {
  5377. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5378. }
  5379. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5380. struct ggml_context * ctx,
  5381. struct ggml_tensor * a,
  5382. int n_past) {
  5383. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5384. }
  5385. // ggml_soft_max
  5386. static struct ggml_tensor * ggml_soft_max_impl(
  5387. struct ggml_context * ctx,
  5388. struct ggml_tensor * a,
  5389. bool inplace) {
  5390. bool is_node = false;
  5391. if (a->grad) {
  5392. is_node = true;
  5393. }
  5394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5395. result->op = GGML_OP_SOFT_MAX;
  5396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5397. result->src[0] = a;
  5398. return result;
  5399. }
  5400. struct ggml_tensor * ggml_soft_max(
  5401. struct ggml_context * ctx,
  5402. struct ggml_tensor * a) {
  5403. return ggml_soft_max_impl(ctx, a, false);
  5404. }
  5405. struct ggml_tensor * ggml_soft_max_inplace(
  5406. struct ggml_context * ctx,
  5407. struct ggml_tensor * a) {
  5408. return ggml_soft_max_impl(ctx, a, true);
  5409. }
  5410. // ggml_soft_max_back
  5411. static struct ggml_tensor * ggml_soft_max_back_impl(
  5412. struct ggml_context * ctx,
  5413. struct ggml_tensor * a,
  5414. struct ggml_tensor * b,
  5415. bool inplace) {
  5416. bool is_node = false;
  5417. if (a->grad || b->grad) {
  5418. is_node = true; // TODO : implement backward pass
  5419. }
  5420. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5421. result->op = GGML_OP_SOFT_MAX_BACK;
  5422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5423. result->src[0] = a;
  5424. result->src[1] = b;
  5425. return result;
  5426. }
  5427. struct ggml_tensor * ggml_soft_max_back(
  5428. struct ggml_context * ctx,
  5429. struct ggml_tensor * a,
  5430. struct ggml_tensor * b) {
  5431. return ggml_soft_max_back_impl(ctx, a, b, false);
  5432. }
  5433. struct ggml_tensor * ggml_soft_max_back_inplace(
  5434. struct ggml_context * ctx,
  5435. struct ggml_tensor * a,
  5436. struct ggml_tensor * b) {
  5437. return ggml_soft_max_back_impl(ctx, a, b, true);
  5438. }
  5439. // ggml_rope
  5440. static struct ggml_tensor * ggml_rope_impl(
  5441. struct ggml_context * ctx,
  5442. struct ggml_tensor * a,
  5443. int n_past,
  5444. int n_dims,
  5445. int mode,
  5446. int n_ctx,
  5447. float freq_base,
  5448. float freq_scale,
  5449. float xpos_base,
  5450. bool xpos_down,
  5451. bool inplace) {
  5452. GGML_ASSERT(n_past >= 0);
  5453. bool is_node = false;
  5454. if (a->grad) {
  5455. is_node = true;
  5456. }
  5457. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5458. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5459. memcpy(params + 4, &freq_base, sizeof(float));
  5460. memcpy(params + 5, &freq_scale, sizeof(float));
  5461. memcpy(params + 6, &xpos_base, sizeof(float));
  5462. memcpy(params + 7, &xpos_down, sizeof(bool));
  5463. ggml_set_op_params(result, params, sizeof(params));
  5464. result->op = GGML_OP_ROPE;
  5465. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5466. result->src[0] = a;
  5467. return result;
  5468. }
  5469. struct ggml_tensor * ggml_rope(
  5470. struct ggml_context * ctx,
  5471. struct ggml_tensor * a,
  5472. int n_past,
  5473. int n_dims,
  5474. int mode,
  5475. int n_ctx) {
  5476. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5477. }
  5478. struct ggml_tensor * ggml_rope_inplace(
  5479. struct ggml_context * ctx,
  5480. struct ggml_tensor * a,
  5481. int n_past,
  5482. int n_dims,
  5483. int mode,
  5484. int n_ctx) {
  5485. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5486. }
  5487. struct ggml_tensor * ggml_rope_custom(
  5488. struct ggml_context * ctx,
  5489. struct ggml_tensor * a,
  5490. int n_past,
  5491. int n_dims,
  5492. int mode,
  5493. int n_ctx,
  5494. float freq_base,
  5495. float freq_scale) {
  5496. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5497. }
  5498. struct ggml_tensor * ggml_rope_custom_inplace(
  5499. struct ggml_context * ctx,
  5500. struct ggml_tensor * a,
  5501. int n_past,
  5502. int n_dims,
  5503. int mode,
  5504. int n_ctx,
  5505. float freq_base,
  5506. float freq_scale) {
  5507. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5508. }
  5509. struct ggml_tensor * ggml_rope_xpos_inplace(
  5510. struct ggml_context * ctx,
  5511. struct ggml_tensor * a,
  5512. int n_past,
  5513. int n_dims,
  5514. float base,
  5515. bool down) {
  5516. return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5517. }
  5518. // ggml_rope_back
  5519. struct ggml_tensor * ggml_rope_back(
  5520. struct ggml_context * ctx,
  5521. struct ggml_tensor * a,
  5522. int n_past,
  5523. int n_dims,
  5524. int mode,
  5525. int n_ctx,
  5526. float freq_base,
  5527. float freq_scale,
  5528. float xpos_base,
  5529. bool xpos_down) {
  5530. GGML_ASSERT(n_past >= 0);
  5531. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5532. bool is_node = false;
  5533. if (a->grad) {
  5534. is_node = false; // TODO: implement backward
  5535. }
  5536. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5537. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5538. memcpy(params + 4, &freq_base, sizeof(float));
  5539. memcpy(params + 5, &freq_scale, sizeof(float));
  5540. memcpy(params + 6, &xpos_base, sizeof(float));
  5541. memcpy(params + 7, &xpos_down, sizeof(bool));
  5542. ggml_set_op_params(result, params, sizeof(params));
  5543. result->op = GGML_OP_ROPE_BACK;
  5544. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5545. result->src[0] = a;
  5546. return result;
  5547. }
  5548. // ggml_alibi
  5549. struct ggml_tensor * ggml_alibi(
  5550. struct ggml_context * ctx,
  5551. struct ggml_tensor * a,
  5552. int n_past,
  5553. int n_head,
  5554. float bias_max) {
  5555. GGML_ASSERT(n_past >= 0);
  5556. bool is_node = false;
  5557. if (a->grad) {
  5558. GGML_ASSERT(false); // TODO: implement backward
  5559. is_node = true;
  5560. }
  5561. // TODO: when implement backward, fix this:
  5562. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5563. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5564. int32_t op_params[3] = { n_past, n_head };
  5565. memcpy(op_params + 2, &bias_max, sizeof(float));
  5566. ggml_set_op_params(result, op_params, sizeof(op_params));
  5567. result->op = GGML_OP_ALIBI;
  5568. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5569. result->src[0] = a;
  5570. return result;
  5571. }
  5572. // ggml_clamp
  5573. struct ggml_tensor * ggml_clamp(
  5574. struct ggml_context * ctx,
  5575. struct ggml_tensor * a,
  5576. float min,
  5577. float max) {
  5578. bool is_node = false;
  5579. if (a->grad) {
  5580. GGML_ASSERT(false); // TODO: implement backward
  5581. is_node = true;
  5582. }
  5583. // TODO: when implement backward, fix this:
  5584. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5585. float params[] = { min, max };
  5586. ggml_set_op_params(result, params, sizeof(params));
  5587. result->op = GGML_OP_CLAMP;
  5588. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5589. result->src[0] = a;
  5590. return result;
  5591. }
  5592. // ggml_conv_1d
  5593. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5594. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5595. }
  5596. GGML_API struct ggml_tensor * ggml_conv_1d(
  5597. struct ggml_context * ctx,
  5598. struct ggml_tensor * a,
  5599. struct ggml_tensor * b,
  5600. int s0,
  5601. int p0,
  5602. int d0) {
  5603. GGML_ASSERT(ggml_is_matrix(b));
  5604. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5605. bool is_node = false;
  5606. if (a->grad || b->grad) {
  5607. GGML_ASSERT(false); // TODO: implement backward
  5608. is_node = true;
  5609. }
  5610. const int64_t ne[4] = {
  5611. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5612. a->ne[2], 1, 1,
  5613. };
  5614. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5615. int32_t params[] = { s0, p0, d0 };
  5616. ggml_set_op_params(result, params, sizeof(params));
  5617. result->op = GGML_OP_CONV_1D;
  5618. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5619. result->src[0] = a;
  5620. result->src[1] = b;
  5621. return result;
  5622. }
  5623. // ggml_conv_1d_ph
  5624. struct ggml_tensor* ggml_conv_1d_ph(
  5625. struct ggml_context * ctx,
  5626. struct ggml_tensor * a,
  5627. struct ggml_tensor * b,
  5628. int s,
  5629. int d) {
  5630. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5631. }
  5632. // ggml_conv_2d
  5633. struct ggml_tensor * ggml_conv_2d(
  5634. struct ggml_context * ctx,
  5635. struct ggml_tensor * a,
  5636. struct ggml_tensor * b,
  5637. int s0,
  5638. int s1,
  5639. int p0,
  5640. int p1,
  5641. int d0,
  5642. int d1) {
  5643. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5644. bool is_node = false;
  5645. if (a->grad || b->grad) {
  5646. GGML_ASSERT(false); // TODO: implement backward
  5647. is_node = true;
  5648. }
  5649. const int64_t ne[4] = {
  5650. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5651. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5652. a->ne[3], b->ne[3],
  5653. };
  5654. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5655. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5656. ggml_set_op_params(result, params, sizeof(params));
  5657. result->op = GGML_OP_CONV_2D;
  5658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5659. result->src[0] = a;
  5660. result->src[1] = b;
  5661. return result;
  5662. }
  5663. // ggml_conv_2d_sk_p0
  5664. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5665. struct ggml_context * ctx,
  5666. struct ggml_tensor * a,
  5667. struct ggml_tensor * b) {
  5668. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5669. }
  5670. // ggml_conv_2d_s1_ph
  5671. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5672. struct ggml_context * ctx,
  5673. struct ggml_tensor * a,
  5674. struct ggml_tensor * b) {
  5675. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5676. }
  5677. // ggml_conv_transpose_2d_p0
  5678. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5679. return (ins - 1) * s - 2 * p + ks;
  5680. }
  5681. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5682. struct ggml_context * ctx,
  5683. struct ggml_tensor * a,
  5684. struct ggml_tensor * b,
  5685. int stride) {
  5686. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5687. bool is_node = false;
  5688. if (a->grad || b->grad) {
  5689. GGML_ASSERT(false); // TODO: implement backward
  5690. is_node = true;
  5691. }
  5692. const int64_t ne[4] = {
  5693. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5694. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5695. a->ne[2], b->ne[3],
  5696. };
  5697. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5698. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5700. result->src[0] = a;
  5701. result->src[1] = b;
  5702. result->src[2] = ggml_new_i32(ctx, stride);
  5703. return result;
  5704. }
  5705. // ggml_pool_*
  5706. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5707. return (ins + 2 * p - ks) / s + 1;
  5708. }
  5709. // ggml_pool_1d
  5710. struct ggml_tensor * ggml_pool_1d(
  5711. struct ggml_context * ctx,
  5712. struct ggml_tensor * a,
  5713. enum ggml_op_pool op,
  5714. int k0,
  5715. int s0,
  5716. int p0) {
  5717. bool is_node = false;
  5718. if (a->grad) {
  5719. GGML_ASSERT(false); // TODO: implement backward
  5720. is_node = true;
  5721. }
  5722. const int64_t ne[3] = {
  5723. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5724. a->ne[1],
  5725. };
  5726. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5727. int32_t params[] = { op, k0, s0, p0 };
  5728. ggml_set_op_params(result, params, sizeof(params));
  5729. result->op = GGML_OP_POOL_1D;
  5730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5731. result->src[0] = a;
  5732. return result;
  5733. }
  5734. // ggml_pool_2d
  5735. struct ggml_tensor * ggml_pool_2d(
  5736. struct ggml_context * ctx,
  5737. struct ggml_tensor * a,
  5738. enum ggml_op_pool op,
  5739. int k0,
  5740. int k1,
  5741. int s0,
  5742. int s1,
  5743. int p0,
  5744. int p1) {
  5745. bool is_node = false;
  5746. if (a->grad) {
  5747. GGML_ASSERT(false); // TODO: implement backward
  5748. is_node = true;
  5749. }
  5750. const int64_t ne[3] = {
  5751. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5752. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5753. a->ne[2],
  5754. };
  5755. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5756. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5757. ggml_set_op_params(result, params, sizeof(params));
  5758. result->op = GGML_OP_POOL_2D;
  5759. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5760. result->src[0] = a;
  5761. return result;
  5762. }
  5763. // ggml_upscale
  5764. static struct ggml_tensor * ggml_upscale_impl(
  5765. struct ggml_context * ctx,
  5766. struct ggml_tensor * a,
  5767. int scale_factor) {
  5768. bool is_node = false;
  5769. if (a->grad) {
  5770. GGML_ASSERT(false); // TODO: implement backward
  5771. is_node = true;
  5772. }
  5773. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5774. a->ne[0] * scale_factor,
  5775. a->ne[1] * scale_factor,
  5776. a->ne[2], a->ne[3]);
  5777. result->op = GGML_OP_UPSCALE;
  5778. result->op_params[0] = scale_factor;
  5779. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5780. result->src[0] = a;
  5781. result->src[1] = NULL;
  5782. return result;
  5783. }
  5784. struct ggml_tensor * ggml_upscale(
  5785. struct ggml_context * ctx,
  5786. struct ggml_tensor * a,
  5787. int scale_factor) {
  5788. return ggml_upscale_impl(ctx, a, scale_factor);
  5789. }
  5790. // ggml_flash_attn
  5791. struct ggml_tensor * ggml_flash_attn(
  5792. struct ggml_context * ctx,
  5793. struct ggml_tensor * q,
  5794. struct ggml_tensor * k,
  5795. struct ggml_tensor * v,
  5796. bool masked) {
  5797. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5798. // TODO: check if vT can be multiplied by (k*qT)
  5799. bool is_node = false;
  5800. if (q->grad || k->grad || v->grad) {
  5801. is_node = true;
  5802. }
  5803. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5804. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5805. int32_t t = masked ? 1 : 0;
  5806. ggml_set_op_params(result, &t, sizeof(t));
  5807. result->op = GGML_OP_FLASH_ATTN;
  5808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5809. result->src[0] = q;
  5810. result->src[1] = k;
  5811. result->src[2] = v;
  5812. return result;
  5813. }
  5814. // ggml_flash_ff
  5815. struct ggml_tensor * ggml_flash_ff(
  5816. struct ggml_context * ctx,
  5817. struct ggml_tensor * a,
  5818. struct ggml_tensor * b0,
  5819. struct ggml_tensor * b1,
  5820. struct ggml_tensor * c0,
  5821. struct ggml_tensor * c1) {
  5822. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5823. // TODO: more checks
  5824. bool is_node = false;
  5825. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5826. is_node = true;
  5827. }
  5828. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5829. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5830. result->op = GGML_OP_FLASH_FF;
  5831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5832. result->src[0] = a;
  5833. result->src[1] = b0;
  5834. result->src[2] = b1;
  5835. result->src[3] = c0;
  5836. result->src[4] = c1;
  5837. return result;
  5838. }
  5839. // ggml_flash_attn_back
  5840. struct ggml_tensor * ggml_flash_attn_back(
  5841. struct ggml_context * ctx,
  5842. struct ggml_tensor * q,
  5843. struct ggml_tensor * k,
  5844. struct ggml_tensor * v,
  5845. struct ggml_tensor * d,
  5846. bool masked) {
  5847. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5848. // TODO: check if vT can be multiplied by (k*qT)
  5849. // d shape [D,N,ne2,ne3]
  5850. // q shape [D,N,ne2,ne3]
  5851. // k shape [D,M,ne2,ne3]
  5852. // v shape [M,D,ne2,ne3]
  5853. const int64_t D = q->ne[0];
  5854. const int64_t N = q->ne[1];
  5855. const int64_t M = k->ne[1];
  5856. const int64_t ne2 = q->ne[2];
  5857. const int64_t ne3 = q->ne[3];
  5858. GGML_ASSERT(k->ne[0] == D);
  5859. GGML_ASSERT(v->ne[0] == M);
  5860. GGML_ASSERT(v->ne[1] == D);
  5861. GGML_ASSERT(d->ne[0] == D);
  5862. GGML_ASSERT(d->ne[1] == N);
  5863. GGML_ASSERT(k->ne[2] == ne2);
  5864. GGML_ASSERT(k->ne[3] == ne3);
  5865. GGML_ASSERT(v->ne[2] == ne2);
  5866. GGML_ASSERT(v->ne[3] == ne3);
  5867. GGML_ASSERT(d->ne[2] == ne2);
  5868. GGML_ASSERT(d->ne[3] == ne3);
  5869. bool is_node = false;
  5870. if (q->grad || k->grad || v->grad) {
  5871. // when using this operation (in backwards pass) these grads are set.
  5872. // we don't want to create (big) grad of our result, so is_node is false.
  5873. is_node = false;
  5874. }
  5875. // store gradients of q, k and v as continuous tensors concatenated in result.
  5876. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5877. // gradq->data = result->data
  5878. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5879. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5880. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5881. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5882. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5883. int32_t masked_i = masked ? 1 : 0;
  5884. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5885. result->op = GGML_OP_FLASH_ATTN_BACK;
  5886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5887. result->src[0] = q;
  5888. result->src[1] = k;
  5889. result->src[2] = v;
  5890. result->src[3] = d;
  5891. return result;
  5892. }
  5893. // ggml_win_part
  5894. struct ggml_tensor * ggml_win_part(
  5895. struct ggml_context * ctx,
  5896. struct ggml_tensor * a,
  5897. int w) {
  5898. GGML_ASSERT(a->ne[3] == 1);
  5899. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5900. bool is_node = false;
  5901. if (a->grad) {
  5902. GGML_ASSERT(false); // TODO: implement backward
  5903. is_node = true;
  5904. }
  5905. // padding
  5906. const int px = (w - a->ne[1]%w)%w;
  5907. const int py = (w - a->ne[2]%w)%w;
  5908. const int npx = (px + a->ne[1])/w;
  5909. const int npy = (py + a->ne[2])/w;
  5910. const int np = npx*npy;
  5911. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5912. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5913. int32_t params[] = { npx, npy, w };
  5914. ggml_set_op_params(result, params, sizeof(params));
  5915. result->op = GGML_OP_WIN_PART;
  5916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5917. result->src[0] = a;
  5918. return result;
  5919. }
  5920. // ggml_win_unpart
  5921. struct ggml_tensor * ggml_win_unpart(
  5922. struct ggml_context * ctx,
  5923. struct ggml_tensor * a,
  5924. int w0,
  5925. int h0,
  5926. int w) {
  5927. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5928. bool is_node = false;
  5929. if (a->grad) {
  5930. GGML_ASSERT(false); // TODO: implement backward
  5931. is_node = true;
  5932. }
  5933. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5934. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5935. int32_t params[] = { w };
  5936. ggml_set_op_params(result, params, sizeof(params));
  5937. result->op = GGML_OP_WIN_UNPART;
  5938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5939. result->src[0] = a;
  5940. return result;
  5941. }
  5942. // ggml_get_rel_pos
  5943. struct ggml_tensor * ggml_get_rel_pos(
  5944. struct ggml_context * ctx,
  5945. struct ggml_tensor * a,
  5946. int qh,
  5947. int kh) {
  5948. GGML_ASSERT(qh == kh);
  5949. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5950. bool is_node = false;
  5951. if (a->grad) {
  5952. GGML_ASSERT(false); // TODO: implement backward
  5953. is_node = true;
  5954. }
  5955. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5956. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5957. result->op = GGML_OP_GET_REL_POS;
  5958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5959. result->src[0] = a;
  5960. result->src[1] = NULL;
  5961. return result;
  5962. }
  5963. // ggml_add_rel_pos
  5964. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5965. struct ggml_context * ctx,
  5966. struct ggml_tensor * a,
  5967. struct ggml_tensor * pw,
  5968. struct ggml_tensor * ph,
  5969. bool inplace) {
  5970. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5971. GGML_ASSERT(ggml_is_contiguous(a));
  5972. GGML_ASSERT(ggml_is_contiguous(pw));
  5973. GGML_ASSERT(ggml_is_contiguous(ph));
  5974. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5975. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5976. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5977. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5978. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5979. bool is_node = false;
  5980. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5981. is_node = true;
  5982. }
  5983. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5984. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5985. result->op = GGML_OP_ADD_REL_POS;
  5986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5987. result->src[0] = a;
  5988. result->src[1] = pw;
  5989. result->src[2] = ph;
  5990. return result;
  5991. }
  5992. struct ggml_tensor * ggml_add_rel_pos(
  5993. struct ggml_context * ctx,
  5994. struct ggml_tensor * a,
  5995. struct ggml_tensor * pw,
  5996. struct ggml_tensor * ph) {
  5997. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5998. }
  5999. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6000. struct ggml_context * ctx,
  6001. struct ggml_tensor * a,
  6002. struct ggml_tensor * pw,
  6003. struct ggml_tensor * ph) {
  6004. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6005. }
  6006. // gmml_unary
  6007. static struct ggml_tensor * ggml_unary_impl(
  6008. struct ggml_context * ctx,
  6009. struct ggml_tensor * a,
  6010. enum ggml_unary_op op,
  6011. bool inplace) {
  6012. bool is_node = false;
  6013. if (!inplace && (a->grad)) {
  6014. is_node = true;
  6015. }
  6016. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6017. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6018. result->op = GGML_OP_UNARY;
  6019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6020. result->src[0] = a;
  6021. return result;
  6022. }
  6023. struct ggml_tensor * ggml_unary(
  6024. struct ggml_context * ctx,
  6025. struct ggml_tensor * a,
  6026. enum ggml_unary_op op) {
  6027. return ggml_unary_impl(ctx, a, op, false);
  6028. }
  6029. struct ggml_tensor * ggml_unary_inplace(
  6030. struct ggml_context * ctx,
  6031. struct ggml_tensor * a,
  6032. enum ggml_unary_op op) {
  6033. return ggml_unary_impl(ctx, a, op, true);
  6034. }
  6035. // ggml_map_unary
  6036. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6037. struct ggml_context * ctx,
  6038. struct ggml_tensor * a,
  6039. const ggml_unary_op_f32_t fun,
  6040. bool inplace) {
  6041. bool is_node = false;
  6042. if (!inplace && a->grad) {
  6043. is_node = true;
  6044. }
  6045. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6046. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6047. result->op = GGML_OP_MAP_UNARY;
  6048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6049. result->src[0] = a;
  6050. return result;
  6051. }
  6052. struct ggml_tensor * ggml_map_unary_f32(
  6053. struct ggml_context * ctx,
  6054. struct ggml_tensor * a,
  6055. const ggml_unary_op_f32_t fun) {
  6056. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6057. }
  6058. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6059. struct ggml_context * ctx,
  6060. struct ggml_tensor * a,
  6061. const ggml_unary_op_f32_t fun) {
  6062. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6063. }
  6064. // ggml_map_binary
  6065. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6066. struct ggml_context * ctx,
  6067. struct ggml_tensor * a,
  6068. struct ggml_tensor * b,
  6069. const ggml_binary_op_f32_t fun,
  6070. bool inplace) {
  6071. GGML_ASSERT(ggml_are_same_shape(a, b));
  6072. bool is_node = false;
  6073. if (!inplace && (a->grad || b->grad)) {
  6074. is_node = true;
  6075. }
  6076. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6077. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6078. result->op = GGML_OP_MAP_BINARY;
  6079. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6080. result->src[0] = a;
  6081. result->src[1] = b;
  6082. return result;
  6083. }
  6084. struct ggml_tensor * ggml_map_binary_f32(
  6085. struct ggml_context * ctx,
  6086. struct ggml_tensor * a,
  6087. struct ggml_tensor * b,
  6088. const ggml_binary_op_f32_t fun) {
  6089. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6090. }
  6091. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6092. struct ggml_context * ctx,
  6093. struct ggml_tensor * a,
  6094. struct ggml_tensor * b,
  6095. const ggml_binary_op_f32_t fun) {
  6096. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6097. }
  6098. // ggml_map_custom1_f32
  6099. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6100. struct ggml_context * ctx,
  6101. struct ggml_tensor * a,
  6102. const ggml_custom1_op_f32_t fun,
  6103. bool inplace) {
  6104. bool is_node = false;
  6105. if (!inplace && a->grad) {
  6106. is_node = true;
  6107. }
  6108. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6109. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6110. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6112. result->src[0] = a;
  6113. return result;
  6114. }
  6115. struct ggml_tensor * ggml_map_custom1_f32(
  6116. struct ggml_context * ctx,
  6117. struct ggml_tensor * a,
  6118. const ggml_custom1_op_f32_t fun) {
  6119. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6120. }
  6121. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6122. struct ggml_context * ctx,
  6123. struct ggml_tensor * a,
  6124. const ggml_custom1_op_f32_t fun) {
  6125. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6126. }
  6127. // ggml_map_custom2_f32
  6128. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6129. struct ggml_context * ctx,
  6130. struct ggml_tensor * a,
  6131. struct ggml_tensor * b,
  6132. const ggml_custom2_op_f32_t fun,
  6133. bool inplace) {
  6134. bool is_node = false;
  6135. if (!inplace && (a->grad || b->grad)) {
  6136. is_node = true;
  6137. }
  6138. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6139. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6140. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6142. result->src[0] = a;
  6143. result->src[1] = b;
  6144. return result;
  6145. }
  6146. struct ggml_tensor * ggml_map_custom2_f32(
  6147. struct ggml_context * ctx,
  6148. struct ggml_tensor * a,
  6149. struct ggml_tensor * b,
  6150. const ggml_custom2_op_f32_t fun) {
  6151. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6152. }
  6153. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6154. struct ggml_context * ctx,
  6155. struct ggml_tensor * a,
  6156. struct ggml_tensor * b,
  6157. const ggml_custom2_op_f32_t fun) {
  6158. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6159. }
  6160. // ggml_map_custom3_f32
  6161. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6162. struct ggml_context * ctx,
  6163. struct ggml_tensor * a,
  6164. struct ggml_tensor * b,
  6165. struct ggml_tensor * c,
  6166. const ggml_custom3_op_f32_t fun,
  6167. bool inplace) {
  6168. bool is_node = false;
  6169. if (!inplace && (a->grad || b->grad || c->grad)) {
  6170. is_node = true;
  6171. }
  6172. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6173. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6174. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6176. result->src[0] = a;
  6177. result->src[1] = b;
  6178. result->src[2] = c;
  6179. return result;
  6180. }
  6181. struct ggml_tensor * ggml_map_custom3_f32(
  6182. struct ggml_context * ctx,
  6183. struct ggml_tensor * a,
  6184. struct ggml_tensor * b,
  6185. struct ggml_tensor * c,
  6186. const ggml_custom3_op_f32_t fun) {
  6187. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6188. }
  6189. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6190. struct ggml_context * ctx,
  6191. struct ggml_tensor * a,
  6192. struct ggml_tensor * b,
  6193. struct ggml_tensor * c,
  6194. const ggml_custom3_op_f32_t fun) {
  6195. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6196. }
  6197. // ggml_map_custom1
  6198. struct ggml_map_custom1_op_params {
  6199. ggml_custom1_op_t fun;
  6200. int n_tasks;
  6201. void * userdata;
  6202. };
  6203. static struct ggml_tensor * ggml_map_custom1_impl(
  6204. struct ggml_context * ctx,
  6205. struct ggml_tensor * a,
  6206. const ggml_custom1_op_t fun,
  6207. int n_tasks,
  6208. void * userdata,
  6209. bool inplace) {
  6210. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6211. bool is_node = false;
  6212. if (!inplace && a->grad) {
  6213. is_node = true;
  6214. }
  6215. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6216. struct ggml_map_custom1_op_params params = {
  6217. /*.fun =*/ fun,
  6218. /*.n_tasks =*/ n_tasks,
  6219. /*.userdata =*/ userdata
  6220. };
  6221. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6222. result->op = GGML_OP_MAP_CUSTOM1;
  6223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6224. result->src[0] = a;
  6225. return result;
  6226. }
  6227. struct ggml_tensor * ggml_map_custom1(
  6228. struct ggml_context * ctx,
  6229. struct ggml_tensor * a,
  6230. const ggml_custom1_op_t fun,
  6231. int n_tasks,
  6232. void * userdata) {
  6233. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6234. }
  6235. struct ggml_tensor * ggml_map_custom1_inplace(
  6236. struct ggml_context * ctx,
  6237. struct ggml_tensor * a,
  6238. const ggml_custom1_op_t fun,
  6239. int n_tasks,
  6240. void * userdata) {
  6241. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6242. }
  6243. // ggml_map_custom2
  6244. struct ggml_map_custom2_op_params {
  6245. ggml_custom2_op_t fun;
  6246. int n_tasks;
  6247. void * userdata;
  6248. };
  6249. static struct ggml_tensor * ggml_map_custom2_impl(
  6250. struct ggml_context * ctx,
  6251. struct ggml_tensor * a,
  6252. struct ggml_tensor * b,
  6253. const ggml_custom2_op_t fun,
  6254. int n_tasks,
  6255. void * userdata,
  6256. bool inplace) {
  6257. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6258. bool is_node = false;
  6259. if (!inplace && (a->grad || b->grad)) {
  6260. is_node = true;
  6261. }
  6262. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6263. struct ggml_map_custom2_op_params params = {
  6264. /*.fun =*/ fun,
  6265. /*.n_tasks =*/ n_tasks,
  6266. /*.userdata =*/ userdata
  6267. };
  6268. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6269. result->op = GGML_OP_MAP_CUSTOM2;
  6270. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6271. result->src[0] = a;
  6272. result->src[1] = b;
  6273. return result;
  6274. }
  6275. struct ggml_tensor * ggml_map_custom2(
  6276. struct ggml_context * ctx,
  6277. struct ggml_tensor * a,
  6278. struct ggml_tensor * b,
  6279. const ggml_custom2_op_t fun,
  6280. int n_tasks,
  6281. void * userdata) {
  6282. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6283. }
  6284. struct ggml_tensor * ggml_map_custom2_inplace(
  6285. struct ggml_context * ctx,
  6286. struct ggml_tensor * a,
  6287. struct ggml_tensor * b,
  6288. const ggml_custom2_op_t fun,
  6289. int n_tasks,
  6290. void * userdata) {
  6291. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6292. }
  6293. // ggml_map_custom3
  6294. struct ggml_map_custom3_op_params {
  6295. ggml_custom3_op_t fun;
  6296. int n_tasks;
  6297. void * userdata;
  6298. };
  6299. static struct ggml_tensor * ggml_map_custom3_impl(
  6300. struct ggml_context * ctx,
  6301. struct ggml_tensor * a,
  6302. struct ggml_tensor * b,
  6303. struct ggml_tensor * c,
  6304. const ggml_custom3_op_t fun,
  6305. int n_tasks,
  6306. void * userdata,
  6307. bool inplace) {
  6308. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6309. bool is_node = false;
  6310. if (!inplace && (a->grad || b->grad || c->grad)) {
  6311. is_node = true;
  6312. }
  6313. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6314. struct ggml_map_custom3_op_params params = {
  6315. /*.fun =*/ fun,
  6316. /*.n_tasks =*/ n_tasks,
  6317. /*.userdata =*/ userdata
  6318. };
  6319. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6320. result->op = GGML_OP_MAP_CUSTOM3;
  6321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6322. result->src[0] = a;
  6323. result->src[1] = b;
  6324. result->src[2] = c;
  6325. return result;
  6326. }
  6327. struct ggml_tensor * ggml_map_custom3(
  6328. struct ggml_context * ctx,
  6329. struct ggml_tensor * a,
  6330. struct ggml_tensor * b,
  6331. struct ggml_tensor * c,
  6332. const ggml_custom3_op_t fun,
  6333. int n_tasks,
  6334. void * userdata) {
  6335. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6336. }
  6337. struct ggml_tensor * ggml_map_custom3_inplace(
  6338. struct ggml_context * ctx,
  6339. struct ggml_tensor * a,
  6340. struct ggml_tensor * b,
  6341. struct ggml_tensor * c,
  6342. const ggml_custom3_op_t fun,
  6343. int n_tasks,
  6344. void * userdata) {
  6345. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6346. }
  6347. // ggml_cross_entropy_loss
  6348. struct ggml_tensor * ggml_cross_entropy_loss(
  6349. struct ggml_context * ctx,
  6350. struct ggml_tensor * a,
  6351. struct ggml_tensor * b) {
  6352. GGML_ASSERT(ggml_are_same_shape(a, b));
  6353. bool is_node = false;
  6354. if (a->grad || b->grad) {
  6355. is_node = true;
  6356. }
  6357. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6358. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6360. result->src[0] = a;
  6361. result->src[1] = b;
  6362. return result;
  6363. }
  6364. // ggml_cross_entropy_loss_back
  6365. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6366. struct ggml_context * ctx,
  6367. struct ggml_tensor * a,
  6368. struct ggml_tensor * b,
  6369. struct ggml_tensor * c) {
  6370. GGML_ASSERT(ggml_are_same_shape(a, b));
  6371. GGML_ASSERT(ggml_is_scalar(c));
  6372. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6373. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6374. result->grad = NULL;
  6375. result->src[0] = a;
  6376. result->src[1] = b;
  6377. result->src[2] = c;
  6378. return result;
  6379. }
  6380. ////////////////////////////////////////////////////////////////////////////////
  6381. void ggml_set_param(
  6382. struct ggml_context * ctx,
  6383. struct ggml_tensor * tensor) {
  6384. tensor->is_param = true;
  6385. GGML_ASSERT(tensor->grad == NULL);
  6386. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6387. }
  6388. // ggml_compute_forward_dup
  6389. static void ggml_compute_forward_dup_same_cont(
  6390. const struct ggml_compute_params * params,
  6391. const struct ggml_tensor * src0,
  6392. struct ggml_tensor * dst) {
  6393. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6394. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6395. GGML_ASSERT(src0->type == dst->type);
  6396. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6397. return;
  6398. }
  6399. const size_t nb00 = src0->nb[0];
  6400. const size_t nb0 = dst->nb[0];
  6401. const int ith = params->ith; // thread index
  6402. const int nth = params->nth; // number of threads
  6403. // parallelize by elements
  6404. const int ne = ggml_nelements(dst);
  6405. const int dr = (ne + nth - 1) / nth;
  6406. const int ie0 = dr * ith;
  6407. const int ie1 = MIN(ie0 + dr, ne);
  6408. if (ie0 < ie1) {
  6409. memcpy(
  6410. ((char *) dst->data + ie0*nb0),
  6411. ((char *) src0->data + ie0*nb00),
  6412. (ie1 - ie0) * ggml_type_size(src0->type));
  6413. }
  6414. }
  6415. static void ggml_compute_forward_dup_f16(
  6416. const struct ggml_compute_params * params,
  6417. const struct ggml_tensor * src0,
  6418. struct ggml_tensor * dst) {
  6419. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6420. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6421. return;
  6422. }
  6423. GGML_TENSOR_UNARY_OP_LOCALS;
  6424. const int ith = params->ith; // thread index
  6425. const int nth = params->nth; // number of threads
  6426. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6427. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6428. return;
  6429. }
  6430. // parallelize by rows
  6431. const int nr = ne01;
  6432. // number of rows per thread
  6433. const int dr = (nr + nth - 1) / nth;
  6434. // row range for this thread
  6435. const int ir0 = dr * ith;
  6436. const int ir1 = MIN(ir0 + dr, nr);
  6437. if (src0->type == dst->type &&
  6438. ne00 == ne0 &&
  6439. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6440. // copy by rows
  6441. const size_t rs = ne00*nb00;
  6442. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6443. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6444. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6445. memcpy(
  6446. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6447. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6448. rs);
  6449. }
  6450. }
  6451. }
  6452. return;
  6453. }
  6454. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6455. if (ggml_is_contiguous(dst)) {
  6456. if (nb00 == sizeof(ggml_fp16_t)) {
  6457. if (dst->type == GGML_TYPE_F16) {
  6458. size_t id = 0;
  6459. const size_t rs = ne00 * nb00;
  6460. char * dst_ptr = (char *) dst->data;
  6461. for (int i03 = 0; i03 < ne03; i03++) {
  6462. for (int i02 = 0; i02 < ne02; i02++) {
  6463. id += rs * ir0;
  6464. for (int i01 = ir0; i01 < ir1; i01++) {
  6465. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6466. memcpy(dst_ptr + id, src0_ptr, rs);
  6467. id += rs;
  6468. }
  6469. id += rs * (ne01 - ir1);
  6470. }
  6471. }
  6472. } else if (dst->type == GGML_TYPE_F32) {
  6473. size_t id = 0;
  6474. float * dst_ptr = (float *) dst->data;
  6475. for (int i03 = 0; i03 < ne03; i03++) {
  6476. for (int i02 = 0; i02 < ne02; i02++) {
  6477. id += ne00 * ir0;
  6478. for (int i01 = ir0; i01 < ir1; i01++) {
  6479. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6480. for (int i00 = 0; i00 < ne00; i00++) {
  6481. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6482. id++;
  6483. }
  6484. }
  6485. id += ne00 * (ne01 - ir1);
  6486. }
  6487. }
  6488. } else if (type_traits[dst->type].from_float) {
  6489. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6490. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6491. size_t id = 0;
  6492. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6493. char * dst_ptr = (char *) dst->data;
  6494. for (int i03 = 0; i03 < ne03; i03++) {
  6495. for (int i02 = 0; i02 < ne02; i02++) {
  6496. id += rs * ir0;
  6497. for (int i01 = ir0; i01 < ir1; i01++) {
  6498. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6499. for (int i00 = 0; i00 < ne00; i00++) {
  6500. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6501. }
  6502. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6503. id += rs;
  6504. }
  6505. id += rs * (ne01 - ir1);
  6506. }
  6507. }
  6508. } else {
  6509. GGML_ASSERT(false); // TODO: implement
  6510. }
  6511. } else {
  6512. //printf("%s: this is not optimal - fix me\n", __func__);
  6513. if (dst->type == GGML_TYPE_F32) {
  6514. size_t id = 0;
  6515. float * dst_ptr = (float *) dst->data;
  6516. for (int i03 = 0; i03 < ne03; i03++) {
  6517. for (int i02 = 0; i02 < ne02; i02++) {
  6518. id += ne00 * ir0;
  6519. for (int i01 = ir0; i01 < ir1; i01++) {
  6520. for (int i00 = 0; i00 < ne00; i00++) {
  6521. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6522. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6523. id++;
  6524. }
  6525. }
  6526. id += ne00 * (ne01 - ir1);
  6527. }
  6528. }
  6529. } else if (dst->type == GGML_TYPE_F16) {
  6530. size_t id = 0;
  6531. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6532. for (int i03 = 0; i03 < ne03; i03++) {
  6533. for (int i02 = 0; i02 < ne02; i02++) {
  6534. id += ne00 * ir0;
  6535. for (int i01 = ir0; i01 < ir1; i01++) {
  6536. for (int i00 = 0; i00 < ne00; i00++) {
  6537. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6538. dst_ptr[id] = *src0_ptr;
  6539. id++;
  6540. }
  6541. }
  6542. id += ne00 * (ne01 - ir1);
  6543. }
  6544. }
  6545. } else {
  6546. GGML_ASSERT(false); // TODO: implement
  6547. }
  6548. }
  6549. return;
  6550. }
  6551. // dst counters
  6552. int64_t i10 = 0;
  6553. int64_t i11 = 0;
  6554. int64_t i12 = 0;
  6555. int64_t i13 = 0;
  6556. if (dst->type == GGML_TYPE_F16) {
  6557. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6558. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6559. i10 += ne00 * ir0;
  6560. while (i10 >= ne0) {
  6561. i10 -= ne0;
  6562. if (++i11 == ne1) {
  6563. i11 = 0;
  6564. if (++i12 == ne2) {
  6565. i12 = 0;
  6566. if (++i13 == ne3) {
  6567. i13 = 0;
  6568. }
  6569. }
  6570. }
  6571. }
  6572. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6573. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6574. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6575. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6576. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6577. if (++i10 == ne00) {
  6578. i10 = 0;
  6579. if (++i11 == ne01) {
  6580. i11 = 0;
  6581. if (++i12 == ne02) {
  6582. i12 = 0;
  6583. if (++i13 == ne03) {
  6584. i13 = 0;
  6585. }
  6586. }
  6587. }
  6588. }
  6589. }
  6590. }
  6591. i10 += ne00 * (ne01 - ir1);
  6592. while (i10 >= ne0) {
  6593. i10 -= ne0;
  6594. if (++i11 == ne1) {
  6595. i11 = 0;
  6596. if (++i12 == ne2) {
  6597. i12 = 0;
  6598. if (++i13 == ne3) {
  6599. i13 = 0;
  6600. }
  6601. }
  6602. }
  6603. }
  6604. }
  6605. }
  6606. } else if (dst->type == GGML_TYPE_F32) {
  6607. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6608. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6609. i10 += ne00 * ir0;
  6610. while (i10 >= ne0) {
  6611. i10 -= ne0;
  6612. if (++i11 == ne1) {
  6613. i11 = 0;
  6614. if (++i12 == ne2) {
  6615. i12 = 0;
  6616. if (++i13 == ne3) {
  6617. i13 = 0;
  6618. }
  6619. }
  6620. }
  6621. }
  6622. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6623. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6624. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6625. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6626. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6627. if (++i10 == ne0) {
  6628. i10 = 0;
  6629. if (++i11 == ne1) {
  6630. i11 = 0;
  6631. if (++i12 == ne2) {
  6632. i12 = 0;
  6633. if (++i13 == ne3) {
  6634. i13 = 0;
  6635. }
  6636. }
  6637. }
  6638. }
  6639. }
  6640. }
  6641. i10 += ne00 * (ne01 - ir1);
  6642. while (i10 >= ne0) {
  6643. i10 -= ne0;
  6644. if (++i11 == ne1) {
  6645. i11 = 0;
  6646. if (++i12 == ne2) {
  6647. i12 = 0;
  6648. if (++i13 == ne3) {
  6649. i13 = 0;
  6650. }
  6651. }
  6652. }
  6653. }
  6654. }
  6655. }
  6656. } else {
  6657. GGML_ASSERT(false); // TODO: implement
  6658. }
  6659. }
  6660. static void ggml_compute_forward_dup_f32(
  6661. const struct ggml_compute_params * params,
  6662. const struct ggml_tensor * src0,
  6663. struct ggml_tensor * dst) {
  6664. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6666. return;
  6667. }
  6668. GGML_TENSOR_UNARY_OP_LOCALS;
  6669. const int ith = params->ith; // thread index
  6670. const int nth = params->nth; // number of threads
  6671. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6672. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6673. return;
  6674. }
  6675. // parallelize by rows
  6676. const int nr = ne01;
  6677. // number of rows per thread
  6678. const int dr = (nr + nth - 1) / nth;
  6679. // row range for this thread
  6680. const int ir0 = dr * ith;
  6681. const int ir1 = MIN(ir0 + dr, nr);
  6682. if (src0->type == dst->type &&
  6683. ne00 == ne0 &&
  6684. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6685. // copy by rows
  6686. const size_t rs = ne00*nb00;
  6687. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6688. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6689. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6690. memcpy(
  6691. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6692. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6693. rs);
  6694. }
  6695. }
  6696. }
  6697. return;
  6698. }
  6699. if (ggml_is_contiguous(dst)) {
  6700. // TODO: simplify
  6701. if (nb00 == sizeof(float)) {
  6702. if (dst->type == GGML_TYPE_F32) {
  6703. size_t id = 0;
  6704. const size_t rs = ne00 * nb00;
  6705. char * dst_ptr = (char *) dst->data;
  6706. for (int i03 = 0; i03 < ne03; i03++) {
  6707. for (int i02 = 0; i02 < ne02; i02++) {
  6708. id += rs * ir0;
  6709. for (int i01 = ir0; i01 < ir1; i01++) {
  6710. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6711. memcpy(dst_ptr + id, src0_ptr, rs);
  6712. id += rs;
  6713. }
  6714. id += rs * (ne01 - ir1);
  6715. }
  6716. }
  6717. } else if (type_traits[dst->type].from_float) {
  6718. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6719. size_t id = 0;
  6720. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6721. char * dst_ptr = (char *) dst->data;
  6722. for (int i03 = 0; i03 < ne03; i03++) {
  6723. for (int i02 = 0; i02 < ne02; i02++) {
  6724. id += rs * ir0;
  6725. for (int i01 = ir0; i01 < ir1; i01++) {
  6726. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6727. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6728. id += rs;
  6729. }
  6730. id += rs * (ne01 - ir1);
  6731. }
  6732. }
  6733. } else {
  6734. GGML_ASSERT(false); // TODO: implement
  6735. }
  6736. } else {
  6737. //printf("%s: this is not optimal - fix me\n", __func__);
  6738. if (dst->type == GGML_TYPE_F32) {
  6739. size_t id = 0;
  6740. float * dst_ptr = (float *) dst->data;
  6741. for (int i03 = 0; i03 < ne03; i03++) {
  6742. for (int i02 = 0; i02 < ne02; i02++) {
  6743. id += ne00 * ir0;
