ggml.c 765 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409234102341123412234132341423415234162341723418234192342023421234222342323424234252342623427234282342923430234312343223433234342343523436234372343823439234402344123442234432344423445234462344723448234492345023451
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-backend.h"
  4. #include "ggml-impl.h"
  5. #include "ggml-cpu-impl.h"
  6. #include "ggml-quants.h"
  7. #include "ggml.h"
  8. #include "ggml-aarch64.h"
  9. #if defined(_MSC_VER) || defined(__MINGW32__)
  10. #include <malloc.h> // using malloc.h with MSC/MINGW
  11. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  12. #include <alloca.h>
  13. #endif
  14. #include <assert.h>
  15. #include <errno.h>
  16. #include <time.h>
  17. #include <math.h>
  18. #include <stdlib.h>
  19. #include <string.h>
  20. #include <stdint.h>
  21. #include <inttypes.h>
  22. #include <stdio.h>
  23. #include <float.h>
  24. #include <limits.h>
  25. #include <stdarg.h>
  26. #include <signal.h>
  27. #if defined(__gnu_linux__)
  28. #include <syscall.h>
  29. #endif
  30. #ifdef GGML_USE_OPENMP
  31. #include <omp.h>
  32. #endif
  33. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  34. #undef GGML_USE_LLAMAFILE
  35. #endif
  36. #ifdef GGML_USE_LLAMAFILE
  37. #include <llamafile/sgemm.h>
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. // disable POSIX deprecation warnings
  44. // these functions are never going away, anyway
  45. #pragma warning(disable: 4996)
  46. // unreachable code because of multiple instances of code after GGML_ABORT
  47. #pragma warning(disable: 4702)
  48. #endif
  49. // Note: once we move threading into a separate C++ file
  50. // will use std::hardware_destructive_interference_size instead of hardcoding it here
  51. // and we'll use C++ attribute syntax.
  52. #define GGML_CACHE_LINE 64
  53. #if defined(__clang__) || defined(__GNUC__)
  54. #define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE)))
  55. #endif
  56. #if defined(__has_feature)
  57. #if __has_feature(thread_sanitizer)
  58. #define GGML_TSAN_ENABLED 1
  59. #endif
  60. #else // __has_feature
  61. #if defined(__SANITIZE_THREAD__)
  62. #define GGML_TSAN_ENABLED 1
  63. #endif
  64. #endif // __has_feature
  65. #if defined(_WIN32)
  66. #define WIN32_LEAN_AND_MEAN
  67. #ifndef NOMINMAX
  68. #define NOMINMAX
  69. #endif
  70. #include <windows.h>
  71. #if !defined(__clang__)
  72. #define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE))
  73. typedef volatile LONG atomic_int;
  74. typedef atomic_int atomic_bool;
  75. typedef atomic_int atomic_flag;
  76. #define ATOMIC_FLAG_INIT 0
  77. typedef enum {
  78. memory_order_relaxed,
  79. memory_order_consume,
  80. memory_order_acquire,
  81. memory_order_release,
  82. memory_order_acq_rel,
  83. memory_order_seq_cst
  84. } memory_order;
  85. static void atomic_store(atomic_int * ptr, LONG val) {
  86. InterlockedExchange(ptr, val);
  87. }
  88. static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) {
  89. // TODO: add support for explicit memory order
  90. InterlockedExchange(ptr, val);
  91. }
  92. static LONG atomic_load(atomic_int * ptr) {
  93. return InterlockedCompareExchange(ptr, 0, 0);
  94. }
  95. static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) {
  96. // TODO: add support for explicit memory order
  97. return InterlockedCompareExchange(ptr, 0, 0);
  98. }
  99. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  100. return InterlockedExchangeAdd(ptr, inc);
  101. }
  102. static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) {
  103. // TODO: add support for explicit memory order
  104. return InterlockedExchangeAdd(ptr, inc);
  105. }
  106. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  107. return InterlockedExchange(ptr, 1);
  108. }
  109. static void atomic_flag_clear(atomic_flag * ptr) {
  110. InterlockedExchange(ptr, 0);
  111. }
  112. static void atomic_thread_fence(memory_order mo) {
  113. MemoryBarrier();
  114. }
  115. #else // clang
  116. #include <stdatomic.h>
  117. #endif
  118. typedef HANDLE pthread_t;
  119. typedef DWORD thread_ret_t;
  120. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  121. (void) unused;
  122. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  123. if (handle == NULL)
  124. {
  125. return EAGAIN;
  126. }
  127. *out = handle;
  128. return 0;
  129. }
  130. static int pthread_join(pthread_t thread, void * unused) {
  131. (void) unused;
  132. int ret = (int) WaitForSingleObject(thread, INFINITE);
  133. CloseHandle(thread);
  134. return ret;
  135. }
  136. static int sched_yield (void) {
  137. Sleep (0);
  138. return 0;
  139. }
  140. #else
  141. #include <pthread.h>
  142. #include <stdatomic.h>
  143. #include <sched.h>
  144. #if defined(__FreeBSD__)
  145. #include <pthread_np.h>
  146. #endif
  147. typedef void * thread_ret_t;
  148. #include <sys/types.h>
  149. #include <sys/stat.h>
  150. #include <unistd.h>
  151. #endif
  152. typedef pthread_t ggml_thread_t;
  153. #ifdef GGML_USE_CPU_HBM
  154. #include <hbwmalloc.h>
  155. #endif
  156. #if defined(__APPLE__)
  157. #include <unistd.h>
  158. #include <mach/mach.h>
  159. #include <TargetConditionals.h>
  160. #endif
  161. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  162. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  163. #include <sys/wait.h>
  164. #if defined(__ANDROID__)
  165. #include <unwind.h>
  166. #include <dlfcn.h>
  167. #include <stdio.h>
  168. struct backtrace_state {
  169. void ** current;
  170. void ** end;
  171. };
  172. static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
  173. struct backtrace_state * state = (struct backtrace_state *)arg;
  174. uintptr_t pc = _Unwind_GetIP(context);
  175. if (pc) {
  176. if (state->current == state->end) {
  177. return _URC_END_OF_STACK;
  178. } else {
  179. *state->current++ = (void*)pc;
  180. }
  181. }
  182. return _URC_NO_REASON;
  183. }
  184. static void ggml_print_backtrace_symbols(void) {
  185. const int max = 100;
  186. void* buffer[max];
  187. struct backtrace_state state = {buffer, buffer + max};
  188. _Unwind_Backtrace(unwind_callback, &state);
  189. int count = state.current - buffer;
  190. for (int idx = 0; idx < count; ++idx) {
  191. const void * addr = buffer[idx];
  192. const char * symbol = "";
  193. Dl_info info;
  194. if (dladdr(addr, &info) && info.dli_sname) {
  195. symbol = info.dli_sname;
  196. }
  197. fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
  198. }
  199. }
  200. #elif defined(__linux__) && defined(__GLIBC__)
  201. #include <execinfo.h>
  202. static void ggml_print_backtrace_symbols(void) {
  203. void * trace[100];
  204. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  205. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  206. }
  207. #else
  208. static void ggml_print_backtrace_symbols(void) {
  209. // platform not supported
  210. }
  211. #endif
  212. static void ggml_print_backtrace(void) {
  213. char attach[32];
  214. snprintf(attach, sizeof(attach), "attach %d", getpid());
  215. int pid = fork();
  216. if (pid == 0) {
  217. // try gdb
  218. execlp("gdb", "gdb", "--batch",
  219. "-ex", "set style enabled on",
  220. "-ex", attach,
  221. "-ex", "bt -frame-info source-and-location",
  222. "-ex", "detach",
  223. "-ex", "quit",
  224. (char *) NULL);
  225. // try lldb
  226. execlp("lldb", "lldb", "--batch",
  227. "-o", "bt",
  228. "-o", "quit",
  229. "-p", attach,
  230. (char *) NULL);
  231. exit(EXIT_FAILURE);
  232. } else {
  233. int wstatus;
  234. waitpid(pid, &wstatus, 0);
  235. if (WIFEXITED(wstatus)) {
  236. if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
  237. // gdb failed, fallback to backtrace_symbols
  238. ggml_print_backtrace_symbols();
  239. }
  240. }
  241. }
  242. }
  243. #else
  244. static void ggml_print_backtrace(void) {
  245. // platform not supported
  246. }
  247. #endif
  248. void ggml_abort(const char * file, int line, const char * fmt, ...) {
  249. fflush(stdout);
  250. fprintf(stderr, "%s:%d: ", file, line);
  251. va_list args;
  252. va_start(args, fmt);
  253. vfprintf(stderr, fmt, args);
  254. va_end(args);
  255. fprintf(stderr, "\n");
  256. ggml_print_backtrace();
  257. abort();
  258. }
  259. #define GGML_DEBUG 0
  260. #define GGML_GELU_FP16
  261. #define GGML_GELU_QUICK_FP16
  262. #define GGML_SOFT_MAX_UNROLL 4
  263. #define GGML_VEC_DOT_UNROLL 2
  264. #define GGML_VEC_MAD_UNROLL 32
  265. //
  266. // logging
  267. //
  268. struct ggml_logger_state {
  269. ggml_log_callback log_callback;
  270. void * log_callback_user_data;
  271. };
  272. static struct ggml_logger_state g_logger_state = {ggml_log_callback_default, NULL};
  273. static void ggml_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
  274. if (format == NULL) {
  275. return;
  276. }
  277. va_list args_copy;
  278. va_copy(args_copy, args);
  279. char buffer[128];
  280. int len = vsnprintf(buffer, 128, format, args);
  281. if (len < 128) {
  282. g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
  283. } else {
  284. char * buffer2 = (char *) calloc(len + 1, sizeof(char));
  285. vsnprintf(buffer2, len + 1, format, args_copy);
  286. buffer2[len] = 0;
  287. g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
  288. free(buffer2);
  289. }
  290. va_end(args_copy);
  291. }
  292. void ggml_log_internal(enum ggml_log_level level, const char * format, ...) {
  293. va_list args;
  294. va_start(args, format);
  295. ggml_log_internal_v(level, format, args);
  296. va_end(args);
  297. }
  298. void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
  299. (void) level;
  300. (void) user_data;
  301. fputs(text, stderr);
  302. fflush(stderr);
  303. }
  304. #if (GGML_DEBUG >= 1)
  305. #define GGML_PRINT_DEBUG(...) GGML_LOG_DEBUG(__VA_ARGS__)
  306. #else
  307. #define GGML_PRINT_DEBUG(...)
  308. #endif
  309. #if (GGML_DEBUG >= 5)
  310. #define GGML_PRINT_DEBUG_5(...) GGML_LOG_DEBUG(__VA_ARGS__)
  311. #else
  312. #define GGML_PRINT_DEBUG_5(...)
  313. #endif
  314. #if (GGML_DEBUG >= 10)
  315. #define GGML_PRINT_DEBUG_10(...) GGML_LOG_DEBUG(__VA_ARGS__)
  316. #else
  317. #define GGML_PRINT_DEBUG_10(...)
  318. #endif
  319. //
  320. // end of logging block
  321. //
  322. #ifdef GGML_USE_ACCELERATE
  323. // uncomment to use vDSP for soft max computation
  324. // note: not sure if it is actually faster
  325. //#define GGML_SOFT_MAX_ACCELERATE
  326. #endif
  327. void * ggml_aligned_malloc(size_t size) {
  328. #if defined(_MSC_VER) || defined(__MINGW32__)
  329. return _aligned_malloc(size, TENSOR_ALIGNMENT);
  330. #else
  331. if (size == 0) {
  332. GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  333. return NULL;
  334. }
  335. void * aligned_memory = NULL;
  336. #ifdef GGML_USE_CPU_HBM
  337. int result = hbw_posix_memalign(&aligned_memory, TENSOR_ALIGNMENT, size);
  338. #elif TARGET_OS_OSX
  339. kern_return_t alloc_status = vm_allocate((vm_map_t) mach_task_self(), (vm_address_t *) &aligned_memory, size, VM_FLAGS_ANYWHERE);
  340. int result = EFAULT;
  341. switch (alloc_status) {
  342. case KERN_SUCCESS:
  343. result = 0;
  344. break;
  345. case KERN_INVALID_ADDRESS:
  346. result = EINVAL;
  347. break;
  348. case KERN_NO_SPACE:
  349. result = ENOMEM;
  350. break;
  351. default:
  352. result = EFAULT;
  353. break;
  354. }
  355. #elif GGML_USE_METAL
  356. const long page_size = sysconf(_SC_PAGESIZE);
  357. int result = posix_memalign(&aligned_memory, MAX(TENSOR_ALIGNMENT, page_size), size);
  358. #else
  359. int result = posix_memalign(&aligned_memory, TENSOR_ALIGNMENT, size);
  360. #endif
  361. if (result != 0) {
  362. // Handle allocation failure
  363. const char *error_desc = "unknown allocation error";
  364. switch (result) {
  365. case EINVAL:
  366. error_desc = "invalid alignment value";
  367. break;
  368. case ENOMEM:
  369. error_desc = "insufficient memory";
  370. break;
  371. }
  372. GGML_LOG_ERROR("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  373. GGML_ABORT("fatal error");
  374. return NULL;
  375. }
  376. return aligned_memory;
  377. #endif
  378. }
  379. void ggml_aligned_free(void * ptr, size_t size) {
  380. GGML_UNUSED(size);
  381. #if defined(_MSC_VER) || defined(__MINGW32__)
  382. _aligned_free(ptr);
  383. #elif GGML_USE_CPU_HBM
  384. if (ptr != NULL) {
  385. hbw_free(ptr);
  386. }
  387. #elif TARGET_OS_OSX
  388. if (ptr != NULL) {
  389. vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ptr, size);
  390. }
  391. #else
  392. free(ptr);
  393. #endif
  394. }
  395. inline static void * ggml_malloc(size_t size) {
  396. if (size == 0) {
  397. GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  398. return NULL;
  399. }
  400. void * result = malloc(size);
  401. if (result == NULL) {
  402. GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  403. GGML_ABORT("fatal error");
  404. }
  405. return result;
  406. }
  407. // calloc
  408. inline static void * ggml_calloc(size_t num, size_t size) {
  409. if (num == 0 || size == 0) {
  410. GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  411. return NULL;
  412. }
  413. void * result = calloc(num, size);
  414. if (result == NULL) {
  415. GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  416. GGML_ABORT("fatal error");
  417. }
  418. return result;
  419. }
  420. #define GGML_MALLOC(size) ggml_malloc(size)
  421. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  422. #define GGML_FREE(ptr) free(ptr)
  423. #define UNUSED GGML_UNUSED
  424. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  425. #if defined(GGML_USE_ACCELERATE)
  426. #include <Accelerate/Accelerate.h>
  427. #endif
  428. // floating point type used to accumulate sums
  429. typedef double ggml_float;
  430. #undef MIN
  431. #undef MAX
  432. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  433. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  434. //
  435. // global data
  436. //
  437. // precomputed gelu table for f16 (128 KB)
  438. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  439. // precomputed quick gelu table for f16 (128 KB)
  440. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  441. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  442. float ggml_table_f32_f16[1 << 16];
  443. #if defined(__ARM_ARCH)
  444. struct ggml_arm_arch_features_type {
  445. int has_neon;
  446. int has_i8mm;
  447. int has_sve;
  448. int sve_cnt;
  449. } ggml_arm_arch_features = {-1, -1, -1, 0};
  450. #endif
  451. const char * ggml_status_to_string(enum ggml_status status) {
  452. switch (status) {
  453. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  454. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  455. case GGML_STATUS_SUCCESS: return "GGML status: success";
  456. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  457. }
  458. return "GGML status: unknown";
  459. }
  460. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  461. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  462. return GGML_FP16_TO_FP32(x);
  463. }
  464. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  465. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  466. return GGML_FP32_TO_FP16(x);
  467. }
  468. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  469. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  470. return GGML_BF16_TO_FP32(x); // it just left shifts
  471. }
  472. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  473. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  474. return GGML_FP32_TO_BF16(x);
  475. }
  476. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  477. for (int64_t i = 0; i < n; i++) {
  478. y[i] = GGML_FP16_TO_FP32(x[i]);
  479. }
  480. }
  481. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  482. int64_t i = 0;
  483. #if defined(__F16C__)
  484. for (; i + 7 < n; i += 8) {
  485. __m256 x_vec = _mm256_loadu_ps(x + i);
  486. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  487. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  488. }
  489. for(; i + 3 < n; i += 4) {
  490. __m128 x_vec = _mm_loadu_ps(x + i);
  491. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  492. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  493. }
  494. #endif
  495. for (; i < n; i++) {
  496. y[i] = GGML_FP32_TO_FP16(x[i]);
  497. }
  498. }
  499. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  500. int64_t i = 0;
  501. #if defined(__AVX512F__)
  502. for (; i + 16 <= n; i += 16) {
  503. _mm512_storeu_ps(y + i,
  504. _mm512_castsi512_ps(
  505. _mm512_slli_epi32(
  506. _mm512_cvtepu16_epi32(
  507. _mm256_loadu_si256(
  508. (const __m256i *)(x + i))),
  509. 16)));
  510. }
  511. #elif defined(__AVX2__)
  512. for (; i + 8 <= n; i += 8) {
  513. _mm256_storeu_ps(y + i,
  514. _mm256_castsi256_ps(
  515. _mm256_slli_epi32(
  516. _mm256_cvtepu16_epi32(
  517. _mm_loadu_si128(
  518. (const __m128i *)(x + i))),
  519. 16)));
  520. }
  521. #endif
  522. for (; i < n; i++) {
  523. y[i] = GGML_BF16_TO_FP32(x[i]);
  524. }
  525. }
  526. void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
  527. for (int i = 0; i < n; i++) {
  528. y[i] = ggml_compute_fp32_to_bf16(x[i]);
  529. }
  530. }
  531. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  532. int i = 0;
  533. #if defined(__AVX512BF16__)
  534. // subnormals are flushed to zero on this platform
  535. for (; i + 32 <= n; i += 32) {
  536. _mm512_storeu_si512(
  537. (__m512i *)(y + i),
  538. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  539. _mm512_loadu_ps(x + i))));
  540. }
  541. #endif
  542. for (; i < n; i++) {
  543. y[i] = GGML_FP32_TO_BF16(x[i]);
  544. }
  545. }
  546. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  547. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  548. }
  549. //
  550. // timing
  551. //
  552. #if defined(_MSC_VER) || defined(__MINGW32__)
  553. static int64_t timer_freq, timer_start;
  554. void ggml_time_init(void) {
  555. LARGE_INTEGER t;
  556. QueryPerformanceFrequency(&t);
  557. timer_freq = t.QuadPart;
  558. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  559. // and the uptime is high enough.
  560. // We subtract the program start time to reduce the likelihood of that happening.
  561. QueryPerformanceCounter(&t);
  562. timer_start = t.QuadPart;
  563. }
  564. int64_t ggml_time_ms(void) {
  565. LARGE_INTEGER t;
  566. QueryPerformanceCounter(&t);
  567. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  568. }
  569. int64_t ggml_time_us(void) {
  570. LARGE_INTEGER t;
  571. QueryPerformanceCounter(&t);
  572. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  573. }
  574. #else
  575. void ggml_time_init(void) {}
  576. int64_t ggml_time_ms(void) {
  577. struct timespec ts;
  578. clock_gettime(CLOCK_MONOTONIC, &ts);
  579. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  580. }
  581. int64_t ggml_time_us(void) {
  582. struct timespec ts;
  583. clock_gettime(CLOCK_MONOTONIC, &ts);
  584. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  585. }
  586. #endif
  587. int64_t ggml_cycles(void) {
  588. return clock();
  589. }
  590. int64_t ggml_cycles_per_ms(void) {
  591. return CLOCKS_PER_SEC/1000;
  592. }
  593. //
  594. // cross-platform UTF-8 file paths
  595. //
  596. #ifdef _WIN32
  597. static wchar_t * ggml_mbstowcs(const char * mbs) {
  598. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  599. if (!wlen) {
  600. errno = EINVAL;
  601. return NULL;
  602. }
  603. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  604. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  605. if (!wlen) {
  606. GGML_FREE(wbuf);
  607. errno = EINVAL;
  608. return NULL;
  609. }
  610. return wbuf;
  611. }
  612. #endif
  613. FILE * ggml_fopen(const char * fname, const char * mode) {
  614. #ifdef _WIN32
  615. FILE * file = NULL;
  616. // convert fname (UTF-8)
  617. wchar_t * wfname = ggml_mbstowcs(fname);
  618. if (wfname) {
  619. // convert mode (ANSI)
  620. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  621. wchar_t * wmode_p = wmode;
  622. do {
  623. *wmode_p++ = (wchar_t)*mode;
  624. } while (*mode++);
  625. // open file
  626. file = _wfopen(wfname, wmode);
  627. GGML_FREE(wfname);
  628. GGML_FREE(wmode);
  629. }
  630. return file;
  631. #else
  632. return fopen(fname, mode);
  633. #endif
  634. }
  635. //
  636. // cache line
  637. //
  638. #if defined(__cpp_lib_hardware_interference_size)
  639. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  640. #else
  641. #if defined(__POWER9_VECTOR__)
  642. #define CACHE_LINE_SIZE 128
  643. #else
  644. #define CACHE_LINE_SIZE 64
  645. #endif
  646. #endif
  647. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  648. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  649. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  650. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  651. static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
  652. [GGML_TYPE_I8] = {
  653. .type_name = "i8",
  654. .blck_size = 1,
  655. .type_size = sizeof(int8_t),
  656. .is_quantized = false,
  657. },
  658. [GGML_TYPE_I16] = {
  659. .type_name = "i16",
  660. .blck_size = 1,
  661. .type_size = sizeof(int16_t),
  662. .is_quantized = false,
  663. },
  664. [GGML_TYPE_I32] = {
  665. .type_name = "i32",
  666. .blck_size = 1,
  667. .type_size = sizeof(int32_t),
  668. .is_quantized = false,
  669. },
  670. [GGML_TYPE_I64] = {
  671. .type_name = "i64",
  672. .blck_size = 1,
  673. .type_size = sizeof(int64_t),
  674. .is_quantized = false,
  675. },
  676. [GGML_TYPE_F64] = {
  677. .type_name = "f64",
  678. .blck_size = 1,
  679. .type_size = sizeof(double),
  680. .is_quantized = false,
  681. .nrows = 1,
  682. },
  683. [GGML_TYPE_F32] = {
  684. .type_name = "f32",
  685. .blck_size = 1,
  686. .type_size = sizeof(float),
  687. .is_quantized = false,
  688. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  689. .vec_dot_type = GGML_TYPE_F32,
  690. .nrows = 1,
  691. },
  692. [GGML_TYPE_F16] = {
  693. .type_name = "f16",
  694. .blck_size = 1,
  695. .type_size = sizeof(ggml_fp16_t),
  696. .is_quantized = false,
  697. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  698. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  699. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  700. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  701. .vec_dot_type = GGML_TYPE_F16,
  702. .nrows = 1,
  703. },
  704. [GGML_TYPE_Q4_0] = {
  705. .type_name = "q4_0",
  706. .blck_size = QK4_0,
  707. .type_size = sizeof(block_q4_0),
  708. .is_quantized = true,
  709. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  710. .from_float = quantize_row_q4_0,
  711. .from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
  712. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  713. .vec_dot_type = GGML_TYPE_Q8_0,
  714. #if defined (__ARM_FEATURE_MATMUL_INT8)
  715. .nrows = 2,
  716. #else
  717. .nrows = 1,
  718. #endif
  719. },
  720. [GGML_TYPE_Q4_1] = {
  721. .type_name = "q4_1",
  722. .blck_size = QK4_1,
  723. .type_size = sizeof(block_q4_1),
  724. .is_quantized = true,
  725. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  726. .from_float = quantize_row_q4_1,
  727. .from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
  728. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  729. .vec_dot_type = GGML_TYPE_Q8_1,
  730. #if defined (__ARM_FEATURE_MATMUL_INT8)
  731. .nrows = 2,
  732. #else
  733. .nrows = 1,
  734. #endif
  735. },
  736. [4] = { // GGML_TYPE_Q4_2
  737. .type_name = "DEPRECATED",
  738. .blck_size = 0,
  739. .type_size = 0,
  740. .is_quantized = false,
  741. .to_float = NULL,
  742. .from_float = NULL,
  743. .from_float_ref = NULL,
  744. .vec_dot = NULL,
  745. .vec_dot_type = GGML_TYPE_COUNT,
  746. .nrows = 1,
  747. },
  748. [5] = { // GGML_TYPE_Q4_3
  749. .type_name = "DEPRECATED",
  750. .blck_size = 0,
  751. .type_size = 0,
  752. .is_quantized = false,
  753. .to_float = NULL,
  754. .from_float = NULL,
  755. .from_float_ref = NULL,
  756. .vec_dot = NULL,
  757. .vec_dot_type = GGML_TYPE_COUNT,
  758. .nrows = 1,
  759. },
  760. [GGML_TYPE_Q5_0] = {
  761. .type_name = "q5_0",
  762. .blck_size = QK5_0,
  763. .type_size = sizeof(block_q5_0),
  764. .is_quantized = true,
  765. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  766. .from_float = quantize_row_q5_0,
  767. .from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
  768. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  769. .vec_dot_type = GGML_TYPE_Q8_0,
  770. .nrows = 1,
  771. },
  772. [GGML_TYPE_Q5_1] = {
  773. .type_name = "q5_1",
  774. .blck_size = QK5_1,
  775. .type_size = sizeof(block_q5_1),
  776. .is_quantized = true,
  777. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  778. .from_float = quantize_row_q5_1,
  779. .from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
  780. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  781. .vec_dot_type = GGML_TYPE_Q8_1,
  782. .nrows = 1,
  783. },
  784. [GGML_TYPE_Q8_0] = {
  785. .type_name = "q8_0",
  786. .blck_size = QK8_0,
  787. .type_size = sizeof(block_q8_0),
  788. .is_quantized = true,
  789. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  790. .from_float = quantize_row_q8_0,
  791. .from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
  792. .from_float_to_mat = quantize_mat_q8_0,
  793. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  794. .vec_dot_type = GGML_TYPE_Q8_0,
  795. #if defined (__ARM_FEATURE_MATMUL_INT8)
  796. .nrows = 2,
  797. #else
  798. .nrows = 1,
  799. #endif
  800. },
  801. [GGML_TYPE_Q8_1] = {
  802. .type_name = "q8_1",
  803. .blck_size = QK8_1,
  804. .type_size = sizeof(block_q8_1),
  805. .is_quantized = true,
  806. .from_float = quantize_row_q8_1,
  807. .from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
  808. .vec_dot_type = GGML_TYPE_Q8_1,
  809. .nrows = 1,
  810. },
  811. [GGML_TYPE_Q2_K] = {
  812. .type_name = "q2_K",
  813. .blck_size = QK_K,
  814. .type_size = sizeof(block_q2_K),
  815. .is_quantized = true,
  816. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  817. .from_float = quantize_row_q2_K,
  818. .from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
  819. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  820. .vec_dot_type = GGML_TYPE_Q8_K,
  821. .nrows = 1,
  822. },
  823. [GGML_TYPE_Q3_K] = {
  824. .type_name = "q3_K",
  825. .blck_size = QK_K,
  826. .type_size = sizeof(block_q3_K),
  827. .is_quantized = true,
  828. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  829. .from_float = quantize_row_q3_K,
  830. .from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
  831. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  832. .vec_dot_type = GGML_TYPE_Q8_K,
  833. .nrows = 1,
  834. },
  835. [GGML_TYPE_Q4_K] = {
  836. .type_name = "q4_K",
  837. .blck_size = QK_K,
  838. .type_size = sizeof(block_q4_K),
  839. .is_quantized = true,
  840. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  841. .from_float = quantize_row_q4_K,
  842. .from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
  843. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  844. .vec_dot_type = GGML_TYPE_Q8_K,
  845. .nrows = 1,
  846. },
  847. [GGML_TYPE_Q5_K] = {
  848. .type_name = "q5_K",
  849. .blck_size = QK_K,
  850. .type_size = sizeof(block_q5_K),
  851. .is_quantized = true,
  852. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  853. .from_float = quantize_row_q5_K,
  854. .from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
  855. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  856. .vec_dot_type = GGML_TYPE_Q8_K,
  857. .nrows = 1,
  858. },
  859. [GGML_TYPE_Q6_K] = {
  860. .type_name = "q6_K",
  861. .blck_size = QK_K,
  862. .type_size = sizeof(block_q6_K),
  863. .is_quantized = true,
  864. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  865. .from_float = quantize_row_q6_K,
  866. .from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
  867. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  868. .vec_dot_type = GGML_TYPE_Q8_K,
  869. .nrows = 1,
  870. },
  871. [GGML_TYPE_IQ2_XXS] = {
  872. .type_name = "iq2_xxs",
  873. .blck_size = QK_K,
  874. .type_size = sizeof(block_iq2_xxs),
  875. .is_quantized = true,
  876. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  877. .from_float = NULL,
  878. .from_float_ref = NULL,
  879. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  880. .vec_dot_type = GGML_TYPE_Q8_K,
  881. .nrows = 1,
  882. },
  883. [GGML_TYPE_IQ2_XS] = {
  884. .type_name = "iq2_xs",
  885. .blck_size = QK_K,
  886. .type_size = sizeof(block_iq2_xs),
  887. .is_quantized = true,
  888. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  889. .from_float = NULL,
  890. .from_float_ref = NULL,
  891. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  892. .vec_dot_type = GGML_TYPE_Q8_K,
  893. .nrows = 1,
  894. },
  895. [GGML_TYPE_IQ3_XXS] = {
  896. .type_name = "iq3_xxs",
  897. .blck_size = QK_K,
  898. .type_size = sizeof(block_iq3_xxs),
  899. .is_quantized = true,
  900. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  901. .from_float = quantize_row_iq3_xxs,
  902. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
  903. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  904. .vec_dot_type = GGML_TYPE_Q8_K,
  905. .nrows = 1,
  906. },
  907. [GGML_TYPE_IQ3_S] = {
  908. .type_name = "iq3_s",
  909. .blck_size = QK_K,
  910. .type_size = sizeof(block_iq3_s),
  911. .is_quantized = true,
  912. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  913. .from_float = quantize_row_iq3_s,
  914. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
  915. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  916. .vec_dot_type = GGML_TYPE_Q8_K,
  917. .nrows = 1,
  918. },
  919. [GGML_TYPE_IQ2_S] = {
  920. .type_name = "iq2_s",
  921. .blck_size = QK_K,
  922. .type_size = sizeof(block_iq2_s),
  923. .is_quantized = true,
  924. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  925. .from_float = quantize_row_iq2_s,
  926. .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
  927. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  928. .vec_dot_type = GGML_TYPE_Q8_K,
  929. .nrows = 1,
  930. },
  931. [GGML_TYPE_IQ1_S] = {
  932. .type_name = "iq1_s",
  933. .blck_size = QK_K,
  934. .type_size = sizeof(block_iq1_s),
  935. .is_quantized = true,
  936. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  937. .from_float = NULL,
  938. .from_float_ref = NULL,
  939. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  940. .vec_dot_type = GGML_TYPE_Q8_K,
  941. .nrows = 1,
  942. },
  943. [GGML_TYPE_IQ1_M] = {
  944. .type_name = "iq1_m",
  945. .blck_size = QK_K,
  946. .type_size = sizeof(block_iq1_m),
  947. .is_quantized = true,
  948. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  949. .from_float = NULL,
  950. .from_float_ref = NULL,
  951. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  952. .vec_dot_type = GGML_TYPE_Q8_K,
  953. .nrows = 1,
  954. },
  955. [GGML_TYPE_IQ4_NL] = {
  956. .type_name = "iq4_nl",
  957. .blck_size = QK4_NL,
  958. .type_size = sizeof(block_iq4_nl),
  959. .is_quantized = true,
  960. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  961. .from_float = quantize_row_iq4_nl,
  962. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
  963. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  964. .vec_dot_type = GGML_TYPE_Q8_0,
  965. .nrows = 1,
  966. },
  967. [GGML_TYPE_IQ4_XS] = {
  968. .type_name = "iq4_xs",
  969. .blck_size = QK_K,
  970. .type_size = sizeof(block_iq4_xs),
  971. .is_quantized = true,
  972. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  973. .from_float = quantize_row_iq4_xs,
  974. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
  975. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  976. .vec_dot_type = GGML_TYPE_Q8_K,
  977. .nrows = 1,
  978. },
  979. [GGML_TYPE_Q8_K] = {
  980. .type_name = "q8_K",
  981. .blck_size = QK_K,
  982. .type_size = sizeof(block_q8_K),
  983. .is_quantized = true,
  984. .from_float = quantize_row_q8_K,
  985. },
  986. [GGML_TYPE_BF16] = {
  987. .type_name = "bf16",
  988. .blck_size = 1,
  989. .type_size = sizeof(ggml_bf16_t),
  990. .is_quantized = false,
  991. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  992. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  993. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
  994. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  995. .vec_dot_type = GGML_TYPE_BF16,
  996. .nrows = 1,
  997. },
  998. [GGML_TYPE_Q4_0_4_4] = {
  999. .type_name = "q4_0_4x4",
  1000. .blck_size = QK4_0,
  1001. .blck_size_interleave = 4,
  1002. .type_size = sizeof(block_q4_0),
  1003. .is_quantized = true,
  1004. .to_float = NULL,
  1005. .from_float = NULL,
  1006. .from_float_ref = NULL,
  1007. .vec_dot = NULL,
  1008. .vec_dot_type = GGML_TYPE_Q8_0,
  1009. .nrows = 1,
  1010. .ncols = 4,
  1011. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  1012. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  1013. },
  1014. [GGML_TYPE_Q4_0_4_8] = {
  1015. .type_name = "q4_0_4x8",
  1016. .blck_size = QK4_0,
  1017. .blck_size_interleave = 8,
  1018. .type_size = sizeof(block_q4_0),
  1019. .is_quantized = true,
  1020. .to_float = NULL,
  1021. .from_float = NULL,
  1022. .from_float_ref = NULL,
  1023. .vec_dot = NULL,
  1024. .vec_dot_type = GGML_TYPE_Q8_0,
  1025. .nrows = 1,
  1026. .ncols = 4,
  1027. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  1028. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  1029. },
  1030. [GGML_TYPE_Q4_0_8_8] = {
  1031. .type_name = "q4_0_8x8",
  1032. .blck_size = QK4_0,
  1033. .blck_size_interleave = 8,
  1034. .type_size = sizeof(block_q4_0),
  1035. .is_quantized = true,
  1036. .to_float = NULL,
  1037. .from_float = NULL,
  1038. .from_float_ref = NULL,
  1039. .vec_dot = NULL,
  1040. .vec_dot_type = GGML_TYPE_Q8_0,
  1041. .nrows = 1,
  1042. .ncols = 8,
  1043. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  1044. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  1045. },
  1046. [GGML_TYPE_TQ1_0] = {
  1047. .type_name = "tq1_0",
  1048. .blck_size = QK_K,
  1049. .type_size = sizeof(block_tq1_0),
  1050. .is_quantized = true,
  1051. .to_float = (ggml_to_float_t) dequantize_row_tq1_0,
  1052. .from_float = quantize_row_tq1_0,
  1053. .from_float_ref = (ggml_from_float_t) quantize_row_tq1_0_ref,
  1054. .vec_dot = ggml_vec_dot_tq1_0_q8_K,
  1055. .vec_dot_type = GGML_TYPE_Q8_K,
  1056. .nrows = 1,
  1057. },
  1058. [GGML_TYPE_TQ2_0] = {
  1059. .type_name = "tq2_0",
  1060. .blck_size = QK_K,
  1061. .type_size = sizeof(block_tq2_0),
  1062. .is_quantized = true,
  1063. .to_float = (ggml_to_float_t) dequantize_row_tq2_0,
  1064. .from_float = quantize_row_tq2_0,
  1065. .from_float_ref = (ggml_from_float_t) quantize_row_tq2_0_ref,
  1066. .vec_dot = ggml_vec_dot_tq2_0_q8_K,
  1067. .vec_dot_type = GGML_TYPE_Q8_K,
  1068. .nrows = 1,
  1069. },
  1070. };
  1071. // For internal test use
  1072. const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type) {
  1073. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1074. return &type_traits[type];
  1075. }
  1076. //
  1077. // simd mappings
  1078. //
  1079. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1080. // we then implement the fundamental computation operations below using only these macros
  1081. // adding support for new architectures requires to define the corresponding SIMD macros
  1082. //
  1083. // GGML_F32_STEP / GGML_F16_STEP
  1084. // number of elements to process in a single step
  1085. //
  1086. // GGML_F32_EPR / GGML_F16_EPR
  1087. // number of elements to fit in a single register
  1088. //
  1089. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1090. #define GGML_SIMD
  1091. // F32 NEON
  1092. #define GGML_F32_STEP 16
  1093. #define GGML_F32_EPR 4
  1094. #define GGML_F32x4 float32x4_t
  1095. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1096. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1097. #define GGML_F32x4_LOAD vld1q_f32
  1098. #define GGML_F32x4_STORE vst1q_f32
  1099. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1100. #define GGML_F32x4_ADD vaddq_f32
  1101. #define GGML_F32x4_MUL vmulq_f32
  1102. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1103. #define GGML_F32x4_REDUCE(res, x) \
  1104. { \
  1105. int offset = GGML_F32_ARR >> 1; \
  1106. for (int i = 0; i < offset; ++i) { \
  1107. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1108. } \
  1109. offset >>= 1; \
  1110. for (int i = 0; i < offset; ++i) { \
  1111. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1112. } \
  1113. offset >>= 1; \
  1114. for (int i = 0; i < offset; ++i) { \
  1115. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  1116. } \
  1117. (res) = GGML_F32x4_REDUCE_ONE((x)[0]); \
  1118. }
  1119. #define GGML_F32_VEC GGML_F32x4
  1120. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1121. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1122. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1123. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1124. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1125. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1126. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1127. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1128. // F16 NEON
  1129. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1130. #define GGML_F16_STEP 32
  1131. #define GGML_F16_EPR 8
  1132. #define GGML_F16x8 float16x8_t
  1133. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1134. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1135. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  1136. #define GGML_F16x8_STORE vst1q_f16
  1137. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1138. #define GGML_F16x8_ADD vaddq_f16
  1139. #define GGML_F16x8_MUL vmulq_f16
  1140. #define GGML_F16x8_REDUCE(res, x) \
  1141. do { \
  1142. int offset = GGML_F16_ARR >> 1; \
  1143. for (int i = 0; i < offset; ++i) { \
  1144. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1145. } \
  1146. offset >>= 1; \
  1147. for (int i = 0; i < offset; ++i) { \
  1148. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1149. } \
  1150. offset >>= 1; \
  1151. for (int i = 0; i < offset; ++i) { \
  1152. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  1153. } \
  1154. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
  1155. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
  1156. (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1157. } while (0)
  1158. #define GGML_F16_VEC GGML_F16x8
  1159. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1160. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1161. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1162. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
  1163. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1164. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1165. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1166. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1167. #else
  1168. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1169. // and take advantage of the vcvt_ functions to convert to/from FP16
  1170. #define GGML_F16_STEP 16
  1171. #define GGML_F16_EPR 4
  1172. #define GGML_F32Cx4 float32x4_t
  1173. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1174. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1175. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  1176. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1177. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1178. #define GGML_F32Cx4_ADD vaddq_f32
  1179. #define GGML_F32Cx4_MUL vmulq_f32
  1180. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1181. #define GGML_F16_VEC GGML_F32Cx4
  1182. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1183. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1184. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1185. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  1186. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1187. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1188. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1189. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1190. #endif
  1191. #elif defined(__AVX512F__)
  1192. #define GGML_SIMD
  1193. // F32 AVX512
  1194. #define GGML_F32_STEP 64
  1195. #define GGML_F32_EPR 16
  1196. #define GGML_F32x16 __m512
  1197. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  1198. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  1199. #define GGML_F32x16_LOAD _mm512_loadu_ps
  1200. #define GGML_F32x16_STORE _mm512_storeu_ps
  1201. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  1202. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1203. #define GGML_F32x16_ADD _mm512_add_ps
  1204. #define GGML_F32x16_MUL _mm512_mul_ps
  1205. #define GGML_F32x16_REDUCE(res, x) \
  1206. do { \
  1207. int offset = GGML_F32_ARR >> 1; \
  1208. for (int i = 0; i < offset; ++i) { \
  1209. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1210. } \
  1211. offset >>= 1; \
  1212. for (int i = 0; i < offset; ++i) { \
  1213. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1214. } \
  1215. offset >>= 1; \
  1216. for (int i = 0; i < offset; ++i) { \
  1217. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1218. } \
  1219. res = _mm512_reduce_add_ps(x[0]); \
  1220. } while (0)
  1221. // TODO: is this optimal ?
  1222. #define GGML_F32_VEC GGML_F32x16
  1223. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  1224. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  1225. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  1226. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  1227. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  1228. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  1229. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  1230. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  1231. // F16 AVX512
  1232. // F16 AVX
  1233. #define GGML_F16_STEP 64
  1234. #define GGML_F16_EPR 16
  1235. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  1236. #define GGML_F32Cx16 __m512
  1237. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1238. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1239. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1240. // so F16C guard isn't required
  1241. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1242. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1243. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1244. #define GGML_F32Cx16_ADD _mm512_add_ps
  1245. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1246. #define GGML_F32Cx16_REDUCE(res, x) \
  1247. do { \
  1248. int offset = GGML_F32_ARR >> 1; \
  1249. for (int i = 0; i < offset; ++i) { \
  1250. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1251. } \
  1252. offset >>= 1; \
  1253. for (int i = 0; i < offset; ++i) { \
  1254. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1255. } \
  1256. offset >>= 1; \
  1257. for (int i = 0; i < offset; ++i) { \
  1258. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1259. } \
  1260. res = _mm512_reduce_add_ps(x[0]); \
  1261. } while (0)
  1262. #define GGML_F16_VEC GGML_F32Cx16
  1263. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1264. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1265. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1266. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1267. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1268. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1269. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1270. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1271. #elif defined(__AVX__)
  1272. #define GGML_SIMD
  1273. // F32 AVX
  1274. #define GGML_F32_STEP 32
  1275. #define GGML_F32_EPR 8
  1276. #define GGML_F32x8 __m256
  1277. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1278. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1279. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1280. #define GGML_F32x8_STORE _mm256_storeu_ps
  1281. #if defined(__FMA__)
  1282. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1283. #else
  1284. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1285. #endif
  1286. #define GGML_F32x8_ADD _mm256_add_ps
  1287. #define GGML_F32x8_MUL _mm256_mul_ps
  1288. #define GGML_F32x8_REDUCE(res, x) \
  1289. do { \
  1290. int offset = GGML_F32_ARR >> 1; \
  1291. for (int i = 0; i < offset; ++i) { \
  1292. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1293. } \
  1294. offset >>= 1; \
  1295. for (int i = 0; i < offset; ++i) { \
  1296. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1297. } \
  1298. offset >>= 1; \
  1299. for (int i = 0; i < offset; ++i) { \
  1300. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1301. } \
  1302. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1303. _mm256_extractf128_ps(x[0], 1)); \
  1304. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1305. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1306. } while (0)
  1307. // TODO: is this optimal ?
  1308. #define GGML_F32_VEC GGML_F32x8
  1309. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1310. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1311. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1312. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1313. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1314. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1315. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1316. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1317. // F16 AVX
  1318. #define GGML_F16_STEP 32
  1319. #define GGML_F16_EPR 8
  1320. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1321. #define GGML_F32Cx8 __m256
  1322. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1323. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1324. #if defined(__F16C__)
  1325. // the _mm256_cvt intrinsics require F16C
  1326. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1327. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1328. #else
  1329. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1330. float tmp[8];
  1331. for (int i = 0; i < 8; i++) {
  1332. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1333. }
  1334. return _mm256_loadu_ps(tmp);
  1335. }
  1336. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1337. float arr[8];
  1338. _mm256_storeu_ps(arr, y);
  1339. for (int i = 0; i < 8; i++)
  1340. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1341. }
  1342. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1343. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1344. #endif
  1345. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1346. #define GGML_F32Cx8_ADD _mm256_add_ps
  1347. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1348. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1349. #define GGML_F16_VEC GGML_F32Cx8
  1350. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1351. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1352. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1353. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1354. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1355. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1356. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1357. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1358. #elif defined(__POWER9_VECTOR__)
  1359. #define GGML_SIMD
  1360. // F32 POWER9
  1361. #define GGML_F32_STEP 32
  1362. #define GGML_F32_EPR 4
  1363. #define GGML_F32x4 vector float
  1364. #define GGML_F32x4_ZERO 0.0f
  1365. #define GGML_F32x4_SET1 vec_splats
  1366. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1367. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1368. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1369. #define GGML_F32x4_ADD vec_add
  1370. #define GGML_F32x4_MUL vec_mul
  1371. #define GGML_F32x4_REDUCE(res, x) \
  1372. { \
  1373. int offset = GGML_F32_ARR >> 1; \
  1374. for (int i = 0; i < offset; ++i) { \
  1375. x[i] = vec_add(x[i], x[offset+i]); \
  1376. } \
  1377. offset >>= 1; \
  1378. for (int i = 0; i < offset; ++i) { \
  1379. x[i] = vec_add(x[i], x[offset+i]); \
  1380. } \
  1381. offset >>= 1; \
  1382. for (int i = 0; i < offset; ++i) { \
  1383. x[i] = vec_add(x[i], x[offset+i]); \
  1384. } \
  1385. res = vec_extract(x[0], 0) + \
  1386. vec_extract(x[0], 1) + \
  1387. vec_extract(x[0], 2) + \
  1388. vec_extract(x[0], 3); \
  1389. }
  1390. #define GGML_F32_VEC GGML_F32x4
  1391. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1392. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1393. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1394. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1395. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1396. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1397. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1398. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1399. // F16 POWER9
  1400. #define GGML_F16_STEP GGML_F32_STEP
  1401. #define GGML_F16_EPR GGML_F32_EPR
  1402. #define GGML_F16_VEC GGML_F32x4
  1403. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1404. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1405. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1406. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1407. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1408. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1409. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1410. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1411. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1412. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1413. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1414. #define GGML_F16_VEC_STORE(p, r, i) \
  1415. if (i & 0x1) \
  1416. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1417. r[i - GGML_ENDIAN_BYTE(0)]), \
  1418. 0, p - GGML_F16_EPR)
  1419. #elif defined(__wasm_simd128__)
  1420. #define GGML_SIMD
  1421. // F32 WASM
  1422. #define GGML_F32_STEP 16
  1423. #define GGML_F32_EPR 4
  1424. #define GGML_F32x4 v128_t
  1425. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1426. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1427. #define GGML_F32x4_LOAD wasm_v128_load
  1428. #define GGML_F32x4_STORE wasm_v128_store
  1429. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1430. #define GGML_F32x4_ADD wasm_f32x4_add
  1431. #define GGML_F32x4_MUL wasm_f32x4_mul
  1432. #define GGML_F32x4_REDUCE(res, x) \
  1433. { \
  1434. int offset = GGML_F32_ARR >> 1; \
  1435. for (int i = 0; i < offset; ++i) { \
  1436. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1437. } \
  1438. offset >>= 1; \
  1439. for (int i = 0; i < offset; ++i) { \
  1440. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1441. } \
  1442. offset >>= 1; \
  1443. for (int i = 0; i < offset; ++i) { \
  1444. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1445. } \
  1446. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1447. wasm_f32x4_extract_lane(x[0], 1) + \
  1448. wasm_f32x4_extract_lane(x[0], 2) + \
  1449. wasm_f32x4_extract_lane(x[0], 3); \
  1450. }
  1451. #define GGML_F32_VEC GGML_F32x4
  1452. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1453. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1454. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1455. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1456. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1457. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1458. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1459. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1460. // F16 WASM
  1461. #define GGML_F16_STEP 16
  1462. #define GGML_F16_EPR 4
  1463. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1464. float tmp[4];
  1465. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1466. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1467. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1468. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1469. return wasm_v128_load(tmp);
  1470. }
  1471. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1472. float tmp[4];
  1473. wasm_v128_store(tmp, x);
  1474. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1475. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1476. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1477. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1478. }
  1479. #define GGML_F16x4 v128_t
  1480. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1481. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1482. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1483. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1484. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1485. #define GGML_F16x4_ADD wasm_f32x4_add
  1486. #define GGML_F16x4_MUL wasm_f32x4_mul
  1487. #define GGML_F16x4_REDUCE(res, x) \
  1488. { \
  1489. int offset = GGML_F16_ARR >> 1; \
  1490. for (int i = 0; i < offset; ++i) { \
  1491. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1492. } \
  1493. offset >>= 1; \
  1494. for (int i = 0; i < offset; ++i) { \
  1495. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1496. } \
  1497. offset >>= 1; \
  1498. for (int i = 0; i < offset; ++i) { \
  1499. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1500. } \
  1501. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1502. wasm_f32x4_extract_lane(x[0], 1) + \
  1503. wasm_f32x4_extract_lane(x[0], 2) + \
  1504. wasm_f32x4_extract_lane(x[0], 3); \
  1505. }
  1506. #define GGML_F16_VEC GGML_F16x4
  1507. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1508. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1509. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1510. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1511. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1512. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1513. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1514. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1515. #elif defined(__SSE3__)
  1516. #define GGML_SIMD
  1517. // F32 SSE
  1518. #define GGML_F32_STEP 32
  1519. #define GGML_F32_EPR 4
  1520. #define GGML_F32x4 __m128
  1521. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1522. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1523. #define GGML_F32x4_LOAD _mm_loadu_ps
  1524. #define GGML_F32x4_STORE _mm_storeu_ps
  1525. #if defined(__FMA__)
  1526. // TODO: Does this work?
  1527. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1528. #else
  1529. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1530. #endif
  1531. #define GGML_F32x4_ADD _mm_add_ps
  1532. #define GGML_F32x4_MUL _mm_mul_ps
  1533. #define GGML_F32x4_REDUCE(res, x) \
  1534. { \
  1535. int offset = GGML_F32_ARR >> 1; \
  1536. for (int i = 0; i < offset; ++i) { \
  1537. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1538. } \
  1539. offset >>= 1; \
  1540. for (int i = 0; i < offset; ++i) { \
  1541. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1542. } \
  1543. offset >>= 1; \
  1544. for (int i = 0; i < offset; ++i) { \
  1545. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1546. } \
  1547. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1548. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1549. }
  1550. // TODO: is this optimal ?
  1551. #define GGML_F32_VEC GGML_F32x4
  1552. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1553. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1554. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1555. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1556. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1557. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1558. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1559. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1560. // F16 SSE
  1561. #define GGML_F16_STEP 32
  1562. #define GGML_F16_EPR 4
  1563. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1564. float tmp[4];
  1565. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1566. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1567. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1568. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1569. return _mm_loadu_ps(tmp);
  1570. }
  1571. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1572. float arr[4];
  1573. _mm_storeu_ps(arr, y);
  1574. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1575. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1576. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1577. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1578. }
  1579. #define GGML_F32Cx4 __m128
  1580. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1581. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1582. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1583. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1584. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1585. #define GGML_F32Cx4_ADD _mm_add_ps
  1586. #define GGML_F32Cx4_MUL _mm_mul_ps
  1587. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1588. #define GGML_F16_VEC GGML_F32Cx4
  1589. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1590. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1591. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1592. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1593. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1594. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1595. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1596. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1597. #elif defined(__loongarch_asx)
  1598. #define GGML_SIMD
  1599. // F32 LASX
  1600. #define GGML_F32_STEP 32
  1601. #define GGML_F32_EPR 8
  1602. #define GGML_F32x8 __m256
  1603. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1604. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1605. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1606. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1607. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1608. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1609. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1610. #define GGML_F32x8_REDUCE(res, x) \
  1611. do { \
  1612. int offset = GGML_F32_ARR >> 1; \
  1613. for (int i = 0; i < offset; ++i) { \
  1614. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1615. } \
  1616. offset >>= 1; \
  1617. for (int i = 0; i < offset; ++i) { \
  1618. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1619. } \
  1620. offset >>= 1; \
  1621. for (int i = 0; i < offset; ++i) { \
  1622. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1623. } \
  1624. float *tmp_p = (float *)&x[0]; \
  1625. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1626. } while (0)
  1627. // TODO: is this optimal ?
  1628. #define GGML_F32_VEC GGML_F32x8
  1629. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1630. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1631. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1632. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1633. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1634. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1635. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1636. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1637. // F16 LASX
  1638. #define GGML_F16_STEP 32
  1639. #define GGML_F16_EPR 8
  1640. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1641. #define GGML_F32Cx8 __m256
  1642. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1643. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1644. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1645. float tmp[8];
  1646. for (int i = 0; i < 8; i++) {
  1647. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1648. }
  1649. return (__m256)__lasx_xvld(tmp, 0);
  1650. }
  1651. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1652. float arr[8];
  1653. __lasx_xvst(y, arr, 0);
  1654. for (int i = 0; i < 8; i++) {
  1655. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1656. }
  1657. }
  1658. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1659. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1660. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1661. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1662. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1663. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1664. #define GGML_F16_VEC GGML_F32Cx8
  1665. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1666. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1667. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1668. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1669. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1670. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1671. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1672. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1673. #elif defined(__loongarch_sx)
  1674. #define GGML_SIMD
  1675. // F32 LSX
  1676. #define GGML_F32_STEP 32
  1677. #define GGML_F32_EPR 4
  1678. #define GGML_F32x4 __m128
  1679. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1680. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1681. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1682. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1683. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1684. #define GGML_F32x4_ADD __lsx_vfadd_s
  1685. #define GGML_F32x4_MUL __lsx_vfmul_s
  1686. #define GGML_F32x4_REDUCE(res, x) \
  1687. { \
  1688. int offset = GGML_F32_ARR >> 1; \
  1689. for (int i = 0; i < offset; ++i) { \
  1690. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1691. } \
  1692. offset >>= 1; \
  1693. for (int i = 0; i < offset; ++i) { \
  1694. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1695. } \
  1696. offset >>= 1; \
  1697. for (int i = 0; i < offset; ++i) { \
  1698. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1699. } \
  1700. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1701. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1702. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1703. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1704. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1705. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1706. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1707. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1708. }
  1709. #define GGML_F32_VEC GGML_F32x4
  1710. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1711. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1712. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1713. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1714. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1715. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1716. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1717. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1718. // F16 LSX
  1719. #define GGML_F16_STEP 32
  1720. #define GGML_F16_EPR 4
  1721. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1722. float tmp[4];
  1723. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1724. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1725. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1726. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1727. return __lsx_vld(tmp, 0);
  1728. }
  1729. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1730. float arr[4];
  1731. __lsx_vst(y, arr, 0);
  1732. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1733. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1734. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1735. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1736. }
  1737. #define GGML_F32Cx4 __m128
  1738. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1739. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1740. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1741. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1742. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1743. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1744. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1745. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1746. #define GGML_F16_VEC GGML_F32Cx4
  1747. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1748. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1749. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1750. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1751. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1752. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1753. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1754. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1755. #endif
  1756. // GGML_F32_ARR / GGML_F16_ARR
  1757. // number of registers to use per step
  1758. #ifdef GGML_SIMD
  1759. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1760. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1761. #endif
  1762. //
  1763. // ggml object
  1764. //
  1765. struct ggml_object {
  1766. size_t offs;
  1767. size_t size;
  1768. struct ggml_object * next;
  1769. enum ggml_object_type type;
  1770. char padding[4];
  1771. };
  1772. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1773. //
  1774. // ggml context
  1775. //
  1776. struct ggml_context {
  1777. size_t mem_size;
  1778. void* mem_buffer;
  1779. bool mem_buffer_owned;
  1780. bool no_alloc;
  1781. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1782. int n_objects;
  1783. struct ggml_object * objects_begin;
  1784. struct ggml_object * objects_end;
  1785. struct ggml_scratch scratch;
  1786. struct ggml_scratch scratch_save;
  1787. };
  1788. struct ggml_context_container {
  1789. bool used;
  1790. struct ggml_context context;
  1791. };
  1792. //
  1793. // Threading defs
  1794. //
  1795. typedef pthread_t ggml_thread_t;
  1796. #if defined(_WIN32)
  1797. typedef CONDITION_VARIABLE ggml_cond_t;
  1798. typedef SRWLOCK ggml_mutex_t;
  1799. #define ggml_mutex_init(m) InitializeSRWLock(m)
  1800. #define ggml_mutex_destroy(m)
  1801. #define ggml_mutex_lock(m) AcquireSRWLockExclusive(m)
  1802. #define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m)
  1803. #define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m)
  1804. #define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m)
  1805. #define ggml_cond_init(c) InitializeConditionVariable(c)
  1806. #define ggml_cond_destroy(c)
  1807. #define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED)
  1808. #define ggml_cond_broadcast(c) WakeAllConditionVariable(c)
  1809. #define ggml_thread_create pthread_create
  1810. #define ggml_thread_join pthread_join
  1811. #else
  1812. typedef pthread_cond_t ggml_cond_t;
  1813. typedef pthread_mutex_t ggml_mutex_t;
  1814. #define ggml_mutex_init(m) pthread_mutex_init(m, NULL)
  1815. #define ggml_mutex_destroy(m) pthread_mutex_destroy(m)
  1816. #define ggml_mutex_lock(m) pthread_mutex_lock(m)
  1817. #define ggml_mutex_unlock(m) pthread_mutex_unlock(m)
  1818. #define ggml_mutex_lock_shared(m) pthread_mutex_lock(m)
  1819. #define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m)
  1820. #define ggml_lock_init(x) UNUSED(x)
  1821. #define ggml_lock_destroy(x) UNUSED(x)
  1822. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  1823. #define ggml_lock_lock(x) _mm_pause()
  1824. #else
  1825. #define ggml_lock_lock(x) UNUSED(x)
  1826. #endif
  1827. #define ggml_lock_unlock(x) UNUSED(x)
  1828. #define GGML_LOCK_INITIALIZER 0
  1829. #define ggml_cond_init(c) pthread_cond_init(c, NULL)
  1830. #define ggml_cond_destroy(c) pthread_cond_destroy(c)
  1831. #define ggml_cond_wait(c, m) pthread_cond_wait(c, m)
  1832. #define ggml_cond_broadcast(c) pthread_cond_broadcast(c)
  1833. #define ggml_thread_create pthread_create
  1834. #define ggml_thread_join pthread_join
  1835. #endif
  1836. // Threadpool def
  1837. struct ggml_threadpool {
  1838. ggml_mutex_t mutex; // mutex for cond.var
  1839. ggml_cond_t cond; // cond.var for waiting for new work
  1840. struct ggml_cgraph * cgraph;
  1841. struct ggml_cplan * cplan;
  1842. // synchronization primitives
  1843. atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
  1844. atomic_int GGML_CACHE_ALIGN n_barrier;
  1845. atomic_int GGML_CACHE_ALIGN n_barrier_passed;
  1846. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1847. // these are atomic as an annotation for thread-sanitizer
  1848. atomic_bool stop; // Used for stopping the threadpool altogether
  1849. atomic_bool pause; // Used for pausing the threadpool or individual threads
  1850. atomic_bool abort; // Used for aborting processing of a graph
  1851. struct ggml_compute_state * workers; // per thread state
  1852. int n_threads_max; // number of threads in the pool
  1853. atomic_int n_threads_cur; // number of threads used in the current graph
  1854. int32_t prio; // Scheduling priority
  1855. uint32_t poll; // Polling level (0 - no polling)
  1856. enum ggml_status ec;
  1857. };
  1858. // Per-thread state
  1859. struct ggml_compute_state {
  1860. #ifndef GGML_USE_OPENMP
  1861. ggml_thread_t thrd;
  1862. bool cpumask[GGML_MAX_N_THREADS];
  1863. int last_graph;
  1864. bool pending;
  1865. #endif
  1866. struct ggml_threadpool * threadpool;
  1867. int ith;
  1868. };
  1869. struct ggml_compute_params {
  1870. // ith = thread index, nth = number of threads
  1871. int ith, nth;
  1872. // work buffer for all threads
  1873. size_t wsize;
  1874. void * wdata;
  1875. struct ggml_threadpool * threadpool;
  1876. };
  1877. //
  1878. // fundamental operations
  1879. //
  1880. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1881. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1882. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1883. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1884. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1885. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1886. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1887. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1888. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1889. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1890. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1891. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1892. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1893. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1894. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1895. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1896. assert(nrc == 1);
  1897. UNUSED(nrc);
  1898. UNUSED(bx);
  1899. UNUSED(by);
  1900. UNUSED(bs);
  1901. #if defined(GGML_SIMD)
  1902. float sumf = 0.0f;
  1903. const int np = (n & ~(GGML_F32_STEP - 1));
  1904. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1905. GGML_F32_VEC ax[GGML_F32_ARR];
  1906. GGML_F32_VEC ay[GGML_F32_ARR];
  1907. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1908. for (int j = 0; j < GGML_F32_ARR; j++) {
  1909. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1910. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1911. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1912. }
  1913. }
  1914. // reduce sum0..sum3 to sum0
  1915. GGML_F32_VEC_REDUCE(sumf, sum);
  1916. // leftovers
  1917. for (int i = np; i < n; ++i) {
  1918. sumf += x[i]*y[i];
  1919. }
  1920. #else
  1921. // scalar
  1922. ggml_float sumf = 0.0;
  1923. for (int i = 0; i < n; ++i) {
  1924. sumf += (ggml_float)(x[i]*y[i]);
  1925. }
  1926. #endif
  1927. *s = sumf;
  1928. }
  1929. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1930. assert(nrc == 1);
  1931. UNUSED(nrc);
  1932. UNUSED(bx);
  1933. UNUSED(by);
  1934. UNUSED(bs);
  1935. int i = 0;
  1936. ggml_float sumf = 0;
  1937. #if defined(__AVX512BF16__)
  1938. __m512 c1 = _mm512_setzero_ps();
  1939. __m512 c2 = _mm512_setzero_ps();
  1940. for (; i + 64 <= n; i += 64) {
  1941. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1942. m512bh(_mm512_loadu_si512((y + i))));
  1943. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1944. m512bh(_mm512_loadu_si512((y + i + 32))));
  1945. }
  1946. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1947. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1948. #elif defined(__AVX512F__)
  1949. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1950. __m512 c1 = _mm512_setzero_ps();
  1951. __m512 c2 = _mm512_setzero_ps();
  1952. for (; i + 32 <= n; i += 32) {
  1953. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1954. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1955. }
  1956. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1957. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1958. #undef LOAD
  1959. #elif defined(__AVX2__)
  1960. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1961. __m256 c1 = _mm256_setzero_ps();
  1962. __m256 c2 = _mm256_setzero_ps();
  1963. __m256 c3 = _mm256_setzero_ps();
  1964. __m256 c4 = _mm256_setzero_ps();
  1965. for (; i + 32 <= n; i += 32) {
  1966. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1967. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1968. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1969. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1970. }
  1971. __m128 g;
  1972. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1973. _mm256_add_ps(c2, c4));
  1974. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1975. _mm256_castps256_ps128(c1));
  1976. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1977. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1978. sumf += (ggml_float)_mm_cvtss_f32(g);
  1979. #undef LOAD
  1980. #endif
  1981. for (; i < n; ++i) {
  1982. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1983. GGML_BF16_TO_FP32(y[i]));
  1984. }
  1985. *s = sumf;
  1986. }
  1987. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1988. assert(nrc == 1);
  1989. UNUSED(nrc);
  1990. UNUSED(bx);
  1991. UNUSED(by);
  1992. UNUSED(bs);
  1993. ggml_float sumf = 0.0;
  1994. #if defined(GGML_SIMD)
  1995. const int np = (n & ~(GGML_F16_STEP - 1));
  1996. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1997. GGML_F16_VEC ax[GGML_F16_ARR];
  1998. GGML_F16_VEC ay[GGML_F16_ARR];
  1999. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2000. for (int j = 0; j < GGML_F16_ARR; j++) {
  2001. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2002. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2003. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2004. }
  2005. }
  2006. // reduce sum0..sum3 to sum0
  2007. GGML_F16_VEC_REDUCE(sumf, sum);
  2008. // leftovers
  2009. for (int i = np; i < n; ++i) {
  2010. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2011. }
  2012. #else
  2013. for (int i = 0; i < n; ++i) {
  2014. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2015. }
  2016. #endif
  2017. *s = sumf;
  2018. }
  2019. // compute GGML_VEC_DOT_UNROLL dot products at once
  2020. // xs - x row stride in bytes
  2021. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2022. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2023. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2024. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2025. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2026. }
  2027. #if defined(GGML_SIMD)
  2028. const int np = (n & ~(GGML_F16_STEP - 1));
  2029. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2030. GGML_F16_VEC ax[GGML_F16_ARR];
  2031. GGML_F16_VEC ay[GGML_F16_ARR];
  2032. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2033. for (int j = 0; j < GGML_F16_ARR; j++) {
  2034. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2035. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2036. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2037. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2038. }
  2039. }
  2040. }
  2041. // reduce sum0..sum3 to sum0
  2042. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2043. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2044. }
  2045. // leftovers
  2046. for (int i = np; i < n; ++i) {
  2047. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2048. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2049. }
  2050. }
  2051. #else
  2052. for (int i = 0; i < n; ++i) {
  2053. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2054. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2055. }
  2056. }
  2057. #endif
  2058. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2059. s[i] = sumf[i];
  2060. }
  2061. }
  2062. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2063. #if defined(GGML_SIMD)
  2064. const int np = (n & ~(GGML_F32_STEP - 1));
  2065. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2066. GGML_F32_VEC ax[GGML_F32_ARR];
  2067. GGML_F32_VEC ay[GGML_F32_ARR];
  2068. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2069. for (int j = 0; j < GGML_F32_ARR; j++) {
  2070. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2071. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2072. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2073. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2074. }
  2075. }
  2076. // leftovers
  2077. for (int i = np; i < n; ++i) {
  2078. y[i] += x[i]*v;
  2079. }
  2080. #else
  2081. // scalar
  2082. for (int i = 0; i < n; ++i) {
  2083. y[i] += x[i]*v;
  2084. }
  2085. #endif
  2086. }
  2087. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  2088. #if defined(GGML_SIMD)
  2089. const int np = (n & ~(GGML_F16_STEP - 1));
  2090. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  2091. GGML_F16_VEC ax[GGML_F16_ARR];
  2092. GGML_F16_VEC ay[GGML_F16_ARR];
  2093. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2094. for (int j = 0; j < GGML_F16_ARR; j++) {
  2095. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2096. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2097. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  2098. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  2099. }
  2100. }
  2101. // leftovers
  2102. for (int i = np; i < n; ++i) {
  2103. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  2104. }
  2105. #else
  2106. // scalar
  2107. for (int i = 0; i < n; ++i) {
  2108. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  2109. }
  2110. #endif
  2111. }
  2112. // xs and vs are byte strides of x and v
  2113. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  2114. const float * restrict x[GGML_VEC_MAD_UNROLL];
  2115. const float * restrict v[GGML_VEC_MAD_UNROLL];
  2116. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  2117. x[i] = (const float *) ((const char *) xv + i*xs);
  2118. v[i] = (const float *) ((const char *) vv + i*vs);
  2119. }
  2120. #if defined(GGML_SIMD)
  2121. const int np = (n & ~(GGML_F32_STEP - 1));
  2122. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  2123. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2124. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  2125. }
  2126. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  2127. GGML_F32_VEC ay[GGML_F32_ARR];
  2128. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2129. for (int j = 0; j < GGML_F32_ARR; j++) {
  2130. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2131. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2132. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  2133. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  2134. }
  2135. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2136. }
  2137. }
  2138. // leftovers
  2139. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2140. for (int i = np; i < n; ++i) {
  2141. y[i] += x[k][i]*v[k][0];
  2142. }
  2143. }
  2144. #else
  2145. // scalar
  2146. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  2147. for (int i = 0; i < n; ++i) {
  2148. y[i] += x[k][i]*v[k][0];
  2149. }
  2150. }
  2151. #endif
  2152. }
  2153. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2154. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2155. #if defined(GGML_USE_ACCELERATE)
  2156. vDSP_vsmul(y, 1, &v, y, 1, n);
  2157. #elif defined(GGML_SIMD)
  2158. const int np = (n & ~(GGML_F32_STEP - 1));
  2159. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2160. GGML_F32_VEC ay[GGML_F32_ARR];
  2161. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2162. for (int j = 0; j < GGML_F32_ARR; j++) {
  2163. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2164. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2165. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2166. }
  2167. }
  2168. // leftovers
  2169. for (int i = np; i < n; ++i) {
  2170. y[i] *= v;
  2171. }
  2172. #else
  2173. // scalar
  2174. for (int i = 0; i < n; ++i) {
  2175. y[i] *= v;
  2176. }
  2177. #endif
  2178. }
  2179. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  2180. #if defined(GGML_SIMD)
  2181. const int np = (n & ~(GGML_F16_STEP - 1));
  2182. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  2183. GGML_F16_VEC ay[GGML_F16_ARR];
  2184. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2185. for (int j = 0; j < GGML_F16_ARR; j++) {
  2186. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2187. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  2188. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  2189. }
  2190. }
  2191. // leftovers
  2192. for (int i = np; i < n; ++i) {
  2193. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  2194. }
  2195. #else
  2196. // scalar
  2197. for (int i = 0; i < n; ++i) {
  2198. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  2199. }
  2200. #endif
  2201. }
  2202. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  2203. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2204. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2205. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2206. inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
  2207. inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
  2208. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2209. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2210. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2211. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2212. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
  2213. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2214. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  2215. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  2216. // TODO: optimize performance
  2217. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2218. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2219. inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
  2220. static const float GELU_COEF_A = 0.044715f;
  2221. static const float GELU_QUICK_COEF = -1.702f;
  2222. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2223. inline static float ggml_gelu_f32(float x) {
  2224. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2225. }
  2226. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2227. const uint16_t * i16 = (const uint16_t *) x;
  2228. for (int i = 0; i < n; ++i) {
  2229. y[i] = ggml_table_gelu_f16[i16[i]];
  2230. }
  2231. }
  2232. #ifdef GGML_GELU_FP16
  2233. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2234. uint16_t t;
  2235. for (int i = 0; i < n; ++i) {
  2236. if (x[i] <= -10.0f) {
  2237. y[i] = 0.0f;
  2238. } else if (x[i] >= 10.0f) {
  2239. y[i] = x[i];
  2240. } else {
  2241. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2242. memcpy(&t, &fp16, sizeof(uint16_t));
  2243. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  2244. }
  2245. }
  2246. }
  2247. #else
  2248. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2249. for (int i = 0; i < n; ++i) {
  2250. y[i] = ggml_gelu_f32(x[i]);
  2251. }
  2252. }
  2253. #endif
  2254. inline static float ggml_gelu_quick_f32(float x) {
  2255. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2256. }
  2257. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2258. // const uint16_t * i16 = (const uint16_t *) x;
  2259. // for (int i = 0; i < n; ++i) {
  2260. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  2261. // }
  2262. //}
  2263. #ifdef GGML_GELU_QUICK_FP16
  2264. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2265. uint16_t t;
  2266. for (int i = 0; i < n; ++i) {
  2267. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2268. memcpy(&t, &fp16, sizeof(uint16_t));
  2269. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  2270. }
  2271. }
  2272. #else
  2273. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2274. for (int i = 0; i < n; ++i) {
  2275. y[i] = ggml_gelu_quick_f32(x[i]);
  2276. }
  2277. }
  2278. #endif
  2279. // Sigmoid Linear Unit (SiLU) function
  2280. inline static float ggml_silu_f32(float x) {
  2281. return x/(1.0f + expf(-x));
  2282. }
  2283. #if __FINITE_MATH_ONLY__
  2284. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  2285. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  2286. #endif
  2287. #if defined(__ARM_NEON) && defined(__aarch64__)
  2288. // adapted from arm limited optimized routine
  2289. // the maximum error is 1.45358 plus 0.5 ulps
  2290. // numbers above 88.38 will flush to infinity
  2291. // numbers beneath -103.97 will flush to zero
  2292. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  2293. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  2294. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  2295. const float32x4_t n = vsubq_f32(z, r);
  2296. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  2297. vdupq_n_f32(0x1.7f7d1cp-20f));
  2298. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  2299. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  2300. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  2301. const float32x4_t u = vmulq_f32(b, b);
  2302. const float32x4_t j = vfmaq_f32(
  2303. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  2304. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  2305. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  2306. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  2307. return vfmaq_f32(k, j, k);
  2308. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  2309. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  2310. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  2311. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  2312. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  2313. }
  2314. // computes silu x/(1+exp(-x)) in single precision vector
  2315. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  2316. const float32x4_t one = vdupq_n_f32(1.0f);
  2317. const float32x4_t zero = vdupq_n_f32(0.0f);
  2318. const float32x4_t neg_x = vsubq_f32(zero, x);
  2319. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  2320. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  2321. return vdivq_f32(x, one_plus_exp_neg_x);
  2322. }
  2323. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  2324. // adapted from arm limited optimized routine
  2325. // the maximum error is 1.45358 plus 0.5 ulps
  2326. // numbers above 88.38 will flush to infinity
  2327. // numbers beneath -103.97 will flush to zero
  2328. inline static __m512 ggml_v_expf(__m512 x) {
  2329. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2330. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2331. const __m512 n = _mm512_sub_ps(z, r);
  2332. const __m512 b =
  2333. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2334. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2335. const __mmask16 d =
  2336. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2337. const __m512 u = _mm512_mul_ps(b, b);
  2338. const __m512 j = _mm512_fmadd_ps(
  2339. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2340. _mm512_set1_ps(0x1.573e2ep-5f)),
  2341. u,
  2342. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2343. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2344. u,
  2345. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2346. const __m512 res = _mm512_scalef_ps(j, n);
  2347. if (_mm512_kortestz(d, d))
  2348. return res;
  2349. const __m512 zero = _mm512_setzero_ps();
  2350. const __m512 alt = _mm512_mask_blend_ps(
  2351. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2352. return _mm512_mask_blend_ps(d, res, alt);
  2353. }
  2354. // computes silu x/(1+exp(-x)) in single precision vector
  2355. inline static __m512 ggml_v_silu(__m512 x) {
  2356. const __m512 one = _mm512_set1_ps(1);
  2357. const __m512 zero = _mm512_setzero_ps();
  2358. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2359. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2360. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2361. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2362. }
  2363. #elif defined(__AVX2__) && defined(__FMA__)
  2364. // adapted from arm limited optimized routine
  2365. // the maximum error is 1.45358 plus 0.5 ulps
  2366. // numbers above 88.38 will flush to infinity
  2367. // numbers beneath -103.97 will flush to zero
  2368. inline static __m256 ggml_v_expf(__m256 x) {
  2369. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2370. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2371. const __m256 n = _mm256_sub_ps(z, r);
  2372. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2373. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2374. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2375. const __m256 k = _mm256_castsi256_ps(
  2376. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2377. const __m256i c = _mm256_castps_si256(
  2378. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2379. _mm256_set1_ps(126), _CMP_GT_OQ));
  2380. const __m256 u = _mm256_mul_ps(b, b);
  2381. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2382. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2383. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2384. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2385. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2386. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2387. return _mm256_fmadd_ps(j, k, k);
  2388. const __m256i g = _mm256_and_si256(
  2389. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2390. _mm256_set1_epi32(0x82000000u));
  2391. const __m256 s1 =
  2392. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2393. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2394. const __m256i d = _mm256_castps_si256(
  2395. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2396. _mm256_set1_ps(192), _CMP_GT_OQ));
  2397. return _mm256_or_ps(
  2398. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2399. _mm256_andnot_ps(
  2400. _mm256_castsi256_ps(d),
  2401. _mm256_or_ps(
  2402. _mm256_and_ps(_mm256_castsi256_ps(c),
  2403. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2404. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2405. }
  2406. // computes silu x/(1+exp(-x)) in single precision vector
  2407. inline static __m256 ggml_v_silu(__m256 x) {
  2408. const __m256 one = _mm256_set1_ps(1);
  2409. const __m256 zero = _mm256_setzero_ps();
  2410. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2411. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2412. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2413. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2414. }
  2415. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2416. #if defined(__FMA__)
  2417. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2418. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2419. #else
  2420. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2421. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2422. #endif
  2423. // adapted from arm limited optimized routine
  2424. // the maximum error is 1.45358 plus 0.5 ulps
  2425. // numbers above 88.38 will flush to infinity
  2426. // numbers beneath -103.97 will flush to zero
  2427. inline static __m128 ggml_v_expf(__m128 x) {
  2428. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2429. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2430. const __m128 n = _mm_sub_ps(z, r);
  2431. const __m128 b =
  2432. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2433. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2434. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2435. const __m128i c =
  2436. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2437. const __m128 u = _mm_mul_ps(b, b);
  2438. const __m128 j =
  2439. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2440. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2441. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2442. if (!_mm_movemask_epi8(c))
  2443. return MADD128(j, k, k);
  2444. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2445. _mm_set1_epi32(0x82000000u));
  2446. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2447. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2448. const __m128i d =
  2449. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2450. return _mm_or_ps(
  2451. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2452. _mm_andnot_ps(_mm_castsi128_ps(d),
  2453. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2454. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2455. }
  2456. // computes silu x/(1+exp(-x)) in single precision vector
  2457. inline static __m128 ggml_v_silu(__m128 x) {
  2458. const __m128 one = _mm_set1_ps(1);
  2459. const __m128 zero = _mm_setzero_ps();
  2460. const __m128 neg_x = _mm_sub_ps(zero, x);
  2461. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2462. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2463. return _mm_div_ps(x, one_plus_exp_neg_x);
  2464. }
  2465. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2466. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2467. int i = 0;
  2468. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2469. for (; i + 15 < n; i += 16) {
  2470. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2471. }
  2472. #elif defined(__AVX2__) && defined(__FMA__)
  2473. for (; i + 7 < n; i += 8) {
  2474. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2475. }
  2476. #elif defined(__SSE2__)
  2477. for (; i + 3 < n; i += 4) {
  2478. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2479. }
  2480. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2481. for (; i + 3 < n; i += 4) {
  2482. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2483. }
  2484. #endif
  2485. for (; i < n; ++i) {
  2486. y[i] = ggml_silu_f32(x[i]);
  2487. }
  2488. }
  2489. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2490. int i = 0;
  2491. ggml_float sum = 0;
  2492. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2493. for (; i + 15 < n; i += 16) {
  2494. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2495. _mm512_set1_ps(max)));
  2496. _mm512_storeu_ps(y + i, val);
  2497. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2498. }
  2499. #elif defined(__AVX2__) && defined(__FMA__)
  2500. for (; i + 7 < n; i += 8) {
  2501. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2502. _mm256_set1_ps(max)));
  2503. _mm256_storeu_ps(y + i, val);
  2504. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2505. _mm256_castps256_ps128(val));
  2506. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2507. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2508. sum += (ggml_float)_mm_cvtss_f32(val2);
  2509. }
  2510. #elif defined(__SSE2__)
  2511. for (; i + 3 < n; i += 4) {
  2512. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2513. _mm_set1_ps(max)));
  2514. _mm_storeu_ps(y + i, val);
  2515. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2516. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2517. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2518. #else
  2519. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2520. val = _mm_add_ps(val, tmp);
  2521. tmp = _mm_movehl_ps(tmp, val);
  2522. val = _mm_add_ss(val, tmp);
  2523. #endif
  2524. sum += (ggml_float)_mm_cvtss_f32(val);
  2525. }
  2526. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2527. for (; i + 3 < n; i += 4) {
  2528. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2529. vdupq_n_f32(max)));
  2530. vst1q_f32(y + i, val);
  2531. sum += (ggml_float)vaddvq_f32(val);
  2532. }
  2533. #endif
  2534. for (; i < n; ++i) {
  2535. float val = expf(x[i] - max);
  2536. sum += (ggml_float)val;
  2537. y[i] = val;
  2538. }
  2539. return sum;
  2540. }
  2541. static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
  2542. // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
  2543. int i = 0;
  2544. ggml_float sum = 0;
  2545. for (; i < n; ++i) {
  2546. float val = x[i] - max;
  2547. y[i] = val;
  2548. sum += (ggml_float)expf(val);
  2549. }
  2550. return sum = (ggml_float)logf(sum);
  2551. }
  2552. inline static float ggml_silu_backward_f32(float x, float dy) {
  2553. const float s = 1.0f/(1.0f + expf(-x));
  2554. return dy*s*(1.0f + x*(1.0f - s));
  2555. }
  2556. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2557. for (int i = 0; i < n; ++i) {
  2558. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2559. }
  2560. }
  2561. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2562. #ifndef GGML_USE_ACCELERATE
  2563. ggml_float sum = 0.0;
  2564. for (int i = 0; i < n; ++i) {
  2565. sum += (ggml_float)x[i];
  2566. }
  2567. *s = sum;
  2568. #else
  2569. vDSP_sve(x, 1, s, n);
  2570. #endif
  2571. }
  2572. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2573. ggml_float sum = 0.0;
  2574. for (int i = 0; i < n; ++i) {
  2575. sum += (ggml_float)x[i];
  2576. }
  2577. *s = sum;
  2578. }
  2579. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2580. float sum = 0.0f;
  2581. for (int i = 0; i < n; ++i) {
  2582. sum += GGML_FP16_TO_FP32(x[i]);
  2583. }
  2584. *s = sum;
  2585. }
  2586. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2587. float sum = 0.0f;
  2588. for (int i = 0; i < n; ++i) {
  2589. sum += GGML_BF16_TO_FP32(x[i]);
  2590. }
  2591. *s = sum;
  2592. }
  2593. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2594. #ifndef GGML_USE_ACCELERATE
  2595. float max = -INFINITY;
  2596. for (int i = 0; i < n; ++i) {
  2597. max = MAX(max, x[i]);
  2598. }
  2599. *s = max;
  2600. #else
  2601. vDSP_maxv(x, 1, s, n);
  2602. #endif
  2603. }
  2604. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2605. ggml_vec_norm_f32(n, s, x);
  2606. *s = 1.f/(*s);
  2607. }
  2608. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2609. float max = -INFINITY;
  2610. int idx = 0;
  2611. for (int i = 0; i < n; ++i) {
  2612. max = MAX(max, x[i]);
  2613. if (max == x[i]) { idx = i; }
  2614. }
  2615. *s = idx;
  2616. }
  2617. //
  2618. // data types
  2619. //
  2620. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2621. "NONE",
  2622. "DUP",
  2623. "ADD",
  2624. "ADD1",
  2625. "ACC",
  2626. "SUB",
  2627. "MUL",
  2628. "DIV",
  2629. "SQR",
  2630. "SQRT",
  2631. "LOG",
  2632. "SIN",
  2633. "COS",
  2634. "SUM",
  2635. "SUM_ROWS",
  2636. "MEAN",
  2637. "ARGMAX",
  2638. "COUNT_EQUAL",
  2639. "REPEAT",
  2640. "REPEAT_BACK",
  2641. "CONCAT",
  2642. "SILU_BACK",
  2643. "NORM",
  2644. "RMS_NORM",
  2645. "RMS_NORM_BACK",
  2646. "GROUP_NORM",
  2647. "MUL_MAT",
  2648. "MUL_MAT_ID",
  2649. "OUT_PROD",
  2650. "SCALE",
  2651. "SET",
  2652. "CPY",
  2653. "CONT",
  2654. "RESHAPE",
  2655. "VIEW",
  2656. "PERMUTE",
  2657. "TRANSPOSE",
  2658. "GET_ROWS",
  2659. "GET_ROWS_BACK",
  2660. "DIAG",
  2661. "DIAG_MASK_INF",
  2662. "DIAG_MASK_ZERO",
  2663. "SOFT_MAX",
  2664. "SOFT_MAX_BACK",
  2665. "ROPE",
  2666. "ROPE_BACK",
  2667. "CLAMP",
  2668. "CONV_TRANSPOSE_1D",
  2669. "IM2COL",
  2670. "IM2COL_BACK",
  2671. "CONV_TRANSPOSE_2D",
  2672. "POOL_1D",
  2673. "POOL_2D",
  2674. "POOL_2D_BACK",
  2675. "UPSCALE",
  2676. "PAD",
  2677. "ARANGE",
  2678. "TIMESTEP_EMBEDDING",
  2679. "ARGSORT",
  2680. "LEAKY_RELU",
  2681. "FLASH_ATTN_EXT",
  2682. "FLASH_ATTN_BACK",
  2683. "SSM_CONV",
  2684. "SSM_SCAN",
  2685. "WIN_PART",
  2686. "WIN_UNPART",
  2687. "GET_REL_POS",
  2688. "ADD_REL_POS",
  2689. "RWKV_WKV",
  2690. "UNARY",
  2691. "MAP_UNARY",
  2692. "MAP_BINARY",
  2693. "MAP_CUSTOM1_F32",
  2694. "MAP_CUSTOM2_F32",
  2695. "MAP_CUSTOM3_F32",
  2696. "MAP_CUSTOM1",
  2697. "MAP_CUSTOM2",
  2698. "MAP_CUSTOM3",
  2699. "CROSS_ENTROPY_LOSS",
  2700. "CROSS_ENTROPY_LOSS_BACK",
  2701. "OPT_STEP_ADAMW",
  2702. };
  2703. static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
  2704. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2705. "none",
  2706. "x",
  2707. "x+y",
  2708. "x+y",
  2709. "view(x,nb,offset)+=y->x",
  2710. "x-y",
  2711. "x*y",
  2712. "x/y",
  2713. "x^2",
  2714. "√x",
  2715. "log(x)",
  2716. "sin(x)",
  2717. "cos(x)",
  2718. "Σx",
  2719. "Σx_k",
  2720. "Σx/n",
  2721. "argmax(x)",
  2722. "count_equal(x)",
  2723. "repeat(x)",
  2724. "repeat_back(x)",
  2725. "concat(x, y)",
  2726. "silu_back(x)",
  2727. "norm(x)",
  2728. "rms_norm(x)",
  2729. "rms_norm_back(x)",
  2730. "group_norm(x)",
  2731. "X*Y",
  2732. "X[i]*Y",
  2733. "X*Y",
  2734. "x*v",
  2735. "y-\\>view(x)",
  2736. "x-\\>y",
  2737. "cont(x)",
  2738. "reshape(x)",
  2739. "view(x)",
  2740. "permute(x)",
  2741. "transpose(x)",
  2742. "get_rows(x)",
  2743. "get_rows_back(x)",
  2744. "diag(x)",
  2745. "diag_mask_inf(x)",
  2746. "diag_mask_zero(x)",
  2747. "soft_max(x)",
  2748. "soft_max_back(x)",
  2749. "rope(x)",
  2750. "rope_back(x)",
  2751. "clamp(x)",
  2752. "conv_transpose_1d(x)",
  2753. "im2col(x)",
  2754. "im2col_back(x)",
  2755. "conv_transpose_2d(x)",
  2756. "pool_1d(x)",
  2757. "pool_2d(x)",
  2758. "pool_2d_back(x)",
  2759. "upscale(x)",
  2760. "pad(x)",
  2761. "arange(start, stop, step)",
  2762. "timestep_embedding(timesteps, dim, max_period)",
  2763. "argsort(x)",
  2764. "leaky_relu(x)",
  2765. "flash_attn_ext(x)",
  2766. "flash_attn_back(x)",
  2767. "ssm_conv(x)",
  2768. "ssm_scan(x)",
  2769. "win_part(x)",
  2770. "win_unpart(x)",
  2771. "get_rel_pos(x)",
  2772. "add_rel_pos(x)",
  2773. "rwkv_wkv(k, v, r, tf, td, s)",
  2774. "unary(x)",
  2775. "f(x)",
  2776. "f(x,y)",
  2777. "custom_f32(x)",
  2778. "custom_f32(x,y)",
  2779. "custom_f32(x,y,z)",
  2780. "custom(x)",
  2781. "custom(x,y)",
  2782. "custom(x,y,z)",
  2783. "cross_entropy_loss(x,y)",
  2784. "cross_entropy_loss_back(x,y)",
  2785. "adamw(x)",
  2786. };
  2787. static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
  2788. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2789. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2790. "ABS",
  2791. "SGN",
  2792. "NEG",
  2793. "STEP",
  2794. "TANH",
  2795. "ELU",
  2796. "RELU",
  2797. "SIGMOID",
  2798. "GELU",
  2799. "GELU_QUICK",
  2800. "SILU",
  2801. "HARDSWISH",
  2802. "HARDSIGMOID",
  2803. "EXP",
  2804. };
  2805. static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14");
  2806. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2807. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2808. // Helpers for polling loops
  2809. #if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
  2810. static inline void ggml_thread_cpu_relax(void) {
  2811. __asm__ volatile("yield" ::: "memory");
  2812. }
  2813. #elif defined(__x86_64__)
  2814. static inline void ggml_thread_cpu_relax(void) {
  2815. _mm_pause();
  2816. }
  2817. #else
  2818. static inline void ggml_thread_cpu_relax(void) {;}
  2819. #endif
  2820. //
  2821. // NUMA support
  2822. //
  2823. #define GGML_NUMA_MAX_NODES 8
  2824. #define GGML_NUMA_MAX_CPUS 512
  2825. struct ggml_numa_node {
  2826. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2827. uint32_t n_cpus;
  2828. };
  2829. struct ggml_numa_nodes {
  2830. enum ggml_numa_strategy numa_strategy;
  2831. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2832. uint32_t n_nodes;
  2833. uint32_t total_cpus; // hardware threads on system
  2834. uint32_t current_node; // node on which main process is execting
  2835. #if defined(__gnu_linux__)
  2836. cpu_set_t cpuset; // cpuset from numactl
  2837. #else
  2838. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2839. #endif
  2840. };
  2841. //
  2842. // ggml state
  2843. //
  2844. struct ggml_state {
  2845. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2846. struct ggml_numa_nodes numa;
  2847. };
  2848. // global state
  2849. static struct ggml_state g_state;
  2850. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2851. // critical section via spin lock
  2852. inline static void ggml_critical_section_start(void) {
  2853. while (atomic_flag_test_and_set(&g_state_critical)) {
  2854. // spin
  2855. sched_yield();
  2856. }
  2857. }
  2858. static void ggml_barrier(struct ggml_threadpool * tp) {
  2859. int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
  2860. if (n_threads == 1) {
  2861. return;
  2862. }
  2863. #ifdef GGML_USE_OPENMP
  2864. #pragma omp barrier
  2865. #else
  2866. int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
  2867. // enter barrier (full seq-cst fence)
  2868. int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
  2869. if (n_barrier == (n_threads - 1)) {
  2870. // last thread
  2871. atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
  2872. // exit barrier (fill seq-cst fence)
  2873. atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
  2874. return;
  2875. }
  2876. // wait for other threads
  2877. while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
  2878. ggml_thread_cpu_relax();
  2879. }
  2880. // exit barrier (full seq-cst fence)
  2881. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  2882. #ifdef GGML_TSAN_ENABLED
  2883. atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
  2884. #else
  2885. atomic_thread_fence(memory_order_seq_cst);
  2886. #endif
  2887. #endif
  2888. }
  2889. // TODO: make this somehow automatically executed
  2890. // some sort of "sentry" mechanism
  2891. inline static void ggml_critical_section_end(void) {
  2892. atomic_flag_clear(&g_state_critical);
  2893. }
  2894. #if defined(__gnu_linux__)
  2895. static cpu_set_t ggml_get_numa_affinity(void) {
  2896. cpu_set_t cpuset;
  2897. pthread_t thread;
  2898. thread = pthread_self();
  2899. CPU_ZERO(&cpuset);
  2900. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2901. return cpuset;
  2902. }
  2903. #else
  2904. static uint32_t ggml_get_numa_affinity(void) {
  2905. return 0; // no NUMA support
  2906. }
  2907. #endif
  2908. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2909. if (g_state.numa.n_nodes > 0) {
  2910. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2911. return;
  2912. }
  2913. #if defined(__gnu_linux__)
  2914. struct stat st;
  2915. char path[256];
  2916. int rv;
  2917. // set numa scheme
  2918. g_state.numa.numa_strategy = numa_flag;
  2919. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2920. g_state.numa.cpuset = ggml_get_numa_affinity();
  2921. // enumerate nodes
  2922. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2923. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2924. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2925. if (stat(path, &st) != 0) { break; }
  2926. ++g_state.numa.n_nodes;
  2927. }
  2928. // enumerate CPUs
  2929. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2930. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2931. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2932. if (stat(path, &st) != 0) { break; }
  2933. ++g_state.numa.total_cpus;
  2934. }
  2935. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2936. // figure out which node we're on
  2937. uint current_cpu;
  2938. int getcpu_ret = 0;
  2939. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2940. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2941. #else