  6744. for (int i01 = ir0; i01 < ir1; i01++) {
  6745. for (int i00 = 0; i00 < ne00; i00++) {
  6746. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6747. dst_ptr[id] = *src0_ptr;
  6748. id++;
  6749. }
  6750. }
  6751. id += ne00 * (ne01 - ir1);
  6752. }
  6753. }
  6754. } else if (dst->type == GGML_TYPE_F16) {
  6755. size_t id = 0;
  6756. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6757. for (int i03 = 0; i03 < ne03; i03++) {
  6758. for (int i02 = 0; i02 < ne02; i02++) {
  6759. id += ne00 * ir0;
  6760. for (int i01 = ir0; i01 < ir1; i01++) {
  6761. for (int i00 = 0; i00 < ne00; i00++) {
  6762. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6763. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6764. id++;
  6765. }
  6766. }
  6767. id += ne00 * (ne01 - ir1);
  6768. }
  6769. }
  6770. } else {
  6771. GGML_ASSERT(false); // TODO: implement
  6772. }
  6773. }
  6774. return;
  6775. }
  6776. // dst counters
  6777. int64_t i10 = 0;
  6778. int64_t i11 = 0;
  6779. int64_t i12 = 0;
  6780. int64_t i13 = 0;
  6781. if (dst->type == GGML_TYPE_F32) {
  6782. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6783. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6784. i10 += ne00 * ir0;
  6785. while (i10 >= ne0) {
  6786. i10 -= ne0;
  6787. if (++i11 == ne1) {
  6788. i11 = 0;
  6789. if (++i12 == ne2) {
  6790. i12 = 0;
  6791. if (++i13 == ne3) {
  6792. i13 = 0;
  6793. }
  6794. }
  6795. }
  6796. }
  6797. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6798. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6799. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6800. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6801. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6802. if (++i10 == ne0) {
  6803. i10 = 0;
  6804. if (++i11 == ne1) {
  6805. i11 = 0;
  6806. if (++i12 == ne2) {
  6807. i12 = 0;
  6808. if (++i13 == ne3) {
  6809. i13 = 0;
  6810. }
  6811. }
  6812. }
  6813. }
  6814. }
  6815. }
  6816. i10 += ne00 * (ne01 - ir1);
  6817. while (i10 >= ne0) {
  6818. i10 -= ne0;
  6819. if (++i11 == ne1) {
  6820. i11 = 0;
  6821. if (++i12 == ne2) {
  6822. i12 = 0;
  6823. if (++i13 == ne3) {
  6824. i13 = 0;
  6825. }
  6826. }
  6827. }
  6828. }
  6829. }
  6830. }
  6831. } else if (dst->type == GGML_TYPE_F16) {
  6832. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6833. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6834. i10 += ne00 * ir0;
  6835. while (i10 >= ne0) {
  6836. i10 -= ne0;
  6837. if (++i11 == ne1) {
  6838. i11 = 0;
  6839. if (++i12 == ne2) {
  6840. i12 = 0;
  6841. if (++i13 == ne3) {
  6842. i13 = 0;
  6843. }
  6844. }
  6845. }
  6846. }
  6847. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6848. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6849. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6850. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6851. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6852. if (++i10 == ne0) {
  6853. i10 = 0;
  6854. if (++i11 == ne1) {
  6855. i11 = 0;
  6856. if (++i12 == ne2) {
  6857. i12 = 0;
  6858. if (++i13 == ne3) {
  6859. i13 = 0;
  6860. }
  6861. }
  6862. }
  6863. }
  6864. }
  6865. }
  6866. i10 += ne00 * (ne01 - ir1);
  6867. while (i10 >= ne0) {
  6868. i10 -= ne0;
  6869. if (++i11 == ne1) {
  6870. i11 = 0;
  6871. if (++i12 == ne2) {
  6872. i12 = 0;
  6873. if (++i13 == ne3) {
  6874. i13 = 0;
  6875. }
  6876. }
  6877. }
  6878. }
  6879. }
  6880. }
  6881. } else {
  6882. GGML_ASSERT(false); // TODO: implement
  6883. }
  6884. }
  6885. static void ggml_compute_forward_dup(
  6886. const struct ggml_compute_params * params,
  6887. const struct ggml_tensor * src0,
  6888. struct ggml_tensor * dst) {
  6889. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6890. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6891. return;
  6892. }
  6893. switch (src0->type) {
  6894. case GGML_TYPE_F16:
  6895. {
  6896. ggml_compute_forward_dup_f16(params, src0, dst);
  6897. } break;
  6898. case GGML_TYPE_F32:
  6899. {
  6900. ggml_compute_forward_dup_f32(params, src0, dst);
  6901. } break;
  6902. default:
  6903. {
  6904. GGML_ASSERT(false);
  6905. } break;
  6906. }
  6907. }
  6908. // ggml_compute_forward_add
  6909. static void ggml_compute_forward_add_f32(
  6910. const struct ggml_compute_params * params,
  6911. const struct ggml_tensor * src0,
  6912. const struct ggml_tensor * src1,
  6913. struct ggml_tensor * dst) {
  6914. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6916. return;
  6917. }
  6918. const int ith = params->ith;
  6919. const int nth = params->nth;
  6920. const int nr = ggml_nrows(src0);
  6921. GGML_TENSOR_BINARY_OP_LOCALS;
  6922. GGML_ASSERT( nb0 == sizeof(float));
  6923. GGML_ASSERT(nb00 == sizeof(float));
  6924. // rows per thread
  6925. const int dr = (nr + nth - 1)/nth;
  6926. // row range for this thread
  6927. const int ir0 = dr*ith;
  6928. const int ir1 = MIN(ir0 + dr, nr);
  6929. if (nb10 == sizeof(float)) {
  6930. for (int ir = ir0; ir < ir1; ++ir) {
  6931. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6932. const int64_t i03 = ir/(ne02*ne01);
  6933. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6934. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6935. const int64_t i13 = i03 % ne13;
  6936. const int64_t i12 = i02 % ne12;
  6937. const int64_t i11 = i01 % ne11;
  6938. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6939. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6940. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6941. #ifdef GGML_USE_ACCELERATE
  6942. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6943. #else
  6944. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6945. #endif
  6946. // }
  6947. // }
  6948. }
  6949. } else {
  6950. // src1 is not contiguous
  6951. for (int ir = ir0; ir < ir1; ++ir) {
  6952. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6953. const int64_t i03 = ir/(ne02*ne01);
  6954. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6955. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6956. const int64_t i13 = i03 % ne13;
  6957. const int64_t i12 = i02 % ne12;
  6958. const int64_t i11 = i01 % ne11;
  6959. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6960. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6961. for (int i0 = 0; i0 < ne0; i0++) {
  6962. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6963. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6964. }
  6965. }
  6966. }
  6967. }
  6968. static void ggml_compute_forward_add_f16_f32(
  6969. const struct ggml_compute_params * params,
  6970. const struct ggml_tensor * src0,
  6971. const struct ggml_tensor * src1,
  6972. struct ggml_tensor * dst) {
  6973. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6974. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6975. return;
  6976. }
  6977. const int ith = params->ith;
  6978. const int nth = params->nth;
  6979. const int nr = ggml_nrows(src0);
  6980. GGML_TENSOR_BINARY_OP_LOCALS;
  6981. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6982. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6983. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6984. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6985. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6986. // rows per thread
  6987. const int dr = (nr + nth - 1)/nth;
  6988. // row range for this thread
  6989. const int ir0 = dr*ith;
  6990. const int ir1 = MIN(ir0 + dr, nr);
  6991. if (nb10 == sizeof(float)) {
  6992. for (int ir = ir0; ir < ir1; ++ir) {
  6993. // src0, src1 and dst are same shape => same indices
  6994. const int i3 = ir/(ne2*ne1);
  6995. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6996. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6997. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6998. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6999. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7000. for (int i = 0; i < ne0; i++) {
  7001. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7002. }
  7003. }
  7004. }
  7005. else {
  7006. // src1 is not contiguous
  7007. GGML_ASSERT(false);
  7008. }
  7009. }
  7010. static void ggml_compute_forward_add_f16_f16(
  7011. const struct ggml_compute_params * params,
  7012. const struct ggml_tensor * src0,
  7013. const struct ggml_tensor * src1,
  7014. struct ggml_tensor * dst) {
  7015. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7016. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7017. return;
  7018. }
  7019. const int ith = params->ith;
  7020. const int nth = params->nth;
  7021. const int nr = ggml_nrows(src0);
  7022. GGML_TENSOR_BINARY_OP_LOCALS;
  7023. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7024. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7025. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7026. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7027. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7028. // rows per thread
  7029. const int dr = (nr + nth - 1)/nth;
  7030. // row range for this thread
  7031. const int ir0 = dr*ith;
  7032. const int ir1 = MIN(ir0 + dr, nr);
  7033. if (nb10 == sizeof(ggml_fp16_t)) {
  7034. for (int ir = ir0; ir < ir1; ++ir) {
  7035. // src0, src1 and dst are same shape => same indices
  7036. const int i3 = ir/(ne2*ne1);
  7037. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7038. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7039. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7040. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7041. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7042. for (int i = 0; i < ne0; i++) {
  7043. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7044. }
  7045. }
  7046. }
  7047. else {
  7048. // src1 is not contiguous
  7049. GGML_ASSERT(false);
  7050. }
  7051. }
  7052. static void ggml_compute_forward_add_q_f32(
  7053. const struct ggml_compute_params * params,
  7054. const struct ggml_tensor * src0,
  7055. const struct ggml_tensor * src1,
  7056. struct ggml_tensor * dst) {
  7057. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7058. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7059. return;
  7060. }
  7061. const int nr = ggml_nrows(src0);
  7062. GGML_TENSOR_BINARY_OP_LOCALS;
  7063. const int ith = params->ith;
  7064. const int nth = params->nth;
  7065. const enum ggml_type type = src0->type;
  7066. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7067. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7068. // we don't support permuted src0 or src1
  7069. GGML_ASSERT(nb00 == ggml_type_size(type));
  7070. GGML_ASSERT(nb10 == sizeof(float));
  7071. // dst cannot be transposed or permuted
  7072. GGML_ASSERT(nb0 <= nb1);
  7073. GGML_ASSERT(nb1 <= nb2);
  7074. GGML_ASSERT(nb2 <= nb3);
  7075. GGML_ASSERT(ggml_is_quantized(src0->type));
  7076. GGML_ASSERT(dst->type == src0->type);
  7077. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7078. // rows per thread
  7079. const int dr = (nr + nth - 1)/nth;
  7080. // row range for this thread
  7081. const int ir0 = dr*ith;
  7082. const int ir1 = MIN(ir0 + dr, nr);
  7083. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7084. for (int ir = ir0; ir < ir1; ++ir) {
  7085. // src0 indices
  7086. const int i03 = ir/(ne02*ne01);
  7087. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7088. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7089. // src1 and dst are same shape as src0 => same indices
  7090. const int i13 = i03;
  7091. const int i12 = i02;
  7092. const int i11 = i01;
  7093. const int i3 = i03;
  7094. const int i2 = i02;
  7095. const int i1 = i01;
  7096. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7097. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7098. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7099. assert(ne00 % 32 == 0);
  7100. // unquantize row from src0 to temp buffer
  7101. dequantize_row_q(src0_row, wdata, ne00);
  7102. // add src1
  7103. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7104. // quantize row to dst
  7105. quantize_row_q(wdata, dst_row, ne00);
  7106. }
  7107. }
  7108. static void ggml_compute_forward_add(
  7109. const struct ggml_compute_params * params,
  7110. const struct ggml_tensor * src0,
  7111. const struct ggml_tensor * src1,
  7112. struct ggml_tensor * dst) {
  7113. switch (src0->type) {
  7114. case GGML_TYPE_F32:
  7115. {
  7116. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7117. } break;
  7118. case GGML_TYPE_F16:
  7119. {
  7120. if (src1->type == GGML_TYPE_F16) {
  7121. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7122. }
  7123. else if (src1->type == GGML_TYPE_F32) {
  7124. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7125. }
  7126. else {
  7127. GGML_ASSERT(false);
  7128. }
  7129. } break;
  7130. case GGML_TYPE_Q4_0:
  7131. case GGML_TYPE_Q4_1:
  7132. case GGML_TYPE_Q5_0:
  7133. case GGML_TYPE_Q5_1:
  7134. case GGML_TYPE_Q8_0:
  7135. case GGML_TYPE_Q2_K:
  7136. case GGML_TYPE_Q3_K:
  7137. case GGML_TYPE_Q4_K:
  7138. case GGML_TYPE_Q5_K:
  7139. case GGML_TYPE_Q6_K:
  7140. {
  7141. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7142. } break;
  7143. default:
  7144. {
  7145. GGML_ASSERT(false);
  7146. } break;
  7147. }
  7148. }
  7149. // ggml_compute_forward_add1
  7150. static void ggml_compute_forward_add1_f32(
  7151. const struct ggml_compute_params * params,
  7152. const struct ggml_tensor * src0,
  7153. const struct ggml_tensor * src1,
  7154. struct ggml_tensor * dst) {
  7155. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7156. GGML_ASSERT(ggml_is_scalar(src1));
  7157. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7158. return;
  7159. }
  7160. const int ith = params->ith;
  7161. const int nth = params->nth;
  7162. const int nr = ggml_nrows(src0);
  7163. GGML_TENSOR_UNARY_OP_LOCALS;
  7164. GGML_ASSERT( nb0 == sizeof(float));
  7165. GGML_ASSERT(nb00 == sizeof(float));
  7166. // rows per thread
  7167. const int dr = (nr + nth - 1)/nth;
  7168. // row range for this thread
  7169. const int ir0 = dr*ith;
  7170. const int ir1 = MIN(ir0 + dr, nr);
  7171. for (int ir = ir0; ir < ir1; ++ir) {
  7172. // src0 and dst are same shape => same indices
  7173. const int i3 = ir/(ne2*ne1);
  7174. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7175. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7176. #ifdef GGML_USE_ACCELERATE
  7177. UNUSED(ggml_vec_add1_f32);
  7178. vDSP_vadd(
  7179. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7180. (float *) ((char *) src1->data), 0,
  7181. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7182. ne0);
  7183. #else
  7184. ggml_vec_add1_f32(ne0,
  7185. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7186. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7187. *(float *) src1->data);
  7188. #endif
  7189. }
  7190. }
  7191. static void ggml_compute_forward_add1_f16_f32(
  7192. const struct ggml_compute_params * params,
  7193. const struct ggml_tensor * src0,
  7194. const struct ggml_tensor * src1,
  7195. struct ggml_tensor * dst) {
  7196. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7197. GGML_ASSERT(ggml_is_scalar(src1));
  7198. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7199. return;
  7200. }
  7201. // scalar to add
  7202. const float v = *(float *) src1->data;
  7203. const int ith = params->ith;
  7204. const int nth = params->nth;
  7205. const int nr = ggml_nrows(src0);
  7206. GGML_TENSOR_UNARY_OP_LOCALS;
  7207. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7208. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7209. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7210. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7211. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7212. // rows per thread
  7213. const int dr = (nr + nth - 1)/nth;
  7214. // row range for this thread
  7215. const int ir0 = dr*ith;
  7216. const int ir1 = MIN(ir0 + dr, nr);
  7217. for (int ir = ir0; ir < ir1; ++ir) {
  7218. // src0 and dst are same shape => same indices
  7219. const int i3 = ir/(ne2*ne1);
  7220. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7221. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7222. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7223. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7224. for (int i = 0; i < ne0; i++) {
  7225. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7226. }
  7227. }
  7228. }
  7229. static void ggml_compute_forward_add1_f16_f16(
  7230. const struct ggml_compute_params * params,
  7231. const struct ggml_tensor * src0,
  7232. const struct ggml_tensor * src1,
  7233. struct ggml_tensor * dst) {
  7234. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7235. GGML_ASSERT(ggml_is_scalar(src1));
  7236. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7237. return;
  7238. }
  7239. // scalar to add
  7240. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7241. const int ith = params->ith;
  7242. const int nth = params->nth;
  7243. const int nr = ggml_nrows(src0);
  7244. GGML_TENSOR_UNARY_OP_LOCALS;
  7245. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7246. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7247. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7248. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7249. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7250. // rows per thread
  7251. const int dr = (nr + nth - 1)/nth;
  7252. // row range for this thread
  7253. const int ir0 = dr*ith;
  7254. const int ir1 = MIN(ir0 + dr, nr);
  7255. for (int ir = ir0; ir < ir1; ++ir) {
  7256. // src0 and dst are same shape => same indices
  7257. const int i3 = ir/(ne2*ne1);
  7258. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7259. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7260. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7261. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7262. for (int i = 0; i < ne0; i++) {
  7263. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7264. }
  7265. }
  7266. }
  7267. static void ggml_compute_forward_add1_q_f32(
  7268. const struct ggml_compute_params * params,
  7269. const struct ggml_tensor * src0,
  7270. const struct ggml_tensor * src1,
  7271. struct ggml_tensor * dst) {
  7272. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7273. GGML_ASSERT(ggml_is_scalar(src1));
  7274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7275. return;
  7276. }
  7277. // scalar to add
  7278. const float v = *(float *) src1->data;
  7279. const int ith = params->ith;
  7280. const int nth = params->nth;
  7281. const int nr = ggml_nrows(src0);
  7282. GGML_TENSOR_UNARY_OP_LOCALS;
  7283. const enum ggml_type type = src0->type;
  7284. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7285. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7286. // we don't support permuted src0
  7287. GGML_ASSERT(nb00 == ggml_type_size(type));
  7288. // dst cannot be transposed or permuted
  7289. GGML_ASSERT(nb0 <= nb1);
  7290. GGML_ASSERT(nb1 <= nb2);
  7291. GGML_ASSERT(nb2 <= nb3);
  7292. GGML_ASSERT(ggml_is_quantized(src0->type));
  7293. GGML_ASSERT(dst->type == src0->type);
  7294. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7295. // rows per thread
  7296. const int dr = (nr + nth - 1)/nth;
  7297. // row range for this thread
  7298. const int ir0 = dr*ith;
  7299. const int ir1 = MIN(ir0 + dr, nr);
  7300. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7301. for (int ir = ir0; ir < ir1; ++ir) {
  7302. // src0 and dst are same shape => same indices
  7303. const int i3 = ir/(ne2*ne1);
  7304. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7305. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7306. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7307. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7308. assert(ne0 % 32 == 0);
  7309. // unquantize row from src0 to temp buffer
  7310. dequantize_row_q(src0_row, wdata, ne0);
  7311. // add src1
  7312. ggml_vec_acc1_f32(ne0, wdata, v);
  7313. // quantize row to dst
  7314. quantize_row_q(wdata, dst_row, ne0);
  7315. }
  7316. }
  7317. static void ggml_compute_forward_add1(
  7318. const struct ggml_compute_params * params,
  7319. const struct ggml_tensor * src0,
  7320. const struct ggml_tensor * src1,
  7321. struct ggml_tensor * dst) {
  7322. switch (src0->type) {
  7323. case GGML_TYPE_F32:
  7324. {
  7325. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7326. } break;
  7327. case GGML_TYPE_F16:
  7328. {
  7329. if (src1->type == GGML_TYPE_F16) {
  7330. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7331. }
  7332. else if (src1->type == GGML_TYPE_F32) {
  7333. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7334. }
  7335. else {
  7336. GGML_ASSERT(false);
  7337. }
  7338. } break;
  7339. case GGML_TYPE_Q4_0:
  7340. case GGML_TYPE_Q4_1:
  7341. case GGML_TYPE_Q5_0:
  7342. case GGML_TYPE_Q5_1:
  7343. case GGML_TYPE_Q8_0:
  7344. case GGML_TYPE_Q8_1:
  7345. case GGML_TYPE_Q2_K:
  7346. case GGML_TYPE_Q3_K:
  7347. case GGML_TYPE_Q4_K:
  7348. case GGML_TYPE_Q5_K:
  7349. case GGML_TYPE_Q6_K:
  7350. {
  7351. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7352. } break;
  7353. default:
  7354. {
  7355. GGML_ASSERT(false);
  7356. } break;
  7357. }
  7358. }
  7359. // ggml_compute_forward_acc
  7360. static void ggml_compute_forward_acc_f32(
  7361. const struct ggml_compute_params * params,
  7362. const struct ggml_tensor * src0,
  7363. const struct ggml_tensor * src1,
  7364. struct ggml_tensor * dst) {
  7365. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7366. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7367. // view src0 and dst with these strides and data offset inbytes during acc
  7368. // nb0 is implicitely element_size because src0 and dst are contiguous
  7369. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7370. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7371. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7372. size_t offset = ((int32_t *) dst->op_params)[3];
  7373. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7374. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7375. // memcpy needs to be synchronized across threads to avoid race conditions.
  7376. // => do it in INIT phase
  7377. memcpy(
  7378. ((char *) dst->data),
  7379. ((char *) src0->data),
  7380. ggml_nbytes(dst));
  7381. }
  7382. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7383. return;
  7384. }
  7385. const int ith = params->ith;
  7386. const int nth = params->nth;
  7387. const int nr = ggml_nrows(src1);
  7388. const int nc = src1->ne[0];
  7389. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7390. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7391. // src0 and dst as viewed during acc
  7392. const size_t nb0 = ggml_element_size(src0);
  7393. const size_t nb00 = nb0;
  7394. const size_t nb01 = nb1;
  7395. const size_t nb02 = nb2;
  7396. const size_t nb03 = nb3;
  7397. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7398. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7399. GGML_ASSERT(nb10 == sizeof(float));
  7400. // rows per thread
  7401. const int dr = (nr + nth - 1)/nth;
  7402. // row range for this thread
  7403. const int ir0 = dr*ith;
  7404. const int ir1 = MIN(ir0 + dr, nr);
  7405. for (int ir = ir0; ir < ir1; ++ir) {
  7406. // src0 and dst are viewed with shape of src1 and offset
  7407. // => same indices
  7408. const int i3 = ir/(ne12*ne11);
  7409. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7410. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7411. #ifdef GGML_USE_ACCELERATE
  7412. vDSP_vadd(
  7413. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7414. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7415. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7416. #else
  7417. ggml_vec_add_f32(nc,
  7418. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7419. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7420. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7421. #endif
  7422. }
  7423. }
  7424. static void ggml_compute_forward_acc(
  7425. const struct ggml_compute_params * params,
  7426. const struct ggml_tensor * src0,
  7427. const struct ggml_tensor * src1,
  7428. struct ggml_tensor * dst) {
  7429. switch (src0->type) {
  7430. case GGML_TYPE_F32:
  7431. {
  7432. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7433. } break;
  7434. case GGML_TYPE_F16:
  7435. case GGML_TYPE_Q4_0:
  7436. case GGML_TYPE_Q4_1:
  7437. case GGML_TYPE_Q5_0:
  7438. case GGML_TYPE_Q5_1:
  7439. case GGML_TYPE_Q8_0:
  7440. case GGML_TYPE_Q8_1:
  7441. case GGML_TYPE_Q2_K:
  7442. case GGML_TYPE_Q3_K:
  7443. case GGML_TYPE_Q4_K:
  7444. case GGML_TYPE_Q5_K:
  7445. case GGML_TYPE_Q6_K:
  7446. default:
  7447. {
  7448. GGML_ASSERT(false);
  7449. } break;
  7450. }
  7451. }
  7452. // ggml_compute_forward_sub
  7453. static void ggml_compute_forward_sub_f32(
  7454. const struct ggml_compute_params * params,
  7455. const struct ggml_tensor * src0,
  7456. const struct ggml_tensor * src1,
  7457. struct ggml_tensor * dst) {
  7458. assert(params->ith == 0);
  7459. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7460. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7461. return;
  7462. }
  7463. const int nr = ggml_nrows(src0);
  7464. GGML_TENSOR_BINARY_OP_LOCALS;
  7465. GGML_ASSERT( nb0 == sizeof(float));
  7466. GGML_ASSERT(nb00 == sizeof(float));
  7467. if (nb10 == sizeof(float)) {
  7468. for (int ir = 0; ir < nr; ++ir) {
  7469. // src0, src1 and dst are same shape => same indices
  7470. const int i3 = ir/(ne2*ne1);
  7471. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7472. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7473. #ifdef GGML_USE_ACCELERATE
  7474. vDSP_vsub(
  7475. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7476. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7477. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7478. ne0);
  7479. #else
  7480. ggml_vec_sub_f32(ne0,
  7481. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7482. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7483. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7484. #endif
  7485. // }
  7486. // }
  7487. }
  7488. } else {
  7489. // src1 is not contiguous
  7490. for (int ir = 0; ir < nr; ++ir) {
  7491. // src0, src1 and dst are same shape => same indices
  7492. const int i3 = ir/(ne2*ne1);
  7493. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7494. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7495. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7496. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7497. for (int i0 = 0; i0 < ne0; i0++) {
  7498. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7499. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7500. }
  7501. }
  7502. }
  7503. }
  7504. static void ggml_compute_forward_sub(
  7505. const struct ggml_compute_params * params,
  7506. const struct ggml_tensor * src0,
  7507. const struct ggml_tensor * src1,
  7508. struct ggml_tensor * dst) {
  7509. switch (src0->type) {
  7510. case GGML_TYPE_F32:
  7511. {
  7512. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7513. } break;
  7514. default:
  7515. {
  7516. GGML_ASSERT(false);
  7517. } break;
  7518. }
  7519. }
  7520. // ggml_compute_forward_mul
  7521. static void ggml_compute_forward_mul_f32(
  7522. const struct ggml_compute_params * params,
  7523. const struct ggml_tensor * src0,
  7524. const struct ggml_tensor * src1,
  7525. struct ggml_tensor * dst) {
  7526. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7527. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7528. return;
  7529. }
  7530. const int ith = params->ith;
  7531. const int nth = params->nth;
  7532. #ifdef GGML_USE_CLBLAST
  7533. if (src1->backend == GGML_BACKEND_GPU) {
  7534. if (ith == 0) {
  7535. ggml_cl_mul(src0, src1, dst);
  7536. }
  7537. return;
  7538. }
  7539. #endif
  7540. const int64_t nr = ggml_nrows(src0);
  7541. GGML_TENSOR_BINARY_OP_LOCALS;
  7542. GGML_ASSERT( nb0 == sizeof(float));
  7543. GGML_ASSERT(nb00 == sizeof(float));
  7544. GGML_ASSERT(ne00 == ne10);
  7545. if (nb10 == sizeof(float)) {
  7546. for (int64_t ir = ith; ir < nr; ir += nth) {
  7547. // src0 and dst are same shape => same indices
  7548. const int64_t i03 = ir/(ne02*ne01);
  7549. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7550. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7551. const int64_t i13 = i03 % ne13;
  7552. const int64_t i12 = i02 % ne12;
  7553. const int64_t i11 = i01 % ne11;
  7554. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7555. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7556. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7557. #ifdef GGML_USE_ACCELERATE
  7558. UNUSED(ggml_vec_mul_f32);
  7559. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7560. #else
  7561. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7562. #endif
  7563. // }
  7564. // }
  7565. }
  7566. } else {
  7567. // src1 is not contiguous
  7568. for (int64_t ir = ith; ir < nr; ir += nth) {
  7569. // src0 and dst are same shape => same indices
  7570. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7571. const int64_t i03 = ir/(ne02*ne01);
  7572. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7573. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7574. const int64_t i13 = i03 % ne13;
  7575. const int64_t i12 = i02 % ne12;
  7576. const int64_t i11 = i01 % ne11;
  7577. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7578. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7579. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7580. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7581. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7582. }
  7583. }
  7584. }
  7585. }
  7586. static void ggml_compute_forward_mul(
  7587. const struct ggml_compute_params * params,
  7588. const struct ggml_tensor * src0,
  7589. const struct ggml_tensor * src1,
  7590. struct ggml_tensor * dst) {
  7591. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7592. switch (src0->type) {
  7593. case GGML_TYPE_F32:
  7594. {
  7595. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7596. } break;
  7597. default:
  7598. {
  7599. GGML_ASSERT(false);
  7600. } break;
  7601. }
  7602. }
  7603. // ggml_compute_forward_div
  7604. static void ggml_compute_forward_div_f32(
  7605. const struct ggml_compute_params * params,
  7606. const struct ggml_tensor * src0,
  7607. const struct ggml_tensor * src1,
  7608. struct ggml_tensor * dst) {
  7609. assert(params->ith == 0);
  7610. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7611. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7612. return;
  7613. }
  7614. const int nr = ggml_nrows(src0);
  7615. GGML_TENSOR_BINARY_OP_LOCALS;
  7616. GGML_ASSERT( nb0 == sizeof(float));
  7617. GGML_ASSERT(nb00 == sizeof(float));
  7618. if (nb10 == sizeof(float)) {
  7619. for (int ir = 0; ir < nr; ++ir) {
  7620. // src0, src1 and dst are same shape => same indices
  7621. const int i3 = ir/(ne2*ne1);
  7622. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7623. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7624. #ifdef GGML_USE_ACCELERATE
  7625. vDSP_vdiv(
  7626. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7627. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7628. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7629. ne0);
  7630. #else
  7631. ggml_vec_div_f32(ne0,
  7632. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7633. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7634. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7635. #endif
  7636. // }
  7637. // }
  7638. }
  7639. } else {
  7640. // src1 is not contiguous
  7641. for (int ir = 0; ir < nr; ++ir) {
  7642. // src0, src1 and dst are same shape => same indices
  7643. const int i3 = ir/(ne2*ne1);
  7644. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7645. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7646. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7647. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7648. for (int i0 = 0; i0 < ne0; i0++) {
  7649. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7650. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7651. }
  7652. }
  7653. }
  7654. }
  7655. static void ggml_compute_forward_div(
  7656. const struct ggml_compute_params * params,
  7657. const struct ggml_tensor * src0,
  7658. const struct ggml_tensor * src1,
  7659. struct ggml_tensor * dst) {
  7660. switch (src0->type) {
  7661. case GGML_TYPE_F32:
  7662. {
  7663. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7664. } break;
  7665. default:
  7666. {
  7667. GGML_ASSERT(false);
  7668. } break;
  7669. }
  7670. }
  7671. // ggml_compute_forward_sqr
  7672. static void ggml_compute_forward_sqr_f32(
  7673. const struct ggml_compute_params * params,
  7674. const struct ggml_tensor * src0,
  7675. struct ggml_tensor * dst) {
  7676. assert(params->ith == 0);
  7677. assert(ggml_are_same_shape(src0, dst));
  7678. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7679. return;
  7680. }
  7681. const int n = ggml_nrows(src0);
  7682. const int nc = src0->ne[0];
  7683. assert( dst->nb[0] == sizeof(float));
  7684. assert(src0->nb[0] == sizeof(float));
  7685. for (int i = 0; i < n; i++) {
  7686. ggml_vec_sqr_f32(nc,
  7687. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7688. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7689. }
  7690. }
  7691. static void ggml_compute_forward_sqr(
  7692. const struct ggml_compute_params * params,
  7693. const struct ggml_tensor * src0,
  7694. struct ggml_tensor * dst) {
  7695. switch (src0->type) {
  7696. case GGML_TYPE_F32:
  7697. {
  7698. ggml_compute_forward_sqr_f32(params, src0, dst);
  7699. } break;
  7700. default:
  7701. {
  7702. GGML_ASSERT(false);
  7703. } break;
  7704. }
  7705. }
  7706. // ggml_compute_forward_sqrt
  7707. static void ggml_compute_forward_sqrt_f32(
  7708. const struct ggml_compute_params * params,
  7709. const struct ggml_tensor * src0,
  7710. struct ggml_tensor * dst) {
  7711. assert(params->ith == 0);
  7712. assert(ggml_are_same_shape(src0, dst));
  7713. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7714. return;
  7715. }
  7716. const int n = ggml_nrows(src0);
  7717. const int nc = src0->ne[0];
  7718. assert( dst->nb[0] == sizeof(float));
  7719. assert(src0->nb[0] == sizeof(float));
  7720. for (int i = 0; i < n; i++) {
  7721. ggml_vec_sqrt_f32(nc,
  7722. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7723. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7724. }
  7725. }
  7726. static void ggml_compute_forward_sqrt(
  7727. const struct ggml_compute_params * params,
  7728. const struct ggml_tensor * src0,
  7729. struct ggml_tensor * dst) {
  7730. switch (src0->type) {
  7731. case GGML_TYPE_F32:
  7732. {
  7733. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7734. } break;
  7735. default:
  7736. {
  7737. GGML_ASSERT(false);
  7738. } break;
  7739. }
  7740. }
  7741. // ggml_compute_forward_log
  7742. static void ggml_compute_forward_log_f32(
  7743. const struct ggml_compute_params * params,
  7744. const struct ggml_tensor * src0,
  7745. struct ggml_tensor * dst) {
  7746. GGML_ASSERT(params->ith == 0);
  7747. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7748. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7749. return;
  7750. }
  7751. const int n = ggml_nrows(src0);
  7752. const int nc = src0->ne[0];
  7753. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7754. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7755. for (int i = 0; i < n; i++) {
  7756. ggml_vec_log_f32(nc,
  7757. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7758. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7759. }
  7760. }
  7761. static void ggml_compute_forward_log(
  7762. const struct ggml_compute_params * params,
  7763. const struct ggml_tensor * src0,
  7764. struct ggml_tensor * dst) {
  7765. switch (src0->type) {
  7766. case GGML_TYPE_F32:
  7767. {
  7768. ggml_compute_forward_log_f32(params, src0, dst);
  7769. } break;
  7770. default:
  7771. {
  7772. GGML_ASSERT(false);
  7773. } break;
  7774. }
  7775. }
  7776. // ggml_compute_forward_sum
  7777. static void ggml_compute_forward_sum_f32(
  7778. const struct ggml_compute_params * params,
  7779. const struct ggml_tensor * src0,
  7780. struct ggml_tensor * dst) {
  7781. assert(params->ith == 0);
  7782. assert(ggml_is_scalar(dst));
  7783. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7784. return;
  7785. }
  7786. assert(ggml_is_scalar(dst));
  7787. assert(src0->nb[0] == sizeof(float));
  7788. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7789. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7790. ggml_float sum = 0;
  7791. ggml_float row_sum = 0;
  7792. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7793. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7794. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7795. ggml_vec_sum_f32_ggf(ne00,
  7796. &row_sum,
  7797. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7798. sum += row_sum;
  7799. }
  7800. }
  7801. }
  7802. ((float *) dst->data)[0] = sum;
  7803. }
  7804. static void ggml_compute_forward_sum_f16(
  7805. const struct ggml_compute_params * params,
  7806. const struct ggml_tensor * src0,
  7807. struct ggml_tensor * dst) {
  7808. assert(params->ith == 0);
  7809. assert(ggml_is_scalar(dst));
  7810. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7811. return;
  7812. }
  7813. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7814. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7815. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7816. float sum = 0;
  7817. float row_sum = 0;
  7818. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7819. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7820. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7821. ggml_vec_sum_f16_ggf(ne00,
  7822. &row_sum,
  7823. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7824. sum += row_sum;
  7825. }
  7826. }
  7827. }
  7828. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7829. }
  7830. static void ggml_compute_forward_sum(
  7831. const struct ggml_compute_params * params,
  7832. const struct ggml_tensor * src0,
  7833. struct ggml_tensor * dst) {
  7834. switch (src0->type) {
  7835. case GGML_TYPE_F32:
  7836. {
  7837. ggml_compute_forward_sum_f32(params, src0, dst);
  7838. } break;
  7839. case GGML_TYPE_F16:
  7840. {
  7841. ggml_compute_forward_sum_f16(params, src0, dst);
  7842. } break;
  7843. default:
  7844. {
  7845. GGML_ASSERT(false);
  7846. } break;
  7847. }
  7848. }
  7849. // ggml_compute_forward_sum_rows
  7850. static void ggml_compute_forward_sum_rows_f32(
  7851. const struct ggml_compute_params * params,
  7852. const struct ggml_tensor * src0,
  7853. struct ggml_tensor * dst) {
  7854. GGML_ASSERT(params->ith == 0);
  7855. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7856. return;
  7857. }
  7858. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7859. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7860. GGML_TENSOR_UNARY_OP_LOCALS;
  7861. GGML_ASSERT(ne0 == 1);
  7862. GGML_ASSERT(ne1 == ne01);
  7863. GGML_ASSERT(ne2 == ne02);
  7864. GGML_ASSERT(ne3 == ne03);
  7865. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7866. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7867. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7868. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7869. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7870. float row_sum = 0;
  7871. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7872. dst_row[0] = row_sum;
  7873. }
  7874. }
  7875. }
  7876. }
  7877. static void ggml_compute_forward_sum_rows(
  7878. const struct ggml_compute_params * params,
  7879. const struct ggml_tensor * src0,
  7880. struct ggml_tensor * dst) {
  7881. switch (src0->type) {
  7882. case GGML_TYPE_F32:
  7883. {
  7884. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7885. } break;
  7886. default:
  7887. {
  7888. GGML_ASSERT(false);
  7889. } break;
  7890. }
  7891. }
  7892. // ggml_compute_forward_mean
  7893. static void ggml_compute_forward_mean_f32(
  7894. const struct ggml_compute_params * params,
  7895. const struct ggml_tensor * src0,
  7896. struct ggml_tensor * dst) {
  7897. assert(params->ith == 0);
  7898. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7899. return;
  7900. }
  7901. assert(src0->nb[0] == sizeof(float));
  7902. GGML_TENSOR_UNARY_OP_LOCALS;
  7903. assert(ne0 == 1);
  7904. assert(ne1 == ne01);
  7905. assert(ne2 == ne02);
  7906. assert(ne3 == ne03);
  7907. UNUSED(ne0);
  7908. UNUSED(ne1);
  7909. UNUSED(ne2);
  7910. UNUSED(ne3);
  7911. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7912. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7913. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7914. ggml_vec_sum_f32(ne00,
  7915. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7916. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7917. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7918. }
  7919. }
  7920. }
  7921. }
  7922. static void ggml_compute_forward_mean(
  7923. const struct ggml_compute_params * params,
  7924. const struct ggml_tensor * src0,
  7925. struct ggml_tensor * dst) {
  7926. switch (src0->type) {
  7927. case GGML_TYPE_F32:
  7928. {
  7929. ggml_compute_forward_mean_f32(params, src0, dst);
  7930. } break;
  7931. default:
  7932. {
  7933. GGML_ASSERT(false);
  7934. } break;
  7935. }
  7936. }
  7937. // ggml_compute_forward_argmax
  7938. static void ggml_compute_forward_argmax_f32(
  7939. const struct ggml_compute_params * params,
  7940. const struct ggml_tensor * src0,
  7941. struct ggml_tensor * dst) {
  7942. assert(params->ith == 0);
  7943. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7944. return;
  7945. }
  7946. assert(src0->nb[0] == sizeof(float));
  7947. assert(dst->nb[0] == sizeof(float));
  7948. const int64_t ne00 = src0->ne[0];
  7949. const int64_t ne01 = src0->ne[1];
  7950. const size_t nb01 = src0->nb[1];
  7951. const size_t nb0 = dst->nb[0];
  7952. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7953. float * src = (float *) ((char *) src0->data + i1*nb01);
  7954. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7955. int v = 0;
  7956. ggml_vec_argmax_f32(ne00, &v, src);
  7957. dst_[0] = v;
  7958. }
  7959. }
  7960. static void ggml_compute_forward_argmax(
  7961. const struct ggml_compute_params * params,
  7962. const struct ggml_tensor * src0,
  7963. struct ggml_tensor * dst) {
  7964. switch (src0->type) {
  7965. case GGML_TYPE_F32:
  7966. {
  7967. ggml_compute_forward_argmax_f32(params, src0, dst);
  7968. } break;
  7969. default:
  7970. {
  7971. GGML_ASSERT(false);
  7972. } break;
  7973. }
  7974. }
  7975. // ggml_compute_forward_repeat
  7976. static void ggml_compute_forward_repeat_f32(
  7977. const struct ggml_compute_params * params,
  7978. const struct ggml_tensor * src0,
  7979. struct ggml_tensor * dst) {
  7980. GGML_ASSERT(params->ith == 0);
  7981. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7982. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7983. return;
  7984. }
  7985. GGML_TENSOR_UNARY_OP_LOCALS;
  7986. // guaranteed to be an integer due to the check in ggml_can_repeat
  7987. const int nr0 = (int)(ne0/ne00);
  7988. const int nr1 = (int)(ne1/ne01);
  7989. const int nr2 = (int)(ne2/ne02);
  7990. const int nr3 = (int)(ne3/ne03);
  7991. // TODO: support for transposed / permuted tensors
  7992. GGML_ASSERT(nb0 == sizeof(float));
  7993. GGML_ASSERT(nb00 == sizeof(float));
  7994. // TODO: maybe this is not optimal?
  7995. for (int i3 = 0; i3 < nr3; i3++) {
  7996. for (int k3 = 0; k3 < ne03; k3++) {
  7997. for (int i2 = 0; i2 < nr2; i2++) {
  7998. for (int k2 = 0; k2 < ne02; k2++) {
  7999. for (int i1 = 0; i1 < nr1; i1++) {
  8000. for (int k1 = 0; k1 < ne01; k1++) {
  8001. for (int i0 = 0; i0 < nr0; i0++) {
  8002. ggml_vec_cpy_f32(ne00,
  8003. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8004. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8005. }
  8006. }
  8007. }
  8008. }
  8009. }
  8010. }
  8011. }
  8012. }
  8013. static void ggml_compute_forward_repeat(
  8014. const struct ggml_compute_params * params,
  8015. const struct ggml_tensor * src0,
  8016. struct ggml_tensor * dst) {
  8017. switch (src0->type) {
  8018. case GGML_TYPE_F32:
  8019. {
  8020. ggml_compute_forward_repeat_f32(params, src0, dst);
  8021. } break;
  8022. default:
  8023. {
  8024. GGML_ASSERT(false);
  8025. } break;
  8026. }
  8027. }
  8028. // ggml_compute_forward_repeat_back
  8029. static void ggml_compute_forward_repeat_back_f32(
  8030. const struct ggml_compute_params * params,
  8031. const struct ggml_tensor * src0,
  8032. struct ggml_tensor * dst) {
  8033. GGML_ASSERT(params->ith == 0);
  8034. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8035. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8036. return;
  8037. }
  8038. GGML_TENSOR_UNARY_OP_LOCALS;
  8039. // guaranteed to be an integer due to the check in ggml_can_repeat
  8040. const int nr0 = (int)(ne00/ne0);
  8041. const int nr1 = (int)(ne01/ne1);
  8042. const int nr2 = (int)(ne02/ne2);
  8043. const int nr3 = (int)(ne03/ne3);
  8044. // TODO: support for transposed / permuted tensors
  8045. GGML_ASSERT(nb0 == sizeof(float));
  8046. GGML_ASSERT(nb00 == sizeof(float));
  8047. if (ggml_is_contiguous(dst)) {
  8048. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8049. } else {
  8050. for (int k3 = 0; k3 < ne3; k3++) {
  8051. for (int k2 = 0; k2 < ne2; k2++) {
  8052. for (int k1 = 0; k1 < ne1; k1++) {
  8053. ggml_vec_set_f32(ne0,
  8054. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8055. 0);
  8056. }
  8057. }
  8058. }
  8059. }
  8060. // TODO: maybe this is not optimal?