  2942. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2943. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2944. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2945. # endif
  2946. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2947. #endif
  2948. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2949. g_state.numa.n_nodes = 0;
  2950. return;
  2951. }
  2952. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2953. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2954. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2955. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2956. node->n_cpus = 0;
  2957. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2958. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2959. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2960. if (stat(path, &st) == 0) {
  2961. node->cpus[node->n_cpus++] = c;
  2962. GGML_PRINT_DEBUG(" %u", c);
  2963. }
  2964. }
  2965. GGML_PRINT_DEBUG("\n");
  2966. }
  2967. if (ggml_is_numa()) {
  2968. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2969. if (fptr != NULL) {
  2970. char buf[42];
  2971. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2972. GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2973. }
  2974. fclose(fptr);
  2975. }
  2976. }
  2977. #else
  2978. UNUSED(numa_flag);
  2979. // TODO
  2980. #endif
  2981. }
  2982. bool ggml_is_numa(void) {
  2983. return g_state.numa.n_nodes > 1;
  2984. }
  2985. ////////////////////////////////////////////////////////////////////////////////
  2986. void ggml_print_object(const struct ggml_object * obj) {
  2987. GGML_LOG_INFO(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2988. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2989. }
  2990. void ggml_print_objects(const struct ggml_context * ctx) {
  2991. struct ggml_object * obj = ctx->objects_begin;
  2992. GGML_LOG_INFO("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2993. while (obj != NULL) {
  2994. ggml_print_object(obj);
  2995. obj = obj->next;
  2996. }
  2997. GGML_LOG_INFO("%s: --- end ---\n", __func__);
  2998. }
  2999. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3000. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3001. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3002. }
  3003. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3004. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3005. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3006. }
  3007. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3008. size_t nbytes;
  3009. size_t blck_size = ggml_blck_size(tensor->type);
  3010. if (blck_size == 1) {
  3011. nbytes = ggml_type_size(tensor->type);
  3012. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3013. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3014. }
  3015. }
  3016. else {
  3017. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  3018. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3019. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3020. }
  3021. }
  3022. return nbytes;
  3023. }
  3024. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3025. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3026. }
  3027. int64_t ggml_blck_size(enum ggml_type type) {
  3028. return type_traits[type].blck_size;
  3029. }
  3030. size_t ggml_type_size(enum ggml_type type) {
  3031. return type_traits[type].type_size;
  3032. }
  3033. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  3034. assert(ne % ggml_blck_size(type) == 0);
  3035. return ggml_type_size(type)*ne/ggml_blck_size(type);
  3036. }
  3037. double ggml_type_sizef(enum ggml_type type) {
  3038. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  3039. }
  3040. const char * ggml_type_name(enum ggml_type type) {
  3041. return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
  3042. }
  3043. bool ggml_is_quantized(enum ggml_type type) {
  3044. return type_traits[type].is_quantized;
  3045. }
  3046. const char * ggml_op_name(enum ggml_op op) {
  3047. return GGML_OP_NAME[op];
  3048. }
  3049. const char * ggml_op_symbol(enum ggml_op op) {
  3050. return GGML_OP_SYMBOL[op];
  3051. }
  3052. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  3053. return GGML_UNARY_OP_NAME[op];
  3054. }
  3055. const char * ggml_op_desc(const struct ggml_tensor * t) {
  3056. if (t->op == GGML_OP_UNARY) {
  3057. enum ggml_unary_op uop = ggml_get_unary_op(t);
  3058. return ggml_unary_op_name(uop);
  3059. }
  3060. return ggml_op_name(t->op);
  3061. }
  3062. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3063. return ggml_type_size(tensor->type);
  3064. }
  3065. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3066. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3067. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3068. }
  3069. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3070. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3071. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3072. }
  3073. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3074. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3075. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3076. }
  3077. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  3078. return tensor->ne[3] == 1;
  3079. }
  3080. int ggml_n_dims(const struct ggml_tensor * tensor) {
  3081. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  3082. if (tensor->ne[i] > 1) {
  3083. return i + 1;
  3084. }
  3085. }
  3086. return 1;
  3087. }
  3088. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3089. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3090. return (t0->ne[0] == t1->ne[0]) &&
  3091. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3092. (t1->ne[3]%t0->ne[3] == 0);
  3093. }
  3094. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3095. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3096. return (t0->ne[1] == t1->ne[1]) &&
  3097. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3098. (t1->ne[3]%t0->ne[3] == 0);
  3099. }
  3100. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3101. enum ggml_type wtype = GGML_TYPE_COUNT;
  3102. switch (ftype) {
  3103. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3104. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3105. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  3106. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3107. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3108. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3109. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3110. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3111. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3112. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3113. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3114. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3115. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3116. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  3117. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  3118. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  3119. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  3120. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  3121. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  3122. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  3123. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  3124. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  3125. case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
  3126. case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
  3127. case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
  3128. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3129. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3130. }
  3131. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3132. return wtype;
  3133. }
  3134. size_t ggml_tensor_overhead(void) {
  3135. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3136. }
  3137. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3138. return tensor->nb[0] > tensor->nb[1];
  3139. }
  3140. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  3141. size_t next_nb = ggml_type_size(tensor->type);
  3142. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  3143. return false;
  3144. }
  3145. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  3146. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  3147. if (tensor->ne[i] != 1) {
  3148. if (i > n) {
  3149. if (tensor->nb[i] != next_nb) {
  3150. return false;
  3151. }
  3152. next_nb *= tensor->ne[i];
  3153. } else {
  3154. // this dimension does not need to be contiguous
  3155. next_nb = tensor->ne[i]*tensor->nb[i];
  3156. }
  3157. }
  3158. }
  3159. return true;
  3160. }
  3161. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3162. return ggml_is_contiguous_0(tensor);
  3163. }
  3164. bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  3165. return ggml_is_contiguous_n(tensor, 0);
  3166. }
  3167. bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  3168. return ggml_is_contiguous_n(tensor, 1);
  3169. }
  3170. bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  3171. return ggml_is_contiguous_n(tensor, 2);
  3172. }
  3173. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3174. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3175. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3176. }
  3177. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3178. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3179. return
  3180. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3181. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3182. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3183. }
  3184. bool ggml_is_empty(const struct ggml_tensor * tensor) {
  3185. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3186. if (tensor->ne[i] == 0) {
  3187. // empty if any dimension has no elements
  3188. return true;
  3189. }
  3190. }
  3191. return false;
  3192. }
  3193. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3194. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3195. return
  3196. (t0->ne[0] == t1->ne[0]) &&
  3197. (t0->ne[1] == t1->ne[1]) &&
  3198. (t0->ne[2] == t1->ne[2]) &&
  3199. (t0->ne[3] == t1->ne[3]);
  3200. }
  3201. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3202. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3203. return
  3204. (t0->nb[0] == t1->nb[0]) &&
  3205. (t0->nb[1] == t1->nb[1]) &&
  3206. (t0->nb[2] == t1->nb[2]) &&
  3207. (t0->nb[3] == t1->nb[3]);
  3208. }
  3209. // check if t1 can be represented as a repeatition of t0
  3210. bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3211. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3212. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  3213. (t1->ne[0]%t0->ne[0] == 0) &&
  3214. (t1->ne[1]%t0->ne[1] == 0) &&
  3215. (t1->ne[2]%t0->ne[2] == 0) &&
  3216. (t1->ne[3]%t0->ne[3] == 0);
  3217. }
  3218. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3219. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3220. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3221. }
  3222. static inline int ggml_up32(int n) {
  3223. return (n + 31) & ~31;
  3224. }
  3225. //static inline int ggml_up64(int n) {
  3226. // return (n + 63) & ~63;
  3227. //}
  3228. static inline int ggml_up(int n, int m) {
  3229. // assert m is a power of 2
  3230. GGML_ASSERT((m & (m - 1)) == 0);
  3231. return (n + m - 1) & ~(m - 1);
  3232. }
  3233. // assert that pointer is aligned to GGML_MEM_ALIGN
  3234. #define GGML_ASSERT_ALIGNED(ptr) \
  3235. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3236. ////////////////////////////////////////////////////////////////////////////////
  3237. #if defined(__ARM_ARCH)
  3238. #if defined(__linux__) && defined(__aarch64__)
  3239. #include <sys/auxv.h>
  3240. #elif defined(__APPLE__)
  3241. #include <sys/sysctl.h>
  3242. #endif
  3243. #if !defined(HWCAP2_I8MM)
  3244. #define HWCAP2_I8MM 0
  3245. #endif
  3246. static void ggml_init_arm_arch_features(void) {
  3247. #if defined(__linux__) && defined(__aarch64__)
  3248. uint32_t hwcap = getauxval(AT_HWCAP);
  3249. uint32_t hwcap2 = getauxval(AT_HWCAP2);
  3250. ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
  3251. ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
  3252. ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
  3253. #if defined(__ARM_FEATURE_SVE)
  3254. ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
  3255. #endif
  3256. #elif defined(__APPLE__)
  3257. int oldp = 0;
  3258. size_t size = sizeof(oldp);
  3259. if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
  3260. oldp = 0;
  3261. }
  3262. ggml_arm_arch_features.has_neon = oldp;
  3263. if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
  3264. oldp = 0;
  3265. }
  3266. ggml_arm_arch_features.has_i8mm = oldp;
  3267. ggml_arm_arch_features.has_sve = 0;
  3268. ggml_arm_arch_features.sve_cnt = 0;
  3269. #else
  3270. // Run-time CPU feature detection not implemented for this platform, fallback to compile time
  3271. #if defined(__ARM_NEON)
  3272. ggml_arm_arch_features.has_neon = 1;
  3273. #else
  3274. ggml_arm_arch_features.has_neon = 0;
  3275. #endif
  3276. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3277. ggml_arm_arch_features.has_i8mm = 1;
  3278. #else
  3279. ggml_arm_arch_features.has_i8mm = 0;
  3280. #endif
  3281. #if defined(__ARM_FEATURE_SVE)
  3282. ggml_arm_arch_features.has_sve = 1;
  3283. ggml_arm_arch_features.sve_cnt = 16;
  3284. #else
  3285. ggml_arm_arch_features.has_sve = 0;
  3286. ggml_arm_arch_features.sve_cnt = 0;
  3287. #endif
  3288. #endif
  3289. }
  3290. #endif
  3291. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3292. // make this function thread safe
  3293. ggml_critical_section_start();
  3294. static bool is_first_call = true;
  3295. if (is_first_call) {
  3296. // initialize time system (required on Windows)
  3297. ggml_time_init();
  3298. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3299. {
  3300. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3301. for (int i = 0; i < (1 << 16); ++i) {
  3302. union {
  3303. uint16_t u16;
  3304. ggml_fp16_t fp16;
  3305. } u = {i};
  3306. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  3307. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3308. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3309. }
  3310. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3311. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3312. }
  3313. // initialize g_state
  3314. {
  3315. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3316. g_state = (struct ggml_state) {
  3317. /*.contexts =*/ { { 0 } },
  3318. /*.numa =*/ {
  3319. .n_nodes = 0,
  3320. .total_cpus = 0,
  3321. },
  3322. };
  3323. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3324. g_state.contexts[i].used = false;
  3325. }
  3326. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3327. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3328. }
  3329. #if defined(__ARM_ARCH)
  3330. ggml_init_arm_arch_features();
  3331. #endif
  3332. is_first_call = false;
  3333. }
  3334. // find non-used context in g_state
  3335. struct ggml_context * ctx = NULL;
  3336. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3337. if (!g_state.contexts[i].used) {
  3338. g_state.contexts[i].used = true;
  3339. ctx = &g_state.contexts[i].context;
  3340. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3341. break;
  3342. }
  3343. }
  3344. if (ctx == NULL) {
  3345. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3346. ggml_critical_section_end();
  3347. return NULL;
  3348. }
  3349. // allow to call ggml_init with 0 size
  3350. if (params.mem_size == 0) {
  3351. params.mem_size = GGML_MEM_ALIGN;
  3352. }
  3353. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3354. *ctx = (struct ggml_context) {
  3355. /*.mem_size =*/ mem_size,
  3356. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : ggml_aligned_malloc(mem_size),
  3357. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3358. /*.no_alloc =*/ params.no_alloc,
  3359. /*.no_alloc_save =*/ params.no_alloc,
  3360. /*.n_objects =*/ 0,
  3361. /*.objects_begin =*/ NULL,
  3362. /*.objects_end =*/ NULL,
  3363. /*.scratch =*/ { 0, 0, NULL, },
  3364. /*.scratch_save =*/ { 0, 0, NULL, },
  3365. };
  3366. GGML_ASSERT(ctx->mem_buffer != NULL);
  3367. GGML_ASSERT_ALIGNED(ctx->mem_buffer);
  3368. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3369. ggml_critical_section_end();
  3370. return ctx;
  3371. }
  3372. void ggml_free(struct ggml_context * ctx) {
  3373. if (ctx == NULL) {
  3374. return;
  3375. }
  3376. // make this function thread safe
  3377. ggml_critical_section_start();
  3378. bool found = false;
  3379. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3380. if (&g_state.contexts[i].context == ctx) {
  3381. g_state.contexts[i].used = false;
  3382. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3383. __func__, i, ggml_used_mem(ctx));
  3384. if (ctx->mem_buffer_owned) {
  3385. ggml_aligned_free(ctx->mem_buffer, ctx->mem_size);
  3386. }
  3387. found = true;
  3388. break;
  3389. }
  3390. }
  3391. if (!found) {
  3392. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3393. }
  3394. ggml_critical_section_end();
  3395. }
  3396. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3397. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3398. }
  3399. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3400. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3401. ctx->scratch = scratch;
  3402. return result;
  3403. }
  3404. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3405. return ctx->no_alloc;
  3406. }
  3407. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3408. ctx->no_alloc = no_alloc;
  3409. }
  3410. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3411. return ctx->mem_buffer;
  3412. }
  3413. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3414. return ctx->mem_size;
  3415. }
  3416. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3417. size_t max_size = 0;
  3418. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3419. size_t bytes = ggml_nbytes(tensor);
  3420. max_size = MAX(max_size, bytes);
  3421. }
  3422. return max_size;
  3423. }
  3424. // IMPORTANT:
  3425. // when creating "opt" tensors, always save and load the scratch buffer
  3426. // this is an error prone process, but it is necessary to support inplace
  3427. // operators when using scratch buffers
  3428. // TODO: implement a better way
  3429. static void ggml_scratch_save(struct ggml_context * ctx) {
  3430. // this is needed to allow opt tensors to store their data
  3431. // TODO: again, need to find a better way
  3432. ctx->no_alloc_save = ctx->no_alloc;
  3433. ctx->no_alloc = false;
  3434. ctx->scratch_save = ctx->scratch;
  3435. ctx->scratch.data = NULL;
  3436. }
  3437. static void ggml_scratch_load(struct ggml_context * ctx) {
  3438. ctx->no_alloc = ctx->no_alloc_save;
  3439. ctx->scratch = ctx->scratch_save;
  3440. }
  3441. ////////////////////////////////////////////////////////////////////////////////
  3442. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3443. // always insert objects at the end of the context's memory pool
  3444. struct ggml_object * obj_cur = ctx->objects_end;
  3445. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3446. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3447. const size_t cur_end = cur_offs + cur_size;
  3448. // align to GGML_MEM_ALIGN
  3449. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3450. char * const mem_buffer = ctx->mem_buffer;
  3451. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3452. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3453. GGML_LOG_WARN("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3454. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3455. assert(false);
  3456. return NULL;
  3457. }
  3458. *obj_new = (struct ggml_object) {
  3459. .offs = cur_end + GGML_OBJECT_SIZE,
  3460. .size = size_needed,
  3461. .next = NULL,
  3462. .type = type,
  3463. };
  3464. GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
  3465. if (obj_cur != NULL) {
  3466. obj_cur->next = obj_new;
  3467. } else {
  3468. // this is the first object in this context
  3469. ctx->objects_begin = obj_new;
  3470. }
  3471. ctx->objects_end = obj_new;
  3472. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3473. return obj_new;
  3474. }
  3475. static struct ggml_tensor * ggml_new_tensor_impl(
  3476. struct ggml_context * ctx,
  3477. enum ggml_type type,
  3478. int n_dims,
  3479. const int64_t * ne,
  3480. struct ggml_tensor * view_src,
  3481. size_t view_offs) {
  3482. GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT);
  3483. GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3484. // find the base tensor and absolute offset
  3485. if (view_src != NULL && view_src->view_src != NULL) {
  3486. view_offs += view_src->view_offs;
  3487. view_src = view_src->view_src;
  3488. }
  3489. size_t data_size = ggml_row_size(type, ne[0]);
  3490. for (int i = 1; i < n_dims; i++) {
  3491. data_size *= ne[i];
  3492. }
  3493. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3494. void * data = view_src != NULL ? view_src->data : NULL;
  3495. if (data != NULL) {
  3496. data = (char *) data + view_offs;
  3497. }
  3498. size_t obj_alloc_size = 0;
  3499. if (view_src == NULL && !ctx->no_alloc) {
  3500. if (ctx->scratch.data != NULL) {
  3501. // allocate tensor data in the scratch buffer
  3502. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3503. GGML_LOG_WARN("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3504. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3505. assert(false);
  3506. return NULL;
  3507. }
  3508. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3509. ctx->scratch.offs += data_size;
  3510. } else {
  3511. // allocate tensor data in the context's memory pool
  3512. obj_alloc_size = data_size;
  3513. }
  3514. }
  3515. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3516. GGML_ASSERT(obj_new);
  3517. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3518. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3519. #ifdef __clang__
  3520. // temporary until ggml_tensor::backend is removed
  3521. #pragma clang diagnostic push
  3522. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3523. #endif
  3524. *result = (struct ggml_tensor) {
  3525. /*.type =*/ type,
  3526. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3527. /*.buffer =*/ NULL,
  3528. /*.ne =*/ { 1, 1, 1, 1 },
  3529. /*.nb =*/ { 0, 0, 0, 0 },
  3530. /*.op =*/ GGML_OP_NONE,
  3531. /*.op_params =*/ { 0 },
  3532. /*.flags =*/ 0,
  3533. /*.grad =*/ NULL,
  3534. /*.src =*/ { NULL },
  3535. /*.view_src =*/ view_src,
  3536. /*.view_offs =*/ view_offs,
  3537. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3538. /*.name =*/ { 0 },
  3539. /*.extra =*/ NULL,
  3540. ///*.padding =*/ { 0 },
  3541. };
  3542. #ifdef __clang__
  3543. #pragma clang diagnostic pop
  3544. #endif
  3545. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3546. //GGML_ASSERT_ALIGNED(result->data);
  3547. for (int i = 0; i < n_dims; i++) {
  3548. result->ne[i] = ne[i];
  3549. }
  3550. result->nb[0] = ggml_type_size(type);
  3551. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3552. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3553. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3554. }
  3555. ctx->n_objects++;
  3556. return result;
  3557. }
  3558. struct ggml_tensor * ggml_new_tensor(
  3559. struct ggml_context * ctx,
  3560. enum ggml_type type,
  3561. int n_dims,
  3562. const int64_t * ne) {
  3563. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3564. }
  3565. struct ggml_tensor * ggml_new_tensor_1d(
  3566. struct ggml_context * ctx,
  3567. enum ggml_type type,
  3568. int64_t ne0) {
  3569. return ggml_new_tensor(ctx, type, 1, &ne0);
  3570. }
  3571. struct ggml_tensor * ggml_new_tensor_2d(
  3572. struct ggml_context * ctx,
  3573. enum ggml_type type,
  3574. int64_t ne0,
  3575. int64_t ne1) {
  3576. const int64_t ne[2] = { ne0, ne1 };
  3577. return ggml_new_tensor(ctx, type, 2, ne);
  3578. }
  3579. struct ggml_tensor * ggml_new_tensor_3d(
  3580. struct ggml_context * ctx,
  3581. enum ggml_type type,
  3582. int64_t ne0,
  3583. int64_t ne1,
  3584. int64_t ne2) {
  3585. const int64_t ne[3] = { ne0, ne1, ne2 };
  3586. return ggml_new_tensor(ctx, type, 3, ne);
  3587. }
  3588. struct ggml_tensor * ggml_new_tensor_4d(
  3589. struct ggml_context * ctx,
  3590. enum ggml_type type,
  3591. int64_t ne0,
  3592. int64_t ne1,
  3593. int64_t ne2,
  3594. int64_t ne3) {
  3595. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3596. return ggml_new_tensor(ctx, type, 4, ne);
  3597. }
  3598. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3599. ggml_scratch_save(ctx);
  3600. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3601. ggml_scratch_load(ctx);
  3602. ggml_set_i32(result, value);
  3603. return result;
  3604. }
  3605. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3606. ggml_scratch_save(ctx);
  3607. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3608. ggml_scratch_load(ctx);
  3609. ggml_set_f32(result, value);
  3610. return result;
  3611. }
  3612. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3613. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3614. }
  3615. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3616. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3617. assert(params_size <= GGML_MAX_OP_PARAMS);
  3618. memcpy(tensor->op_params, params, params_size);
  3619. }
  3620. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3621. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3622. return ((const int32_t *)(tensor->op_params))[i];
  3623. }
  3624. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3625. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3626. return ((const float *)(tensor->op_params))[i];
  3627. }
  3628. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3629. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3630. ((int32_t *)(tensor->op_params))[i] = value;
  3631. }
  3632. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3633. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3634. ((float *)(tensor->op_params))[i] = value;
  3635. }
  3636. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3637. if (ggml_is_empty(tensor)) {
  3638. return tensor;
  3639. }
  3640. if (tensor->buffer) {
  3641. ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor));
  3642. } else {
  3643. GGML_ASSERT(tensor->data);
  3644. memset(tensor->data, 0, ggml_nbytes(tensor));
  3645. }
  3646. return tensor;
  3647. }
  3648. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3649. const int n = ggml_nrows(tensor);
  3650. const int nc = tensor->ne[0];
  3651. const size_t n1 = tensor->nb[1];
  3652. char * const data = tensor->data;
  3653. switch (tensor->type) {
  3654. case GGML_TYPE_I8:
  3655. {
  3656. assert(tensor->nb[0] == sizeof(int8_t));
  3657. for (int i = 0; i < n; i++) {
  3658. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3659. }
  3660. } break;
  3661. case GGML_TYPE_I16:
  3662. {
  3663. assert(tensor->nb[0] == sizeof(int16_t));
  3664. for (int i = 0; i < n; i++) {
  3665. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3666. }
  3667. } break;
  3668. case GGML_TYPE_I32:
  3669. {
  3670. assert(tensor->nb[0] == sizeof(int32_t));
  3671. for (int i = 0; i < n; i++) {
  3672. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3673. }
  3674. } break;
  3675. case GGML_TYPE_F16:
  3676. {
  3677. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3678. for (int i = 0; i < n; i++) {
  3679. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3680. }
  3681. } break;
  3682. case GGML_TYPE_BF16:
  3683. {
  3684. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3685. for (int i = 0; i < n; i++) {
  3686. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3687. }
  3688. } break;
  3689. case GGML_TYPE_F32:
  3690. {
  3691. assert(tensor->nb[0] == sizeof(float));
  3692. for (int i = 0; i < n; i++) {
  3693. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3694. }
  3695. } break;
  3696. default:
  3697. {
  3698. GGML_ABORT("fatal error");
  3699. }
  3700. }
  3701. return tensor;
  3702. }
  3703. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3704. const int n = ggml_nrows(tensor);
  3705. const int nc = tensor->ne[0];
  3706. const size_t n1 = tensor->nb[1];
  3707. char * const data = tensor->data;
  3708. switch (tensor->type) {
  3709. case GGML_TYPE_I8:
  3710. {
  3711. assert(tensor->nb[0] == sizeof(int8_t));
  3712. for (int i = 0; i < n; i++) {
  3713. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3714. }
  3715. } break;
  3716. case GGML_TYPE_I16:
  3717. {
  3718. assert(tensor->nb[0] == sizeof(int16_t));
  3719. for (int i = 0; i < n; i++) {
  3720. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3721. }
  3722. } break;
  3723. case GGML_TYPE_I32:
  3724. {
  3725. assert(tensor->nb[0] == sizeof(int32_t));
  3726. for (int i = 0; i < n; i++) {
  3727. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3728. }
  3729. } break;
  3730. case GGML_TYPE_F16:
  3731. {
  3732. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3733. for (int i = 0; i < n; i++) {
  3734. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3735. }
  3736. } break;
  3737. case GGML_TYPE_BF16:
  3738. {
  3739. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3740. for (int i = 0; i < n; i++) {
  3741. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3742. }
  3743. } break;
  3744. case GGML_TYPE_F32:
  3745. {
  3746. assert(tensor->nb[0] == sizeof(float));
  3747. for (int i = 0; i < n; i++) {
  3748. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3749. }
  3750. } break;
  3751. default:
  3752. {
  3753. GGML_ABORT("fatal error");
  3754. }
  3755. }
  3756. return tensor;
  3757. }
  3758. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3759. const int64_t ne2 = tensor->ne[2];
  3760. const int64_t ne1 = tensor->ne[1];
  3761. const int64_t ne0 = tensor->ne[0];
  3762. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3763. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3764. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3765. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3766. if (i0) {
  3767. * i0 = i0_;
  3768. }
  3769. if (i1) {
  3770. * i1 = i1_;
  3771. }
  3772. if (i2) {
  3773. * i2 = i2_;
  3774. }
  3775. if (i3) {
  3776. * i3 = i3_;
  3777. }
  3778. }
  3779. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3780. if (!ggml_is_contiguous(tensor)) {
  3781. int64_t id[4] = { 0, 0, 0, 0 };
  3782. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3783. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3784. }
  3785. switch (tensor->type) {
  3786. case GGML_TYPE_I8:
  3787. {
  3788. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3789. return ((int8_t *)(tensor->data))[i];
  3790. }
  3791. case GGML_TYPE_I16:
  3792. {
  3793. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3794. return ((int16_t *)(tensor->data))[i];
  3795. }
  3796. case GGML_TYPE_I32:
  3797. {
  3798. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3799. return ((int32_t *)(tensor->data))[i];
  3800. }
  3801. case GGML_TYPE_F16:
  3802. {
  3803. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3804. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3805. }
  3806. case GGML_TYPE_BF16:
  3807. {
  3808. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3809. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3810. }
  3811. case GGML_TYPE_F32:
  3812. {
  3813. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3814. return ((float *)(tensor->data))[i];
  3815. }
  3816. default:
  3817. {
  3818. GGML_ABORT("fatal error");
  3819. }
  3820. }
  3821. }
  3822. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3823. if (!ggml_is_contiguous(tensor)) {
  3824. int64_t id[4] = { 0, 0, 0, 0 };
  3825. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3826. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3827. return;
  3828. }
  3829. switch (tensor->type) {
  3830. case GGML_TYPE_I8:
  3831. {
  3832. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3833. ((int8_t *)(tensor->data))[i] = value;
  3834. } break;
  3835. case GGML_TYPE_I16:
  3836. {
  3837. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3838. ((int16_t *)(tensor->data))[i] = value;
  3839. } break;
  3840. case GGML_TYPE_I32:
  3841. {
  3842. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3843. ((int32_t *)(tensor->data))[i] = value;
  3844. } break;
  3845. case GGML_TYPE_F16:
  3846. {
  3847. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3848. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3849. } break;
  3850. case GGML_TYPE_BF16:
  3851. {
  3852. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3853. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3854. } break;
  3855. case GGML_TYPE_F32:
  3856. {
  3857. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3858. ((float *)(tensor->data))[i] = value;
  3859. } break;
  3860. default:
  3861. {
  3862. GGML_ABORT("fatal error");
  3863. }
  3864. }
  3865. }
  3866. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3867. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3868. switch (tensor->type) {
  3869. case GGML_TYPE_I8:
  3870. return ((int8_t *) data)[0];
  3871. case GGML_TYPE_I16:
  3872. return ((int16_t *) data)[0];
  3873. case GGML_TYPE_I32:
  3874. return ((int32_t *) data)[0];
  3875. case GGML_TYPE_F16:
  3876. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3877. case GGML_TYPE_BF16:
  3878. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3879. case GGML_TYPE_F32:
  3880. return ((float *) data)[0];
  3881. default:
  3882. GGML_ABORT("fatal error");
  3883. }
  3884. }
  3885. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3886. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3887. switch (tensor->type) {
  3888. case GGML_TYPE_I8:
  3889. {
  3890. ((int8_t *)(data))[0] = value;
  3891. } break;
  3892. case GGML_TYPE_I16:
  3893. {
  3894. ((int16_t *)(data))[0] = value;
  3895. } break;
  3896. case GGML_TYPE_I32:
  3897. {
  3898. ((int32_t *)(data))[0] = value;
  3899. } break;
  3900. case GGML_TYPE_F16:
  3901. {
  3902. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3903. } break;
  3904. case GGML_TYPE_BF16:
  3905. {
  3906. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3907. } break;
  3908. case GGML_TYPE_F32:
  3909. {
  3910. ((float *)(data))[0] = value;
  3911. } break;
  3912. default:
  3913. {
  3914. GGML_ABORT("fatal error");
  3915. }
  3916. }
  3917. }
  3918. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3919. if (!ggml_is_contiguous(tensor)) {
  3920. int64_t id[4] = { 0, 0, 0, 0 };
  3921. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3922. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3923. }
  3924. switch (tensor->type) {
  3925. case GGML_TYPE_I8:
  3926. {
  3927. return ((int8_t *)(tensor->data))[i];
  3928. }
  3929. case GGML_TYPE_I16:
  3930. {
  3931. return ((int16_t *)(tensor->data))[i];
  3932. }
  3933. case GGML_TYPE_I32:
  3934. {
  3935. return ((int32_t *)(tensor->data))[i];
  3936. }
  3937. case GGML_TYPE_F16:
  3938. {
  3939. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3940. }
  3941. case GGML_TYPE_BF16:
  3942. {
  3943. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3944. }
  3945. case GGML_TYPE_F32:
  3946. {
  3947. return ((float *)(tensor->data))[i];
  3948. }
  3949. default:
  3950. {
  3951. GGML_ABORT("fatal error");
  3952. }
  3953. }
  3954. }
  3955. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3956. if (!ggml_is_contiguous(tensor)) {
  3957. int64_t id[4] = { 0, 0, 0, 0 };
  3958. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3959. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3960. return;
  3961. }
  3962. switch (tensor->type) {
  3963. case GGML_TYPE_I8:
  3964. {
  3965. ((int8_t *)(tensor->data))[i] = value;
  3966. } break;
  3967. case GGML_TYPE_I16:
  3968. {
  3969. ((int16_t *)(tensor->data))[i] = value;
  3970. } break;
  3971. case GGML_TYPE_I32:
  3972. {
  3973. ((int32_t *)(tensor->data))[i] = value;
  3974. } break;
  3975. case GGML_TYPE_F16:
  3976. {
  3977. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3978. } break;
  3979. case GGML_TYPE_BF16:
  3980. {
  3981. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3982. } break;
  3983. case GGML_TYPE_F32:
  3984. {
  3985. ((float *)(tensor->data))[i] = value;
  3986. } break;
  3987. default:
  3988. {
  3989. GGML_ABORT("fatal error");
  3990. }
  3991. }
  3992. }
  3993. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3994. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3995. switch (tensor->type) {
  3996. case GGML_TYPE_I8:
  3997. return ((int8_t *) data)[0];
  3998. case GGML_TYPE_I16:
  3999. return ((int16_t *) data)[0];
  4000. case GGML_TYPE_I32:
  4001. return ((int32_t *) data)[0];
  4002. case GGML_TYPE_F16:
  4003. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  4004. case GGML_TYPE_BF16:
  4005. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  4006. case GGML_TYPE_F32:
  4007. return ((float *) data)[0];
  4008. default:
  4009. GGML_ABORT("fatal error");
  4010. }
  4011. }
  4012. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  4013. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4014. switch (tensor->type) {
  4015. case GGML_TYPE_I8:
  4016. {
  4017. ((int8_t *)(data))[0] = value;
  4018. } break;
  4019. case GGML_TYPE_I16:
  4020. {
  4021. ((int16_t *)(data))[0] = value;
  4022. } break;
  4023. case GGML_TYPE_I32:
  4024. {
  4025. ((int32_t *)(data))[0] = value;
  4026. } break;
  4027. case GGML_TYPE_F16:
  4028. {
  4029. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  4030. } break;
  4031. case GGML_TYPE_BF16:
  4032. {
  4033. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  4034. } break;
  4035. case GGML_TYPE_F32:
  4036. {
  4037. ((float *)(data))[0] = value;
  4038. } break;
  4039. default:
  4040. {
  4041. GGML_ABORT("fatal error");
  4042. }
  4043. }
  4044. }
  4045. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4046. return tensor->data;
  4047. }
  4048. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4049. assert(tensor->type == GGML_TYPE_F32);
  4050. return (float *)(tensor->data);
  4051. }
  4052. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4053. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4054. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4055. }
  4056. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4057. return tensor->name;
  4058. }
  4059. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4060. size_t i;
  4061. for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
  4062. tensor->name[i] = name[i];
  4063. }
  4064. tensor->name[i] = '\0';
  4065. return tensor;
  4066. }
  4067. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4068. va_list args;
  4069. va_start(args, fmt);
  4070. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4071. va_end(args);
  4072. return tensor;
  4073. }
  4074. struct ggml_tensor * ggml_view_tensor(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * src) {
  4077. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  4078. ggml_format_name(result, "%s (view)", src->name);
  4079. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4080. result->nb[i] = src->nb[i];
  4081. }
  4082. return result;
  4083. }
  4084. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  4085. struct ggml_object * obj = ctx->objects_begin;
  4086. char * const mem_buffer = ctx->mem_buffer;
  4087. while (obj != NULL) {
  4088. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  4089. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  4090. }
  4091. obj = obj->next;
  4092. }
  4093. return NULL;
  4094. }
  4095. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  4096. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  4097. obj = obj->next;
  4098. char * const mem_buffer = ctx->mem_buffer;
  4099. while (obj != NULL) {
  4100. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  4101. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  4102. }
  4103. obj = obj->next;
  4104. }
  4105. return NULL;
  4106. }
  4107. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4108. struct ggml_object * obj = ctx->objects_begin;
  4109. char * const mem_buffer = ctx->mem_buffer;
  4110. while (obj != NULL) {
  4111. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  4112. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4113. if (strcmp(cur->name, name) == 0) {
  4114. return cur;
  4115. }
  4116. }
  4117. obj = obj->next;
  4118. }
  4119. return NULL;
  4120. }
  4121. ////////////////////////////////////////////////////////////////////////////////
  4122. // ggml_dup
  4123. static struct ggml_tensor * ggml_dup_impl(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a,
  4126. bool inplace) {
  4127. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4128. result->op = GGML_OP_DUP;
  4129. result->src[0] = a;
  4130. return result;
  4131. }
  4132. struct ggml_tensor * ggml_dup(
  4133. struct ggml_context * ctx,
  4134. struct ggml_tensor * a) {
  4135. return ggml_dup_impl(ctx, a, false);
  4136. }
  4137. struct ggml_tensor * ggml_dup_inplace(
  4138. struct ggml_context * ctx,
  4139. struct ggml_tensor * a) {
  4140. return ggml_dup_impl(ctx, a, true);
  4141. }
  4142. // ggml_add
  4143. static struct ggml_tensor * ggml_add_impl(
  4144. struct ggml_context * ctx,
  4145. struct ggml_tensor * a,
  4146. struct ggml_tensor * b,
  4147. bool inplace) {
  4148. GGML_ASSERT(ggml_can_repeat(b, a));
  4149. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4150. result->op = GGML_OP_ADD;
  4151. result->src[0] = a;
  4152. result->src[1] = b;
  4153. return result;
  4154. }
  4155. struct ggml_tensor * ggml_add(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. struct ggml_tensor * b) {
  4159. return ggml_add_impl(ctx, a, b, false);
  4160. }
  4161. struct ggml_tensor * ggml_add_inplace(
  4162. struct ggml_context * ctx,
  4163. struct ggml_tensor * a,
  4164. struct ggml_tensor * b) {
  4165. return ggml_add_impl(ctx, a, b, true);
  4166. }
  4167. // ggml_add_cast
  4168. static struct ggml_tensor * ggml_add_cast_impl(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a,
  4171. struct ggml_tensor * b,
  4172. enum ggml_type type) {
  4173. // TODO: support less-strict constraint
  4174. // GGML_ASSERT(ggml_can_repeat(b, a));
  4175. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4176. // currently only supported for quantized input and f16
  4177. GGML_ASSERT(ggml_is_quantized(a->type) ||
  4178. a->type == GGML_TYPE_F16 ||
  4179. a->type == GGML_TYPE_BF16);
  4180. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4181. result->op = GGML_OP_ADD;
  4182. result->src[0] = a;
  4183. result->src[1] = b;
  4184. return result;
  4185. }
  4186. struct ggml_tensor * ggml_add_cast(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. struct ggml_tensor * b,
  4190. enum ggml_type type) {
  4191. return ggml_add_cast_impl(ctx, a, b, type);
  4192. }
  4193. // ggml_add1
  4194. static struct ggml_tensor * ggml_add1_impl(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a,
  4197. struct ggml_tensor * b,
  4198. bool inplace) {
  4199. GGML_ASSERT(ggml_is_scalar(b));
  4200. GGML_ASSERT(ggml_is_padded_1d(a));
  4201. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4202. result->op = GGML_OP_ADD1;
  4203. result->src[0] = a;
  4204. result->src[1] = b;
  4205. return result;
  4206. }
  4207. struct ggml_tensor * ggml_add1(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a,
  4210. struct ggml_tensor * b) {
  4211. return ggml_add1_impl(ctx, a, b, false);
  4212. }
  4213. struct ggml_tensor * ggml_add1_inplace(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a,
  4216. struct ggml_tensor * b) {
  4217. return ggml_add1_impl(ctx, a, b, true);
  4218. }
  4219. // ggml_acc
  4220. static struct ggml_tensor * ggml_acc_impl(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a,
  4223. struct ggml_tensor * b,
  4224. size_t nb1,
  4225. size_t nb2,
  4226. size_t nb3,
  4227. size_t offset,
  4228. bool inplace) {
  4229. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4230. GGML_ASSERT(ggml_is_contiguous(a));
  4231. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4232. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4233. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4234. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4235. ggml_set_op_params(result, params, sizeof(params));
  4236. result->op = GGML_OP_ACC;
  4237. result->src[0] = a;
  4238. result->src[1] = b;
  4239. return result;
  4240. }
  4241. struct ggml_tensor * ggml_acc(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a,
  4244. struct ggml_tensor * b,
  4245. size_t nb1,
  4246. size_t nb2,
  4247. size_t nb3,
  4248. size_t offset) {
  4249. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4250. }
  4251. struct ggml_tensor * ggml_acc_inplace(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a,
  4254. struct ggml_tensor * b,
  4255. size_t nb1,
  4256. size_t nb2,
  4257. size_t nb3,
  4258. size_t offset) {
  4259. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4260. }
  4261. // ggml_sub
  4262. static struct ggml_tensor * ggml_sub_impl(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * a,
  4265. struct ggml_tensor * b,
  4266. bool inplace) {
  4267. GGML_ASSERT(ggml_can_repeat(b, a));
  4268. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4269. result->op = GGML_OP_SUB;
  4270. result->src[0] = a;
  4271. result->src[1] = b;
  4272. return result;
  4273. }
  4274. struct ggml_tensor * ggml_sub(
  4275. struct ggml_context * ctx,
  4276. struct ggml_tensor * a,
  4277. struct ggml_tensor * b) {
  4278. return ggml_sub_impl(ctx, a, b, false);
  4279. }
  4280. struct ggml_tensor * ggml_sub_inplace(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a,
  4283. struct ggml_tensor * b) {
  4284. return ggml_sub_impl(ctx, a, b, true);
  4285. }
  4286. // ggml_mul
  4287. static struct ggml_tensor * ggml_mul_impl(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a,
  4290. struct ggml_tensor * b,
  4291. bool inplace) {
  4292. GGML_ASSERT(ggml_can_repeat(b, a));
  4293. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4294. result->op = GGML_OP_MUL;
  4295. result->src[0] = a;
  4296. result->src[1] = b;
  4297. return result;
  4298. }
  4299. struct ggml_tensor * ggml_mul(
  4300. struct ggml_context * ctx,
  4301. struct ggml_tensor * a,
  4302. struct ggml_tensor * b) {
  4303. return ggml_mul_impl(ctx, a, b, false);
  4304. }
  4305. struct ggml_tensor * ggml_mul_inplace(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a,
  4308. struct ggml_tensor * b) {
  4309. return ggml_mul_impl(ctx, a, b, true);
  4310. }
  4311. // ggml_div
  4312. static struct ggml_tensor * ggml_div_impl(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a,
  4315. struct ggml_tensor * b,
  4316. bool inplace) {
  4317. GGML_ASSERT(ggml_can_repeat(b, a));
  4318. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4319. result->op = GGML_OP_DIV;
  4320. result->src[0] = a;
  4321. result->src[1] = b;
  4322. return result;
  4323. }
  4324. struct ggml_tensor * ggml_div(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. struct ggml_tensor * b) {
  4328. return ggml_div_impl(ctx, a, b, false);
  4329. }
  4330. struct ggml_tensor * ggml_div_inplace(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a,
  4333. struct ggml_tensor * b) {
  4334. return ggml_div_impl(ctx, a, b, true);
  4335. }
  4336. // ggml_sqr
  4337. static struct ggml_tensor * ggml_sqr_impl(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. bool inplace) {
  4341. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4342. result->op = GGML_OP_SQR;
  4343. result->src[0] = a;
  4344. return result;
  4345. }
  4346. struct ggml_tensor * ggml_sqr(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a) {
  4349. return ggml_sqr_impl(ctx, a, false);
  4350. }
  4351. struct ggml_tensor * ggml_sqr_inplace(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a) {
  4354. return ggml_sqr_impl(ctx, a, true);
  4355. }
  4356. // ggml_sqrt
  4357. static struct ggml_tensor * ggml_sqrt_impl(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. bool inplace) {
  4361. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4362. result->op = GGML_OP_SQRT;
  4363. result->src[0] = a;
  4364. return result;
  4365. }
  4366. struct ggml_tensor * ggml_sqrt(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * a) {
  4369. return ggml_sqrt_impl(ctx, a, false);
  4370. }
  4371. struct ggml_tensor * ggml_sqrt_inplace(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a) {
  4374. return ggml_sqrt_impl(ctx, a, true);
  4375. }
  4376. // ggml_log
  4377. static struct ggml_tensor * ggml_log_impl(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a,
  4380. bool inplace) {
  4381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4382. result->op = GGML_OP_LOG;
  4383. result->src[0] = a;
  4384. return result;
  4385. }
  4386. struct ggml_tensor * ggml_log(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a) {
  4389. return ggml_log_impl(ctx, a, false);
  4390. }
  4391. struct ggml_tensor * ggml_log_inplace(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a) {
  4394. return ggml_log_impl(ctx, a, true);
  4395. }
  4396. // ggml_sin
  4397. static struct ggml_tensor * ggml_sin_impl(
  4398. struct ggml_context * ctx,
  4399. struct ggml_tensor * a,
  4400. bool inplace) {
  4401. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4402. result->op = GGML_OP_SIN;
  4403. result->src[0] = a;
  4404. return result;
  4405. }
  4406. struct ggml_tensor * ggml_sin(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a) {
  4409. return ggml_sin_impl(ctx, a, false);
  4410. }
  4411. struct ggml_tensor * ggml_sin_inplace(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a) {
  4414. return ggml_sin_impl(ctx, a, true);
  4415. }
  4416. // ggml_cos
  4417. static struct ggml_tensor * ggml_cos_impl(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a,
  4420. bool inplace) {
  4421. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4422. result->op = GGML_OP_COS;
  4423. result->src[0] = a;
  4424. return result;
  4425. }
  4426. struct ggml_tensor * ggml_cos(
  4427. struct ggml_context * ctx,
  4428. struct ggml_tensor * a) {
  4429. return ggml_cos_impl(ctx, a, false);
  4430. }
  4431. struct ggml_tensor * ggml_cos_inplace(
  4432. struct ggml_context * ctx,
  4433. struct ggml_tensor * a) {
  4434. return ggml_cos_impl(ctx, a, true);
  4435. }
  4436. // ggml_sum
  4437. struct ggml_tensor * ggml_sum(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a) {
  4440. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4441. result->op = GGML_OP_SUM;
  4442. result->src[0] = a;
  4443. return result;
  4444. }
  4445. // ggml_sum_rows
  4446. struct ggml_tensor * ggml_sum_rows(
  4447. struct ggml_context * ctx,
  4448. struct ggml_tensor * a) {
  4449. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4450. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4451. ne[i] = a->ne[i];
  4452. }
  4453. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4454. result->op = GGML_OP_SUM_ROWS;
  4455. result->src[0] = a;
  4456. return result;
  4457. }
  4458. // ggml_mean
  4459. struct ggml_tensor * ggml_mean(
  4460. struct ggml_context * ctx,
  4461. struct ggml_tensor * a) {
  4462. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4463. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4464. result->op = GGML_OP_MEAN;
  4465. result->src[0] = a;
  4466. return result;
  4467. }
  4468. // ggml_argmax
  4469. struct ggml_tensor * ggml_argmax(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a) {
  4472. GGML_ASSERT(ggml_is_matrix(a));
  4473. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4474. result->op = GGML_OP_ARGMAX;
  4475. result->src[0] = a;
  4476. return result;
  4477. }
  4478. // ggml_count_equal
  4479. struct ggml_tensor * ggml_count_equal(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * a,
  4482. struct ggml_tensor * b) {
  4483. GGML_ASSERT(ggml_are_same_shape(a, b));
  4484. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, 1);
  4485. result->op = GGML_OP_COUNT_EQUAL;
  4486. result->src[0] = a;
  4487. result->src[1] = b;
  4488. return result;
  4489. }
  4490. // ggml_repeat
  4491. struct ggml_tensor * ggml_repeat(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. struct ggml_tensor * b) {
  4495. GGML_ASSERT(ggml_can_repeat(a, b));
  4496. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4497. result->op = GGML_OP_REPEAT;
  4498. result->src[0] = a;
  4499. return result;
  4500. }
  4501. // ggml_repeat_back
  4502. struct ggml_tensor * ggml_repeat_back(
  4503. struct ggml_context * ctx,
  4504. struct ggml_tensor * a,
  4505. struct ggml_tensor * b) {
  4506. GGML_ASSERT(ggml_can_repeat(b, a));
  4507. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4508. result->op = GGML_OP_REPEAT_BACK;
  4509. result->src[0] = a;
  4510. return result;
  4511. }
  4512. // ggml_concat
  4513. struct ggml_tensor * ggml_concat(
  4514. struct ggml_context * ctx,
  4515. struct ggml_tensor * a,
  4516. struct ggml_tensor * b,
  4517. int dim) {
  4518. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4519. int64_t ne[GGML_MAX_DIMS];
  4520. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4521. if (d == dim) {
  4522. ne[d] = a->ne[d] + b->ne[d];
  4523. continue;
  4524. }
  4525. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4526. ne[d] = a->ne[d];
  4527. }
  4528. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4529. ggml_set_op_params_i32(result, 0, dim);
  4530. result->op = GGML_OP_CONCAT;
  4531. result->src[0] = a;
  4532. result->src[1] = b;
  4533. return result;
  4534. }
  4535. // ggml_abs
  4536. struct ggml_tensor * ggml_abs(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a) {
  4539. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4540. }
  4541. struct ggml_tensor * ggml_abs_inplace(
  4542. struct ggml_context * ctx,
  4543. struct ggml_tensor * a) {
  4544. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4545. }
  4546. // ggml_sgn
  4547. struct ggml_tensor * ggml_sgn(
  4548. struct ggml_context * ctx,
  4549. struct ggml_tensor * a) {
  4550. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4551. }
  4552. struct ggml_tensor * ggml_sgn_inplace(
  4553. struct ggml_context * ctx,
  4554. struct ggml_tensor * a) {
  4555. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4556. }
  4557. // ggml_neg
  4558. struct ggml_tensor * ggml_neg(
  4559. struct ggml_context * ctx,
  4560. struct ggml_tensor * a) {
  4561. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4562. }
  4563. struct ggml_tensor * ggml_neg_inplace(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a) {
  4566. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4567. }
  4568. // ggml_step
  4569. struct ggml_tensor * ggml_step(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a) {
  4572. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4573. }
  4574. struct ggml_tensor * ggml_step_inplace(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a) {
  4577. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4578. }
  4579. // ggml_tanh
  4580. struct ggml_tensor * ggml_tanh(
  4581. struct ggml_context * ctx,
  4582. struct ggml_tensor * a) {
  4583. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4584. }
  4585. struct ggml_tensor * ggml_tanh_inplace(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a) {
  4588. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4589. }
  4590. // ggml_elu
  4591. struct ggml_tensor * ggml_elu(
  4592. struct ggml_context * ctx,
  4593. struct ggml_tensor * a) {
  4594. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4595. }
  4596. struct ggml_tensor * ggml_elu_inplace(
  4597. struct ggml_context * ctx,
  4598. struct ggml_tensor * a) {
  4599. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4600. }
  4601. // ggml_relu
  4602. struct ggml_tensor * ggml_relu(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a) {
  4605. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4606. }
  4607. struct ggml_tensor * ggml_relu_inplace(
  4608. struct ggml_context * ctx,
  4609. struct ggml_tensor * a) {
  4610. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4611. }
  4612. // ggml_leaky_relu
  4613. struct ggml_tensor * ggml_leaky_relu(
  4614. struct ggml_context * ctx,
  4615. struct ggml_tensor * a,
  4616. float negative_slope,
  4617. bool inplace) {
  4618. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4619. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4620. result->op = GGML_OP_LEAKY_RELU;
  4621. result->src[0] = a;
  4622. return result;
  4623. }
  4624. // ggml_sigmoid
  4625. struct ggml_tensor * ggml_sigmoid(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a) {
  4628. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4629. }
  4630. struct ggml_tensor * ggml_sigmoid_inplace(
  4631. struct ggml_context * ctx,
  4632. struct ggml_tensor * a) {
  4633. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4634. }
  4635. // ggml_gelu
  4636. struct ggml_tensor * ggml_gelu(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a) {
  4639. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4640. }
  4641. struct ggml_tensor * ggml_gelu_inplace(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a) {
  4644. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4645. }
  4646. // ggml_gelu_quick
  4647. struct ggml_tensor * ggml_gelu_quick(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * a) {
  4650. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4651. }
  4652. struct ggml_tensor * ggml_gelu_quick_inplace(
  4653. struct ggml_context * ctx,
  4654. struct ggml_tensor * a) {
  4655. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4656. }
  4657. // ggml_silu
  4658. struct ggml_tensor * ggml_silu(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a) {
  4661. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4662. }
  4663. struct ggml_tensor * ggml_silu_inplace(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a) {
  4666. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4667. }
  4668. // ggml_silu_back
  4669. struct ggml_tensor * ggml_silu_back(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. struct ggml_tensor * b) {
  4673. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4674. result->op = GGML_OP_SILU_BACK;
  4675. result->src[0] = a;
  4676. result->src[1] = b;
  4677. return result;
  4678. }
  4679. // ggml hardswish
  4680. struct ggml_tensor * ggml_hardswish(
  4681. struct ggml_context * ctx,
  4682. struct ggml_tensor * a) {
  4683. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4684. }
  4685. // ggml hardsigmoid
  4686. struct ggml_tensor * ggml_hardsigmoid(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a) {
  4689. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4690. }
  4691. // ggml exp
  4692. struct ggml_tensor * ggml_exp(
  4693. struct ggml_context * ctx,
  4694. struct ggml_tensor * a) {
  4695. return ggml_unary(ctx, a, GGML_UNARY_OP_EXP);
  4696. }
  4697. struct ggml_tensor * ggml_exp_inplace(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a) {
  4700. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP);
  4701. }
  4702. // ggml_norm
  4703. static struct ggml_tensor * ggml_norm_impl(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. float eps,
  4707. bool inplace) {
  4708. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4709. ggml_set_op_params(result, &eps, sizeof(eps));
  4710. result->op = GGML_OP_NORM;
  4711. result->src[0] = a;
  4712. return result;
  4713. }
  4714. struct ggml_tensor * ggml_norm(
  4715. struct ggml_context * ctx,
  4716. struct ggml_tensor * a,
  4717. float eps) {
  4718. return ggml_norm_impl(ctx, a, eps, false);
  4719. }
  4720. struct ggml_tensor * ggml_norm_inplace(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. float eps) {
  4724. return ggml_norm_impl(ctx, a, eps, true);
  4725. }
  4726. // ggml_rms_norm
  4727. static struct ggml_tensor * ggml_rms_norm_impl(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a,
  4730. float eps,
  4731. bool inplace) {
  4732. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4733. ggml_set_op_params(result, &eps, sizeof(eps));
  4734. result->op = GGML_OP_RMS_NORM;
  4735. result->src[0] = a;
  4736. return result;
  4737. }
  4738. struct ggml_tensor * ggml_rms_norm(
  4739. struct ggml_context * ctx,
  4740. struct ggml_tensor * a,
  4741. float eps) {
  4742. return ggml_rms_norm_impl(ctx, a, eps, false);
  4743. }
  4744. struct ggml_tensor * ggml_rms_norm_inplace(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a,
  4747. float eps) {
  4748. return ggml_rms_norm_impl(ctx, a, eps, true);
  4749. }
  4750. // ggml_rms_norm_back
  4751. struct ggml_tensor * ggml_rms_norm_back(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. struct ggml_tensor * b,
  4755. float eps) {
  4756. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4757. ggml_set_op_params(result, &eps, sizeof(eps));
  4758. result->op = GGML_OP_RMS_NORM_BACK;
  4759. result->src[0] = a;
  4760. result->src[1] = b;
  4761. return result;
  4762. }
  4763. // ggml_group_norm
  4764. static struct ggml_tensor * ggml_group_norm_impl(
  4765. struct ggml_context * ctx,
  4766. struct ggml_tensor * a,
  4767. int n_groups,
  4768. float eps,
  4769. bool inplace) {
  4770. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4771. ggml_set_op_params_i32(result, 0, n_groups);
  4772. ggml_set_op_params_f32(result, 1, eps);
  4773. result->op = GGML_OP_GROUP_NORM;
  4774. result->src[0] = a;
  4775. return result;
  4776. }
  4777. struct ggml_tensor * ggml_group_norm(
  4778. struct ggml_context * ctx,
  4779. struct ggml_tensor * a,
  4780. int n_groups,
  4781. float eps) {
  4782. return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
  4783. }
  4784. struct ggml_tensor * ggml_group_norm_inplace(
  4785. struct ggml_context * ctx,
  4786. struct ggml_tensor * a,
  4787. int n_groups,
  4788. float eps) {
  4789. return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
  4790. }
  4791. // ggml_mul_mat
  4792. struct ggml_tensor * ggml_mul_mat(
  4793. struct ggml_context * ctx,
  4794. struct ggml_tensor * a,
  4795. struct ggml_tensor * b) {
  4796. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4797. GGML_ASSERT(!ggml_is_transposed(a));
  4798. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4799. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4800. result->op = GGML_OP_MUL_MAT;
  4801. result->src[0] = a;
  4802. result->src[1] = b;
  4803. return result;
  4804. }
  4805. void ggml_mul_mat_set_prec(
  4806. struct ggml_tensor * a,
  4807. enum ggml_prec prec) {
  4808. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4809. const int32_t prec_i32 = (int32_t) prec;
  4810. ggml_set_op_params_i32(a, 0, prec_i32);
  4811. }
  4812. // ggml_mul_mat_id
  4813. /*
  4814. c = ggml_mul_mat_id(ctx, as, b, ids);
  4815. as -> [cols, rows, n_expert]
  4816. ids -> [n_experts_used, n_tokens] (i32)
  4817. b -> [cols, n_expert_used, n_tokens]
  4818. c -> [rows, n_expert_used, n_tokens]
  4819. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4820. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4821. */
  4822. struct ggml_tensor * ggml_mul_mat_id(
  4823. struct ggml_context * ctx,
  4824. struct ggml_tensor * as,
  4825. struct ggml_tensor * b,
  4826. struct ggml_tensor * ids) {
  4827. GGML_ASSERT(!ggml_is_transposed(as));
  4828. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4829. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4830. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4831. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4832. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4833. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4834. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4835. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4836. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4837. result->op = GGML_OP_MUL_MAT_ID;
  4838. result->src[0] = as;
  4839. result->src[1] = b;
  4840. result->src[2] = ids;
  4841. return result;
  4842. }
  4843. // ggml_out_prod
  4844. struct ggml_tensor * ggml_out_prod(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. struct ggml_tensor * b) {
  4848. GGML_ASSERT(ggml_can_out_prod(a, b));
  4849. GGML_ASSERT(!ggml_is_transposed(a));
  4850. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4851. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4852. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4853. result->op = GGML_OP_OUT_PROD;
  4854. result->src[0] = a;
  4855. result->src[1] = b;
  4856. return result;
  4857. }
  4858. // ggml_scale
  4859. static struct ggml_tensor * ggml_scale_impl(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. float s,
  4863. bool inplace) {
  4864. GGML_ASSERT(ggml_is_padded_1d(a));
  4865. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4866. ggml_set_op_params(result, &s, sizeof(s));
  4867. result->op = GGML_OP_SCALE;
  4868. result->src[0] = a;
  4869. return result;
  4870. }
  4871. struct ggml_tensor * ggml_scale(
  4872. struct ggml_context * ctx,
  4873. struct ggml_tensor * a,
  4874. float s) {
  4875. return ggml_scale_impl(ctx, a, s, false);
  4876. }
  4877. struct ggml_tensor * ggml_scale_inplace(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. float s) {
  4881. return ggml_scale_impl(ctx, a, s, true);
  4882. }
  4883. // ggml_set
  4884. static struct ggml_tensor * ggml_set_impl(
  4885. struct ggml_context * ctx,
  4886. struct ggml_tensor * a,
  4887. struct ggml_tensor * b,
  4888. size_t nb1,
  4889. size_t nb2,
  4890. size_t nb3,
  4891. size_t offset,
  4892. bool inplace) {
  4893. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4894. // make a view of the destination
  4895. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4896. GGML_ASSERT(offset < (size_t)(1 << 30));
  4897. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4898. ggml_set_op_params(result, params, sizeof(params));
  4899. result->op = GGML_OP_SET;
  4900. result->src[0] = a;
  4901. result->src[1] = b;
  4902. return result;
  4903. }
  4904. struct ggml_tensor * ggml_set(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. struct ggml_tensor * b,
  4908. size_t nb1,
  4909. size_t nb2,
  4910. size_t nb3,
  4911. size_t offset) {
  4912. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4913. }
  4914. struct ggml_tensor * ggml_set_inplace(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. struct ggml_tensor * b,
  4918. size_t nb1,
  4919. size_t nb2,
  4920. size_t nb3,
  4921. size_t offset) {
  4922. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4923. }
  4924. struct ggml_tensor * ggml_set_1d(
  4925. struct ggml_context * ctx,
  4926. struct ggml_tensor * a,
  4927. struct ggml_tensor * b,
  4928. size_t offset) {
  4929. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4930. }
  4931. struct ggml_tensor * ggml_set_1d_inplace(
  4932. struct ggml_context * ctx,
  4933. struct ggml_tensor * a,
  4934. struct ggml_tensor * b,
  4935. size_t offset) {
  4936. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4937. }
  4938. struct ggml_tensor * ggml_set_2d(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. struct ggml_tensor * b,
  4942. size_t nb1,
  4943. size_t offset) {
  4944. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4945. }
  4946. struct ggml_tensor * ggml_set_2d_inplace(
  4947. struct ggml_context * ctx,
  4948. struct ggml_tensor * a,
  4949. struct ggml_tensor * b,
  4950. size_t nb1,
  4951. size_t offset) {
  4952. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4953. }
  4954. // ggml_cpy
  4955. static struct ggml_tensor * ggml_cpy_impl(
  4956. struct ggml_context * ctx,
  4957. struct ggml_tensor * a,
  4958. struct ggml_tensor * b) {
  4959. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4960. // make a view of the destination
  4961. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4962. if (strlen(b->name) > 0) {
  4963. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4964. } else {
  4965. ggml_format_name(result, "%s (copy)", a->name);
  4966. }
  4967. result->op = GGML_OP_CPY;
  4968. result->src[0] = a;
  4969. result->src[1] = b;
  4970. return result;
  4971. }
  4972. struct ggml_tensor * ggml_cpy(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. struct ggml_tensor * b) {
  4976. return ggml_cpy_impl(ctx, a, b);
  4977. }
  4978. struct ggml_tensor * ggml_cast(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. enum ggml_type type) {
  4982. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4983. ggml_format_name(result, "%s (copy)", a->name);
  4984. result->op = GGML_OP_CPY;
  4985. result->src[0] = a;
  4986. result->src[1] = result;
  4987. return result;
  4988. }
  4989. // ggml_cont
  4990. static struct ggml_tensor * ggml_cont_impl(
  4991. struct ggml_context * ctx,
  4992. struct ggml_tensor * a) {
  4993. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4994. ggml_format_name(result, "%s (cont)", a->name);
  4995. result->op = GGML_OP_CONT;
  4996. result->src[0] = a;
  4997. return result;
  4998. }
  4999. struct ggml_tensor * ggml_cont(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a) {
  5002. return ggml_cont_impl(ctx, a);
  5003. }
  5004. // make contiguous, with new shape
  5005. GGML_API struct ggml_tensor * ggml_cont_1d(
  5006. struct ggml_context * ctx,
  5007. struct ggml_tensor * a,
  5008. int64_t ne0) {
  5009. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  5010. }
  5011. GGML_API struct ggml_tensor * ggml_cont_2d(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. int64_t ne0,
  5015. int64_t ne1) {
  5016. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  5017. }
  5018. GGML_API struct ggml_tensor * ggml_cont_3d(
  5019. struct ggml_context * ctx,
  5020. struct ggml_tensor * a,
  5021. int64_t ne0,
  5022. int64_t ne1,
  5023. int64_t ne2) {
  5024. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  5025. }
  5026. struct ggml_tensor * ggml_cont_4d(
  5027. struct ggml_context * ctx,
  5028. struct ggml_tensor * a,
  5029. int64_t ne0,
  5030. int64_t ne1,
  5031. int64_t ne2,
  5032. int64_t ne3) {
  5033. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  5034. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5035. ggml_format_name(result, "%s (cont)", a->name);
  5036. result->op = GGML_OP_CONT;
  5037. result->src[0] = a;
  5038. return result;
  5039. }
  5040. // ggml_reshape
  5041. struct ggml_tensor * ggml_reshape(
  5042. struct ggml_context * ctx,
  5043. struct ggml_tensor * a,
  5044. struct ggml_tensor * b) {
  5045. GGML_ASSERT(ggml_is_contiguous(a));
  5046. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  5047. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5048. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  5049. ggml_format_name(result, "%s (reshaped)", a->name);
  5050. result->op = GGML_OP_RESHAPE;
  5051. result->src[0] = a;
  5052. return result;
  5053. }
  5054. struct ggml_tensor * ggml_reshape_1d(
  5055. struct ggml_context * ctx,
  5056. struct ggml_tensor * a,
  5057. int64_t ne0) {
  5058. GGML_ASSERT(ggml_is_contiguous(a));
  5059. GGML_ASSERT(ggml_nelements(a) == ne0);
  5060. const int64_t ne[1] = { ne0 };
  5061. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5062. ggml_format_name(result, "%s (reshaped)", a->name);
  5063. result->op = GGML_OP_RESHAPE;
  5064. result->src[0] = a;
  5065. return result;
  5066. }
  5067. struct ggml_tensor * ggml_reshape_2d(
  5068. struct ggml_context * ctx,
  5069. struct ggml_tensor * a,
  5070. int64_t ne0,
  5071. int64_t ne1) {
  5072. GGML_ASSERT(ggml_is_contiguous(a));
  5073. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5074. const int64_t ne[2] = { ne0, ne1 };
  5075. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5076. ggml_format_name(result, "%s (reshaped)", a->name);
  5077. result->op = GGML_OP_RESHAPE;
  5078. result->src[0] = a;
  5079. return result;
  5080. }
  5081. struct ggml_tensor * ggml_reshape_3d(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. int64_t ne0,
  5085. int64_t ne1,
  5086. int64_t ne2) {
  5087. GGML_ASSERT(ggml_is_contiguous(a));
  5088. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5089. const int64_t ne[3] = { ne0, ne1, ne2 };
  5090. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5091. ggml_format_name(result, "%s (reshaped)", a->name);
  5092. result->op = GGML_OP_RESHAPE;
  5093. result->src[0] = a;
  5094. return result;
  5095. }
  5096. struct ggml_tensor * ggml_reshape_4d(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. int64_t ne0,
  5100. int64_t ne1,
  5101. int64_t ne2,
  5102. int64_t ne3) {
  5103. GGML_ASSERT(ggml_is_contiguous(a));
  5104. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5105. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5106. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5107. ggml_format_name(result, "%s (reshaped)", a->name);
  5108. result->op = GGML_OP_RESHAPE;
  5109. result->src[0] = a;
  5110. return result;
  5111. }
  5112. static struct ggml_tensor * ggml_view_impl(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a,
  5115. int n_dims,
  5116. const int64_t * ne,
  5117. size_t offset) {
  5118. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5119. ggml_format_name(result, "%s (view)", a->name);
  5120. ggml_set_op_params(result, &offset, sizeof(offset));
  5121. result->op = GGML_OP_VIEW;
  5122. result->src[0] = a;
  5123. return result;
  5124. }
  5125. // ggml_view_1d
  5126. struct ggml_tensor * ggml_view_1d(
  5127. struct ggml_context * ctx,
  5128. struct ggml_tensor * a,
  5129. int64_t ne0,
  5130. size_t offset) {
  5131. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5132. return result;
  5133. }
  5134. // ggml_view_2d
  5135. struct ggml_tensor * ggml_view_2d(
  5136. struct ggml_context * ctx,
  5137. struct ggml_tensor * a,
  5138. int64_t ne0,
  5139. int64_t ne1,
  5140. size_t nb1,
  5141. size_t offset) {
  5142. const int64_t ne[2] = { ne0, ne1 };
  5143. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5144. result->nb[1] = nb1;
  5145. result->nb[2] = result->nb[1]*ne1;
  5146. result->nb[3] = result->nb[2];
  5147. return result;
  5148. }
  5149. // ggml_view_3d
  5150. struct ggml_tensor * ggml_view_3d(
  5151. struct ggml_context * ctx,
  5152. struct ggml_tensor * a,
  5153. int64_t ne0,
  5154. int64_t ne1,
  5155. int64_t ne2,
  5156. size_t nb1,
  5157. size_t nb2,
  5158. size_t offset) {
  5159. const int64_t ne[3] = { ne0, ne1, ne2 };
  5160. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5161. result->nb[1] = nb1;
  5162. result->nb[2] = nb2;
  5163. result->nb[3] = result->nb[2]*ne2;
  5164. return result;
  5165. }
  5166. // ggml_view_4d
  5167. struct ggml_tensor * ggml_view_4d(
  5168. struct ggml_context * ctx,
  5169. struct ggml_tensor * a,
  5170. int64_t ne0,
  5171. int64_t ne1,
  5172. int64_t ne2,
  5173. int64_t ne3,
  5174. size_t nb1,
  5175. size_t nb2,
  5176. size_t nb3,
  5177. size_t offset) {
  5178. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5179. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5180. result->nb[1] = nb1;
  5181. result->nb[2] = nb2;
  5182. result->nb[3] = nb3;
  5183. return result;
  5184. }
  5185. // ggml_permute
  5186. struct ggml_tensor * ggml_permute(
  5187. struct ggml_context * ctx,
  5188. struct ggml_tensor * a,
  5189. int axis0,
  5190. int axis1,
  5191. int axis2,
  5192. int axis3) {
  5193. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5194. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5195. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5196. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5197. GGML_ASSERT(axis0 != axis1);
  5198. GGML_ASSERT(axis0 != axis2);
  5199. GGML_ASSERT(axis0 != axis3);
  5200. GGML_ASSERT(axis1 != axis2);
  5201. GGML_ASSERT(axis1 != axis3);
  5202. GGML_ASSERT(axis2 != axis3);
  5203. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5204. ggml_format_name(result, "%s (permuted)", a->name);
  5205. int ne[GGML_MAX_DIMS];
  5206. int nb[GGML_MAX_DIMS];
  5207. ne[axis0] = a->ne[0];
  5208. ne[axis1] = a->ne[1];
  5209. ne[axis2] = a->ne[2];
  5210. ne[axis3] = a->ne[3];
  5211. nb[axis0] = a->nb[0];
  5212. nb[axis1] = a->nb[1];
  5213. nb[axis2] = a->nb[2];
  5214. nb[axis3] = a->nb[3];
  5215. result->ne[0] = ne[0];
  5216. result->ne[1] = ne[1];
  5217. result->ne[2] = ne[2];
  5218. result->ne[3] = ne[3];
  5219. result->nb[0] = nb[0];
  5220. result->nb[1] = nb[1];
  5221. result->nb[2] = nb[2];
  5222. result->nb[3] = nb[3];
  5223. result->op = GGML_OP_PERMUTE;
  5224. result->src[0] = a;
  5225. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5226. ggml_set_op_params(result, params, sizeof(params));
  5227. return result;
  5228. }
  5229. // ggml_transpose
  5230. struct ggml_tensor * ggml_transpose(
  5231. struct ggml_context * ctx,
  5232. struct ggml_tensor * a) {
  5233. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5234. ggml_format_name(result, "%s (transposed)", a->name);
  5235. result->ne[0] = a->ne[1];
  5236. result->ne[1] = a->ne[0];
  5237. result->nb[0] = a->nb[1];
  5238. result->nb[1] = a->nb[0];
  5239. result->op = GGML_OP_TRANSPOSE;
  5240. result->src[0] = a;
  5241. return result;
  5242. }
  5243. // ggml_get_rows
  5244. struct ggml_tensor * ggml_get_rows(
  5245. struct ggml_context * ctx,
  5246. struct ggml_tensor * a,
  5247. struct ggml_tensor * b) {
  5248. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5249. GGML_ASSERT(b->ne[3] == 1);
  5250. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5251. // TODO: implement non F32 return
  5252. enum ggml_type type = GGML_TYPE_F32;
  5253. if (a->type == GGML_TYPE_I32) {
  5254. type = a->type;
  5255. }
  5256. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  5257. result->op = GGML_OP_GET_ROWS;
  5258. result->src[0] = a;
  5259. result->src[1] = b;
  5260. return result;
  5261. }
  5262. // ggml_get_rows_back
  5263. struct ggml_tensor * ggml_get_rows_back(
  5264. struct ggml_context * ctx,
  5265. struct ggml_tensor * a,
  5266. struct ggml_tensor * b,
  5267. struct ggml_tensor * c) {
  5268. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5269. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5270. // TODO: implement non F32 return
  5271. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5272. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5273. result->op = GGML_OP_GET_ROWS_BACK;
  5274. result->src[0] = a;
  5275. result->src[1] = b;
  5276. return result;
  5277. }
  5278. // ggml_diag
  5279. struct ggml_tensor * ggml_diag(
  5280. struct ggml_context * ctx,
  5281. struct ggml_tensor * a) {
  5282. GGML_ASSERT(a->ne[1] == 1);
  5283. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5284. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5285. result->op = GGML_OP_DIAG;
  5286. result->src[0] = a;
  5287. return result;
  5288. }
  5289. // ggml_diag_mask_inf
  5290. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5291. struct ggml_context * ctx,
  5292. struct ggml_tensor * a,
  5293. int n_past,
  5294. bool inplace) {
  5295. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5296. int32_t params[] = { n_past };
  5297. ggml_set_op_params(result, params, sizeof(params));
  5298. result->op = GGML_OP_DIAG_MASK_INF;
  5299. result->src[0] = a;
  5300. return result;
  5301. }
  5302. struct ggml_tensor * ggml_diag_mask_inf(
  5303. struct ggml_context * ctx,
  5304. struct ggml_tensor * a,
  5305. int n_past) {
  5306. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5307. }
  5308. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5309. struct ggml_context * ctx,
  5310. struct ggml_tensor * a,
  5311. int n_past) {
  5312. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5313. }
  5314. // ggml_diag_mask_zero
  5315. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5316. struct ggml_context * ctx,
  5317. struct ggml_tensor * a,
  5318. int n_past,
  5319. bool inplace) {
  5320. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5321. int32_t params[] = { n_past };
  5322. ggml_set_op_params(result, params, sizeof(params));
  5323. result->op = GGML_OP_DIAG_MASK_ZERO;
  5324. result->src[0] = a;
  5325. return result;
  5326. }
  5327. struct ggml_tensor * ggml_diag_mask_zero(
  5328. struct ggml_context * ctx,
  5329. struct ggml_tensor * a,
  5330. int n_past) {
  5331. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5332. }
  5333. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5334. struct ggml_context * ctx,
  5335. struct ggml_tensor * a,
  5336. int n_past) {
  5337. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5338. }
  5339. // ggml_soft_max
  5340. static struct ggml_tensor * ggml_soft_max_impl(
  5341. struct ggml_context * ctx,
  5342. struct ggml_tensor * a,
  5343. struct ggml_tensor * mask,
  5344. float scale,
  5345. float max_bias,
  5346. bool inplace) {
  5347. GGML_ASSERT(ggml_is_contiguous(a));
  5348. if (mask) {
  5349. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5350. GGML_ASSERT(ggml_is_contiguous(mask));
  5351. GGML_ASSERT(ggml_is_matrix(mask));
  5352. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5353. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5354. }
  5355. if (max_bias > 0.0f) {
  5356. GGML_ASSERT(mask);
  5357. }
  5358. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5359. float params[] = { scale, max_bias };
  5360. ggml_set_op_params(result, params, sizeof(params));
  5361. result->op = GGML_OP_SOFT_MAX;
  5362. result->src[0] = a;
  5363. result->src[1] = mask;
  5364. return result;
  5365. }
  5366. struct ggml_tensor * ggml_soft_max(
  5367. struct ggml_context * ctx,
  5368. struct ggml_tensor * a) {
  5369. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5370. }
  5371. struct ggml_tensor * ggml_soft_max_inplace(
  5372. struct ggml_context * ctx,
  5373. struct ggml_tensor * a) {
  5374. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5375. }
  5376. struct ggml_tensor * ggml_soft_max_ext(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. struct ggml_tensor * mask,
  5380. float scale,
  5381. float max_bias) {
  5382. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5383. }
  5384. // ggml_soft_max_back
  5385. static struct ggml_tensor * ggml_soft_max_back_impl(
  5386. struct ggml_context * ctx,
  5387. struct ggml_tensor * a,
  5388. struct ggml_tensor * b,
  5389. bool inplace) {
  5390. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5391. result->op = GGML_OP_SOFT_MAX_BACK;
  5392. result->src[0] = a;
  5393. result->src[1] = b;
  5394. return result;
  5395. }
  5396. struct ggml_tensor * ggml_soft_max_back(
  5397. struct ggml_context * ctx,
  5398. struct ggml_tensor * a,
  5399. struct ggml_tensor * b) {
  5400. return ggml_soft_max_back_impl(ctx, a, b, false);
  5401. }
  5402. struct ggml_tensor * ggml_soft_max_back_inplace(
  5403. struct ggml_context * ctx,
  5404. struct ggml_tensor * a,
  5405. struct ggml_tensor * b) {
  5406. return ggml_soft_max_back_impl(ctx, a, b, true);
  5407. }
  5408. // ggml_rope
  5409. static struct ggml_tensor * ggml_rope_impl(
  5410. struct ggml_context * ctx,
  5411. struct ggml_tensor * a,
  5412. struct ggml_tensor * b,
  5413. struct ggml_tensor * c,
  5414. int n_dims,
  5415. int mode,
  5416. int n_ctx_orig,
  5417. float freq_base,
  5418. float freq_scale,
  5419. float ext_factor,
  5420. float attn_factor,
  5421. float beta_fast,
  5422. float beta_slow,
  5423. bool inplace) {
  5424. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5425. GGML_ASSERT(ggml_is_vector(b));
  5426. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5427. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5428. if (c) {
  5429. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5430. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5431. }
  5432. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5433. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5434. memcpy(params + 5, &freq_base, sizeof(float));
  5435. memcpy(params + 6, &freq_scale, sizeof(float));
  5436. memcpy(params + 7, &ext_factor, sizeof(float));
  5437. memcpy(params + 8, &attn_factor, sizeof(float));
  5438. memcpy(params + 9, &beta_fast, sizeof(float));
  5439. memcpy(params + 10, &beta_slow, sizeof(float));
  5440. ggml_set_op_params(result, params, sizeof(params));
  5441. result->op = GGML_OP_ROPE;
  5442. result->src[0] = a;
  5443. result->src[1] = b;
  5444. result->src[2] = c;
  5445. return result;
  5446. }
  5447. struct ggml_tensor * ggml_rope(
  5448. struct ggml_context * ctx,
  5449. struct ggml_tensor * a,
  5450. struct ggml_tensor * b,
  5451. int n_dims,
  5452. int mode) {
  5453. return ggml_rope_impl(
  5454. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5455. );
  5456. }
  5457. struct ggml_tensor * ggml_rope_inplace(
  5458. struct ggml_context * ctx,
  5459. struct ggml_tensor * a,
  5460. struct ggml_tensor * b,
  5461. int n_dims,
  5462. int mode) {
  5463. return ggml_rope_impl(
  5464. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5465. );
  5466. }
  5467. struct ggml_tensor * ggml_rope_ext(
  5468. struct ggml_context * ctx,
  5469. struct ggml_tensor * a,
  5470. struct ggml_tensor * b,
  5471. struct ggml_tensor * c,
  5472. int n_dims,
  5473. int mode,
  5474. int n_ctx_orig,
  5475. float freq_base,
  5476. float freq_scale,
  5477. float ext_factor,
  5478. float attn_factor,
  5479. float beta_fast,
  5480. float beta_slow) {
  5481. return ggml_rope_impl(
  5482. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5483. ext_factor, attn_factor, beta_fast, beta_slow, false
  5484. );
  5485. }
  5486. struct ggml_tensor * ggml_rope_ext_inplace(
  5487. struct ggml_context * ctx,
  5488. struct ggml_tensor * a,
  5489. struct ggml_tensor * b,
  5490. struct ggml_tensor * c,
  5491. int n_dims,
  5492. int mode,
  5493. int n_ctx_orig,
  5494. float freq_base,
  5495. float freq_scale,
  5496. float ext_factor,
  5497. float attn_factor,
  5498. float beta_fast,
  5499. float beta_slow) {
  5500. return ggml_rope_impl(
  5501. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5502. ext_factor, attn_factor, beta_fast, beta_slow, true
  5503. );
  5504. }
  5505. struct ggml_tensor * ggml_rope_custom(
  5506. struct ggml_context * ctx,
  5507. struct ggml_tensor * a,
  5508. struct ggml_tensor * b,
  5509. int n_dims,
  5510. int mode,
  5511. int n_ctx_orig,
  5512. float freq_base,
  5513. float freq_scale,
  5514. float ext_factor,
  5515. float attn_factor,
  5516. float beta_fast,
  5517. float beta_slow) {
  5518. return ggml_rope_impl(
  5519. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5520. ext_factor, attn_factor, beta_fast, beta_slow, false
  5521. );
  5522. }
  5523. struct ggml_tensor * ggml_rope_custom_inplace(
  5524. struct ggml_context * ctx,
  5525. struct ggml_tensor * a,
  5526. struct ggml_tensor * b,
  5527. int n_dims,
  5528. int mode,
  5529. int n_ctx_orig,
  5530. float freq_base,
  5531. float freq_scale,
  5532. float ext_factor,
  5533. float attn_factor,
  5534. float beta_fast,
  5535. float beta_slow) {
  5536. return ggml_rope_impl(
  5537. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5538. ext_factor, attn_factor, beta_fast, beta_slow, true
  5539. );
  5540. }
  5541. // ggml_rope_back
  5542. struct ggml_tensor * ggml_rope_back(
  5543. struct ggml_context * ctx,
  5544. struct ggml_tensor * a,
  5545. struct ggml_tensor * b,
  5546. struct ggml_tensor * c,
  5547. int n_dims,
  5548. int mode,
  5549. int n_ctx_orig,
  5550. float freq_base,
  5551. float freq_scale,
  5552. float ext_factor,
  5553. float attn_factor,
  5554. float beta_fast,
  5555. float beta_slow) {
  5556. GGML_ASSERT(ggml_is_vector(b));
  5557. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5558. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5559. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5560. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5561. memcpy(params + 5, &freq_base, sizeof(float));
  5562. memcpy(params + 6, &freq_scale, sizeof(float));
  5563. memcpy(params + 7, &ext_factor, sizeof(float));
  5564. memcpy(params + 8, &attn_factor, sizeof(float));
  5565. memcpy(params + 9, &beta_fast, sizeof(float));
  5566. memcpy(params + 10, &beta_slow, sizeof(float));
  5567. ggml_set_op_params(result, params, sizeof(params));
  5568. result->op = GGML_OP_ROPE_BACK;
  5569. result->src[0] = a;
  5570. result->src[1] = b;
  5571. result->src[2] = c;
  5572. return result;
  5573. }
  5574. // ggml_clamp
  5575. struct ggml_tensor * ggml_clamp(
  5576. struct ggml_context * ctx,
  5577. struct ggml_tensor * a,
  5578. float min,
  5579. float max) {
  5580. // TODO: when implement backward, fix this:
  5581. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5582. float params[] = { min, max };
  5583. ggml_set_op_params(result, params, sizeof(params));
  5584. result->op = GGML_OP_CLAMP;
  5585. result->src[0] = a;
  5586. return result;
  5587. }
  5588. // ggml_conv_1d
  5589. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5590. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5591. }
  5592. GGML_API struct ggml_tensor * ggml_conv_1d(
  5593. struct ggml_context * ctx,
  5594. struct ggml_tensor * a,
  5595. struct ggml_tensor * b,
  5596. int s0,
  5597. int p0,
  5598. int d0) {
  5599. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5600. struct ggml_tensor * result =
  5601. ggml_mul_mat(ctx,
  5602. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5603. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5604. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5605. return result;
  5606. }
  5607. // ggml_conv_1d_ph
  5608. struct ggml_tensor* ggml_conv_1d_ph(
  5609. struct ggml_context * ctx,
  5610. struct ggml_tensor * a,
  5611. struct ggml_tensor * b,
  5612. int s,
  5613. int d) {
  5614. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5615. }
  5616. // ggml_conv_transpose_1d
  5617. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5618. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5619. }
  5620. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5621. struct ggml_context * ctx,
  5622. struct ggml_tensor * a,
  5623. struct ggml_tensor * b,
  5624. int s0,
  5625. int p0,
  5626. int d0) {
  5627. GGML_ASSERT(ggml_is_matrix(b));
  5628. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5629. GGML_ASSERT(a->ne[3] == 1);
  5630. GGML_ASSERT(p0 == 0);
  5631. GGML_ASSERT(d0 == 1);
  5632. const int64_t ne[4] = {
  5633. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5634. a->ne[1], b->ne[2], 1,
  5635. };
  5636. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5637. int32_t params[] = { s0, p0, d0 };
  5638. ggml_set_op_params(result, params, sizeof(params));
  5639. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5640. result->src[0] = a;
  5641. result->src[1] = b;
  5642. return result;
  5643. }
  5644. // ggml_conv_depthwise
  5645. struct ggml_tensor * ggml_conv_depthwise_2d(
  5646. struct ggml_context * ctx,
  5647. struct ggml_tensor * a,
  5648. struct ggml_tensor * b,
  5649. int s0,
  5650. int s1,
  5651. int p0,
  5652. int p1,
  5653. int d0,
  5654. int d1) {
  5655. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5656. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5657. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5658. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5659. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5660. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5661. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5662. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5663. return result;
  5664. }
  5665. // ggml_conv_2d
  5666. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5667. // a: [OC,IC, KH, KW]
  5668. // b: [N, IC, IH, IW]
  5669. // result: [N, OH, OW, IC*KH*KW]
  5670. struct ggml_tensor * ggml_im2col(
  5671. struct ggml_context * ctx,
  5672. struct ggml_tensor * a,
  5673. struct ggml_tensor * b,
  5674. int s0,
  5675. int s1,
  5676. int p0,
  5677. int p1,
  5678. int d0,
  5679. int d1,
  5680. bool is_2D,
  5681. enum ggml_type dst_type) {
  5682. if(is_2D) {
  5683. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5684. } else {
  5685. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5686. GGML_ASSERT(b->ne[3] == 1);
  5687. }
  5688. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5689. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5690. GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a");
  5691. GGML_ASSERT((OW > 0) && "b too small compared to a");
  5692. const int64_t ne[4] = {
  5693. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5694. OW,
  5695. is_2D ? OH : b->ne[2],
  5696. is_2D ? b->ne[3] : 1,
  5697. };
  5698. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5699. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5700. ggml_set_op_params(result, params, sizeof(params));
  5701. result->op = GGML_OP_IM2COL;
  5702. result->src[0] = a;
  5703. result->src[1] = b;
  5704. return result;
  5705. }
  5706. struct ggml_tensor * ggml_im2col_back(
  5707. struct ggml_context * ctx,
  5708. struct ggml_tensor * a,
  5709. struct ggml_tensor * b,
  5710. int64_t * ne,
  5711. int s0,
  5712. int s1,
  5713. int p0,
  5714. int p1,
  5715. int d0,
  5716. int d1,
  5717. bool is_2D) {
  5718. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5719. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5720. ggml_set_op_params(result, params, sizeof(params));
  5721. result->op = GGML_OP_IM2COL_BACK;
  5722. result->src[0] = a;
  5723. result->src[1] = b;
  5724. return result;
  5725. }
  5726. // a: [OC,IC, KH, KW]
  5727. // b: [N, IC, IH, IW]
  5728. // result: [N, OC, OH, OW]
  5729. struct ggml_tensor * ggml_conv_2d(
  5730. struct ggml_context * ctx,
  5731. struct ggml_tensor * a,
  5732. struct ggml_tensor * b,
  5733. int s0,
  5734. int s1,
  5735. int p0,
  5736. int p1,
  5737. int d0,
  5738. int d1) {
  5739. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); // [N, OH, OW, IC * KH * KW]
  5740. struct ggml_tensor * result =
  5741. ggml_mul_mat(ctx,
  5742. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5743. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5744. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5745. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5746. return result;
  5747. }
  5748. // ggml_conv_2d_sk_p0
  5749. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5750. struct ggml_context * ctx,
  5751. struct ggml_tensor * a,
  5752. struct ggml_tensor * b) {
  5753. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5754. }
  5755. // ggml_conv_2d_s1_ph
  5756. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5757. struct ggml_context * ctx,
  5758. struct ggml_tensor * a,
  5759. struct ggml_tensor * b) {
  5760. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5761. }
  5762. // ggml_conv_transpose_2d_p0
  5763. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5764. return (ins - 1) * s - 2 * p + ks;
  5765. }
  5766. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5767. struct ggml_context * ctx,
  5768. struct ggml_tensor * a,
  5769. struct ggml_tensor * b,
  5770. int stride) {
  5771. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5772. const int64_t ne[4] = {
  5773. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5774. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5775. a->ne[2], b->ne[3],
  5776. };
  5777. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5778. ggml_set_op_params_i32(result, 0, stride);
  5779. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5780. result->src[0] = a;
  5781. result->src[1] = b;
  5782. return result;
  5783. }
  5784. // ggml_pool_*
  5785. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5786. return (ins + 2 * p - ks) / s + 1;
  5787. }
  5788. // ggml_pool_1d
  5789. struct ggml_tensor * ggml_pool_1d(
  5790. struct ggml_context * ctx,
  5791. struct ggml_tensor * a,
  5792. enum ggml_op_pool op,
  5793. int k0,
  5794. int s0,
  5795. int p0) {
  5796. const int64_t ne[4] = {
  5797. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5798. a->ne[1],
  5799. a->ne[2],
  5800. a->ne[3],
  5801. };
  5802. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5803. int32_t params[] = { op, k0, s0, p0 };
  5804. ggml_set_op_params(result, params, sizeof(params));
  5805. result->op = GGML_OP_POOL_1D;
  5806. result->src[0] = a;
  5807. return result;
  5808. }
  5809. // ggml_pool_2d
  5810. struct ggml_tensor * ggml_pool_2d(
  5811. struct ggml_context * ctx,
  5812. struct ggml_tensor * a,
  5813. enum ggml_op_pool op,
  5814. int k0,
  5815. int k1,
  5816. int s0,
  5817. int s1,
  5818. float p0,
  5819. float p1) {
  5820. struct ggml_tensor * result;
  5821. const int64_t ne[4] = {
  5822. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5823. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5824. a->ne[2],
  5825. a->ne[3],
  5826. };
  5827. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5828. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5829. ggml_set_op_params(result, params, sizeof(params));
  5830. result->op = GGML_OP_POOL_2D;
  5831. result->src[0] = a;
  5832. return result;
  5833. }
  5834. struct ggml_tensor * ggml_pool_2d_back(
  5835. struct ggml_context * ctx,
  5836. struct ggml_tensor * a,
  5837. struct ggml_tensor * af,
  5838. enum ggml_op_pool op,
  5839. int k0,
  5840. int k1,
  5841. int s0,
  5842. int s1,
  5843. float p0,
  5844. float p1) {
  5845. struct ggml_tensor * result;
  5846. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne);
  5847. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5848. ggml_set_op_params(result, params, sizeof(params));
  5849. result->op = GGML_OP_POOL_2D_BACK;
  5850. result->src[0] = a;
  5851. result->src[1] = af;
  5852. return result;
  5853. }
  5854. // ggml_upscale
  5855. static struct ggml_tensor * ggml_upscale_impl(
  5856. struct ggml_context * ctx,
  5857. struct ggml_tensor * a,
  5858. int ne0,
  5859. int ne1,
  5860. int ne2,
  5861. int ne3) {
  5862. GGML_ASSERT(a->ne[0] <= ne0);
  5863. GGML_ASSERT(a->ne[1] <= ne1);
  5864. GGML_ASSERT(a->ne[2] <= ne2);
  5865. GGML_ASSERT(a->ne[3] <= ne3);
  5866. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5867. result->op = GGML_OP_UPSCALE;
  5868. result->src[0] = a;
  5869. return result;
  5870. }
  5871. struct ggml_tensor * ggml_upscale(
  5872. struct ggml_context * ctx,
  5873. struct ggml_tensor * a,
  5874. int scale_factor) {
  5875. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5876. }
  5877. struct ggml_tensor * ggml_upscale_ext(
  5878. struct ggml_context * ctx,
  5879. struct ggml_tensor * a,
  5880. int ne0,
  5881. int ne1,
  5882. int ne2,
  5883. int ne3) {
  5884. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5885. }
  5886. // ggml_pad
  5887. struct ggml_tensor * ggml_pad(
  5888. struct ggml_context * ctx,
  5889. struct ggml_tensor * a,
  5890. int p0,
  5891. int p1,
  5892. int p2,
  5893. int p3) {
  5894. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5895. a->ne[0] + p0,
  5896. a->ne[1] + p1,
  5897. a->ne[2] + p2,
  5898. a->ne[3] + p3);
  5899. result->op = GGML_OP_PAD;
  5900. result->src[0] = a;
  5901. return result;
  5902. }
  5903. // ggml_arange
  5904. struct ggml_tensor * ggml_arange(
  5905. struct ggml_context * ctx,
  5906. float start,
  5907. float stop,
  5908. float step) {
  5909. GGML_ASSERT(stop > start);
  5910. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5911. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5912. ggml_set_op_params_f32(result, 0, start);
  5913. ggml_set_op_params_f32(result, 1, stop);
  5914. ggml_set_op_params_f32(result, 2, step);
  5915. result->op = GGML_OP_ARANGE;
  5916. return result;
  5917. }
  5918. // ggml_timestep_embedding
  5919. struct ggml_tensor * ggml_timestep_embedding(
  5920. struct ggml_context * ctx,
  5921. struct ggml_tensor * timesteps,
  5922. int dim,
  5923. int max_period) {
  5924. int actual_dim = dim;
  5925. if (dim % 2 != 0) {
  5926. actual_dim = dim + 1;
  5927. }
  5928. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5929. ggml_set_op_params_i32(result, 0, dim);
  5930. ggml_set_op_params_i32(result, 1, max_period);
  5931. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5932. result->src[0] = timesteps;
  5933. return result;
  5934. }
  5935. // ggml_argsort
  5936. struct ggml_tensor * ggml_argsort(
  5937. struct ggml_context * ctx,
  5938. struct ggml_tensor * a,
  5939. enum ggml_sort_order order) {
  5940. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5941. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5942. result->op = GGML_OP_ARGSORT;
  5943. result->src[0] = a;
  5944. return result;
  5945. }
  5946. // ggml_top_k
  5947. struct ggml_tensor * ggml_top_k(
  5948. struct ggml_context * ctx,
  5949. struct ggml_tensor * a,
  5950. int k) {
  5951. GGML_ASSERT(a->ne[0] >= k);
  5952. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5953. result = ggml_view_4d(ctx, result,
  5954. k, result->ne[1], result->ne[2], result->ne[3],
  5955. result->nb[1], result->nb[2], result->nb[3],
  5956. 0);
  5957. return result;
  5958. }
  5959. // ggml_flash_attn_ext
  5960. struct ggml_tensor * ggml_flash_attn_ext(
  5961. struct ggml_context * ctx,
  5962. struct ggml_tensor * q,
  5963. struct ggml_tensor * k,
  5964. struct ggml_tensor * v,
  5965. struct ggml_tensor * mask,
  5966. float scale,
  5967. float max_bias,
  5968. float logit_softcap) {
  5969. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5970. // TODO: check if vT can be multiplied by (k*qT)
  5971. if (mask) {
  5972. GGML_ASSERT(ggml_is_contiguous(mask));
  5973. GGML_ASSERT(mask->ne[2] == 1);
  5974. GGML_ASSERT(mask->ne[3] == 1);
  5975. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5976. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5977. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5978. }
  5979. if (max_bias > 0.0f) {
  5980. GGML_ASSERT(mask);
  5981. }
  5982. bool is_node = false;
  5983. // permute(0, 2, 1, 3)
  5984. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5985. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5986. float params[] = { scale, max_bias, logit_softcap };
  5987. ggml_set_op_params(result, params, sizeof(params));
  5988. result->op = GGML_OP_FLASH_ATTN_EXT;
  5989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5990. result->src[0] = q;
  5991. result->src[1] = k;
  5992. result->src[2] = v;
  5993. result->src[3] = mask;
  5994. return result;
  5995. }
  5996. void ggml_flash_attn_ext_set_prec(
  5997. struct ggml_tensor * a,
  5998. enum ggml_prec prec) {
  5999. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  6000. const int32_t prec_i32 = (int32_t) prec;
  6001. ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
  6002. }
  6003. // ggml_flash_attn_back
  6004. struct ggml_tensor * ggml_flash_attn_back(
  6005. struct ggml_context * ctx,
  6006. struct ggml_tensor * q,
  6007. struct ggml_tensor * k,
  6008. struct ggml_tensor * v,
  6009. struct ggml_tensor * d,
  6010. bool masked) {
  6011. GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
  6012. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6013. // TODO: check if vT can be multiplied by (k*qT)
  6014. // d shape [D,N,ne2,ne3]
  6015. // q shape [D,N,ne2,ne3]
  6016. // k shape [D,M,kvne2,ne3]
  6017. // v shape [M,D,kvne2,ne3]
  6018. const int64_t D = q->ne[0];
  6019. const int64_t N = q->ne[1];
  6020. const int64_t M = k->ne[1];
  6021. const int64_t ne2 = q->ne[2];
  6022. const int64_t ne3 = q->ne[3];
  6023. const int64_t kvne2 = k->ne[2];
  6024. GGML_ASSERT(k->ne[0] == D);
  6025. GGML_ASSERT(v->ne[0] == M);
  6026. GGML_ASSERT(v->ne[1] == D);
  6027. GGML_ASSERT(d->ne[0] == D);
  6028. GGML_ASSERT(d->ne[1] == N);
  6029. GGML_ASSERT(k->ne[2] == kvne2);
  6030. GGML_ASSERT(k->ne[3] == ne3);
  6031. GGML_ASSERT(v->ne[2] == kvne2);
  6032. GGML_ASSERT(v->ne[3] == ne3);
  6033. GGML_ASSERT(d->ne[2] == ne2);
  6034. GGML_ASSERT(d->ne[3] == ne3);
  6035. GGML_ASSERT(ne2 % kvne2 == 0);
  6036. bool is_node = false;
  6037. if (q->grad || k->grad || v->grad) {
  6038. // when using this operation (in backwards pass) these grads are set.
  6039. // we don't want to create (big) grad of our result, so is_node is false.
  6040. is_node = false;
  6041. }
  6042. // store gradients of q, k and v as continuous tensors concatenated in result.
  6043. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6044. const int64_t elem_q = ggml_nelements(q);
  6045. const int64_t elem_k = ggml_nelements(k);
  6046. const int64_t elem_v = ggml_nelements(v);
  6047. enum ggml_type result_type = GGML_TYPE_F32;
  6048. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  6049. const size_t tsize = ggml_type_size(result_type);
  6050. const size_t offs_q = 0;
  6051. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  6052. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  6053. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  6054. const size_t nelements = (end + tsize - 1)/tsize;
  6055. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  6056. int32_t masked_i = masked ? 1 : 0;
  6057. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6058. result->op = GGML_OP_FLASH_ATTN_BACK;
  6059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6060. result->src[0] = q;
  6061. result->src[1] = k;
  6062. result->src[2] = v;
  6063. result->src[3] = d;
  6064. return result;
  6065. }
  6066. // ggml_ssm_conv
  6067. struct ggml_tensor * ggml_ssm_conv(
  6068. struct ggml_context * ctx,
  6069. struct ggml_tensor * sx,
  6070. struct ggml_tensor * c) {
  6071. GGML_ASSERT(ggml_is_3d(sx));
  6072. GGML_ASSERT(ggml_is_matrix(c));
  6073. const int64_t d_conv = c->ne[0];
  6074. const int64_t d_inner = c->ne[1];
  6075. const int64_t n_t = sx->ne[0] - d_conv + 1; // tokens per sequence
  6076. const int64_t n_s = sx->ne[2];
  6077. // TODO: maybe support other strides than 1?