  8061. for (int i3 = 0; i3 < nr3; i3++) {
  8062. for (int k3 = 0; k3 < ne3; k3++) {
  8063. for (int i2 = 0; i2 < nr2; i2++) {
  8064. for (int k2 = 0; k2 < ne2; k2++) {
  8065. for (int i1 = 0; i1 < nr1; i1++) {
  8066. for (int k1 = 0; k1 < ne1; k1++) {
  8067. for (int i0 = 0; i0 < nr0; i0++) {
  8068. ggml_vec_acc_f32(ne0,
  8069. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8070. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8071. }
  8072. }
  8073. }
  8074. }
  8075. }
  8076. }
  8077. }
  8078. }
  8079. static void ggml_compute_forward_repeat_back(
  8080. const struct ggml_compute_params * params,
  8081. const struct ggml_tensor * src0,
  8082. struct ggml_tensor * dst) {
  8083. switch (src0->type) {
  8084. case GGML_TYPE_F32:
  8085. {
  8086. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8087. } break;
  8088. default:
  8089. {
  8090. GGML_ASSERT(false);
  8091. } break;
  8092. }
  8093. }
  8094. // ggml_compute_forward_concat
  8095. static void ggml_compute_forward_concat_f32(
  8096. const struct ggml_compute_params * params,
  8097. const struct ggml_tensor * src0,
  8098. const struct ggml_tensor * src1,
  8099. struct ggml_tensor * dst) {
  8100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8101. return;
  8102. }
  8103. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8104. const int ith = params->ith;
  8105. GGML_TENSOR_BINARY_OP_LOCALS;
  8106. // TODO: support for transposed / permuted tensors
  8107. GGML_ASSERT(nb0 == sizeof(float));
  8108. GGML_ASSERT(nb00 == sizeof(float));
  8109. GGML_ASSERT(nb10 == sizeof(float));
  8110. for (int i3 = 0; i3 < ne3; i3++) {
  8111. for (int i2 = ith; i2 < ne2; i2++) {
  8112. if (i2 < ne02) { // src0
  8113. for (int i1 = 0; i1 < ne1; i1++) {
  8114. for (int i0 = 0; i0 < ne0; i0++) {
  8115. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8116. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8117. *y = *x;
  8118. }
  8119. }
  8120. } // src1
  8121. else {
  8122. for (int i1 = 0; i1 < ne1; i1++) {
  8123. for (int i0 = 0; i0 < ne0; i0++) {
  8124. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8125. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8126. *y = *x;
  8127. }
  8128. }
  8129. }
  8130. }
  8131. }
  8132. }
  8133. static void ggml_compute_forward_concat(
  8134. const struct ggml_compute_params* params,
  8135. const struct ggml_tensor* src0,
  8136. const struct ggml_tensor* src1,
  8137. struct ggml_tensor* dst) {
  8138. switch (src0->type) {
  8139. case GGML_TYPE_F32:
  8140. {
  8141. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8142. } break;
  8143. default:
  8144. {
  8145. GGML_ASSERT(false);
  8146. } break;
  8147. }
  8148. }
  8149. // ggml_compute_forward_abs
  8150. static void ggml_compute_forward_abs_f32(
  8151. const struct ggml_compute_params * params,
  8152. const struct ggml_tensor * src0,
  8153. struct ggml_tensor * dst) {
  8154. assert(params->ith == 0);
  8155. assert(ggml_are_same_shape(src0, dst));
  8156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8157. return;
  8158. }
  8159. const int n = ggml_nrows(src0);
  8160. const int nc = src0->ne[0];
  8161. assert(dst->nb[0] == sizeof(float));
  8162. assert(src0->nb[0] == sizeof(float));
  8163. for (int i = 0; i < n; i++) {
  8164. ggml_vec_abs_f32(nc,
  8165. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8166. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8167. }
  8168. }
  8169. static void ggml_compute_forward_abs(
  8170. const struct ggml_compute_params * params,
  8171. const struct ggml_tensor * src0,
  8172. struct ggml_tensor * dst) {
  8173. switch (src0->type) {
  8174. case GGML_TYPE_F32:
  8175. {
  8176. ggml_compute_forward_abs_f32(params, src0, dst);
  8177. } break;
  8178. default:
  8179. {
  8180. GGML_ASSERT(false);
  8181. } break;
  8182. }
  8183. }
  8184. // ggml_compute_forward_sgn
  8185. static void ggml_compute_forward_sgn_f32(
  8186. const struct ggml_compute_params * params,
  8187. const struct ggml_tensor * src0,
  8188. struct ggml_tensor * dst) {
  8189. assert(params->ith == 0);
  8190. assert(ggml_are_same_shape(src0, dst));
  8191. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8192. return;
  8193. }
  8194. const int n = ggml_nrows(src0);
  8195. const int nc = src0->ne[0];
  8196. assert(dst->nb[0] == sizeof(float));
  8197. assert(src0->nb[0] == sizeof(float));
  8198. for (int i = 0; i < n; i++) {
  8199. ggml_vec_sgn_f32(nc,
  8200. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8201. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8202. }
  8203. }
  8204. static void ggml_compute_forward_sgn(
  8205. const struct ggml_compute_params * params,
  8206. const struct ggml_tensor * src0,
  8207. struct ggml_tensor * dst) {
  8208. switch (src0->type) {
  8209. case GGML_TYPE_F32:
  8210. {
  8211. ggml_compute_forward_sgn_f32(params, src0, dst);
  8212. } break;
  8213. default:
  8214. {
  8215. GGML_ASSERT(false);
  8216. } break;
  8217. }
  8218. }
  8219. // ggml_compute_forward_neg
  8220. static void ggml_compute_forward_neg_f32(
  8221. const struct ggml_compute_params * params,
  8222. const struct ggml_tensor * src0,
  8223. struct ggml_tensor * dst) {
  8224. assert(params->ith == 0);
  8225. assert(ggml_are_same_shape(src0, dst));
  8226. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8227. return;
  8228. }
  8229. const int n = ggml_nrows(src0);
  8230. const int nc = src0->ne[0];
  8231. assert(dst->nb[0] == sizeof(float));
  8232. assert(src0->nb[0] == sizeof(float));
  8233. for (int i = 0; i < n; i++) {
  8234. ggml_vec_neg_f32(nc,
  8235. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8236. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8237. }
  8238. }
  8239. static void ggml_compute_forward_neg(
  8240. const struct ggml_compute_params * params,
  8241. const struct ggml_tensor * src0,
  8242. struct ggml_tensor * dst) {
  8243. switch (src0->type) {
  8244. case GGML_TYPE_F32:
  8245. {
  8246. ggml_compute_forward_neg_f32(params, src0, dst);
  8247. } break;
  8248. default:
  8249. {
  8250. GGML_ASSERT(false);
  8251. } break;
  8252. }
  8253. }
  8254. // ggml_compute_forward_step
  8255. static void ggml_compute_forward_step_f32(
  8256. const struct ggml_compute_params * params,
  8257. const struct ggml_tensor * src0,
  8258. struct ggml_tensor * dst) {
  8259. assert(params->ith == 0);
  8260. assert(ggml_are_same_shape(src0, dst));
  8261. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8262. return;
  8263. }
  8264. const int n = ggml_nrows(src0);
  8265. const int nc = src0->ne[0];
  8266. assert(dst->nb[0] == sizeof(float));
  8267. assert(src0->nb[0] == sizeof(float));
  8268. for (int i = 0; i < n; i++) {
  8269. ggml_vec_step_f32(nc,
  8270. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8271. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8272. }
  8273. }
  8274. static void ggml_compute_forward_step(
  8275. const struct ggml_compute_params * params,
  8276. const struct ggml_tensor * src0,
  8277. struct ggml_tensor * dst) {
  8278. switch (src0->type) {
  8279. case GGML_TYPE_F32:
  8280. {
  8281. ggml_compute_forward_step_f32(params, src0, dst);
  8282. } break;
  8283. default:
  8284. {
  8285. GGML_ASSERT(false);
  8286. } break;
  8287. }
  8288. }
  8289. // ggml_compute_forward_tanh
  8290. static void ggml_compute_forward_tanh_f32(
  8291. const struct ggml_compute_params * params,
  8292. const struct ggml_tensor * src0,
  8293. struct ggml_tensor * dst) {
  8294. assert(params->ith == 0);
  8295. assert(ggml_are_same_shape(src0, dst));
  8296. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8297. return;
  8298. }
  8299. const int n = ggml_nrows(src0);
  8300. const int nc = src0->ne[0];
  8301. assert(dst->nb[0] == sizeof(float));
  8302. assert(src0->nb[0] == sizeof(float));
  8303. for (int i = 0; i < n; i++) {
  8304. ggml_vec_tanh_f32(nc,
  8305. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8306. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8307. }
  8308. }
  8309. static void ggml_compute_forward_tanh(
  8310. const struct ggml_compute_params * params,
  8311. const struct ggml_tensor * src0,
  8312. struct ggml_tensor * dst) {
  8313. switch (src0->type) {
  8314. case GGML_TYPE_F32:
  8315. {
  8316. ggml_compute_forward_tanh_f32(params, src0, dst);
  8317. } break;
  8318. default:
  8319. {
  8320. GGML_ASSERT(false);
  8321. } break;
  8322. }
  8323. }
  8324. // ggml_compute_forward_elu
  8325. static void ggml_compute_forward_elu_f32(
  8326. const struct ggml_compute_params * params,
  8327. const struct ggml_tensor * src0,
  8328. struct ggml_tensor * dst) {
  8329. assert(params->ith == 0);
  8330. assert(ggml_are_same_shape(src0, dst));
  8331. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8332. return;
  8333. }
  8334. const int n = ggml_nrows(src0);
  8335. const int nc = src0->ne[0];
  8336. assert(dst->nb[0] == sizeof(float));
  8337. assert(src0->nb[0] == sizeof(float));
  8338. for (int i = 0; i < n; i++) {
  8339. ggml_vec_elu_f32(nc,
  8340. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8341. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8342. }
  8343. }
  8344. static void ggml_compute_forward_elu(
  8345. const struct ggml_compute_params * params,
  8346. const struct ggml_tensor * src0,
  8347. struct ggml_tensor * dst) {
  8348. switch (src0->type) {
  8349. case GGML_TYPE_F32:
  8350. {
  8351. ggml_compute_forward_elu_f32(params, src0, dst);
  8352. } break;
  8353. default:
  8354. {
  8355. GGML_ASSERT(false);
  8356. } break;
  8357. }
  8358. }
  8359. // ggml_compute_forward_relu
  8360. static void ggml_compute_forward_relu_f32(
  8361. const struct ggml_compute_params * params,
  8362. const struct ggml_tensor * src0,
  8363. struct ggml_tensor * dst) {
  8364. assert(params->ith == 0);
  8365. assert(ggml_are_same_shape(src0, dst));
  8366. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8367. return;
  8368. }
  8369. const int n = ggml_nrows(src0);
  8370. const int nc = src0->ne[0];
  8371. assert(dst->nb[0] == sizeof(float));
  8372. assert(src0->nb[0] == sizeof(float));
  8373. for (int i = 0; i < n; i++) {
  8374. ggml_vec_relu_f32(nc,
  8375. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8376. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8377. }
  8378. }
  8379. static void ggml_compute_forward_relu(
  8380. const struct ggml_compute_params * params,
  8381. const struct ggml_tensor * src0,
  8382. struct ggml_tensor * dst) {
  8383. switch (src0->type) {
  8384. case GGML_TYPE_F32:
  8385. {
  8386. ggml_compute_forward_relu_f32(params, src0, dst);
  8387. } break;
  8388. default:
  8389. {
  8390. GGML_ASSERT(false);
  8391. } break;
  8392. }
  8393. }
  8394. // ggml_compute_forward_gelu
  8395. static void ggml_compute_forward_gelu_f32(
  8396. const struct ggml_compute_params * params,
  8397. const struct ggml_tensor * src0,
  8398. struct ggml_tensor * dst) {
  8399. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8400. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8401. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8402. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8403. return;
  8404. }
  8405. const int ith = params->ith;
  8406. const int nth = params->nth;
  8407. const int nc = src0->ne[0];
  8408. const int nr = ggml_nrows(src0);
  8409. // rows per thread
  8410. const int dr = (nr + nth - 1)/nth;
  8411. // row range for this thread
  8412. const int ir0 = dr*ith;
  8413. const int ir1 = MIN(ir0 + dr, nr);
  8414. for (int i1 = ir0; i1 < ir1; i1++) {
  8415. ggml_vec_gelu_f32(nc,
  8416. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8417. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8418. #ifndef NDEBUG
  8419. for (int k = 0; k < nc; k++) {
  8420. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8421. UNUSED(x);
  8422. assert(!isnan(x));
  8423. assert(!isinf(x));
  8424. }
  8425. #endif
  8426. }
  8427. }
  8428. static void ggml_compute_forward_gelu(
  8429. const struct ggml_compute_params * params,
  8430. const struct ggml_tensor * src0,
  8431. struct ggml_tensor * dst) {
  8432. switch (src0->type) {
  8433. case GGML_TYPE_F32:
  8434. {
  8435. ggml_compute_forward_gelu_f32(params, src0, dst);
  8436. } break;
  8437. default:
  8438. {
  8439. GGML_ASSERT(false);
  8440. } break;
  8441. }
  8442. }
  8443. // ggml_compute_forward_gelu_quick
  8444. static void ggml_compute_forward_gelu_quick_f32(
  8445. const struct ggml_compute_params * params,
  8446. const struct ggml_tensor * src0,
  8447. struct ggml_tensor * dst) {
  8448. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8449. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8450. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8451. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8452. return;
  8453. }
  8454. const int ith = params->ith;
  8455. const int nth = params->nth;
  8456. const int nc = src0->ne[0];
  8457. const int nr = ggml_nrows(src0);
  8458. // rows per thread
  8459. const int dr = (nr + nth - 1)/nth;
  8460. // row range for this thread
  8461. const int ir0 = dr*ith;
  8462. const int ir1 = MIN(ir0 + dr, nr);
  8463. for (int i1 = ir0; i1 < ir1; i1++) {
  8464. ggml_vec_gelu_quick_f32(nc,
  8465. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8466. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8467. #ifndef NDEBUG
  8468. for (int k = 0; k < nc; k++) {
  8469. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8470. UNUSED(x);
  8471. assert(!isnan(x));
  8472. assert(!isinf(x));
  8473. }
  8474. #endif
  8475. }
  8476. }
  8477. static void ggml_compute_forward_gelu_quick(
  8478. const struct ggml_compute_params * params,
  8479. const struct ggml_tensor * src0,
  8480. struct ggml_tensor * dst) {
  8481. switch (src0->type) {
  8482. case GGML_TYPE_F32:
  8483. {
  8484. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8485. } break;
  8486. default:
  8487. {
  8488. GGML_ASSERT(false);
  8489. } break;
  8490. }
  8491. }
  8492. // ggml_compute_forward_silu
  8493. static void ggml_compute_forward_silu_f32(
  8494. const struct ggml_compute_params * params,
  8495. const struct ggml_tensor * src0,
  8496. struct ggml_tensor * dst) {
  8497. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8498. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8499. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8500. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8501. return;
  8502. }
  8503. const int ith = params->ith;
  8504. const int nth = params->nth;
  8505. const int nc = src0->ne[0];
  8506. const int nr = ggml_nrows(src0);
  8507. // rows per thread
  8508. const int dr = (nr + nth - 1)/nth;
  8509. // row range for this thread
  8510. const int ir0 = dr*ith;
  8511. const int ir1 = MIN(ir0 + dr, nr);
  8512. for (int i1 = ir0; i1 < ir1; i1++) {
  8513. ggml_vec_silu_f32(nc,
  8514. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8515. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8516. #ifndef NDEBUG
  8517. for (int k = 0; k < nc; k++) {
  8518. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8519. UNUSED(x);
  8520. assert(!isnan(x));
  8521. assert(!isinf(x));
  8522. }
  8523. #endif
  8524. }
  8525. }
  8526. static void ggml_compute_forward_silu(
  8527. const struct ggml_compute_params * params,
  8528. const struct ggml_tensor * src0,
  8529. struct ggml_tensor * dst) {
  8530. switch (src0->type) {
  8531. case GGML_TYPE_F32:
  8532. {
  8533. ggml_compute_forward_silu_f32(params, src0, dst);
  8534. } break;
  8535. default:
  8536. {
  8537. GGML_ASSERT(false);
  8538. } break;
  8539. }
  8540. }
  8541. // ggml_compute_forward_silu_back
  8542. static void ggml_compute_forward_silu_back_f32(
  8543. const struct ggml_compute_params * params,
  8544. const struct ggml_tensor * src0,
  8545. const struct ggml_tensor * grad,
  8546. struct ggml_tensor * dst) {
  8547. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8548. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8549. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8550. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8551. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8553. return;
  8554. }
  8555. const int ith = params->ith;
  8556. const int nth = params->nth;
  8557. const int nc = src0->ne[0];
  8558. const int nr = ggml_nrows(src0);
  8559. // rows per thread
  8560. const int dr = (nr + nth - 1)/nth;
  8561. // row range for this thread
  8562. const int ir0 = dr*ith;
  8563. const int ir1 = MIN(ir0 + dr, nr);
  8564. for (int i1 = ir0; i1 < ir1; i1++) {
  8565. ggml_vec_silu_backward_f32(nc,
  8566. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8567. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8568. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8569. #ifndef NDEBUG
  8570. for (int k = 0; k < nc; k++) {
  8571. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8572. UNUSED(x);
  8573. assert(!isnan(x));
  8574. assert(!isinf(x));
  8575. }
  8576. #endif
  8577. }
  8578. }
  8579. static void ggml_compute_forward_silu_back(
  8580. const struct ggml_compute_params * params,
  8581. const struct ggml_tensor * src0,
  8582. const struct ggml_tensor * grad,
  8583. struct ggml_tensor * dst) {
  8584. switch (src0->type) {
  8585. case GGML_TYPE_F32:
  8586. {
  8587. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8588. } break;
  8589. default:
  8590. {
  8591. GGML_ASSERT(false);
  8592. } break;
  8593. }
  8594. }
  8595. // ggml_compute_forward_norm
  8596. static void ggml_compute_forward_norm_f32(
  8597. const struct ggml_compute_params * params,
  8598. const struct ggml_tensor * src0,
  8599. struct ggml_tensor * dst) {
  8600. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8601. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8602. return;
  8603. }
  8604. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8605. const int ith = params->ith;
  8606. const int nth = params->nth;
  8607. GGML_TENSOR_UNARY_OP_LOCALS;
  8608. float eps;
  8609. memcpy(&eps, dst->op_params, sizeof(float));
  8610. // TODO: optimize
  8611. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8612. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8613. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8614. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8615. ggml_float sum = 0.0;
  8616. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8617. sum += (ggml_float)x[i00];
  8618. }
  8619. float mean = sum/ne00;
  8620. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8621. ggml_float sum2 = 0.0;
  8622. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8623. float v = x[i00] - mean;
  8624. y[i00] = v;
  8625. sum2 += (ggml_float)(v*v);
  8626. }
  8627. float variance = sum2/ne00;
  8628. const float scale = 1.0f/sqrtf(variance + eps);
  8629. ggml_vec_scale_f32(ne00, y, scale);
  8630. }
  8631. }
  8632. }
  8633. }
  8634. static void ggml_compute_forward_norm(
  8635. const struct ggml_compute_params * params,
  8636. const struct ggml_tensor * src0,
  8637. struct ggml_tensor * dst) {
  8638. switch (src0->type) {
  8639. case GGML_TYPE_F32:
  8640. {
  8641. ggml_compute_forward_norm_f32(params, src0, dst);
  8642. } break;
  8643. default:
  8644. {
  8645. GGML_ASSERT(false);
  8646. } break;
  8647. }
  8648. }
  8649. // ggml_compute_forward_group_rms_norm
  8650. static void ggml_compute_forward_rms_norm_f32(
  8651. const struct ggml_compute_params * params,
  8652. const struct ggml_tensor * src0,
  8653. struct ggml_tensor * dst) {
  8654. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8655. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8656. return;
  8657. }
  8658. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8659. const int ith = params->ith;
  8660. const int nth = params->nth;
  8661. GGML_TENSOR_UNARY_OP_LOCALS;
  8662. float eps;
  8663. memcpy(&eps, dst->op_params, sizeof(float));
  8664. // TODO: optimize
  8665. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8666. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8667. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8668. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8669. ggml_float sum = 0.0;
  8670. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8671. sum += (ggml_float)(x[i00] * x[i00]);
  8672. }
  8673. const float mean = sum/ne00;
  8674. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8675. memcpy(y, x, ne00 * sizeof(float));
  8676. // for (int i00 = 0; i00 < ne00; i00++) {
  8677. // y[i00] = x[i00];
  8678. // }
  8679. const float scale = 1.0f/sqrtf(mean + eps);
  8680. ggml_vec_scale_f32(ne00, y, scale);
  8681. }
  8682. }
  8683. }
  8684. }
  8685. static void ggml_compute_forward_rms_norm(
  8686. const struct ggml_compute_params * params,
  8687. const struct ggml_tensor * src0,
  8688. struct ggml_tensor * dst) {
  8689. switch (src0->type) {
  8690. case GGML_TYPE_F32:
  8691. {
  8692. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8693. } break;
  8694. default:
  8695. {
  8696. GGML_ASSERT(false);
  8697. } break;
  8698. }
  8699. }
  8700. static void ggml_compute_forward_rms_norm_back_f32(
  8701. const struct ggml_compute_params * params,
  8702. const struct ggml_tensor * src0,
  8703. const struct ggml_tensor * src1,
  8704. struct ggml_tensor * dst) {
  8705. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8706. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8707. return;
  8708. }
  8709. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8710. const int ith = params->ith;
  8711. const int nth = params->nth;
  8712. GGML_TENSOR_BINARY_OP_LOCALS;
  8713. const float eps = 1e-6f; // TODO: make this a parameter
  8714. // TODO: optimize
  8715. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8716. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8717. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8718. // src1 is same shape as src0 => same indices
  8719. const int64_t i11 = i01;
  8720. const int64_t i12 = i02;
  8721. const int64_t i13 = i03;
  8722. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8723. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8724. ggml_float sum_xx = 0.0;
  8725. ggml_float sum_xdz = 0.0;
  8726. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8727. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8728. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8729. }
  8730. //const float mean = (float)(sum_xx)/ne00;
  8731. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8732. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8733. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8734. // we could cache rms from forward pass to improve performance.
  8735. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8736. //const float rms = sqrtf(mean_eps);
  8737. const float rrms = 1.0f / sqrtf(mean_eps);
  8738. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8739. {
  8740. // z = rms_norm(x)
  8741. //
  8742. // rms_norm(src0) =
  8743. // scale(
  8744. // src0,
  8745. // div(
  8746. // 1,
  8747. // sqrt(
  8748. // add(
  8749. // scale(
  8750. // sum(
  8751. // sqr(
  8752. // src0)),
  8753. // (1.0/N)),
  8754. // eps))));
  8755. // postorder:
  8756. // ## op args grad
  8757. // 00 param src0 grad[#00]
  8758. // 01 const 1
  8759. // 02 sqr (#00) grad[#02]
  8760. // 03 sum (#02) grad[#03]
  8761. // 04 const 1/N
  8762. // 05 scale (#03, #04) grad[#05]
  8763. // 06 const eps
  8764. // 07 add (#05, #06) grad[#07]
  8765. // 08 sqrt (#07) grad[#08]
  8766. // 09 div (#01,#08) grad[#09]
  8767. // 10 scale (#00,#09) grad[#10]
  8768. //
  8769. // backward pass, given grad[#10]
  8770. // #10: scale
  8771. // grad[#00] += scale(grad[#10],#09)
  8772. // grad[#09] += sum(mul(grad[#10],#00))
  8773. // #09: div
  8774. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8775. // #08: sqrt
  8776. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8777. // #07: add
  8778. // grad[#05] += grad[#07]
  8779. // #05: scale
  8780. // grad[#03] += scale(grad[#05],#04)
  8781. // #03: sum
  8782. // grad[#02] += repeat(grad[#03], #02)
  8783. // #02:
  8784. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8785. //
  8786. // substitute and simplify:
  8787. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8788. // grad[#02] = repeat(grad[#03], #02)
  8789. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8790. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8791. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8792. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8793. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8794. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8795. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8796. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8797. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8798. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8799. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8800. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8801. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8802. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8803. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8804. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8805. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8806. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8807. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8808. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8809. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8810. // a = b*c + d*e
  8811. // a = b*c*f/f + d*e*f/f
  8812. // a = (b*c*f + d*e*f)*(1/f)
  8813. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8814. // a = (b + d*e/c)*c
  8815. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8816. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8817. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8818. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8819. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8820. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8821. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8822. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8823. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8824. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8825. }
  8826. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8827. // post-order:
  8828. // dx := x
  8829. // dx := scale(dx,-mean_xdz/mean_eps)
  8830. // dx := add(dx, dz)
  8831. // dx := scale(dx, rrms)
  8832. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8833. ggml_vec_cpy_f32 (ne00, dx, x);
  8834. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8835. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8836. ggml_vec_acc_f32 (ne00, dx, dz);
  8837. ggml_vec_scale_f32(ne00, dx, rrms);
  8838. }
  8839. }
  8840. }
  8841. }
  8842. static void ggml_compute_forward_rms_norm_back(
  8843. const struct ggml_compute_params * params,
  8844. const struct ggml_tensor * src0,
  8845. const struct ggml_tensor * src1,
  8846. struct ggml_tensor * dst) {
  8847. switch (src0->type) {
  8848. case GGML_TYPE_F32:
  8849. {
  8850. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8851. } break;
  8852. default:
  8853. {
  8854. GGML_ASSERT(false);
  8855. } break;
  8856. }
  8857. }
  8858. // ggml_compute_forward_group_norm
  8859. static void ggml_compute_forward_group_norm_f32(
  8860. const struct ggml_compute_params * params,
  8861. const struct ggml_tensor * src0,
  8862. struct ggml_tensor * dst) {
  8863. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8864. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8865. return;
  8866. }
  8867. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8868. const int ith = params->ith;
  8869. const int nth = params->nth;
  8870. GGML_TENSOR_UNARY_OP_LOCALS;
  8871. const float eps = 1e-6f; // TODO: make this a parameter
  8872. // TODO: optimize
  8873. int n_channels = src0->ne[2];
  8874. int n_groups = dst->op_params[0];
  8875. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8876. for (int i = ith; i < n_groups; i+=nth) {
  8877. int start = i * n_channels_per_group;
  8878. int end = start + n_channels_per_group;
  8879. if (end > n_channels) {
  8880. end = n_channels;
  8881. }
  8882. int step = end - start;
  8883. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8884. ggml_float sum = 0.0;
  8885. for (int64_t i02 = start; i02 < end; i02++) {
  8886. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8887. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8888. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8889. sum += (ggml_float)x[i00];
  8890. }
  8891. }
  8892. }
  8893. float mean = sum / (ne00 * ne01 * step);
  8894. ggml_float sum2 = 0.0;
  8895. for (int64_t i02 = start; i02 < end; i02++) {
  8896. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8897. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8898. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8899. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8900. float v = x[i00] - mean;
  8901. y[i00] = v;
  8902. sum2 += (ggml_float)(v * v);
  8903. }
  8904. }
  8905. }
  8906. float variance = sum2 / (ne00 * ne01 * step);
  8907. const float scale = 1.0f / sqrtf(variance + eps);
  8908. for (int64_t i02 = start; i02 < end; i02++) {
  8909. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8910. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8911. ggml_vec_scale_f32(ne00, y, scale);
  8912. }
  8913. }
  8914. }
  8915. }
  8916. }
  8917. static void ggml_compute_forward_group_norm(
  8918. const struct ggml_compute_params * params,
  8919. const struct ggml_tensor * src0,
  8920. struct ggml_tensor * dst) {
  8921. switch (src0->type) {
  8922. case GGML_TYPE_F32:
  8923. {
  8924. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8925. } break;
  8926. default:
  8927. {
  8928. GGML_ASSERT(false);
  8929. } break;
  8930. }
  8931. }
  8932. // ggml_compute_forward_mul_mat
  8933. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8934. // helper function to determine if it is better to use BLAS or not
  8935. // for large matrices, BLAS is faster
  8936. static bool ggml_compute_forward_mul_mat_use_blas(
  8937. const struct ggml_tensor * src0,
  8938. const struct ggml_tensor * src1,
  8939. struct ggml_tensor * dst) {
  8940. //const int64_t ne00 = src0->ne[0];
  8941. //const int64_t ne01 = src0->ne[1];
  8942. const int64_t ne10 = src1->ne[0];
  8943. const int64_t ne0 = dst->ne[0];
  8944. const int64_t ne1 = dst->ne[1];
  8945. // TODO: find the optimal values for these
  8946. if (ggml_is_contiguous(src0) &&
  8947. ggml_is_contiguous(src1) &&
  8948. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8949. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8950. return true;
  8951. }
  8952. return false;
  8953. }
  8954. #endif
  8955. static void ggml_compute_forward_mul_mat(
  8956. const struct ggml_compute_params * params,
  8957. const struct ggml_tensor * src0,
  8958. const struct ggml_tensor * src1,
  8959. struct ggml_tensor * dst) {
  8960. int64_t t0 = ggml_perf_time_us();
  8961. UNUSED(t0);
  8962. GGML_TENSOR_BINARY_OP_LOCALS;
  8963. const int ith = params->ith;
  8964. const int nth = params->nth;
  8965. const enum ggml_type type = src0->type;
  8966. const bool src1_cont = ggml_is_contiguous(src1);
  8967. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8968. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8969. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8970. GGML_ASSERT(ne0 == ne01);
  8971. GGML_ASSERT(ne1 == ne11);
  8972. GGML_ASSERT(ne2 == ne12);
  8973. GGML_ASSERT(ne3 == ne13);
  8974. // we don't support permuted src0 or src1
  8975. GGML_ASSERT(nb00 == ggml_type_size(type));
  8976. GGML_ASSERT(nb10 == sizeof(float));
  8977. // dst cannot be transposed or permuted
  8978. GGML_ASSERT(nb0 == sizeof(float));
  8979. GGML_ASSERT(nb0 <= nb1);
  8980. GGML_ASSERT(nb1 <= nb2);
  8981. GGML_ASSERT(nb2 <= nb3);
  8982. // broadcast factors
  8983. const int64_t r2 = ne12/ne02;
  8984. const int64_t r3 = ne13/ne03;
  8985. // nb01 >= nb00 - src0 is not transposed
  8986. // compute by src0 rows
  8987. #if defined(GGML_USE_CLBLAST)
  8988. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8989. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8990. // ref: https://github.com/ggerganov/ggml/pull/224
  8991. GGML_ASSERT(ne02 == ne12);
  8992. GGML_ASSERT(ne03 == ne13);
  8993. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8994. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8995. }
  8996. return;
  8997. }
  8998. #endif
  8999. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9000. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9001. if (params->ith != 0) {
  9002. return;
  9003. }
  9004. if (params->type == GGML_TASK_INIT) {
  9005. return;
  9006. }
  9007. if (params->type == GGML_TASK_FINALIZE) {
  9008. return;
  9009. }
  9010. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9011. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9012. // broadcast src0 into src1 across 2nd,3rd dimension
  9013. const int64_t i03 = i13/r3;
  9014. const int64_t i02 = i12/r2;
  9015. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9016. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9017. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9018. if (type != GGML_TYPE_F32) {
  9019. float * const wdata = params->wdata;
  9020. ggml_to_float_t const to_float = type_traits[type].to_float;
  9021. size_t id = 0;
  9022. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9023. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9024. id += ne00;
  9025. }
  9026. assert(id*sizeof(float) <= params->wsize);
  9027. x = wdata;
  9028. }
  9029. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9030. ne11, ne01, ne10,
  9031. 1.0f, y, ne10,
  9032. x, ne00,
  9033. 0.0f, d, ne01);
  9034. }
  9035. }
  9036. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9037. return;
  9038. }
  9039. #endif
  9040. if (params->type == GGML_TASK_INIT) {
  9041. if (src1->type != vec_dot_type) {
  9042. char * wdata = params->wdata;
  9043. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9044. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9045. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9046. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9047. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9048. wdata += row_size;
  9049. }
  9050. }
  9051. }
  9052. }
  9053. return;
  9054. }
  9055. if (params->type == GGML_TASK_FINALIZE) {
  9056. return;
  9057. }
  9058. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9059. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9060. const int64_t nr0 = ne01; // src0 rows
  9061. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9062. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9063. // distribute the thread work across the inner or outer loop based on which one is larger
  9064. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9065. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9066. const int64_t ith0 = ith % nth0;
  9067. const int64_t ith1 = ith / nth0;
  9068. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9069. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9070. const int64_t ir010 = dr0*ith0;
  9071. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9072. const int64_t ir110 = dr1*ith1;
  9073. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9074. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9075. // threads with no work simply yield (not sure if it helps)
  9076. if (ir010 >= ir011 || ir110 >= ir111) {
  9077. sched_yield();
  9078. return;
  9079. }
  9080. assert(ne12 % ne02 == 0);
  9081. assert(ne13 % ne03 == 0);
  9082. // block-tiling attempt
  9083. const int64_t blck_0 = 16;
  9084. const int64_t blck_1 = 16;
  9085. // attempt to reduce false-sharing (does not seem to make a difference)
  9086. float tmp[16];
  9087. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9088. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9089. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9090. const int64_t i13 = (ir1/(ne12*ne11));
  9091. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9092. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9093. // broadcast src0 into src1
  9094. const int64_t i03 = i13/r3;
  9095. const int64_t i02 = i12/r2;
  9096. const int64_t i1 = i11;
  9097. const int64_t i2 = i12;
  9098. const int64_t i3 = i13;
  9099. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9100. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9101. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9102. // the original src1 data pointer, so we should index using the indices directly
  9103. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9104. const char * src1_col = (const char *) wdata +
  9105. (src1_cont || src1->type != vec_dot_type
  9106. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9107. : (i11*nb11 + i12*nb12 + i13*nb13));
  9108. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9109. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9110. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9111. //}
  9112. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9113. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9114. }
  9115. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9116. }
  9117. }
  9118. }
  9119. }
  9120. // ggml_compute_forward_out_prod
  9121. static void ggml_compute_forward_out_prod_f32(
  9122. const struct ggml_compute_params * params,
  9123. const struct ggml_tensor * src0,
  9124. const struct ggml_tensor * src1,
  9125. struct ggml_tensor * dst) {
  9126. int64_t t0 = ggml_perf_time_us();
  9127. UNUSED(t0);
  9128. GGML_TENSOR_BINARY_OP_LOCALS;
  9129. const int ith = params->ith;
  9130. const int nth = params->nth;
  9131. GGML_ASSERT(ne02 == ne12);
  9132. GGML_ASSERT(ne03 == ne13);
  9133. GGML_ASSERT(ne2 == ne12);
  9134. GGML_ASSERT(ne3 == ne13);
  9135. // we don't support permuted src0 or src1
  9136. GGML_ASSERT(nb00 == sizeof(float));
  9137. // dst cannot be transposed or permuted
  9138. GGML_ASSERT(nb0 == sizeof(float));
  9139. // GGML_ASSERT(nb0 <= nb1);
  9140. // GGML_ASSERT(nb1 <= nb2);
  9141. // GGML_ASSERT(nb2 <= nb3);
  9142. GGML_ASSERT(ne0 == ne00);
  9143. GGML_ASSERT(ne1 == ne10);
  9144. GGML_ASSERT(ne2 == ne02);
  9145. GGML_ASSERT(ne3 == ne03);
  9146. // nb01 >= nb00 - src0 is not transposed
  9147. // compute by src0 rows
  9148. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9149. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9150. if (params->type == GGML_TASK_INIT) {
  9151. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9152. return;
  9153. }
  9154. if (params->type == GGML_TASK_FINALIZE) {
  9155. return;
  9156. }
  9157. // parallelize by last three dimensions
  9158. // total rows in dst
  9159. const int64_t nr = ne1*ne2*ne3;
  9160. // rows per thread
  9161. const int64_t dr = (nr + nth - 1)/nth;
  9162. // row range for this thread
  9163. const int64_t ir0 = dr*ith;
  9164. const int64_t ir1 = MIN(ir0 + dr, nr);
  9165. // dst[:,:,:,:] = 0
  9166. // for i2,i3:
  9167. // for i1:
  9168. // for i01:
  9169. // for i0:
  9170. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9171. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9172. // dst indices
  9173. const int64_t i3 = ir/(ne2*ne1);
  9174. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9175. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9176. const int64_t i02 = i2;
  9177. const int64_t i03 = i3;
  9178. //const int64_t i10 = i1;
  9179. const int64_t i12 = i2;
  9180. const int64_t i13 = i3;
  9181. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9182. const int64_t i11 = i01;
  9183. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9184. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9185. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9186. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9187. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9188. // d[i0] += s0[i0] * s1[i1];
  9189. // }
  9190. }
  9191. }
  9192. //int64_t t1 = ggml_perf_time_us();
  9193. //static int64_t acc = 0;
  9194. //acc += t1 - t0;
  9195. //if (t1 - t0 > 10) {
  9196. // printf("\n");
  9197. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9198. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9199. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9200. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9201. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9202. //}
  9203. }
  9204. static void ggml_compute_forward_out_prod(
  9205. const struct ggml_compute_params * params,
  9206. const struct ggml_tensor * src0,
  9207. const struct ggml_tensor * src1,
  9208. struct ggml_tensor * dst) {
  9209. switch (src0->type) {
  9210. case GGML_TYPE_Q4_0:
  9211. case GGML_TYPE_Q4_1:
  9212. case GGML_TYPE_Q5_0:
  9213. case GGML_TYPE_Q5_1:
  9214. case GGML_TYPE_Q8_0:
  9215. case GGML_TYPE_Q8_1:
  9216. {
  9217. GGML_ASSERT(false); // todo
  9218. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9219. } break;
  9220. case GGML_TYPE_F16:
  9221. {
  9222. GGML_ASSERT(false); // todo
  9223. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9224. } break;
  9225. case GGML_TYPE_F32:
  9226. {
  9227. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9228. } break;
  9229. default:
  9230. {
  9231. GGML_ASSERT(false);
  9232. } break;
  9233. }
  9234. }
  9235. // ggml_compute_forward_scale
  9236. static void ggml_compute_forward_scale_f32(
  9237. const struct ggml_compute_params * params,
  9238. const struct ggml_tensor * src0,
  9239. const struct ggml_tensor * src1,
  9240. struct ggml_tensor * dst) {
  9241. GGML_ASSERT(ggml_is_contiguous(src0));
  9242. GGML_ASSERT(ggml_is_contiguous(dst));
  9243. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9244. GGML_ASSERT(ggml_is_scalar(src1));
  9245. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9246. return;
  9247. }
  9248. // scale factor
  9249. const float v = *(float *) src1->data;
  9250. const int ith = params->ith;
  9251. const int nth = params->nth;
  9252. const int nc = src0->ne[0];
  9253. const int nr = ggml_nrows(src0);
  9254. // rows per thread
  9255. const int dr = (nr + nth - 1)/nth;
  9256. // row range for this thread
  9257. const int ir0 = dr*ith;
  9258. const int ir1 = MIN(ir0 + dr, nr);
  9259. const size_t nb01 = src0->nb[1];
  9260. const size_t nb1 = dst->nb[1];
  9261. for (int i1 = ir0; i1 < ir1; i1++) {
  9262. if (dst->data != src0->data) {
  9263. // src0 is same shape as dst => same indices
  9264. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9265. }
  9266. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9267. }
  9268. }
  9269. static void ggml_compute_forward_scale(
  9270. const struct ggml_compute_params * params,
  9271. const struct ggml_tensor * src0,
  9272. const struct ggml_tensor * src1,
  9273. struct ggml_tensor * dst) {
  9274. switch (src0->type) {
  9275. case GGML_TYPE_F32:
  9276. {
  9277. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9278. } break;
  9279. default:
  9280. {
  9281. GGML_ASSERT(false);
  9282. } break;
  9283. }
  9284. }
  9285. // ggml_compute_forward_set
  9286. static void ggml_compute_forward_set_f32(
  9287. const struct ggml_compute_params * params,
  9288. const struct ggml_tensor * src0,
  9289. const struct ggml_tensor * src1,
  9290. struct ggml_tensor * dst) {
  9291. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9292. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9293. // view src0 and dst with these strides and data offset inbytes during set
  9294. // nb0 is implicitely element_size because src0 and dst are contiguous
  9295. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9296. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9297. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9298. size_t offset = ((int32_t *) dst->op_params)[3];
  9299. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9300. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9301. // memcpy needs to be synchronized across threads to avoid race conditions.
  9302. // => do it in INIT phase
  9303. memcpy(
  9304. ((char *) dst->data),
  9305. ((char *) src0->data),
  9306. ggml_nbytes(dst));
  9307. }
  9308. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9309. return;
  9310. }
  9311. const int ith = params->ith;
  9312. const int nth = params->nth;
  9313. const int nr = ggml_nrows(src1);
  9314. const int nc = src1->ne[0];
  9315. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9316. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9317. // src0 and dst as viewed during set
  9318. const size_t nb0 = ggml_element_size(src0);
  9319. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9320. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9321. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9322. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9323. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9324. GGML_ASSERT(nb10 == sizeof(float));
  9325. // rows per thread
  9326. const int dr = (nr + nth - 1)/nth;
  9327. // row range for this thread
  9328. const int ir0 = dr*ith;
  9329. const int ir1 = MIN(ir0 + dr, nr);
  9330. for (int ir = ir0; ir < ir1; ++ir) {
  9331. // src0 and dst are viewed with shape of src1 and offset
  9332. // => same indices
  9333. const int i3 = ir/(ne12*ne11);
  9334. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9335. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9336. ggml_vec_cpy_f32(nc,
  9337. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9338. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9339. }
  9340. }
  9341. static void ggml_compute_forward_set(
  9342. const struct ggml_compute_params * params,
  9343. const struct ggml_tensor * src0,
  9344. const struct ggml_tensor * src1,
  9345. struct ggml_tensor * dst) {
  9346. switch (src0->type) {
  9347. case GGML_TYPE_F32:
  9348. {
  9349. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9350. } break;
  9351. case GGML_TYPE_F16:
  9352. case GGML_TYPE_Q4_0:
  9353. case GGML_TYPE_Q4_1:
  9354. case GGML_TYPE_Q5_0:
  9355. case GGML_TYPE_Q5_1:
  9356. case GGML_TYPE_Q8_0:
  9357. case GGML_TYPE_Q8_1:
  9358. case GGML_TYPE_Q2_K:
  9359. case GGML_TYPE_Q3_K:
  9360. case GGML_TYPE_Q4_K:
  9361. case GGML_TYPE_Q5_K:
  9362. case GGML_TYPE_Q6_K:
  9363. default:
  9364. {
  9365. GGML_ASSERT(false);
  9366. } break;
  9367. }
  9368. }
  9369. // ggml_compute_forward_cpy
  9370. static void ggml_compute_forward_cpy(
  9371. const struct ggml_compute_params * params,
  9372. const struct ggml_tensor * src0,
  9373. struct ggml_tensor * dst) {
  9374. ggml_compute_forward_dup(params, src0, dst);
  9375. }
  9376. // ggml_compute_forward_cont
  9377. static void ggml_compute_forward_cont(
  9378. const struct ggml_compute_params * params,
  9379. const struct ggml_tensor * src0,
  9380. struct ggml_tensor * dst) {
  9381. ggml_compute_forward_dup(params, src0, dst);
  9382. }
  9383. // ggml_compute_forward_reshape
  9384. static void ggml_compute_forward_reshape(
  9385. const struct ggml_compute_params * params,
  9386. const struct ggml_tensor * src0,
  9387. struct ggml_tensor * dst) {
  9388. // NOP
  9389. UNUSED(params);
  9390. UNUSED(src0);
  9391. UNUSED(dst);
  9392. }
  9393. // ggml_compute_forward_view
  9394. static void ggml_compute_forward_view(
  9395. const struct ggml_compute_params * params,
  9396. const struct ggml_tensor * src0) {
  9397. // NOP
  9398. UNUSED(params);
  9399. UNUSED(src0);
  9400. }
  9401. // ggml_compute_forward_permute
  9402. static void ggml_compute_forward_permute(
  9403. const struct ggml_compute_params * params,
  9404. const struct ggml_tensor * src0) {
  9405. // NOP
  9406. UNUSED(params);
  9407. UNUSED(src0);
  9408. }
  9409. // ggml_compute_forward_transpose
  9410. static void ggml_compute_forward_transpose(
  9411. const struct ggml_compute_params * params,
  9412. const struct ggml_tensor * src0) {
  9413. // NOP
  9414. UNUSED(params);
  9415. UNUSED(src0);
  9416. }
  9417. // ggml_compute_forward_get_rows
  9418. static void ggml_compute_forward_get_rows_q(
  9419. const struct ggml_compute_params * params,
  9420. const struct ggml_tensor * src0,
  9421. const struct ggml_tensor * src1,
  9422. struct ggml_tensor * dst) {
  9423. assert(params->ith == 0);
  9424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9425. return;
  9426. }
  9427. const int nc = src0->ne[0];
  9428. const int nr = ggml_nelements(src1);
  9429. const enum ggml_type type = src0->type;
  9430. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9431. assert( dst->ne[0] == nc);
  9432. assert( dst->ne[1] == nr);
  9433. assert(src0->nb[0] == ggml_type_size(type));
  9434. for (int i = 0; i < nr; ++i) {
  9435. const int r = ((int32_t *) src1->data)[i];
  9436. dequantize_row_q(
  9437. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9438. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9439. }
  9440. }
  9441. static void ggml_compute_forward_get_rows_f16(
  9442. const struct ggml_compute_params * params,
  9443. const struct ggml_tensor * src0,
  9444. const struct ggml_tensor * src1,
  9445. struct ggml_tensor * dst) {
  9446. assert(params->ith == 0);
  9447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9448. return;
  9449. }
  9450. const int nc = src0->ne[0];
  9451. const int nr = ggml_nelements(src1);
  9452. assert( dst->ne[0] == nc);
  9453. assert( dst->ne[1] == nr);
  9454. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9455. for (int i = 0; i < nr; ++i) {
  9456. const int r = ((int32_t *) src1->data)[i];
  9457. for (int j = 0; j < nc; ++j) {
  9458. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9459. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9460. }
  9461. }
  9462. }
  9463. static void ggml_compute_forward_get_rows_f32(
  9464. const struct ggml_compute_params * params,
  9465. const struct ggml_tensor * src0,
  9466. const struct ggml_tensor * src1,
  9467. struct ggml_tensor * dst) {
  9468. assert(params->ith == 0);
  9469. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9470. return;
  9471. }
  9472. const int nc = src0->ne[0];
  9473. const int nr = ggml_nelements(src1);
  9474. assert( dst->ne[0] == nc);
  9475. assert( dst->ne[1] == nr);
  9476. assert(src0->nb[0] == sizeof(float));
  9477. for (int i = 0; i < nr; ++i) {
  9478. const int r = ((int32_t *) src1->data)[i];
  9479. ggml_vec_cpy_f32(nc,
  9480. (float *) ((char *) dst->data + i*dst->nb[1]),
  9481. (float *) ((char *) src0->data + r*src0->nb[1]));
  9482. }
  9483. }
  9484. static void ggml_compute_forward_get_rows(
  9485. const struct ggml_compute_params * params,
  9486. const struct ggml_tensor * src0,
  9487. const struct ggml_tensor * src1,
  9488. struct ggml_tensor * dst) {
  9489. switch (src0->type) {
  9490. case GGML_TYPE_Q4_0:
  9491. case GGML_TYPE_Q4_1:
  9492. case GGML_TYPE_Q5_0:
  9493. case GGML_TYPE_Q5_1:
  9494. case GGML_TYPE_Q8_0:
  9495. case GGML_TYPE_Q8_1:
  9496. case GGML_TYPE_Q2_K:
  9497. case GGML_TYPE_Q3_K:
  9498. case GGML_TYPE_Q4_K:
  9499. case GGML_TYPE_Q5_K:
  9500. case GGML_TYPE_Q6_K:
  9501. {
  9502. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9503. } break;
  9504. case GGML_TYPE_F16:
  9505. {
  9506. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9507. } break;
  9508. case GGML_TYPE_F32:
  9509. {
  9510. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9511. } break;
  9512. default:
  9513. {
  9514. GGML_ASSERT(false);
  9515. } break;
  9516. }
  9517. //static bool first = true;
  9518. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9519. //if (first) {
  9520. // first = false;
  9521. //} else {
  9522. // for (int k = 0; k < dst->ne[1]; ++k) {
  9523. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9524. // for (int i = 0; i < 16; ++i) {
  9525. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9526. // }
  9527. // printf("\n");
  9528. // }
  9529. // printf("\n");
  9530. // }
  9531. // printf("\n");
  9532. // exit(0);
  9533. //}
  9534. }
  9535. // ggml_compute_forward_get_rows_back
  9536. static void ggml_compute_forward_get_rows_back_f32_f16(
  9537. const struct ggml_compute_params * params,
  9538. const struct ggml_tensor * src0,
  9539. const struct ggml_tensor * src1,
  9540. const struct ggml_tensor * opt0,
  9541. struct ggml_tensor * dst) {
  9542. GGML_ASSERT(params->ith == 0);
  9543. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9544. GGML_ASSERT(ggml_is_contiguous(opt0));
  9545. GGML_ASSERT(ggml_is_contiguous(dst));
  9546. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9547. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9548. return;
  9549. }
  9550. const int nc = src0->ne[0];
  9551. const int nr = ggml_nelements(src1);
  9552. GGML_ASSERT( dst->ne[0] == nc);
  9553. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9554. for (int i = 0; i < nr; ++i) {
  9555. const int r = ((int32_t *) src1->data)[i];
  9556. for (int j = 0; j < nc; ++j) {
  9557. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9558. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9559. }
  9560. }
  9561. }
  9562. static void ggml_compute_forward_get_rows_back_f32(
  9563. const struct ggml_compute_params * params,
  9564. const struct ggml_tensor * src0,
  9565. const struct ggml_tensor * src1,
  9566. const struct ggml_tensor * opt0,
  9567. struct ggml_tensor * dst) {
  9568. GGML_ASSERT(params->ith == 0);
  9569. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9570. GGML_ASSERT(ggml_is_contiguous(opt0));
  9571. GGML_ASSERT(ggml_is_contiguous(dst));
  9572. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9573. if (params->type == GGML_TASK_INIT) {
  9574. memset(dst->data, 0, ggml_nbytes(dst));
  9575. }
  9576. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9577. return;
  9578. }
  9579. const int nc = src0->ne[0];
  9580. const int nr = ggml_nelements(src1);
  9581. GGML_ASSERT( dst->ne[0] == nc);
  9582. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9583. for (int i = 0; i < nr; ++i) {
  9584. const int r = ((int32_t *) src1->data)[i];
  9585. ggml_vec_add_f32(nc,
  9586. (float *) ((char *) dst->data + r*dst->nb[1]),
  9587. (float *) ((char *) dst->data + r*dst->nb[1]),
  9588. (float *) ((char *) src0->data + i*src0->nb[1]));
  9589. }
  9590. }
  9591. static void ggml_compute_forward_get_rows_back(
  9592. const struct ggml_compute_params * params,
  9593. const struct ggml_tensor * src0,
  9594. const struct ggml_tensor * src1,
  9595. const struct ggml_tensor * opt0,
  9596. struct ggml_tensor * dst) {
  9597. switch (src0->type) {
  9598. case GGML_TYPE_F16:
  9599. {
  9600. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9601. } break;
  9602. case GGML_TYPE_F32:
  9603. {
  9604. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9605. } break;
  9606. default:
  9607. {
  9608. GGML_ASSERT(false);
  9609. } break;
  9610. }
  9611. //static bool first = true;
  9612. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9613. //if (first) {
  9614. // first = false;
  9615. //} else {
  9616. // for (int k = 0; k < dst->ne[1]; ++k) {
  9617. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9618. // for (int i = 0; i < 16; ++i) {
  9619. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9620. // }
  9621. // printf("\n");
  9622. // }
  9623. // printf("\n");
  9624. // }
  9625. // printf("\n");
  9626. // exit(0);
  9627. //}
  9628. }
  9629. // ggml_compute_forward_diag
  9630. static void ggml_compute_forward_diag_f32(
  9631. const struct ggml_compute_params * params,
  9632. const struct ggml_tensor * src0,
  9633. struct ggml_tensor * dst) {
  9634. GGML_ASSERT(params->ith == 0);
  9635. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9636. return;
  9637. }
  9638. // TODO: handle transposed/permuted matrices
  9639. GGML_TENSOR_UNARY_OP_LOCALS;
  9640. GGML_ASSERT(ne00 == ne0);
  9641. GGML_ASSERT(ne00 == ne1);
  9642. GGML_ASSERT(ne01 == 1);
  9643. GGML_ASSERT(ne02 == ne2);
  9644. GGML_ASSERT(ne03 == ne3);
  9645. GGML_ASSERT(nb00 == sizeof(float));
  9646. GGML_ASSERT(nb0 == sizeof(float));
  9647. for (int i3 = 0; i3 < ne3; i3++) {
  9648. for (int i2 = 0; i2 < ne2; i2++) {
  9649. for (int i1 = 0; i1 < ne1; i1++) {
  9650. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9651. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9652. for (int i0 = 0; i0 < i1; i0++) {
  9653. d[i0] = 0;
  9654. }
  9655. d[i1] = s[i1];
  9656. for (int i0 = i1+1; i0 < ne0; i0++) {
  9657. d[i0] = 0;
  9658. }
  9659. }
  9660. }
  9661. }
  9662. }
  9663. static void ggml_compute_forward_diag(
  9664. const struct ggml_compute_params * params,
  9665. const struct ggml_tensor * src0,
  9666. struct ggml_tensor * dst) {
  9667. switch (src0->type) {
  9668. case GGML_TYPE_F32:
  9669. {
  9670. ggml_compute_forward_diag_f32(params, src0, dst);
  9671. } break;
  9672. default:
  9673. {
  9674. GGML_ASSERT(false);
  9675. } break;
  9676. }
  9677. }
  9678. // ggml_compute_forward_diag_mask_inf
  9679. static void ggml_compute_forward_diag_mask_f32(
  9680. const struct ggml_compute_params * params,
  9681. const struct ggml_tensor * src0,
  9682. struct ggml_tensor * dst,
  9683. const float value) {
  9684. const int ith = params->ith;
  9685. const int nth = params->nth;
  9686. const int n_past = ((int32_t *) dst->op_params)[0];
  9687. const bool inplace = (bool)((int32_t *) dst->op_params)[1];
  9688. GGML_ASSERT(n_past >= 0);
  9689. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9690. // memcpy needs to be synchronized across threads to avoid race conditions.
  9691. // => do it in INIT phase
  9692. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9693. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9694. memcpy(
  9695. ((char *) dst->data),
  9696. ((char *) src0->data),
  9697. ggml_nbytes(dst));
  9698. }
  9699. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9700. return;
  9701. }
  9702. // TODO: handle transposed/permuted matrices
  9703. const int n = ggml_nrows(src0);
  9704. const int nc = src0->ne[0];
  9705. const int nr = src0->ne[1];
  9706. const int nz = n/nr;
  9707. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9708. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9709. for (int k = 0; k < nz; k++) {
  9710. for (int j = ith; j < nr; j += nth) {
  9711. for (int i = n_past; i < nc; i++) {
  9712. if (i > n_past + j) {
  9713. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9714. }
  9715. }
  9716. }
  9717. }
  9718. }
  9719. static void ggml_compute_forward_diag_mask_inf(
  9720. const struct ggml_compute_params * params,
  9721. const struct ggml_tensor * src0,
  9722. struct ggml_tensor * dst) {
  9723. switch (src0->type) {
  9724. case GGML_TYPE_F32:
  9725. {
  9726. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9727. } break;
  9728. default:
  9729. {
  9730. GGML_ASSERT(false);
  9731. } break;
  9732. }
  9733. }
  9734. static void ggml_compute_forward_diag_mask_zero(
  9735. const struct ggml_compute_params * params,
  9736. const struct ggml_tensor * src0,
  9737. struct ggml_tensor * dst) {
  9738. switch (src0->type) {
  9739. case GGML_TYPE_F32:
  9740. {
  9741. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9742. } break;
  9743. default:
  9744. {
  9745. GGML_ASSERT(false);
  9746. } break;
  9747. }
  9748. }
  9749. // ggml_compute_forward_soft_max
  9750. static void ggml_compute_forward_soft_max_f32(
  9751. const struct ggml_compute_params * params,
  9752. const struct ggml_tensor * src0,
  9753. struct ggml_tensor * dst) {
  9754. GGML_ASSERT(ggml_is_contiguous(src0));
  9755. GGML_ASSERT(ggml_is_contiguous(dst));
  9756. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9757. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9758. return;
  9759. }
  9760. // TODO: handle transposed/permuted matrices
  9761. const int ith = params->ith;
  9762. const int nth = params->nth;
  9763. const int nc = src0->ne[0];
  9764. const int nr = ggml_nrows(src0);
  9765. // rows per thread
  9766. const int dr = (nr + nth - 1)/nth;
  9767. // row range for this thread
  9768. const int ir0 = dr*ith;
  9769. const int ir1 = MIN(ir0 + dr, nr);
  9770. for (int i1 = ir0; i1 < ir1; i1++) {
  9771. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9772. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9773. #ifndef NDEBUG
  9774. for (int i = 0; i < nc; ++i) {
  9775. //printf("p[%d] = %f\n", i, p[i]);
  9776. assert(!isnan(sp[i]));
  9777. }
  9778. #endif
  9779. float max = -INFINITY;
  9780. ggml_vec_max_f32(nc, &max, sp);
  9781. ggml_float sum = 0.0;
  9782. uint16_t scvt;
  9783. for (int i = 0; i < nc; i++) {
  9784. if (sp[i] == -INFINITY) {
  9785. dp[i] = 0.0f;
  9786. } else {
  9787. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9788. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9789. memcpy(&scvt, &s, sizeof(scvt));
  9790. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9791. sum += (ggml_float)val;
  9792. dp[i] = val;
  9793. }
  9794. }
  9795. assert(sum > 0.0);
  9796. sum = 1.0/sum;
  9797. ggml_vec_scale_f32(nc, dp, sum);
  9798. #ifndef NDEBUG
  9799. for (int i = 0; i < nc; ++i) {
  9800. assert(!isnan(dp[i]));
  9801. assert(!isinf(dp[i]));
  9802. }
  9803. #endif
  9804. }
  9805. }
  9806. static void ggml_compute_forward_soft_max(
  9807. const struct ggml_compute_params * params,
  9808. const struct ggml_tensor * src0,
  9809. struct ggml_tensor * dst) {
  9810. switch (src0->type) {
  9811. case GGML_TYPE_F32:
  9812. {
  9813. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9814. } break;
  9815. default:
  9816. {
  9817. GGML_ASSERT(false);
  9818. } break;
  9819. }
  9820. }
  9821. // ggml_compute_forward_soft_max_back
  9822. static void ggml_compute_forward_soft_max_back_f32(
  9823. const struct ggml_compute_params * params,
  9824. const struct ggml_tensor * src0,
  9825. const struct ggml_tensor * src1,
  9826. struct ggml_tensor * dst) {
  9827. GGML_ASSERT(ggml_is_contiguous(src0));
  9828. GGML_ASSERT(ggml_is_contiguous(src1));
  9829. GGML_ASSERT(ggml_is_contiguous(dst));
  9830. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9831. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9833. return;
  9834. }
  9835. // TODO: handle transposed/permuted matrices
  9836. const int ith = params->ith;
  9837. const int nth = params->nth;
  9838. const int nc = src0->ne[0];
  9839. const int nr = ggml_nrows(src0);
  9840. // rows per thread
  9841. const int dr = (nr + nth - 1)/nth;
  9842. // row range for this thread
  9843. const int ir0 = dr*ith;
  9844. const int ir1 = MIN(ir0 + dr, nr);
  9845. for (int i1 = ir0; i1 < ir1; i1++) {
  9846. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9847. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9848. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9849. #ifndef NDEBUG
  9850. for (int i = 0; i < nc; ++i) {
  9851. //printf("p[%d] = %f\n", i, p[i]);
  9852. assert(!isnan(dy[i]));
  9853. assert(!isnan(y[i]));
  9854. }
  9855. #endif
  9856. // Jii = yi - yi*yi
  9857. // Jij = -yi*yj
  9858. // J = diag(y)-y.T*y
  9859. // dx = J * dy
  9860. // dxk = sum_i(Jki * dyi)
  9861. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9862. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9863. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9864. // dxk = -yk * dot(y, dy) + yk*dyk
  9865. // dxk = yk * (- dot(y, dy) + dyk)
  9866. // dxk = yk * (dyk - dot(y, dy))
  9867. //
  9868. // post-order:
  9869. // dot_y_dy := dot(y, dy)
  9870. // dx := dy
  9871. // dx := dx - dot_y_dy
  9872. // dx := dx * y
  9873. // linear runtime, no additional memory
  9874. float dot_y_dy = 0;
  9875. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9876. ggml_vec_cpy_f32 (nc, dx, dy);
  9877. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9878. ggml_vec_mul_f32 (nc, dx, dx, y);
  9879. #ifndef NDEBUG
  9880. for (int i = 0; i < nc; ++i) {
  9881. assert(!isnan(dx[i]));
  9882. assert(!isinf(dx[i]));
  9883. }
  9884. #endif
  9885. }
  9886. }
  9887. static void ggml_compute_forward_soft_max_back(
  9888. const struct ggml_compute_params * params,
  9889. const struct ggml_tensor * src0,
  9890. const struct ggml_tensor * src1,
  9891. struct ggml_tensor * dst) {
  9892. switch (src0->type) {
  9893. case GGML_TYPE_F32:
  9894. {
  9895. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9896. } break;
  9897. default:
  9898. {
  9899. GGML_ASSERT(false);
  9900. } break;
  9901. }
  9902. }
  9903. // ggml_compute_forward_alibi
  9904. static void ggml_compute_forward_alibi_f32(
  9905. const struct ggml_compute_params * params,
  9906. const struct ggml_tensor * src0,
  9907. struct ggml_tensor * dst) {
  9908. assert(params->ith == 0);
  9909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9910. return;
  9911. }
  9912. const int n_past = ((int32_t *) dst->op_params)[0];
  9913. const int n_head = ((int32_t *) dst->op_params)[1];
  9914. float max_bias;
  9915. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9916. assert(n_past >= 0);
  9917. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9918. const int ne1 = src0->ne[1]; // seq_len_without_past
  9919. const int ne2 = src0->ne[2]; // n_head -> this is k
  9920. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9921. const int n = ggml_nrows(src0);
  9922. const int ne2_ne3 = n/ne1; // ne2*ne3
  9923. const int nb0 = src0->nb[0];
  9924. const int nb1 = src0->nb[1];
  9925. const int nb2 = src0->nb[2];
  9926. //const int nb3 = src0->nb[3];
  9927. GGML_ASSERT(nb0 == sizeof(float));
  9928. GGML_ASSERT(ne1 + n_past == ne0);
  9929. GGML_ASSERT(n_head == ne2);
  9930. // add alibi to src0 (KQ_scaled)
  9931. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9932. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9933. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9934. for (int i = 0; i < ne0; i++) {
  9935. for (int j = 0; j < ne1; j++) {
  9936. for (int k = 0; k < ne2_ne3; k++) {
  9937. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9938. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9939. // TODO: k*nb2 or k*nb3
  9940. float m_k;
  9941. if (k < n_heads_log2_floor) {
  9942. m_k = powf(m0, k + 1);
  9943. } else {
  9944. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9945. }
  9946. pdst[0] = i * m_k + src[0];
  9947. }
  9948. }
  9949. }
  9950. }
  9951. static void ggml_compute_forward_alibi_f16(
  9952. const struct ggml_compute_params * params,
  9953. const struct ggml_tensor * src0,
  9954. struct ggml_tensor * dst) {
  9955. assert(params->ith == 0);
  9956. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9957. return;
  9958. }
  9959. const int n_past = ((int32_t *) dst->op_params)[0];
  9960. const int n_head = ((int32_t *) dst->op_params)[1];
  9961. float max_bias;
  9962. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9963. assert(n_past >= 0);
  9964. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9965. const int ne1 = src0->ne[1]; // seq_len_without_past
  9966. const int ne2 = src0->ne[2]; // n_head -> this is k
  9967. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9968. const int n = ggml_nrows(src0);
  9969. const int ne2_ne3 = n/ne1; // ne2*ne3
  9970. const int nb0 = src0->nb[0];
  9971. const int nb1 = src0->nb[1];
  9972. const int nb2 = src0->nb[2];
  9973. //const int nb3 = src0->nb[3];
  9974. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9975. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9976. GGML_ASSERT(n_head == ne2);
  9977. // add alibi to src0 (KQ_scaled)
  9978. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9979. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9980. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9981. for (int i = 0; i < ne0; i++) {
  9982. for (int j = 0; j < ne1; j++) {
  9983. for (int k = 0; k < ne2_ne3; k++) {
  9984. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9985. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9986. // TODO: k*nb2 or k*nb3
  9987. float m_k;
  9988. if (k < n_heads_log2_floor) {
  9989. m_k = powf(m0, k + 1);
  9990. } else {
  9991. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9992. }
  9993. // we return F32
  9994. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9995. }
  9996. }
  9997. }
  9998. }
  9999. static void ggml_compute_forward_alibi(
  10000. const struct ggml_compute_params * params,
  10001. const struct ggml_tensor * src0,
  10002. struct ggml_tensor * dst) {
  10003. switch (src0->type) {
  10004. case GGML_TYPE_F16:
  10005. {
  10006. ggml_compute_forward_alibi_f16(params, src0, dst);
  10007. } break;
  10008. case GGML_TYPE_F32:
  10009. {
  10010. ggml_compute_forward_alibi_f32(params, src0, dst);
  10011. } break;
  10012. case GGML_TYPE_Q4_0:
  10013. case GGML_TYPE_Q4_1:
  10014. case GGML_TYPE_Q5_0:
  10015. case GGML_TYPE_Q5_1:
  10016. case GGML_TYPE_Q8_0:
  10017. case GGML_TYPE_Q8_1:
  10018. case GGML_TYPE_Q2_K:
  10019. case GGML_TYPE_Q3_K:
  10020. case GGML_TYPE_Q4_K:
  10021. case GGML_TYPE_Q5_K:
  10022. case GGML_TYPE_Q6_K:
  10023. case GGML_TYPE_Q8_K:
  10024. case GGML_TYPE_I8:
  10025. case GGML_TYPE_I16:
  10026. case GGML_TYPE_I32:
  10027. case GGML_TYPE_COUNT:
  10028. {
  10029. GGML_ASSERT(false);
  10030. } break;
  10031. }
  10032. }
  10033. // ggml_compute_forward_clamp
  10034. static void ggml_compute_forward_clamp_f32(
  10035. const struct ggml_compute_params * params,
  10036. const struct ggml_tensor * src0,
  10037. struct ggml_tensor * dst) {
  10038. assert(params->ith == 0);
  10039. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10040. return;
  10041. }
  10042. float min;
  10043. float max;
  10044. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10045. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10046. const int ith = params->ith;
  10047. const int nth = params->nth;
  10048. const int n = ggml_nrows(src0);
  10049. const int nc = src0->ne[0];
  10050. const size_t nb00 = src0->nb[0];
  10051. const size_t nb01 = src0->nb[1];
  10052. const size_t nb0 = dst->nb[0];
  10053. const size_t nb1 = dst->nb[1];
  10054. GGML_ASSERT( nb0 == sizeof(float));
  10055. GGML_ASSERT(nb00 == sizeof(float));
  10056. for (int j = ith; j < n; j += nth) {
  10057. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10058. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10059. for (int i = 0; i < nc; i++) {
  10060. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10061. }
  10062. }
  10063. }
  10064. static void ggml_compute_forward_clamp(
  10065. const struct ggml_compute_params * params,
  10066. const struct ggml_tensor * src0,
  10067. struct ggml_tensor * dst) {
  10068. switch (src0->type) {
  10069. case GGML_TYPE_F32:
  10070. {
  10071. ggml_compute_forward_clamp_f32(params, src0, dst);
  10072. } break;
  10073. case GGML_TYPE_F16:
  10074. case GGML_TYPE_Q4_0:
  10075. case GGML_TYPE_Q4_1:
  10076. case GGML_TYPE_Q5_0:
  10077. case GGML_TYPE_Q5_1:
  10078. case GGML_TYPE_Q8_0:
  10079. case GGML_TYPE_Q8_1:
  10080. case GGML_TYPE_Q2_K:
  10081. case GGML_TYPE_Q3_K:
  10082. case GGML_TYPE_Q4_K:
  10083. case GGML_TYPE_Q5_K:
  10084. case GGML_TYPE_Q6_K:
  10085. case GGML_TYPE_Q8_K:
  10086. case GGML_TYPE_I8:
  10087. case GGML_TYPE_I16:
  10088. case GGML_TYPE_I32:
  10089. case GGML_TYPE_COUNT:
  10090. {
  10091. GGML_ASSERT(false);
  10092. } break;
  10093. }
  10094. }
  10095. // ggml_compute_forward_rope
  10096. static void ggml_compute_forward_rope_f32(
  10097. const struct ggml_compute_params * params,
  10098. const struct ggml_tensor * src0,
  10099. struct ggml_tensor * dst) {
  10100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10101. return;
  10102. }
  10103. float freq_base;
  10104. float freq_scale;
  10105. // these two only relevant for xPos RoPE:
  10106. float xpos_base;
  10107. bool xpos_down;
  10108. const int n_past = ((int32_t *) dst->op_params)[0];
  10109. const int n_dims = ((int32_t *) dst->op_params)[1];
  10110. const int mode = ((int32_t *) dst->op_params)[2];
  10111. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10112. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10113. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10114. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10115. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10116. assert(n_past >= 0);
  10117. GGML_TENSOR_UNARY_OP_LOCALS;
  10118. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10119. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10120. GGML_ASSERT(nb00 == sizeof(float));
  10121. const int ith = params->ith;
  10122. const int nth = params->nth;
  10123. const int nr = ggml_nrows(dst);
  10124. GGML_ASSERT(n_dims <= ne0);
  10125. GGML_ASSERT(n_dims % 2 == 0);
  10126. // rows per thread
  10127. const int dr = (nr + nth - 1)/nth;
  10128. // row range for this thread
  10129. const int ir0 = dr*ith;
  10130. const int ir1 = MIN(ir0 + dr, nr);
  10131. // row index used to determine which thread to use
  10132. int ir = 0;
  10133. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10134. const bool is_neox = mode & 2;
  10135. const bool is_glm = mode & 4;
  10136. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10137. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10138. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10139. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10140. if (ir++ < ir0) continue;
  10141. if (ir > ir1) break;
  10142. float theta = freq_scale * (float)p;
  10143. if (is_glm) {
  10144. theta = MIN(p, n_ctx - 2);
  10145. float block_theta = MAX(p - (n_ctx - 2), 0);
  10146. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10147. const float cos_theta = cosf(theta);
  10148. const float sin_theta = sinf(theta);
  10149. const float cos_block_theta = cosf(block_theta);
  10150. const float sin_block_theta = sinf(block_theta);
  10151. theta *= theta_scale;
  10152. block_theta *= theta_scale;
  10153. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10154. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10155. const float x0 = src[0];
  10156. const float x1 = src[n_dims/2];
  10157. const float x2 = src[n_dims];
  10158. const float x3 = src[n_dims/2*3];
  10159. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10160. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10161. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10162. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10163. }
  10164. } else if (!is_neox) {
  10165. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10166. const float cos_theta = cosf(theta);
  10167. const float sin_theta = sinf(theta);
  10168. // zeta scaling for xPos only:
  10169. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10170. if (xpos_down) zeta = 1.0f / zeta;
  10171. theta *= theta_scale;
  10172. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10173. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10174. const float x0 = src[0];
  10175. const float x1 = src[1];
  10176. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10177. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10178. }
  10179. } else {
  10180. // TODO: this might be wrong for ne0 != n_dims - need double check
  10181. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10182. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10183. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10184. const float cos_theta = cosf(theta);
  10185. const float sin_theta = sinf(theta);
  10186. theta *= theta_scale;
  10187. const int64_t i0 = ib*n_dims + ic/2;
  10188. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10189. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10190. const float x0 = src[0];
  10191. const float x1 = src[n_dims/2];
  10192. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10193. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10194. }
  10195. }
  10196. }
  10197. }
  10198. }
  10199. }
  10200. }
  10201. static void ggml_compute_forward_rope_f16(
  10202. const struct ggml_compute_params * params,
  10203. const struct ggml_tensor * src0,
  10204. struct ggml_tensor * dst) {
  10205. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10206. return;
  10207. }
  10208. float freq_base;
  10209. float freq_scale;
  10210. const int n_past = ((int32_t *) dst->op_params)[0];
  10211. const int n_dims = ((int32_t *) dst->op_params)[1];
  10212. const int mode = ((int32_t *) dst->op_params)[2];
  10213. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10214. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10215. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10216. assert(n_past >= 0);
  10217. GGML_TENSOR_UNARY_OP_LOCALS;
  10218. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10219. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10220. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10221. const int ith = params->ith;
  10222. const int nth = params->nth;
  10223. const int nr = ggml_nrows(dst);
  10224. GGML_ASSERT(n_dims <= ne0);
  10225. GGML_ASSERT(n_dims % 2 == 0);
  10226. // rows per thread
  10227. const int dr = (nr + nth - 1)/nth;
  10228. // row range for this thread
  10229. const int ir0 = dr*ith;
  10230. const int ir1 = MIN(ir0 + dr, nr);
  10231. // row index used to determine which thread to use
  10232. int ir = 0;
  10233. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10234. const bool is_neox = mode & 2;
  10235. const bool is_glm = mode & 4;
  10236. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10237. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10238. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10239. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10240. if (ir++ < ir0) continue;
  10241. if (ir > ir1) break;
  10242. float theta = freq_scale * (float)p;
  10243. if (is_glm) {
  10244. theta = MIN(p, n_ctx - 2);
  10245. float block_theta = MAX(p - (n_ctx - 2), 0);
  10246. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10247. const float cos_theta = cosf(theta);
  10248. const float sin_theta = sinf(theta);
  10249. const float cos_block_theta = cosf(block_theta);
  10250. const float sin_block_theta = sinf(block_theta);
  10251. theta *= theta_scale;
  10252. block_theta *= theta_scale;
  10253. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10254. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10255. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10256. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10257. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10258. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10259. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10260. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10261. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10262. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10263. }
  10264. } if (!is_neox) {
  10265. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10266. const float cos_theta = cosf(theta);
  10267. const float sin_theta = sinf(theta);
  10268. theta *= theta_scale;
  10269. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10270. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10271. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10272. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10273. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10274. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10275. }
  10276. } else {
  10277. // TODO: this might be wrong for ne0 != n_dims - need double check
  10278. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10279. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10280. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10281. const float cos_theta = cosf(theta);
  10282. const float sin_theta = sinf(theta);
  10283. theta *= theta_scale;
  10284. const int64_t i0 = ib*n_dims + ic/2;
  10285. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10286. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10287. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10288. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10289. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10290. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10291. }
  10292. }
  10293. }
  10294. }
  10295. }
  10296. }
  10297. }
  10298. static void ggml_compute_forward_rope(
  10299. const struct ggml_compute_params * params,
  10300. const struct ggml_tensor * src0,
  10301. struct ggml_tensor * dst) {
  10302. switch (src0->type) {
  10303. case GGML_TYPE_F16:
  10304. {
  10305. ggml_compute_forward_rope_f16(params, src0, dst);
  10306. } break;
  10307. case GGML_TYPE_F32:
  10308. {
  10309. ggml_compute_forward_rope_f32(params, src0, dst);
  10310. } break;
  10311. default:
  10312. {
  10313. GGML_ASSERT(false);
  10314. } break;
  10315. }
  10316. }
  10317. // ggml_compute_forward_rope_back
  10318. static void ggml_compute_forward_rope_back_f32(
  10319. const struct ggml_compute_params * params,
  10320. const struct ggml_tensor * src0,
  10321. struct ggml_tensor * dst) {
  10322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10323. return;
  10324. }
  10325. // y = rope(x, src1)
  10326. // dx = rope_back(dy, src1)
  10327. // src0 is dy, src1 contains options
  10328. float freq_base;
  10329. float freq_scale;
  10330. // these two only relevant for xPos RoPE:
  10331. float xpos_base;
  10332. bool xpos_down;
  10333. const int n_past = ((int32_t *) dst->op_params)[0];
  10334. const int n_dims = ((int32_t *) dst->op_params)[1];
  10335. const int mode = ((int32_t *) dst->op_params)[2];
  10336. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10337. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10338. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10339. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10340. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10341. assert(n_past >= 0);
  10342. GGML_TENSOR_UNARY_OP_LOCALS;
  10343. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10344. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10345. assert(nb0 == sizeof(float));
  10346. const int ith = params->ith;
  10347. const int nth = params->nth;
  10348. const int nr = ggml_nrows(dst);
  10349. // rows per thread
  10350. const int dr = (nr + nth - 1)/nth;
  10351. // row range for this thread
  10352. const int ir0 = dr*ith;
  10353. const int ir1 = MIN(ir0 + dr, nr);
  10354. // row index used to determine which thread to use
  10355. int ir = 0;
  10356. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10357. const bool is_neox = mode & 2;
  10358. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10359. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10360. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10361. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10362. if (ir++ < ir0) continue;
  10363. if (ir > ir1) break;
  10364. float theta = freq_scale * (float)p;
  10365. if (!is_neox) {
  10366. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10367. const float cos_theta = cosf(theta);
  10368. const float sin_theta = sinf(theta);
  10369. // zeta scaling for xPos only:
  10370. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10371. if (xpos_down) zeta = 1.0f / zeta;
  10372. theta *= theta_scale;
  10373. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10374. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10375. const float dy0 = dy[0];
  10376. const float dy1 = dy[1];
  10377. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10378. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10379. }
  10380. } else {
  10381. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10382. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10383. const float cos_theta = cosf(theta);
  10384. const float sin_theta = sinf(theta);
  10385. theta *= theta_scale;
  10386. const int64_t i0 = ib*n_dims + ic/2;
  10387. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10388. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10389. const float dy0 = dy[0];
  10390. const float dy1 = dy[n_dims/2];
  10391. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10392. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10393. }
  10394. }
  10395. }
  10396. }
  10397. }
  10398. }
  10399. }
  10400. static void ggml_compute_forward_rope_back_f16(
  10401. const struct ggml_compute_params * params,
  10402. const struct ggml_tensor * src0,
  10403. struct ggml_tensor * dst) {
  10404. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10405. return;
  10406. }
  10407. // y = rope(x, src1)
  10408. // dx = rope_back(dy, src1)
  10409. // src0 is dy, src1 contains options
  10410. const int n_past = ((int32_t *) dst->op_params)[0];
  10411. const int n_dims = ((int32_t *) dst->op_params)[1];
  10412. const int mode = ((int32_t *) dst->op_params)[2];
  10413. assert(n_past >= 0);
  10414. GGML_TENSOR_UNARY_OP_LOCALS;
  10415. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10416. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10417. assert(nb0 == sizeof(ggml_fp16_t));
  10418. const int ith = params->ith;
  10419. const int nth = params->nth;
  10420. const int nr = ggml_nrows(dst);
  10421. // rows per thread
  10422. const int dr = (nr + nth - 1)/nth;
  10423. // row range for this thread
  10424. const int ir0 = dr*ith;
  10425. const int ir1 = MIN(ir0 + dr, nr);
  10426. // row index used to determine which thread to use
  10427. int ir = 0;
  10428. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10429. const bool is_neox = mode & 2;
  10430. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10431. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10432. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10433. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10434. if (ir++ < ir0) continue;
  10435. if (ir > ir1) break;
  10436. float theta = (float)p;
  10437. if (!is_neox) {
  10438. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10439. const float cos_theta = cosf(theta);
  10440. const float sin_theta = sinf(theta);
  10441. theta *= theta_scale;
  10442. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10443. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10444. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10445. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10446. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10447. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10448. }
  10449. } else {
  10450. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10451. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10452. const float cos_theta = cosf(theta);
  10453. const float sin_theta = sinf(theta);
  10454. theta *= theta_scale;
  10455. const int64_t i0 = ib*n_dims + ic/2;
  10456. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10457. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10458. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10459. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10460. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10461. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10462. }
  10463. }
  10464. }
  10465. }
  10466. }
  10467. }
  10468. }
  10469. static void ggml_compute_forward_rope_back(
  10470. const struct ggml_compute_params * params,
  10471. const struct ggml_tensor * src0,
  10472. struct ggml_tensor * dst) {
  10473. switch (src0->type) {
  10474. case GGML_TYPE_F16:
  10475. {
  10476. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10477. } break;
  10478. case GGML_TYPE_F32:
  10479. {
  10480. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10481. } break;
  10482. default:
  10483. {
  10484. GGML_ASSERT(false);
  10485. } break;
  10486. }
  10487. }
  10488. // ggml_compute_forward_conv_1d
  10489. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10490. const struct ggml_compute_params * params,
  10491. const struct ggml_tensor * src0,
  10492. const struct ggml_tensor * src1,
  10493. struct ggml_tensor * dst) {
  10494. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10495. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10496. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10497. int64_t t0 = ggml_perf_time_us();
  10498. UNUSED(t0);
  10499. GGML_TENSOR_BINARY_OP_LOCALS;
  10500. const int ith = params->ith;
  10501. const int nth = params->nth;
  10502. const int nk = ne00;
  10503. const int nh = nk/2;
  10504. const int ew0 = ggml_up32(ne01);
  10505. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10506. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10507. GGML_ASSERT(nb10 == sizeof(float));
  10508. if (params->type == GGML_TASK_INIT) {
  10509. // TODO: fix this memset (wsize is overestimated)
  10510. memset(params->wdata, 0, params->wsize);
  10511. // prepare kernel data (src0)
  10512. {
  10513. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10514. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10515. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10516. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10517. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10518. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10519. dst_data[i00*ew0 + i01] = src[i00];
  10520. }
  10521. }
  10522. }
  10523. }
  10524. // prepare source data (src1)
  10525. {
  10526. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10527. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10528. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10529. ggml_fp16_t * dst_data = wdata;
  10530. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10531. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10532. }
  10533. }
  10534. }
  10535. return;
  10536. }
  10537. if (params->type == GGML_TASK_FINALIZE) {
  10538. return;
  10539. }
  10540. // total rows in dst
  10541. const int nr = ne02;
  10542. // rows per thread
  10543. const int dr = (nr + nth - 1)/nth;
  10544. // row range for this thread
  10545. const int ir0 = dr*ith;
  10546. const int ir1 = MIN(ir0 + dr, nr);
  10547. for (int i1 = ir0; i1 < ir1; i1++) {
  10548. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10549. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10550. dst_data[i0] = 0;
  10551. for (int k = -nh; k <= nh; k++) {
  10552. float v = 0.0f;
  10553. ggml_vec_dot_f16(ew0, &v,
  10554. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10555. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10556. dst_data[i0] += v;
  10557. }
  10558. }
  10559. }
  10560. }
  10561. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10562. const struct ggml_compute_params * params,
  10563. const struct ggml_tensor * src0,
  10564. const struct ggml_tensor * src1,
  10565. struct ggml_tensor * dst) {
  10566. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10567. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10568. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10569. int64_t t0 = ggml_perf_time_us();
  10570. UNUSED(t0);
  10571. GGML_TENSOR_BINARY_OP_LOCALS;
  10572. const int ith = params->ith;
  10573. const int nth = params->nth;
  10574. const int nk = ne00;
  10575. const int nh = nk/2;
  10576. const int ew0 = ggml_up32(ne01);
  10577. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10578. GGML_ASSERT(nb00 == sizeof(float));
  10579. GGML_ASSERT(nb10 == sizeof(float));
  10580. if (params->type == GGML_TASK_INIT) {
  10581. // TODO: fix this memset (wsize is overestimated)
  10582. memset(params->wdata, 0, params->wsize);
  10583. // prepare kernel data (src0)
  10584. {
  10585. float * const wdata = (float *) params->wdata + 0;
  10586. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10587. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10588. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10589. float * dst_data = wdata + i02*ew0*ne00;
  10590. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10591. dst_data[i00*ew0 + i01] = src[i00];
  10592. }
  10593. }
  10594. }
  10595. }
  10596. // prepare source data (src1)
  10597. {
  10598. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10599. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10600. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10601. float * dst_data = wdata;
  10602. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10603. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10604. }
  10605. }
  10606. }
  10607. return;
  10608. }
  10609. if (params->type == GGML_TASK_FINALIZE) {
  10610. return;
  10611. }
  10612. // total rows in dst
  10613. const int nr = ne02;
  10614. // rows per thread
  10615. const int dr = (nr + nth - 1)/nth;
  10616. // row range for this thread
  10617. const int ir0 = dr*ith;
  10618. const int ir1 = MIN(ir0 + dr, nr);
  10619. for (int i1 = ir0; i1 < ir1; i1++) {
  10620. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10621. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10622. dst_data[i0] = 0;
  10623. for (int k = -nh; k <= nh; k++) {
  10624. float v = 0.0f;
  10625. ggml_vec_dot_f32(ew0, &v,
  10626. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10627. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10628. dst_data[i0] += v;
  10629. }
  10630. }
  10631. }
  10632. }
  10633. static void ggml_compute_forward_conv_1d_s1_ph(
  10634. const struct ggml_compute_params * params,
  10635. const struct ggml_tensor * src0,
  10636. const struct ggml_tensor * src1,
  10637. struct ggml_tensor * dst) {
  10638. switch (src0->type) {
  10639. case GGML_TYPE_F16:
  10640. {
  10641. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10642. } break;
  10643. case GGML_TYPE_F32:
  10644. {
  10645. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10646. } break;
  10647. default:
  10648. {
  10649. GGML_ASSERT(false);
  10650. } break;
  10651. }
  10652. }
  10653. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10654. const struct ggml_compute_params * params,
  10655. const struct ggml_tensor * src0,
  10656. const struct ggml_tensor * src1,
  10657. struct ggml_tensor * dst) {
  10658. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10659. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10660. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10661. int64_t t0 = ggml_perf_time_us();
  10662. UNUSED(t0);
  10663. GGML_TENSOR_BINARY_OP_LOCALS;
  10664. const int ith = params->ith;
  10665. const int nth = params->nth;
  10666. const int nk = ne00;
  10667. const int nh = nk/2;
  10668. const int ew0 = ggml_up32(ne01);
  10669. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10670. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10671. GGML_ASSERT(nb10 == sizeof(float));
  10672. if (params->type == GGML_TASK_INIT) {
  10673. // TODO: fix this memset (wsize is overestimated)
  10674. memset(params->wdata, 0, params->wsize);
  10675. // prepare kernel data (src0)
  10676. {
  10677. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10678. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10679. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10680. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10681. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10682. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10683. dst_data[i00*ew0 + i01] = src[i00];
  10684. }
  10685. }
  10686. }
  10687. }
  10688. // prepare source data (src1)
  10689. {
  10690. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10691. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10692. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10693. ggml_fp16_t * dst_data = wdata;
  10694. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10695. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10696. }
  10697. }
  10698. }
  10699. return;
  10700. }
  10701. if (params->type == GGML_TASK_FINALIZE) {
  10702. return;
  10703. }
  10704. // total rows in dst
  10705. const int nr = ne02;
  10706. // rows per thread
  10707. const int dr = (nr + nth - 1)/nth;
  10708. // row range for this thread
  10709. const int ir0 = dr*ith;
  10710. const int ir1 = MIN(ir0 + dr, nr);
  10711. for (int i1 = ir0; i1 < ir1; i1++) {
  10712. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10713. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10714. dst_data[i0/2] = 0;
  10715. for (int k = -nh; k <= nh; k++) {
  10716. float v = 0.0f;
  10717. ggml_vec_dot_f16(ew0, &v,
  10718. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10719. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10720. dst_data[i0/2] += v;
  10721. }
  10722. }
  10723. }
  10724. }
  10725. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10726. const struct ggml_compute_params * params,
  10727. const struct ggml_tensor * src0,
  10728. const struct ggml_tensor * src1,
  10729. struct ggml_tensor * dst) {
  10730. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10731. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10732. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10733. int64_t t0 = ggml_perf_time_us();
  10734. UNUSED(t0);
  10735. GGML_TENSOR_BINARY_OP_LOCALS;
  10736. const int ith = params->ith;
  10737. const int nth = params->nth;
  10738. const int nk = ne00;
  10739. const int nh = nk/2;
  10740. const int ew0 = ggml_up32(ne01);
  10741. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10742. GGML_ASSERT(nb00 == sizeof(float));
  10743. GGML_ASSERT(nb10 == sizeof(float));
  10744. if (params->type == GGML_TASK_INIT) {
  10745. // TODO: fix this memset (wsize is overestimated)
  10746. memset(params->wdata, 0, params->wsize);
  10747. // prepare kernel data (src0)
  10748. {
  10749. float * const wdata = (float *) params->wdata + 0;
  10750. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10751. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10752. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10753. float * dst_data = wdata + i02*ew0*ne00;
  10754. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10755. dst_data[i00*ew0 + i01] = src[i00];
  10756. }
  10757. }
  10758. }
  10759. }
  10760. // prepare source data (src1)
  10761. {
  10762. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10763. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10764. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10765. float * dst_data = wdata;
  10766. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10767. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10768. }
  10769. }
  10770. }
  10771. return;
  10772. }
  10773. if (params->type == GGML_TASK_FINALIZE) {
  10774. return;
  10775. }
  10776. // total rows in dst
  10777. const int nr = ne02;
  10778. // rows per thread
  10779. const int dr = (nr + nth - 1)/nth;
  10780. // row range for this thread
  10781. const int ir0 = dr*ith;
  10782. const int ir1 = MIN(ir0 + dr, nr);
  10783. for (int i1 = ir0; i1 < ir1; i1++) {
  10784. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10785. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10786. dst_data[i0/2] = 0;
  10787. for (int k = -nh; k <= nh; k++) {
  10788. float v = 0.0f;
  10789. ggml_vec_dot_f32(ew0, &v,
  10790. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10791. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10792. dst_data[i0/2] += v;
  10793. }
  10794. }
  10795. }
  10796. }
  10797. static void ggml_compute_forward_conv_1d_s2_ph(
  10798. const struct ggml_compute_params * params,
  10799. const struct ggml_tensor * src0,
  10800. const struct ggml_tensor * src1,
  10801. struct ggml_tensor * dst) {
  10802. switch (src0->type) {
  10803. case GGML_TYPE_F16:
  10804. {
  10805. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10806. } break;
  10807. case GGML_TYPE_F32:
  10808. {
  10809. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10810. } break;
  10811. default:
  10812. {
  10813. GGML_ASSERT(false);
  10814. } break;
  10815. }
  10816. }
  10817. // ggml_compute_forward_conv_1d
  10818. static void ggml_compute_forward_conv_1d(
  10819. const struct ggml_compute_params * params,
  10820. const struct ggml_tensor * src0,
  10821. const struct ggml_tensor * src1,
  10822. struct ggml_tensor * dst) {
  10823. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10824. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10825. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10826. GGML_ASSERT(d0 == 1); // dilation not supported
  10827. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10828. if (s0 == 1) {
  10829. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10830. } else if (s0 == 2) {
  10831. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10832. } else {
  10833. GGML_ASSERT(false); // only stride 1 and 2 supported
  10834. };
  10835. }
  10836. // ggml_compute_forward_conv_2d
  10837. static void ggml_compute_forward_conv_2d_f16_f32(
  10838. const struct ggml_compute_params * params,
  10839. const struct ggml_tensor * src0,
  10840. const struct ggml_tensor * src1,
  10841. struct ggml_tensor * dst) {
  10842. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10843. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10844. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10845. int64_t t0 = ggml_perf_time_us();
  10846. UNUSED(t0);
  10847. GGML_TENSOR_BINARY_OP_LOCALS;
  10848. const int ith = params->ith;
  10849. const int nth = params->nth;
  10850. const int nk0 = ne00;
  10851. const int nk1 = ne01;
  10852. // size of the convolution row - the kernel size unrolled across all channels
  10853. const int ew0 = nk0*nk1*ne02;
  10854. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10855. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10856. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10857. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10858. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10859. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10860. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10861. GGML_ASSERT(nb10 == sizeof(float));
  10862. if (params->type == GGML_TASK_INIT) {
  10863. memset(params->wdata, 0, params->wsize);
  10864. // prepare source data (src1)
  10865. {
  10866. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10867. for (int i12 = 0; i12 < ne12; i12++) {
  10868. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10869. ggml_fp16_t * dst_data = wdata;
  10870. for (int i1 = 0; i1 < ne1; i1++) {
  10871. for (int i0 = 0; i0 < ne0; i0++) {
  10872. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10873. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10874. const int idx0 = i0*s0 + ik0*d0 - p0;
  10875. const int idx1 = i1*s1 + ik1*d1 - p1;
  10876. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10877. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10878. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10879. }
  10880. }
  10881. }
  10882. }
  10883. }
  10884. }
  10885. }
  10886. return;
  10887. }
  10888. if (params->type == GGML_TASK_FINALIZE) {
  10889. return;
  10890. }
  10891. // total patches in dst
  10892. const int np = ne2;
  10893. // patches per thread
  10894. const int dp = (np + nth - 1)/nth;
  10895. // patch range for this thread
  10896. const int ip0 = dp*ith;
  10897. const int ip1 = MIN(ip0 + dp, np);
  10898. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10899. for (int i3 = 0; i3 < ne3; i3++) {
  10900. for (int i2 = ip0; i2 < ip1; i2++) {
  10901. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10902. for (int i1 = 0; i1 < ne1; ++i1) {
  10903. for (int i0 = 0; i0 < ne0; ++i0) {
  10904. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10905. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10906. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10907. }
  10908. }
  10909. }
  10910. }
  10911. }
  10912. static void ggml_compute_forward_conv_2d(
  10913. const struct ggml_compute_params * params,
  10914. const struct ggml_tensor * src0,
  10915. const struct ggml_tensor * src1,
  10916. struct ggml_tensor * dst) {
  10917. switch (src0->type) {
  10918. case GGML_TYPE_F16:
  10919. {
  10920. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10921. } break;
  10922. case GGML_TYPE_F32:
  10923. {
  10924. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10925. GGML_ASSERT(false);
  10926. } break;
  10927. default:
  10928. {
  10929. GGML_ASSERT(false);
  10930. } break;
  10931. }
  10932. }
  10933. // ggml_compute_forward_conv_transpose_2d
  10934. static void ggml_compute_forward_conv_transpose_2d(
  10935. const struct ggml_compute_params * params,
  10936. const struct ggml_tensor * src0,
  10937. const struct ggml_tensor * src1,
  10938. const struct ggml_tensor * opt0,
  10939. struct ggml_tensor * dst) {
  10940. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10941. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10942. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10943. int64_t t0 = ggml_perf_time_us();
  10944. UNUSED(t0);
  10945. GGML_TENSOR_BINARY_OP_LOCALS;
  10946. const int ith = params->ith;
  10947. const int nth = params->nth;
  10948. const int nk = ne00*ne01*ne02*ne03;
  10949. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10950. GGML_ASSERT(nb10 == sizeof(float));
  10951. if (params->type == GGML_TASK_INIT) {
  10952. memset(params->wdata, 0, params->wsize);
  10953. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10954. {
  10955. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10956. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10957. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10958. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10959. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10960. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10961. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10962. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10963. }
  10964. }
  10965. }
  10966. }
  10967. }
  10968. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10969. {
  10970. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10971. for (int i12 = 0; i12 < ne12; i12++) {
  10972. for (int i11 = 0; i11 < ne11; i11++) {
  10973. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10974. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10975. for (int i10 = 0; i10 < ne10; i10++) {
  10976. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10977. }
  10978. }
  10979. }
  10980. }
  10981. return;
  10982. }
  10983. if (params->type == GGML_TASK_FINALIZE) {
  10984. return;
  10985. }
  10986. const int32_t stride = ((const int32_t*)(opt0->data))[0];
  10987. // total patches in dst
  10988. const int np = ne2;
  10989. // patches per thread
  10990. const int dp = (np + nth - 1)/nth;
  10991. // patch range for this thread
  10992. const int ip0 = dp*ith;
  10993. const int ip1 = MIN(ip0 + dp, np);
  10994. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10995. ggml_fp16_t * const wdata_src = (ggml_fp16_t *) params->wdata + nk;
  10996. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10997. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10998. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10999. for (int i11 = 0; i11 < ne11; i11++) {
  11000. for (int i10 = 0; i10 < ne10; i10++) {
  11001. const int i1n = i11*ne10*ne12 + i10*ne12;
  11002. for (int i01 = 0; i01 < ne01; i01++) {
  11003. for (int i00 = 0; i00 < ne00; i00++) {
  11004. float v = 0;
  11005. ggml_vec_dot_f16(ne03, &v,
  11006. (ggml_fp16_t *) wdata_src + i1n,