  6078. GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t);
  6079. GGML_ASSERT(sx->ne[1] == d_inner);
  6080. GGML_ASSERT(n_t >= 0);
  6081. struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s);
  6082. result->op = GGML_OP_SSM_CONV;
  6083. result->src[0] = sx;
  6084. result->src[1] = c;
  6085. return result;
  6086. }
  6087. // ggml_ssm_scan
  6088. struct ggml_tensor * ggml_ssm_scan(
  6089. struct ggml_context * ctx,
  6090. struct ggml_tensor * s,
  6091. struct ggml_tensor * x,
  6092. struct ggml_tensor * dt,
  6093. struct ggml_tensor * A,
  6094. struct ggml_tensor * B,
  6095. struct ggml_tensor * C) {
  6096. GGML_ASSERT(ggml_is_contiguous(s));
  6097. GGML_ASSERT(ggml_is_contiguous(x));
  6098. GGML_ASSERT(ggml_is_contiguous(dt));
  6099. GGML_ASSERT(ggml_is_contiguous(A));
  6100. GGML_ASSERT(ggml_is_matrix(A));
  6101. GGML_ASSERT(ggml_is_3d(B));
  6102. GGML_ASSERT(ggml_is_3d(s));
  6103. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  6104. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  6105. GGML_ASSERT(ggml_are_same_shape(x, dt));
  6106. GGML_ASSERT(ggml_are_same_shape(B, C));
  6107. {
  6108. const int64_t d_state = s->ne[0];
  6109. const int64_t d_inner = s->ne[1];
  6110. const int64_t n_seq_tokens = x->ne[1];
  6111. const int64_t n_seqs = x->ne[2];
  6112. GGML_ASSERT(s->ne[2] == n_seqs);
  6113. GGML_ASSERT(x->ne[0] == d_inner);
  6114. GGML_ASSERT(A->ne[0] == d_state);
  6115. GGML_ASSERT(A->ne[1] == d_inner);
  6116. GGML_ASSERT(B->ne[0] == d_state);
  6117. GGML_ASSERT(B->ne[1] == n_seq_tokens);
  6118. GGML_ASSERT(B->ne[2] == n_seqs);
  6119. }
  6120. // concatenated y + ssm_states
  6121. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  6122. result->op = GGML_OP_SSM_SCAN;
  6123. result->src[0] = s;
  6124. result->src[1] = x;
  6125. result->src[2] = dt;
  6126. result->src[3] = A;
  6127. result->src[4] = B;
  6128. result->src[5] = C;
  6129. return result;
  6130. }
  6131. // ggml_win_part
  6132. struct ggml_tensor * ggml_win_part(
  6133. struct ggml_context * ctx,
  6134. struct ggml_tensor * a,
  6135. int w) {
  6136. GGML_ASSERT(a->ne[3] == 1);
  6137. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6138. // padding
  6139. const int px = (w - a->ne[1]%w)%w;
  6140. const int py = (w - a->ne[2]%w)%w;
  6141. const int npx = (px + a->ne[1])/w;
  6142. const int npy = (py + a->ne[2])/w;
  6143. const int np = npx*npy;
  6144. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6145. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6146. int32_t params[] = { npx, npy, w };
  6147. ggml_set_op_params(result, params, sizeof(params));
  6148. result->op = GGML_OP_WIN_PART;
  6149. result->src[0] = a;
  6150. return result;
  6151. }
  6152. // ggml_win_unpart
  6153. struct ggml_tensor * ggml_win_unpart(
  6154. struct ggml_context * ctx,
  6155. struct ggml_tensor * a,
  6156. int w0,
  6157. int h0,
  6158. int w) {
  6159. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6160. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6161. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6162. int32_t params[] = { w };
  6163. ggml_set_op_params(result, params, sizeof(params));
  6164. result->op = GGML_OP_WIN_UNPART;
  6165. result->src[0] = a;
  6166. return result;
  6167. }
  6168. // ggml_get_rel_pos
  6169. struct ggml_tensor * ggml_get_rel_pos(
  6170. struct ggml_context * ctx,
  6171. struct ggml_tensor * a,
  6172. int qh,
  6173. int kh) {
  6174. GGML_ASSERT(qh == kh);
  6175. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6176. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6177. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6178. result->op = GGML_OP_GET_REL_POS;
  6179. result->src[0] = a;
  6180. return result;
  6181. }
  6182. // ggml_add_rel_pos
  6183. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6184. struct ggml_context * ctx,
  6185. struct ggml_tensor * a,
  6186. struct ggml_tensor * pw,
  6187. struct ggml_tensor * ph,
  6188. bool inplace) {
  6189. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6190. GGML_ASSERT(ggml_is_contiguous(a));
  6191. GGML_ASSERT(ggml_is_contiguous(pw));
  6192. GGML_ASSERT(ggml_is_contiguous(ph));
  6193. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6194. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6195. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6196. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6197. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6198. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6199. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6200. result->op = GGML_OP_ADD_REL_POS;
  6201. result->src[0] = a;
  6202. result->src[1] = pw;
  6203. result->src[2] = ph;
  6204. return result;
  6205. }
  6206. struct ggml_tensor * ggml_add_rel_pos(
  6207. struct ggml_context * ctx,
  6208. struct ggml_tensor * a,
  6209. struct ggml_tensor * pw,
  6210. struct ggml_tensor * ph) {
  6211. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6212. }
  6213. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6214. struct ggml_context * ctx,
  6215. struct ggml_tensor * a,
  6216. struct ggml_tensor * pw,
  6217. struct ggml_tensor * ph) {
  6218. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6219. }
  6220. // ggml_rwkv_wkv
  6221. struct ggml_tensor * ggml_rwkv_wkv(
  6222. struct ggml_context * ctx,
  6223. struct ggml_tensor * k,
  6224. struct ggml_tensor * v,
  6225. struct ggml_tensor * r,
  6226. struct ggml_tensor * tf,
  6227. struct ggml_tensor * td,
  6228. struct ggml_tensor * state) {
  6229. GGML_ASSERT(ggml_is_contiguous(k));
  6230. GGML_ASSERT(ggml_is_contiguous(v));
  6231. GGML_ASSERT(ggml_is_contiguous(r));
  6232. GGML_ASSERT(ggml_is_contiguous(tf));
  6233. GGML_ASSERT(ggml_is_contiguous(td));
  6234. GGML_ASSERT(ggml_is_contiguous(state));
  6235. const int64_t S = k->ne[0];
  6236. const int64_t H = k->ne[2];
  6237. const int64_t n_tokens = k->ne[3];
  6238. const int64_t n_seqs = state->ne[1];
  6239. {
  6240. GGML_ASSERT(k->ne[1] == 1);
  6241. GGML_ASSERT(v->ne[0] == 1 && v->ne[1] == S && v->ne[2] == H && v->ne[3] == n_tokens);
  6242. GGML_ASSERT(r->ne[0] == 1 && r->ne[1] == S && r->ne[2] == H && r->ne[3] == n_tokens);
  6243. // TODO: RWKV v4 and v5
  6244. GGML_ASSERT(td->ne[0] == 1 && td->ne[1] == S && td->ne[2] == H && td->ne[3] == n_tokens);
  6245. GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
  6246. }
  6247. // concat output and new_state
  6248. const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
  6249. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6250. result->op = GGML_OP_RWKV_WKV;
  6251. result->src[0] = k;
  6252. result->src[1] = v;
  6253. result->src[2] = r;
  6254. result->src[3] = tf;
  6255. result->src[4] = td;
  6256. result->src[5] = state;
  6257. return result;
  6258. }
  6259. // ggml_unary
  6260. static struct ggml_tensor * ggml_unary_impl(
  6261. struct ggml_context * ctx,
  6262. struct ggml_tensor * a,
  6263. enum ggml_unary_op op,
  6264. bool inplace) {
  6265. GGML_ASSERT(ggml_is_contiguous_1(a));
  6266. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6267. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6268. result->op = GGML_OP_UNARY;
  6269. result->src[0] = a;
  6270. return result;
  6271. }
  6272. struct ggml_tensor * ggml_unary(
  6273. struct ggml_context * ctx,
  6274. struct ggml_tensor * a,
  6275. enum ggml_unary_op op) {
  6276. return ggml_unary_impl(ctx, a, op, false);
  6277. }
  6278. struct ggml_tensor * ggml_unary_inplace(
  6279. struct ggml_context * ctx,
  6280. struct ggml_tensor * a,
  6281. enum ggml_unary_op op) {
  6282. return ggml_unary_impl(ctx, a, op, true);
  6283. }
  6284. // ggml_map_unary
  6285. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6286. struct ggml_context * ctx,
  6287. struct ggml_tensor * a,
  6288. const ggml_unary_op_f32_t fun,
  6289. bool inplace) {
  6290. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6291. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6292. result->op = GGML_OP_MAP_UNARY;
  6293. result->src[0] = a;
  6294. return result;
  6295. }
  6296. struct ggml_tensor * ggml_map_unary_f32(
  6297. struct ggml_context * ctx,
  6298. struct ggml_tensor * a,
  6299. const ggml_unary_op_f32_t fun) {
  6300. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6301. }
  6302. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6303. struct ggml_context * ctx,
  6304. struct ggml_tensor * a,
  6305. const ggml_unary_op_f32_t fun) {
  6306. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6307. }
  6308. // ggml_map_binary
  6309. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6310. struct ggml_context * ctx,
  6311. struct ggml_tensor * a,
  6312. struct ggml_tensor * b,
  6313. const ggml_binary_op_f32_t fun,
  6314. bool inplace) {
  6315. GGML_ASSERT(ggml_are_same_shape(a, b));
  6316. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6317. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6318. result->op = GGML_OP_MAP_BINARY;
  6319. result->src[0] = a;
  6320. result->src[1] = b;
  6321. return result;
  6322. }
  6323. struct ggml_tensor * ggml_map_binary_f32(
  6324. struct ggml_context * ctx,
  6325. struct ggml_tensor * a,
  6326. struct ggml_tensor * b,
  6327. const ggml_binary_op_f32_t fun) {
  6328. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6329. }
  6330. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6331. struct ggml_context * ctx,
  6332. struct ggml_tensor * a,
  6333. struct ggml_tensor * b,
  6334. const ggml_binary_op_f32_t fun) {
  6335. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6336. }
  6337. // ggml_map_custom1_f32
  6338. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6339. struct ggml_context * ctx,
  6340. struct ggml_tensor * a,
  6341. const ggml_custom1_op_f32_t fun,
  6342. bool inplace) {
  6343. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6344. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6345. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6346. result->src[0] = a;
  6347. return result;
  6348. }
  6349. struct ggml_tensor * ggml_map_custom1_f32(
  6350. struct ggml_context * ctx,
  6351. struct ggml_tensor * a,
  6352. const ggml_custom1_op_f32_t fun) {
  6353. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6354. }
  6355. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6356. struct ggml_context * ctx,
  6357. struct ggml_tensor * a,
  6358. const ggml_custom1_op_f32_t fun) {
  6359. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6360. }
  6361. // ggml_map_custom2_f32
  6362. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6363. struct ggml_context * ctx,
  6364. struct ggml_tensor * a,
  6365. struct ggml_tensor * b,
  6366. const ggml_custom2_op_f32_t fun,
  6367. bool inplace) {
  6368. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6369. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6370. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6371. result->src[0] = a;
  6372. result->src[1] = b;
  6373. return result;
  6374. }
  6375. struct ggml_tensor * ggml_map_custom2_f32(
  6376. struct ggml_context * ctx,
  6377. struct ggml_tensor * a,
  6378. struct ggml_tensor * b,
  6379. const ggml_custom2_op_f32_t fun) {
  6380. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6381. }
  6382. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6383. struct ggml_context * ctx,
  6384. struct ggml_tensor * a,
  6385. struct ggml_tensor * b,
  6386. const ggml_custom2_op_f32_t fun) {
  6387. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6388. }
  6389. // ggml_map_custom3_f32
  6390. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6391. struct ggml_context * ctx,
  6392. struct ggml_tensor * a,
  6393. struct ggml_tensor * b,
  6394. struct ggml_tensor * c,
  6395. const ggml_custom3_op_f32_t fun,
  6396. bool inplace) {
  6397. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6398. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6399. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6400. result->src[0] = a;
  6401. result->src[1] = b;
  6402. result->src[2] = c;
  6403. return result;
  6404. }
  6405. struct ggml_tensor * ggml_map_custom3_f32(
  6406. struct ggml_context * ctx,
  6407. struct ggml_tensor * a,
  6408. struct ggml_tensor * b,
  6409. struct ggml_tensor * c,
  6410. const ggml_custom3_op_f32_t fun) {
  6411. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6412. }
  6413. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6414. struct ggml_context * ctx,
  6415. struct ggml_tensor * a,
  6416. struct ggml_tensor * b,
  6417. struct ggml_tensor * c,
  6418. const ggml_custom3_op_f32_t fun) {
  6419. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6420. }
  6421. // ggml_map_custom1
  6422. struct ggml_map_custom1_op_params {
  6423. ggml_custom1_op_t fun;
  6424. int n_tasks;
  6425. void * userdata;
  6426. };
  6427. static struct ggml_tensor * ggml_map_custom1_impl(
  6428. struct ggml_context * ctx,
  6429. struct ggml_tensor * a,
  6430. const ggml_custom1_op_t fun,
  6431. int n_tasks,
  6432. void * userdata,
  6433. bool inplace) {
  6434. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6435. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6436. struct ggml_map_custom1_op_params params = {
  6437. /*.fun =*/ fun,
  6438. /*.n_tasks =*/ n_tasks,
  6439. /*.userdata =*/ userdata
  6440. };
  6441. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6442. result->op = GGML_OP_MAP_CUSTOM1;
  6443. result->src[0] = a;
  6444. return result;
  6445. }
  6446. struct ggml_tensor * ggml_map_custom1(
  6447. struct ggml_context * ctx,
  6448. struct ggml_tensor * a,
  6449. const ggml_custom1_op_t fun,
  6450. int n_tasks,
  6451. void * userdata) {
  6452. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6453. }
  6454. struct ggml_tensor * ggml_map_custom1_inplace(
  6455. struct ggml_context * ctx,
  6456. struct ggml_tensor * a,
  6457. const ggml_custom1_op_t fun,
  6458. int n_tasks,
  6459. void * userdata) {
  6460. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6461. }
  6462. // ggml_map_custom2
  6463. struct ggml_map_custom2_op_params {
  6464. ggml_custom2_op_t fun;
  6465. int n_tasks;
  6466. void * userdata;
  6467. };
  6468. static struct ggml_tensor * ggml_map_custom2_impl(
  6469. struct ggml_context * ctx,
  6470. struct ggml_tensor * a,
  6471. struct ggml_tensor * b,
  6472. const ggml_custom2_op_t fun,
  6473. int n_tasks,
  6474. void * userdata,
  6475. bool inplace) {
  6476. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6477. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6478. struct ggml_map_custom2_op_params params = {
  6479. /*.fun =*/ fun,
  6480. /*.n_tasks =*/ n_tasks,
  6481. /*.userdata =*/ userdata
  6482. };
  6483. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6484. result->op = GGML_OP_MAP_CUSTOM2;
  6485. result->src[0] = a;
  6486. result->src[1] = b;
  6487. return result;
  6488. }
  6489. struct ggml_tensor * ggml_map_custom2(
  6490. struct ggml_context * ctx,
  6491. struct ggml_tensor * a,
  6492. struct ggml_tensor * b,
  6493. const ggml_custom2_op_t fun,
  6494. int n_tasks,
  6495. void * userdata) {
  6496. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6497. }
  6498. struct ggml_tensor * ggml_map_custom2_inplace(
  6499. struct ggml_context * ctx,
  6500. struct ggml_tensor * a,
  6501. struct ggml_tensor * b,
  6502. const ggml_custom2_op_t fun,
  6503. int n_tasks,
  6504. void * userdata) {
  6505. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6506. }
  6507. // ggml_map_custom3
  6508. struct ggml_map_custom3_op_params {
  6509. ggml_custom3_op_t fun;
  6510. int n_tasks;
  6511. void * userdata;
  6512. };
  6513. static struct ggml_tensor * ggml_map_custom3_impl(
  6514. struct ggml_context * ctx,
  6515. struct ggml_tensor * a,
  6516. struct ggml_tensor * b,
  6517. struct ggml_tensor * c,
  6518. const ggml_custom3_op_t fun,
  6519. int n_tasks,
  6520. void * userdata,
  6521. bool inplace) {
  6522. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6523. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6524. struct ggml_map_custom3_op_params params = {
  6525. /*.fun =*/ fun,
  6526. /*.n_tasks =*/ n_tasks,
  6527. /*.userdata =*/ userdata
  6528. };
  6529. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6530. result->op = GGML_OP_MAP_CUSTOM3;
  6531. result->src[0] = a;
  6532. result->src[1] = b;
  6533. result->src[2] = c;
  6534. return result;
  6535. }
  6536. struct ggml_tensor * ggml_map_custom3(
  6537. struct ggml_context * ctx,
  6538. struct ggml_tensor * a,
  6539. struct ggml_tensor * b,
  6540. struct ggml_tensor * c,
  6541. const ggml_custom3_op_t fun,
  6542. int n_tasks,
  6543. void * userdata) {
  6544. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6545. }
  6546. struct ggml_tensor * ggml_map_custom3_inplace(
  6547. struct ggml_context * ctx,
  6548. struct ggml_tensor * a,
  6549. struct ggml_tensor * b,
  6550. struct ggml_tensor * c,
  6551. const ggml_custom3_op_t fun,
  6552. int n_tasks,
  6553. void * userdata) {
  6554. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6555. }
  6556. // ggml_cross_entropy_loss
  6557. struct ggml_tensor * ggml_cross_entropy_loss(
  6558. struct ggml_context * ctx,
  6559. struct ggml_tensor * a,
  6560. struct ggml_tensor * b) {
  6561. GGML_ASSERT(ggml_are_same_shape(a, b));
  6562. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6563. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6564. result->src[0] = a;
  6565. result->src[1] = b;
  6566. return result;
  6567. }
  6568. // ggml_cross_entropy_loss_back
  6569. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6570. struct ggml_context * ctx,
  6571. struct ggml_tensor * a,
  6572. struct ggml_tensor * b,
  6573. struct ggml_tensor * c) {
  6574. GGML_ASSERT(ggml_are_same_shape(a, b));
  6575. GGML_ASSERT(ggml_is_scalar(c));
  6576. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6577. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6578. result->src[0] = a;
  6579. result->src[1] = b;
  6580. result->src[2] = c;
  6581. return result;
  6582. }
  6583. // opt_step_adamw
  6584. struct ggml_tensor * ggml_opt_step_adamw(
  6585. struct ggml_context * ctx,
  6586. struct ggml_tensor * a,
  6587. struct ggml_tensor * grad,
  6588. float alpha,
  6589. float beta1,
  6590. float beta2,
  6591. float eps,
  6592. float wd) {
  6593. GGML_ASSERT(a->flags & GGML_TENSOR_FLAG_PARAM);
  6594. GGML_ASSERT(ggml_are_same_shape(a, grad));
  6595. GGML_ASSERT(alpha > 0.0f);
  6596. GGML_ASSERT(beta1 >= 0.0f && beta1 <= 1.0f);
  6597. GGML_ASSERT(beta2 >= 0.0f && beta2 <= 1.0f);
  6598. GGML_ASSERT(eps >= 0.0f);
  6599. GGML_ASSERT(wd >= 0.0f && wd <= 1.0f);
  6600. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  6601. const int64_t iter = 1;
  6602. memcpy(&result->op_params[0], &iter, sizeof(int64_t));
  6603. ggml_set_op_params_f32(result, 2, alpha);
  6604. ggml_set_op_params_f32(result, 3, beta1);
  6605. ggml_set_op_params_f32(result, 4, beta2);
  6606. ggml_set_op_params_f32(result, 5, eps);
  6607. ggml_set_op_params_f32(result, 6, wd);
  6608. result->op = GGML_OP_OPT_STEP_ADAMW;
  6609. result->src[0] = a;
  6610. result->src[1] = grad;
  6611. result->src[2] = ggml_dup_tensor(ctx, grad);
  6612. result->src[3] = ggml_dup_tensor(ctx, grad);
  6613. return result;
  6614. }
  6615. ////////////////////////////////////////////////////////////////////////////////
  6616. // ggml_compute_forward_dup
  6617. static void ggml_compute_forward_dup_same_cont(
  6618. const struct ggml_compute_params * params,
  6619. struct ggml_tensor * dst) {
  6620. const struct ggml_tensor * src0 = dst->src[0];
  6621. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6622. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6623. GGML_ASSERT(src0->type == dst->type);
  6624. const size_t nb0 = ggml_type_size(src0->type);
  6625. const int ith = params->ith; // thread index
  6626. const int nth = params->nth; // number of threads
  6627. // parallelize by elements
  6628. const int ne = ggml_nelements(dst);
  6629. const int dr = (ne + nth - 1) / nth;
  6630. const int ie0 = dr * ith;
  6631. const int ie1 = MIN(ie0 + dr, ne);
  6632. if (ie0 < ie1) {
  6633. memcpy(
  6634. ((char *) dst->data + ie0*nb0),
  6635. ((char *) src0->data + ie0*nb0),
  6636. (ie1 - ie0) * nb0);
  6637. }
  6638. }
  6639. static void ggml_compute_forward_dup_f16(
  6640. const struct ggml_compute_params * params,
  6641. struct ggml_tensor * dst) {
  6642. const struct ggml_tensor * src0 = dst->src[0];
  6643. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6644. GGML_TENSOR_UNARY_OP_LOCALS
  6645. const int ith = params->ith; // thread index
  6646. const int nth = params->nth; // number of threads
  6647. // parallelize by rows
  6648. const int nr = ne01;
  6649. // number of rows per thread
  6650. const int dr = (nr + nth - 1) / nth;
  6651. // row range for this thread
  6652. const int ir0 = dr * ith;
  6653. const int ir1 = MIN(ir0 + dr, nr);
  6654. if (src0->type == dst->type &&
  6655. ne00 == ne0 &&
  6656. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6657. // copy by rows
  6658. const size_t rs = ne00*nb00;
  6659. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6660. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6661. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6662. memcpy(
  6663. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6664. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6665. rs);
  6666. }
  6667. }
  6668. }
  6669. return;
  6670. }
  6671. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6672. if (ggml_is_contiguous(dst)) {
  6673. if (nb00 == sizeof(ggml_fp16_t)) {
  6674. if (dst->type == GGML_TYPE_F16) {
  6675. size_t id = 0;
  6676. const size_t rs = ne00 * nb00;
  6677. char * dst_ptr = (char *) dst->data;
  6678. for (int i03 = 0; i03 < ne03; i03++) {
  6679. for (int i02 = 0; i02 < ne02; i02++) {
  6680. id += rs * ir0;
  6681. for (int i01 = ir0; i01 < ir1; i01++) {
  6682. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6683. memcpy(dst_ptr + id, src0_ptr, rs);
  6684. id += rs;
  6685. }
  6686. id += rs * (ne01 - ir1);
  6687. }
  6688. }
  6689. } else if (dst->type == GGML_TYPE_F32) {
  6690. size_t id = 0;
  6691. float * dst_ptr = (float *) dst->data;
  6692. for (int i03 = 0; i03 < ne03; i03++) {
  6693. for (int i02 = 0; i02 < ne02; i02++) {
  6694. id += ne00 * ir0;
  6695. for (int i01 = ir0; i01 < ir1; i01++) {
  6696. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6697. for (int i00 = 0; i00 < ne00; i00++) {
  6698. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6699. id++;
  6700. }
  6701. }
  6702. id += ne00 * (ne01 - ir1);
  6703. }
  6704. }
  6705. } else if (type_traits[dst->type].from_float) {
  6706. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6707. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6708. size_t id = 0;
  6709. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6710. char * dst_ptr = (char *) dst->data;
  6711. for (int i03 = 0; i03 < ne03; i03++) {
  6712. for (int i02 = 0; i02 < ne02; i02++) {
  6713. id += rs * ir0;
  6714. for (int i01 = ir0; i01 < ir1; i01++) {
  6715. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6716. for (int i00 = 0; i00 < ne00; i00++) {
  6717. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6718. }
  6719. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6720. id += rs;
  6721. }
  6722. id += rs * (ne01 - ir1);
  6723. }
  6724. }
  6725. } else {
  6726. GGML_ABORT("fatal error"); // TODO: implement
  6727. }
  6728. } else {
  6729. //printf("%s: this is not optimal - fix me\n", __func__);
  6730. if (dst->type == GGML_TYPE_F32) {
  6731. size_t id = 0;
  6732. float * dst_ptr = (float *) dst->data;
  6733. for (int i03 = 0; i03 < ne03; i03++) {
  6734. for (int i02 = 0; i02 < ne02; i02++) {
  6735. id += ne00 * ir0;
  6736. for (int i01 = ir0; i01 < ir1; i01++) {
  6737. for (int i00 = 0; i00 < ne00; i00++) {
  6738. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6739. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6740. id++;
  6741. }
  6742. }
  6743. id += ne00 * (ne01 - ir1);
  6744. }
  6745. }
  6746. } else if (dst->type == GGML_TYPE_F16) {
  6747. size_t id = 0;
  6748. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6749. for (int i03 = 0; i03 < ne03; i03++) {
  6750. for (int i02 = 0; i02 < ne02; i02++) {
  6751. id += ne00 * ir0;
  6752. for (int i01 = ir0; i01 < ir1; i01++) {
  6753. for (int i00 = 0; i00 < ne00; i00++) {
  6754. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6755. dst_ptr[id] = *src0_ptr;
  6756. id++;
  6757. }
  6758. }
  6759. id += ne00 * (ne01 - ir1);
  6760. }
  6761. }
  6762. } else {
  6763. GGML_ABORT("fatal error"); // TODO: implement
  6764. }
  6765. }
  6766. return;
  6767. }
  6768. // dst counters
  6769. int64_t i10 = 0;
  6770. int64_t i11 = 0;
  6771. int64_t i12 = 0;
  6772. int64_t i13 = 0;
  6773. if (dst->type == GGML_TYPE_F16) {
  6774. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6775. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6776. i10 += ne00 * ir0;
  6777. while (i10 >= ne0) {
  6778. i10 -= ne0;
  6779. if (++i11 == ne1) {
  6780. i11 = 0;
  6781. if (++i12 == ne2) {
  6782. i12 = 0;
  6783. if (++i13 == ne3) {
  6784. i13 = 0;
  6785. }
  6786. }
  6787. }
  6788. }
  6789. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6790. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6791. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6792. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6793. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6794. if (++i10 == ne00) {
  6795. i10 = 0;
  6796. if (++i11 == ne01) {
  6797. i11 = 0;
  6798. if (++i12 == ne02) {
  6799. i12 = 0;
  6800. if (++i13 == ne03) {
  6801. i13 = 0;
  6802. }
  6803. }
  6804. }
  6805. }
  6806. }
  6807. }
  6808. i10 += ne00 * (ne01 - ir1);
  6809. while (i10 >= ne0) {
  6810. i10 -= ne0;
  6811. if (++i11 == ne1) {
  6812. i11 = 0;
  6813. if (++i12 == ne2) {
  6814. i12 = 0;
  6815. if (++i13 == ne3) {
  6816. i13 = 0;
  6817. }
  6818. }
  6819. }
  6820. }
  6821. }
  6822. }
  6823. } else if (dst->type == GGML_TYPE_F32) {
  6824. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6825. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6826. i10 += ne00 * ir0;
  6827. while (i10 >= ne0) {
  6828. i10 -= ne0;
  6829. if (++i11 == ne1) {
  6830. i11 = 0;
  6831. if (++i12 == ne2) {
  6832. i12 = 0;
  6833. if (++i13 == ne3) {
  6834. i13 = 0;
  6835. }
  6836. }
  6837. }
  6838. }
  6839. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6840. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6841. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6842. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6843. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6844. if (++i10 == ne0) {
  6845. i10 = 0;
  6846. if (++i11 == ne1) {
  6847. i11 = 0;
  6848. if (++i12 == ne2) {
  6849. i12 = 0;
  6850. if (++i13 == ne3) {
  6851. i13 = 0;
  6852. }
  6853. }
  6854. }
  6855. }
  6856. }
  6857. }
  6858. i10 += ne00 * (ne01 - ir1);
  6859. while (i10 >= ne0) {
  6860. i10 -= ne0;
  6861. if (++i11 == ne1) {
  6862. i11 = 0;
  6863. if (++i12 == ne2) {
  6864. i12 = 0;
  6865. if (++i13 == ne3) {
  6866. i13 = 0;
  6867. }
  6868. }
  6869. }
  6870. }
  6871. }
  6872. }
  6873. } else {
  6874. GGML_ABORT("fatal error"); // TODO: implement
  6875. }
  6876. }
  6877. static void ggml_compute_forward_dup_bf16(
  6878. const struct ggml_compute_params * params,
  6879. struct ggml_tensor * dst) {
  6880. const struct ggml_tensor * src0 = dst->src[0];
  6881. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6882. GGML_TENSOR_UNARY_OP_LOCALS
  6883. const int ith = params->ith; // thread index
  6884. const int nth = params->nth; // number of threads
  6885. // parallelize by rows
  6886. const int nr = ne01;
  6887. // number of rows per thread
  6888. const int dr = (nr + nth - 1) / nth;
  6889. // row range for this thread
  6890. const int ir0 = dr * ith;
  6891. const int ir1 = MIN(ir0 + dr, nr);
  6892. if (src0->type == dst->type &&
  6893. ne00 == ne0 &&
  6894. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6895. // copy by rows
  6896. const size_t rs = ne00*nb00;
  6897. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6898. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6899. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6900. memcpy(
  6901. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6902. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6903. rs);
  6904. }
  6905. }
  6906. }
  6907. return;
  6908. }
  6909. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6910. if (ggml_is_contiguous(dst)) {
  6911. if (nb00 == sizeof(ggml_bf16_t)) {
  6912. if (dst->type == GGML_TYPE_BF16) {
  6913. size_t id = 0;
  6914. const size_t rs = ne00 * nb00;
  6915. char * dst_ptr = (char *) dst->data;
  6916. for (int i03 = 0; i03 < ne03; i03++) {
  6917. for (int i02 = 0; i02 < ne02; i02++) {
  6918. id += rs * ir0;
  6919. for (int i01 = ir0; i01 < ir1; i01++) {
  6920. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6921. memcpy(dst_ptr + id, src0_ptr, rs);
  6922. id += rs;
  6923. }
  6924. id += rs * (ne01 - ir1);
  6925. }
  6926. }
  6927. } else if (dst->type == GGML_TYPE_F16) {
  6928. size_t id = 0;
  6929. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6930. for (int i03 = 0; i03 < ne03; i03++) {
  6931. for (int i02 = 0; i02 < ne02; i02++) {
  6932. id += ne00 * ir0;
  6933. for (int i01 = ir0; i01 < ir1; i01++) {
  6934. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6935. for (int i00 = 0; i00 < ne00; i00++) {
  6936. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6937. id++;
  6938. }
  6939. }
  6940. id += ne00 * (ne01 - ir1);
  6941. }
  6942. }
  6943. } else if (dst->type == GGML_TYPE_F32) {
  6944. size_t id = 0;
  6945. float * dst_ptr = (float *) dst->data;
  6946. for (int i03 = 0; i03 < ne03; i03++) {
  6947. for (int i02 = 0; i02 < ne02; i02++) {
  6948. id += ne00 * ir0;
  6949. for (int i01 = ir0; i01 < ir1; i01++) {
  6950. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6951. for (int i00 = 0; i00 < ne00; i00++) {
  6952. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6953. id++;
  6954. }
  6955. }
  6956. id += ne00 * (ne01 - ir1);
  6957. }
  6958. }
  6959. } else if (type_traits[dst->type].from_float) {
  6960. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6961. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6962. size_t id = 0;
  6963. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6964. char * dst_ptr = (char *) dst->data;
  6965. for (int i03 = 0; i03 < ne03; i03++) {
  6966. for (int i02 = 0; i02 < ne02; i02++) {
  6967. id += rs * ir0;
  6968. for (int i01 = ir0; i01 < ir1; i01++) {
  6969. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6970. for (int i00 = 0; i00 < ne00; i00++) {
  6971. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6972. }
  6973. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6974. id += rs;
  6975. }
  6976. id += rs * (ne01 - ir1);
  6977. }
  6978. }
  6979. } else {
  6980. GGML_ABORT("fatal error"); // TODO: implement
  6981. }
  6982. } else {
  6983. //printf("%s: this is not optimal - fix me\n", __func__);
  6984. if (dst->type == GGML_TYPE_F32) {
  6985. size_t id = 0;
  6986. float * dst_ptr = (float *) dst->data;
  6987. for (int i03 = 0; i03 < ne03; i03++) {
  6988. for (int i02 = 0; i02 < ne02; i02++) {
  6989. id += ne00 * ir0;
  6990. for (int i01 = ir0; i01 < ir1; i01++) {
  6991. for (int i00 = 0; i00 < ne00; i00++) {
  6992. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6993. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6994. id++;
  6995. }
  6996. }
  6997. id += ne00 * (ne01 - ir1);
  6998. }
  6999. }
  7000. } else if (dst->type == GGML_TYPE_BF16) {
  7001. size_t id = 0;
  7002. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7003. for (int i03 = 0; i03 < ne03; i03++) {
  7004. for (int i02 = 0; i02 < ne02; i02++) {
  7005. id += ne00 * ir0;
  7006. for (int i01 = ir0; i01 < ir1; i01++) {
  7007. for (int i00 = 0; i00 < ne00; i00++) {
  7008. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7009. dst_ptr[id] = *src0_ptr;
  7010. id++;
  7011. }
  7012. }
  7013. id += ne00 * (ne01 - ir1);
  7014. }
  7015. }
  7016. } else if (dst->type == GGML_TYPE_F16) {
  7017. size_t id = 0;
  7018. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7019. for (int i03 = 0; i03 < ne03; i03++) {
  7020. for (int i02 = 0; i02 < ne02; i02++) {
  7021. id += ne00 * ir0;
  7022. for (int i01 = ir0; i01 < ir1; i01++) {
  7023. for (int i00 = 0; i00 < ne00; i00++) {
  7024. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7025. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  7026. id++;
  7027. }
  7028. }
  7029. id += ne00 * (ne01 - ir1);
  7030. }
  7031. }
  7032. } else {
  7033. GGML_ABORT("fatal error"); // TODO: implement
  7034. }
  7035. }
  7036. return;
  7037. }
  7038. // dst counters
  7039. int64_t i10 = 0;
  7040. int64_t i11 = 0;
  7041. int64_t i12 = 0;
  7042. int64_t i13 = 0;
  7043. if (dst->type == GGML_TYPE_BF16) {
  7044. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7045. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7046. i10 += ne00 * ir0;
  7047. while (i10 >= ne0) {
  7048. i10 -= ne0;
  7049. if (++i11 == ne1) {
  7050. i11 = 0;
  7051. if (++i12 == ne2) {
  7052. i12 = 0;
  7053. if (++i13 == ne3) {
  7054. i13 = 0;
  7055. }
  7056. }
  7057. }
  7058. }
  7059. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7060. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7061. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7062. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7063. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  7064. if (++i10 == ne00) {
  7065. i10 = 0;
  7066. if (++i11 == ne01) {
  7067. i11 = 0;
  7068. if (++i12 == ne02) {
  7069. i12 = 0;
  7070. if (++i13 == ne03) {
  7071. i13 = 0;
  7072. }
  7073. }
  7074. }
  7075. }
  7076. }
  7077. }
  7078. i10 += ne00 * (ne01 - ir1);
  7079. while (i10 >= ne0) {
  7080. i10 -= ne0;
  7081. if (++i11 == ne1) {
  7082. i11 = 0;
  7083. if (++i12 == ne2) {
  7084. i12 = 0;
  7085. if (++i13 == ne3) {
  7086. i13 = 0;
  7087. }
  7088. }
  7089. }
  7090. }
  7091. }
  7092. }
  7093. } else if (dst->type == GGML_TYPE_F16) {
  7094. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7095. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7096. i10 += ne00 * ir0;
  7097. while (i10 >= ne0) {
  7098. i10 -= ne0;
  7099. if (++i11 == ne1) {
  7100. i11 = 0;
  7101. if (++i12 == ne2) {
  7102. i12 = 0;
  7103. if (++i13 == ne3) {
  7104. i13 = 0;
  7105. }
  7106. }
  7107. }
  7108. }
  7109. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7110. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7111. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7112. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7113. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  7114. if (++i10 == ne0) {
  7115. i10 = 0;
  7116. if (++i11 == ne1) {
  7117. i11 = 0;
  7118. if (++i12 == ne2) {
  7119. i12 = 0;
  7120. if (++i13 == ne3) {
  7121. i13 = 0;
  7122. }
  7123. }
  7124. }
  7125. }
  7126. }
  7127. }
  7128. i10 += ne00 * (ne01 - ir1);
  7129. while (i10 >= ne0) {
  7130. i10 -= ne0;
  7131. if (++i11 == ne1) {
  7132. i11 = 0;
  7133. if (++i12 == ne2) {
  7134. i12 = 0;
  7135. if (++i13 == ne3) {
  7136. i13 = 0;
  7137. }
  7138. }
  7139. }
  7140. }
  7141. }
  7142. }
  7143. } else if (dst->type == GGML_TYPE_F32) {
  7144. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7145. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7146. i10 += ne00 * ir0;
  7147. while (i10 >= ne0) {
  7148. i10 -= ne0;
  7149. if (++i11 == ne1) {
  7150. i11 = 0;
  7151. if (++i12 == ne2) {
  7152. i12 = 0;
  7153. if (++i13 == ne3) {
  7154. i13 = 0;
  7155. }
  7156. }
  7157. }
  7158. }
  7159. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7160. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7161. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7162. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7163. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7164. if (++i10 == ne0) {
  7165. i10 = 0;
  7166. if (++i11 == ne1) {
  7167. i11 = 0;
  7168. if (++i12 == ne2) {
  7169. i12 = 0;
  7170. if (++i13 == ne3) {
  7171. i13 = 0;
  7172. }
  7173. }
  7174. }
  7175. }
  7176. }
  7177. }
  7178. i10 += ne00 * (ne01 - ir1);
  7179. while (i10 >= ne0) {
  7180. i10 -= ne0;
  7181. if (++i11 == ne1) {
  7182. i11 = 0;
  7183. if (++i12 == ne2) {
  7184. i12 = 0;
  7185. if (++i13 == ne3) {
  7186. i13 = 0;
  7187. }
  7188. }
  7189. }
  7190. }
  7191. }
  7192. }
  7193. } else {
  7194. GGML_ABORT("fatal error"); // TODO: implement
  7195. }
  7196. }
  7197. static void ggml_compute_forward_dup_f32(
  7198. const struct ggml_compute_params * params,
  7199. struct ggml_tensor * dst) {
  7200. const struct ggml_tensor * src0 = dst->src[0];
  7201. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7202. GGML_TENSOR_UNARY_OP_LOCALS
  7203. const int ith = params->ith; // thread index
  7204. const int nth = params->nth; // number of threads
  7205. // parallelize by rows
  7206. const int nr = ne01;
  7207. // number of rows per thread
  7208. const int dr = (nr + nth - 1) / nth;
  7209. // row range for this thread
  7210. const int ir0 = dr * ith;
  7211. const int ir1 = MIN(ir0 + dr, nr);
  7212. if (src0->type == dst->type &&
  7213. ne00 == ne0 &&
  7214. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7215. // copy by rows
  7216. const size_t rs = ne00*nb00;
  7217. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7218. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7219. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7220. memcpy(
  7221. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7222. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7223. rs);
  7224. }
  7225. }
  7226. }
  7227. return;
  7228. }
  7229. if (ggml_is_contiguous(dst)) {
  7230. // TODO: simplify
  7231. if (nb00 == sizeof(float)) {
  7232. if (dst->type == GGML_TYPE_F32) {
  7233. size_t id = 0;
  7234. const size_t rs = ne00 * nb00;
  7235. char * dst_ptr = (char *) dst->data;
  7236. for (int i03 = 0; i03 < ne03; i03++) {
  7237. for (int i02 = 0; i02 < ne02; i02++) {
  7238. id += rs * ir0;
  7239. for (int i01 = ir0; i01 < ir1; i01++) {
  7240. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7241. memcpy(dst_ptr + id, src0_ptr, rs);
  7242. id += rs;
  7243. }
  7244. id += rs * (ne01 - ir1);
  7245. }
  7246. }
  7247. } else if (type_traits[dst->type].from_float) {
  7248. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7249. size_t id = 0;
  7250. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7251. char * dst_ptr = (char *) dst->data;
  7252. for (int i03 = 0; i03 < ne03; i03++) {
  7253. for (int i02 = 0; i02 < ne02; i02++) {
  7254. id += rs * ir0;
  7255. for (int i01 = ir0; i01 < ir1; i01++) {
  7256. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7257. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7258. id += rs;
  7259. }
  7260. id += rs * (ne01 - ir1);
  7261. }
  7262. }
  7263. } else {
  7264. GGML_ABORT("fatal error"); // TODO: implement
  7265. }
  7266. } else {
  7267. //printf("%s: this is not optimal - fix me\n", __func__);
  7268. if (dst->type == GGML_TYPE_F32) {
  7269. size_t id = 0;
  7270. float * dst_ptr = (float *) dst->data;
  7271. for (int i03 = 0; i03 < ne03; i03++) {
  7272. for (int i02 = 0; i02 < ne02; i02++) {
  7273. id += ne00 * ir0;
  7274. for (int i01 = ir0; i01 < ir1; i01++) {
  7275. for (int i00 = 0; i00 < ne00; i00++) {
  7276. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7277. dst_ptr[id] = *src0_ptr;
  7278. id++;
  7279. }
  7280. }
  7281. id += ne00 * (ne01 - ir1);
  7282. }
  7283. }
  7284. } else if (dst->type == GGML_TYPE_F16) {
  7285. size_t id = 0;
  7286. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7287. for (int i03 = 0; i03 < ne03; i03++) {
  7288. for (int i02 = 0; i02 < ne02; i02++) {
  7289. id += ne00 * ir0;
  7290. for (int i01 = ir0; i01 < ir1; i01++) {
  7291. for (int i00 = 0; i00 < ne00; i00++) {
  7292. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7293. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7294. id++;
  7295. }
  7296. }
  7297. id += ne00 * (ne01 - ir1);
  7298. }
  7299. }
  7300. } else if (dst->type == GGML_TYPE_BF16) {
  7301. size_t id = 0;
  7302. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7303. for (int i03 = 0; i03 < ne03; i03++) {
  7304. for (int i02 = 0; i02 < ne02; i02++) {
  7305. id += ne00 * ir0;
  7306. for (int i01 = ir0; i01 < ir1; i01++) {
  7307. for (int i00 = 0; i00 < ne00; i00++) {
  7308. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7309. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7310. id++;
  7311. }
  7312. }
  7313. id += ne00 * (ne01 - ir1);
  7314. }
  7315. }
  7316. } else {
  7317. GGML_ABORT("fatal error"); // TODO: implement
  7318. }
  7319. }
  7320. return;
  7321. }
  7322. // dst counters
  7323. int64_t i10 = 0;
  7324. int64_t i11 = 0;
  7325. int64_t i12 = 0;
  7326. int64_t i13 = 0;
  7327. if (dst->type == GGML_TYPE_F32) {
  7328. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7329. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7330. i10 += ne00 * ir0;
  7331. while (i10 >= ne0) {
  7332. i10 -= ne0;
  7333. if (++i11 == ne1) {
  7334. i11 = 0;
  7335. if (++i12 == ne2) {
  7336. i12 = 0;
  7337. if (++i13 == ne3) {
  7338. i13 = 0;
  7339. }
  7340. }
  7341. }
  7342. }
  7343. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7344. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7345. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7346. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7347. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7348. if (++i10 == ne0) {
  7349. i10 = 0;
  7350. if (++i11 == ne1) {
  7351. i11 = 0;
  7352. if (++i12 == ne2) {
  7353. i12 = 0;
  7354. if (++i13 == ne3) {
  7355. i13 = 0;
  7356. }
  7357. }
  7358. }
  7359. }
  7360. }
  7361. }
  7362. i10 += ne00 * (ne01 - ir1);
  7363. while (i10 >= ne0) {
  7364. i10 -= ne0;
  7365. if (++i11 == ne1) {
  7366. i11 = 0;
  7367. if (++i12 == ne2) {
  7368. i12 = 0;
  7369. if (++i13 == ne3) {
  7370. i13 = 0;
  7371. }
  7372. }
  7373. }
  7374. }
  7375. }
  7376. }
  7377. } else if (dst->type == GGML_TYPE_F16) {
  7378. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7379. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7380. i10 += ne00 * ir0;
  7381. while (i10 >= ne0) {
  7382. i10 -= ne0;
  7383. if (++i11 == ne1) {
  7384. i11 = 0;
  7385. if (++i12 == ne2) {
  7386. i12 = 0;
  7387. if (++i13 == ne3) {
  7388. i13 = 0;
  7389. }
  7390. }
  7391. }
  7392. }
  7393. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7394. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7395. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7396. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7397. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7398. if (++i10 == ne0) {
  7399. i10 = 0;
  7400. if (++i11 == ne1) {
  7401. i11 = 0;
  7402. if (++i12 == ne2) {
  7403. i12 = 0;
  7404. if (++i13 == ne3) {
  7405. i13 = 0;
  7406. }
  7407. }
  7408. }
  7409. }
  7410. }
  7411. }
  7412. i10 += ne00 * (ne01 - ir1);
  7413. while (i10 >= ne0) {
  7414. i10 -= ne0;
  7415. if (++i11 == ne1) {
  7416. i11 = 0;
  7417. if (++i12 == ne2) {
  7418. i12 = 0;
  7419. if (++i13 == ne3) {
  7420. i13 = 0;
  7421. }
  7422. }
  7423. }
  7424. }
  7425. }
  7426. }
  7427. } else if (dst->type == GGML_TYPE_BF16) {
  7428. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7429. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7430. i10 += ne00 * ir0;
  7431. while (i10 >= ne0) {
  7432. i10 -= ne0;
  7433. if (++i11 == ne1) {
  7434. i11 = 0;
  7435. if (++i12 == ne2) {
  7436. i12 = 0;
  7437. if (++i13 == ne3) {
  7438. i13 = 0;
  7439. }
  7440. }
  7441. }
  7442. }
  7443. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7444. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7445. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7446. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7447. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7448. if (++i10 == ne0) {
  7449. i10 = 0;
  7450. if (++i11 == ne1) {
  7451. i11 = 0;
  7452. if (++i12 == ne2) {
  7453. i12 = 0;
  7454. if (++i13 == ne3) {
  7455. i13 = 0;
  7456. }
  7457. }
  7458. }
  7459. }
  7460. }
  7461. }
  7462. i10 += ne00 * (ne01 - ir1);
  7463. while (i10 >= ne0) {
  7464. i10 -= ne0;
  7465. if (++i11 == ne1) {
  7466. i11 = 0;
  7467. if (++i12 == ne2) {
  7468. i12 = 0;
  7469. if (++i13 == ne3) {
  7470. i13 = 0;
  7471. }
  7472. }
  7473. }
  7474. }
  7475. }
  7476. }
  7477. } else {
  7478. GGML_ABORT("fatal error"); // TODO: implement
  7479. }
  7480. }
  7481. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7482. static void ggml_compute_forward_dup_bytes(
  7483. const struct ggml_compute_params * params,
  7484. struct ggml_tensor * dst) {
  7485. const struct ggml_tensor * src0 = dst->src[0];
  7486. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7487. GGML_ASSERT(src0->type == dst->type);
  7488. GGML_TENSOR_UNARY_OP_LOCALS;
  7489. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7490. ggml_compute_forward_dup_same_cont(params, dst);
  7491. return;
  7492. }
  7493. const size_t type_size = ggml_type_size(src0->type);
  7494. const int ith = params->ith; // thread index
  7495. const int nth = params->nth; // number of threads
  7496. // parallelize by rows
  7497. const int nr = ne01;
  7498. // number of rows per thread
  7499. const int dr = (nr + nth - 1) / nth;
  7500. // row range for this thread
  7501. const int ir0 = dr * ith;
  7502. const int ir1 = MIN(ir0 + dr, nr);
  7503. if (src0->type == dst->type &&
  7504. ne00 == ne0 &&
  7505. nb00 == type_size && nb0 == type_size) {
  7506. // copy by rows
  7507. const size_t rs = ne00 * type_size;
  7508. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7509. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7510. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7511. memcpy(
  7512. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7513. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7514. rs);
  7515. }
  7516. }
  7517. }
  7518. return;
  7519. }
  7520. if (ggml_is_contiguous(dst)) {
  7521. size_t id = 0;
  7522. char * dst_ptr = (char *) dst->data;
  7523. const size_t rs = ne00 * type_size;
  7524. if (nb00 == type_size) {
  7525. // src0 is contigous on first dimension, copy by rows
  7526. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7527. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7528. id += rs * ir0;
  7529. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7530. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7531. memcpy(dst_ptr + id, src0_ptr, rs);
  7532. id += rs;
  7533. }
  7534. id += rs * (ne01 - ir1);
  7535. }
  7536. }
  7537. } else {
  7538. //printf("%s: this is not optimal - fix me\n", __func__);
  7539. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7540. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7541. id += rs * ir0;
  7542. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7543. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7544. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7545. memcpy(dst_ptr + id, src0_ptr, type_size);
  7546. id += type_size;
  7547. }
  7548. }
  7549. id += rs * (ne01 - ir1);
  7550. }
  7551. }
  7552. }
  7553. return;
  7554. }
  7555. // dst counters
  7556. int64_t i10 = 0;
  7557. int64_t i11 = 0;
  7558. int64_t i12 = 0;
  7559. int64_t i13 = 0;
  7560. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7561. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7562. i10 += ne00 * ir0;
  7563. while (i10 >= ne0) {
  7564. i10 -= ne0;
  7565. if (++i11 == ne1) {
  7566. i11 = 0;
  7567. if (++i12 == ne2) {
  7568. i12 = 0;
  7569. if (++i13 == ne3) {
  7570. i13 = 0;
  7571. }
  7572. }
  7573. }
  7574. }
  7575. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7576. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7577. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7578. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7579. memcpy(dst_ptr, src0_ptr, type_size);
  7580. if (++i10 == ne0) {
  7581. i10 = 0;
  7582. if (++i11 == ne1) {
  7583. i11 = 0;
  7584. if (++i12 == ne2) {
  7585. i12 = 0;
  7586. if (++i13 == ne3) {
  7587. i13 = 0;
  7588. }
  7589. }
  7590. }
  7591. }
  7592. }
  7593. }
  7594. i10 += ne00 * (ne01 - ir1);
  7595. while (i10 >= ne0) {
  7596. i10 -= ne0;
  7597. if (++i11 == ne1) {
  7598. i11 = 0;
  7599. if (++i12 == ne2) {
  7600. i12 = 0;
  7601. if (++i13 == ne3) {
  7602. i13 = 0;
  7603. }
  7604. }
  7605. }
  7606. }
  7607. }
  7608. }
  7609. }
  7610. static void ggml_compute_forward_dup(
  7611. const struct ggml_compute_params * params,
  7612. struct ggml_tensor * dst) {
  7613. const struct ggml_tensor * src0 = dst->src[0];
  7614. if (src0->type == dst->type) {
  7615. ggml_compute_forward_dup_bytes(params, dst);
  7616. return;
  7617. }
  7618. switch (src0->type) {
  7619. case GGML_TYPE_F16:
  7620. {
  7621. ggml_compute_forward_dup_f16(params, dst);
  7622. } break;
  7623. case GGML_TYPE_BF16:
  7624. {
  7625. ggml_compute_forward_dup_bf16(params, dst);
  7626. } break;
  7627. case GGML_TYPE_F32:
  7628. {
  7629. ggml_compute_forward_dup_f32(params, dst);
  7630. } break;
  7631. default:
  7632. {
  7633. GGML_ABORT("fatal error");
  7634. }
  7635. }
  7636. }
  7637. // ggml_compute_forward_add
  7638. static void ggml_compute_forward_add_f32(
  7639. const struct ggml_compute_params * params,
  7640. struct ggml_tensor * dst) {
  7641. const struct ggml_tensor * src0 = dst->src[0];
  7642. const struct ggml_tensor * src1 = dst->src[1];
  7643. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7644. const int ith = params->ith;
  7645. const int nth = params->nth;
  7646. const int nr = ggml_nrows(src0);
  7647. GGML_TENSOR_BINARY_OP_LOCALS
  7648. GGML_ASSERT( nb0 == sizeof(float));
  7649. GGML_ASSERT(nb00 == sizeof(float));
  7650. // rows per thread
  7651. const int dr = (nr + nth - 1)/nth;
  7652. // row range for this thread
  7653. const int ir0 = dr*ith;
  7654. const int ir1 = MIN(ir0 + dr, nr);
  7655. if (nb10 == sizeof(float)) {
  7656. for (int ir = ir0; ir < ir1; ++ir) {
  7657. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7658. const int64_t i03 = ir/(ne02*ne01);
  7659. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7660. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7661. const int64_t i13 = i03 % ne13;
  7662. const int64_t i12 = i02 % ne12;
  7663. const int64_t i11 = i01 % ne11;
  7664. const int64_t nr0 = ne00 / ne10;
  7665. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7666. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7667. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7668. for (int64_t r = 0; r < nr0; ++r) {
  7669. #ifdef GGML_USE_ACCELERATE
  7670. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7671. #else
  7672. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7673. #endif
  7674. }
  7675. }
  7676. } else {
  7677. // src1 is not contiguous
  7678. for (int ir = ir0; ir < ir1; ++ir) {
  7679. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7680. const int64_t i03 = ir/(ne02*ne01);
  7681. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7682. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7683. const int64_t i13 = i03 % ne13;
  7684. const int64_t i12 = i02 % ne12;
  7685. const int64_t i11 = i01 % ne11;
  7686. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7687. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7688. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7689. const int64_t i10 = i0 % ne10;
  7690. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7691. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7692. }
  7693. }
  7694. }
  7695. }
  7696. static void ggml_compute_forward_add_f16_f32(
  7697. const struct ggml_compute_params * params,
  7698. struct ggml_tensor * dst) {
  7699. const struct ggml_tensor * src0 = dst->src[0];
  7700. const struct ggml_tensor * src1 = dst->src[1];