  11007. (ggml_fp16_t *) wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11008. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11009. }
  11010. }
  11011. }
  11012. }
  11013. }
  11014. }
  11015. // ggml_compute_forward_pool_1d_sk_p0
  11016. static void ggml_compute_forward_pool_1d_sk_p0(
  11017. const struct ggml_compute_params * params,
  11018. const enum ggml_op_pool op,
  11019. const struct ggml_tensor * src,
  11020. const int k,
  11021. struct ggml_tensor * dst) {
  11022. assert(src->type == GGML_TYPE_F32);
  11023. assert(params->ith == 0);
  11024. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11025. return;
  11026. }
  11027. const char * cdata = (const char *)src->data;
  11028. const char * const data_end = cdata + ggml_nbytes(src);
  11029. float * drow = (float *)dst->data;
  11030. const int64_t rs = dst->ne[0];
  11031. while (cdata < data_end) {
  11032. const float * const srow = (const float *)cdata;
  11033. int j = 0;
  11034. for (int64_t i = 0; i < rs; ++i) {
  11035. switch (op) {
  11036. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11037. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11038. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11039. }
  11040. for (int ki = 0; ki < k; ++ki) {
  11041. switch (op) {
  11042. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11043. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11044. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11045. }
  11046. ++j;
  11047. }
  11048. switch (op) {
  11049. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11050. case GGML_OP_POOL_MAX: break;
  11051. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11052. }
  11053. }
  11054. cdata += src->nb[1];
  11055. drow += rs;
  11056. }
  11057. }
  11058. // ggml_compute_forward_pool_1d
  11059. static void ggml_compute_forward_pool_1d(
  11060. const struct ggml_compute_params * params,
  11061. const struct ggml_tensor * src0,
  11062. struct ggml_tensor * dst) {
  11063. const int32_t * opts = (const int32_t *)dst->op_params;
  11064. enum ggml_op_pool op = opts[0];
  11065. const int k0 = opts[1];
  11066. const int s0 = opts[2];
  11067. const int p0 = opts[3];
  11068. GGML_ASSERT(p0 == 0); // padding not supported
  11069. GGML_ASSERT(k0 == s0); // only s = k supported
  11070. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11071. }
  11072. // ggml_compute_forward_pool_2d_sk_p0
  11073. static void ggml_compute_forward_pool_2d_sk_p0(
  11074. const struct ggml_compute_params * params,
  11075. const enum ggml_op_pool op,
  11076. const struct ggml_tensor * src,
  11077. const int k0,
  11078. const int k1,
  11079. struct ggml_tensor * dst) {
  11080. assert(src->type == GGML_TYPE_F32);
  11081. assert(params->ith == 0);
  11082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11083. return;
  11084. }
  11085. const char * cdata = (const char*)src->data;
  11086. const char * const data_end = cdata + ggml_nbytes(src);
  11087. const int64_t px = dst->ne[0];
  11088. const int64_t py = dst->ne[1];
  11089. const int64_t pa = px * py;
  11090. float * dplane = (float *)dst->data;
  11091. const int ka = k0 * k1;
  11092. while (cdata < data_end) {
  11093. for (int oy = 0; oy < py; ++oy) {
  11094. float * const drow = dplane + oy * px;
  11095. for (int ox = 0; ox < px; ++ox) {
  11096. float * const out = drow + ox;
  11097. switch (op) {
  11098. case GGML_OP_POOL_AVG: *out = 0; break;
  11099. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11100. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11101. }
  11102. const int ix = ox * k0;
  11103. const int iy = oy * k1;
  11104. for (int ky = 0; ky < k1; ++ky) {
  11105. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11106. for (int kx = 0; kx < k0; ++kx) {
  11107. int j = ix + kx;
  11108. switch (op) {
  11109. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11110. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11111. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11112. }
  11113. }
  11114. }
  11115. switch (op) {
  11116. case GGML_OP_POOL_AVG: *out /= ka; break;
  11117. case GGML_OP_POOL_MAX: break;
  11118. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11119. }
  11120. }
  11121. }
  11122. cdata += src->nb[2];
  11123. dplane += pa;
  11124. }
  11125. }
  11126. // ggml_compute_forward_pool_2d
  11127. static void ggml_compute_forward_pool_2d(
  11128. const struct ggml_compute_params * params,
  11129. const struct ggml_tensor * src0,
  11130. struct ggml_tensor * dst) {
  11131. const int32_t * opts = (const int32_t *)dst->op_params;
  11132. enum ggml_op_pool op = opts[0];
  11133. const int k0 = opts[1];
  11134. const int k1 = opts[2];
  11135. const int s0 = opts[3];
  11136. const int s1 = opts[4];
  11137. const int p0 = opts[5];
  11138. const int p1 = opts[6];
  11139. GGML_ASSERT(p0 == 0);
  11140. GGML_ASSERT(p1 == 0); // padding not supported
  11141. GGML_ASSERT(k0 == s0);
  11142. GGML_ASSERT(k1 == s1); // only s = k supported
  11143. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11144. }
  11145. // ggml_compute_forward_upscale
  11146. static void ggml_compute_forward_upscale_f32(
  11147. const struct ggml_compute_params * params,
  11148. const struct ggml_tensor * src0,
  11149. struct ggml_tensor * dst) {
  11150. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11151. return;
  11152. }
  11153. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11154. const int ith = params->ith;
  11155. GGML_TENSOR_UNARY_OP_LOCALS;
  11156. const int scale_factor = dst->op_params[0];
  11157. // TODO: optimize
  11158. for (int i03 = 0; i03 < ne03; i03++) {
  11159. for (int i02 = ith; i02 < ne02; i02++) {
  11160. for (int m = 0; m < dst->ne[1]; m++) {
  11161. int i01 = m / scale_factor;
  11162. for (int n = 0; n < dst->ne[0]; n++) {
  11163. int i00 = n / scale_factor;
  11164. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11165. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11166. *y = *x;
  11167. }
  11168. }
  11169. }
  11170. }
  11171. }
  11172. static void ggml_compute_forward_upscale(
  11173. const struct ggml_compute_params * params,
  11174. const struct ggml_tensor * src0,
  11175. struct ggml_tensor * dst) {
  11176. switch (src0->type) {
  11177. case GGML_TYPE_F32:
  11178. {
  11179. ggml_compute_forward_upscale_f32(params, src0, dst);
  11180. } break;
  11181. default:
  11182. {
  11183. GGML_ASSERT(false);
  11184. } break;
  11185. }
  11186. }
  11187. // ggml_compute_forward_flash_attn
  11188. static void ggml_compute_forward_flash_attn_f32(
  11189. const struct ggml_compute_params * params,
  11190. const struct ggml_tensor * q,
  11191. const struct ggml_tensor * k,
  11192. const struct ggml_tensor * v,
  11193. const bool masked,
  11194. struct ggml_tensor * dst) {
  11195. int64_t t0 = ggml_perf_time_us();
  11196. UNUSED(t0);
  11197. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11198. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11199. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11200. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11201. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11202. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11203. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11204. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11205. const int ith = params->ith;
  11206. const int nth = params->nth;
  11207. const int64_t D = neq0;
  11208. const int64_t N = neq1;
  11209. const int64_t P = nek1 - N;
  11210. const int64_t M = P + N;
  11211. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11212. GGML_ASSERT(ne0 == D);
  11213. GGML_ASSERT(ne1 == N);
  11214. GGML_ASSERT(P >= 0);
  11215. GGML_ASSERT(nbq0 == sizeof(float));
  11216. GGML_ASSERT(nbk0 == sizeof(float));
  11217. GGML_ASSERT(nbv0 == sizeof(float));
  11218. GGML_ASSERT(neq0 == D);
  11219. GGML_ASSERT(nek0 == D);
  11220. GGML_ASSERT(nev1 == D);
  11221. GGML_ASSERT(neq1 == N);
  11222. GGML_ASSERT(nek1 == N + P);
  11223. GGML_ASSERT(nev1 == D);
  11224. // dst cannot be transposed or permuted
  11225. GGML_ASSERT(nb0 == sizeof(float));
  11226. GGML_ASSERT(nb0 <= nb1);
  11227. GGML_ASSERT(nb1 <= nb2);
  11228. GGML_ASSERT(nb2 <= nb3);
  11229. if (params->type == GGML_TASK_INIT) {
  11230. return;
  11231. }
  11232. if (params->type == GGML_TASK_FINALIZE) {
  11233. return;
  11234. }
  11235. // parallelize by q rows using ggml_vec_dot_f32
  11236. // total rows in q
  11237. const int nr = neq1*neq2*neq3;
  11238. // rows per thread
  11239. const int dr = (nr + nth - 1)/nth;
  11240. // row range for this thread
  11241. const int ir0 = dr*ith;
  11242. const int ir1 = MIN(ir0 + dr, nr);
  11243. const float scale = 1.0f/sqrtf(D);
  11244. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11245. for (int ir = ir0; ir < ir1; ++ir) {
  11246. // q indices
  11247. const int iq3 = ir/(neq2*neq1);
  11248. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11249. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11250. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11251. for (int i = M; i < Mup; ++i) {
  11252. S[i] = -INFINITY;
  11253. }
  11254. for (int64_t ic = 0; ic < nek1; ++ic) {
  11255. // k indices
  11256. const int ik3 = iq3;
  11257. const int ik2 = iq2;
  11258. const int ik1 = ic;
  11259. // S indices
  11260. const int i1 = ik1;
  11261. ggml_vec_dot_f32(neq0,
  11262. S + i1,
  11263. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11264. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11265. }
  11266. // scale
  11267. ggml_vec_scale_f32(nek1, S, scale);
  11268. if (masked) {
  11269. for (int64_t i = P; i < M; i++) {
  11270. if (i > P + iq1) {
  11271. S[i] = -INFINITY;
  11272. }
  11273. }
  11274. }
  11275. // softmax
  11276. {
  11277. float max = -INFINITY;
  11278. ggml_vec_max_f32(M, &max, S);
  11279. ggml_float sum = 0.0;
  11280. {
  11281. #ifdef GGML_SOFT_MAX_ACCELERATE
  11282. max = -max;
  11283. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11284. vvexpf(S, S, &Mup);
  11285. ggml_vec_sum_f32(Mup, &sum, S);
  11286. #else
  11287. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11288. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11289. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11290. float * SS = S + i;
  11291. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11292. if (SS[j] == -INFINITY) {
  11293. SS[j] = 0.0f;
  11294. } else {
  11295. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11296. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11297. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11298. sump[j] += (ggml_float)val;
  11299. SS[j] = val;
  11300. }
  11301. }
  11302. }
  11303. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11304. sum += sump[i];
  11305. }
  11306. #endif
  11307. }
  11308. assert(sum > 0.0);
  11309. sum = 1.0/sum;
  11310. ggml_vec_scale_f32(M, S, sum);
  11311. #ifndef NDEBUG
  11312. for (int i = 0; i < M; ++i) {
  11313. assert(!isnan(S[i]));
  11314. assert(!isinf(S[i]));
  11315. }
  11316. #endif
  11317. }
  11318. for (int64_t ic = 0; ic < nev1; ++ic) {
  11319. // dst indices
  11320. const int i1 = iq1;
  11321. const int i2 = iq2;
  11322. const int i3 = iq3;
  11323. ggml_vec_dot_f32(nek1,
  11324. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11325. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11326. S);
  11327. }
  11328. }
  11329. }
  11330. static void ggml_compute_forward_flash_attn_f16(
  11331. const struct ggml_compute_params * params,
  11332. const struct ggml_tensor * q,
  11333. const struct ggml_tensor * k,
  11334. const struct ggml_tensor * v,
  11335. const bool masked,
  11336. struct ggml_tensor * dst) {
  11337. int64_t t0 = ggml_perf_time_us();
  11338. UNUSED(t0);
  11339. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11340. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11341. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11342. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11343. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11344. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11345. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11346. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11347. const int ith = params->ith;
  11348. const int nth = params->nth;
  11349. const int64_t D = neq0;
  11350. const int64_t N = neq1;
  11351. const int64_t P = nek1 - N;
  11352. const int64_t M = P + N;
  11353. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11354. GGML_ASSERT(ne0 == D);
  11355. GGML_ASSERT(ne1 == N);
  11356. GGML_ASSERT(P >= 0);
  11357. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11358. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11359. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11360. GGML_ASSERT(neq0 == D);
  11361. GGML_ASSERT(nek0 == D);
  11362. GGML_ASSERT(nev1 == D);
  11363. GGML_ASSERT(neq1 == N);
  11364. GGML_ASSERT(nek1 == N + P);
  11365. GGML_ASSERT(nev1 == D);
  11366. // dst cannot be transposed or permuted
  11367. GGML_ASSERT(nb0 == sizeof(float));
  11368. GGML_ASSERT(nb0 <= nb1);
  11369. GGML_ASSERT(nb1 <= nb2);
  11370. GGML_ASSERT(nb2 <= nb3);
  11371. if (params->type == GGML_TASK_INIT) {
  11372. return;
  11373. }
  11374. if (params->type == GGML_TASK_FINALIZE) {
  11375. return;
  11376. }
  11377. // parallelize by q rows using ggml_vec_dot_f32
  11378. // total rows in q
  11379. const int nr = neq1*neq2*neq3;
  11380. // rows per thread
  11381. const int dr = (nr + nth - 1)/nth;
  11382. // row range for this thread
  11383. const int ir0 = dr*ith;
  11384. const int ir1 = MIN(ir0 + dr, nr);
  11385. const float scale = 1.0f/sqrtf(D);
  11386. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11387. for (int ir = ir0; ir < ir1; ++ir) {
  11388. // q indices
  11389. const int iq3 = ir/(neq2*neq1);
  11390. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11391. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11392. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11393. for (int i = M; i < Mup; ++i) {
  11394. S[i] = -INFINITY;
  11395. }
  11396. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11397. for (int64_t ic = 0; ic < nek1; ++ic) {
  11398. // k indices
  11399. const int ik3 = iq3;
  11400. const int ik2 = iq2;
  11401. const int ik1 = ic;
  11402. // S indices
  11403. const int i1 = ik1;
  11404. ggml_vec_dot_f16(neq0,
  11405. S + i1,
  11406. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11407. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11408. }
  11409. } else {
  11410. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11411. // k indices
  11412. const int ik3 = iq3;
  11413. const int ik2 = iq2;
  11414. const int ik1 = ic;
  11415. // S indices
  11416. const int i1 = ik1;
  11417. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11418. S + i1,
  11419. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11420. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11421. }
  11422. }
  11423. // scale
  11424. ggml_vec_scale_f32(nek1, S, scale);
  11425. if (masked) {
  11426. for (int64_t i = P; i < M; i++) {
  11427. if (i > P + iq1) {
  11428. S[i] = -INFINITY;
  11429. }
  11430. }
  11431. }
  11432. // softmax
  11433. {
  11434. float max = -INFINITY;
  11435. ggml_vec_max_f32(M, &max, S);
  11436. ggml_float sum = 0.0;
  11437. {
  11438. #ifdef GGML_SOFT_MAX_ACCELERATE
  11439. max = -max;
  11440. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11441. vvexpf(S, S, &Mup);
  11442. ggml_vec_sum_f32(Mup, &sum, S);
  11443. #else
  11444. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11445. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11446. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11447. float * SS = S + i;
  11448. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11449. if (SS[j] == -INFINITY) {
  11450. SS[j] = 0.0f;
  11451. } else {
  11452. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11453. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11454. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11455. sump[j] += (ggml_float)val;
  11456. SS[j] = val;
  11457. }
  11458. }
  11459. }
  11460. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11461. sum += sump[i];
  11462. }
  11463. #endif
  11464. }
  11465. assert(sum > 0.0);
  11466. sum = 1.0/sum;
  11467. ggml_vec_scale_f32(M, S, sum);
  11468. #ifndef NDEBUG
  11469. for (int i = 0; i < M; ++i) {
  11470. assert(!isnan(S[i]));
  11471. assert(!isinf(S[i]));
  11472. }
  11473. #endif
  11474. }
  11475. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11476. for (int64_t i = 0; i < M; i++) {
  11477. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11478. }
  11479. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11480. for (int64_t ic = 0; ic < nev1; ++ic) {
  11481. // dst indices
  11482. const int i1 = iq1;
  11483. const int i2 = iq2;
  11484. const int i3 = iq3;
  11485. ggml_vec_dot_f16(nek1,
  11486. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11487. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11488. S16);
  11489. }
  11490. } else {
  11491. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11492. // dst indices
  11493. const int i1 = iq1;
  11494. const int i2 = iq2;
  11495. const int i3 = iq3;
  11496. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11497. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11498. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11499. S16);
  11500. }
  11501. }
  11502. }
  11503. }
  11504. static void ggml_compute_forward_flash_attn(
  11505. const struct ggml_compute_params * params,
  11506. const struct ggml_tensor * q,
  11507. const struct ggml_tensor * k,
  11508. const struct ggml_tensor * v,
  11509. const bool masked,
  11510. struct ggml_tensor * dst) {
  11511. switch (q->type) {
  11512. case GGML_TYPE_F16:
  11513. {
  11514. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11515. } break;
  11516. case GGML_TYPE_F32:
  11517. {
  11518. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11519. } break;
  11520. default:
  11521. {
  11522. GGML_ASSERT(false);
  11523. } break;
  11524. }
  11525. }
  11526. // ggml_compute_forward_flash_ff
  11527. static void ggml_compute_forward_flash_ff_f16(
  11528. const struct ggml_compute_params * params,
  11529. const struct ggml_tensor * a, // F16
  11530. const struct ggml_tensor * b0, // F16 fc_w
  11531. const struct ggml_tensor * b1, // F32 fc_b
  11532. const struct ggml_tensor * c0, // F16 proj_w
  11533. const struct ggml_tensor * c1, // F32 proj_b
  11534. struct ggml_tensor * dst) {
  11535. int64_t t0 = ggml_perf_time_us();
  11536. UNUSED(t0);
  11537. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11538. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11539. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11540. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11541. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11542. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11543. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11544. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11545. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11546. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11547. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11548. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11549. const int ith = params->ith;
  11550. const int nth = params->nth;
  11551. const int64_t D = nea0;
  11552. //const int64_t N = nea1;
  11553. const int64_t M = neb01;
  11554. GGML_ASSERT(ne0 == nea0);
  11555. GGML_ASSERT(ne1 == nea1);
  11556. GGML_ASSERT(ne2 == nea2);
  11557. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11558. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11559. GGML_ASSERT(nbb10 == sizeof(float));
  11560. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11561. GGML_ASSERT(nbc10 == sizeof(float));
  11562. GGML_ASSERT(neb00 == D);
  11563. GGML_ASSERT(neb01 == M);
  11564. GGML_ASSERT(neb10 == M);
  11565. GGML_ASSERT(neb11 == 1);
  11566. GGML_ASSERT(nec00 == M);
  11567. GGML_ASSERT(nec01 == D);
  11568. GGML_ASSERT(nec10 == D);
  11569. GGML_ASSERT(nec11 == 1);
  11570. // dst cannot be transposed or permuted
  11571. GGML_ASSERT(nb0 == sizeof(float));
  11572. GGML_ASSERT(nb0 <= nb1);
  11573. GGML_ASSERT(nb1 <= nb2);
  11574. GGML_ASSERT(nb2 <= nb3);
  11575. if (params->type == GGML_TASK_INIT) {
  11576. return;
  11577. }
  11578. if (params->type == GGML_TASK_FINALIZE) {
  11579. return;
  11580. }
  11581. // parallelize by a rows using ggml_vec_dot_f32
  11582. // total rows in a
  11583. const int nr = nea1*nea2*nea3;
  11584. // rows per thread
  11585. const int dr = (nr + nth - 1)/nth;
  11586. // row range for this thread
  11587. const int ir0 = dr*ith;
  11588. const int ir1 = MIN(ir0 + dr, nr);
  11589. for (int ir = ir0; ir < ir1; ++ir) {
  11590. // a indices
  11591. const int ia3 = ir/(nea2*nea1);
  11592. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11593. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11594. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11595. for (int64_t ic = 0; ic < neb01; ++ic) {
  11596. // b0 indices
  11597. const int ib03 = ia3;
  11598. const int ib02 = ia2;
  11599. const int ib01 = ic;
  11600. // S indices
  11601. const int i1 = ib01;
  11602. ggml_vec_dot_f16(nea0,
  11603. S + i1,
  11604. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11605. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11606. }
  11607. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11608. //ggml_vec_gelu_f32(neb01, S, S);
  11609. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11610. for (int64_t i = 0; i < M; i++) {
  11611. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11612. }
  11613. ggml_vec_gelu_f16(neb01, S16, S16);
  11614. {
  11615. // dst indices
  11616. const int i1 = ia1;
  11617. const int i2 = ia2;
  11618. const int i3 = ia3;
  11619. for (int64_t ic = 0; ic < nec01; ++ic) {
  11620. ggml_vec_dot_f16(neb01,
  11621. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11622. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11623. S16);
  11624. }
  11625. ggml_vec_add_f32(nec01,
  11626. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11627. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11628. (float *) c1->data);
  11629. }
  11630. }
  11631. }
  11632. static void ggml_compute_forward_flash_ff(
  11633. const struct ggml_compute_params * params,
  11634. const struct ggml_tensor * a,
  11635. const struct ggml_tensor * b0,
  11636. const struct ggml_tensor * b1,
  11637. const struct ggml_tensor * c0,
  11638. const struct ggml_tensor * c1,
  11639. struct ggml_tensor * dst) {
  11640. switch (b0->type) {
  11641. case GGML_TYPE_F16:
  11642. {
  11643. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11644. } break;
  11645. case GGML_TYPE_F32:
  11646. {
  11647. GGML_ASSERT(false); // TODO
  11648. } break;
  11649. default:
  11650. {
  11651. GGML_ASSERT(false);
  11652. } break;
  11653. }
  11654. }
  11655. // ggml_compute_forward_flash_attn_back
  11656. static void ggml_compute_forward_flash_attn_back_f32(
  11657. const struct ggml_compute_params * params,
  11658. const struct ggml_tensor * q,
  11659. const struct ggml_tensor * k,
  11660. const struct ggml_tensor * v,
  11661. const struct ggml_tensor * d,
  11662. const bool masked,
  11663. struct ggml_tensor * dst) {
  11664. int64_t t0 = ggml_perf_time_us();
  11665. UNUSED(t0);
  11666. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11667. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11668. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11669. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11670. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11671. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11672. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11673. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11674. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11675. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11676. const int ith = params->ith;
  11677. const int nth = params->nth;
  11678. const int64_t D = neq0;
  11679. const int64_t N = neq1;
  11680. const int64_t P = nek1 - N;
  11681. const int64_t M = P + N;
  11682. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11683. const int mxDM = MAX(D, Mup);
  11684. // GGML_ASSERT(ne0 == D);
  11685. // GGML_ASSERT(ne1 == N);
  11686. GGML_ASSERT(P >= 0);
  11687. GGML_ASSERT(nbq0 == sizeof(float));
  11688. GGML_ASSERT(nbk0 == sizeof(float));
  11689. GGML_ASSERT(nbv0 == sizeof(float));
  11690. GGML_ASSERT(neq0 == D);
  11691. GGML_ASSERT(nek0 == D);
  11692. GGML_ASSERT(nev1 == D);
  11693. GGML_ASSERT(ned0 == D);
  11694. GGML_ASSERT(neq1 == N);
  11695. GGML_ASSERT(nek1 == N + P);
  11696. GGML_ASSERT(nev1 == D);
  11697. GGML_ASSERT(ned1 == N);
  11698. // dst cannot be transposed or permuted
  11699. GGML_ASSERT(nb0 == sizeof(float));
  11700. GGML_ASSERT(nb0 <= nb1);
  11701. GGML_ASSERT(nb1 <= nb2);
  11702. GGML_ASSERT(nb2 <= nb3);
  11703. if (params->type == GGML_TASK_INIT) {
  11704. if (ith == 0) {
  11705. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11706. }
  11707. return;
  11708. }
  11709. if (params->type == GGML_TASK_FINALIZE) {
  11710. return;
  11711. }
  11712. // parallelize by q rows using ggml_vec_dot_f32
  11713. // total rows in q
  11714. const int nr = neq2*neq3;
  11715. // rows per thread
  11716. const int dr = (nr + nth - 1)/nth;
  11717. // row range for this thread
  11718. const int ir0 = dr*ith;
  11719. const int ir1 = MIN(ir0 + dr, nr);
  11720. const float scale = 1.0f/sqrtf(D);
  11721. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11722. for (int ir = ir0; ir < ir1; ++ir) {
  11723. // q indices
  11724. const int iq3 = ir/(neq2);
  11725. const int iq2 = ir - iq3*neq2;
  11726. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11727. // not sure about CACHE_LINE_SIZE_F32..
  11728. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11729. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11730. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11731. for (int i = M; i < Mup; ++i) {
  11732. S[i] = -INFINITY;
  11733. }
  11734. for (int64_t ic = 0; ic < nek1; ++ic) {
  11735. // k indices
  11736. const int ik3 = iq3;
  11737. const int ik2 = iq2;
  11738. const int ik1 = ic;
  11739. // S indices
  11740. const int i1 = ik1;
  11741. ggml_vec_dot_f32(neq0,
  11742. S + i1,
  11743. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11744. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11745. }
  11746. // scale
  11747. ggml_vec_scale_f32(nek1, S, scale);
  11748. if (masked) {
  11749. for (int64_t i = P; i < M; i++) {
  11750. if (i > P + iq1) {
  11751. S[i] = -INFINITY;
  11752. }
  11753. }
  11754. }
  11755. // softmax
  11756. {
  11757. float max = -INFINITY;
  11758. ggml_vec_max_f32(M, &max, S);
  11759. ggml_float sum = 0.0;
  11760. {
  11761. #ifdef GGML_SOFT_MAX_ACCELERATE
  11762. max = -max;
  11763. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11764. vvexpf(SM, SM, &Mup);
  11765. ggml_vec_sum_f32(Mup, &sum, SM);
  11766. #else
  11767. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11768. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11769. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11770. float * SR = S + i;
  11771. float * SW = SM + i;
  11772. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11773. if (SR[j] == -INFINITY) {
  11774. SW[j] = 0.0f;
  11775. } else {
  11776. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11777. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11778. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11779. sump[j] += (ggml_float)val;
  11780. SW[j] = val;
  11781. }
  11782. }
  11783. }
  11784. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11785. sum += sump[i];
  11786. }
  11787. #endif
  11788. }
  11789. assert(sum > 0.0);
  11790. sum = 1.0/sum;
  11791. ggml_vec_scale_f32(M, SM, sum);
  11792. }
  11793. // step-by-step explanation
  11794. {
  11795. // forward-process shape grads from backward process
  11796. // parallel_for iq2,iq3:
  11797. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11798. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11799. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11800. // for iq1:
  11801. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11802. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11803. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11804. // S0 = -Inf [D,1,1,1]
  11805. // ~S1[i] = dot(kcur[:D,i], qcur)
  11806. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11807. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11808. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11809. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11810. // ~S5[i] = dot(vcur[:,i], S4)
  11811. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11812. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11813. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11814. // dst backward-/ grad[dst] = d
  11815. //
  11816. // output gradients with their dependencies:
  11817. //
  11818. // grad[kcur] = grad[S1].T @ qcur
  11819. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11820. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11821. // grad[S4] = grad[S5] @ vcur
  11822. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11823. // grad[qcur] = grad[S1] @ kcur
  11824. // grad[vcur] = grad[S5].T @ S4
  11825. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11826. //
  11827. // in post-order:
  11828. //
  11829. // S1 = qcur @ kcur.T
  11830. // S2 = S1 * scale
  11831. // S3 = diag_mask_inf(S2, P)
  11832. // S4 = softmax(S3)
  11833. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11834. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11835. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11836. // grad[qcur] = grad[S1] @ kcur
  11837. // grad[kcur] = grad[S1].T @ qcur
  11838. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11839. //
  11840. // using less variables (SM=S4):
  11841. //
  11842. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11843. // SM = softmax(S)
  11844. // S = d[:D,iq1,iq2,iq3] @ vcur
  11845. // dot_SM_gradSM = dot(SM, S)
  11846. // S = SM * (S - dot(SM, S))
  11847. // S = diag_mask_zero(S, P) * scale
  11848. //
  11849. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11850. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11851. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11852. }
  11853. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11854. // S = d[:D,iq1,iq2,iq3] @ vcur
  11855. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11856. ggml_vec_set_f32(M, S, 0);
  11857. for (int64_t ic = 0; ic < D; ++ic) {
  11858. // dst indices
  11859. const int i1 = iq1;
  11860. const int i2 = iq2;
  11861. const int i3 = iq3;
  11862. ggml_vec_mad_f32(M,
  11863. S,
  11864. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11865. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11866. }
  11867. // S = SM * (S - dot(SM, S))
  11868. float dot_SM_gradSM = 0;
  11869. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11870. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11871. ggml_vec_mul_f32 (M, S, S, SM);
  11872. // S = diag_mask_zero(S, P) * scale
  11873. if (masked) {
  11874. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11875. // S[i] = 0;
  11876. // }
  11877. for (int64_t i = P; i < M; i++) {
  11878. if (i > P + iq1) {
  11879. S[i] = 0;
  11880. }
  11881. }
  11882. }
  11883. ggml_vec_scale_f32(M, S, scale);
  11884. void * grad_q = (char *) dst->data;
  11885. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11886. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11887. const size_t nbgq1 = nb0*neq0;
  11888. const size_t nbgq2 = nb0*neq0*neq1;
  11889. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11890. const size_t nbgk1 = nb0*nek0;
  11891. const size_t nbgk2 = nb0*nek0*nek1;
  11892. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11893. const size_t nbgv1 = nb0*nev0;
  11894. const size_t nbgv2 = nb0*nev0*nev1;
  11895. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11896. // S shape [M,1]
  11897. // SM shape [M,1]
  11898. // kcur shape [D,M]
  11899. // qcur shape [D,1]
  11900. // vcur shape [M,D]
  11901. //
  11902. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11903. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11904. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11905. //
  11906. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11907. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11908. for (int64_t ic = 0; ic < M; ++ic) {
  11909. // dst indices
  11910. const int i1 = iq1;
  11911. const int i2 = iq2;
  11912. const int i3 = iq3;
  11913. ggml_vec_mad_f32(D,
  11914. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11915. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11916. S[ic]);
  11917. }
  11918. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11919. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11920. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11921. for (int64_t ic = 0; ic < M; ++ic) {
  11922. // dst indices
  11923. const int i1 = iq1;
  11924. const int i2 = iq2;
  11925. const int i3 = iq3;
  11926. // ggml_vec_set_f32(D,
  11927. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11928. // 0);
  11929. ggml_vec_mad_f32(D,
  11930. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11931. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11932. S[ic]);
  11933. }
  11934. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11935. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11936. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11937. for (int64_t ic = 0; ic < D; ++ic) {
  11938. // dst indices
  11939. const int i1 = iq1;
  11940. const int i2 = iq2;
  11941. const int i3 = iq3;
  11942. // ggml_vec_set_f32(M,
  11943. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11944. // 0);
  11945. ggml_vec_mad_f32(M,
  11946. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11947. SM,
  11948. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11949. }
  11950. }
  11951. }
  11952. }
  11953. static void ggml_compute_forward_flash_attn_back(
  11954. const struct ggml_compute_params * params,
  11955. const struct ggml_tensor * q,
  11956. const struct ggml_tensor * k,
  11957. const struct ggml_tensor * v,
  11958. const struct ggml_tensor * d,
  11959. const bool masked,
  11960. struct ggml_tensor * dst) {
  11961. switch (q->type) {
  11962. case GGML_TYPE_F32:
  11963. {
  11964. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11965. } break;
  11966. default:
  11967. {
  11968. GGML_ASSERT(false);
  11969. } break;
  11970. }
  11971. }
  11972. // ggml_compute_forward_win_part
  11973. static void ggml_compute_forward_win_part_f32(
  11974. const struct ggml_compute_params * params,
  11975. const struct ggml_tensor * src0,
  11976. struct ggml_tensor * dst) {
  11977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11978. return;
  11979. }
  11980. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11981. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11982. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11983. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11984. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11985. assert(ne00 == ne0);
  11986. assert(ne3 == nep0*nep1);
  11987. // TODO: optimize / multi-thread
  11988. for (int py = 0; py < nep1; ++py) {
  11989. for (int px = 0; px < nep0; ++px) {
  11990. const int64_t i3 = py*nep0 + px;
  11991. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11992. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11993. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11994. const int64_t i02 = py*w + i2;
  11995. const int64_t i01 = px*w + i1;
  11996. const int64_t i00 = i0;
  11997. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11998. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11999. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12000. ((float *) dst->data)[i] = 0.0f;
  12001. } else {
  12002. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12003. }
  12004. }
  12005. }
  12006. }
  12007. }
  12008. }
  12009. }
  12010. static void ggml_compute_forward_win_part(
  12011. const struct ggml_compute_params * params,
  12012. const struct ggml_tensor * src0,
  12013. struct ggml_tensor * dst) {
  12014. switch (src0->type) {
  12015. case GGML_TYPE_F32:
  12016. {
  12017. ggml_compute_forward_win_part_f32(params, src0, dst);
  12018. } break;
  12019. default:
  12020. {
  12021. GGML_ASSERT(false);
  12022. } break;
  12023. }
  12024. }
  12025. // ggml_compute_forward_win_unpart
  12026. static void ggml_compute_forward_win_unpart_f32(
  12027. const struct ggml_compute_params * params,
  12028. const struct ggml_tensor * src0,
  12029. struct ggml_tensor * dst) {
  12030. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12031. return;
  12032. }
  12033. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12034. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12035. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12036. // padding
  12037. const int px = (w - ne1%w)%w;
  12038. //const int py = (w - ne2%w)%w;
  12039. const int npx = (px + ne1)/w;
  12040. //const int npy = (py + ne2)/w;
  12041. assert(ne0 == ne00);
  12042. // TODO: optimize / multi-thread
  12043. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12044. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12045. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12046. const int ip2 = i2/w;
  12047. const int ip1 = i1/w;
  12048. const int64_t i02 = i2%w;
  12049. const int64_t i01 = i1%w;
  12050. const int64_t i00 = i0;
  12051. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12052. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12053. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12054. }
  12055. }
  12056. }
  12057. }
  12058. static void ggml_compute_forward_win_unpart(
  12059. const struct ggml_compute_params * params,
  12060. const struct ggml_tensor * src0,
  12061. struct ggml_tensor * dst) {
  12062. switch (src0->type) {
  12063. case GGML_TYPE_F32:
  12064. {
  12065. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12066. } break;
  12067. default:
  12068. {
  12069. GGML_ASSERT(false);
  12070. } break;
  12071. }
  12072. }
  12073. //gmml_compute_forward_unary
  12074. static void ggml_compute_forward_unary(
  12075. const struct ggml_compute_params * params,
  12076. const struct ggml_tensor * src0,
  12077. struct ggml_tensor * dst) {
  12078. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12079. switch (op) {
  12080. case GGML_UNARY_OP_ABS:
  12081. {
  12082. ggml_compute_forward_abs(params, src0, dst);
  12083. } break;
  12084. case GGML_UNARY_OP_SGN:
  12085. {
  12086. ggml_compute_forward_sgn(params, src0, dst);
  12087. } break;
  12088. case GGML_UNARY_OP_NEG:
  12089. {
  12090. ggml_compute_forward_neg(params, src0, dst);
  12091. } break;
  12092. case GGML_UNARY_OP_STEP:
  12093. {
  12094. ggml_compute_forward_step(params, src0, dst);
  12095. } break;
  12096. case GGML_UNARY_OP_TANH:
  12097. {
  12098. ggml_compute_forward_tanh(params, src0, dst);
  12099. } break;
  12100. case GGML_UNARY_OP_ELU:
  12101. {
  12102. ggml_compute_forward_elu(params, src0, dst);
  12103. } break;
  12104. case GGML_UNARY_OP_RELU:
  12105. {
  12106. ggml_compute_forward_relu(params, src0, dst);
  12107. } break;
  12108. case GGML_UNARY_OP_GELU:
  12109. {
  12110. ggml_compute_forward_gelu(params, src0, dst);
  12111. } break;
  12112. case GGML_UNARY_OP_GELU_QUICK:
  12113. {
  12114. ggml_compute_forward_gelu_quick(params, src0, dst);
  12115. } break;
  12116. case GGML_UNARY_OP_SILU:
  12117. {
  12118. ggml_compute_forward_silu(params, src0, dst);
  12119. } break;
  12120. default:
  12121. {
  12122. GGML_ASSERT(false);
  12123. } break;
  12124. }
  12125. }
  12126. // ggml_compute_forward_get_rel_pos
  12127. static void ggml_compute_forward_get_rel_pos_f16(
  12128. const struct ggml_compute_params * params,
  12129. const struct ggml_tensor * src0,
  12130. struct ggml_tensor * dst) {
  12131. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12132. return;
  12133. }
  12134. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12135. GGML_TENSOR_UNARY_OP_LOCALS;
  12136. const int64_t w = ne1;
  12137. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12138. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12139. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12140. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12141. const int64_t pos = (w - i1 - 1) + i2;
  12142. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12143. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12144. }
  12145. }
  12146. }
  12147. }
  12148. static void ggml_compute_forward_get_rel_pos(
  12149. const struct ggml_compute_params * params,
  12150. const struct ggml_tensor * src0,
  12151. struct ggml_tensor * dst) {
  12152. switch (src0->type) {
  12153. case GGML_TYPE_F16:
  12154. {
  12155. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12156. } break;
  12157. default:
  12158. {
  12159. GGML_ASSERT(false);
  12160. } break;
  12161. }
  12162. }
  12163. // ggml_compute_forward_add_rel_pos
  12164. static void ggml_compute_forward_add_rel_pos_f32(
  12165. const struct ggml_compute_params * params,
  12166. const struct ggml_tensor * src0,
  12167. const struct ggml_tensor * src1,
  12168. const struct ggml_tensor * src2,
  12169. struct ggml_tensor * dst) {
  12170. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12171. if (!inplace && params->type == GGML_TASK_INIT) {
  12172. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12173. return;
  12174. }
  12175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12176. return;
  12177. }
  12178. int64_t t0 = ggml_perf_time_us();
  12179. UNUSED(t0);
  12180. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12181. float * src1_data = (float *) src1->data;
  12182. float * src2_data = (float *) src2->data;
  12183. float * dst_data = (float *) dst->data;
  12184. const int64_t ne10 = src1->ne[0];
  12185. const int64_t ne11 = src1->ne[1];
  12186. const int64_t ne12 = src1->ne[2];
  12187. const int64_t ne13 = src1->ne[3];
  12188. const int ith = params->ith;
  12189. const int nth = params->nth;
  12190. // total patches in dst
  12191. const int np = ne13;
  12192. // patches per thread
  12193. const int dp = (np + nth - 1)/nth;
  12194. // patch range for this thread
  12195. const int ip0 = dp*ith;
  12196. const int ip1 = MIN(ip0 + dp, np);
  12197. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12198. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12199. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12200. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12201. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12202. const int64_t jp0 = jp1 + i10;
  12203. const float src1_e = src1_data[jp0];
  12204. const float src2_e = src2_data[jp0];
  12205. const int64_t jdh = jp0 * ne10;
  12206. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12207. for (int64_t j = 0; j < ne10; ++j) {
  12208. dst_data[jdh + j ] += src2_e;
  12209. dst_data[jdw + j*ne10] += src1_e;
  12210. }
  12211. }
  12212. }
  12213. }
  12214. }
  12215. }
  12216. static void ggml_compute_forward_add_rel_pos(
  12217. const struct ggml_compute_params * params,
  12218. const struct ggml_tensor * src0,
  12219. const struct ggml_tensor * src1,
  12220. const struct ggml_tensor * src2,
  12221. struct ggml_tensor * dst) {
  12222. switch (src0->type) {
  12223. case GGML_TYPE_F32:
  12224. {
  12225. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12226. } break;
  12227. default:
  12228. {
  12229. GGML_ASSERT(false);
  12230. } break;
  12231. }
  12232. }
  12233. // ggml_compute_forward_map_unary
  12234. static void ggml_compute_forward_map_unary_f32(
  12235. const struct ggml_compute_params * params,
  12236. const struct ggml_tensor * src0,
  12237. struct ggml_tensor * dst,
  12238. const ggml_unary_op_f32_t fun) {
  12239. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12240. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12241. return;
  12242. }
  12243. const int n = ggml_nrows(src0);
  12244. const int nc = src0->ne[0];
  12245. assert( dst->nb[0] == sizeof(float));
  12246. assert(src0->nb[0] == sizeof(float));
  12247. for (int i = 0; i < n; i++) {
  12248. fun(nc,
  12249. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12250. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12251. }
  12252. }
  12253. static void ggml_compute_forward_map_unary(
  12254. const struct ggml_compute_params * params,
  12255. const struct ggml_tensor * src0,
  12256. struct ggml_tensor * dst,
  12257. const ggml_unary_op_f32_t fun) {
  12258. switch (src0->type) {
  12259. case GGML_TYPE_F32:
  12260. {
  12261. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12262. } break;
  12263. default:
  12264. {
  12265. GGML_ASSERT(false);
  12266. } break;
  12267. }
  12268. }
  12269. // ggml_compute_forward_map_binary
  12270. static void ggml_compute_forward_map_binary_f32(
  12271. const struct ggml_compute_params * params,
  12272. const struct ggml_tensor * src0,
  12273. const struct ggml_tensor * src1,
  12274. struct ggml_tensor * dst,
  12275. const ggml_binary_op_f32_t fun) {
  12276. assert(params->ith == 0);
  12277. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12278. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12279. return;
  12280. }
  12281. const int n = ggml_nrows(src0);
  12282. const int nc = src0->ne[0];
  12283. assert( dst->nb[0] == sizeof(float));
  12284. assert(src0->nb[0] == sizeof(float));
  12285. assert(src1->nb[0] == sizeof(float));
  12286. for (int i = 0; i < n; i++) {
  12287. fun(nc,
  12288. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12289. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12290. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12291. }
  12292. }
  12293. static void ggml_compute_forward_map_binary(
  12294. const struct ggml_compute_params * params,
  12295. const struct ggml_tensor * src0,
  12296. const struct ggml_tensor * src1,
  12297. struct ggml_tensor * dst,
  12298. const ggml_binary_op_f32_t fun) {
  12299. switch (src0->type) {
  12300. case GGML_TYPE_F32:
  12301. {
  12302. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12303. } break;
  12304. default:
  12305. {
  12306. GGML_ASSERT(false);
  12307. } break;
  12308. }
  12309. }
  12310. // ggml_compute_forward_map_custom1
  12311. static void ggml_compute_forward_map_custom1_f32(
  12312. const struct ggml_compute_params * params,
  12313. const struct ggml_tensor * a,
  12314. struct ggml_tensor * dst,
  12315. const ggml_custom1_op_f32_t fun) {
  12316. assert(params->ith == 0);
  12317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12318. return;
  12319. }
  12320. fun(dst, a);
  12321. }
  12322. // ggml_compute_forward_map_custom2
  12323. static void ggml_compute_forward_map_custom2_f32(
  12324. const struct ggml_compute_params * params,
  12325. const struct ggml_tensor * a,
  12326. const struct ggml_tensor * b,
  12327. struct ggml_tensor * dst,
  12328. const ggml_custom2_op_f32_t fun) {
  12329. assert(params->ith == 0);
  12330. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12331. return;
  12332. }
  12333. fun(dst, a, b);
  12334. }
  12335. // ggml_compute_forward_map_custom3
  12336. static void ggml_compute_forward_map_custom3_f32(
  12337. const struct ggml_compute_params * params,
  12338. const struct ggml_tensor * a,
  12339. const struct ggml_tensor * b,
  12340. const struct ggml_tensor * c,
  12341. struct ggml_tensor * dst,
  12342. const ggml_custom3_op_f32_t fun) {
  12343. assert(params->ith == 0);
  12344. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12345. return;
  12346. }
  12347. fun(dst, a, b, c);
  12348. }
  12349. // ggml_compute_forward_map_custom1
  12350. static void ggml_compute_forward_map_custom1(
  12351. const struct ggml_compute_params * params,
  12352. const struct ggml_tensor * a,
  12353. struct ggml_tensor * dst) {
  12354. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12355. return;
  12356. }
  12357. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12358. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12359. }
  12360. // ggml_compute_forward_map_custom2
  12361. static void ggml_compute_forward_map_custom2(
  12362. const struct ggml_compute_params * params,
  12363. const struct ggml_tensor * a,
  12364. const struct ggml_tensor * b,
  12365. struct ggml_tensor * dst) {
  12366. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12367. return;
  12368. }
  12369. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12370. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12371. }
  12372. // ggml_compute_forward_map_custom3
  12373. static void ggml_compute_forward_map_custom3(
  12374. const struct ggml_compute_params * params,
  12375. const struct ggml_tensor * a,
  12376. const struct ggml_tensor * b,
  12377. const struct ggml_tensor * c,
  12378. struct ggml_tensor * dst) {
  12379. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12380. return;
  12381. }
  12382. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12383. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12384. }
  12385. // ggml_compute_forward_cross_entropy_loss
  12386. static void ggml_compute_forward_cross_entropy_loss_f32(
  12387. const struct ggml_compute_params * params,
  12388. const struct ggml_tensor * src0,
  12389. const struct ggml_tensor * src1,
  12390. struct ggml_tensor * dst) {
  12391. GGML_ASSERT(ggml_is_contiguous(src0));
  12392. GGML_ASSERT(ggml_is_contiguous(src1));
  12393. GGML_ASSERT(ggml_is_scalar(dst));
  12394. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12395. const int ith = params->ith;
  12396. const int nth = params->nth;
  12397. float * sums = (float *) params->wdata;
  12398. // TODO: handle transposed/permuted matrices
  12399. const int nc = src0->ne[0];
  12400. const int nr = ggml_nrows(src0);
  12401. if (params->type == GGML_TASK_INIT) {
  12402. if (ith == 0) {
  12403. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12404. }
  12405. return;
  12406. }
  12407. if (params->type == GGML_TASK_FINALIZE) {
  12408. if (ith == 0) {
  12409. float * dp = (float *) dst->data;
  12410. ggml_vec_sum_f32(nth, dp, sums);
  12411. dp[0] *= -1.0f;
  12412. }
  12413. return;
  12414. }
  12415. const double eps = 1e-9;
  12416. // rows per thread
  12417. const int dr = (nr + nth - 1)/nth;
  12418. // row range for this thread
  12419. const int ir0 = dr*ith;
  12420. const int ir1 = MIN(ir0 + dr, nr);
  12421. for (int i1 = ir0; i1 < ir1; i1++) {
  12422. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12423. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12424. float * st = (float *) params->wdata + nth + ith*nc;
  12425. #ifndef NDEBUG
  12426. for (int i = 0; i < nc; ++i) {
  12427. //printf("p[%d] = %f\n", i, p[i]);
  12428. assert(!isnan(s0[i]));
  12429. assert(!isnan(s1[i]));
  12430. }
  12431. #endif
  12432. // soft_max
  12433. ggml_float sum = 0.0;
  12434. {
  12435. float max = -INFINITY;
  12436. ggml_vec_max_f32(nc, &max, s0);
  12437. uint16_t scvt;
  12438. for (int i = 0; i < nc; i++) {
  12439. if (s0[i] == -INFINITY) {
  12440. st[i] = 0.0f;
  12441. } else {
  12442. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12443. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12444. memcpy(&scvt, &s, sizeof(scvt));
  12445. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12446. sum += (ggml_float)val;
  12447. st[i] = val;
  12448. }
  12449. }
  12450. assert(sum > 0.0);
  12451. // sum = 1.0/sum;
  12452. }
  12453. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12454. sum = (1.0 - eps) / sum;
  12455. ggml_vec_scale_f32(nc, st, sum);
  12456. ggml_vec_add1_f32(nc, st, st, eps);
  12457. ggml_vec_log_f32(nc, st, st);
  12458. ggml_vec_mul_f32(nc, st, st, s1);
  12459. ggml_vec_sum_f32(nc, sums + ith, st);
  12460. #ifndef NDEBUG
  12461. for (int i = 0; i < nc; ++i) {
  12462. assert(!isnan(st[i]));
  12463. assert(!isinf(st[i]));
  12464. }
  12465. #endif
  12466. }
  12467. }
  12468. static void ggml_compute_forward_cross_entropy_loss(
  12469. const struct ggml_compute_params * params,
  12470. const struct ggml_tensor * src0,
  12471. const struct ggml_tensor * src1,
  12472. struct ggml_tensor * dst) {
  12473. switch (src0->type) {
  12474. case GGML_TYPE_F32:
  12475. {
  12476. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12477. } break;
  12478. default:
  12479. {
  12480. GGML_ASSERT(false);
  12481. } break;
  12482. }
  12483. }
  12484. // ggml_compute_forward_cross_entropy_loss_back
  12485. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12486. const struct ggml_compute_params * params,
  12487. const struct ggml_tensor * src0,
  12488. const struct ggml_tensor * src1,
  12489. const struct ggml_tensor * opt0,
  12490. struct ggml_tensor * dst) {
  12491. GGML_ASSERT(ggml_is_contiguous(dst));
  12492. GGML_ASSERT(ggml_is_contiguous(src0));
  12493. GGML_ASSERT(ggml_is_contiguous(src1));
  12494. GGML_ASSERT(ggml_is_contiguous(opt0));
  12495. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12496. const int64_t ith = params->ith;
  12497. const int64_t nth = params->nth;
  12498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12499. return;
  12500. }
  12501. const float eps = 1e-9f;
  12502. // TODO: handle transposed/permuted matrices
  12503. const int64_t nc = src0->ne[0];
  12504. const int64_t nr = ggml_nrows(src0);
  12505. // rows per thread
  12506. const int64_t dr = (nr + nth - 1)/nth;
  12507. // row range for this thread
  12508. const int64_t ir0 = dr*ith;
  12509. const int64_t ir1 = MIN(ir0 + dr, nr);
  12510. float * d = (float *) opt0->data;
  12511. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12512. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12513. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12514. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12515. float * sm = (float *) params->wdata + ith*nc;
  12516. #ifndef NDEBUG
  12517. for (int i = 0; i < nc; ++i) {
  12518. //printf("p[%d] = %f\n", i, p[i]);
  12519. assert(!isnan(s0[i]));
  12520. assert(!isnan(s1[i]));
  12521. }
  12522. #endif
  12523. // step by step explanation:
  12524. {
  12525. //float * sums = (float *) params->wdata;
  12526. // forward pass with annotated gradients from backward pass
  12527. // (built by going in reverse operation order, adding to gradients of current operation args)
  12528. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  12529. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12530. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  12531. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  12532. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  12533. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  12534. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  12535. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  12536. // substitute into grad[st1], because we can reuse softmax_back from this point on
  12537. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  12538. // postorder:
  12539. // grad[st1] := softmax(s0)
  12540. // grad[st1] := grad[st1]*(1.0 - eps)
  12541. // grad[st1] := grad[st1] + eps
  12542. // grad[st1] := s1 / grad[st1]
  12543. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  12544. // src0 gradients by going through softmax_back
  12545. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12546. // from softmax_back:
  12547. // dxk = yk * (dyk - dot(y, dy))
  12548. // dot_y_dy := dot(y, dy)
  12549. // dx := dy
  12550. // dx := dx - dot_y_dy
  12551. // dx := dx * y
  12552. // postorder:
  12553. // dot_st1_dst1 := dot(st1, grad[st1])
  12554. // grad[s0] := grad[st1]
  12555. // grad[s0] := grad[s0] - dot_st1_dst1
  12556. // grad[s0] := grad[s0] * st1
  12557. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  12558. // sm := softmax(s0)
  12559. // grad[s0] := sm*(1.0 - eps)
  12560. // grad[s0] := grad[s0] + eps
  12561. // grad[s0] := s1 / grad[s0]
  12562. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  12563. // dot_st1_dst1 := dot(sm, grad[s0])
  12564. // grad[s0] := grad[s0] - dot_st1_dst1
  12565. // grad[s0] := grad[s0] * sm
  12566. }
  12567. // soft_max
  12568. ggml_float sum = 0.0;
  12569. {
  12570. float max = -INFINITY;
  12571. ggml_vec_max_f32(nc, &max, s0);
  12572. uint16_t scvt;
  12573. for (int i = 0; i < nc; i++) {
  12574. if (s0[i] == -INFINITY) {
  12575. sm[i] = 0.0f;
  12576. } else {
  12577. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12578. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12579. memcpy(&scvt, &s, sizeof(scvt));
  12580. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12581. sum += (ggml_float)val;
  12582. sm[i] = val;
  12583. }
  12584. }
  12585. assert(sum > 0.0);
  12586. sum = 1.0/sum;
  12587. }
  12588. float dot_st1_dst1 = 0;
  12589. ggml_vec_scale_f32(nc, sm, sum);
  12590. ggml_vec_cpy_f32 (nc, ds0, sm);
  12591. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12592. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12593. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12594. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12595. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12596. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12597. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12598. #ifndef NDEBUG
  12599. for (int i = 0; i < nc; ++i) {
  12600. assert(!isnan(sm[i]));
  12601. assert(!isinf(sm[i]));
  12602. assert(!isnan(ds0[i]));
  12603. assert(!isinf(ds0[i]));
  12604. }
  12605. #endif
  12606. }
  12607. }
  12608. static void ggml_compute_forward_cross_entropy_loss_back(
  12609. const struct ggml_compute_params * params,
  12610. const struct ggml_tensor * src0,
  12611. const struct ggml_tensor * src1,
  12612. const struct ggml_tensor * opt0,
  12613. struct ggml_tensor * dst) {
  12614. switch (src0->type) {
  12615. case GGML_TYPE_F32:
  12616. {
  12617. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12618. } break;
  12619. default:
  12620. {
  12621. GGML_ASSERT(false);
  12622. } break;
  12623. }
  12624. }
  12625. /////////////////////////////////
  12626. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12627. GGML_ASSERT(params);
  12628. #ifdef GGML_USE_CUBLAS
  12629. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12630. if (skip_cpu) {
  12631. return;
  12632. }
  12633. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12634. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12635. #endif // GGML_USE_CUBLAS
  12636. switch (tensor->op) {
  12637. case GGML_OP_DUP:
  12638. {
  12639. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12640. } break;
  12641. case GGML_OP_ADD:
  12642. {
  12643. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12644. } break;
  12645. case GGML_OP_ADD1:
  12646. {
  12647. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12648. } break;
  12649. case GGML_OP_ACC:
  12650. {
  12651. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12652. } break;
  12653. case GGML_OP_SUB:
  12654. {
  12655. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12656. } break;
  12657. case GGML_OP_MUL:
  12658. {
  12659. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12660. } break;
  12661. case GGML_OP_DIV:
  12662. {
  12663. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12664. } break;
  12665. case GGML_OP_SQR:
  12666. {
  12667. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12668. } break;
  12669. case GGML_OP_SQRT:
  12670. {
  12671. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12672. } break;
  12673. case GGML_OP_LOG:
  12674. {
  12675. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12676. } break;
  12677. case GGML_OP_SUM:
  12678. {
  12679. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12680. } break;
  12681. case GGML_OP_SUM_ROWS:
  12682. {
  12683. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12684. } break;
  12685. case GGML_OP_MEAN:
  12686. {
  12687. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12688. } break;
  12689. case GGML_OP_ARGMAX:
  12690. {
  12691. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12692. } break;
  12693. case GGML_OP_REPEAT:
  12694. {
  12695. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12696. } break;
  12697. case GGML_OP_REPEAT_BACK:
  12698. {
  12699. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12700. } break;
  12701. case GGML_OP_CONCAT:
  12702. {
  12703. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12704. } break;
  12705. case GGML_OP_SILU_BACK:
  12706. {
  12707. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12708. } break;
  12709. case GGML_OP_NORM:
  12710. {
  12711. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12712. } break;
  12713. case GGML_OP_RMS_NORM:
  12714. {
  12715. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12716. } break;
  12717. case GGML_OP_RMS_NORM_BACK:
  12718. {
  12719. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12720. } break;
  12721. case GGML_OP_GROUP_NORM:
  12722. {
  12723. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12724. } break;
  12725. case GGML_OP_MUL_MAT:
  12726. {
  12727. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12728. } break;
  12729. case GGML_OP_OUT_PROD:
  12730. {
  12731. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12732. } break;
  12733. case GGML_OP_SCALE:
  12734. {
  12735. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12736. } break;
  12737. case GGML_OP_SET:
  12738. {
  12739. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12740. } break;
  12741. case GGML_OP_CPY:
  12742. {
  12743. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12744. } break;
  12745. case GGML_OP_CONT:
  12746. {
  12747. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12748. } break;
  12749. case GGML_OP_RESHAPE:
  12750. {
  12751. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12752. } break;
  12753. case GGML_OP_VIEW:
  12754. {
  12755. ggml_compute_forward_view(params, tensor->src[0]);
  12756. } break;
  12757. case GGML_OP_PERMUTE:
  12758. {
  12759. ggml_compute_forward_permute(params, tensor->src[0]);
  12760. } break;
  12761. case GGML_OP_TRANSPOSE:
  12762. {
  12763. ggml_compute_forward_transpose(params, tensor->src[0]);
  12764. } break;
  12765. case GGML_OP_GET_ROWS:
  12766. {
  12767. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12768. } break;
  12769. case GGML_OP_GET_ROWS_BACK:
  12770. {
  12771. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12772. } break;
  12773. case GGML_OP_DIAG:
  12774. {
  12775. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12776. } break;
  12777. case GGML_OP_DIAG_MASK_INF:
  12778. {
  12779. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12780. } break;
  12781. case GGML_OP_DIAG_MASK_ZERO:
  12782. {
  12783. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12784. } break;
  12785. case GGML_OP_SOFT_MAX:
  12786. {
  12787. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12788. } break;
  12789. case GGML_OP_SOFT_MAX_BACK:
  12790. {
  12791. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12792. } break;
  12793. case GGML_OP_ROPE:
  12794. {
  12795. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12796. } break;
  12797. case GGML_OP_ROPE_BACK:
  12798. {
  12799. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12800. } break;
  12801. case GGML_OP_ALIBI:
  12802. {
  12803. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12804. } break;
  12805. case GGML_OP_CLAMP:
  12806. {
  12807. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12808. } break;
  12809. case GGML_OP_CONV_1D:
  12810. {
  12811. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12812. } break;
  12813. case GGML_OP_CONV_2D:
  12814. {
  12815. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12816. } break;
  12817. case GGML_OP_CONV_TRANSPOSE_2D:
  12818. {
  12819. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12820. } break;
  12821. case GGML_OP_POOL_1D:
  12822. {
  12823. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12824. } break;
  12825. case GGML_OP_POOL_2D:
  12826. {
  12827. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12828. } break;
  12829. case GGML_OP_UPSCALE:
  12830. {
  12831. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12832. } break;
  12833. case GGML_OP_FLASH_ATTN:
  12834. {
  12835. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12836. GGML_ASSERT(t == 0 || t == 1);
  12837. const bool masked = t != 0;
  12838. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12839. } break;
  12840. case GGML_OP_FLASH_FF:
  12841. {
  12842. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12843. } break;
  12844. case GGML_OP_FLASH_ATTN_BACK:
  12845. {
  12846. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12847. GGML_ASSERT(t == 0 || t == 1);
  12848. bool masked = t != 0;
  12849. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12850. } break;
  12851. case GGML_OP_WIN_PART:
  12852. {
  12853. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12854. } break;
  12855. case GGML_OP_WIN_UNPART:
  12856. {
  12857. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12858. } break;
  12859. case GGML_OP_UNARY:
  12860. {
  12861. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12862. } break;
  12863. case GGML_OP_GET_REL_POS:
  12864. {
  12865. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12866. } break;
  12867. case GGML_OP_ADD_REL_POS:
  12868. {
  12869. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12870. } break;
  12871. case GGML_OP_MAP_UNARY:
  12872. {
  12873. ggml_unary_op_f32_t fun;
  12874. memcpy(&fun, tensor->op_params, sizeof(fun));
  12875. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12876. }
  12877. break;
  12878. case GGML_OP_MAP_BINARY:
  12879. {
  12880. ggml_binary_op_f32_t fun;
  12881. memcpy(&fun, tensor->op_params, sizeof(fun));
  12882. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12883. }
  12884. break;
  12885. case GGML_OP_MAP_CUSTOM1_F32:
  12886. {
  12887. ggml_custom1_op_f32_t fun;
  12888. memcpy(&fun, tensor->op_params, sizeof(fun));
  12889. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12890. }
  12891. break;
  12892. case GGML_OP_MAP_CUSTOM2_F32:
  12893. {
  12894. ggml_custom2_op_f32_t fun;
  12895. memcpy(&fun, tensor->op_params, sizeof(fun));
  12896. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12897. }
  12898. break;
  12899. case GGML_OP_MAP_CUSTOM3_F32:
  12900. {
  12901. ggml_custom3_op_f32_t fun;
  12902. memcpy(&fun, tensor->op_params, sizeof(fun));
  12903. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12904. }
  12905. break;
  12906. case GGML_OP_MAP_CUSTOM1:
  12907. {
  12908. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12909. }
  12910. break;
  12911. case GGML_OP_MAP_CUSTOM2:
  12912. {
  12913. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12914. }
  12915. break;
  12916. case GGML_OP_MAP_CUSTOM3:
  12917. {
  12918. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12919. }
  12920. break;
  12921. case GGML_OP_CROSS_ENTROPY_LOSS:
  12922. {
  12923. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12924. }
  12925. break;
  12926. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12927. {
  12928. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12929. }
  12930. break;
  12931. case GGML_OP_NONE:
  12932. {
  12933. // nop
  12934. } break;
  12935. case GGML_OP_COUNT:
  12936. {
  12937. GGML_ASSERT(false);
  12938. } break;
  12939. }
  12940. }
  12941. ////////////////////////////////////////////////////////////////////////////////
  12942. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12943. struct ggml_tensor * src0 = tensor->src[0];
  12944. struct ggml_tensor * src1 = tensor->src[1];
  12945. switch (tensor->op) {
  12946. case GGML_OP_DUP:
  12947. {
  12948. if (src0->grad) {
  12949. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12950. }
  12951. } break;
  12952. case GGML_OP_ADD:
  12953. {
  12954. if (src0->grad) {
  12955. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12956. }
  12957. if (src1->grad) {
  12958. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12959. }
  12960. } break;
  12961. case GGML_OP_ADD1:
  12962. {
  12963. if (src0->grad) {
  12964. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12965. }
  12966. if (src1->grad) {
  12967. src1->grad = ggml_add_impl(ctx,
  12968. src1->grad,
  12969. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12970. inplace);
  12971. }
  12972. } break;
  12973. case GGML_OP_ACC:
  12974. {
  12975. if (src0->grad) {
  12976. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12977. }
  12978. if (src1->grad) {
  12979. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12980. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12981. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12982. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12983. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12984. tensor->grad,
  12985. src1->grad->ne[0],
  12986. src1->grad->ne[1],
  12987. src1->grad->ne[2],
  12988. src1->grad->ne[3],
  12989. nb1, nb2, nb3, offset);
  12990. src1->grad =
  12991. ggml_add_impl(ctx,
  12992. src1->grad,
  12993. ggml_reshape(ctx,
  12994. ggml_cont(ctx, tensor_grad_view),
  12995. src1->grad),
  12996. inplace);
  12997. }
  12998. } break;
  12999. case GGML_OP_SUB:
  13000. {
  13001. if (src0->grad) {
  13002. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13003. }
  13004. if (src1->grad) {
  13005. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  13006. }
  13007. } break;
  13008. case GGML_OP_MUL:
  13009. {
  13010. if (src0->grad) {
  13011. src0->grad =
  13012. ggml_add_impl(ctx,
  13013. src0->grad,
  13014. ggml_mul(ctx, src1, tensor->grad),
  13015. inplace);
  13016. }
  13017. if (src1->grad) {
  13018. src1->grad =
  13019. ggml_add_impl(ctx,
  13020. src1->grad,
  13021. ggml_mul(ctx, src0, tensor->grad),
  13022. inplace);
  13023. }
  13024. } break;
  13025. case GGML_OP_DIV:
  13026. {
  13027. if (src0->grad) {
  13028. src0->grad =
  13029. ggml_add_impl(ctx,
  13030. src0->grad,
  13031. ggml_div(ctx, tensor->grad, src1),
  13032. inplace);
  13033. }
  13034. if (src1->grad) {
  13035. src1->grad =
  13036. ggml_sub_impl(ctx,
  13037. src1->grad,
  13038. ggml_mul(ctx,
  13039. tensor->grad,
  13040. ggml_div(ctx, tensor, src1)),
  13041. inplace);
  13042. }
  13043. } break;
  13044. case GGML_OP_SQR:
  13045. {
  13046. if (src0->grad) {
  13047. src0->grad =
  13048. ggml_add_impl(ctx,
  13049. src0->grad,
  13050. ggml_scale(ctx,
  13051. ggml_mul(ctx, src0, tensor->grad),
  13052. ggml_new_f32(ctx, 2.0f)),
  13053. inplace);
  13054. }
  13055. } break;
  13056. case GGML_OP_SQRT:
  13057. {
  13058. if (src0->grad) {
  13059. src0->grad =
  13060. ggml_add_impl(ctx,
  13061. src0->grad,
  13062. ggml_scale(ctx,
  13063. ggml_div(ctx,
  13064. tensor->grad,
  13065. tensor),
  13066. ggml_new_f32(ctx, 0.5f)),
  13067. inplace);
  13068. }
  13069. } break;
  13070. case GGML_OP_LOG:
  13071. {
  13072. if (src0->grad) {
  13073. src0->grad =
  13074. ggml_add_impl(ctx,
  13075. src0->grad,
  13076. ggml_div(ctx,
  13077. tensor->grad,
  13078. src0),
  13079. inplace);
  13080. }
  13081. } break;
  13082. case GGML_OP_SUM:
  13083. {
  13084. if (src0->grad) {
  13085. src0->grad =
  13086. ggml_add1_impl(ctx,
  13087. src0->grad,
  13088. tensor->grad,
  13089. inplace);
  13090. }
  13091. } break;
  13092. case GGML_OP_SUM_ROWS:
  13093. {
  13094. if (src0->grad) {
  13095. src0->grad =
  13096. ggml_add_impl(ctx,
  13097. src0->grad,
  13098. ggml_repeat(ctx,
  13099. tensor->grad,
  13100. src0->grad),
  13101. inplace);
  13102. }
  13103. } break;
  13104. case GGML_OP_MEAN:
  13105. case GGML_OP_ARGMAX:
  13106. {
  13107. GGML_ASSERT(false); // TODO: implement
  13108. } break;
  13109. case GGML_OP_REPEAT:
  13110. {
  13111. // necessary for llama
  13112. if (src0->grad) {
  13113. src0->grad = ggml_add_impl(ctx,
  13114. src0->grad,
  13115. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13116. inplace);
  13117. }
  13118. } break;
  13119. case GGML_OP_REPEAT_BACK:
  13120. {
  13121. if (src0->grad) {
  13122. // TODO: test this
  13123. src0->grad = ggml_add_impl(ctx,
  13124. src0->grad,
  13125. ggml_repeat(ctx, tensor->grad, src0->grad),
  13126. inplace);
  13127. }
  13128. } break;
  13129. case GGML_OP_CONCAT:
  13130. {
  13131. GGML_ASSERT(false); // TODO: implement
  13132. } break;
  13133. case GGML_OP_SILU_BACK:
  13134. {
  13135. GGML_ASSERT(false); // TODO: not implemented
  13136. } break;
  13137. case GGML_OP_NORM:
  13138. {
  13139. GGML_ASSERT(false); // TODO: not implemented
  13140. } break;
  13141. case GGML_OP_RMS_NORM:
  13142. {
  13143. // necessary for llama
  13144. if (src0->grad) {
  13145. src0->grad = ggml_add_impl(ctx,
  13146. src0->grad,
  13147. ggml_rms_norm_back(ctx, src0, tensor->grad),
  13148. inplace);
  13149. }
  13150. } break;
  13151. case GGML_OP_RMS_NORM_BACK:
  13152. {
  13153. GGML_ASSERT(false); // TODO: not implemented
  13154. } break;
  13155. case GGML_OP_GROUP_NORM:
  13156. {
  13157. GGML_ASSERT(false); // TODO: not implemented
  13158. } break;
  13159. case GGML_OP_MUL_MAT:
  13160. {
  13161. // https://cs231n.github.io/optimization-2/#staged
  13162. // # forward pass
  13163. // s0 = np.random.randn(5, 10)
  13164. // s1 = np.random.randn(10, 3)
  13165. // t = s0.dot(s1)
  13166. // # now suppose we had the gradient on t from above in the circuit
  13167. // dt = np.random.randn(*t.shape) # same shape as t
  13168. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13169. // ds1 = t.T.dot(dt)
  13170. // tensor.shape [m,p]
  13171. // src0.shape [n,m]
  13172. // src1.shape [n,p]
  13173. // necessary for llama
  13174. if (src0->grad) {
  13175. src0->grad =
  13176. ggml_add_impl(ctx,
  13177. src0->grad,
  13178. ggml_out_prod(ctx, // [n,m]
  13179. src1, // [n,p]
  13180. tensor->grad), // [m,p]
  13181. inplace);
  13182. }
  13183. if (src1->grad) {
  13184. src1->grad =
  13185. ggml_add_impl(ctx,
  13186. src1->grad,
  13187. // ggml_mul_mat(ctx, // [n,p]
  13188. // ggml_cont(ctx, // [m,n]
  13189. // ggml_transpose(ctx, src0)), // [m,n]
  13190. // tensor->grad), // [m,p]
  13191. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13192. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13193. // // and then use ggml_out_prod
  13194. ggml_out_prod(ctx, // [n,p]
  13195. src0, // [n,m]
  13196. ggml_transpose(ctx, // [p,m]
  13197. tensor->grad)), // [m,p]
  13198. inplace);
  13199. }
  13200. } break;
  13201. case GGML_OP_OUT_PROD:
  13202. {
  13203. GGML_ASSERT(false); // TODO: not implemented
  13204. } break;
  13205. case GGML_OP_SCALE:
  13206. {
  13207. // necessary for llama
  13208. if (src0->grad) {
  13209. src0->grad =
  13210. ggml_add_impl(ctx,
  13211. src0->grad,
  13212. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13213. inplace);
  13214. }
  13215. if (src1->grad) {
  13216. src1->grad =
  13217. ggml_add_impl(ctx,
  13218. src1->grad,
  13219. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13220. inplace);
  13221. }
  13222. } break;
  13223. case GGML_OP_SET:
  13224. {
  13225. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13226. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13227. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13228. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13229. struct ggml_tensor * tensor_grad_view = NULL;
  13230. if (src0->grad || src1->grad) {
  13231. GGML_ASSERT(src0->type == tensor->type);
  13232. GGML_ASSERT(tensor->grad->type == tensor->type);
  13233. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13234. tensor_grad_view = ggml_view_4d(ctx,
  13235. tensor->grad,
  13236. src1->grad->ne[0],
  13237. src1->grad->ne[1],
  13238. src1->grad->ne[2],
  13239. src1->grad->ne[3],
  13240. nb1, nb2, nb3, offset);
  13241. }
  13242. if (src0->grad) {
  13243. src0->grad = ggml_add_impl(ctx,
  13244. src0->grad,
  13245. ggml_acc_impl(ctx,
  13246. tensor->grad,
  13247. ggml_neg(ctx, tensor_grad_view),
  13248. nb1, nb2, nb3, offset, false),
  13249. inplace);
  13250. }
  13251. if (src1->grad) {
  13252. src1->grad =
  13253. ggml_add_impl(ctx,
  13254. src1->grad,
  13255. ggml_reshape(ctx,
  13256. ggml_cont(ctx, tensor_grad_view),
  13257. src1->grad),
  13258. inplace);
  13259. }
  13260. } break;
  13261. case GGML_OP_CPY:
  13262. {
  13263. // necessary for llama
  13264. // cpy overwrites value of src1 by src0 and returns view(src1)
  13265. // the overwriting is mathematically equivalent to:
  13266. // tensor = src0 * 1 + src1 * 0
  13267. if (src0->grad) {
  13268. // dsrc0 = dtensor * 1
  13269. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13270. }
  13271. if (src1->grad) {
  13272. // dsrc1 = dtensor * 0 -> noop
  13273. }
  13274. } break;
  13275. case GGML_OP_CONT:
  13276. {
  13277. // same as cpy
  13278. if (src0->grad) {
  13279. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13280. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13281. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13282. }
  13283. } break;
  13284. case GGML_OP_RESHAPE:
  13285. {
  13286. // necessary for llama
  13287. if (src0->grad) {
  13288. src0->grad =
  13289. ggml_add_impl(ctx, src0->grad,
  13290. ggml_reshape(ctx, tensor->grad, src0->grad),
  13291. inplace);
  13292. }
  13293. } break;
  13294. case GGML_OP_VIEW:
  13295. {
  13296. // necessary for llama
  13297. if (src0->grad) {
  13298. size_t offset;
  13299. memcpy(&offset, tensor->op_params, sizeof(offset));
  13300. size_t nb1 = tensor->nb[1];
  13301. size_t nb2 = tensor->nb[2];
  13302. size_t nb3 = tensor->nb[3];
  13303. if (src0->type != src0->grad->type) {
  13304. // gradient is typically F32, but src0 could be other type
  13305. size_t ng = ggml_element_size(src0->grad);
  13306. size_t n0 = ggml_element_size(src0);
  13307. GGML_ASSERT(offset % n0 == 0);
  13308. GGML_ASSERT(nb1 % n0 == 0);
  13309. GGML_ASSERT(nb2 % n0 == 0);
  13310. GGML_ASSERT(nb3 % n0 == 0);
  13311. offset = (offset / n0) * ng;
  13312. nb1 = (nb1 / n0) * ng;
  13313. nb2 = (nb2 / n0) * ng;
  13314. nb3 = (nb3 / n0) * ng;
  13315. }
  13316. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13317. }
  13318. } break;
  13319. case GGML_OP_PERMUTE:
  13320. {
  13321. // necessary for llama
  13322. if (src0->grad) {
  13323. int32_t * axes = (int32_t *) tensor->op_params;
  13324. int axis0 = axes[0] & 0x3;
  13325. int axis1 = axes[1] & 0x3;
  13326. int axis2 = axes[2] & 0x3;
  13327. int axis3 = axes[3] & 0x3;
  13328. int axes_backward[4] = {0,0,0,0};
  13329. axes_backward[axis0] = 0;
  13330. axes_backward[axis1] = 1;
  13331. axes_backward[axis2] = 2;
  13332. axes_backward[axis3] = 3;
  13333. src0->grad =
  13334. ggml_add_impl(ctx, src0->grad,
  13335. ggml_permute(ctx,
  13336. tensor->grad,
  13337. axes_backward[0],
  13338. axes_backward[1],
  13339. axes_backward[2],
  13340. axes_backward[3]),
  13341. inplace);
  13342. }
  13343. } break;
  13344. case GGML_OP_TRANSPOSE:
  13345. {
  13346. // necessary for llama
  13347. if (src0->grad) {
  13348. src0->grad =
  13349. ggml_add_impl(ctx, src0->grad,
  13350. ggml_transpose(ctx, tensor->grad),
  13351. inplace);
  13352. }
  13353. } break;
  13354. case GGML_OP_GET_ROWS:
  13355. {
  13356. // necessary for llama (only for tokenizer)
  13357. if (src0->grad) {
  13358. src0->grad =
  13359. ggml_add_impl(ctx, src0->grad,
  13360. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13361. inplace);
  13362. }
  13363. if (src1->grad) {
  13364. // noop
  13365. }
  13366. } break;
  13367. case GGML_OP_GET_ROWS_BACK:
  13368. {
  13369. GGML_ASSERT(false); // TODO: not implemented
  13370. } break;
  13371. case GGML_OP_DIAG:
  13372. {
  13373. GGML_ASSERT(false); // TODO: not implemented
  13374. } break;
  13375. case GGML_OP_DIAG_MASK_INF:
  13376. {
  13377. // necessary for llama
  13378. if (src0->grad) {
  13379. const int n_past = ((int32_t *) tensor->op_params)[0];
  13380. src0->grad =
  13381. ggml_add_impl(ctx, src0->grad,
  13382. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13383. inplace);
  13384. }
  13385. } break;
  13386. case GGML_OP_DIAG_MASK_ZERO:
  13387. {
  13388. // necessary for llama
  13389. if (src0->grad) {
  13390. const int n_past = ((int32_t *) tensor->op_params)[0];
  13391. src0->grad =
  13392. ggml_add_impl(ctx, src0->grad,
  13393. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13394. inplace);
  13395. }
  13396. } break;
  13397. case GGML_OP_SOFT_MAX:
  13398. {
  13399. // necessary for llama
  13400. if (src0->grad) {
  13401. src0->grad =
  13402. ggml_add_impl(ctx, src0->grad,
  13403. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13404. inplace);
  13405. }
  13406. } break;
  13407. case GGML_OP_SOFT_MAX_BACK:
  13408. {
  13409. GGML_ASSERT(false); // TODO: not implemented
  13410. } break;
  13411. case GGML_OP_ROPE:
  13412. {
  13413. // necessary for llama
  13414. if (src0->grad) {
  13415. const int n_past = ((int32_t *) tensor->op_params)[0];
  13416. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13417. const int mode = ((int32_t *) tensor->op_params)[2];
  13418. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13419. float freq_base;
  13420. float freq_scale;
  13421. float xpos_base;
  13422. bool xpos_down;
  13423. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13424. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13425. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13426. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13427. src0->grad = ggml_add_impl(ctx,
  13428. src0->grad,
  13429. ggml_rope_back(ctx,
  13430. tensor->grad,
  13431. n_past,
  13432. n_dims,
  13433. mode,
  13434. n_ctx,
  13435. freq_base,
  13436. freq_scale,
  13437. xpos_base,
  13438. xpos_down),
  13439. inplace);
  13440. }
  13441. } break;
  13442. case GGML_OP_ROPE_BACK:
  13443. {
  13444. if (src0->grad) {
  13445. const int n_past = ((int32_t *) tensor->op_params)[0];
  13446. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13447. const int mode = ((int32_t *) tensor->op_params)[2];
  13448. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13449. float freq_base;
  13450. float freq_scale;
  13451. float xpos_base;
  13452. bool xpos_down;
  13453. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13454. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13455. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13456. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13457. src0->grad = ggml_add_impl(ctx,
  13458. src0->grad,
  13459. ggml_rope_impl(ctx,
  13460. tensor->grad,
  13461. n_past,
  13462. n_dims,
  13463. mode,
  13464. n_ctx,
  13465. freq_base,
  13466. freq_scale,
  13467. xpos_base,
  13468. xpos_down,
  13469. false),
  13470. inplace);
  13471. }
  13472. } break;
  13473. case GGML_OP_ALIBI:
  13474. {
  13475. GGML_ASSERT(false); // TODO: not implemented
  13476. } break;
  13477. case GGML_OP_CLAMP:
  13478. {
  13479. GGML_ASSERT(false); // TODO: not implemented
  13480. } break;
  13481. case GGML_OP_CONV_1D:
  13482. {
  13483. GGML_ASSERT(false); // TODO: not implemented
  13484. } break;
  13485. case GGML_OP_CONV_2D:
  13486. {
  13487. GGML_ASSERT(false); // TODO: not implemented
  13488. } break;
  13489. case GGML_OP_CONV_TRANSPOSE_2D:
  13490. {
  13491. GGML_ASSERT(false); // TODO: not implemented
  13492. } break;
  13493. case GGML_OP_POOL_1D:
  13494. {
  13495. GGML_ASSERT(false); // TODO: not implemented
  13496. } break;
  13497. case GGML_OP_POOL_2D:
  13498. {
  13499. GGML_ASSERT(false); // TODO: not implemented
  13500. } break;
  13501. case GGML_OP_UPSCALE:
  13502. {
  13503. GGML_ASSERT(false); // TODO: not implemented
  13504. } break;
  13505. case GGML_OP_FLASH_ATTN:
  13506. {
  13507. struct ggml_tensor * flash_grad = NULL;
  13508. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13509. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13510. GGML_ASSERT(t == 0 || t == 1);
  13511. bool masked = t != 0;
  13512. flash_grad =
  13513. ggml_flash_attn_back(ctx,
  13514. src0,
  13515. src1,
  13516. tensor->src[2],
  13517. tensor->grad,
  13518. masked);
  13519. }
  13520. if (src0->grad) {
  13521. struct ggml_tensor * grad_q = NULL;
  13522. const size_t nb0 = flash_grad->nb[0];
  13523. const size_t offset = 0;
  13524. switch(src0->n_dims) {
  13525. case 2:
  13526. {
  13527. grad_q = ggml_view_2d(ctx,
  13528. flash_grad,
  13529. src0->ne[0],
  13530. src0->ne[1],
  13531. nb0*src0->ne[0],
  13532. offset);
  13533. } break;
  13534. case 3:
  13535. {
  13536. grad_q = ggml_view_3d(ctx,
  13537. flash_grad,
  13538. src0->ne[0],
  13539. src0->ne[1],
  13540. src0->ne[2],
  13541. nb0*src0->ne[0],
  13542. nb0*src0->ne[0]*src0->ne[1],
  13543. offset);
  13544. } break;
  13545. case 4:
  13546. {
  13547. grad_q = ggml_view_4d(ctx,
  13548. flash_grad,
  13549. src0->ne[0],
  13550. src0->ne[1],
  13551. src0->ne[2],
  13552. src0->ne[3],
  13553. nb0*src0->ne[0],
  13554. nb0*src0->ne[0]*src0->ne[1],
  13555. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13556. offset);
  13557. } break;
  13558. }
  13559. src0->grad = ggml_add_impl(ctx,
  13560. src0->grad,
  13561. grad_q,
  13562. inplace);
  13563. }
  13564. if (src1->grad) {
  13565. struct ggml_tensor * grad_k = NULL;
  13566. const size_t nb0 = flash_grad->nb[0];
  13567. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13568. switch(src1->n_dims) {
  13569. case 2:
  13570. {
  13571. grad_k = ggml_view_2d(ctx,
  13572. flash_grad,
  13573. src1->ne[0],
  13574. src1->ne[1],
  13575. nb0*src1->ne[0],
  13576. offset);
  13577. } break;
  13578. case 3:
  13579. {
  13580. grad_k = ggml_view_3d(ctx,
  13581. flash_grad,
  13582. src1->ne[0],
  13583. src1->ne[1],
  13584. src1->ne[2],
  13585. nb0*src1->ne[0],
  13586. nb0*src1->ne[0]*src1->ne[1],
  13587. offset);
  13588. } break;
  13589. case 4:
  13590. {
  13591. grad_k = ggml_view_4d(ctx,
  13592. flash_grad,
  13593. src1->ne[0],
  13594. src1->ne[1],
  13595. src1->ne[2],
  13596. src1->ne[3],
  13597. nb0*src1->ne[0],
  13598. nb0*src1->ne[0]*src1->ne[1],
  13599. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13600. offset);
  13601. } break;
  13602. }
  13603. src1->grad = ggml_add_impl(ctx,
  13604. src1->grad,
  13605. grad_k,
  13606. inplace);
  13607. }
  13608. struct ggml_tensor * opt0 = tensor->src[2];
  13609. if (opt0->grad) {
  13610. struct ggml_tensor * grad_v = NULL;
  13611. const size_t nb0 = flash_grad->nb[0];
  13612. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13613. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13614. switch(opt0->n_dims) {
  13615. case 2:
  13616. {
  13617. grad_v = ggml_view_2d(ctx,
  13618. flash_grad,
  13619. opt0->ne[0],
  13620. opt0->ne[1],
  13621. nb0*opt0->ne[0],
  13622. offset);
  13623. } break;
  13624. case 3:
  13625. {
  13626. grad_v = ggml_view_3d(ctx,
  13627. flash_grad,
  13628. opt0->ne[0],
  13629. opt0->ne[1],
  13630. opt0->ne[2],
  13631. nb0*opt0->ne[0],
  13632. nb0*opt0->ne[0]*opt0->ne[1],
  13633. offset);
  13634. } break;
  13635. case 4:
  13636. {
  13637. grad_v = ggml_view_4d(ctx,
  13638. flash_grad,
  13639. opt0->ne[0],
  13640. opt0->ne[1],
  13641. opt0->ne[2],
  13642. opt0->ne[3],
  13643. nb0*opt0->ne[0],
  13644. nb0*opt0->ne[0]*opt0->ne[1],
  13645. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13646. offset);
  13647. } break;
  13648. }
  13649. opt0->grad = ggml_add_impl(ctx,
  13650. opt0->grad,
  13651. grad_v,
  13652. inplace);
  13653. }
  13654. } break;
  13655. case GGML_OP_FLASH_FF:
  13656. {
  13657. GGML_ASSERT(false); // not supported
  13658. } break;
  13659. case GGML_OP_FLASH_ATTN_BACK:
  13660. {
  13661. GGML_ASSERT(false); // not supported
  13662. } break;
  13663. case GGML_OP_WIN_PART:
  13664. case GGML_OP_WIN_UNPART:
  13665. case GGML_OP_UNARY:
  13666. {
  13667. switch (ggml_get_unary_op(tensor)) {
  13668. case GGML_UNARY_OP_ABS:
  13669. {
  13670. if (src0->grad) {
  13671. src0->grad =
  13672. ggml_add_impl(ctx,
  13673. src0->grad,
  13674. ggml_mul(ctx,
  13675. ggml_sgn(ctx, src0),
  13676. tensor->grad),
  13677. inplace);
  13678. }
  13679. } break;
  13680. case GGML_UNARY_OP_SGN:
  13681. {
  13682. if (src0->grad) {
  13683. // noop
  13684. }
  13685. } break;
  13686. case GGML_UNARY_OP_NEG:
  13687. {
  13688. if (src0->grad) {
  13689. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13690. }
  13691. } break;
  13692. case GGML_UNARY_OP_STEP:
  13693. {
  13694. if (src0->grad) {
  13695. // noop
  13696. }
  13697. } break;
  13698. case GGML_UNARY_OP_TANH:
  13699. {
  13700. GGML_ASSERT(false); // TODO: not implemented
  13701. } break;
  13702. case GGML_UNARY_OP_ELU:
  13703. {
  13704. GGML_ASSERT(false); // TODO: not implemented
  13705. } break;
  13706. case GGML_UNARY_OP_RELU:
  13707. {
  13708. if (src0->grad) {
  13709. src0->grad = ggml_add_impl(ctx,
  13710. src0->grad,
  13711. ggml_mul(ctx,
  13712. ggml_step(ctx, src0),
  13713. tensor->grad),
  13714. inplace);
  13715. }
  13716. } break;
  13717. case GGML_UNARY_OP_GELU:
  13718. {
  13719. GGML_ASSERT(false); // TODO: not implemented
  13720. } break;
  13721. case GGML_UNARY_OP_GELU_QUICK:
  13722. {
  13723. GGML_ASSERT(false); // TODO: not implemented
  13724. } break;
  13725. case GGML_UNARY_OP_SILU:
  13726. {
  13727. // necessary for llama
  13728. if (src0->grad) {
  13729. src0->grad = ggml_add_impl(ctx,
  13730. src0->grad,
  13731. ggml_silu_back(ctx, src0, tensor->grad),
  13732. inplace);
  13733. }
  13734. } break;
  13735. default:
  13736. GGML_ASSERT(false);
  13737. }
  13738. } break;
  13739. case GGML_OP_GET_REL_POS:
  13740. case GGML_OP_ADD_REL_POS:
  13741. case GGML_OP_MAP_UNARY:
  13742. case GGML_OP_MAP_BINARY:
  13743. case GGML_OP_MAP_CUSTOM1_F32:
  13744. case GGML_OP_MAP_CUSTOM2_F32:
  13745. case GGML_OP_MAP_CUSTOM3_F32:
  13746. case GGML_OP_MAP_CUSTOM1:
  13747. case GGML_OP_MAP_CUSTOM2:
  13748. case GGML_OP_MAP_CUSTOM3:
  13749. {
  13750. GGML_ASSERT(false); // not supported
  13751. } break;
  13752. case GGML_OP_CROSS_ENTROPY_LOSS:
  13753. {
  13754. if (src0->grad) {
  13755. src0->grad = ggml_add_impl(ctx,
  13756. src0->grad,
  13757. ggml_cross_entropy_loss_back(ctx,
  13758. src0,
  13759. src1,
  13760. tensor->grad),
  13761. inplace);
  13762. }
  13763. } break;
  13764. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13765. {
  13766. GGML_ASSERT(false); // not supported
  13767. } break;
  13768. case GGML_OP_NONE:
  13769. {
  13770. // nop
  13771. } break;
  13772. case GGML_OP_COUNT:
  13773. {
  13774. GGML_ASSERT(false);
  13775. } break;
  13776. }
  13777. }
  13778. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13779. static size_t hash(void * p) {
  13780. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13781. }
  13782. static bool hash_insert(void * hash_table[], void * p) {
  13783. size_t h = hash(p);
  13784. // linear probing
  13785. size_t i = h;
  13786. while (hash_table[i] != NULL && hash_table[i] != p) {
  13787. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13788. if (i == h) {
  13789. // hash table is full
  13790. GGML_ASSERT(false);
  13791. }
  13792. }
  13793. if (hash_table[i] == p) {
  13794. return true;
  13795. }
  13796. // insert
  13797. hash_table[i] = p;
  13798. return false;
  13799. }
  13800. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13801. if (node->grad == NULL) {
  13802. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13803. // it can also happen during forward pass, if the user performs computations with constants
  13804. if (node->op != GGML_OP_NONE) {
  13805. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13806. }
  13807. }
  13808. // check if already visited
  13809. if (hash_insert(cgraph->visited_hash_table, node)) {
  13810. return;
  13811. }
  13812. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13813. if (node->src[i]) {
  13814. ggml_visit_parents(cgraph, node->src[i]);
  13815. }
  13816. }
  13817. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13818. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13819. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13820. if (strlen(node->name) == 0) {
  13821. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13822. }
  13823. cgraph->leafs[cgraph->n_leafs] = node;
  13824. cgraph->n_leafs++;
  13825. } else {
  13826. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13827. if (strlen(node->name) == 0) {
  13828. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13829. }
  13830. cgraph->nodes[cgraph->n_nodes] = node;
  13831. cgraph->grads[cgraph->n_nodes] = node->grad;
  13832. cgraph->n_nodes++;
  13833. }
  13834. }
  13835. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13836. if (!expand) {
  13837. cgraph->n_nodes = 0;
  13838. cgraph->n_leafs = 0;
  13839. }
  13840. const int n0 = cgraph->n_nodes;
  13841. UNUSED(n0);
  13842. ggml_visit_parents(cgraph, tensor);
  13843. const int n_new = cgraph->n_nodes - n0;
  13844. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13845. if (n_new > 0) {
  13846. // the last added node should always be starting point
  13847. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13848. }
  13849. }
  13850. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13851. ggml_build_forward_impl(cgraph, tensor, true);
  13852. }
  13853. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13854. struct ggml_cgraph result = {
  13855. /*.n_nodes =*/ 0,
  13856. /*.n_leafs =*/ 0,
  13857. /*.nodes =*/ { NULL },
  13858. /*.grads =*/ { NULL },
  13859. /*.leafs =*/ { NULL },
  13860. /*.hash_table =*/ { NULL },
  13861. /*.perf_runs =*/ 0,
  13862. /*.perf_cycles =*/ 0,
  13863. /*.perf_time_us =*/ 0,
  13864. };
  13865. ggml_build_forward_impl(&result, tensor, false);
  13866. return result;
  13867. }
  13868. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13869. struct ggml_cgraph result = *gf;
  13870. GGML_ASSERT(gf->n_nodes > 0);
  13871. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13872. if (keep) {
  13873. for (int i = 0; i < gf->n_nodes; i++) {
  13874. struct ggml_tensor * node = gf->nodes[i];
  13875. if (node->grad) {
  13876. node->grad = ggml_dup_tensor(ctx, node);
  13877. gf->grads[i] = node->grad;
  13878. }
  13879. }
  13880. }
  13881. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13882. struct ggml_tensor * node = gf->nodes[i];
  13883. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13884. if (node->grad) {
  13885. ggml_compute_backward(ctx, node, keep);
  13886. }
  13887. }
  13888. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13889. struct ggml_tensor * node = gf->nodes[i];
  13890. if (node->is_param) {
  13891. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13892. ggml_build_forward_expand(&result, node->grad);
  13893. }
  13894. }
  13895. return result;
  13896. }
  13897. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13898. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13899. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13900. *cgraph = (struct ggml_cgraph) {
  13901. /*.n_nodes =*/ 0,
  13902. /*.n_leafs =*/ 0,
  13903. /*.nodes =*/ { NULL },
  13904. /*.grads =*/ { NULL },
  13905. /*.leafs =*/ { NULL },
  13906. /*.hash_table =*/ { NULL },
  13907. /*.perf_runs =*/ 0,
  13908. /*.perf_cycles =*/ 0,
  13909. /*.perf_time_us =*/ 0,
  13910. };
  13911. return cgraph;
  13912. }
  13913. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13914. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13915. ggml_build_forward_impl(cgraph, tensor, false);
  13916. return cgraph;
  13917. }
  13918. size_t ggml_graph_overhead(void) {
  13919. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13920. }
  13921. //
  13922. // thread data
  13923. //
  13924. // synchronization is done via busy loops
  13925. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13926. //
  13927. #ifdef __APPLE__
  13928. //#include <os/lock.h>
  13929. //
  13930. //typedef os_unfair_lock ggml_lock_t;
  13931. //
  13932. //#define ggml_lock_init(x) UNUSED(x)
  13933. //#define ggml_lock_destroy(x) UNUSED(x)
  13934. //#define ggml_lock_lock os_unfair_lock_lock
  13935. //#define ggml_lock_unlock os_unfair_lock_unlock
  13936. //
  13937. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13938. typedef int ggml_lock_t;
  13939. #define ggml_lock_init(x) UNUSED(x)
  13940. #define ggml_lock_destroy(x) UNUSED(x)
  13941. #define ggml_lock_lock(x) UNUSED(x)
  13942. #define ggml_lock_unlock(x) UNUSED(x)
  13943. #define GGML_LOCK_INITIALIZER 0
  13944. typedef pthread_t ggml_thread_t;
  13945. #define ggml_thread_create pthread_create
  13946. #define ggml_thread_join pthread_join
  13947. #else
  13948. //typedef pthread_spinlock_t ggml_lock_t;
  13949. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13950. //#define ggml_lock_destroy pthread_spin_destroy
  13951. //#define ggml_lock_lock pthread_spin_lock
  13952. //#define ggml_lock_unlock pthread_spin_unlock
  13953. typedef int ggml_lock_t;
  13954. #define ggml_lock_init(x) UNUSED(x)
  13955. #define ggml_lock_destroy(x) UNUSED(x)
  13956. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13957. #define ggml_lock_lock(x) _mm_pause()
  13958. #else
  13959. #define ggml_lock_lock(x) UNUSED(x)
  13960. #endif
  13961. #define ggml_lock_unlock(x) UNUSED(x)
  13962. #define GGML_LOCK_INITIALIZER 0
  13963. typedef pthread_t ggml_thread_t;
  13964. #define ggml_thread_create pthread_create
  13965. #define ggml_thread_join pthread_join
  13966. #endif
  13967. // Android's libc implementation "bionic" does not support setting affinity
  13968. #if defined(__linux__) && !defined(__BIONIC__)
  13969. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13970. if (!ggml_is_numa()) {
  13971. return;
  13972. }
  13973. // run thread on node_num thread_n / (threads per node)
  13974. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13975. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13976. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13977. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13978. CPU_ZERO_S(setsize, cpus);
  13979. for (size_t i = 0; i < node->n_cpus; ++i) {
  13980. CPU_SET_S(node->cpus[i], setsize, cpus);
  13981. }
  13982. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13983. if (rv) {
  13984. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13985. strerror(rv));
  13986. }
  13987. CPU_FREE(cpus);
  13988. }
  13989. static void clear_numa_thread_affinity(void) {
  13990. if (!ggml_is_numa()) {
  13991. return;
  13992. }
  13993. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13994. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13995. CPU_ZERO_S(setsize, cpus);
  13996. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13997. CPU_SET_S(i, setsize, cpus);
  13998. }
  13999. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14000. if (rv) {
  14001. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14002. strerror(rv));
  14003. }
  14004. CPU_FREE(cpus);
  14005. }
  14006. #else
  14007. // TODO: Windows etc.