  7701. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7702. const int ith = params->ith;
  7703. const int nth = params->nth;
  7704. const int nr = ggml_nrows(src0);
  7705. GGML_TENSOR_BINARY_OP_LOCALS
  7706. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7707. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7708. if (dst->type == GGML_TYPE_F32) {
  7709. GGML_ASSERT( nb0 == sizeof(float));
  7710. }
  7711. else {
  7712. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7713. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7714. }
  7715. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7716. // rows per thread
  7717. const int dr = (nr + nth - 1)/nth;
  7718. // row range for this thread
  7719. const int ir0 = dr*ith;
  7720. const int ir1 = MIN(ir0 + dr, nr);
  7721. if (nb10 == sizeof(float)) {
  7722. if (dst->type == GGML_TYPE_F16) {
  7723. for (int ir = ir0; ir < ir1; ++ir) {
  7724. // src0, src1 and dst are same shape => same indices
  7725. const int i3 = ir/(ne2*ne1);
  7726. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7727. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7728. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7729. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7730. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7731. for (int i = 0; i < ne0; i++) {
  7732. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7733. }
  7734. }
  7735. } else {
  7736. for (int ir = ir0; ir < ir1; ++ir) {
  7737. // src0, src1 and dst are same shape => same indices
  7738. const int i3 = ir/(ne2*ne1);
  7739. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7740. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7741. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7742. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7743. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7744. for (int i = 0; i < ne0; i++) {
  7745. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7746. }
  7747. }
  7748. }
  7749. }
  7750. else {
  7751. // src1 is not contiguous
  7752. GGML_ABORT("fatal error");
  7753. }
  7754. }
  7755. static void ggml_compute_forward_add_bf16_f32(
  7756. const struct ggml_compute_params * params,
  7757. struct ggml_tensor * dst) {
  7758. const struct ggml_tensor * src0 = dst->src[0];
  7759. const struct ggml_tensor * src1 = dst->src[1];
  7760. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7761. const int ith = params->ith;
  7762. const int nth = params->nth;
  7763. const int nr = ggml_nrows(src0);
  7764. GGML_TENSOR_BINARY_OP_LOCALS
  7765. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7766. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7767. if (dst->type == GGML_TYPE_F32) {
  7768. GGML_ASSERT( nb0 == sizeof(float));
  7769. }
  7770. else {
  7771. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7772. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7773. }
  7774. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7775. // rows per thread
  7776. const int dr = (nr + nth - 1)/nth;
  7777. // row range for this thread
  7778. const int ir0 = dr*ith;
  7779. const int ir1 = MIN(ir0 + dr, nr);
  7780. if (nb10 == sizeof(float)) {
  7781. if (dst->type == GGML_TYPE_BF16) {
  7782. for (int ir = ir0; ir < ir1; ++ir) {
  7783. // src0, src1 and dst are same shape => same indices
  7784. const int i3 = ir/(ne2*ne1);
  7785. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7786. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7787. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7788. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7789. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7790. for (int i = 0; i < ne0; i++) {
  7791. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7792. }
  7793. }
  7794. } else {
  7795. for (int ir = ir0; ir < ir1; ++ir) {
  7796. // src0, src1 and dst are same shape => same indices
  7797. const int i3 = ir/(ne2*ne1);
  7798. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7799. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7800. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7801. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7802. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7803. for (int i = 0; i < ne0; i++) {
  7804. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7805. }
  7806. }
  7807. }
  7808. }
  7809. else {
  7810. // src1 is not contiguous
  7811. GGML_ABORT("fatal error");
  7812. }
  7813. }
  7814. static void ggml_compute_forward_add_f16_f16(
  7815. const struct ggml_compute_params * params,
  7816. struct ggml_tensor * dst) {
  7817. const struct ggml_tensor * src0 = dst->src[0];
  7818. const struct ggml_tensor * src1 = dst->src[1];
  7819. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7820. const int ith = params->ith;
  7821. const int nth = params->nth;
  7822. const int nr = ggml_nrows(src0);
  7823. GGML_TENSOR_BINARY_OP_LOCALS
  7824. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7825. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7826. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7827. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7828. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7829. // rows per thread
  7830. const int dr = (nr + nth - 1)/nth;
  7831. // row range for this thread
  7832. const int ir0 = dr*ith;
  7833. const int ir1 = MIN(ir0 + dr, nr);
  7834. if (nb10 == sizeof(ggml_fp16_t)) {
  7835. for (int ir = ir0; ir < ir1; ++ir) {
  7836. // src0, src1 and dst are same shape => same indices
  7837. const int i3 = ir/(ne2*ne1);
  7838. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7839. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7840. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7841. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7842. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7843. for (int i = 0; i < ne0; i++) {
  7844. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7845. }
  7846. }
  7847. }
  7848. else {
  7849. // src1 is not contiguous
  7850. GGML_ABORT("fatal error");
  7851. }
  7852. }
  7853. static void ggml_compute_forward_add_bf16_bf16(
  7854. const struct ggml_compute_params * params,
  7855. struct ggml_tensor * dst) {
  7856. const struct ggml_tensor * src0 = dst->src[0];
  7857. const struct ggml_tensor * src1 = dst->src[1];
  7858. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7859. const int ith = params->ith;
  7860. const int nth = params->nth;
  7861. const int nr = ggml_nrows(src0);
  7862. GGML_TENSOR_BINARY_OP_LOCALS
  7863. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7864. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7865. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7866. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7867. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7868. // rows per thread
  7869. const int dr = (nr + nth - 1)/nth;
  7870. // row range for this thread
  7871. const int ir0 = dr*ith;
  7872. const int ir1 = MIN(ir0 + dr, nr);
  7873. if (nb10 == sizeof(ggml_bf16_t)) {
  7874. for (int ir = ir0; ir < ir1; ++ir) {
  7875. // src0, src1 and dst are same shape => same indices
  7876. const int i3 = ir/(ne2*ne1);
  7877. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7878. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7879. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7880. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7881. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7882. for (int i = 0; i < ne0; i++) {
  7883. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7884. }
  7885. }
  7886. }
  7887. else {
  7888. // src1 is not contiguous
  7889. GGML_ABORT("fatal error");
  7890. }
  7891. }
  7892. static void ggml_compute_forward_add_q_f32(
  7893. const struct ggml_compute_params * params,
  7894. struct ggml_tensor * dst) {
  7895. const struct ggml_tensor * src0 = dst->src[0];
  7896. const struct ggml_tensor * src1 = dst->src[1];
  7897. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7898. const int nr = ggml_nrows(src0);
  7899. GGML_TENSOR_BINARY_OP_LOCALS
  7900. const int ith = params->ith;
  7901. const int nth = params->nth;
  7902. const enum ggml_type type = src0->type;
  7903. const enum ggml_type dtype = dst->type;
  7904. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7905. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7906. // we don't support permuted src0 or src1
  7907. GGML_ASSERT(nb00 == ggml_type_size(type));
  7908. GGML_ASSERT(nb10 == sizeof(float));
  7909. // dst cannot be transposed or permuted
  7910. GGML_ASSERT(nb0 <= nb1);
  7911. GGML_ASSERT(nb1 <= nb2);
  7912. GGML_ASSERT(nb2 <= nb3);
  7913. GGML_ASSERT(ggml_is_quantized(src0->type));
  7914. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7915. // rows per thread
  7916. const int dr = (nr + nth - 1)/nth;
  7917. // row range for this thread
  7918. const int ir0 = dr*ith;
  7919. const int ir1 = MIN(ir0 + dr, nr);
  7920. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7921. for (int ir = ir0; ir < ir1; ++ir) {
  7922. // src0 indices
  7923. const int i03 = ir/(ne02*ne01);
  7924. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7925. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7926. // src1 and dst are same shape as src0 => same indices
  7927. const int i13 = i03;
  7928. const int i12 = i02;
  7929. const int i11 = i01;
  7930. const int i3 = i03;
  7931. const int i2 = i02;
  7932. const int i1 = i01;
  7933. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7934. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7935. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7936. assert(ne00 % 32 == 0);
  7937. // unquantize row from src0 to temp buffer
  7938. dequantize_row_q(src0_row, wdata, ne00);
  7939. // add src1
  7940. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7941. // quantize row to dst
  7942. if (quantize_row_q != NULL) {
  7943. quantize_row_q(wdata, dst_row, ne00);
  7944. } else {
  7945. memcpy(dst_row, wdata, ne0*nb0);
  7946. }
  7947. }
  7948. }
  7949. static void ggml_compute_forward_add(
  7950. const struct ggml_compute_params * params,
  7951. struct ggml_tensor * dst) {
  7952. const struct ggml_tensor * src0 = dst->src[0];
  7953. const struct ggml_tensor * src1 = dst->src[1];
  7954. switch (src0->type) {
  7955. case GGML_TYPE_F32:
  7956. {
  7957. if (src1->type == GGML_TYPE_F32) {
  7958. ggml_compute_forward_add_f32(params, dst);
  7959. }
  7960. else {
  7961. GGML_ABORT("fatal error");
  7962. }
  7963. } break;
  7964. case GGML_TYPE_F16:
  7965. {
  7966. if (src1->type == GGML_TYPE_F16) {
  7967. ggml_compute_forward_add_f16_f16(params, dst);
  7968. }
  7969. else if (src1->type == GGML_TYPE_F32) {
  7970. ggml_compute_forward_add_f16_f32(params, dst);
  7971. }
  7972. else {
  7973. GGML_ABORT("fatal error");
  7974. }
  7975. } break;
  7976. case GGML_TYPE_BF16:
  7977. {
  7978. if (src1->type == GGML_TYPE_BF16) {
  7979. ggml_compute_forward_add_bf16_bf16(params, dst);
  7980. }
  7981. else if (src1->type == GGML_TYPE_F32) {
  7982. ggml_compute_forward_add_bf16_f32(params, dst);
  7983. }
  7984. else {
  7985. GGML_ABORT("fatal error");
  7986. }
  7987. } break;
  7988. case GGML_TYPE_Q4_0:
  7989. case GGML_TYPE_Q4_1:
  7990. case GGML_TYPE_Q5_0:
  7991. case GGML_TYPE_Q5_1:
  7992. case GGML_TYPE_Q8_0:
  7993. case GGML_TYPE_Q2_K:
  7994. case GGML_TYPE_Q3_K:
  7995. case GGML_TYPE_Q4_K:
  7996. case GGML_TYPE_Q5_K:
  7997. case GGML_TYPE_Q6_K:
  7998. case GGML_TYPE_TQ1_0:
  7999. case GGML_TYPE_TQ2_0:
  8000. case GGML_TYPE_IQ2_XXS:
  8001. case GGML_TYPE_IQ2_XS:
  8002. case GGML_TYPE_IQ3_XXS:
  8003. case GGML_TYPE_IQ1_S:
  8004. case GGML_TYPE_IQ1_M:
  8005. case GGML_TYPE_IQ4_NL:
  8006. case GGML_TYPE_IQ4_XS:
  8007. case GGML_TYPE_IQ3_S:
  8008. case GGML_TYPE_IQ2_S:
  8009. case GGML_TYPE_Q4_0_4_4:
  8010. case GGML_TYPE_Q4_0_4_8:
  8011. case GGML_TYPE_Q4_0_8_8:
  8012. {
  8013. ggml_compute_forward_add_q_f32(params, dst);
  8014. } break;
  8015. default:
  8016. {
  8017. GGML_ABORT("fatal error");
  8018. }
  8019. }
  8020. }
  8021. // ggml_compute_forward_add1
  8022. static void ggml_compute_forward_add1_f32(
  8023. const struct ggml_compute_params * params,
  8024. struct ggml_tensor * dst) {
  8025. const struct ggml_tensor * src0 = dst->src[0];
  8026. const struct ggml_tensor * src1 = dst->src[1];
  8027. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8028. GGML_ASSERT(ggml_is_scalar(src1));
  8029. const int ith = params->ith;
  8030. const int nth = params->nth;
  8031. const int nr = ggml_nrows(src0);
  8032. GGML_TENSOR_UNARY_OP_LOCALS
  8033. GGML_ASSERT( nb0 == sizeof(float));
  8034. GGML_ASSERT(nb00 == sizeof(float));
  8035. // rows per thread
  8036. const int dr = (nr + nth - 1)/nth;
  8037. // row range for this thread
  8038. const int ir0 = dr*ith;
  8039. const int ir1 = MIN(ir0 + dr, nr);
  8040. for (int ir = ir0; ir < ir1; ++ir) {
  8041. // src0 and dst are same shape => same indices
  8042. const int i3 = ir/(ne2*ne1);
  8043. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8044. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8045. #ifdef GGML_USE_ACCELERATE
  8046. UNUSED(ggml_vec_add1_f32);
  8047. vDSP_vadd(
  8048. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8049. (float *) ((char *) src1->data), 0,
  8050. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8051. ne0);
  8052. #else
  8053. ggml_vec_add1_f32(ne0,
  8054. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8055. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8056. *(float *) src1->data);
  8057. #endif
  8058. }
  8059. }
  8060. static void ggml_compute_forward_add1_f16_f32(
  8061. const struct ggml_compute_params * params,
  8062. struct ggml_tensor * dst) {
  8063. const struct ggml_tensor * src0 = dst->src[0];
  8064. const struct ggml_tensor * src1 = dst->src[1];
  8065. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8066. GGML_ASSERT(ggml_is_scalar(src1));
  8067. // scalar to add
  8068. const float v = *(float *) src1->data;
  8069. const int ith = params->ith;
  8070. const int nth = params->nth;
  8071. const int nr = ggml_nrows(src0);
  8072. GGML_TENSOR_UNARY_OP_LOCALS
  8073. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8074. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8075. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8076. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8077. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8078. // rows per thread
  8079. const int dr = (nr + nth - 1)/nth;
  8080. // row range for this thread
  8081. const int ir0 = dr*ith;
  8082. const int ir1 = MIN(ir0 + dr, nr);
  8083. for (int ir = ir0; ir < ir1; ++ir) {
  8084. // src0 and dst are same shape => same indices
  8085. const int i3 = ir/(ne2*ne1);
  8086. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8087. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8088. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8089. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8090. for (int i = 0; i < ne0; i++) {
  8091. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8092. }
  8093. }
  8094. }
  8095. static void ggml_compute_forward_add1_f16_f16(
  8096. const struct ggml_compute_params * params,
  8097. struct ggml_tensor * dst) {
  8098. const struct ggml_tensor * src0 = dst->src[0];
  8099. const struct ggml_tensor * src1 = dst->src[1];
  8100. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8101. GGML_ASSERT(ggml_is_scalar(src1));
  8102. // scalar to add
  8103. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8104. const int ith = params->ith;
  8105. const int nth = params->nth;
  8106. const int nr = ggml_nrows(src0);
  8107. GGML_TENSOR_UNARY_OP_LOCALS
  8108. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8109. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8110. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8111. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8112. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8113. // rows per thread
  8114. const int dr = (nr + nth - 1)/nth;
  8115. // row range for this thread
  8116. const int ir0 = dr*ith;
  8117. const int ir1 = MIN(ir0 + dr, nr);
  8118. for (int ir = ir0; ir < ir1; ++ir) {
  8119. // src0 and dst are same shape => same indices
  8120. const int i3 = ir/(ne2*ne1);
  8121. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8122. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8123. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8124. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8125. for (int i = 0; i < ne0; i++) {
  8126. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8127. }
  8128. }
  8129. }
  8130. static void ggml_compute_forward_add1_q_f32(
  8131. const struct ggml_compute_params * params,
  8132. struct ggml_tensor * dst) {
  8133. const struct ggml_tensor * src0 = dst->src[0];
  8134. const struct ggml_tensor * src1 = dst->src[1];
  8135. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8136. GGML_ASSERT(ggml_is_scalar(src1));
  8137. // scalar to add
  8138. const float v = *(float *) src1->data;
  8139. const int ith = params->ith;
  8140. const int nth = params->nth;
  8141. const int nr = ggml_nrows(src0);
  8142. GGML_TENSOR_UNARY_OP_LOCALS
  8143. const enum ggml_type type = src0->type;
  8144. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8145. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8146. // we don't support permuted src0
  8147. GGML_ASSERT(nb00 == ggml_type_size(type));
  8148. // dst cannot be transposed or permuted
  8149. GGML_ASSERT(nb0 <= nb1);
  8150. GGML_ASSERT(nb1 <= nb2);
  8151. GGML_ASSERT(nb2 <= nb3);
  8152. GGML_ASSERT(ggml_is_quantized(src0->type));
  8153. GGML_ASSERT(dst->type == src0->type);
  8154. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8155. // rows per thread
  8156. const int dr = (nr + nth - 1)/nth;
  8157. // row range for this thread
  8158. const int ir0 = dr*ith;
  8159. const int ir1 = MIN(ir0 + dr, nr);
  8160. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8161. for (int ir = ir0; ir < ir1; ++ir) {
  8162. // src0 and dst are same shape => same indices
  8163. const int i3 = ir/(ne2*ne1);
  8164. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8165. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8166. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8167. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8168. assert(ne0 % 32 == 0);
  8169. // unquantize row from src0 to temp buffer
  8170. dequantize_row_q(src0_row, wdata, ne0);
  8171. // add src1
  8172. ggml_vec_acc1_f32(ne0, wdata, v);
  8173. // quantize row to dst
  8174. quantize_row_q(wdata, dst_row, ne0);
  8175. }
  8176. }
  8177. static void ggml_compute_forward_add1_bf16_f32(
  8178. const struct ggml_compute_params * params,
  8179. struct ggml_tensor * dst) {
  8180. const struct ggml_tensor * src0 = dst->src[0];
  8181. const struct ggml_tensor * src1 = dst->src[1];
  8182. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8183. GGML_ASSERT(ggml_is_scalar(src1));
  8184. // scalar to add
  8185. const float v = *(float *) src1->data;
  8186. const int ith = params->ith;
  8187. const int nth = params->nth;
  8188. const int nr = ggml_nrows(src0);
  8189. GGML_TENSOR_UNARY_OP_LOCALS
  8190. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8191. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8192. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8193. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8194. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8195. // rows per thread
  8196. const int dr = (nr + nth - 1)/nth;
  8197. // row range for this thread
  8198. const int ir0 = dr*ith;
  8199. const int ir1 = MIN(ir0 + dr, nr);
  8200. for (int ir = ir0; ir < ir1; ++ir) {
  8201. // src0 and dst are same shape => same indices
  8202. const int i3 = ir/(ne2*ne1);
  8203. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8204. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8205. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8206. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8207. for (int i = 0; i < ne0; i++) {
  8208. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8209. }
  8210. }
  8211. }
  8212. static void ggml_compute_forward_add1_bf16_bf16(
  8213. const struct ggml_compute_params * params,
  8214. struct ggml_tensor * dst) {
  8215. const struct ggml_tensor * src0 = dst->src[0];
  8216. const struct ggml_tensor * src1 = dst->src[1];
  8217. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8218. GGML_ASSERT(ggml_is_scalar(src1));
  8219. // scalar to add
  8220. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8221. const int ith = params->ith;
  8222. const int nth = params->nth;
  8223. const int nr = ggml_nrows(src0);
  8224. GGML_TENSOR_UNARY_OP_LOCALS
  8225. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8226. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8227. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8228. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8229. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8230. // rows per thread
  8231. const int dr = (nr + nth - 1)/nth;
  8232. // row range for this thread
  8233. const int ir0 = dr*ith;
  8234. const int ir1 = MIN(ir0 + dr, nr);
  8235. for (int ir = ir0; ir < ir1; ++ir) {
  8236. // src0 and dst are same shape => same indices
  8237. const int i3 = ir/(ne2*ne1);
  8238. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8239. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8240. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8241. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8242. for (int i = 0; i < ne0; i++) {
  8243. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8244. }
  8245. }
  8246. }
  8247. static void ggml_compute_forward_add1(
  8248. const struct ggml_compute_params * params,
  8249. struct ggml_tensor * dst) {
  8250. const struct ggml_tensor * src0 = dst->src[0];
  8251. const struct ggml_tensor * src1 = dst->src[1];
  8252. switch (src0->type) {
  8253. case GGML_TYPE_F32:
  8254. {
  8255. ggml_compute_forward_add1_f32(params, dst);
  8256. } break;
  8257. case GGML_TYPE_F16:
  8258. {
  8259. if (src1->type == GGML_TYPE_F16) {
  8260. ggml_compute_forward_add1_f16_f16(params, dst);
  8261. }
  8262. else if (src1->type == GGML_TYPE_F32) {
  8263. ggml_compute_forward_add1_f16_f32(params, dst);
  8264. }
  8265. else {
  8266. GGML_ABORT("fatal error");
  8267. }
  8268. } break;
  8269. case GGML_TYPE_BF16:
  8270. {
  8271. if (src1->type == GGML_TYPE_BF16) {
  8272. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8273. }
  8274. else if (src1->type == GGML_TYPE_F32) {
  8275. ggml_compute_forward_add1_bf16_f32(params, dst);
  8276. }
  8277. else {
  8278. GGML_ABORT("fatal error");
  8279. }
  8280. } break;
  8281. case GGML_TYPE_Q4_0:
  8282. case GGML_TYPE_Q4_1:
  8283. case GGML_TYPE_Q5_0:
  8284. case GGML_TYPE_Q5_1:
  8285. case GGML_TYPE_Q8_0:
  8286. case GGML_TYPE_Q8_1:
  8287. case GGML_TYPE_Q2_K:
  8288. case GGML_TYPE_Q3_K:
  8289. case GGML_TYPE_Q4_K:
  8290. case GGML_TYPE_Q5_K:
  8291. case GGML_TYPE_Q6_K:
  8292. case GGML_TYPE_TQ1_0:
  8293. case GGML_TYPE_TQ2_0:
  8294. case GGML_TYPE_IQ2_XXS:
  8295. case GGML_TYPE_IQ2_XS:
  8296. case GGML_TYPE_IQ3_XXS:
  8297. case GGML_TYPE_IQ1_S:
  8298. case GGML_TYPE_IQ1_M:
  8299. case GGML_TYPE_IQ4_NL:
  8300. case GGML_TYPE_IQ4_XS:
  8301. case GGML_TYPE_IQ3_S:
  8302. case GGML_TYPE_IQ2_S:
  8303. case GGML_TYPE_Q4_0_4_4:
  8304. case GGML_TYPE_Q4_0_4_8:
  8305. case GGML_TYPE_Q4_0_8_8:
  8306. {
  8307. ggml_compute_forward_add1_q_f32(params, dst);
  8308. } break;
  8309. default:
  8310. {
  8311. GGML_ABORT("fatal error");
  8312. }
  8313. }
  8314. }
  8315. // ggml_compute_forward_acc
  8316. static void ggml_compute_forward_acc_f32(
  8317. const struct ggml_compute_params * params,
  8318. struct ggml_tensor * dst) {
  8319. const struct ggml_tensor * src0 = dst->src[0];
  8320. const struct ggml_tensor * src1 = dst->src[1];
  8321. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8322. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8323. // view src0 and dst with these strides and data offset inbytes during acc
  8324. // nb0 is implicitly element_size because src0 and dst are contiguous
  8325. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8326. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8327. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8328. size_t offset = ((int32_t *) dst->op_params)[3];
  8329. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8330. if (!inplace) {
  8331. if (params->ith == 0) {
  8332. // memcpy needs to be synchronized across threads to avoid race conditions.
  8333. // => do it in INIT phase
  8334. memcpy(
  8335. ((char *) dst->data),
  8336. ((char *) src0->data),
  8337. ggml_nbytes(dst));
  8338. }
  8339. ggml_barrier(params->threadpool);
  8340. }
  8341. const int ith = params->ith;
  8342. const int nth = params->nth;
  8343. const int nr = ggml_nrows(src1);
  8344. const int nc = src1->ne[0];
  8345. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8346. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8347. // src0 and dst as viewed during acc
  8348. const size_t nb0 = ggml_element_size(src0);
  8349. const size_t nb00 = nb0;
  8350. const size_t nb01 = nb1;
  8351. const size_t nb02 = nb2;
  8352. const size_t nb03 = nb3;
  8353. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8354. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8355. GGML_ASSERT(nb10 == sizeof(float));
  8356. // rows per thread
  8357. const int dr = (nr + nth - 1)/nth;
  8358. // row range for this thread
  8359. const int ir0 = dr*ith;
  8360. const int ir1 = MIN(ir0 + dr, nr);
  8361. for (int ir = ir0; ir < ir1; ++ir) {
  8362. // src0 and dst are viewed with shape of src1 and offset
  8363. // => same indices
  8364. const int i3 = ir/(ne12*ne11);
  8365. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8366. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8367. #ifdef GGML_USE_ACCELERATE
  8368. vDSP_vadd(
  8369. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8370. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8371. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8372. #else
  8373. ggml_vec_add_f32(nc,
  8374. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8375. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8376. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8377. #endif
  8378. }
  8379. }
  8380. static void ggml_compute_forward_acc(
  8381. const struct ggml_compute_params * params,
  8382. struct ggml_tensor * dst) {
  8383. const struct ggml_tensor * src0 = dst->src[0];
  8384. switch (src0->type) {
  8385. case GGML_TYPE_F32:
  8386. {
  8387. ggml_compute_forward_acc_f32(params, dst);
  8388. } break;
  8389. case GGML_TYPE_F16:
  8390. case GGML_TYPE_BF16:
  8391. case GGML_TYPE_Q4_0:
  8392. case GGML_TYPE_Q4_1:
  8393. case GGML_TYPE_Q5_0:
  8394. case GGML_TYPE_Q5_1:
  8395. case GGML_TYPE_Q8_0:
  8396. case GGML_TYPE_Q8_1:
  8397. case GGML_TYPE_Q2_K:
  8398. case GGML_TYPE_Q3_K:
  8399. case GGML_TYPE_Q4_K:
  8400. case GGML_TYPE_Q5_K:
  8401. case GGML_TYPE_Q6_K:
  8402. case GGML_TYPE_TQ1_0:
  8403. case GGML_TYPE_TQ2_0:
  8404. case GGML_TYPE_IQ2_XXS:
  8405. case GGML_TYPE_IQ2_XS:
  8406. case GGML_TYPE_IQ3_XXS:
  8407. case GGML_TYPE_IQ1_S:
  8408. case GGML_TYPE_IQ1_M:
  8409. case GGML_TYPE_IQ4_NL:
  8410. case GGML_TYPE_IQ4_XS:
  8411. case GGML_TYPE_IQ3_S:
  8412. case GGML_TYPE_IQ2_S:
  8413. case GGML_TYPE_Q4_0_4_4:
  8414. case GGML_TYPE_Q4_0_4_8:
  8415. case GGML_TYPE_Q4_0_8_8:
  8416. default:
  8417. {
  8418. GGML_ABORT("fatal error");
  8419. }
  8420. }
  8421. }
  8422. // ggml_compute_forward_sub
  8423. static void ggml_compute_forward_sub_f32(
  8424. const struct ggml_compute_params * params,
  8425. struct ggml_tensor * dst) {
  8426. const struct ggml_tensor * src0 = dst->src[0];
  8427. const struct ggml_tensor * src1 = dst->src[1];
  8428. assert(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8429. const int ith = params->ith;
  8430. const int nth = params->nth;
  8431. const int nr = ggml_nrows(src0);
  8432. GGML_TENSOR_BINARY_OP_LOCALS
  8433. GGML_ASSERT( nb0 == sizeof(float));
  8434. GGML_ASSERT(nb00 == sizeof(float));
  8435. // rows per thread
  8436. const int dr = (nr + nth - 1)/nth;
  8437. // row range for this thread
  8438. const int ir0 = dr*ith;
  8439. const int ir1 = MIN(ir0 + dr, nr);
  8440. if (nb10 == sizeof(float)) {
  8441. for (int ir = ir0; ir < ir1; ++ir) {
  8442. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8443. const int64_t i03 = ir/(ne02*ne01);
  8444. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8445. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8446. const int64_t i13 = i03 % ne13;
  8447. const int64_t i12 = i02 % ne12;
  8448. const int64_t i11 = i01 % ne11;
  8449. const int64_t nr0 = ne00 / ne10;
  8450. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8451. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8452. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8453. for (int64_t r = 0; r < nr0; ++r) {
  8454. #ifdef GGML_USE_ACCELERATE
  8455. vDSP_vsub(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8456. #else
  8457. ggml_vec_sub_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8458. #endif
  8459. }
  8460. }
  8461. } else {
  8462. // src1 is not contiguous
  8463. for (int ir = ir0; ir < ir1; ++ir) {
  8464. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8465. const int64_t i03 = ir/(ne02*ne01);
  8466. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8467. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8468. const int64_t i13 = i03 % ne13;
  8469. const int64_t i12 = i02 % ne12;
  8470. const int64_t i11 = i01 % ne11;
  8471. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8472. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8473. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8474. const int64_t i10 = i0 % ne10;
  8475. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8476. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8477. }
  8478. }
  8479. }
  8480. }
  8481. static void ggml_compute_forward_sub(
  8482. const struct ggml_compute_params * params,
  8483. struct ggml_tensor * dst) {
  8484. const struct ggml_tensor * src0 = dst->src[0];
  8485. switch (src0->type) {
  8486. case GGML_TYPE_F32:
  8487. {
  8488. ggml_compute_forward_sub_f32(params, dst);
  8489. } break;
  8490. default:
  8491. {
  8492. GGML_ABORT("fatal error");
  8493. }
  8494. }
  8495. }
  8496. // ggml_compute_forward_mul
  8497. static void ggml_compute_forward_mul_f32(
  8498. const struct ggml_compute_params * params,
  8499. struct ggml_tensor * dst) {
  8500. const struct ggml_tensor * src0 = dst->src[0];
  8501. const struct ggml_tensor * src1 = dst->src[1];
  8502. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8503. const int ith = params->ith;
  8504. const int nth = params->nth;
  8505. const int64_t nr = ggml_nrows(src0);
  8506. GGML_TENSOR_BINARY_OP_LOCALS
  8507. GGML_ASSERT( nb0 == sizeof(float));
  8508. GGML_ASSERT(nb00 == sizeof(float));
  8509. if (nb10 == sizeof(float)) {
  8510. for (int64_t ir = ith; ir < nr; ir += nth) {
  8511. // src0 and dst are same shape => same indices
  8512. const int64_t i03 = ir/(ne02*ne01);
  8513. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8514. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8515. const int64_t i13 = i03 % ne13;
  8516. const int64_t i12 = i02 % ne12;
  8517. const int64_t i11 = i01 % ne11;
  8518. const int64_t nr0 = ne00 / ne10;
  8519. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8520. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8521. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8522. for (int64_t r = 0 ; r < nr0; ++r) {
  8523. #ifdef GGML_USE_ACCELERATE
  8524. UNUSED(ggml_vec_mul_f32);
  8525. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8526. #else
  8527. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8528. #endif
  8529. }
  8530. }
  8531. } else {
  8532. // src1 is not contiguous
  8533. for (int64_t ir = ith; ir < nr; ir += nth) {
  8534. // src0 and dst are same shape => same indices
  8535. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8536. const int64_t i03 = ir/(ne02*ne01);
  8537. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8538. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8539. const int64_t i13 = i03 % ne13;
  8540. const int64_t i12 = i02 % ne12;
  8541. const int64_t i11 = i01 % ne11;
  8542. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8543. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8544. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8545. const int64_t i10 = i0 % ne10;
  8546. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8547. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8548. }
  8549. }
  8550. }
  8551. }
  8552. static void ggml_compute_forward_mul(
  8553. const struct ggml_compute_params * params,
  8554. struct ggml_tensor * dst) {
  8555. const struct ggml_tensor * src0 = dst->src[0];
  8556. const struct ggml_tensor * src1 = dst->src[1];
  8557. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8558. switch (src0->type) {
  8559. case GGML_TYPE_F32:
  8560. {
  8561. ggml_compute_forward_mul_f32(params, dst);
  8562. } break;
  8563. default:
  8564. {
  8565. GGML_ABORT("fatal error");
  8566. }
  8567. }
  8568. }
  8569. // ggml_compute_forward_div
  8570. static void ggml_compute_forward_div_f32(
  8571. const struct ggml_compute_params * params,
  8572. struct ggml_tensor * dst) {
  8573. const struct ggml_tensor * src0 = dst->src[0];
  8574. const struct ggml_tensor * src1 = dst->src[1];
  8575. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8576. const int ith = params->ith;
  8577. const int nth = params->nth;
  8578. const int64_t nr = ggml_nrows(src0);
  8579. GGML_TENSOR_BINARY_OP_LOCALS
  8580. GGML_ASSERT( nb0 == sizeof(float));
  8581. GGML_ASSERT(nb00 == sizeof(float));
  8582. if (nb10 == sizeof(float)) {
  8583. for (int64_t ir = ith; ir < nr; ir += nth) {
  8584. // src0 and dst are same shape => same indices
  8585. const int64_t i03 = ir/(ne02*ne01);
  8586. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8587. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8588. const int64_t i13 = i03 % ne13;
  8589. const int64_t i12 = i02 % ne12;
  8590. const int64_t i11 = i01 % ne11;
  8591. const int64_t nr0 = ne00 / ne10;
  8592. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8593. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8594. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8595. for (int64_t r = 0; r < nr0; ++r) {
  8596. #ifdef GGML_USE_ACCELERATE
  8597. UNUSED(ggml_vec_div_f32);
  8598. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8599. #else
  8600. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8601. #endif
  8602. }
  8603. }
  8604. } else {
  8605. // src1 is not contiguous
  8606. for (int64_t ir = ith; ir < nr; ir += nth) {
  8607. // src0 and dst are same shape => same indices
  8608. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8609. const int64_t i03 = ir/(ne02*ne01);
  8610. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8611. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8612. const int64_t i13 = i03 % ne13;
  8613. const int64_t i12 = i02 % ne12;
  8614. const int64_t i11 = i01 % ne11;
  8615. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8616. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8617. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8618. const int64_t i10 = i0 % ne10;
  8619. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8620. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8621. }
  8622. }
  8623. }
  8624. }
  8625. static void ggml_compute_forward_div(
  8626. const struct ggml_compute_params * params,
  8627. struct ggml_tensor * dst) {
  8628. const struct ggml_tensor * src0 = dst->src[0];
  8629. switch (src0->type) {
  8630. case GGML_TYPE_F32:
  8631. {
  8632. ggml_compute_forward_div_f32(params, dst);
  8633. } break;
  8634. default:
  8635. {
  8636. GGML_ABORT("fatal error");
  8637. }
  8638. }
  8639. }
  8640. // ggml_compute_forward_sqr
  8641. static void ggml_compute_forward_sqr_f32(
  8642. const struct ggml_compute_params * params,
  8643. struct ggml_tensor * dst) {
  8644. const struct ggml_tensor * src0 = dst->src[0];
  8645. if (params->ith != 0) {
  8646. return;
  8647. }
  8648. assert(ggml_are_same_shape(src0, dst));
  8649. const int n = ggml_nrows(src0);
  8650. const int nc = src0->ne[0];
  8651. assert( dst->nb[0] == sizeof(float));
  8652. assert(src0->nb[0] == sizeof(float));
  8653. for (int i = 0; i < n; i++) {
  8654. ggml_vec_sqr_f32(nc,
  8655. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8656. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8657. }
  8658. }
  8659. static void ggml_compute_forward_sqr(
  8660. const struct ggml_compute_params * params,
  8661. struct ggml_tensor * dst) {
  8662. const struct ggml_tensor * src0 = dst->src[0];
  8663. switch (src0->type) {
  8664. case GGML_TYPE_F32:
  8665. {
  8666. ggml_compute_forward_sqr_f32(params, dst);
  8667. } break;
  8668. default:
  8669. {
  8670. GGML_ABORT("fatal error");
  8671. }
  8672. }
  8673. }
  8674. // ggml_compute_forward_sqrt
  8675. static void ggml_compute_forward_sqrt_f32(
  8676. const struct ggml_compute_params * params,
  8677. struct ggml_tensor * dst) {
  8678. const struct ggml_tensor * src0 = dst->src[0];
  8679. if (params->ith != 0) {
  8680. return;
  8681. }
  8682. assert(ggml_are_same_shape(src0, dst));
  8683. const int n = ggml_nrows(src0);
  8684. const int nc = src0->ne[0];
  8685. assert( dst->nb[0] == sizeof(float));
  8686. assert(src0->nb[0] == sizeof(float));
  8687. for (int i = 0; i < n; i++) {
  8688. ggml_vec_sqrt_f32(nc,
  8689. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8690. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8691. }
  8692. }
  8693. static void ggml_compute_forward_sqrt(
  8694. const struct ggml_compute_params * params,
  8695. struct ggml_tensor * dst) {
  8696. const struct ggml_tensor * src0 = dst->src[0];
  8697. switch (src0->type) {
  8698. case GGML_TYPE_F32:
  8699. {
  8700. ggml_compute_forward_sqrt_f32(params, dst);
  8701. } break;
  8702. default:
  8703. {
  8704. GGML_ABORT("fatal error");
  8705. }
  8706. }
  8707. }
  8708. // ggml_compute_forward_log
  8709. static void ggml_compute_forward_log_f32(
  8710. const struct ggml_compute_params * params,
  8711. struct ggml_tensor * dst) {
  8712. const struct ggml_tensor * src0 = dst->src[0];
  8713. if (params->ith != 0) {
  8714. return;
  8715. }
  8716. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8717. const int n = ggml_nrows(src0);
  8718. const int nc = src0->ne[0];
  8719. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8720. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8721. for (int i = 0; i < n; i++) {
  8722. ggml_vec_log_f32(nc,
  8723. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8724. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8725. }
  8726. }
  8727. static void ggml_compute_forward_log(
  8728. const struct ggml_compute_params * params,
  8729. struct ggml_tensor * dst) {
  8730. const struct ggml_tensor * src0 = dst->src[0];
  8731. switch (src0->type) {
  8732. case GGML_TYPE_F32:
  8733. {
  8734. ggml_compute_forward_log_f32(params, dst);
  8735. } break;
  8736. default:
  8737. {
  8738. GGML_ABORT("fatal error");
  8739. }
  8740. }
  8741. }
  8742. // ggml_compute_forward_sin
  8743. static void ggml_compute_forward_sin_f32(
  8744. const struct ggml_compute_params * params,
  8745. struct ggml_tensor * dst) {
  8746. const struct ggml_tensor * src0 = dst->src[0];
  8747. if (params->ith != 0) {
  8748. return;
  8749. }
  8750. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8751. const int n = ggml_nrows(src0);
  8752. const int nc = src0->ne[0];
  8753. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8754. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8755. for (int i = 0; i < n; i++) {
  8756. ggml_vec_sin_f32(nc,
  8757. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8758. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8759. }
  8760. }
  8761. static void ggml_compute_forward_sin(
  8762. const struct ggml_compute_params * params,
  8763. struct ggml_tensor * dst) {
  8764. const struct ggml_tensor * src0 = dst->src[0];
  8765. switch (src0->type) {
  8766. case GGML_TYPE_F32:
  8767. {
  8768. ggml_compute_forward_sin_f32(params, dst);
  8769. } break;
  8770. default:
  8771. {
  8772. GGML_ABORT("fatal error");
  8773. }
  8774. }
  8775. }
  8776. // ggml_compute_forward_cos
  8777. static void ggml_compute_forward_cos_f32(
  8778. const struct ggml_compute_params * params,
  8779. struct ggml_tensor * dst) {
  8780. const struct ggml_tensor * src0 = dst->src[0];
  8781. if (params->ith != 0) {
  8782. return;
  8783. }
  8784. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8785. const int n = ggml_nrows(src0);
  8786. const int nc = src0->ne[0];
  8787. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8788. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8789. for (int i = 0; i < n; i++) {
  8790. ggml_vec_cos_f32(nc,
  8791. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8792. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8793. }
  8794. }
  8795. static void ggml_compute_forward_cos(
  8796. const struct ggml_compute_params * params,
  8797. struct ggml_tensor * dst) {
  8798. const struct ggml_tensor * src0 = dst->src[0];
  8799. switch (src0->type) {
  8800. case GGML_TYPE_F32:
  8801. {
  8802. ggml_compute_forward_cos_f32(params, dst);
  8803. } break;
  8804. default:
  8805. {
  8806. GGML_ABORT("fatal error");
  8807. }
  8808. }
  8809. }
  8810. // ggml_compute_forward_sum
  8811. static void ggml_compute_forward_sum_f32(
  8812. const struct ggml_compute_params * params,
  8813. struct ggml_tensor * dst) {
  8814. const struct ggml_tensor * src0 = dst->src[0];
  8815. if (params->ith != 0) {
  8816. return;
  8817. }
  8818. assert(ggml_is_scalar(dst));
  8819. assert(src0->nb[0] == sizeof(float));
  8820. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8821. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8822. ggml_float sum = 0;
  8823. ggml_float row_sum = 0;
  8824. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8825. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8826. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8827. ggml_vec_sum_f32_ggf(ne00,
  8828. &row_sum,
  8829. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8830. sum += row_sum;
  8831. }
  8832. }
  8833. }
  8834. ((float *) dst->data)[0] = sum;
  8835. }
  8836. static void ggml_compute_forward_sum_f16(
  8837. const struct ggml_compute_params * params,
  8838. struct ggml_tensor * dst) {
  8839. const struct ggml_tensor * src0 = dst->src[0];
  8840. if (params->ith != 0) {
  8841. return;
  8842. }
  8843. assert(ggml_is_scalar(dst));
  8844. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8845. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8846. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8847. float sum = 0;
  8848. float row_sum = 0;
  8849. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8850. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8851. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8852. ggml_vec_sum_f16_ggf(ne00,
  8853. &row_sum,
  8854. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8855. sum += row_sum;
  8856. }
  8857. }
  8858. }
  8859. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8860. }
  8861. static void ggml_compute_forward_sum_bf16(
  8862. const struct ggml_compute_params * params,
  8863. struct ggml_tensor * dst) {
  8864. const struct ggml_tensor * src0 = dst->src[0];
  8865. if (params->ith != 0) {
  8866. return;
  8867. }
  8868. assert(ggml_is_scalar(dst));
  8869. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8870. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8871. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8872. float sum = 0;
  8873. float row_sum = 0;
  8874. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8875. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8876. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8877. ggml_vec_sum_bf16_ggf(ne00,
  8878. &row_sum,
  8879. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8880. sum += row_sum;
  8881. }
  8882. }
  8883. }
  8884. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8885. }
  8886. static void ggml_compute_forward_sum(
  8887. const struct ggml_compute_params * params,
  8888. struct ggml_tensor * dst) {
  8889. const struct ggml_tensor * src0 = dst->src[0];
  8890. switch (src0->type) {
  8891. case GGML_TYPE_F32:
  8892. {
  8893. ggml_compute_forward_sum_f32(params, dst);
  8894. } break;
  8895. case GGML_TYPE_F16:
  8896. {
  8897. ggml_compute_forward_sum_f16(params, dst);
  8898. } break;
  8899. case GGML_TYPE_BF16:
  8900. {
  8901. ggml_compute_forward_sum_bf16(params, dst);
  8902. } break;
  8903. default:
  8904. {
  8905. GGML_ABORT("fatal error");
  8906. }
  8907. }
  8908. }
  8909. // ggml_compute_forward_sum_rows
  8910. static void ggml_compute_forward_sum_rows_f32(
  8911. const struct ggml_compute_params * params,
  8912. struct ggml_tensor * dst) {
  8913. const struct ggml_tensor * src0 = dst->src[0];
  8914. if (params->ith != 0) {
  8915. return;
  8916. }
  8917. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8918. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8919. GGML_TENSOR_UNARY_OP_LOCALS
  8920. GGML_ASSERT(ne0 == 1);
  8921. GGML_ASSERT(ne1 == ne01);
  8922. GGML_ASSERT(ne2 == ne02);
  8923. GGML_ASSERT(ne3 == ne03);
  8924. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8925. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8926. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8927. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8928. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8929. float row_sum = 0;
  8930. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8931. dst_row[0] = row_sum;
  8932. }
  8933. }
  8934. }
  8935. }
  8936. static void ggml_compute_forward_sum_rows(
  8937. const struct ggml_compute_params * params,
  8938. struct ggml_tensor * dst) {
  8939. const struct ggml_tensor * src0 = dst->src[0];
  8940. switch (src0->type) {
  8941. case GGML_TYPE_F32:
  8942. {
  8943. ggml_compute_forward_sum_rows_f32(params, dst);
  8944. } break;
  8945. default:
  8946. {
  8947. GGML_ABORT("fatal error");
  8948. }
  8949. }
  8950. }
  8951. // ggml_compute_forward_mean
  8952. static void ggml_compute_forward_mean_f32(
  8953. const struct ggml_compute_params * params,
  8954. struct ggml_tensor * dst) {
  8955. const struct ggml_tensor * src0 = dst->src[0];
  8956. if (params->ith != 0) {
  8957. return;
  8958. }
  8959. assert(src0->nb[0] == sizeof(float));
  8960. GGML_TENSOR_UNARY_OP_LOCALS
  8961. assert(ne0 == 1);
  8962. assert(ne1 == ne01);
  8963. assert(ne2 == ne02);
  8964. assert(ne3 == ne03);
  8965. UNUSED(ne0);
  8966. UNUSED(ne1);
  8967. UNUSED(ne2);
  8968. UNUSED(ne3);
  8969. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8970. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8971. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8972. ggml_vec_sum_f32(ne00,
  8973. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8974. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8975. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8976. }
  8977. }
  8978. }
  8979. }
  8980. static void ggml_compute_forward_mean(
  8981. const struct ggml_compute_params * params,
  8982. struct ggml_tensor * dst) {
  8983. const struct ggml_tensor * src0 = dst->src[0];
  8984. switch (src0->type) {
  8985. case GGML_TYPE_F32:
  8986. {
  8987. ggml_compute_forward_mean_f32(params, dst);
  8988. } break;
  8989. default:
  8990. {
  8991. GGML_ABORT("fatal error");
  8992. }
  8993. }
  8994. }
  8995. // ggml_compute_forward_argmax
  8996. static void ggml_compute_forward_argmax_f32(
  8997. const struct ggml_compute_params * params,
  8998. struct ggml_tensor * dst) {
  8999. const struct ggml_tensor * src0 = dst->src[0];
  9000. if (params->ith != 0) {
  9001. return;
  9002. }
  9003. assert(src0->nb[0] == sizeof(float));
  9004. assert(dst->nb[0] == sizeof(float));
  9005. const int64_t ne00 = src0->ne[0];
  9006. const int64_t ne01 = src0->ne[1];
  9007. const size_t nb01 = src0->nb[1];
  9008. const size_t nb0 = dst->nb[0];
  9009. for (int64_t i1 = 0; i1 < ne01; i1++) {
  9010. float * src = (float *) ((char *) src0->data + i1*nb01);
  9011. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  9012. int v = 0;
  9013. ggml_vec_argmax_f32(ne00, &v, src);
  9014. dst_[0] = v;
  9015. }
  9016. }
  9017. static void ggml_compute_forward_argmax(
  9018. const struct ggml_compute_params * params,
  9019. struct ggml_tensor * dst) {
  9020. const struct ggml_tensor * src0 = dst->src[0];
  9021. switch (src0->type) {
  9022. case GGML_TYPE_F32:
  9023. {
  9024. ggml_compute_forward_argmax_f32(params, dst);
  9025. } break;
  9026. default:
  9027. {
  9028. GGML_ABORT("fatal error");
  9029. }
  9030. }
  9031. }
  9032. // ggml_compute_forward_count_equal
  9033. static void ggml_compute_forward_count_equal_i32(
  9034. const struct ggml_compute_params * params,
  9035. struct ggml_tensor * dst) {
  9036. const struct ggml_tensor * src0 = dst->src[0];
  9037. const struct ggml_tensor * src1 = dst->src[1];
  9038. GGML_TENSOR_BINARY_OP_LOCALS;
  9039. GGML_ASSERT(src0->type == GGML_TYPE_I32);
  9040. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9041. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  9042. GGML_ASSERT(ggml_is_scalar(dst));
  9043. GGML_ASSERT(dst->type == GGML_TYPE_I64);
  9044. const int64_t nr = ggml_nrows(src0);
  9045. const int ith = params->ith;
  9046. const int nth = params->nth;
  9047. int64_t * sums = (int64_t *) params->wdata;
  9048. int64_t sum_thread = 0;
  9049. // rows per thread
  9050. const int64_t dr = (nr + nth - 1)/nth;
  9051. // row range for this thread
  9052. const int64_t ir0 = dr*ith;
  9053. const int64_t ir1 = MIN(ir0 + dr, nr);
  9054. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9055. const int64_t i03 = ir / (ne02*ne01);
  9056. const int64_t i02 = (ir - i03*ne03) / ne01;
  9057. const int64_t i01 = ir - i03*ne03 - i02*ne02;
  9058. const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
  9059. const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
  9060. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  9061. const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
  9062. const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
  9063. sum_thread += val0 == val1;
  9064. }
  9065. }
  9066. if (ith != 0) {
  9067. sums[ith] = sum_thread;
  9068. }
  9069. ggml_barrier(params->threadpool);
  9070. if (ith != 0) {
  9071. return;
  9072. }
  9073. for (int ith_other = 1; ith_other < nth; ++ith_other) {
  9074. sum_thread += sums[ith_other];
  9075. }
  9076. *((int64_t *) dst->data) = sum_thread;
  9077. }
  9078. static void ggml_compute_forward_count_equal(
  9079. const struct ggml_compute_params * params,
  9080. struct ggml_tensor * dst) {
  9081. const struct ggml_tensor * src0 = dst->src[0];
  9082. switch (src0->type) {
  9083. case GGML_TYPE_I32:
  9084. {
  9085. ggml_compute_forward_count_equal_i32(params, dst);
  9086. } break;
  9087. default:
  9088. {
  9089. GGML_ABORT("fatal error");
  9090. }
  9091. }
  9092. }
  9093. // ggml_compute_forward_repeat
  9094. static void ggml_compute_forward_repeat_f32(
  9095. const struct ggml_compute_params * params,
  9096. struct ggml_tensor * dst) {
  9097. const struct ggml_tensor * src0 = dst->src[0];
  9098. if (params->ith != 0) {
  9099. return;
  9100. }
  9101. GGML_ASSERT(ggml_can_repeat(src0, dst));
  9102. GGML_TENSOR_UNARY_OP_LOCALS
  9103. // guaranteed to be an integer due to the check in ggml_can_repeat
  9104. const int nr0 = (int)(ne0/ne00);
  9105. const int nr1 = (int)(ne1/ne01);
  9106. const int nr2 = (int)(ne2/ne02);
  9107. const int nr3 = (int)(ne3/ne03);
  9108. // TODO: support for transposed / permuted tensors
  9109. GGML_ASSERT(nb0 == sizeof(float));
  9110. GGML_ASSERT(nb00 == sizeof(float));
  9111. // TODO: maybe this is not optimal?