  14008. // (the linux implementation may also work on BSD, someone should test)
  14009. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14010. static void clear_numa_thread_affinity(void) {}
  14011. #endif
  14012. struct ggml_compute_state_shared {
  14013. const struct ggml_cgraph * cgraph;
  14014. const struct ggml_cplan * cplan;
  14015. int64_t perf_node_start_cycles;
  14016. int64_t perf_node_start_time_us;
  14017. const int n_threads;
  14018. // synchronization primitives
  14019. atomic_int n_active; // num active threads
  14020. atomic_int node_n; // active graph node
  14021. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14022. void * abort_callback_data;
  14023. };
  14024. struct ggml_compute_state {
  14025. ggml_thread_t thrd;
  14026. int ith;
  14027. struct ggml_compute_state_shared * shared;
  14028. };
  14029. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14030. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14031. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14032. node->perf_runs++;
  14033. node->perf_cycles += cycles_cur;
  14034. node->perf_time_us += time_us_cur;
  14035. }
  14036. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14037. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14038. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14039. const struct ggml_cplan * cplan = state->shared->cplan;
  14040. const int * n_tasks_arr = cplan->n_tasks;
  14041. const int n_threads = state->shared->n_threads;
  14042. set_numa_thread_affinity(state->ith, n_threads);
  14043. int node_n = -1;
  14044. while (true) {
  14045. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14046. state->shared->node_n += 1;
  14047. return (thread_ret_t) GGML_EXIT_ABORTED;
  14048. }
  14049. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14050. // all other threads are finished and spinning
  14051. // do finalize and init here so we don't have synchronize again
  14052. struct ggml_compute_params params = {
  14053. /*.type =*/ GGML_TASK_FINALIZE,
  14054. /*.ith =*/ 0,
  14055. /*.nth =*/ 0,
  14056. /*.wsize =*/ cplan->work_size,
  14057. /*.wdata =*/ cplan->work_data,
  14058. };
  14059. if (node_n != -1) {
  14060. /* FINALIZE */
  14061. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14062. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14063. params.nth = n_tasks_arr[node_n];
  14064. ggml_compute_forward(&params, node);
  14065. }
  14066. ggml_graph_compute_perf_stats_node(node, state->shared);
  14067. }
  14068. // distribute new work or execute it direct if 1T
  14069. while (++node_n < cgraph->n_nodes) {
  14070. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14071. struct ggml_tensor * node = cgraph->nodes[node_n];
  14072. const int n_tasks = n_tasks_arr[node_n];
  14073. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14074. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14075. params.nth = n_tasks;
  14076. /* INIT */
  14077. if (GGML_OP_HAS_INIT[node->op]) {
  14078. params.type = GGML_TASK_INIT;
  14079. ggml_compute_forward(&params, node);
  14080. }
  14081. if (n_tasks == 1) {
  14082. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14083. // they do something more efficient than spinning (?)
  14084. params.type = GGML_TASK_COMPUTE;
  14085. ggml_compute_forward(&params, node);
  14086. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14087. params.type = GGML_TASK_FINALIZE;
  14088. ggml_compute_forward(&params, node);
  14089. }
  14090. ggml_graph_compute_perf_stats_node(node, state->shared);
  14091. } else {
  14092. break;
  14093. }
  14094. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14095. break;
  14096. }
  14097. }
  14098. atomic_store(&state->shared->n_active, n_threads);
  14099. atomic_store(&state->shared->node_n, node_n);
  14100. } else {
  14101. // wait for other threads to finish
  14102. const int last = node_n;
  14103. do {
  14104. //sched_yield();
  14105. node_n = atomic_load(&state->shared->node_n);
  14106. } while (node_n == last);
  14107. }
  14108. // check if we should stop
  14109. if (node_n >= cgraph->n_nodes) break;
  14110. /* COMPUTE */
  14111. struct ggml_tensor * node = cgraph->nodes[node_n];
  14112. const int n_tasks = n_tasks_arr[node_n];
  14113. struct ggml_compute_params params = {
  14114. /*.type =*/ GGML_TASK_COMPUTE,
  14115. /*.ith =*/ state->ith,
  14116. /*.nth =*/ n_tasks,
  14117. /*.wsize =*/ cplan->work_size,
  14118. /*.wdata =*/ cplan->work_data,
  14119. };
  14120. if (state->ith < n_tasks) {
  14121. ggml_compute_forward(&params, node);
  14122. }
  14123. }
  14124. return GGML_EXIT_SUCCESS;
  14125. }
  14126. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14127. if (n_threads <= 0) {
  14128. n_threads = GGML_DEFAULT_N_THREADS;
  14129. }
  14130. size_t work_size = 0;
  14131. struct ggml_cplan cplan;
  14132. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14133. // thread scheduling for the different operations + work buffer size estimation
  14134. for (int i = 0; i < cgraph->n_nodes; i++) {
  14135. int n_tasks = 1;
  14136. struct ggml_tensor * node = cgraph->nodes[i];
  14137. switch (node->op) {
  14138. case GGML_OP_CPY:
  14139. case GGML_OP_DUP:
  14140. {
  14141. n_tasks = n_threads;
  14142. size_t cur = 0;
  14143. if (ggml_is_quantized(node->type)) {
  14144. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14145. }
  14146. work_size = MAX(work_size, cur);
  14147. } break;
  14148. case GGML_OP_ADD:
  14149. case GGML_OP_ADD1:
  14150. {
  14151. n_tasks = n_threads;
  14152. size_t cur = 0;
  14153. if (ggml_is_quantized(node->src[0]->type)) {
  14154. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14155. }
  14156. work_size = MAX(work_size, cur);
  14157. } break;
  14158. case GGML_OP_ACC:
  14159. {
  14160. n_tasks = n_threads;
  14161. size_t cur = 0;
  14162. if (ggml_is_quantized(node->src[0]->type)) {
  14163. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14164. }
  14165. work_size = MAX(work_size, cur);
  14166. } break;
  14167. case GGML_OP_SUB:
  14168. case GGML_OP_DIV:
  14169. case GGML_OP_SQR:
  14170. case GGML_OP_SQRT:
  14171. case GGML_OP_LOG:
  14172. case GGML_OP_SUM:
  14173. case GGML_OP_SUM_ROWS:
  14174. case GGML_OP_MEAN:
  14175. case GGML_OP_ARGMAX:
  14176. case GGML_OP_REPEAT:
  14177. case GGML_OP_REPEAT_BACK:
  14178. {
  14179. n_tasks = 1;
  14180. } break;
  14181. case GGML_OP_UNARY:
  14182. {
  14183. switch (ggml_get_unary_op(node)) {
  14184. case GGML_UNARY_OP_ABS:
  14185. case GGML_UNARY_OP_SGN:
  14186. case GGML_UNARY_OP_NEG:
  14187. case GGML_UNARY_OP_STEP:
  14188. case GGML_UNARY_OP_TANH:
  14189. case GGML_UNARY_OP_ELU:
  14190. case GGML_UNARY_OP_RELU:
  14191. {
  14192. n_tasks = 1;
  14193. } break;
  14194. case GGML_UNARY_OP_GELU:
  14195. case GGML_UNARY_OP_GELU_QUICK:
  14196. case GGML_UNARY_OP_SILU:
  14197. {
  14198. n_tasks = n_threads;
  14199. } break;
  14200. }
  14201. } break;
  14202. case GGML_OP_SILU_BACK:
  14203. case GGML_OP_MUL:
  14204. case GGML_OP_NORM:
  14205. case GGML_OP_RMS_NORM:
  14206. case GGML_OP_RMS_NORM_BACK:
  14207. case GGML_OP_GROUP_NORM:
  14208. {
  14209. n_tasks = n_threads;
  14210. } break;
  14211. case GGML_OP_CONCAT:
  14212. case GGML_OP_MUL_MAT:
  14213. case GGML_OP_OUT_PROD:
  14214. {
  14215. n_tasks = n_threads;
  14216. // TODO: use different scheduling for different matrix sizes
  14217. //const int nr0 = ggml_nrows(node->src[0]);
  14218. //const int nr1 = ggml_nrows(node->src[1]);
  14219. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14220. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14221. size_t cur = 0;
  14222. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14223. #if defined(GGML_USE_CUBLAS)
  14224. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14225. n_tasks = 1; // TODO: this actually is doing nothing
  14226. // the threads are still spinning
  14227. } else
  14228. #elif defined(GGML_USE_CLBLAST)
  14229. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14230. n_tasks = 1; // TODO: this actually is doing nothing
  14231. // the threads are still spinning
  14232. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14233. } else
  14234. #endif
  14235. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14236. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14237. n_tasks = 1; // TODO: this actually is doing nothing
  14238. // the threads are still spinning
  14239. if (node->src[0]->type != GGML_TYPE_F32) {
  14240. // here we need memory just for single 2D matrix from src0
  14241. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14242. }
  14243. } else
  14244. #endif
  14245. if (node->src[1]->type != vec_dot_type) {
  14246. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14247. } else {
  14248. cur = 0;
  14249. }
  14250. work_size = MAX(work_size, cur);
  14251. } break;
  14252. case GGML_OP_SCALE:
  14253. {
  14254. n_tasks = 1;
  14255. } break;
  14256. case GGML_OP_SET:
  14257. case GGML_OP_CONT:
  14258. case GGML_OP_RESHAPE:
  14259. case GGML_OP_VIEW:
  14260. case GGML_OP_PERMUTE:
  14261. case GGML_OP_TRANSPOSE:
  14262. case GGML_OP_GET_ROWS:
  14263. case GGML_OP_GET_ROWS_BACK:
  14264. case GGML_OP_DIAG:
  14265. {
  14266. n_tasks = 1;
  14267. } break;
  14268. case GGML_OP_DIAG_MASK_ZERO:
  14269. case GGML_OP_DIAG_MASK_INF:
  14270. case GGML_OP_SOFT_MAX:
  14271. case GGML_OP_SOFT_MAX_BACK:
  14272. case GGML_OP_ROPE:
  14273. case GGML_OP_ROPE_BACK:
  14274. case GGML_OP_ADD_REL_POS:
  14275. {
  14276. n_tasks = n_threads;
  14277. } break;
  14278. case GGML_OP_ALIBI:
  14279. {
  14280. n_tasks = 1; //TODO
  14281. } break;
  14282. case GGML_OP_CLAMP:
  14283. {
  14284. n_tasks = 1; //TODO
  14285. } break;
  14286. case GGML_OP_CONV_1D:
  14287. {
  14288. n_tasks = n_threads;
  14289. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14290. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14291. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14292. size_t cur = 0;
  14293. const int nk = node->src[0]->ne[0];
  14294. if (node->src[0]->type == GGML_TYPE_F16 &&
  14295. node->src[1]->type == GGML_TYPE_F32) {
  14296. cur = sizeof(ggml_fp16_t)*(
  14297. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14298. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14299. );
  14300. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14301. node->src[1]->type == GGML_TYPE_F32) {
  14302. cur = sizeof(float)*(
  14303. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14304. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14305. );
  14306. } else {
  14307. GGML_ASSERT(false);
  14308. }
  14309. work_size = MAX(work_size, cur);
  14310. } break;
  14311. case GGML_OP_CONV_2D:
  14312. {
  14313. n_tasks = n_threads;
  14314. const int64_t ne00 = node->src[0]->ne[0]; // W
  14315. const int64_t ne01 = node->src[0]->ne[1]; // H
  14316. const int64_t ne02 = node->src[0]->ne[2]; // C
  14317. const int64_t ne03 = node->src[0]->ne[3]; // N
  14318. const int64_t ne10 = node->src[1]->ne[0]; // W
  14319. const int64_t ne11 = node->src[1]->ne[1]; // H
  14320. const int64_t ne12 = node->src[1]->ne[2]; // C
  14321. const int64_t ne0 = node->ne[0];
  14322. const int64_t ne1 = node->ne[1];
  14323. const int64_t ne2 = node->ne[2];
  14324. const int64_t nk = ne00*ne01;
  14325. const int64_t ew0 = nk * ne02;
  14326. UNUSED(ne03);
  14327. UNUSED(ne2);
  14328. size_t cur = 0;
  14329. if (node->src[0]->type == GGML_TYPE_F16 &&
  14330. node->src[1]->type == GGML_TYPE_F32) {
  14331. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14332. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14333. node->src[1]->type == GGML_TYPE_F32) {
  14334. cur = sizeof(float)* (ne10*ne11*ne12);
  14335. } else {
  14336. GGML_ASSERT(false);
  14337. }
  14338. work_size = MAX(work_size, cur);
  14339. } break;
  14340. case GGML_OP_CONV_TRANSPOSE_2D:
  14341. {
  14342. n_tasks = n_threads;
  14343. const int64_t ne00 = node->src[0]->ne[0]; // W
  14344. const int64_t ne01 = node->src[0]->ne[1]; // H
  14345. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14346. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14347. const int64_t ne10 = node->src[1]->ne[0]; // W
  14348. const int64_t ne11 = node->src[1]->ne[1]; // H
  14349. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14350. size_t cur = 0;
  14351. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14352. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14353. work_size = MAX(work_size, cur);
  14354. } break;
  14355. case GGML_OP_POOL_1D:
  14356. case GGML_OP_POOL_2D:
  14357. {
  14358. n_tasks = 1;
  14359. } break;
  14360. case GGML_OP_UPSCALE:
  14361. {
  14362. n_tasks = n_threads;
  14363. } break;
  14364. case GGML_OP_FLASH_ATTN:
  14365. {
  14366. n_tasks = n_threads;
  14367. size_t cur = 0;
  14368. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14369. if (node->src[1]->type == GGML_TYPE_F32) {
  14370. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14371. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14372. }
  14373. if (node->src[1]->type == GGML_TYPE_F16) {
  14374. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14375. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14376. }
  14377. work_size = MAX(work_size, cur);
  14378. } break;
  14379. case GGML_OP_FLASH_FF:
  14380. {
  14381. n_tasks = n_threads;
  14382. size_t cur = 0;
  14383. if (node->src[1]->type == GGML_TYPE_F32) {
  14384. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14385. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14386. }
  14387. if (node->src[1]->type == GGML_TYPE_F16) {
  14388. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14389. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14390. }
  14391. work_size = MAX(work_size, cur);
  14392. } break;
  14393. case GGML_OP_FLASH_ATTN_BACK:
  14394. {
  14395. n_tasks = n_threads;
  14396. size_t cur = 0;
  14397. const int64_t D = node->src[0]->ne[0];
  14398. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14399. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14400. if (node->src[1]->type == GGML_TYPE_F32) {
  14401. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14402. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14403. }
  14404. if (node->src[1]->type == GGML_TYPE_F16) {
  14405. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14406. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14407. }
  14408. work_size = MAX(work_size, cur);
  14409. } break;
  14410. case GGML_OP_WIN_PART:
  14411. case GGML_OP_WIN_UNPART:
  14412. case GGML_OP_GET_REL_POS:
  14413. case GGML_OP_MAP_UNARY:
  14414. case GGML_OP_MAP_BINARY:
  14415. case GGML_OP_MAP_CUSTOM1_F32:
  14416. case GGML_OP_MAP_CUSTOM2_F32:
  14417. case GGML_OP_MAP_CUSTOM3_F32:
  14418. {
  14419. n_tasks = 1;
  14420. } break;
  14421. case GGML_OP_MAP_CUSTOM1:
  14422. {
  14423. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14424. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14425. n_tasks = n_threads;
  14426. } else {
  14427. n_tasks = MIN(p->n_tasks, n_threads);
  14428. }
  14429. } break;
  14430. case GGML_OP_MAP_CUSTOM2:
  14431. {
  14432. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14433. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14434. n_tasks = n_threads;
  14435. } else {
  14436. n_tasks = MIN(p->n_tasks, n_threads);
  14437. }
  14438. } break;
  14439. case GGML_OP_MAP_CUSTOM3:
  14440. {
  14441. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14442. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14443. n_tasks = n_threads;
  14444. } else {
  14445. n_tasks = MIN(p->n_tasks, n_threads);
  14446. }
  14447. } break;
  14448. case GGML_OP_CROSS_ENTROPY_LOSS:
  14449. {
  14450. n_tasks = n_threads;
  14451. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14452. work_size = MAX(work_size, cur);
  14453. } break;
  14454. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14455. {
  14456. n_tasks = n_threads;
  14457. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  14458. work_size = MAX(work_size, cur);
  14459. } break;
  14460. case GGML_OP_NONE:
  14461. {
  14462. n_tasks = 1;
  14463. } break;
  14464. case GGML_OP_COUNT:
  14465. {
  14466. GGML_ASSERT(false);
  14467. } break;
  14468. }
  14469. cplan.n_tasks[i] = n_tasks;
  14470. }
  14471. if (work_size > 0) {
  14472. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14473. }
  14474. cplan.n_threads = n_threads;
  14475. cplan.work_size = work_size;
  14476. cplan.work_data = NULL;
  14477. return cplan;
  14478. }
  14479. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14480. {
  14481. GGML_ASSERT(cplan);
  14482. GGML_ASSERT(cplan->n_threads > 0);
  14483. if (cplan->work_size > 0) {
  14484. GGML_ASSERT(cplan->work_data);
  14485. }
  14486. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14487. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  14488. GGML_ASSERT(cplan->n_tasks[i] > 0);
  14489. }
  14490. }
  14491. }
  14492. const int n_threads = cplan->n_threads;
  14493. struct ggml_compute_state_shared state_shared = {
  14494. /*.cgraph =*/ cgraph,
  14495. /*.cgraph_plan =*/ cplan,
  14496. /*.perf_node_start_cycles =*/ 0,
  14497. /*.perf_node_start_time_us =*/ 0,
  14498. /*.n_threads =*/ n_threads,
  14499. /*.n_active =*/ n_threads,
  14500. /*.node_n =*/ -1,
  14501. /*.abort_callback =*/ NULL,
  14502. /*.abort_callback_data =*/ NULL,
  14503. };
  14504. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14505. // create thread pool
  14506. if (n_threads > 1) {
  14507. for (int j = 1; j < n_threads; ++j) {
  14508. workers[j] = (struct ggml_compute_state) {
  14509. .thrd = 0,
  14510. .ith = j,
  14511. .shared = &state_shared,
  14512. };
  14513. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14514. GGML_ASSERT(rc == 0);
  14515. UNUSED(rc);
  14516. }
  14517. }
  14518. workers[0].ith = 0;
  14519. workers[0].shared = &state_shared;
  14520. const int64_t perf_start_cycles = ggml_perf_cycles();
  14521. const int64_t perf_start_time_us = ggml_perf_time_us();
  14522. // this is a work thread too
  14523. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14524. // don't leave affinity set on the main thread
  14525. clear_numa_thread_affinity();
  14526. // join or kill thread pool
  14527. if (n_threads > 1) {
  14528. for (int j = 1; j < n_threads; j++) {
  14529. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14530. GGML_ASSERT(rc == 0);
  14531. }
  14532. }
  14533. // performance stats (graph)
  14534. {
  14535. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14536. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14537. cgraph->perf_runs++;
  14538. cgraph->perf_cycles += perf_cycles_cur;
  14539. cgraph->perf_time_us += perf_time_us_cur;
  14540. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14541. __func__, cgraph->perf_runs,
  14542. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14543. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14544. (double) perf_time_us_cur / 1000.0,
  14545. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14546. }
  14547. return compute_status;
  14548. }
  14549. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14550. for (int i = 0; i < cgraph->n_nodes; i++) {
  14551. struct ggml_tensor * grad = cgraph->grads[i];
  14552. if (grad) {
  14553. ggml_set_zero(grad);
  14554. }
  14555. }
  14556. }
  14557. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14558. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14559. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14560. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14561. ggml_graph_compute(cgraph, &cplan);
  14562. }
  14563. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14564. for (int i = 0; i < cgraph->n_leafs; i++) {
  14565. struct ggml_tensor * leaf = cgraph->leafs[i];
  14566. if (strcmp(leaf->name, name) == 0) {
  14567. return leaf;
  14568. }
  14569. }
  14570. for (int i = 0; i < cgraph->n_nodes; i++) {
  14571. struct ggml_tensor * node = cgraph->nodes[i];
  14572. if (strcmp(node->name, name) == 0) {
  14573. return node;
  14574. }
  14575. }
  14576. return NULL;
  14577. }
  14578. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14579. const int64_t * ne = tensor->ne;
  14580. const size_t * nb = tensor->nb;
  14581. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14582. ggml_type_name(tensor->type),
  14583. ggml_op_name (tensor->op),
  14584. tensor->n_dims,
  14585. ne[0], ne[1], ne[2], ne[3],
  14586. nb[0], nb[1], nb[2], nb[3],
  14587. tensor->data,
  14588. tensor->name);
  14589. }
  14590. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14591. const int64_t * ne = tensor->ne;
  14592. const size_t * nb = tensor->nb;
  14593. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14594. arg,
  14595. ggml_type_name(tensor->type),
  14596. ggml_op_name (tensor->op),
  14597. tensor->n_dims,
  14598. ne[0], ne[1], ne[2], ne[3],
  14599. nb[0], nb[1], nb[2], nb[3],
  14600. tensor->data,
  14601. tensor->name);
  14602. }
  14603. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14604. uint64_t size_eval = 0;
  14605. // compute size of intermediate results
  14606. // TODO: does not take into account scratch buffers !!!!
  14607. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14608. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14609. }
  14610. // print
  14611. {
  14612. FILE * fout = stdout;
  14613. fprintf(fout, "\n");
  14614. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14615. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14616. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14617. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14618. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14619. // header
  14620. fprintf(fout, "\n");
  14621. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14622. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14623. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14624. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14625. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14626. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14627. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14628. }
  14629. // header
  14630. fprintf(fout, "\n");
  14631. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14632. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14633. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14634. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14635. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14636. if (cgraph->nodes[i]->src[j]) {
  14637. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14638. }
  14639. }
  14640. fprintf(fout, "\n");
  14641. }
  14642. fprintf(fout, "\n");
  14643. }
  14644. // write binary data
  14645. {
  14646. FILE * fout = fopen(fname, "wb");
  14647. if (!fout) {
  14648. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14649. return;
  14650. }
  14651. // header
  14652. {
  14653. const uint32_t magic = GGML_FILE_MAGIC;
  14654. const uint32_t version = GGML_FILE_VERSION;
  14655. const uint32_t n_leafs = cgraph->n_leafs;
  14656. const uint32_t nodes = cgraph->n_nodes;
  14657. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14658. fwrite(&version, sizeof(uint32_t), 1, fout);
  14659. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14660. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14661. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14662. }
  14663. // leafs
  14664. {
  14665. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14666. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14667. const uint32_t type = tensor->type;
  14668. const uint32_t op = tensor->op;
  14669. const uint32_t n_dims = tensor->n_dims;
  14670. fwrite(&type, sizeof(uint32_t), 1, fout);
  14671. fwrite(&op, sizeof(uint32_t), 1, fout);
  14672. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14673. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14674. const uint64_t ne = tensor->ne[j];
  14675. const uint64_t nb = tensor->nb[j];
  14676. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14677. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14678. }
  14679. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14680. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14681. // dump the data
  14682. // TODO: pad this to 32 byte boundary
  14683. {
  14684. const size_t size = ggml_nbytes(tensor);
  14685. fwrite(tensor->data, sizeof(char), size, fout);
  14686. }
  14687. }
  14688. }
  14689. // nodes
  14690. {
  14691. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14692. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14693. const uint32_t type = tensor->type;
  14694. const uint32_t op = tensor->op;
  14695. const uint32_t n_dims = tensor->n_dims;
  14696. fwrite(&type, sizeof(uint32_t), 1, fout);
  14697. fwrite(&op, sizeof(uint32_t), 1, fout);
  14698. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14699. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14700. const uint64_t ne = tensor->ne[j];
  14701. const uint64_t nb = tensor->nb[j];
  14702. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14703. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14704. }
  14705. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14706. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14707. // output the op arguments
  14708. {
  14709. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14710. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14711. args[j] = tensor->src[j];
  14712. }
  14713. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14714. if (args[j]) {
  14715. int32_t idx = -1;
  14716. // check if leaf
  14717. {
  14718. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14719. if (args[j] == cgraph->leafs[k]) {
  14720. idx = k;
  14721. break;
  14722. }
  14723. }
  14724. }
  14725. // check if node
  14726. if (idx == -1) {
  14727. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14728. if (args[j] == cgraph->nodes[k]) {
  14729. idx = GGML_MAX_NODES + k;
  14730. break;
  14731. }
  14732. }
  14733. }
  14734. if (idx == -1) {
  14735. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14736. return;
  14737. }
  14738. fwrite(&idx, sizeof(int32_t), 1, fout);
  14739. } else {
  14740. const int32_t nul = -1;
  14741. fwrite(&nul, sizeof(int32_t), 1, fout);
  14742. }
  14743. }
  14744. }
  14745. }
  14746. }
  14747. fclose(fout);
  14748. }
  14749. }
  14750. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14751. assert(*ctx_data == NULL);
  14752. assert(*ctx_eval == NULL);
  14753. struct ggml_cgraph result = { 0 };
  14754. struct ggml_tensor * data = NULL;
  14755. // read file into data
  14756. {
  14757. FILE * fin = fopen(fname, "rb");
  14758. if (!fin) {
  14759. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14760. return result;
  14761. }
  14762. size_t fsize = 0;
  14763. fseek(fin, 0, SEEK_END);
  14764. fsize = ftell(fin);
  14765. fseek(fin, 0, SEEK_SET);
  14766. // create the data context
  14767. {
  14768. const size_t overhead = 1*ggml_tensor_overhead();
  14769. struct ggml_init_params params = {
  14770. .mem_size = fsize + overhead,
  14771. .mem_buffer = NULL,
  14772. .no_alloc = false,
  14773. };
  14774. *ctx_data = ggml_init(params);
  14775. if (!*ctx_data) {
  14776. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14777. fclose(fin);
  14778. return result;
  14779. }
  14780. }
  14781. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14782. {
  14783. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14784. if (ret != fsize) {
  14785. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14786. fclose(fin);
  14787. return result;
  14788. }
  14789. }
  14790. fclose(fin);
  14791. }
  14792. // populate result
  14793. {
  14794. char * ptr = (char *) data->data;
  14795. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14796. if (magic != GGML_FILE_MAGIC) {
  14797. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14798. return result;
  14799. }
  14800. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14801. if (version != GGML_FILE_VERSION) {
  14802. fprintf(stderr, "%s: invalid version number\n", __func__);
  14803. return result;
  14804. }
  14805. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14806. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14807. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14808. result.n_leafs = n_leafs;
  14809. result.n_nodes = n_nodes;
  14810. // create the data context
  14811. {
  14812. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14813. struct ggml_init_params params = {
  14814. .mem_size = size_eval + overhead,
  14815. .mem_buffer = NULL,
  14816. .no_alloc = true,
  14817. };
  14818. *ctx_eval = ggml_init(params);
  14819. if (!*ctx_eval) {
  14820. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14821. return result;
  14822. }
  14823. }
  14824. // leafs
  14825. {
  14826. uint32_t type;
  14827. uint32_t op;
  14828. uint32_t n_dims;
  14829. for (uint32_t i = 0; i < n_leafs; ++i) {
  14830. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14831. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14832. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14833. int64_t ne[GGML_MAX_DIMS];
  14834. size_t nb[GGML_MAX_DIMS];
  14835. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14836. uint64_t ne_cur;
  14837. uint64_t nb_cur;
  14838. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14839. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14840. ne[j] = ne_cur;
  14841. nb[j] = nb_cur;
  14842. }
  14843. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14844. tensor->op = (enum ggml_op) op;
  14845. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14846. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14847. tensor->data = (void *) ptr;
  14848. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14849. tensor->nb[j] = nb[j];
  14850. }
  14851. result.leafs[i] = tensor;
  14852. ptr += ggml_nbytes(tensor);
  14853. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14854. }
  14855. }
  14856. ggml_set_no_alloc(*ctx_eval, false);
  14857. // nodes
  14858. {
  14859. uint32_t type;
  14860. uint32_t op;
  14861. uint32_t n_dims;
  14862. for (uint32_t i = 0; i < n_nodes; ++i) {
  14863. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14864. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14865. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14866. enum ggml_op eop = (enum ggml_op) op;
  14867. int64_t ne[GGML_MAX_DIMS];
  14868. size_t nb[GGML_MAX_DIMS];
  14869. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14870. uint64_t ne_cur;
  14871. uint64_t nb_cur;
  14872. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14873. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14874. ne[j] = ne_cur;
  14875. nb[j] = nb_cur;
  14876. }
  14877. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14878. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14879. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14880. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14881. // parse args
  14882. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14883. const int32_t arg_idx = ptr_arg_idx[j];
  14884. if (arg_idx == -1) {
  14885. continue;
  14886. }
  14887. if (arg_idx < GGML_MAX_NODES) {
  14888. args[j] = result.leafs[arg_idx];
  14889. } else {
  14890. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14891. }
  14892. }
  14893. // create the tensor
  14894. // "view" operations are handled differently
  14895. // TODO: handle inplace ops - currently a copy is always made
  14896. struct ggml_tensor * tensor = NULL;
  14897. switch (eop) {
  14898. // TODO: implement other view ops
  14899. case GGML_OP_RESHAPE:
  14900. {
  14901. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14902. } break;
  14903. case GGML_OP_VIEW:
  14904. {
  14905. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14906. size_t offs;
  14907. memcpy(&offs, ptr_op_params, sizeof(offs));
  14908. tensor->data = ((char *) tensor->data) + offs;
  14909. } break;
  14910. case GGML_OP_TRANSPOSE:
  14911. {
  14912. tensor = ggml_transpose(*ctx_eval, args[0]);
  14913. } break;
  14914. case GGML_OP_PERMUTE:
  14915. {
  14916. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14917. } break;
  14918. default:
  14919. {
  14920. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14921. tensor->op = eop;
  14922. } break;
  14923. }
  14924. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14925. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14926. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14927. tensor->nb[j] = nb[j];
  14928. }
  14929. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14930. tensor->src[j] = args[j];
  14931. }
  14932. result.nodes[i] = tensor;
  14933. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14934. }
  14935. }
  14936. }
  14937. return result;
  14938. }
  14939. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14940. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14941. GGML_PRINT("=== GRAPH ===\n");
  14942. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14943. for (int i = 0; i < cgraph->n_nodes; i++) {
  14944. struct ggml_tensor * node = cgraph->nodes[i];
  14945. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14946. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14947. i,
  14948. node->ne[0], node->ne[1], node->ne[2],
  14949. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14950. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14951. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14952. (double) node->perf_time_us / 1000.0,
  14953. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14954. }
  14955. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14956. for (int i = 0; i < cgraph->n_leafs; i++) {
  14957. struct ggml_tensor * node = cgraph->leafs[i];
  14958. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14959. i,
  14960. node->ne[0], node->ne[1],
  14961. ggml_op_name(node->op));
  14962. }
  14963. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14964. if (perf_total_per_op_us[i] == 0) {
  14965. continue;
  14966. }
  14967. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14968. }
  14969. GGML_PRINT("========================================\n");
  14970. }
  14971. // check if node is part of the graph
  14972. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14973. if (cgraph == NULL) {
  14974. return true;
  14975. }
  14976. for (int i = 0; i < cgraph->n_nodes; i++) {
  14977. if (cgraph->nodes[i] == node) {
  14978. return true;
  14979. }
  14980. }
  14981. return false;
  14982. }
  14983. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14984. for (int i = 0; i < cgraph->n_nodes; i++) {
  14985. struct ggml_tensor * parent = cgraph->nodes[i];
  14986. if (parent->grad == node) {
  14987. return parent;
  14988. }
  14989. }
  14990. return NULL;
  14991. }
  14992. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14993. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14994. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14995. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14996. gparent0 ? (void *) gparent0 : (void *) parent,
  14997. gparent0 ? "g" : "x",
  14998. gparent ? (void *) gparent : (void *) node,
  14999. gparent ? "g" : "x",
  15000. gparent ? "empty" : "vee",
  15001. gparent ? "dashed" : "solid",
  15002. label);
  15003. }
  15004. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15005. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15006. (void *) parent, "x",
  15007. (void *) node, "x",
  15008. label);
  15009. }
  15010. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15011. char color[16];
  15012. FILE * fp = fopen(filename, "w");
  15013. GGML_ASSERT(fp);
  15014. fprintf(fp, "digraph G {\n");
  15015. fprintf(fp, " newrank = true;\n");
  15016. fprintf(fp, " rankdir = LR;\n");
  15017. for (int i = 0; i < gb->n_nodes; i++) {
  15018. struct ggml_tensor * node = gb->nodes[i];
  15019. if (ggml_graph_get_parent(gb, node) != NULL) {
  15020. continue;
  15021. }
  15022. if (node->is_param) {
  15023. snprintf(color, sizeof(color), "yellow");
  15024. } else if (node->grad) {
  15025. if (ggml_graph_find(gf, node)) {
  15026. snprintf(color, sizeof(color), "green");
  15027. } else {
  15028. snprintf(color, sizeof(color), "lightblue");
  15029. }
  15030. } else {
  15031. snprintf(color, sizeof(color), "white");
  15032. }
  15033. fprintf(fp, " \"%p\" [ "
  15034. "style = filled; fillcolor = %s; shape = record; "
  15035. "label=\"",
  15036. (void *) node, color);
  15037. if (strlen(node->name) > 0) {
  15038. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15039. } else {
  15040. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15041. }
  15042. if (node->n_dims == 2) {
  15043. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15044. } else {
  15045. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15046. }
  15047. if (node->grad) {
  15048. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15049. } else {
  15050. fprintf(fp, "\"; ]\n");
  15051. }
  15052. }
  15053. for (int i = 0; i < gb->n_leafs; i++) {
  15054. struct ggml_tensor * node = gb->leafs[i];
  15055. snprintf(color, sizeof(color), "pink");
  15056. fprintf(fp, " \"%p\" [ "
  15057. "style = filled; fillcolor = %s; shape = record; "
  15058. "label=\"<x>",
  15059. (void *) node, color);
  15060. if (strlen(node->name) > 0) {
  15061. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15062. } else {
  15063. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15064. }
  15065. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15066. if (ggml_nelements(node) < 5) {
  15067. fprintf(fp, " | (");
  15068. for (int j = 0; j < ggml_nelements(node); j++) {
  15069. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15070. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15071. }
  15072. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15073. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15074. }
  15075. else {
  15076. fprintf(fp, "#");
  15077. }
  15078. if (j < ggml_nelements(node) - 1) {
  15079. fprintf(fp, ", ");
  15080. }
  15081. }
  15082. fprintf(fp, ")");
  15083. }
  15084. fprintf(fp, "\"; ]\n");
  15085. }
  15086. for (int i = 0; i < gb->n_nodes; i++) {
  15087. struct ggml_tensor * node = gb->nodes[i];
  15088. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15089. if (node->src[j]) {
  15090. char label[16];
  15091. snprintf(label, sizeof(label), "src %d", j);
  15092. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15093. }
  15094. }
  15095. }
  15096. for (int i = 0; i < gb->n_leafs; i++) {
  15097. struct ggml_tensor * node = gb->leafs[i];
  15098. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15099. if (node->src[j]) {
  15100. char label[16];
  15101. snprintf(label, sizeof(label), "src %d", j);
  15102. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15103. }
  15104. }
  15105. }
  15106. fprintf(fp, "}\n");
  15107. fclose(fp);
  15108. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15109. }
  15110. ////////////////////////////////////////////////////////////////////////////////
  15111. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15112. int i = 0;
  15113. for (int p = 0; p < np; ++p) {
  15114. const int64_t ne = ggml_nelements(ps[p]) ;
  15115. // TODO: add function to set tensor from array
  15116. for (int64_t j = 0; j < ne; ++j) {
  15117. ggml_set_f32_1d(ps[p], j, x[i++]);
  15118. }
  15119. }
  15120. }
  15121. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15122. int i = 0;
  15123. for (int p = 0; p < np; ++p) {
  15124. const int64_t ne = ggml_nelements(ps[p]) ;
  15125. // TODO: add function to get all elements at once
  15126. for (int64_t j = 0; j < ne; ++j) {
  15127. x[i++] = ggml_get_f32_1d(ps[p], j);
  15128. }
  15129. }
  15130. }
  15131. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15132. int i = 0;
  15133. for (int p = 0; p < np; ++p) {
  15134. const int64_t ne = ggml_nelements(ps[p]) ;
  15135. // TODO: add function to get all elements at once
  15136. for (int64_t j = 0; j < ne; ++j) {
  15137. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15138. }
  15139. }
  15140. }
  15141. //
  15142. // ADAM
  15143. //
  15144. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15145. //
  15146. static enum ggml_opt_result ggml_opt_adam(
  15147. struct ggml_context * ctx,
  15148. struct ggml_opt_context * opt,
  15149. struct ggml_opt_params params,
  15150. struct ggml_tensor * f,
  15151. struct ggml_cgraph * gf,
  15152. struct ggml_cgraph * gb) {
  15153. GGML_ASSERT(ggml_is_scalar(f));
  15154. // these will store the parameters we want to optimize
  15155. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15156. int np = 0;
  15157. int nx = 0;
  15158. for (int i = 0; i < gf->n_nodes; ++i) {
  15159. if (gf->nodes[i]->is_param) {
  15160. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15161. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15162. ps[np++] = gf->nodes[i];
  15163. nx += ggml_nelements(gf->nodes[i]);
  15164. }
  15165. }
  15166. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15167. int iter = opt->iter;
  15168. ggml_opt_init(opt->ctx, opt, params, nx);
  15169. opt->iter = iter;
  15170. }
  15171. // constants
  15172. const float sched = params.adam.sched;
  15173. const float decay = params.adam.decay * sched;
  15174. const float alpha = params.adam.alpha * sched;
  15175. const float beta1 = params.adam.beta1;
  15176. const float beta2 = params.adam.beta2;
  15177. const float eps = params.adam.eps;
  15178. float * x = opt->adam.x->data; // view of the parameters
  15179. float * g1 = opt->adam.g1->data; // gradient
  15180. float * g2 = opt->adam.g2->data; // gradient squared
  15181. float * m = opt->adam.m->data; // first moment
  15182. float * v = opt->adam.v->data; // second moment
  15183. float * mh = opt->adam.mh->data; // first moment hat
  15184. float * vh = opt->adam.vh->data; // second moment hat
  15185. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15186. // update view
  15187. ggml_opt_get_params(np, ps, x);
  15188. // compute the function value
  15189. ggml_graph_reset (gf);
  15190. ggml_set_f32 (f->grad, 1.0f);
  15191. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  15192. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  15193. opt->adam.fx_best = opt->adam.fx_prev;
  15194. if (pf) {
  15195. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15196. }
  15197. // initialize
  15198. if (opt->just_initialized) {
  15199. opt->adam.n_no_improvement = 0;
  15200. opt->just_initialized = false;
  15201. }
  15202. float * fx_best = &opt->adam.fx_best;
  15203. float * fx_prev = &opt->adam.fx_prev;
  15204. int * n_no_improvement = &opt->adam.n_no_improvement;
  15205. int iter0 = opt->iter;
  15206. // run the optimizer
  15207. for (int t = 0; t < params.adam.n_iter; ++t) {
  15208. opt->iter = iter0 + t + 1;
  15209. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15210. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15211. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15212. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15213. for (int i = 0; i < np; ++i) {
  15214. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15215. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15216. }
  15217. const int64_t t_start_wall = ggml_time_us();
  15218. const int64_t t_start_cpu = ggml_cycles();
  15219. UNUSED(t_start_wall);
  15220. UNUSED(t_start_cpu);
  15221. {
  15222. // update the gradient
  15223. ggml_opt_get_grad(np, ps, g1);
  15224. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  15225. ggml_vec_scale_f32(nx, m, beta1);
  15226. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  15227. // g2 = g1^2
  15228. ggml_vec_sqr_f32 (nx, g2, g1);
  15229. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  15230. ggml_vec_scale_f32(nx, v, beta2);
  15231. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  15232. // m^hat = m_t / (1 - beta1^t)
  15233. // v^hat = v_t / (1 - beta2^t)
  15234. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  15235. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  15236. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  15237. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  15238. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  15239. ggml_vec_cpy_f32 (nx, mh, m);
  15240. ggml_vec_cpy_f32 (nx, vh, v);
  15241. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  15242. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  15243. ggml_vec_sqrt_f32 (nx, vh, vh);
  15244. ggml_vec_acc1_f32 (nx, vh, eps);
  15245. ggml_vec_div_f32 (nx, mh, mh, vh);
  15246. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  15247. ggml_vec_sub_f32 (nx, x, x, mh);
  15248. // update the parameters
  15249. ggml_opt_set_params(np, ps, x);
  15250. }
  15251. ggml_graph_reset (gf);
  15252. ggml_set_f32 (f->grad, 1.0f);
  15253. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  15254. const float fx = ggml_get_f32_1d(f, 0);
  15255. // check convergence
  15256. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15257. GGML_PRINT_DEBUG("converged\n");
  15258. return GGML_OPT_OK;
  15259. }
  15260. // delta-based convergence test
  15261. if (pf != NULL) {
  15262. // need at least params.past iterations to start checking for convergence
  15263. if (params.past <= iter0 + t) {
  15264. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15265. if (fabsf(rate) < params.delta) {
  15266. return GGML_OPT_OK;
  15267. }
  15268. }
  15269. pf[(iter0 + t)%params.past] = fx;
  15270. }
  15271. // check for improvement
  15272. if (params.max_no_improvement > 0) {
  15273. if (fx_best[0] > fx) {
  15274. fx_best[0] = fx;
  15275. n_no_improvement[0] = 0;
  15276. } else {
  15277. ++n_no_improvement[0];
  15278. if (n_no_improvement[0] >= params.max_no_improvement) {
  15279. return GGML_OPT_OK;
  15280. }
  15281. }
  15282. }
  15283. fx_prev[0] = fx;
  15284. {
  15285. const int64_t t_end_cpu = ggml_cycles();
  15286. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15287. UNUSED(t_end_cpu);
  15288. const int64_t t_end_wall = ggml_time_us();
  15289. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15290. UNUSED(t_end_wall);
  15291. }
  15292. }
  15293. return GGML_OPT_DID_NOT_CONVERGE;
  15294. }
  15295. //
  15296. // L-BFGS
  15297. //
  15298. // the L-BFGS implementation below is based on the following implementation:
  15299. //
  15300. // https://github.com/chokkan/liblbfgs
  15301. //
  15302. struct ggml_lbfgs_iteration_data {
  15303. float alpha;
  15304. float ys;
  15305. float * s;
  15306. float * y;
  15307. };
  15308. static enum ggml_opt_result linesearch_backtracking(
  15309. struct ggml_context * ctx,
  15310. const struct ggml_opt_params * params,
  15311. int nx,
  15312. float * x,
  15313. float * fx,
  15314. float * g,
  15315. float * d,
  15316. float * step,
  15317. const float * xp,
  15318. struct ggml_tensor * f,
  15319. struct ggml_cgraph * gf,
  15320. struct ggml_cgraph * gb,
  15321. const int np,
  15322. struct ggml_tensor * ps[]) {
  15323. int count = 0;
  15324. float width = 0.0f;
  15325. float dg = 0.0f;
  15326. float finit = 0.0f;
  15327. float dginit = 0.0f;
  15328. float dgtest = 0.0f;
  15329. const float dec = 0.5f;
  15330. const float inc = 2.1f;
  15331. if (*step <= 0.f) {
  15332. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15333. }
  15334. // compute the initial gradient in the search direction
  15335. ggml_vec_dot_f32(nx, &dginit, g, d);
  15336. // make sure that d points to a descent direction
  15337. if (0 < dginit) {
  15338. return GGML_LINESEARCH_FAIL;
  15339. }
  15340. // initialize local variables
  15341. finit = *fx;
  15342. dgtest = params->lbfgs.ftol*dginit;
  15343. while (true) {
  15344. ggml_vec_cpy_f32(nx, x, xp);
  15345. ggml_vec_mad_f32(nx, x, d, *step);
  15346. // evaluate the function and gradient values
  15347. {
  15348. ggml_opt_set_params(np, ps, x);
  15349. ggml_graph_reset (gf);
  15350. ggml_set_f32 (f->grad, 1.0f);
  15351. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  15352. ggml_opt_get_grad(np, ps, g);
  15353. *fx = ggml_get_f32_1d(f, 0);
  15354. }
  15355. ++count;
  15356. if (*fx > finit + (*step)*dgtest) {
  15357. width = dec;
  15358. } else {
  15359. // Armijo condition is satisfied
  15360. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15361. return count;
  15362. }
  15363. ggml_vec_dot_f32(nx, &dg, g, d);
  15364. // check the Wolfe condition
  15365. if (dg < params->lbfgs.wolfe * dginit) {
  15366. width = inc;
  15367. } else {
  15368. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15369. // regular Wolfe conditions
  15370. return count;
  15371. }
  15372. if(dg > -params->lbfgs.wolfe*dginit) {
  15373. width = dec;
  15374. } else {
  15375. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15376. return count;
  15377. }
  15378. return count;
  15379. }
  15380. }
  15381. if (*step < params->lbfgs.min_step) {
  15382. return GGML_LINESEARCH_MINIMUM_STEP;
  15383. }
  15384. if (*step > params->lbfgs.max_step) {
  15385. return GGML_LINESEARCH_MAXIMUM_STEP;
  15386. }
  15387. if (params->lbfgs.max_linesearch <= count) {
  15388. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15389. }
  15390. (*step) *= width;
  15391. }
  15392. return GGML_LINESEARCH_FAIL;
  15393. }
  15394. static enum ggml_opt_result ggml_opt_lbfgs(
  15395. struct ggml_context * ctx,
  15396. struct ggml_opt_context * opt,
  15397. struct ggml_opt_params params,
  15398. struct ggml_tensor * f,
  15399. struct ggml_cgraph * gf,
  15400. struct ggml_cgraph * gb) {
  15401. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15402. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15403. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15404. return GGML_OPT_INVALID_WOLFE;
  15405. }
  15406. }
  15407. const int m = params.lbfgs.m;
  15408. // these will store the parameters we want to optimize
  15409. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15410. int np = 0;
  15411. int nx = 0;
  15412. for (int i = 0; i < gf->n_nodes; ++i) {
  15413. if (gf->nodes[i]->is_param) {
  15414. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15415. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15416. ps[np++] = gf->nodes[i];
  15417. nx += ggml_nelements(gf->nodes[i]);
  15418. }
  15419. }
  15420. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15421. int iter = opt->iter;
  15422. ggml_opt_init(ctx, opt, params, nx);
  15423. opt->iter = iter;
  15424. }
  15425. float * x = opt->lbfgs.x->data; // current parameters
  15426. float * xp = opt->lbfgs.xp->data; // previous parameters
  15427. float * g = opt->lbfgs.g->data; // current gradient
  15428. float * gp = opt->lbfgs.gp->data; // previous gradient
  15429. float * d = opt->lbfgs.d->data; // search direction
  15430. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15431. float fx = 0.0f; // cost function value
  15432. float xnorm = 0.0f; // ||x||
  15433. float gnorm = 0.0f; // ||g||
  15434. // initialize x from the graph nodes
  15435. ggml_opt_get_params(np, ps, x);
  15436. // the L-BFGS memory
  15437. float * lm_alpha = opt->lbfgs.lmal->data;
  15438. float * lm_ys = opt->lbfgs.lmys->data;
  15439. float * lm_s = opt->lbfgs.lms->data;
  15440. float * lm_y = opt->lbfgs.lmy->data;
  15441. // evaluate the function value and its gradient
  15442. {
  15443. ggml_opt_set_params(np, ps, x);
  15444. ggml_graph_reset (gf);
  15445. ggml_set_f32 (f->grad, 1.0f);
  15446. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  15447. ggml_opt_get_grad(np, ps, g);
  15448. fx = ggml_get_f32_1d(f, 0);
  15449. }
  15450. // search direction = -gradient
  15451. ggml_vec_neg_f32(nx, d, g);
  15452. // ||x||, ||g||
  15453. ggml_vec_norm_f32(nx, &xnorm, x);
  15454. ggml_vec_norm_f32(nx, &gnorm, g);
  15455. if (xnorm < 1.0f) {
  15456. xnorm = 1.0f;
  15457. }
  15458. // already optimized
  15459. if (gnorm/xnorm <= params.lbfgs.eps) {
  15460. return GGML_OPT_OK;
  15461. }
  15462. if (opt->just_initialized) {
  15463. if (pf) {
  15464. pf[0] = fx;
  15465. }
  15466. opt->lbfgs.fx_best = fx;
  15467. // initial step
  15468. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15469. opt->lbfgs.j = 0;
  15470. opt->lbfgs.k = 1;
  15471. opt->lbfgs.end = 0;
  15472. opt->lbfgs.n_no_improvement = 0;
  15473. opt->just_initialized = false;
  15474. }
  15475. float * fx_best = &opt->lbfgs.fx_best;
  15476. float * step = &opt->lbfgs.step;
  15477. int * j = &opt->lbfgs.j;
  15478. int * k = &opt->lbfgs.k;
  15479. int * end = &opt->lbfgs.end;
  15480. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15481. int ls = 0;
  15482. int bound = 0;
  15483. float ys = 0.0f;
  15484. float yy = 0.0f;
  15485. float beta = 0.0f;
  15486. int it = 0;
  15487. while (true) {
  15488. // store the current position and gradient vectors
  15489. ggml_vec_cpy_f32(nx, xp, x);
  15490. ggml_vec_cpy_f32(nx, gp, g);
  15491. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  15492. if (ls < 0) {
  15493. // linesearch failed - go back to the previous point and return
  15494. ggml_vec_cpy_f32(nx, x, xp);
  15495. ggml_vec_cpy_f32(nx, g, gp);
  15496. return ls;
  15497. }
  15498. ggml_vec_norm_f32(nx, &xnorm, x);
  15499. ggml_vec_norm_f32(nx, &gnorm, g);
  15500. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15501. if (xnorm < 1.0f) {
  15502. xnorm = 1.0f;
  15503. }
  15504. if (gnorm/xnorm <= params.lbfgs.eps) {
  15505. // converged
  15506. return GGML_OPT_OK;
  15507. }
  15508. // delta-based convergence test
  15509. if (pf != NULL) {
  15510. // need at least params.past iterations to start checking for convergence
  15511. if (params.past <= k[0]) {
  15512. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15513. if (fabsf(rate) < params.delta) {
  15514. return GGML_OPT_OK;
  15515. }
  15516. }
  15517. pf[k[0]%params.past] = fx;
  15518. }
  15519. // check for improvement
  15520. if (params.max_no_improvement > 0) {
  15521. if (fx < fx_best[0]) {
  15522. fx_best[0] = fx;
  15523. n_no_improvement[0] = 0;
  15524. } else {
  15525. n_no_improvement[0]++;
  15526. if (n_no_improvement[0] >= params.max_no_improvement) {
  15527. return GGML_OPT_OK;
  15528. }
  15529. }
  15530. }
  15531. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15532. // reached the maximum number of iterations
  15533. return GGML_OPT_DID_NOT_CONVERGE;
  15534. }
  15535. // update vectors s and y:
  15536. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15537. // y_{k+1} = g_{k+1} - g_{k}.