  9112. for (int i3 = 0; i3 < nr3; i3++) {
  9113. for (int k3 = 0; k3 < ne03; k3++) {
  9114. for (int i2 = 0; i2 < nr2; i2++) {
  9115. for (int k2 = 0; k2 < ne02; k2++) {
  9116. for (int i1 = 0; i1 < nr1; i1++) {
  9117. for (int k1 = 0; k1 < ne01; k1++) {
  9118. for (int i0 = 0; i0 < nr0; i0++) {
  9119. ggml_vec_cpy_f32(ne00,
  9120. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  9121. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  9122. }
  9123. }
  9124. }
  9125. }
  9126. }
  9127. }
  9128. }
  9129. }
  9130. static void ggml_compute_forward_repeat_f16(
  9131. const struct ggml_compute_params * params,
  9132. struct ggml_tensor * dst) {
  9133. const struct ggml_tensor * src0 = dst->src[0];
  9134. if (params->ith != 0) {
  9135. return;
  9136. }
  9137. GGML_ASSERT(ggml_can_repeat(src0, dst));
  9138. GGML_TENSOR_UNARY_OP_LOCALS
  9139. // guaranteed to be an integer due to the check in ggml_can_repeat
  9140. const int nr0 = (int)(ne0/ne00);
  9141. const int nr1 = (int)(ne1/ne01);
  9142. const int nr2 = (int)(ne2/ne02);
  9143. const int nr3 = (int)(ne3/ne03);
  9144. // TODO: support for transposed / permuted tensors
  9145. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9146. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9147. // TODO: maybe this is not optimal?
  9148. for (int i3 = 0; i3 < nr3; i3++) {
  9149. for (int k3 = 0; k3 < ne03; k3++) {
  9150. for (int i2 = 0; i2 < nr2; i2++) {
  9151. for (int k2 = 0; k2 < ne02; k2++) {
  9152. for (int i1 = 0; i1 < nr1; i1++) {
  9153. for (int k1 = 0; k1 < ne01; k1++) {
  9154. for (int i0 = 0; i0 < nr0; i0++) {
  9155. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  9156. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  9157. // ggml_vec_cpy_f16(ne00, y, x)
  9158. for (int i = 0; i < ne00; ++i) {
  9159. y[i] = x[i];
  9160. }
  9161. }
  9162. }
  9163. }
  9164. }
  9165. }
  9166. }
  9167. }
  9168. }
  9169. static void ggml_compute_forward_repeat(
  9170. const struct ggml_compute_params * params,
  9171. struct ggml_tensor * dst) {
  9172. const struct ggml_tensor * src0 = dst->src[0];
  9173. switch (src0->type) {
  9174. case GGML_TYPE_F16:
  9175. case GGML_TYPE_BF16:
  9176. case GGML_TYPE_I16:
  9177. {
  9178. ggml_compute_forward_repeat_f16(params, dst);
  9179. } break;
  9180. case GGML_TYPE_F32:
  9181. case GGML_TYPE_I32:
  9182. {
  9183. ggml_compute_forward_repeat_f32(params, dst);
  9184. } break;
  9185. default:
  9186. {
  9187. GGML_ABORT("fatal error");
  9188. }
  9189. }
  9190. }
  9191. // ggml_compute_forward_repeat_back
  9192. static void ggml_compute_forward_repeat_back_f32(
  9193. const struct ggml_compute_params * params,
  9194. struct ggml_tensor * dst) {
  9195. const struct ggml_tensor * src0 = dst->src[0];
  9196. if (params->ith != 0) {
  9197. return;
  9198. }
  9199. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9200. GGML_TENSOR_UNARY_OP_LOCALS
  9201. // guaranteed to be an integer due to the check in ggml_can_repeat
  9202. const int nr0 = (int)(ne00/ne0);
  9203. const int nr1 = (int)(ne01/ne1);
  9204. const int nr2 = (int)(ne02/ne2);
  9205. const int nr3 = (int)(ne03/ne3);
  9206. // TODO: support for transposed / permuted tensors
  9207. GGML_ASSERT(nb0 == sizeof(float));
  9208. GGML_ASSERT(nb00 == sizeof(float));
  9209. if (ggml_is_contiguous(dst)) {
  9210. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9211. } else {
  9212. for (int k3 = 0; k3 < ne3; k3++) {
  9213. for (int k2 = 0; k2 < ne2; k2++) {
  9214. for (int k1 = 0; k1 < ne1; k1++) {
  9215. ggml_vec_set_f32(ne0,
  9216. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9217. 0);
  9218. }
  9219. }
  9220. }
  9221. }
  9222. // TODO: maybe this is not optimal?
  9223. for (int i3 = 0; i3 < nr3; i3++) {
  9224. for (int k3 = 0; k3 < ne3; k3++) {
  9225. for (int i2 = 0; i2 < nr2; i2++) {
  9226. for (int k2 = 0; k2 < ne2; k2++) {
  9227. for (int i1 = 0; i1 < nr1; i1++) {
  9228. for (int k1 = 0; k1 < ne1; k1++) {
  9229. for (int i0 = 0; i0 < nr0; i0++) {
  9230. ggml_vec_acc_f32(ne0,
  9231. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9232. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9233. }
  9234. }
  9235. }
  9236. }
  9237. }
  9238. }
  9239. }
  9240. }
  9241. static void ggml_compute_forward_repeat_back(
  9242. const struct ggml_compute_params * params,
  9243. struct ggml_tensor * dst) {
  9244. const struct ggml_tensor * src0 = dst->src[0];
  9245. switch (src0->type) {
  9246. case GGML_TYPE_F32:
  9247. {
  9248. ggml_compute_forward_repeat_back_f32(params, dst);
  9249. } break;
  9250. default:
  9251. {
  9252. GGML_ABORT("fatal error");
  9253. }
  9254. }
  9255. }
  9256. // ggml_compute_forward_concat
  9257. static void ggml_compute_forward_concat_f32(
  9258. const struct ggml_compute_params * params,
  9259. struct ggml_tensor * dst) {
  9260. const struct ggml_tensor * src0 = dst->src[0];
  9261. const struct ggml_tensor * src1 = dst->src[1];
  9262. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9263. const int ith = params->ith;
  9264. const int nth = params->nth;
  9265. GGML_TENSOR_BINARY_OP_LOCALS
  9266. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9267. GGML_ASSERT(dim >= 0 && dim < 4);
  9268. int64_t o[4] = {0, 0, 0, 0};
  9269. o[dim] = src0->ne[dim];
  9270. const float * x;
  9271. // TODO: smarter multi-theading
  9272. for (int i3 = 0; i3 < ne3; i3++) {
  9273. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9274. for (int i1 = 0; i1 < ne1; i1++) {
  9275. for (int i0 = 0; i0 < ne0; i0++) {
  9276. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9277. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9278. } else {
  9279. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9280. }
  9281. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9282. *y = *x;
  9283. }
  9284. }
  9285. }
  9286. }
  9287. }
  9288. static void ggml_compute_forward_concat(
  9289. const struct ggml_compute_params * params,
  9290. struct ggml_tensor * dst) {
  9291. const struct ggml_tensor * src0 = dst->src[0];
  9292. switch (src0->type) {
  9293. case GGML_TYPE_F32:
  9294. case GGML_TYPE_I32:
  9295. {
  9296. ggml_compute_forward_concat_f32(params, dst);
  9297. } break;
  9298. default:
  9299. {
  9300. GGML_ABORT("fatal error");
  9301. }
  9302. }
  9303. }
  9304. // ggml_compute_forward_abs
  9305. static void ggml_compute_forward_abs_f32(
  9306. const struct ggml_compute_params * params,
  9307. struct ggml_tensor * dst) {
  9308. const struct ggml_tensor * src0 = dst->src[0];
  9309. if (params->ith != 0) {
  9310. return;
  9311. }
  9312. assert(ggml_is_contiguous_1(src0));
  9313. assert(ggml_is_contiguous_1(dst));
  9314. assert(ggml_are_same_shape(src0, dst));
  9315. const int n = ggml_nrows(src0);
  9316. const int nc = src0->ne[0];
  9317. for (int i = 0; i < n; i++) {
  9318. ggml_vec_abs_f32(nc,
  9319. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9320. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9321. }
  9322. }
  9323. static void ggml_compute_forward_abs(
  9324. const struct ggml_compute_params * params,
  9325. struct ggml_tensor * dst) {
  9326. const struct ggml_tensor * src0 = dst->src[0];
  9327. switch (src0->type) {
  9328. case GGML_TYPE_F32:
  9329. {
  9330. ggml_compute_forward_abs_f32(params, dst);
  9331. } break;
  9332. default:
  9333. {
  9334. GGML_ABORT("fatal error");
  9335. }
  9336. }
  9337. }
  9338. // ggml_compute_forward_sgn
  9339. static void ggml_compute_forward_sgn_f32(
  9340. const struct ggml_compute_params * params,
  9341. struct ggml_tensor * dst) {
  9342. const struct ggml_tensor * src0 = dst->src[0];
  9343. if (params->ith != 0) {
  9344. return;
  9345. }
  9346. assert(ggml_is_contiguous_1(src0));
  9347. assert(ggml_is_contiguous_1(dst));
  9348. assert(ggml_are_same_shape(src0, dst));
  9349. const int n = ggml_nrows(src0);
  9350. const int nc = src0->ne[0];
  9351. for (int i = 0; i < n; i++) {
  9352. ggml_vec_sgn_f32(nc,
  9353. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9354. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9355. }
  9356. }
  9357. static void ggml_compute_forward_sgn(
  9358. const struct ggml_compute_params * params,
  9359. struct ggml_tensor * dst) {
  9360. const struct ggml_tensor * src0 = dst->src[0];
  9361. switch (src0->type) {
  9362. case GGML_TYPE_F32:
  9363. {
  9364. ggml_compute_forward_sgn_f32(params, dst);
  9365. } break;
  9366. default:
  9367. {
  9368. GGML_ABORT("fatal error");
  9369. }
  9370. }
  9371. }
  9372. // ggml_compute_forward_neg
  9373. static void ggml_compute_forward_neg_f32(
  9374. const struct ggml_compute_params * params,
  9375. struct ggml_tensor * dst) {
  9376. const struct ggml_tensor * src0 = dst->src[0];
  9377. if (params->ith != 0) {
  9378. return;
  9379. }
  9380. assert(ggml_is_contiguous_1(src0));
  9381. assert(ggml_is_contiguous_1(dst));
  9382. assert(ggml_are_same_shape(src0, dst));
  9383. const int n = ggml_nrows(src0);
  9384. const int nc = src0->ne[0];
  9385. for (int i = 0; i < n; i++) {
  9386. ggml_vec_neg_f32(nc,
  9387. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9388. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9389. }
  9390. }
  9391. static void ggml_compute_forward_neg(
  9392. const struct ggml_compute_params * params,
  9393. struct ggml_tensor * dst) {
  9394. const struct ggml_tensor * src0 = dst->src[0];
  9395. switch (src0->type) {
  9396. case GGML_TYPE_F32:
  9397. {
  9398. ggml_compute_forward_neg_f32(params, dst);
  9399. } break;
  9400. default:
  9401. {
  9402. GGML_ABORT("fatal error");
  9403. }
  9404. }
  9405. }
  9406. // ggml_compute_forward_step
  9407. static void ggml_compute_forward_step_f32(
  9408. const struct ggml_compute_params * params,
  9409. struct ggml_tensor * dst) {
  9410. const struct ggml_tensor * src0 = dst->src[0];
  9411. if (params->ith != 0) {
  9412. return;
  9413. }
  9414. assert(ggml_is_contiguous_1(src0));
  9415. assert(ggml_is_contiguous_1(dst));
  9416. assert(ggml_are_same_shape(src0, dst));
  9417. const int n = ggml_nrows(src0);
  9418. const int nc = src0->ne[0];
  9419. for (int i = 0; i < n; i++) {
  9420. ggml_vec_step_f32(nc,
  9421. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9422. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9423. }
  9424. }
  9425. static void ggml_compute_forward_step(
  9426. const struct ggml_compute_params * params,
  9427. struct ggml_tensor * dst) {
  9428. const struct ggml_tensor * src0 = dst->src[0];
  9429. switch (src0->type) {
  9430. case GGML_TYPE_F32:
  9431. {
  9432. ggml_compute_forward_step_f32(params, dst);
  9433. } break;
  9434. default:
  9435. {
  9436. GGML_ABORT("fatal error");
  9437. }
  9438. }
  9439. }
  9440. // ggml_compute_forward_tanh
  9441. static void ggml_compute_forward_tanh_f32(
  9442. const struct ggml_compute_params * params,
  9443. struct ggml_tensor * dst) {
  9444. const struct ggml_tensor * src0 = dst->src[0];
  9445. if (params->ith != 0) {
  9446. return;
  9447. }
  9448. assert(ggml_is_contiguous_1(src0));
  9449. assert(ggml_is_contiguous_1(dst));
  9450. assert(ggml_are_same_shape(src0, dst));
  9451. const int n = ggml_nrows(src0);
  9452. const int nc = src0->ne[0];
  9453. for (int i = 0; i < n; i++) {
  9454. ggml_vec_tanh_f32(nc,
  9455. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9456. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9457. }
  9458. }
  9459. static void ggml_compute_forward_tanh(
  9460. const struct ggml_compute_params * params,
  9461. struct ggml_tensor * dst) {
  9462. const struct ggml_tensor * src0 = dst->src[0];
  9463. switch (src0->type) {
  9464. case GGML_TYPE_F32:
  9465. {
  9466. ggml_compute_forward_tanh_f32(params, dst);
  9467. } break;
  9468. default:
  9469. {
  9470. GGML_ABORT("fatal error");
  9471. }
  9472. }
  9473. }
  9474. // ggml_compute_forward_elu
  9475. static void ggml_compute_forward_elu_f32(
  9476. const struct ggml_compute_params * params,
  9477. struct ggml_tensor * dst) {
  9478. const struct ggml_tensor * src0 = dst->src[0];
  9479. if (params->ith != 0) {
  9480. return;
  9481. }
  9482. assert(ggml_is_contiguous_1(src0));
  9483. assert(ggml_is_contiguous_1(dst));
  9484. assert(ggml_are_same_shape(src0, dst));
  9485. const int n = ggml_nrows(src0);
  9486. const int nc = src0->ne[0];
  9487. for (int i = 0; i < n; i++) {
  9488. ggml_vec_elu_f32(nc,
  9489. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9490. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9491. }
  9492. }
  9493. static void ggml_compute_forward_elu(
  9494. const struct ggml_compute_params * params,
  9495. struct ggml_tensor * dst) {
  9496. const struct ggml_tensor * src0 = dst->src[0];
  9497. switch (src0->type) {
  9498. case GGML_TYPE_F32:
  9499. {
  9500. ggml_compute_forward_elu_f32(params, dst);
  9501. } break;
  9502. default:
  9503. {
  9504. GGML_ABORT("fatal error");
  9505. }
  9506. }
  9507. }
  9508. // ggml_compute_forward_relu
  9509. static void ggml_compute_forward_relu_f32(
  9510. const struct ggml_compute_params * params,
  9511. struct ggml_tensor * dst) {
  9512. const struct ggml_tensor * src0 = dst->src[0];
  9513. if (params->ith != 0) {
  9514. return;
  9515. }
  9516. assert(ggml_is_contiguous_1(src0));
  9517. assert(ggml_is_contiguous_1(dst));
  9518. assert(ggml_are_same_shape(src0, dst));
  9519. const int n = ggml_nrows(src0);
  9520. const int nc = src0->ne[0];
  9521. for (int i = 0; i < n; i++) {
  9522. ggml_vec_relu_f32(nc,
  9523. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9524. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9525. }
  9526. }
  9527. static void ggml_compute_forward_relu(
  9528. const struct ggml_compute_params * params,
  9529. struct ggml_tensor * dst) {
  9530. const struct ggml_tensor * src0 = dst->src[0];
  9531. switch (src0->type) {
  9532. case GGML_TYPE_F32:
  9533. {
  9534. ggml_compute_forward_relu_f32(params, dst);
  9535. } break;
  9536. default:
  9537. {
  9538. GGML_ABORT("fatal error");
  9539. }
  9540. }
  9541. }
  9542. // ggml_compute_forward_sigmoid
  9543. static void ggml_compute_forward_sigmoid_f32(
  9544. const struct ggml_compute_params * params,
  9545. struct ggml_tensor * dst) {
  9546. const struct ggml_tensor * src0 = dst->src[0];
  9547. if (params->ith != 0) {
  9548. return;
  9549. }
  9550. assert(ggml_is_contiguous_1(src0));
  9551. assert(ggml_is_contiguous_1(dst));
  9552. assert(ggml_are_same_shape(src0, dst));
  9553. const int n = ggml_nrows(src0);
  9554. const int nc = src0->ne[0];
  9555. for (int i = 0; i < n; i++) {
  9556. ggml_vec_sigmoid_f32(nc,
  9557. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9558. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9559. }
  9560. }
  9561. static void ggml_compute_forward_sigmoid(
  9562. const struct ggml_compute_params * params,
  9563. struct ggml_tensor * dst) {
  9564. const struct ggml_tensor * src0 = dst->src[0];
  9565. switch (src0->type) {
  9566. case GGML_TYPE_F32:
  9567. {
  9568. ggml_compute_forward_sigmoid_f32(params, dst);
  9569. } break;
  9570. default:
  9571. {
  9572. GGML_ABORT("fatal error");
  9573. }
  9574. }
  9575. }
  9576. // ggml_compute_forward_gelu
  9577. static void ggml_compute_forward_gelu_f32(
  9578. const struct ggml_compute_params * params,
  9579. struct ggml_tensor * dst) {
  9580. const struct ggml_tensor * src0 = dst->src[0];
  9581. assert(ggml_is_contiguous_1(src0));
  9582. assert(ggml_is_contiguous_1(dst));
  9583. assert(ggml_are_same_shape(src0, dst));
  9584. const int ith = params->ith;
  9585. const int nth = params->nth;
  9586. const int nc = src0->ne[0];
  9587. const int nr = ggml_nrows(src0);
  9588. // rows per thread
  9589. const int dr = (nr + nth - 1)/nth;
  9590. // row range for this thread
  9591. const int ir0 = dr*ith;
  9592. const int ir1 = MIN(ir0 + dr, nr);
  9593. for (int i1 = ir0; i1 < ir1; i1++) {
  9594. ggml_vec_gelu_f32(nc,
  9595. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9596. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9597. #ifndef NDEBUG
  9598. for (int k = 0; k < nc; k++) {
  9599. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9600. UNUSED(x);
  9601. assert(!isnan(x));
  9602. assert(!isinf(x));
  9603. }
  9604. #endif
  9605. }
  9606. }
  9607. static void ggml_compute_forward_gelu(
  9608. const struct ggml_compute_params * params,
  9609. struct ggml_tensor * dst) {
  9610. const struct ggml_tensor * src0 = dst->src[0];
  9611. switch (src0->type) {
  9612. case GGML_TYPE_F32:
  9613. {
  9614. ggml_compute_forward_gelu_f32(params, dst);
  9615. } break;
  9616. default:
  9617. {
  9618. GGML_ABORT("fatal error");
  9619. }
  9620. }
  9621. }
  9622. // ggml_compute_forward_gelu_quick
  9623. static void ggml_compute_forward_gelu_quick_f32(
  9624. const struct ggml_compute_params * params,
  9625. struct ggml_tensor * dst) {
  9626. const struct ggml_tensor * src0 = dst->src[0];
  9627. assert(ggml_is_contiguous_1(src0));
  9628. assert(ggml_is_contiguous_1(dst));
  9629. assert(ggml_are_same_shape(src0, dst));
  9630. const int ith = params->ith;
  9631. const int nth = params->nth;
  9632. const int nc = src0->ne[0];
  9633. const int nr = ggml_nrows(src0);
  9634. // rows per thread
  9635. const int dr = (nr + nth - 1)/nth;
  9636. // row range for this thread
  9637. const int ir0 = dr*ith;
  9638. const int ir1 = MIN(ir0 + dr, nr);
  9639. for (int i1 = ir0; i1 < ir1; i1++) {
  9640. ggml_vec_gelu_quick_f32(nc,
  9641. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9642. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9643. #ifndef NDEBUG
  9644. for (int k = 0; k < nc; k++) {
  9645. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9646. UNUSED(x);
  9647. assert(!isnan(x));
  9648. assert(!isinf(x));
  9649. }
  9650. #endif
  9651. }
  9652. }
  9653. static void ggml_compute_forward_gelu_quick(
  9654. const struct ggml_compute_params * params,
  9655. struct ggml_tensor * dst) {
  9656. const struct ggml_tensor * src0 = dst->src[0];
  9657. switch (src0->type) {
  9658. case GGML_TYPE_F32:
  9659. {
  9660. ggml_compute_forward_gelu_quick_f32(params, dst);
  9661. } break;
  9662. default:
  9663. {
  9664. GGML_ABORT("fatal error");
  9665. }
  9666. }
  9667. }
  9668. // ggml_compute_forward_silu
  9669. static void ggml_compute_forward_silu_f32(
  9670. const struct ggml_compute_params * params,
  9671. struct ggml_tensor * dst) {
  9672. const struct ggml_tensor * src0 = dst->src[0];
  9673. assert(ggml_is_contiguous_1(src0));
  9674. assert(ggml_is_contiguous_1(dst));
  9675. assert(ggml_are_same_shape(src0, dst));
  9676. const int ith = params->ith;
  9677. const int nth = params->nth;
  9678. const int nc = src0->ne[0];
  9679. const int nr = ggml_nrows(src0);
  9680. // rows per thread
  9681. const int dr = (nr + nth - 1)/nth;
  9682. // row range for this thread
  9683. const int ir0 = dr*ith;
  9684. const int ir1 = MIN(ir0 + dr, nr);
  9685. for (int i1 = ir0; i1 < ir1; i1++) {
  9686. ggml_vec_silu_f32(nc,
  9687. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9688. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9689. #ifndef NDEBUG
  9690. for (int k = 0; k < nc; k++) {
  9691. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9692. UNUSED(x);
  9693. assert(!isnan(x));
  9694. assert(!isinf(x));
  9695. }
  9696. #endif
  9697. }
  9698. }
  9699. static void ggml_compute_forward_silu(
  9700. const struct ggml_compute_params * params,
  9701. struct ggml_tensor * dst) {
  9702. const struct ggml_tensor * src0 = dst->src[0];
  9703. switch (src0->type) {
  9704. case GGML_TYPE_F32:
  9705. {
  9706. ggml_compute_forward_silu_f32(params, dst);
  9707. } break;
  9708. default:
  9709. {
  9710. GGML_ABORT("fatal error");
  9711. }
  9712. }
  9713. }
  9714. // ggml_compute_forward_leaky_relu
  9715. static void ggml_compute_forward_leaky_relu_f32(
  9716. const struct ggml_compute_params * params,
  9717. struct ggml_tensor * dst) {
  9718. const struct ggml_tensor * src0 = dst->src[0];
  9719. if (params->ith != 0) {
  9720. return;
  9721. }
  9722. assert(ggml_is_contiguous_1(src0));
  9723. assert(ggml_is_contiguous_1(dst));
  9724. assert(ggml_are_same_shape(src0, dst));
  9725. const int n = ggml_nrows(src0);
  9726. const int nc = src0->ne[0];
  9727. float negative_slope;
  9728. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9729. assert(dst->nb[0] == sizeof(float));
  9730. assert(src0->nb[0] == sizeof(float));
  9731. for (int i = 0; i < n; i++) {
  9732. ggml_vec_leaky_relu_f32(nc,
  9733. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9734. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9735. }
  9736. }
  9737. static void ggml_compute_forward_leaky_relu(
  9738. const struct ggml_compute_params * params,
  9739. struct ggml_tensor * dst) {
  9740. const struct ggml_tensor * src0 = dst->src[0];
  9741. switch (src0->type) {
  9742. case GGML_TYPE_F32:
  9743. {
  9744. ggml_compute_forward_leaky_relu_f32(params, dst);
  9745. } break;
  9746. default:
  9747. {
  9748. GGML_ABORT("fatal error");
  9749. }
  9750. }
  9751. }
  9752. // ggml_compute_forward_silu_back
  9753. static void ggml_compute_forward_silu_back_f32(
  9754. const struct ggml_compute_params * params,
  9755. struct ggml_tensor * dst) {
  9756. const struct ggml_tensor * src0 = dst->src[0];
  9757. const struct ggml_tensor * grad = dst->src[1];
  9758. assert(ggml_is_contiguous_1(grad));
  9759. assert(ggml_is_contiguous_1(src0));
  9760. assert(ggml_is_contiguous_1(dst));
  9761. assert(ggml_are_same_shape(src0, dst));
  9762. assert(ggml_are_same_shape(src0, grad));
  9763. const int ith = params->ith;
  9764. const int nth = params->nth;
  9765. const int nc = src0->ne[0];
  9766. const int nr = ggml_nrows(src0);
  9767. // rows per thread
  9768. const int dr = (nr + nth - 1)/nth;
  9769. // row range for this thread
  9770. const int ir0 = dr*ith;
  9771. const int ir1 = MIN(ir0 + dr, nr);
  9772. for (int i1 = ir0; i1 < ir1; i1++) {
  9773. ggml_vec_silu_backward_f32(nc,
  9774. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9775. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9776. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9777. #ifndef NDEBUG
  9778. for (int k = 0; k < nc; k++) {
  9779. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9780. UNUSED(x);
  9781. assert(!isnan(x));
  9782. assert(!isinf(x));
  9783. }
  9784. #endif
  9785. }
  9786. }
  9787. static void ggml_compute_forward_silu_back(
  9788. const struct ggml_compute_params * params,
  9789. struct ggml_tensor * dst) {
  9790. const struct ggml_tensor * src0 = dst->src[0];
  9791. switch (src0->type) {
  9792. case GGML_TYPE_F32:
  9793. {
  9794. ggml_compute_forward_silu_back_f32(params, dst);
  9795. } break;
  9796. default:
  9797. {
  9798. GGML_ABORT("fatal error");
  9799. }
  9800. }
  9801. }
  9802. static void ggml_compute_forward_hardswish_f32(
  9803. const struct ggml_compute_params * params,
  9804. struct ggml_tensor * dst) {
  9805. const struct ggml_tensor * src0 = dst->src[0];
  9806. if (params->ith != 0) {
  9807. return;
  9808. }
  9809. assert(ggml_is_contiguous_1(src0));
  9810. assert(ggml_is_contiguous_1(dst));
  9811. assert(ggml_are_same_shape(src0, dst));
  9812. const int n = ggml_nrows(src0);
  9813. const int nc = src0->ne[0];
  9814. for (int i = 0; i < n; i++) {
  9815. ggml_vec_hardswish_f32(nc,
  9816. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9817. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9818. }
  9819. }
  9820. static void ggml_compute_forward_hardswish(
  9821. const struct ggml_compute_params * params,
  9822. struct ggml_tensor * dst) {
  9823. const struct ggml_tensor * src0 = dst->src[0];
  9824. switch (src0->type) {
  9825. case GGML_TYPE_F32:
  9826. {
  9827. ggml_compute_forward_hardswish_f32(params, dst);
  9828. } break;
  9829. default:
  9830. {
  9831. GGML_ABORT("fatal error");
  9832. }
  9833. }
  9834. }
  9835. static void ggml_compute_forward_hardsigmoid_f32(
  9836. const struct ggml_compute_params * params,
  9837. struct ggml_tensor * dst) {
  9838. const struct ggml_tensor * src0 = dst->src[0];
  9839. if (params->ith != 0) {
  9840. return;
  9841. }
  9842. assert(ggml_is_contiguous_1(src0));
  9843. assert(ggml_is_contiguous_1(dst));
  9844. assert(ggml_are_same_shape(src0, dst));
  9845. const int n = ggml_nrows(src0);
  9846. const int nc = src0->ne[0];
  9847. for (int i = 0; i < n; i++) {
  9848. ggml_vec_hardsigmoid_f32(nc,
  9849. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9850. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9851. }
  9852. }
  9853. static void ggml_compute_forward_hardsigmoid(
  9854. const struct ggml_compute_params * params,
  9855. struct ggml_tensor * dst) {
  9856. const struct ggml_tensor * src0 = dst->src[0];
  9857. switch (src0->type) {
  9858. case GGML_TYPE_F32:
  9859. {
  9860. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9861. } break;
  9862. default:
  9863. {
  9864. GGML_ABORT("fatal error");
  9865. }
  9866. }
  9867. }
  9868. static void ggml_compute_forward_exp_f32(
  9869. const struct ggml_compute_params * params,
  9870. struct ggml_tensor * dst) {
  9871. const struct ggml_tensor * src0 = dst->src[0];
  9872. if (params->ith != 0) {
  9873. return;
  9874. }
  9875. assert(ggml_is_contiguous_1(src0));
  9876. assert(ggml_is_contiguous_1(dst));
  9877. assert(ggml_are_same_shape(src0, dst));
  9878. const int n = ggml_nrows(src0);
  9879. const int nc = src0->ne[0];
  9880. for (int i = 0; i < n; i++) {
  9881. ggml_vec_exp_f32(nc,
  9882. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9883. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9884. }
  9885. }
  9886. static void ggml_compute_forward_exp(
  9887. const struct ggml_compute_params * params,
  9888. struct ggml_tensor * dst) {
  9889. const struct ggml_tensor * src0 = dst->src[0];
  9890. switch (src0->type) {
  9891. case GGML_TYPE_F32:
  9892. {
  9893. ggml_compute_forward_exp_f32(params, dst);
  9894. } break;
  9895. default:
  9896. {
  9897. GGML_ABORT("fatal error");
  9898. }
  9899. }
  9900. }
  9901. // ggml_compute_forward_norm
  9902. static void ggml_compute_forward_norm_f32(
  9903. const struct ggml_compute_params * params,
  9904. struct ggml_tensor * dst) {
  9905. const struct ggml_tensor * src0 = dst->src[0];
  9906. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9907. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9908. const int ith = params->ith;
  9909. const int nth = params->nth;
  9910. GGML_TENSOR_UNARY_OP_LOCALS
  9911. float eps;
  9912. memcpy(&eps, dst->op_params, sizeof(float));
  9913. GGML_ASSERT(eps > 0.0f);
  9914. // TODO: optimize
  9915. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9916. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9917. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9918. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9919. ggml_float sum = 0.0;
  9920. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9921. sum += (ggml_float)x[i00];
  9922. }
  9923. float mean = sum/ne00;
  9924. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9925. ggml_float sum2 = 0.0;
  9926. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9927. float v = x[i00] - mean;
  9928. y[i00] = v;
  9929. sum2 += (ggml_float)(v*v);
  9930. }
  9931. float variance = sum2/ne00;
  9932. const float scale = 1.0f/sqrtf(variance + eps);
  9933. ggml_vec_scale_f32(ne00, y, scale);
  9934. }
  9935. }
  9936. }
  9937. }
  9938. static void ggml_compute_forward_norm(
  9939. const struct ggml_compute_params * params,
  9940. struct ggml_tensor * dst) {
  9941. const struct ggml_tensor * src0 = dst->src[0];
  9942. switch (src0->type) {
  9943. case GGML_TYPE_F32:
  9944. {
  9945. ggml_compute_forward_norm_f32(params, dst);
  9946. } break;
  9947. default:
  9948. {
  9949. GGML_ABORT("fatal error");
  9950. }
  9951. }
  9952. }
  9953. // ggml_compute_forward_group_rms_norm
  9954. static void ggml_compute_forward_rms_norm_f32(
  9955. const struct ggml_compute_params * params,
  9956. struct ggml_tensor * dst) {
  9957. const struct ggml_tensor * src0 = dst->src[0];
  9958. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9959. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9960. const int ith = params->ith;
  9961. const int nth = params->nth;
  9962. GGML_TENSOR_UNARY_OP_LOCALS
  9963. float eps;
  9964. memcpy(&eps, dst->op_params, sizeof(float));
  9965. GGML_ASSERT(eps > 0.0f);
  9966. // TODO: optimize
  9967. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9968. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9969. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9970. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9971. ggml_float sum = 0.0;
  9972. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9973. sum += (ggml_float)(x[i00] * x[i00]);
  9974. }
  9975. const float mean = sum/ne00;
  9976. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9977. memcpy(y, x, ne00 * sizeof(float));
  9978. // for (int i00 = 0; i00 < ne00; i00++) {
  9979. // y[i00] = x[i00];
  9980. // }
  9981. const float scale = 1.0f/sqrtf(mean + eps);
  9982. ggml_vec_scale_f32(ne00, y, scale);
  9983. }
  9984. }
  9985. }
  9986. }
  9987. static void ggml_compute_forward_rms_norm(
  9988. const struct ggml_compute_params * params,
  9989. struct ggml_tensor * dst) {
  9990. const struct ggml_tensor * src0 = dst->src[0];
  9991. switch (src0->type) {
  9992. case GGML_TYPE_F32:
  9993. {
  9994. ggml_compute_forward_rms_norm_f32(params, dst);
  9995. } break;
  9996. default:
  9997. {
  9998. GGML_ABORT("fatal error");
  9999. }
  10000. }
  10001. }
  10002. static void ggml_compute_forward_rms_norm_back_f32(
  10003. const struct ggml_compute_params * params,
  10004. struct ggml_tensor * dst) {
  10005. const struct ggml_tensor * src0 = dst->src[0];
  10006. const struct ggml_tensor * src1 = dst->src[1];
  10007. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  10008. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10009. const int ith = params->ith;
  10010. const int nth = params->nth;
  10011. GGML_TENSOR_BINARY_OP_LOCALS
  10012. float eps;
  10013. memcpy(&eps, dst->op_params, sizeof(float));
  10014. // TODO: optimize
  10015. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10016. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10017. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10018. // src1 is same shape as src0 => same indices
  10019. const int64_t i11 = i01;
  10020. const int64_t i12 = i02;
  10021. const int64_t i13 = i03;
  10022. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  10023. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  10024. ggml_float sum_xx = 0.0;
  10025. ggml_float sum_xdz = 0.0;
  10026. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10027. sum_xx += (ggml_float)(x[i00] * x[i00]);
  10028. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  10029. }
  10030. //const float mean = (float)(sum_xx)/ne00;
  10031. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  10032. const float sum_eps = (float)(sum_xx) + eps*ne00;
  10033. //const float mean_xdz = (float)(sum_xdz)/ne00;
  10034. // we could cache rms from forward pass to improve performance.
  10035. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  10036. //const float rms = sqrtf(mean_eps);
  10037. const float rrms = 1.0f / sqrtf(mean_eps);
  10038. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  10039. {
  10040. // z = rms_norm(x)
  10041. //
  10042. // rms_norm(src0) =
  10043. // scale(
  10044. // src0,
  10045. // div(
  10046. // 1,
  10047. // sqrt(
  10048. // add(
  10049. // scale(
  10050. // sum(
  10051. // sqr(
  10052. // src0)),
  10053. // (1.0/N)),
  10054. // eps))));
  10055. // postorder:
  10056. // ## op args grad
  10057. // 00 param src0 grad[#00]
  10058. // 01 const 1
  10059. // 02 sqr (#00) grad[#02]
  10060. // 03 sum (#02) grad[#03]
  10061. // 04 const 1/N
  10062. // 05 scale (#03, #04) grad[#05]
  10063. // 06 const eps
  10064. // 07 add (#05, #06) grad[#07]
  10065. // 08 sqrt (#07) grad[#08]
  10066. // 09 div (#01,#08) grad[#09]
  10067. // 10 scale (#00,#09) grad[#10]
  10068. //
  10069. // backward pass, given grad[#10]
  10070. // #10: scale
  10071. // grad[#00] += scale(grad[#10],#09)
  10072. // grad[#09] += sum(mul(grad[#10],#00))
  10073. // #09: div
  10074. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  10075. // #08: sqrt
  10076. // grad[#07] += mul(grad[#08], div(0.5, #08))
  10077. // #07: add
  10078. // grad[#05] += grad[#07]
  10079. // #05: scale
  10080. // grad[#03] += scale(grad[#05],#04)
  10081. // #03: sum
  10082. // grad[#02] += repeat(grad[#03], #02)
  10083. // #02:
  10084. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  10085. //
  10086. // substitute and simplify:
  10087. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  10088. // grad[#02] = repeat(grad[#03], #02)
  10089. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  10090. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  10091. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  10092. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  10093. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  10094. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  10095. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  10096. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  10097. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  10098. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  10099. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  10100. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  10101. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  10102. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  10103. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  10104. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  10105. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  10106. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  10107. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  10108. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  10109. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  10110. // a = b*c + d*e
  10111. // a = b*c*f/f + d*e*f/f
  10112. // a = (b*c*f + d*e*f)*(1/f)
  10113. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  10114. // a = (b + d*e/c)*c
  10115. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  10116. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  10117. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  10118. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  10119. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  10120. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  10121. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  10122. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  10123. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10124. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10125. }
  10126. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  10127. // post-order:
  10128. // dx := x
  10129. // dx := scale(dx,-mean_xdz/mean_eps)
  10130. // dx := add(dx, dz)
  10131. // dx := scale(dx, rrms)
  10132. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  10133. ggml_vec_cpy_f32 (ne00, dx, x);
  10134. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  10135. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  10136. ggml_vec_acc_f32 (ne00, dx, dz);
  10137. ggml_vec_scale_f32(ne00, dx, rrms);
  10138. }
  10139. }
  10140. }
  10141. }
  10142. static void ggml_compute_forward_rms_norm_back(
  10143. const struct ggml_compute_params * params,
  10144. struct ggml_tensor * dst) {
  10145. const struct ggml_tensor * src0 = dst->src[0];
  10146. switch (src0->type) {
  10147. case GGML_TYPE_F32:
  10148. {
  10149. ggml_compute_forward_rms_norm_back_f32(params, dst);
  10150. } break;
  10151. default:
  10152. {
  10153. GGML_ABORT("fatal error");
  10154. }
  10155. }
  10156. }
  10157. // ggml_compute_forward_group_norm
  10158. static void ggml_compute_forward_group_norm_f32(
  10159. const struct ggml_compute_params * params,
  10160. struct ggml_tensor * dst) {
  10161. const struct ggml_tensor * src0 = dst->src[0];
  10162. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10163. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10164. const int ith = params->ith;
  10165. const int nth = params->nth;
  10166. GGML_TENSOR_UNARY_OP_LOCALS
  10167. // TODO: optimize
  10168. float eps;
  10169. memcpy(&eps, dst->op_params + 1, sizeof(float));
  10170. int n_channels = src0->ne[2];
  10171. int n_groups = dst->op_params[0];
  10172. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  10173. for (int i = ith; i < n_groups; i += nth) {
  10174. int start = i * n_channels_per_group;
  10175. int end = start + n_channels_per_group;
  10176. if (end > n_channels) {
  10177. end = n_channels;
  10178. }
  10179. int step = end - start;
  10180. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10181. ggml_float sum = 0.0;
  10182. for (int64_t i02 = start; i02 < end; i02++) {
  10183. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10184. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10185. ggml_float sumr = 0.0;
  10186. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10187. sumr += (ggml_float)x[i00];
  10188. }
  10189. sum += sumr;
  10190. }
  10191. }
  10192. const float mean = sum / (ne00 * ne01 * step);
  10193. ggml_float sum2 = 0.0;
  10194. for (int64_t i02 = start; i02 < end; i02++) {
  10195. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10196. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10197. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10198. ggml_float sumr = 0.0;
  10199. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10200. float v = x[i00] - mean;
  10201. y[i00] = v;
  10202. sumr += (ggml_float)(v * v);
  10203. }
  10204. sum2 += sumr;
  10205. }
  10206. }
  10207. const float variance = sum2 / (ne00 * ne01 * step);
  10208. const float scale = 1.0f / sqrtf(variance + eps);
  10209. for (int64_t i02 = start; i02 < end; i02++) {
  10210. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10211. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10212. ggml_vec_scale_f32(ne00, y, scale);
  10213. }
  10214. }
  10215. }
  10216. }
  10217. }
  10218. static void ggml_compute_forward_group_norm(
  10219. const struct ggml_compute_params * params,
  10220. struct ggml_tensor * dst) {
  10221. const struct ggml_tensor * src0 = dst->src[0];
  10222. switch (src0->type) {
  10223. case GGML_TYPE_F32:
  10224. {
  10225. ggml_compute_forward_group_norm_f32(params, dst);
  10226. } break;
  10227. default:
  10228. {
  10229. GGML_ABORT("fatal error");
  10230. }
  10231. }
  10232. }
  10233. // ggml_compute_forward_mul_mat
  10234. static void ggml_compute_forward_mul_mat_one_chunk(
  10235. const struct ggml_compute_params * params,
  10236. struct ggml_tensor * dst,
  10237. const int64_t num_rows_per_vec_dot,
  10238. const int64_t ir0_start,
  10239. const int64_t ir0_end,
  10240. const int64_t ir1_start,
  10241. const int64_t ir1_end) {
  10242. const struct ggml_tensor * src0 = dst->src[0];
  10243. const struct ggml_tensor * src1 = dst->src[1];
  10244. GGML_TENSOR_BINARY_OP_LOCALS
  10245. const enum ggml_type type = src0->type;
  10246. const bool src1_cont = ggml_is_contiguous(src1);
  10247. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10248. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10249. // broadcast factors
  10250. const int64_t r2 = ne12 / ne02;
  10251. const int64_t r3 = ne13 / ne03;
  10252. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10253. // threads with no work simply yield (not sure if it helps)
  10254. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10255. return;
  10256. }
  10257. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10258. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10259. assert(ne12 % ne02 == 0);
  10260. assert(ne13 % ne03 == 0);
  10261. // block-tiling attempt
  10262. const int64_t blck_0 = 16;
  10263. const int64_t blck_1 = 16;
  10264. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10265. // attempt to reduce false-sharing (does not seem to make a difference)
  10266. // 16 * 2, accounting for mmla kernels
  10267. float tmp[32];
  10268. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10269. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10270. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10271. const int64_t i13 = (ir1 / (ne12 * ne1));
  10272. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10273. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10274. // broadcast src0 into src1
  10275. const int64_t i03 = i13 / r3;
  10276. const int64_t i02 = i12 / r2;
  10277. const int64_t i1 = i11;
  10278. const int64_t i2 = i12;
  10279. const int64_t i3 = i13;
  10280. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10281. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10282. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10283. // the original src1 data pointer, so we should index using the indices directly
  10284. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10285. const char * src1_col = (const char*)wdata +
  10286. (src1_cont || src1->type != vec_dot_type
  10287. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10288. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10289. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10290. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10291. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10292. //}
  10293. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10294. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10295. }
  10296. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10297. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10298. }
  10299. }
  10300. }
  10301. }
  10302. }
  10303. static void ggml_compute_forward_mul_mat(
  10304. const struct ggml_compute_params * params,
  10305. struct ggml_tensor * dst) {
  10306. const struct ggml_tensor * src0 = dst->src[0];
  10307. const struct ggml_tensor * src1 = dst->src[1];
  10308. GGML_TENSOR_BINARY_OP_LOCALS
  10309. const int ith = params->ith;
  10310. const int nth = params->nth;
  10311. const enum ggml_type type = src0->type;
  10312. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10313. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10314. ggml_from_float_to_mat_t const from_float_to_mat = type_traits[vec_dot_type].from_float_to_mat;
  10315. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10316. int64_t const matmul_num_cols = type_traits[type].ncols;
  10317. int64_t const blck_size_interleave = type_traits[type].blck_size_interleave;
  10318. ggml_gemv_t const gemv = type_traits[type].gemv;
  10319. ggml_gemm_t const gemm = type_traits[type].gemm;
  10320. GGML_ASSERT(ne0 == ne01);
  10321. GGML_ASSERT(ne1 == ne11);
  10322. GGML_ASSERT(ne2 == ne12);
  10323. GGML_ASSERT(ne3 == ne13);
  10324. // we don't support permuted src0 or src1
  10325. GGML_ASSERT(nb00 == ggml_type_size(type));
  10326. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10327. // dst cannot be transposed or permuted
  10328. GGML_ASSERT(nb0 == sizeof(float));
  10329. GGML_ASSERT(nb0 <= nb1);
  10330. GGML_ASSERT(nb1 <= nb2);
  10331. GGML_ASSERT(nb2 <= nb3);
  10332. // nb01 >= nb00 - src0 is not transposed
  10333. // compute by src0 rows
  10334. #if GGML_USE_LLAMAFILE
  10335. // broadcast factors
  10336. const int64_t r2 = ne12 / ne02;
  10337. const int64_t r3 = ne13 / ne03;
  10338. const bool src1_cont = ggml_is_contiguous(src1);
  10339. if (src1_cont) {
  10340. for (int64_t i13 = 0; i13 < ne13; i13++)
  10341. for (int64_t i12 = 0; i12 < ne12; i12++)
  10342. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10343. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10344. nb01/ggml_type_size(src0->type),
  10345. (const char *)src1->data + i12*nb12 + i13*nb13,
  10346. nb11/ggml_type_size(src1->type),
  10347. (char *)dst->data + i12*nb2 + i13*nb3,
  10348. nb1/ggml_type_size(dst->type),
  10349. ith, nth,
  10350. src0->type,
  10351. src1->type,
  10352. dst->type))
  10353. goto UseGgmlGemm1;
  10354. return;
  10355. }
  10356. UseGgmlGemm1:;
  10357. #endif
  10358. if (src1->type != vec_dot_type) {
  10359. char * wdata = params->wdata;
  10360. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10361. const size_t nbw2 = nbw1*ne11;
  10362. const size_t nbw3 = nbw2*ne12;
  10363. assert(params->wsize >= ne13*nbw3);
  10364. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10365. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10366. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10367. int64_t i11_processed = 0;
  10368. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  10369. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  10370. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10371. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10372. 4, ne10, blck_size_interleave);
  10373. }
  10374. i11_processed = ne11 - ne11 % 4;
  10375. }
  10376. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  10377. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10378. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10379. ne10);
  10380. }
  10381. }
  10382. }
  10383. }
  10384. if (ith == 0) {
  10385. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10386. atomic_store_explicit(&params->threadpool->current_chunk, nth, memory_order_relaxed);
  10387. }
  10388. ggml_barrier(params->threadpool);
  10389. #if GGML_USE_LLAMAFILE
  10390. if (src1->type != vec_dot_type) {
  10391. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10392. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10393. for (int64_t i13 = 0; i13 < ne13; i13++)
  10394. for (int64_t i12 = 0; i12 < ne12; i12++)
  10395. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10396. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10397. nb01/ggml_type_size(src0->type),
  10398. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10399. row_size/ggml_type_size(vec_dot_type),
  10400. (char *)dst->data + i12*nb2 + i13*nb3,
  10401. nb1/ggml_type_size(dst->type),
  10402. ith, nth,
  10403. src0->type,
  10404. vec_dot_type,
  10405. dst->type))
  10406. goto UseGgmlGemm2;
  10407. return;
  10408. }
  10409. UseGgmlGemm2:;
  10410. #endif
  10411. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10412. const int64_t nr0 = ne0;
  10413. // This is the size of the rest of the dimensions of the result
  10414. const int64_t nr1 = ne1 * ne2 * ne3;
  10415. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10416. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10417. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10418. // this check can be removed once they are extended to support odd numbered rows/cols too
  10419. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10420. num_rows_per_vec_dot = 1;
  10421. }
  10422. // Now select a reasonable chunk size.