  15538. //
  15539. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15540. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15541. // compute scalars ys and yy:
  15542. // ys = y^t \cdot s -> 1 / \rho.
  15543. // yy = y^t \cdot y.
  15544. //
  15545. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  15546. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15547. lm_ys[end[0]] = ys;
  15548. // find new search direction
  15549. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15550. bound = (m <= k[0]) ? m : k[0];
  15551. k[0]++;
  15552. it++;
  15553. end[0] = (end[0] + 1)%m;
  15554. // initialize search direction with -g
  15555. ggml_vec_neg_f32(nx, d, g);
  15556. j[0] = end[0];
  15557. for (int i = 0; i < bound; ++i) {
  15558. j[0] = (j[0] + m - 1) % m;
  15559. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15560. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15561. lm_alpha[j[0]] /= lm_ys[j[0]];
  15562. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15563. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15564. }
  15565. ggml_vec_scale_f32(nx, d, ys/yy);
  15566. for (int i = 0; i < bound; ++i) {
  15567. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15568. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15569. beta /= lm_ys[j[0]];
  15570. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15571. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15572. j[0] = (j[0] + 1)%m;
  15573. }
  15574. step[0] = 1.0;
  15575. }
  15576. return GGML_OPT_DID_NOT_CONVERGE;
  15577. }
  15578. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15579. struct ggml_opt_params result;
  15580. switch (type) {
  15581. case GGML_OPT_ADAM:
  15582. {
  15583. result = (struct ggml_opt_params) {
  15584. .type = GGML_OPT_ADAM,
  15585. .n_threads = 1,
  15586. .past = 0,
  15587. .delta = 1e-5f,
  15588. .max_no_improvement = 100,
  15589. .print_forward_graph = true,
  15590. .print_backward_graph = true,
  15591. .adam = {
  15592. .n_iter = 10000,
  15593. .sched = 1.000f,
  15594. .decay = 0.001f,
  15595. .alpha = 0.001f,
  15596. .beta1 = 0.9f,
  15597. .beta2 = 0.999f,
  15598. .eps = 1e-8f,
  15599. .eps_f = 1e-5f,
  15600. .eps_g = 1e-3f,
  15601. },
  15602. };
  15603. } break;
  15604. case GGML_OPT_LBFGS:
  15605. {
  15606. result = (struct ggml_opt_params) {
  15607. .type = GGML_OPT_LBFGS,
  15608. .n_threads = 1,
  15609. .past = 0,
  15610. .delta = 1e-5f,
  15611. .max_no_improvement = 0,
  15612. .print_forward_graph = true,
  15613. .print_backward_graph = true,
  15614. .lbfgs = {
  15615. .m = 6,
  15616. .n_iter = 100,
  15617. .max_linesearch = 20,
  15618. .eps = 1e-5f,
  15619. .ftol = 1e-4f,
  15620. .wolfe = 0.9f,
  15621. .min_step = 1e-20f,
  15622. .max_step = 1e+20f,
  15623. .linesearch = GGML_LINESEARCH_DEFAULT,
  15624. },
  15625. };
  15626. } break;
  15627. }
  15628. return result;
  15629. }
  15630. GGML_API void ggml_opt_init(
  15631. struct ggml_context * ctx,
  15632. struct ggml_opt_context * opt,
  15633. struct ggml_opt_params params,
  15634. int64_t nx) {
  15635. opt->ctx = ctx;
  15636. opt->params = params;
  15637. opt->iter = 0;
  15638. opt->nx = nx;
  15639. opt->just_initialized = true;
  15640. switch (opt->params.type) {
  15641. case GGML_OPT_ADAM:
  15642. {
  15643. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15644. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15645. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15646. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15647. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15648. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15649. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15650. opt->adam.pf = params.past > 0
  15651. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15652. : NULL;
  15653. ggml_set_zero(opt->adam.x);
  15654. ggml_set_zero(opt->adam.g1);
  15655. ggml_set_zero(opt->adam.g2);
  15656. ggml_set_zero(opt->adam.m);
  15657. ggml_set_zero(opt->adam.v);
  15658. ggml_set_zero(opt->adam.mh);
  15659. ggml_set_zero(opt->adam.vh);
  15660. if (opt->adam.pf) {
  15661. ggml_set_zero(opt->adam.pf);
  15662. }
  15663. } break;
  15664. case GGML_OPT_LBFGS:
  15665. {
  15666. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15667. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15668. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15669. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15670. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15671. opt->lbfgs.pf = params.past > 0
  15672. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15673. : NULL;
  15674. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15675. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15676. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15677. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15678. ggml_set_zero(opt->lbfgs.x);
  15679. ggml_set_zero(opt->lbfgs.xp);
  15680. ggml_set_zero(opt->lbfgs.g);
  15681. ggml_set_zero(opt->lbfgs.gp);
  15682. ggml_set_zero(opt->lbfgs.d);
  15683. if (opt->lbfgs.pf) {
  15684. ggml_set_zero(opt->lbfgs.pf);
  15685. }
  15686. ggml_set_zero(opt->lbfgs.lmal);
  15687. ggml_set_zero(opt->lbfgs.lmys);
  15688. ggml_set_zero(opt->lbfgs.lms);
  15689. ggml_set_zero(opt->lbfgs.lmy);
  15690. } break;
  15691. }
  15692. }
  15693. enum ggml_opt_result ggml_opt(
  15694. struct ggml_context * ctx,
  15695. struct ggml_opt_params params,
  15696. struct ggml_tensor * f) {
  15697. bool free_ctx = false;
  15698. if (ctx == NULL) {
  15699. struct ggml_init_params params_ctx = {
  15700. .mem_size = 16*1024*1024,
  15701. .mem_buffer = NULL,
  15702. .no_alloc = false,
  15703. };
  15704. ctx = ggml_init(params_ctx);
  15705. if (ctx == NULL) {
  15706. return GGML_OPT_NO_CONTEXT;
  15707. }
  15708. free_ctx = true;
  15709. }
  15710. enum ggml_opt_result result = GGML_OPT_OK;
  15711. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15712. ggml_opt_init(ctx, opt, params, 0);
  15713. result = ggml_opt_resume(ctx, opt, f);
  15714. if (free_ctx) {
  15715. ggml_free(ctx);
  15716. }
  15717. return result;
  15718. }
  15719. enum ggml_opt_result ggml_opt_resume(
  15720. struct ggml_context * ctx,
  15721. struct ggml_opt_context * opt,
  15722. struct ggml_tensor * f) {
  15723. // build forward + backward compute graphs
  15724. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15725. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15726. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15727. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15728. *gf = ggml_build_forward (f);
  15729. *gb = ggml_build_backward(ctx, gf, true);
  15730. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15731. }
  15732. enum ggml_opt_result ggml_opt_resume_g(
  15733. struct ggml_context * ctx,
  15734. struct ggml_opt_context * opt,
  15735. struct ggml_tensor * f,
  15736. struct ggml_cgraph * gf,
  15737. struct ggml_cgraph * gb) {
  15738. // build forward + backward compute graphs
  15739. enum ggml_opt_result result = GGML_OPT_OK;
  15740. switch (opt->params.type) {
  15741. case GGML_OPT_ADAM:
  15742. {
  15743. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15744. } break;
  15745. case GGML_OPT_LBFGS:
  15746. {
  15747. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15748. } break;
  15749. }
  15750. if (opt->params.print_forward_graph) {
  15751. ggml_graph_print (gf);
  15752. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15753. }
  15754. if (opt->params.print_backward_graph) {
  15755. ggml_graph_print (gb);
  15756. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15757. }
  15758. return result;
  15759. }
  15760. ////////////////////////////////////////////////////////////////////////////////
  15761. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15762. assert(k % QK4_0 == 0);
  15763. const int nb = k / QK4_0;
  15764. for (int b = 0; b < n; b += k) {
  15765. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15766. quantize_row_q4_0_reference(src + b, y, k);
  15767. for (int i = 0; i < nb; i++) {
  15768. for (int j = 0; j < QK4_0; j += 2) {
  15769. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15770. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15771. hist[vi0]++;
  15772. hist[vi1]++;
  15773. }
  15774. }
  15775. }
  15776. return (n/QK4_0*sizeof(block_q4_0));
  15777. }
  15778. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15779. assert(k % QK4_1 == 0);
  15780. const int nb = k / QK4_1;
  15781. for (int b = 0; b < n; b += k) {
  15782. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15783. quantize_row_q4_1_reference(src + b, y, k);
  15784. for (int i = 0; i < nb; i++) {
  15785. for (int j = 0; j < QK4_1; j += 2) {
  15786. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15787. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15788. hist[vi0]++;
  15789. hist[vi1]++;
  15790. }
  15791. }
  15792. }
  15793. return (n/QK4_1*sizeof(block_q4_1));
  15794. }
  15795. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15796. assert(k % QK5_0 == 0);
  15797. const int nb = k / QK5_0;
  15798. for (int b = 0; b < n; b += k) {
  15799. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15800. quantize_row_q5_0_reference(src + b, y, k);
  15801. for (int i = 0; i < nb; i++) {
  15802. uint32_t qh;
  15803. memcpy(&qh, &y[i].qh, sizeof(qh));
  15804. for (int j = 0; j < QK5_0; j += 2) {
  15805. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15806. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15807. // cast to 16 bins
  15808. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15809. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15810. hist[vi0]++;
  15811. hist[vi1]++;
  15812. }
  15813. }
  15814. }
  15815. return (n/QK5_0*sizeof(block_q5_0));
  15816. }
  15817. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15818. assert(k % QK5_1 == 0);
  15819. const int nb = k / QK5_1;
  15820. for (int b = 0; b < n; b += k) {
  15821. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15822. quantize_row_q5_1_reference(src + b, y, k);
  15823. for (int i = 0; i < nb; i++) {
  15824. uint32_t qh;
  15825. memcpy(&qh, &y[i].qh, sizeof(qh));
  15826. for (int j = 0; j < QK5_1; j += 2) {
  15827. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15828. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15829. // cast to 16 bins
  15830. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15831. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15832. hist[vi0]++;
  15833. hist[vi1]++;
  15834. }
  15835. }
  15836. }
  15837. return (n/QK5_1*sizeof(block_q5_1));
  15838. }
  15839. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15840. assert(k % QK8_0 == 0);
  15841. const int nb = k / QK8_0;
  15842. for (int b = 0; b < n; b += k) {
  15843. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15844. quantize_row_q8_0_reference(src + b, y, k);
  15845. for (int i = 0; i < nb; i++) {
  15846. for (int j = 0; j < QK8_0; ++j) {
  15847. const int8_t vi = y[i].qs[j];
  15848. hist[vi/16 + 8]++;
  15849. }
  15850. }
  15851. }
  15852. return (n/QK8_0*sizeof(block_q8_0));
  15853. }
  15854. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15855. size_t result = 0;
  15856. switch (type) {
  15857. case GGML_TYPE_Q4_0:
  15858. {
  15859. GGML_ASSERT(start % QK4_0 == 0);
  15860. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15861. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15862. } break;
  15863. case GGML_TYPE_Q4_1:
  15864. {
  15865. GGML_ASSERT(start % QK4_1 == 0);
  15866. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15867. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15868. } break;
  15869. case GGML_TYPE_Q5_0:
  15870. {
  15871. GGML_ASSERT(start % QK5_0 == 0);
  15872. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15873. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15874. } break;
  15875. case GGML_TYPE_Q5_1:
  15876. {
  15877. GGML_ASSERT(start % QK5_1 == 0);
  15878. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15879. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15880. } break;
  15881. case GGML_TYPE_Q8_0:
  15882. {
  15883. GGML_ASSERT(start % QK8_0 == 0);
  15884. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15885. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15886. } break;
  15887. #ifdef GGML_USE_K_QUANTS
  15888. case GGML_TYPE_Q2_K:
  15889. {
  15890. GGML_ASSERT(start % QK_K == 0);
  15891. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15892. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15893. } break;
  15894. case GGML_TYPE_Q3_K:
  15895. {
  15896. GGML_ASSERT(start % QK_K == 0);
  15897. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15898. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15899. } break;
  15900. case GGML_TYPE_Q4_K:
  15901. {
  15902. GGML_ASSERT(start % QK_K == 0);
  15903. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15904. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15905. } break;
  15906. case GGML_TYPE_Q5_K:
  15907. {
  15908. GGML_ASSERT(start % QK_K == 0);
  15909. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15910. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15911. } break;
  15912. case GGML_TYPE_Q6_K:
  15913. {
  15914. GGML_ASSERT(start % QK_K == 0);
  15915. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15916. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15917. } break;
  15918. #endif
  15919. case GGML_TYPE_F16:
  15920. {
  15921. int elemsize = sizeof(ggml_fp16_t);
  15922. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15923. result = n * elemsize;
  15924. } break;
  15925. case GGML_TYPE_F32:
  15926. {
  15927. int elemsize = sizeof(float);
  15928. result = n * elemsize;
  15929. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15930. } break;
  15931. default:
  15932. assert(false);
  15933. }
  15934. return result;
  15935. }
  15936. ////////////////////////////////////////////////////////////////////////////////
  15937. struct gguf_str {
  15938. uint64_t n; // GGUFv2
  15939. char * data;
  15940. };
  15941. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15942. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15943. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15944. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15945. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15946. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15947. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15948. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15949. [GGUF_TYPE_BOOL] = sizeof(bool),
  15950. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15951. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15952. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15953. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15954. [GGUF_TYPE_ARRAY] = 0, // undefined
  15955. };
  15956. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15957. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15958. [GGUF_TYPE_UINT8] = "u8",
  15959. [GGUF_TYPE_INT8] = "i8",
  15960. [GGUF_TYPE_UINT16] = "u16",
  15961. [GGUF_TYPE_INT16] = "i16",
  15962. [GGUF_TYPE_UINT32] = "u32",
  15963. [GGUF_TYPE_INT32] = "i32",
  15964. [GGUF_TYPE_FLOAT32] = "f32",
  15965. [GGUF_TYPE_BOOL] = "bool",
  15966. [GGUF_TYPE_STRING] = "str",
  15967. [GGUF_TYPE_ARRAY] = "arr",
  15968. [GGUF_TYPE_UINT64] = "u64",
  15969. [GGUF_TYPE_INT64] = "i64",
  15970. [GGUF_TYPE_FLOAT64] = "f64",
  15971. };
  15972. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15973. union gguf_value {
  15974. uint8_t uint8;
  15975. int8_t int8;
  15976. uint16_t uint16;
  15977. int16_t int16;
  15978. uint32_t uint32;
  15979. int32_t int32;
  15980. float float32;
  15981. uint64_t uint64;
  15982. int64_t int64;
  15983. double float64;
  15984. bool bool_;
  15985. struct gguf_str str;
  15986. struct {
  15987. enum gguf_type type;
  15988. uint64_t n; // GGUFv2
  15989. void * data;
  15990. } arr;
  15991. };
  15992. struct gguf_kv {
  15993. struct gguf_str key;
  15994. enum gguf_type type;
  15995. union gguf_value value;
  15996. };
  15997. struct gguf_header {
  15998. uint32_t magic;
  15999. uint32_t version;
  16000. uint64_t n_tensors; // GGUFv2
  16001. uint64_t n_kv; // GGUFv2
  16002. };
  16003. struct gguf_tensor_info {
  16004. struct gguf_str name;
  16005. uint32_t n_dims;
  16006. uint64_t ne[GGML_MAX_DIMS];
  16007. enum ggml_type type;
  16008. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16009. // for writing API
  16010. const void * data;
  16011. size_t size;
  16012. };
  16013. struct gguf_context {
  16014. struct gguf_header header;
  16015. struct gguf_kv * kv;
  16016. struct gguf_tensor_info * infos;
  16017. size_t alignment;
  16018. size_t offset; // offset of `data` from beginning of file
  16019. size_t size; // size of `data` in bytes
  16020. //uint8_t * padding;
  16021. void * data;
  16022. };
  16023. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16024. const size_t n = fread(dst, 1, size, file);
  16025. *offset += n;
  16026. return n == size;
  16027. }
  16028. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16029. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16030. p->n = 0;
  16031. p->data = NULL;
  16032. bool ok = true;
  16033. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16034. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16035. return ok;
  16036. }
  16037. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16038. p->n = 0;
  16039. p->data = NULL;
  16040. bool ok = true;
  16041. uint32_t n = 0;
  16042. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16043. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16044. return ok;
  16045. }
  16046. struct gguf_context * gguf_init_empty(void) {
  16047. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16048. ctx->header.magic = GGUF_MAGIC;
  16049. ctx->header.version = GGUF_VERSION;
  16050. ctx->header.n_tensors = 0;
  16051. ctx->header.n_kv = 0;
  16052. ctx->kv = NULL;
  16053. ctx->infos = NULL;
  16054. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16055. ctx->offset = 0;
  16056. ctx->size = 0;
  16057. ctx->data = NULL;
  16058. return ctx;
  16059. }
  16060. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16061. FILE * file = fopen(fname, "rb");
  16062. if (!file) {
  16063. return NULL;
  16064. }
  16065. // offset from start of file
  16066. size_t offset = 0;
  16067. uint32_t magic = 0;
  16068. // check the magic before making allocations
  16069. {
  16070. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16071. if (magic != GGUF_MAGIC) {
  16072. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16073. fclose(file);
  16074. return NULL;
  16075. }
  16076. }
  16077. bool ok = true;
  16078. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16079. // read the header
  16080. {
  16081. ctx->header.magic = magic;
  16082. ctx->kv = NULL;
  16083. ctx->infos = NULL;
  16084. ctx->data = NULL;
  16085. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16086. if (ctx->header.version == 1) {
  16087. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16088. uint32_t n_tensors = 0;
  16089. uint32_t n_kv = 0;
  16090. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16091. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16092. ctx->header.n_tensors = n_tensors;
  16093. ctx->header.n_kv = n_kv;
  16094. } else {
  16095. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16096. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16097. }
  16098. if (!ok) {
  16099. fprintf(stderr, "%s: failed to read header\n", __func__);
  16100. fclose(file);
  16101. gguf_free(ctx);
  16102. return NULL;
  16103. }
  16104. }
  16105. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16106. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16107. if (ctx->header.version == 1) {
  16108. gguf_fread_str = gguf_fread_str_v1;
  16109. }
  16110. // read the kv pairs
  16111. {
  16112. ctx->kv = GGML_ALIGNED_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16113. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16114. struct gguf_kv * kv = &ctx->kv[i];
  16115. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16116. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16117. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16118. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16119. switch (kv->type) {
  16120. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16121. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16122. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16123. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16124. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16125. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16126. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16127. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16128. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16129. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16130. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16131. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16132. case GGUF_TYPE_ARRAY:
  16133. {
  16134. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16135. if (ctx->header.version == 1) {
  16136. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16137. uint32_t n = 0;
  16138. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16139. kv->value.arr.n = n;
  16140. } else {
  16141. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16142. }
  16143. switch (kv->value.arr.type) {
  16144. case GGUF_TYPE_UINT8:
  16145. case GGUF_TYPE_INT8:
  16146. case GGUF_TYPE_UINT16:
  16147. case GGUF_TYPE_INT16:
  16148. case GGUF_TYPE_UINT32:
  16149. case GGUF_TYPE_INT32:
  16150. case GGUF_TYPE_FLOAT32:
  16151. case GGUF_TYPE_UINT64:
  16152. case GGUF_TYPE_INT64:
  16153. case GGUF_TYPE_FLOAT64:
  16154. case GGUF_TYPE_BOOL:
  16155. {
  16156. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16157. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16158. } break;
  16159. case GGUF_TYPE_STRING:
  16160. {
  16161. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16162. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16163. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16164. }
  16165. } break;
  16166. case GGUF_TYPE_ARRAY:
  16167. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16168. };
  16169. } break;
  16170. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16171. };
  16172. if (!ok) {
  16173. break;
  16174. }
  16175. }
  16176. if (!ok) {
  16177. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16178. fclose(file);
  16179. gguf_free(ctx);
  16180. return NULL;
  16181. }
  16182. }
  16183. // read the tensor infos
  16184. {
  16185. ctx->infos = GGML_ALIGNED_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16186. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16187. struct gguf_tensor_info * info = &ctx->infos[i];
  16188. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16189. info->ne[j] = 1;
  16190. }
  16191. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16192. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16193. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16194. if (ctx->header.version == 1) {
  16195. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16196. uint32_t t = 0;
  16197. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16198. info->ne[j] = t;
  16199. } else {
  16200. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16201. }
  16202. }
  16203. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16204. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16205. if (!ok) {
  16206. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16207. fclose(file);
  16208. gguf_free(ctx);
  16209. return NULL;
  16210. }
  16211. }
  16212. }
  16213. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16214. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16215. if (alignment_idx != -1) {
  16216. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16217. }
  16218. // we require the data section to be aligned, so take into account any padding
  16219. {
  16220. const size_t offset_pad = offset % ctx->alignment;
  16221. if (offset_pad != 0) {
  16222. offset += ctx->alignment - offset_pad;
  16223. fseek(file, offset, SEEK_SET);
  16224. }
  16225. }
  16226. // store the current file offset - this is where the data section starts
  16227. ctx->offset = offset;
  16228. // compute the total size of the data section, taking into account the alignment
  16229. {
  16230. ctx->size = 0;
  16231. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16232. struct gguf_tensor_info * info = &ctx->infos[i];
  16233. const int64_t ne =
  16234. (int64_t) info->ne[0] *
  16235. (int64_t) info->ne[1] *
  16236. (int64_t) info->ne[2] *
  16237. (int64_t) info->ne[3];
  16238. if (ne % ggml_blck_size(info->type) != 0) {
  16239. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16240. __func__, info->name.data, ne, ggml_blck_size(info->type));
  16241. fclose(file);
  16242. gguf_free(ctx);
  16243. return NULL;
  16244. }
  16245. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  16246. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16247. }
  16248. }
  16249. // load the tensor data only if requested
  16250. if (params.ctx != NULL) {
  16251. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16252. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16253. // the ggml_tensor structs to the appropriate locations in the binary blob
  16254. // compute the exact size needed for the new ggml_context
  16255. const size_t mem_size =
  16256. params.no_alloc ?
  16257. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16258. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16259. struct ggml_init_params pdata = {
  16260. .mem_size = mem_size,
  16261. .mem_buffer = NULL,
  16262. .no_alloc = params.no_alloc,
  16263. };
  16264. *params.ctx = ggml_init(pdata);
  16265. struct ggml_context * ctx_data = *params.ctx;
  16266. struct ggml_tensor * data = NULL;
  16267. if (params.no_alloc == false) {
  16268. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16269. ok = ok && data != NULL;
  16270. // read the binary blob with the tensor data
  16271. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16272. if (!ok) {
  16273. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16274. fclose(file);
  16275. ggml_free(ctx_data);
  16276. gguf_free(ctx);
  16277. return NULL;
  16278. }
  16279. ctx->data = data->data;
  16280. }
  16281. ggml_set_no_alloc(ctx_data, true);
  16282. // create the tensors
  16283. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16284. const int64_t ne[GGML_MAX_DIMS] = {
  16285. ctx->infos[i].ne[0],
  16286. ctx->infos[i].ne[1],
  16287. ctx->infos[i].ne[2],
  16288. ctx->infos[i].ne[3],
  16289. };
  16290. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16291. ok = ok && cur != NULL;
  16292. ggml_set_name(cur, ctx->infos[i].name.data);
  16293. if (!ok) {
  16294. break;
  16295. }
  16296. // point the data member to the appropriate location in the binary blob using the tensor infos
  16297. if (params.no_alloc == false) {
  16298. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16299. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16300. }
  16301. }
  16302. if (!ok) {
  16303. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16304. fclose(file);
  16305. ggml_free(ctx_data);
  16306. gguf_free(ctx);
  16307. return NULL;
  16308. }
  16309. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16310. }
  16311. fclose(file);
  16312. return ctx;
  16313. }
  16314. void gguf_free(struct gguf_context * ctx) {
  16315. if (ctx == NULL) {
  16316. return;
  16317. }
  16318. if (ctx->kv) {
  16319. // free string memory - not great..
  16320. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16321. struct gguf_kv * kv = &ctx->kv[i];
  16322. if (kv->key.data) {
  16323. free(kv->key.data);
  16324. }
  16325. if (kv->type == GGUF_TYPE_STRING) {
  16326. if (kv->value.str.data) {
  16327. free(kv->value.str.data);
  16328. }
  16329. }
  16330. if (kv->type == GGUF_TYPE_ARRAY) {
  16331. if (kv->value.arr.data) {
  16332. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16333. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16334. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16335. if (str->data) {
  16336. free(str->data);
  16337. }
  16338. }
  16339. }
  16340. free(kv->value.arr.data);
  16341. }
  16342. }
  16343. }
  16344. GGML_ALIGNED_FREE(ctx->kv);
  16345. }
  16346. if (ctx->infos) {
  16347. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16348. struct gguf_tensor_info * info = &ctx->infos[i];
  16349. if (info->name.data) {
  16350. free(info->name.data);
  16351. }
  16352. }
  16353. GGML_ALIGNED_FREE(ctx->infos);
  16354. }
  16355. GGML_ALIGNED_FREE(ctx);
  16356. }
  16357. const char * gguf_type_name(enum gguf_type type) {
  16358. return GGUF_TYPE_NAME[type];
  16359. }
  16360. int gguf_get_version(struct gguf_context * ctx) {
  16361. return ctx->header.version;
  16362. }
  16363. size_t gguf_get_alignment(struct gguf_context * ctx) {
  16364. return ctx->alignment;
  16365. }
  16366. size_t gguf_get_data_offset(struct gguf_context * ctx) {
  16367. return ctx->offset;
  16368. }
  16369. void * gguf_get_data(struct gguf_context * ctx) {
  16370. return ctx->data;
  16371. }
  16372. int gguf_get_n_kv(struct gguf_context * ctx) {
  16373. return ctx->header.n_kv;
  16374. }
  16375. int gguf_find_key(struct gguf_context * ctx, const char * key) {
  16376. // return -1 if key not found
  16377. int keyfound = -1;
  16378. const int n_kv = gguf_get_n_kv(ctx);
  16379. for (int i = 0; i < n_kv; ++i) {
  16380. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16381. keyfound = i;
  16382. break;
  16383. }
  16384. }
  16385. return keyfound;
  16386. }
  16387. const char * gguf_get_key(struct gguf_context * ctx, int i) {
  16388. return ctx->kv[i].key.data;
  16389. }
  16390. enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) {
  16391. return ctx->kv[i].type;
  16392. }
  16393. enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) {
  16394. return ctx->kv[i].value.arr.type;
  16395. }
  16396. const void * gguf_get_arr_data(struct gguf_context * ctx, int i) {
  16397. return ctx->kv[i].value.arr.data;
  16398. }
  16399. const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) {
  16400. struct gguf_kv * kv = &ctx->kv[key_id];
  16401. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16402. return str->data;
  16403. }
  16404. int gguf_get_arr_n(struct gguf_context * ctx, int i) {
  16405. return ctx->kv[i].value.arr.n;
  16406. }
  16407. uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
  16408. return ctx->kv[i].value.uint8;
  16409. }
  16410. int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
  16411. return ctx->kv[i].value.int8;
  16412. }
  16413. uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
  16414. return ctx->kv[i].value.uint16;
  16415. }
  16416. int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
  16417. return ctx->kv[i].value.int16;
  16418. }
  16419. uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
  16420. return ctx->kv[i].value.uint32;
  16421. }
  16422. int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
  16423. return ctx->kv[i].value.int32;
  16424. }
  16425. float gguf_get_val_f32(struct gguf_context * ctx, int i) {
  16426. return ctx->kv[i].value.float32;
  16427. }
  16428. uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) {
  16429. return ctx->kv[i].value.uint64;
  16430. }
  16431. int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) {
  16432. return ctx->kv[i].value.int64;
  16433. }
  16434. double gguf_get_val_f64(struct gguf_context * ctx, int i) {
  16435. return ctx->kv[i].value.float64;
  16436. }
  16437. bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
  16438. return ctx->kv[i].value.bool_;
  16439. }
  16440. const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
  16441. return ctx->kv[i].value.str.data;
  16442. }
  16443. int gguf_get_n_tensors(struct gguf_context * ctx) {
  16444. return ctx->header.n_tensors;
  16445. }
  16446. int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
  16447. // return -1 if tensor not found
  16448. int tensorfound = -1;
  16449. const int n_tensors = gguf_get_n_tensors(ctx);
  16450. for (int i = 0; i < n_tensors; ++i) {
  16451. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16452. tensorfound = i;
  16453. break;
  16454. }
  16455. }
  16456. return tensorfound;
  16457. }
  16458. size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
  16459. return ctx->infos[i].offset;
  16460. }
  16461. char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
  16462. return ctx->infos[i].name.data;
  16463. }
  16464. // returns the index
  16465. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16466. const int idx = gguf_find_key(ctx, key);
  16467. if (idx >= 0) {
  16468. return idx;
  16469. }
  16470. const int n_kv = gguf_get_n_kv(ctx);
  16471. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16472. ctx->kv[n_kv].key.n = strlen(key);
  16473. ctx->kv[n_kv].key.data = strdup(key);
  16474. ctx->header.n_kv++;
  16475. return n_kv;
  16476. }
  16477. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16478. const int idx = gguf_get_or_add_key(ctx, key);
  16479. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16480. ctx->kv[idx].value.uint8 = val;
  16481. }
  16482. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16483. const int idx = gguf_get_or_add_key(ctx, key);
  16484. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16485. ctx->kv[idx].value.int8 = val;
  16486. }
  16487. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16488. const int idx = gguf_get_or_add_key(ctx, key);
  16489. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16490. ctx->kv[idx].value.uint16 = val;
  16491. }
  16492. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16493. const int idx = gguf_get_or_add_key(ctx, key);
  16494. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16495. ctx->kv[idx].value.int16 = val;
  16496. }
  16497. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16498. const int idx = gguf_get_or_add_key(ctx, key);
  16499. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16500. ctx->kv[idx].value.uint32 = val;
  16501. }
  16502. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16503. const int idx = gguf_get_or_add_key(ctx, key);
  16504. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16505. ctx->kv[idx].value.int32 = val;
  16506. }
  16507. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16508. const int idx = gguf_get_or_add_key(ctx, key);
  16509. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16510. ctx->kv[idx].value.float32 = val;
  16511. }
  16512. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16513. const int idx = gguf_get_or_add_key(ctx, key);
  16514. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16515. ctx->kv[idx].value.uint64 = val;
  16516. }
  16517. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16518. const int idx = gguf_get_or_add_key(ctx, key);
  16519. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16520. ctx->kv[idx].value.int64 = val;
  16521. }
  16522. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16523. const int idx = gguf_get_or_add_key(ctx, key);
  16524. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16525. ctx->kv[idx].value.float64 = val;
  16526. }
  16527. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16528. const int idx = gguf_get_or_add_key(ctx, key);
  16529. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16530. ctx->kv[idx].value.bool_ = val;
  16531. }
  16532. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16533. const int idx = gguf_get_or_add_key(ctx, key);
  16534. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16535. ctx->kv[idx].value.str.n = strlen(val);
  16536. ctx->kv[idx].value.str.data = strdup(val);
  16537. }
  16538. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16539. const int idx = gguf_get_or_add_key(ctx, key);
  16540. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16541. ctx->kv[idx].value.arr.type = type;
  16542. ctx->kv[idx].value.arr.n = n;
  16543. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16544. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16545. }
  16546. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16547. const int idx = gguf_get_or_add_key(ctx, key);
  16548. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16549. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16550. ctx->kv[idx].value.arr.n = n;
  16551. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16552. for (int i = 0; i < n; i++) {
  16553. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16554. str->n = strlen(data[i]);
  16555. str->data = strdup(data[i]);
  16556. }
  16557. }
  16558. // set or add KV pairs from another context
  16559. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16560. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16561. switch (src->kv[i].type) {
  16562. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16563. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16564. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16565. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16566. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16567. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16568. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16569. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16570. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16571. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16572. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16573. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16574. case GGUF_TYPE_ARRAY:
  16575. {
  16576. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16577. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16578. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16579. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16580. }
  16581. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16582. free(data);
  16583. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16584. GGML_ASSERT(false && "nested arrays not supported");
  16585. } else {
  16586. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16587. }
  16588. } break;
  16589. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16590. }
  16591. }
  16592. }
  16593. void gguf_add_tensor(
  16594. struct gguf_context * ctx,
  16595. const struct ggml_tensor * tensor) {
  16596. const int idx = ctx->header.n_tensors;
  16597. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16598. ctx->infos[idx].name.n = strlen(tensor->name);
  16599. ctx->infos[idx].name.data = strdup(tensor->name);
  16600. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16601. ctx->infos[idx].ne[i] = 1;
  16602. }
  16603. ctx->infos[idx].n_dims = tensor->n_dims;
  16604. for (int i = 0; i < tensor->n_dims; i++) {
  16605. ctx->infos[idx].ne[i] = tensor->ne[i];
  16606. }
  16607. ctx->infos[idx].type = tensor->type;
  16608. ctx->infos[idx].offset = 0;
  16609. ctx->infos[idx].data = tensor->data;
  16610. ctx->infos[idx].size = ggml_nbytes(tensor);
  16611. if (ctx->header.n_tensors > 0) {
  16612. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16613. }
  16614. ctx->header.n_tensors++;
  16615. }
  16616. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16617. const int idx = gguf_find_tensor(ctx, name);
  16618. if (idx < 0) {
  16619. GGML_ASSERT(false && "tensor not found");
  16620. }
  16621. ctx->infos[idx].type = type;
  16622. }
  16623. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16624. const int idx = gguf_find_tensor(ctx, name);
  16625. if (idx < 0) {
  16626. GGML_ASSERT(false && "tensor not found");
  16627. }
  16628. ctx->infos[idx].data = data;
  16629. ctx->infos[idx].size = size;
  16630. // update offsets
  16631. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16632. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16633. }
  16634. }
  16635. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16636. // fwrite(&val->n, sizeof(val->n), 1, file);
  16637. // fwrite(val->data, sizeof(char), val->n, file);
  16638. //}
  16639. //
  16640. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16641. // fwrite(val, sizeof(char), size, file);
  16642. //}
  16643. struct gguf_buf {
  16644. void * data;
  16645. size_t size;
  16646. size_t offset;
  16647. };
  16648. static struct gguf_buf gguf_buf_init(size_t size) {
  16649. struct gguf_buf buf = {
  16650. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16651. /*buf.size =*/ size,
  16652. /*buf.offset =*/ 0,
  16653. };
  16654. return buf;
  16655. }
  16656. static void gguf_buf_free(struct gguf_buf buf) {
  16657. if (buf.data) {
  16658. free(buf.data);
  16659. }
  16660. }
  16661. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16662. if (buf->offset + size > buf->size) {
  16663. buf->size = 1.5*(buf->offset + size);
  16664. if (buf->data) {
  16665. buf->data = realloc(buf->data, buf->size);
  16666. }
  16667. }
  16668. }
  16669. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16670. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16671. if (buf->data) {
  16672. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16673. }
  16674. buf->offset += sizeof(val->n);
  16675. if (buf->data) {
  16676. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16677. }
  16678. buf->offset += val->n;
  16679. }
  16680. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16681. gguf_buf_grow(buf, el_size);
  16682. if (buf->data) {
  16683. memcpy((char *) buf->data + buf->offset, val, el_size);
  16684. }
  16685. buf->offset += el_size;
  16686. }
  16687. static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16688. // write header
  16689. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16690. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16691. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16692. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16693. // write key-value pairs
  16694. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16695. struct gguf_kv * kv = &ctx->kv[i];
  16696. gguf_bwrite_str(buf, &kv->key);
  16697. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16698. switch (kv->type) {
  16699. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16700. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16701. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16702. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16703. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16704. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16705. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16706. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16707. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16708. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16709. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16710. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16711. case GGUF_TYPE_ARRAY:
  16712. {
  16713. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16714. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16715. switch (kv->value.arr.type) {
  16716. case GGUF_TYPE_UINT8:
  16717. case GGUF_TYPE_INT8:
  16718. case GGUF_TYPE_UINT16:
  16719. case GGUF_TYPE_INT16:
  16720. case GGUF_TYPE_UINT32:
  16721. case GGUF_TYPE_INT32:
  16722. case GGUF_TYPE_FLOAT32:
  16723. case GGUF_TYPE_UINT64:
  16724. case GGUF_TYPE_INT64:
  16725. case GGUF_TYPE_FLOAT64:
  16726. case GGUF_TYPE_BOOL:
  16727. {
  16728. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16729. } break;
  16730. case GGUF_TYPE_STRING:
  16731. {
  16732. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16733. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16734. }
  16735. } break;
  16736. case GGUF_TYPE_ARRAY:
  16737. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16738. };
  16739. } break;
  16740. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16741. };
  16742. }
  16743. // write tensor infos
  16744. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16745. struct gguf_tensor_info * info = &ctx->infos[i];
  16746. gguf_bwrite_str(buf, &info->name);
  16747. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16748. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16749. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16750. }
  16751. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16752. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16753. }
  16754. // we require the data section to be aligned, so take into account any padding
  16755. {
  16756. const size_t offset = buf->offset;
  16757. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16758. if (offset_pad != offset) {
  16759. uint8_t pad = 0;
  16760. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16761. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16762. }
  16763. }
  16764. }
  16765. if (only_meta) {
  16766. return;
  16767. }
  16768. size_t offset = 0;
  16769. // write tensor data
  16770. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16771. struct gguf_tensor_info * info = &ctx->infos[i];
  16772. const size_t size = info->size;
  16773. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16774. gguf_bwrite_el(buf, info->data, size);
  16775. if (size_pad != size) {
  16776. uint8_t pad = 0;
  16777. for (size_t j = 0; j < size_pad - size; ++j) {
  16778. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16779. }
  16780. }
  16781. GGML_ASSERT(offset == info->offset);
  16782. offset += size_pad;
  16783. }
  16784. }
  16785. void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) {
  16786. FILE * file = fopen(fname, "wb");
  16787. if (!file) {
  16788. GGML_ASSERT(false && "failed to open file for writing");
  16789. }
  16790. struct gguf_buf buf = gguf_buf_init(16*1024);
  16791. gguf_write_to_buf(ctx, &buf, only_meta);
  16792. fwrite(buf.data, 1, buf.offset, file);
  16793. gguf_buf_free(buf);
  16794. fclose(file);
  16795. }
  16796. size_t gguf_get_meta_size(struct gguf_context * ctx) {
  16797. // no allocs - only compute size
  16798. struct gguf_buf buf = gguf_buf_init(0);
  16799. gguf_write_to_buf(ctx, &buf, true);
  16800. return buf.offset;
  16801. }
  16802. void gguf_get_meta_data(struct gguf_context * ctx, void * data) {
  16803. struct gguf_buf buf = gguf_buf_init(16*1024);
  16804. gguf_write_to_buf(ctx, &buf, true);
  16805. memcpy(data, buf.data, buf.offset);
  16806. gguf_buf_free(buf);
  16807. }
  16808. ////////////////////////////////////////////////////////////////////////////////
  16809. int ggml_cpu_has_avx(void) {
  16810. #if defined(__AVX__)
  16811. return 1;
  16812. #else
  16813. return 0;
  16814. #endif
  16815. }
  16816. int ggml_cpu_has_avx2(void) {
  16817. #if defined(__AVX2__)
  16818. return 1;
  16819. #else
  16820. return 0;
  16821. #endif
  16822. }
  16823. int ggml_cpu_has_avx512(void) {
  16824. #if defined(__AVX512F__)
  16825. return 1;
  16826. #else
  16827. return 0;
  16828. #endif
  16829. }
  16830. int ggml_cpu_has_avx512_vbmi(void) {
  16831. #if defined(__AVX512VBMI__)
  16832. return 1;
  16833. #else
  16834. return 0;
  16835. #endif
  16836. }
  16837. int ggml_cpu_has_avx512_vnni(void) {
  16838. #if defined(__AVX512VNNI__)
  16839. return 1;
  16840. #else
  16841. return 0;
  16842. #endif
  16843. }
  16844. int ggml_cpu_has_fma(void) {
  16845. #if defined(__FMA__)
  16846. return 1;
  16847. #else
  16848. return 0;
  16849. #endif
  16850. }
  16851. int ggml_cpu_has_neon(void) {
  16852. #if defined(__ARM_NEON)
  16853. return 1;
  16854. #else
  16855. return 0;
  16856. #endif
  16857. }
  16858. int ggml_cpu_has_arm_fma(void) {
  16859. #if defined(__ARM_FEATURE_FMA)
  16860. return 1;
  16861. #else
  16862. return 0;
  16863. #endif
  16864. }
  16865. int ggml_cpu_has_f16c(void) {
  16866. #if defined(__F16C__)
  16867. return 1;
  16868. #else
  16869. return 0;
  16870. #endif
  16871. }
  16872. int ggml_cpu_has_fp16_va(void) {
  16873. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16874. return 1;
  16875. #else
  16876. return 0;
  16877. #endif
  16878. }
  16879. int ggml_cpu_has_wasm_simd(void) {
  16880. #if defined(__wasm_simd128__)
  16881. return 1;
  16882. #else
  16883. return 0;
  16884. #endif
  16885. }
  16886. int ggml_cpu_has_blas(void) {
  16887. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16888. return 1;
  16889. #else
  16890. return 0;
  16891. #endif
  16892. }
  16893. int ggml_cpu_has_cublas(void) {
  16894. #if defined(GGML_USE_CUBLAS)
  16895. return 1;
  16896. #else
  16897. return 0;
  16898. #endif
  16899. }
  16900. int ggml_cpu_has_clblast(void) {
  16901. #if defined(GGML_USE_CLBLAST)
  16902. return 1;
  16903. #else
  16904. return 0;
  16905. #endif
  16906. }
  16907. int ggml_cpu_has_gpublas(void) {
  16908. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16909. }
  16910. int ggml_cpu_has_sse3(void) {
  16911. #if defined(__SSE3__)
  16912. return 1;
  16913. #else
  16914. return 0;
  16915. #endif
  16916. }
  16917. int ggml_cpu_has_ssse3(void) {
  16918. #if defined(__SSSE3__)
  16919. return 1;
  16920. #else
  16921. return 0;
  16922. #endif
  16923. }
  16924. int ggml_cpu_has_vsx(void) {
  16925. #if defined(__POWER9_VECTOR__)
  16926. return 1;
  16927. #else
  16928. return 0;
  16929. #endif
  16930. }
  16931. ////////////////////////////////////////////////////////////////////////////////