  10423. int chunk_size = 16;
  10424. // We need to step up the size if it's small
  10425. if (nr0 == 1 || nr1 == 1) {
  10426. chunk_size = 64;
  10427. }
  10428. // distribute the work across the inner or outer loop based on which one is larger
  10429. // The number of chunks in the 0/1 dim.
  10430. // CEIL(nr0/chunk_size)
  10431. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10432. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10433. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10434. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10435. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10436. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10437. // distribute the thread work across the inner or outer loop based on which one is larger
  10438. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10439. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10440. }
  10441. // The number of elements in each chunk
  10442. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10443. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10444. if ((ggml_n_dims(src0) == 2) && gemv) {
  10445. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10446. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  10447. int64_t src0_start = (ith * ne01) / nth;
  10448. int64_t src0_end = ((ith + 1) * ne01) / nth;
  10449. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  10450. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  10451. if (src0_start >= src0_end) return;
  10452. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  10453. if (gemm && (ne11 > 3)) {
  10454. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  10455. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  10456. }
  10457. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  10458. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  10459. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  10460. src0_end - src0_start);
  10461. }
  10462. return;
  10463. }
  10464. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10465. int current_chunk = ith;
  10466. while (current_chunk < nchunk0 * nchunk1) {
  10467. const int64_t ith0 = current_chunk % nchunk0;
  10468. const int64_t ith1 = current_chunk / nchunk0;
  10469. const int64_t ir0_start = dr0 * ith0;
  10470. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10471. const int64_t ir1_start = dr1 * ith1;
  10472. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10473. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10474. if (nth >= nchunk0 * nchunk1) {
  10475. break;
  10476. }
  10477. current_chunk = atomic_fetch_add_explicit(&params->threadpool->current_chunk, 1, memory_order_relaxed);
  10478. }
  10479. }
  10480. // ggml_compute_forward_mul_mat_id
  10481. static void ggml_compute_forward_mul_mat_id(
  10482. const struct ggml_compute_params * params,
  10483. struct ggml_tensor * dst) {
  10484. const struct ggml_tensor * src0 = dst->src[0];
  10485. const struct ggml_tensor * src1 = dst->src[1];
  10486. const struct ggml_tensor * ids = dst->src[2];
  10487. GGML_TENSOR_BINARY_OP_LOCALS
  10488. const int ith = params->ith;
  10489. const int nth = params->nth;
  10490. const enum ggml_type type = src0->type;
  10491. const bool src1_cont = ggml_is_contiguous(src1);
  10492. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10493. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10494. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10495. int64_t const matmul_num_cols = type_traits[type].ncols;
  10496. ggml_gemv_t const gemv = type_traits[type].gemv;
  10497. // we don't support permuted src0 or src1
  10498. GGML_ASSERT(nb00 == ggml_type_size(type));
  10499. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10500. // dst cannot be transposed or permuted
  10501. GGML_ASSERT(nb0 == sizeof(float));
  10502. GGML_ASSERT(nb0 <= nb1);
  10503. GGML_ASSERT(nb1 <= nb2);
  10504. GGML_ASSERT(nb2 <= nb3);
  10505. // row groups
  10506. const int n_ids = ids->ne[0]; // n_expert_used
  10507. const int n_as = ne02; // n_expert
  10508. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10509. (char *) params->wdata :
  10510. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10511. struct mmid_row_mapping {
  10512. int32_t i1;
  10513. int32_t i2;
  10514. };
  10515. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10516. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10517. if (src1->type != vec_dot_type) {
  10518. char * wdata = params->wdata;
  10519. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10520. const size_t nbw2 = nbw1*ne11;
  10521. const size_t nbw3 = nbw2*ne12;
  10522. assert(params->wsize >= ne13*nbw3);
  10523. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10524. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10525. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10526. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  10527. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10528. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10529. ne10);
  10530. }
  10531. }
  10532. }
  10533. }
  10534. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10535. if (ith == 0) {
  10536. // initialize matrix_row_counts
  10537. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10538. // group rows by src0 matrix
  10539. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10540. for (int id = 0; id < n_ids; ++id) {
  10541. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10542. assert(i02 >= 0 && i02 < n_as);
  10543. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10544. matrix_row_counts[i02] += 1;
  10545. }
  10546. }
  10547. }
  10548. ggml_barrier(params->threadpool);
  10549. // compute each matrix multiplication in sequence
  10550. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10551. const int64_t cne1 = matrix_row_counts[cur_a];
  10552. if (cne1 == 0) {
  10553. continue;
  10554. }
  10555. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10556. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10557. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10558. const int64_t nr0 = ne01; // src0 rows
  10559. const int64_t nr1 = cne1; // src1 rows
  10560. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  10561. int64_t src0_cur_start = (ith * ne01) / nth;
  10562. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  10563. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  10564. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  10565. if (src0_cur_start >= src0_cur_end) return;
  10566. for (int ir1 = 0; ir1 < nr1; ir1++) {
  10567. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  10568. const int id = row_mapping.i1; // selected expert index
  10569. const int64_t i11 = id % ne11;
  10570. const int64_t i12 = row_mapping.i2; // row index in src1
  10571. const int64_t i1 = id; // selected expert index
  10572. const int64_t i2 = i12; // row
  10573. const char * src1_col = (const char *) wdata +
  10574. (src1_cont || src1->type != vec_dot_type
  10575. ? (i11 + i12 * ne11) * row_size
  10576. : (i11 * nb11 + i12 * nb12));
  10577. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  10578. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  10579. }
  10580. continue;
  10581. }
  10582. // distribute the thread work across the inner or outer loop based on which one is larger
  10583. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10584. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10585. const int64_t ith0 = ith % nth0;
  10586. const int64_t ith1 = ith / nth0;
  10587. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10588. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10589. const int64_t ir010 = dr0*ith0;
  10590. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10591. const int64_t ir110 = dr1*ith1;
  10592. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10593. // threads with no work simply yield (not sure if it helps)
  10594. //if (ir010 >= ir011 || ir110 >= ir111) {
  10595. // sched_yield();
  10596. // continue;
  10597. //}
  10598. // block-tiling attempt
  10599. const int64_t blck_0 = 16;
  10600. const int64_t blck_1 = 16;
  10601. // attempt to reduce false-sharing (does not seem to make a difference)
  10602. float tmp[16];
  10603. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10604. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10605. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10606. const int64_t _i12 = ir1; // logical row index for this expert
  10607. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10608. const int id = row_mapping.i1; // selected expert index
  10609. const int64_t i11 = id % ne11;
  10610. const int64_t i12 = row_mapping.i2; // row index in src1
  10611. const int64_t i1 = id; // selected expert index
  10612. const int64_t i2 = i12; // row
  10613. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10614. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10615. // the original src1 data pointer, so we should index using the indices directly
  10616. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10617. const char * src1_col = (const char *) wdata +
  10618. (src1_cont || src1->type != vec_dot_type
  10619. ? (i11 + i12*ne11)*row_size
  10620. : (i11*nb11 + i12*nb12));
  10621. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10622. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10623. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10624. //}
  10625. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10626. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10627. }
  10628. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10629. }
  10630. }
  10631. }
  10632. }
  10633. #undef MMID_MATRIX_ROW
  10634. }
  10635. // ggml_compute_forward_out_prod
  10636. static void ggml_compute_forward_out_prod_f32(
  10637. const struct ggml_compute_params * params,
  10638. struct ggml_tensor * dst) {
  10639. const struct ggml_tensor * src0 = dst->src[0];
  10640. const struct ggml_tensor * src1 = dst->src[1];
  10641. GGML_TENSOR_BINARY_OP_LOCALS
  10642. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  10643. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10644. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10645. const int ith = params->ith;
  10646. const int nth = params->nth;
  10647. GGML_ASSERT(ne0 == ne00);
  10648. GGML_ASSERT(ne1 == ne10);
  10649. GGML_ASSERT(ne2 == ne02);
  10650. GGML_ASSERT(ne02 == ne12);
  10651. GGML_ASSERT(ne3 == ne13);
  10652. GGML_ASSERT(ne03 == ne13);
  10653. // we don't support permuted src0 or src1
  10654. GGML_ASSERT(nb00 == sizeof(float));
  10655. // dst cannot be transposed or permuted
  10656. GGML_ASSERT(nb0 == sizeof(float));
  10657. // GGML_ASSERT(nb0 <= nb1);
  10658. // GGML_ASSERT(nb1 <= nb2);
  10659. // GGML_ASSERT(nb2 <= nb3);
  10660. // nb01 >= nb00 - src0 is not transposed
  10661. // compute by src0 rows
  10662. if (ith == 0) {
  10663. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10664. }
  10665. ggml_barrier(params->threadpool);
  10666. // dst[:,:,:,:] = 0
  10667. // for i2,i3:
  10668. // for i1:
  10669. // for i01:
  10670. // for i0:
  10671. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10672. // parallelize by last three dimensions
  10673. // total rows in dst
  10674. const int64_t nr = ne1*ne2*ne3;
  10675. // rows per thread
  10676. const int64_t dr = (nr + nth - 1)/nth;
  10677. // row range for this thread
  10678. const int64_t ir0 = dr*ith;
  10679. const int64_t ir1 = MIN(ir0 + dr, nr);
  10680. // block-tiling attempt
  10681. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10682. const int64_t blck_1 = 16;
  10683. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10684. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10685. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10686. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10687. for (int64_t ir = bir; ir < bir1; ++ir) {
  10688. // dst indices
  10689. const int64_t i3 = ir/(ne2*ne1);
  10690. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10691. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10692. const int64_t i02 = i2;
  10693. const int64_t i03 = i3;
  10694. //const int64_t i10 = i1;
  10695. const int64_t i12 = i2;
  10696. const int64_t i13 = i3;
  10697. #if GGML_VEC_MAD_UNROLL > 2
  10698. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10699. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10700. const int64_t i11 = i01;
  10701. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10702. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10703. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10704. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10705. }
  10706. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10707. const int64_t i11 = i01;
  10708. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10709. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10710. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10711. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10712. }
  10713. #else
  10714. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10715. const int64_t i11 = i01;
  10716. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10717. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10718. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10719. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10720. }
  10721. #endif
  10722. }
  10723. }
  10724. }
  10725. }
  10726. static void ggml_compute_forward_out_prod_q_f32(
  10727. const struct ggml_compute_params * params,
  10728. struct ggml_tensor * dst) {
  10729. const struct ggml_tensor * src0 = dst->src[0];
  10730. const struct ggml_tensor * src1 = dst->src[1];
  10731. GGML_TENSOR_BINARY_OP_LOCALS;
  10732. const int ith = params->ith;
  10733. const int nth = params->nth;
  10734. const enum ggml_type type = src0->type;
  10735. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10736. GGML_ASSERT(ne02 == ne12);
  10737. GGML_ASSERT(ne03 == ne13);
  10738. GGML_ASSERT(ne2 == ne12);
  10739. GGML_ASSERT(ne3 == ne13);
  10740. // we don't support permuted src0 dim0
  10741. GGML_ASSERT(nb00 == ggml_type_size(type));
  10742. // dst dim0 cannot be transposed or permuted
  10743. GGML_ASSERT(nb0 == sizeof(float));
  10744. // GGML_ASSERT(nb0 <= nb1);
  10745. // GGML_ASSERT(nb1 <= nb2);
  10746. // GGML_ASSERT(nb2 <= nb3);
  10747. GGML_ASSERT(ne0 == ne00);
  10748. GGML_ASSERT(ne1 == ne10);
  10749. GGML_ASSERT(ne2 == ne02);
  10750. GGML_ASSERT(ne3 == ne03);
  10751. // nb01 >= nb00 - src0 is not transposed
  10752. // compute by src0 rows
  10753. if (ith == 0) {
  10754. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10755. }
  10756. ggml_barrier(params->threadpool);
  10757. // parallelize by last three dimensions
  10758. // total rows in dst
  10759. const int64_t nr = ne1*ne2*ne3;
  10760. // rows per thread
  10761. const int64_t dr = (nr + nth - 1)/nth;
  10762. // row range for this thread
  10763. const int64_t ir0 = dr*ith;
  10764. const int64_t ir1 = MIN(ir0 + dr, nr);
  10765. // dst[:,:,:,:] = 0
  10766. // for i2,i3:
  10767. // for i1:
  10768. // for i01:
  10769. // for i0:
  10770. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10771. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10772. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10773. // dst indices
  10774. const int64_t i3 = ir/(ne2*ne1);
  10775. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10776. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10777. const int64_t i02 = i2;
  10778. const int64_t i03 = i3;
  10779. //const int64_t i10 = i1;
  10780. const int64_t i12 = i2;
  10781. const int64_t i13 = i3;
  10782. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10783. const int64_t i11 = i01;
  10784. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10785. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10786. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10787. dequantize_row_q(s0, wdata, ne0);
  10788. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10789. }
  10790. }
  10791. }
  10792. static void ggml_compute_forward_out_prod(
  10793. const struct ggml_compute_params * params,
  10794. struct ggml_tensor * dst) {
  10795. const struct ggml_tensor * src0 = dst->src[0];
  10796. switch (src0->type) {
  10797. case GGML_TYPE_Q4_0:
  10798. case GGML_TYPE_Q4_1:
  10799. case GGML_TYPE_Q5_0:
  10800. case GGML_TYPE_Q5_1:
  10801. case GGML_TYPE_Q8_0:
  10802. case GGML_TYPE_Q2_K:
  10803. case GGML_TYPE_Q3_K:
  10804. case GGML_TYPE_Q4_K:
  10805. case GGML_TYPE_Q5_K:
  10806. case GGML_TYPE_Q6_K:
  10807. case GGML_TYPE_TQ1_0:
  10808. case GGML_TYPE_TQ2_0:
  10809. case GGML_TYPE_IQ2_XXS:
  10810. case GGML_TYPE_IQ2_XS:
  10811. case GGML_TYPE_IQ3_XXS:
  10812. case GGML_TYPE_IQ1_S:
  10813. case GGML_TYPE_IQ1_M:
  10814. case GGML_TYPE_IQ4_NL:
  10815. case GGML_TYPE_IQ4_XS:
  10816. case GGML_TYPE_IQ3_S:
  10817. case GGML_TYPE_IQ2_S:
  10818. case GGML_TYPE_Q4_0_4_4:
  10819. case GGML_TYPE_Q4_0_4_8:
  10820. case GGML_TYPE_Q4_0_8_8:
  10821. {
  10822. ggml_compute_forward_out_prod_q_f32(params, dst);
  10823. } break;
  10824. case GGML_TYPE_F16:
  10825. {
  10826. GGML_ABORT("fatal error"); // todo
  10827. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10828. }
  10829. case GGML_TYPE_F32:
  10830. {
  10831. ggml_compute_forward_out_prod_f32(params, dst);
  10832. } break;
  10833. default:
  10834. {
  10835. GGML_ABORT("fatal error");
  10836. }
  10837. }
  10838. }
  10839. // ggml_compute_forward_scale
  10840. static void ggml_compute_forward_scale_f32(
  10841. const struct ggml_compute_params * params,
  10842. struct ggml_tensor * dst) {
  10843. const struct ggml_tensor * src0 = dst->src[0];
  10844. GGML_ASSERT(ggml_is_contiguous(src0));
  10845. GGML_ASSERT(ggml_is_contiguous(dst));
  10846. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10847. // scale factor
  10848. float v;
  10849. memcpy(&v, dst->op_params, sizeof(float));
  10850. const int ith = params->ith;
  10851. const int nth = params->nth;
  10852. const int nc = src0->ne[0];
  10853. const int nr = ggml_nrows(src0);
  10854. // rows per thread
  10855. const int dr = (nr + nth - 1)/nth;
  10856. // row range for this thread
  10857. const int ir0 = dr*ith;
  10858. const int ir1 = MIN(ir0 + dr, nr);
  10859. const size_t nb01 = src0->nb[1];
  10860. const size_t nb1 = dst->nb[1];
  10861. for (int i1 = ir0; i1 < ir1; i1++) {
  10862. if (dst->data != src0->data) {
  10863. // src0 is same shape as dst => same indices
  10864. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10865. }
  10866. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10867. }
  10868. }
  10869. static void ggml_compute_forward_scale(
  10870. const struct ggml_compute_params * params,
  10871. struct ggml_tensor * dst) {
  10872. const struct ggml_tensor * src0 = dst->src[0];
  10873. switch (src0->type) {
  10874. case GGML_TYPE_F32:
  10875. {
  10876. ggml_compute_forward_scale_f32(params, dst);
  10877. } break;
  10878. default:
  10879. {
  10880. GGML_ABORT("fatal error");
  10881. }
  10882. }
  10883. }
  10884. // ggml_compute_forward_set
  10885. static void ggml_compute_forward_set_f32(
  10886. const struct ggml_compute_params * params,
  10887. struct ggml_tensor * dst) {
  10888. const struct ggml_tensor * src0 = dst->src[0];
  10889. const struct ggml_tensor * src1 = dst->src[1];
  10890. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10891. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10892. // view src0 and dst with these strides and data offset inbytes during set
  10893. // nb0 is implicitly element_size because src0 and dst are contiguous
  10894. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10895. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10896. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10897. size_t offset = ((int32_t *) dst->op_params)[3];
  10898. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10899. if (!inplace) {
  10900. if (params->ith == 0) {
  10901. // memcpy needs to be synchronized across threads to avoid race conditions.
  10902. // => do it in INIT phase
  10903. memcpy(
  10904. ((char *) dst->data),
  10905. ((char *) src0->data),
  10906. ggml_nbytes(dst));
  10907. }
  10908. ggml_barrier(params->threadpool);
  10909. }
  10910. const int ith = params->ith;
  10911. const int nth = params->nth;
  10912. const int nr = ggml_nrows(src1);
  10913. const int nc = src1->ne[0];
  10914. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10915. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10916. // src0 and dst as viewed during set
  10917. const size_t nb0 = ggml_element_size(src0);
  10918. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10919. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10920. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10921. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10922. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10923. GGML_ASSERT(nb10 == sizeof(float));
  10924. // rows per thread
  10925. const int dr = (nr + nth - 1)/nth;
  10926. // row range for this thread
  10927. const int ir0 = dr*ith;
  10928. const int ir1 = MIN(ir0 + dr, nr);
  10929. for (int ir = ir0; ir < ir1; ++ir) {
  10930. // src0 and dst are viewed with shape of src1 and offset
  10931. // => same indices
  10932. const int i3 = ir/(ne12*ne11);
  10933. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10934. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10935. ggml_vec_cpy_f32(nc,
  10936. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10937. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10938. }
  10939. }
  10940. static void ggml_compute_forward_set(
  10941. const struct ggml_compute_params * params,
  10942. struct ggml_tensor * dst) {
  10943. const struct ggml_tensor * src0 = dst->src[0];
  10944. switch (src0->type) {
  10945. case GGML_TYPE_F32:
  10946. {
  10947. ggml_compute_forward_set_f32(params, dst);
  10948. } break;
  10949. case GGML_TYPE_F16:
  10950. case GGML_TYPE_BF16:
  10951. case GGML_TYPE_Q4_0:
  10952. case GGML_TYPE_Q4_1:
  10953. case GGML_TYPE_Q5_0:
  10954. case GGML_TYPE_Q5_1:
  10955. case GGML_TYPE_Q8_0:
  10956. case GGML_TYPE_Q8_1:
  10957. case GGML_TYPE_Q2_K:
  10958. case GGML_TYPE_Q3_K:
  10959. case GGML_TYPE_Q4_K:
  10960. case GGML_TYPE_Q5_K:
  10961. case GGML_TYPE_Q6_K:
  10962. case GGML_TYPE_TQ1_0:
  10963. case GGML_TYPE_TQ2_0:
  10964. case GGML_TYPE_IQ2_XXS:
  10965. case GGML_TYPE_IQ2_XS:
  10966. case GGML_TYPE_IQ3_XXS:
  10967. case GGML_TYPE_IQ1_S:
  10968. case GGML_TYPE_IQ1_M:
  10969. case GGML_TYPE_IQ4_NL:
  10970. case GGML_TYPE_IQ4_XS:
  10971. case GGML_TYPE_IQ3_S:
  10972. case GGML_TYPE_IQ2_S:
  10973. case GGML_TYPE_Q4_0_4_4:
  10974. case GGML_TYPE_Q4_0_4_8:
  10975. case GGML_TYPE_Q4_0_8_8:
  10976. default:
  10977. {
  10978. GGML_ABORT("fatal error");
  10979. }
  10980. }
  10981. }
  10982. // ggml_compute_forward_cpy
  10983. static void ggml_compute_forward_cpy(
  10984. const struct ggml_compute_params * params,
  10985. struct ggml_tensor * dst) {
  10986. ggml_compute_forward_dup(params, dst);
  10987. }
  10988. // ggml_compute_forward_cont
  10989. static void ggml_compute_forward_cont(
  10990. const struct ggml_compute_params * params,
  10991. struct ggml_tensor * dst) {
  10992. ggml_compute_forward_dup(params, dst);
  10993. }
  10994. // ggml_compute_forward_reshape
  10995. static void ggml_compute_forward_reshape(
  10996. const struct ggml_compute_params * params,
  10997. struct ggml_tensor * dst) {
  10998. // NOP
  10999. UNUSED(params);
  11000. UNUSED(dst);
  11001. }
  11002. // ggml_compute_forward_view
  11003. static void ggml_compute_forward_view(
  11004. const struct ggml_compute_params * params,
  11005. const struct ggml_tensor * dst) {
  11006. // NOP
  11007. UNUSED(params);
  11008. UNUSED(dst);
  11009. }
  11010. // ggml_compute_forward_permute
  11011. static void ggml_compute_forward_permute(
  11012. const struct ggml_compute_params * params,
  11013. const struct ggml_tensor * dst) {
  11014. // NOP
  11015. UNUSED(params);
  11016. UNUSED(dst);
  11017. }
  11018. // ggml_compute_forward_transpose
  11019. static void ggml_compute_forward_transpose(
  11020. const struct ggml_compute_params * params,
  11021. const struct ggml_tensor * dst) {
  11022. // NOP
  11023. UNUSED(params);
  11024. UNUSED(dst);
  11025. }
  11026. // ggml_compute_forward_get_rows
  11027. static void ggml_compute_forward_get_rows_q(
  11028. const struct ggml_compute_params * params,
  11029. struct ggml_tensor * dst) {
  11030. const struct ggml_tensor * src0 = dst->src[0];
  11031. const struct ggml_tensor * src1 = dst->src[1];
  11032. GGML_TENSOR_BINARY_OP_LOCALS
  11033. const int64_t nc = ne00;
  11034. const int64_t nr = ggml_nelements(src1);
  11035. const enum ggml_type type = src0->type;
  11036. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  11037. assert(ne0 == nc);
  11038. assert(ne02 == ne11);
  11039. assert(nb00 == ggml_type_size(type));
  11040. assert(ggml_nrows(dst) == nr);
  11041. const int ith = params->ith;
  11042. const int nth = params->nth;
  11043. // rows per thread
  11044. const int dr = (nr + nth - 1)/nth;
  11045. // row range for this thread
  11046. const int ir0 = dr*ith;
  11047. const int ir1 = MIN(ir0 + dr, nr);
  11048. for (int64_t i = ir0; i < ir1; ++i) {
  11049. const int64_t i12 = i/(ne11*ne10);
  11050. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11051. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11052. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11053. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11054. dequantize_row_q(
  11055. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11056. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11057. }
  11058. }
  11059. static void ggml_compute_forward_get_rows_f16(
  11060. const struct ggml_compute_params * params,
  11061. struct ggml_tensor * dst) {
  11062. const struct ggml_tensor * src0 = dst->src[0];
  11063. const struct ggml_tensor * src1 = dst->src[1];
  11064. GGML_TENSOR_BINARY_OP_LOCALS
  11065. const int64_t nc = ne00;
  11066. const int64_t nr = ggml_nelements(src1);
  11067. assert(ne0 == nc);
  11068. assert(ne02 == ne11);
  11069. assert(nb00 == sizeof(ggml_fp16_t));
  11070. assert(ggml_nrows(dst) == nr);
  11071. const int ith = params->ith;
  11072. const int nth = params->nth;
  11073. // rows per thread
  11074. const int dr = (nr + nth - 1)/nth;
  11075. // row range for this thread
  11076. const int ir0 = dr*ith;
  11077. const int ir1 = MIN(ir0 + dr, nr);
  11078. for (int64_t i = ir0; i < ir1; ++i) {
  11079. const int64_t i12 = i/(ne11*ne10);
  11080. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11081. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11082. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11083. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11084. ggml_fp16_to_fp32_row(
  11085. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11086. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11087. }
  11088. }
  11089. static void ggml_compute_forward_get_rows_bf16(
  11090. const struct ggml_compute_params * params,
  11091. struct ggml_tensor * dst) {
  11092. const struct ggml_tensor * src0 = dst->src[0];
  11093. const struct ggml_tensor * src1 = dst->src[1];
  11094. GGML_TENSOR_BINARY_OP_LOCALS
  11095. const int64_t nc = ne00;
  11096. const int64_t nr = ggml_nelements(src1);
  11097. assert(ne0 == nc);
  11098. assert(ne02 == ne11);
  11099. assert(nb00 == sizeof(ggml_bf16_t));
  11100. assert(ggml_nrows(dst) == nr);
  11101. const int ith = params->ith;
  11102. const int nth = params->nth;
  11103. // rows per thread
  11104. const int dr = (nr + nth - 1)/nth;
  11105. // row range for this thread
  11106. const int ir0 = dr*ith;
  11107. const int ir1 = MIN(ir0 + dr, nr);
  11108. for (int64_t i = ir0; i < ir1; ++i) {
  11109. const int64_t i12 = i/(ne11*ne10);
  11110. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11111. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11112. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11113. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11114. ggml_bf16_to_fp32_row(
  11115. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11116. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11117. }
  11118. }
  11119. static void ggml_compute_forward_get_rows_f32(
  11120. const struct ggml_compute_params * params,
  11121. struct ggml_tensor * dst) {
  11122. const struct ggml_tensor * src0 = dst->src[0];
  11123. const struct ggml_tensor * src1 = dst->src[1];
  11124. GGML_TENSOR_BINARY_OP_LOCALS
  11125. const int64_t nc = ne00;
  11126. const int64_t nr = ggml_nelements(src1);
  11127. assert(ne0 == nc);
  11128. assert(ne02 == ne11);
  11129. assert(nb00 == sizeof(float));
  11130. assert(ggml_nrows(dst) == nr);
  11131. const int ith = params->ith;
  11132. const int nth = params->nth;
  11133. // rows per thread
  11134. const int dr = (nr + nth - 1)/nth;
  11135. // row range for this thread
  11136. const int ir0 = dr*ith;
  11137. const int ir1 = MIN(ir0 + dr, nr);
  11138. for (int64_t i = ir0; i < ir1; ++i) {
  11139. const int64_t i12 = i/(ne11*ne10);
  11140. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11141. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11142. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11143. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  11144. ggml_vec_cpy_f32(nc,
  11145. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11146. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11147. }
  11148. }
  11149. static void ggml_compute_forward_get_rows(
  11150. const struct ggml_compute_params * params,
  11151. struct ggml_tensor * dst) {
  11152. const struct ggml_tensor * src0 = dst->src[0];
  11153. switch (src0->type) {
  11154. case GGML_TYPE_Q4_0:
  11155. case GGML_TYPE_Q4_1:
  11156. case GGML_TYPE_Q5_0:
  11157. case GGML_TYPE_Q5_1:
  11158. case GGML_TYPE_Q8_0:
  11159. case GGML_TYPE_Q8_1:
  11160. case GGML_TYPE_Q2_K:
  11161. case GGML_TYPE_Q3_K:
  11162. case GGML_TYPE_Q4_K:
  11163. case GGML_TYPE_Q5_K:
  11164. case GGML_TYPE_Q6_K:
  11165. case GGML_TYPE_TQ1_0:
  11166. case GGML_TYPE_TQ2_0:
  11167. case GGML_TYPE_IQ2_XXS:
  11168. case GGML_TYPE_IQ2_XS:
  11169. case GGML_TYPE_IQ3_XXS:
  11170. case GGML_TYPE_IQ1_S:
  11171. case GGML_TYPE_IQ1_M:
  11172. case GGML_TYPE_IQ4_NL:
  11173. case GGML_TYPE_IQ4_XS:
  11174. case GGML_TYPE_IQ3_S:
  11175. case GGML_TYPE_IQ2_S:
  11176. case GGML_TYPE_Q4_0_4_4:
  11177. case GGML_TYPE_Q4_0_4_8:
  11178. case GGML_TYPE_Q4_0_8_8:
  11179. {
  11180. ggml_compute_forward_get_rows_q(params, dst);
  11181. } break;
  11182. case GGML_TYPE_F16:
  11183. {
  11184. ggml_compute_forward_get_rows_f16(params, dst);
  11185. } break;
  11186. case GGML_TYPE_BF16:
  11187. {
  11188. ggml_compute_forward_get_rows_bf16(params, dst);
  11189. } break;
  11190. case GGML_TYPE_F32:
  11191. case GGML_TYPE_I32:
  11192. {
  11193. ggml_compute_forward_get_rows_f32(params, dst);
  11194. } break;
  11195. default:
  11196. {
  11197. GGML_ABORT("fatal error");
  11198. }
  11199. }
  11200. //static bool first = true;
  11201. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11202. //if (first) {
  11203. // first = false;
  11204. //} else {
  11205. // for (int k = 0; k < dst->ne[1]; ++k) {
  11206. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11207. // for (int i = 0; i < 16; ++i) {
  11208. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11209. // }
  11210. // printf("\n");
  11211. // }
  11212. // printf("\n");
  11213. // }
  11214. // printf("\n");
  11215. // exit(0);
  11216. //}
  11217. }
  11218. // ggml_compute_forward_get_rows_back
  11219. static void ggml_compute_forward_get_rows_back_f32_f16(
  11220. const struct ggml_compute_params * params,
  11221. struct ggml_tensor * dst) {
  11222. const struct ggml_tensor * src0 = dst->src[0];
  11223. const struct ggml_tensor * src1 = dst->src[1];
  11224. if (params->ith != 0) {
  11225. return;
  11226. }
  11227. GGML_ASSERT(ggml_is_contiguous(dst));
  11228. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11229. memset(dst->data, 0, ggml_nbytes(dst));
  11230. const int nc = src0->ne[0];
  11231. const int nr = ggml_nelements(src1);
  11232. GGML_ASSERT( dst->ne[0] == nc);
  11233. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11234. for (int i = 0; i < nr; ++i) {
  11235. const int r = ((int32_t *) src1->data)[i];
  11236. for (int j = 0; j < nc; ++j) {
  11237. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11238. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11239. }
  11240. }
  11241. }
  11242. static void ggml_compute_forward_get_rows_back_f32(
  11243. const struct ggml_compute_params * params,
  11244. struct ggml_tensor * dst) {
  11245. const struct ggml_tensor * src0 = dst->src[0];
  11246. const struct ggml_tensor * src1 = dst->src[1];
  11247. if (params->ith != 0) {
  11248. return;
  11249. }
  11250. GGML_ASSERT(ggml_is_contiguous(dst));
  11251. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11252. memset(dst->data, 0, ggml_nbytes(dst));
  11253. const int nc = src0->ne[0];
  11254. const int nr = ggml_nelements(src1);
  11255. GGML_ASSERT( dst->ne[0] == nc);
  11256. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11257. for (int i = 0; i < nr; ++i) {
  11258. const int r = ((int32_t *) src1->data)[i];
  11259. ggml_vec_add_f32(nc,
  11260. (float *) ((char *) dst->data + r*dst->nb[1]),
  11261. (float *) ((char *) dst->data + r*dst->nb[1]),
  11262. (float *) ((char *) src0->data + i*src0->nb[1]));
  11263. }
  11264. }
  11265. static void ggml_compute_forward_get_rows_back(
  11266. const struct ggml_compute_params * params,
  11267. struct ggml_tensor * dst) {
  11268. const struct ggml_tensor * src0 = dst->src[0];
  11269. switch (src0->type) {
  11270. case GGML_TYPE_F16:
  11271. {
  11272. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11273. } break;
  11274. case GGML_TYPE_F32:
  11275. {
  11276. ggml_compute_forward_get_rows_back_f32(params, dst);
  11277. } break;
  11278. default:
  11279. {
  11280. GGML_ABORT("fatal error");
  11281. }
  11282. }
  11283. //static bool first = true;
  11284. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11285. //if (first) {
  11286. // first = false;
  11287. //} else {
  11288. // for (int k = 0; k < dst->ne[1]; ++k) {
  11289. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11290. // for (int i = 0; i < 16; ++i) {
  11291. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11292. // }
  11293. // printf("\n");
  11294. // }
  11295. // printf("\n");
  11296. // }
  11297. // printf("\n");
  11298. // exit(0);
  11299. //}
  11300. }
  11301. // ggml_compute_forward_diag
  11302. static void ggml_compute_forward_diag_f32(
  11303. const struct ggml_compute_params * params,
  11304. struct ggml_tensor * dst) {
  11305. const struct ggml_tensor * src0 = dst->src[0];
  11306. if (params->ith != 0) {
  11307. return;
  11308. }
  11309. // TODO: handle transposed/permuted matrices
  11310. GGML_TENSOR_UNARY_OP_LOCALS
  11311. GGML_ASSERT(ne00 == ne0);
  11312. GGML_ASSERT(ne00 == ne1);
  11313. GGML_ASSERT(ne01 == 1);
  11314. GGML_ASSERT(ne02 == ne2);
  11315. GGML_ASSERT(ne03 == ne3);
  11316. GGML_ASSERT(nb00 == sizeof(float));
  11317. GGML_ASSERT(nb0 == sizeof(float));
  11318. for (int i3 = 0; i3 < ne3; i3++) {
  11319. for (int i2 = 0; i2 < ne2; i2++) {
  11320. for (int i1 = 0; i1 < ne1; i1++) {
  11321. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11322. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11323. for (int i0 = 0; i0 < i1; i0++) {
  11324. d[i0] = 0;
  11325. }
  11326. d[i1] = s[i1];
  11327. for (int i0 = i1+1; i0 < ne0; i0++) {
  11328. d[i0] = 0;
  11329. }
  11330. }
  11331. }
  11332. }
  11333. }
  11334. static void ggml_compute_forward_diag(
  11335. const struct ggml_compute_params * params,
  11336. struct ggml_tensor * dst) {
  11337. const struct ggml_tensor * src0 = dst->src[0];
  11338. switch (src0->type) {
  11339. case GGML_TYPE_F32:
  11340. {
  11341. ggml_compute_forward_diag_f32(params, dst);
  11342. } break;
  11343. default:
  11344. {
  11345. GGML_ABORT("fatal error");
  11346. }
  11347. }
  11348. }
  11349. // ggml_compute_forward_diag_mask_inf
  11350. static void ggml_compute_forward_diag_mask_f32(
  11351. const struct ggml_compute_params * params,
  11352. struct ggml_tensor * dst,
  11353. const float value) {
  11354. const struct ggml_tensor * src0 = dst->src[0];
  11355. const int ith = params->ith;
  11356. const int nth = params->nth;
  11357. const int n_past = ((int32_t *) dst->op_params)[0];
  11358. const bool inplace = src0->data == dst->data;
  11359. GGML_ASSERT(n_past >= 0);
  11360. if (!inplace) {
  11361. if (ith == 0) {
  11362. // memcpy needs to be synchronized across threads to avoid race conditions.
  11363. // => do it in INIT phase
  11364. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11365. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11366. memcpy(
  11367. ((char *) dst->data),
  11368. ((char *) src0->data),
  11369. ggml_nbytes(dst));
  11370. }
  11371. ggml_barrier(params->threadpool);
  11372. }
  11373. // TODO: handle transposed/permuted matrices
  11374. const int n = ggml_nrows(src0);
  11375. const int nc = src0->ne[0];
  11376. const int nr = src0->ne[1];
  11377. const int nz = n/nr;
  11378. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11379. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11380. for (int k = 0; k < nz; k++) {
  11381. for (int j = ith; j < nr; j += nth) {
  11382. for (int i = n_past; i < nc; i++) {
  11383. if (i > n_past + j) {
  11384. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11385. }
  11386. }
  11387. }
  11388. }
  11389. }
  11390. static void ggml_compute_forward_diag_mask_inf(
  11391. const struct ggml_compute_params * params,
  11392. struct ggml_tensor * dst) {
  11393. const struct ggml_tensor * src0 = dst->src[0];
  11394. switch (src0->type) {
  11395. case GGML_TYPE_F32:
  11396. {
  11397. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11398. } break;
  11399. default:
  11400. {
  11401. GGML_ABORT("fatal error");
  11402. }
  11403. }
  11404. }
  11405. static void ggml_compute_forward_diag_mask_zero(
  11406. const struct ggml_compute_params * params,
  11407. struct ggml_tensor * dst) {
  11408. const struct ggml_tensor * src0 = dst->src[0];
  11409. switch (src0->type) {
  11410. case GGML_TYPE_F32:
  11411. {
  11412. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11413. } break;
  11414. default:
  11415. {
  11416. GGML_ABORT("fatal error");
  11417. }
  11418. }
  11419. }
  11420. // ggml_compute_forward_soft_max
  11421. static void ggml_compute_forward_soft_max_f32(
  11422. const struct ggml_compute_params * params,
  11423. struct ggml_tensor * dst) {
  11424. const struct ggml_tensor * src0 = dst->src[0];
  11425. const struct ggml_tensor * src1 = dst->src[1];
  11426. assert(ggml_is_contiguous(dst));
  11427. assert(ggml_are_same_shape(src0, dst));
  11428. float scale = 1.0f;
  11429. float max_bias = 0.0f;
  11430. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11431. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11432. // TODO: handle transposed/permuted matrices
  11433. const int ith = params->ith;
  11434. const int nth = params->nth;
  11435. GGML_TENSOR_UNARY_OP_LOCALS
  11436. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11437. // TODO: is this supposed to be ceil instead of floor?
  11438. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11439. const uint32_t n_head = ne02;
  11440. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11441. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11442. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11443. const int nc = src0->ne[0];
  11444. const int nr = ggml_nrows(src0);
  11445. // rows per thread
  11446. const int dr = (nr + nth - 1)/nth;
  11447. // row range for this thread
  11448. const int ir0 = dr*ith;
  11449. const int ir1 = MIN(ir0 + dr, nr);
  11450. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11451. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11452. for (int i1 = ir0; i1 < ir1; i1++) {
  11453. // ALiBi
  11454. const uint32_t h = (i1/ne01)%ne02; // head
  11455. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11456. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11457. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11458. // broadcast the mask across rows
  11459. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11460. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11461. ggml_vec_cpy_f32 (nc, wp, sp);
  11462. ggml_vec_scale_f32(nc, wp, scale);
  11463. if (mp_f32) {
  11464. if (use_f16) {
  11465. for (int i = 0; i < nc; ++i) {
  11466. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11467. }
  11468. } else {
  11469. for (int i = 0; i < nc; ++i) {
  11470. wp[i] += slope*mp_f32[i];
  11471. }
  11472. }
  11473. }
  11474. #ifndef NDEBUG
  11475. for (int i = 0; i < nc; ++i) {
  11476. //printf("p[%d] = %f\n", i, p[i]);
  11477. assert(!isnan(wp[i]));
  11478. }
  11479. #endif
  11480. float max = -INFINITY;
  11481. ggml_vec_max_f32(nc, &max, wp);
  11482. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11483. assert(sum > 0.0);
  11484. sum = 1.0/sum;
  11485. ggml_vec_scale_f32(nc, dp, sum);
  11486. #ifndef NDEBUG
  11487. for (int i = 0; i < nc; ++i) {
  11488. assert(!isnan(dp[i]));
  11489. assert(!isinf(dp[i]));
  11490. }
  11491. #endif
  11492. }
  11493. }
  11494. static void ggml_compute_forward_soft_max(
  11495. const struct ggml_compute_params * params,
  11496. struct ggml_tensor * dst) {
  11497. const struct ggml_tensor * src0 = dst->src[0];
  11498. switch (src0->type) {
  11499. case GGML_TYPE_F32:
  11500. {
  11501. ggml_compute_forward_soft_max_f32(params, dst);
  11502. } break;
  11503. default:
  11504. {
  11505. GGML_ABORT("fatal error");
  11506. }
  11507. }
  11508. }
  11509. // ggml_compute_forward_soft_max_back
  11510. static void ggml_compute_forward_soft_max_back_f32(
  11511. const struct ggml_compute_params * params,
  11512. struct ggml_tensor * dst) {
  11513. const struct ggml_tensor * src0 = dst->src[0];
  11514. const struct ggml_tensor * src1 = dst->src[1];
  11515. GGML_ASSERT(ggml_is_contiguous(src0));
  11516. GGML_ASSERT(ggml_is_contiguous(src1));
  11517. GGML_ASSERT(ggml_is_contiguous(dst));
  11518. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11519. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11520. // TODO: handle transposed/permuted matrices
  11521. const int ith = params->ith;
  11522. const int nth = params->nth;
  11523. const int nc = src0->ne[0];
  11524. const int nr = ggml_nrows(src0);
  11525. // rows per thread
  11526. const int dr = (nr + nth - 1)/nth;
  11527. // row range for this thread
  11528. const int ir0 = dr*ith;
  11529. const int ir1 = MIN(ir0 + dr, nr);
  11530. for (int i1 = ir0; i1 < ir1; i1++) {
  11531. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11532. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11533. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11534. #ifndef NDEBUG
  11535. for (int i = 0; i < nc; ++i) {
  11536. //printf("p[%d] = %f\n", i, p[i]);
  11537. assert(!isnan(dy[i]));
  11538. assert(!isnan(y[i]));
  11539. }
  11540. #endif
  11541. // Jii = yi - yi*yi
  11542. // Jij = -yi*yj
  11543. // J = diag(y)-y.T*y
  11544. // dx = J * dy
  11545. // dxk = sum_i(Jki * dyi)
  11546. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11547. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11548. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11549. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11550. // dxk = -yk * dot(y, dy) + yk*dyk
  11551. // dxk = yk * (- dot(y, dy) + dyk)
  11552. // dxk = yk * (dyk - dot(y, dy))
  11553. //
  11554. // post-order:
  11555. // dot_y_dy := dot(y, dy)
  11556. // dx := dy
  11557. // dx := dx - dot_y_dy
  11558. // dx := dx * y
  11559. // linear runtime, no additional memory
  11560. float dot_y_dy = 0;
  11561. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11562. ggml_vec_cpy_f32 (nc, dx, dy);
  11563. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11564. ggml_vec_mul_f32 (nc, dx, dx, y);
  11565. #ifndef NDEBUG
  11566. for (int i = 0; i < nc; ++i) {
  11567. assert(!isnan(dx[i]));
  11568. assert(!isinf(dx[i]));
  11569. }
  11570. #endif
  11571. }
  11572. }
  11573. static void ggml_compute_forward_soft_max_back(
  11574. const struct ggml_compute_params * params,
  11575. struct ggml_tensor * dst) {
  11576. const struct ggml_tensor * src0 = dst->src[0];
  11577. switch (src0->type) {
  11578. case GGML_TYPE_F32:
  11579. {
  11580. ggml_compute_forward_soft_max_back_f32(params, dst);
  11581. } break;
  11582. default:
  11583. {
  11584. GGML_ABORT("fatal error");
  11585. }
  11586. }
  11587. }
  11588. // ggml_compute_forward_clamp
  11589. static void ggml_compute_forward_clamp_f32(
  11590. const struct ggml_compute_params * params,
  11591. struct ggml_tensor * dst) {
  11592. const struct ggml_tensor * src0 = dst->src[0];
  11593. if (params->ith != 0) {
  11594. return;
  11595. }
  11596. float min;
  11597. float max;
  11598. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11599. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11600. const int ith = params->ith;
  11601. const int nth = params->nth;
  11602. const int n = ggml_nrows(src0);
  11603. const int nc = src0->ne[0];
  11604. const size_t nb00 = src0->nb[0];
  11605. const size_t nb01 = src0->nb[1];
  11606. const size_t nb0 = dst->nb[0];
  11607. const size_t nb1 = dst->nb[1];
  11608. GGML_ASSERT( nb0 == sizeof(float));
  11609. GGML_ASSERT(nb00 == sizeof(float));
  11610. for (int j = ith; j < n; j += nth) {
  11611. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11612. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11613. for (int i = 0; i < nc; i++) {
  11614. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11615. }
  11616. }
  11617. }
  11618. static void ggml_compute_forward_clamp(
  11619. const struct ggml_compute_params * params,
  11620. struct ggml_tensor * dst) {
  11621. const struct ggml_tensor * src0 = dst->src[0];
  11622. switch (src0->type) {
  11623. case GGML_TYPE_F32:
  11624. {
  11625. ggml_compute_forward_clamp_f32(params, dst);
  11626. } break;
  11627. case GGML_TYPE_F16:
  11628. case GGML_TYPE_BF16:
  11629. case GGML_TYPE_Q4_0:
  11630. case GGML_TYPE_Q4_1:
  11631. case GGML_TYPE_Q5_0:
  11632. case GGML_TYPE_Q5_1:
  11633. case GGML_TYPE_Q8_0:
  11634. case GGML_TYPE_Q8_1:
  11635. case GGML_TYPE_Q2_K:
  11636. case GGML_TYPE_Q3_K:
  11637. case GGML_TYPE_Q4_K:
  11638. case GGML_TYPE_Q5_K:
  11639. case GGML_TYPE_Q6_K:
  11640. case GGML_TYPE_TQ1_0:
  11641. case GGML_TYPE_TQ2_0:
  11642. case GGML_TYPE_IQ2_XXS:
  11643. case GGML_TYPE_IQ2_XS:
  11644. case GGML_TYPE_IQ3_XXS:
  11645. case GGML_TYPE_IQ1_S:
  11646. case GGML_TYPE_IQ1_M:
  11647. case GGML_TYPE_IQ4_NL:
  11648. case GGML_TYPE_IQ4_XS:
  11649. case GGML_TYPE_IQ3_S:
  11650. case GGML_TYPE_IQ2_S:
  11651. case GGML_TYPE_Q8_K:
  11652. case GGML_TYPE_Q4_0_4_4:
  11653. case GGML_TYPE_Q4_0_4_8:
  11654. case GGML_TYPE_Q4_0_8_8:
  11655. case GGML_TYPE_I8:
  11656. case GGML_TYPE_I16:
  11657. case GGML_TYPE_I32:
  11658. case GGML_TYPE_I64:
  11659. case GGML_TYPE_F64:
  11660. case GGML_TYPE_COUNT:
  11661. {
  11662. GGML_ABORT("fatal error");
  11663. }
  11664. }
  11665. }
  11666. // ggml_compute_forward_rope
  11667. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11668. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11669. return 1 - MIN(1, MAX(0, y));
  11670. }
  11671. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11672. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11673. static void rope_yarn(
  11674. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11675. float * cos_theta, float * sin_theta) {
  11676. // Get n-d rotational scaling corrected for extrapolation
  11677. float theta_interp = freq_scale * theta_extrap;
  11678. float theta = theta_interp;
  11679. if (ext_factor != 0.0f) {
  11680. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11681. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11682. // Get n-d magnitude scaling corrected for interpolation
  11683. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11684. }
  11685. *cos_theta = cosf(theta) * mscale;
  11686. *sin_theta = sinf(theta) * mscale;
  11687. }
  11688. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11689. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11690. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11691. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11692. }
  11693. static void ggml_rope_cache_init(
  11694. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11695. float * cache, float sin_sign, float theta_scale) {
  11696. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11697. float theta = theta_base;
  11698. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11699. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11700. rope_yarn(
  11701. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11702. );
  11703. cache[i0 + 1] *= sin_sign;
  11704. theta *= theta_scale;
  11705. }
  11706. }
  11707. void ggml_rope_yarn_corr_dims(
  11708. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11709. ) {
  11710. // start and end correction dims
  11711. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11712. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11713. dims[0] = MAX(0, start);
  11714. dims[1] = MIN(n_dims - 1, end);
  11715. }
  11716. static void ggml_compute_forward_rope_f32(
  11717. const struct ggml_compute_params * params,
  11718. struct ggml_tensor * dst,
  11719. const bool forward) {
  11720. const struct ggml_tensor * src0 = dst->src[0];
  11721. const struct ggml_tensor * src1 = dst->src[1];
  11722. const struct ggml_tensor * src2 = dst->src[2];
  11723. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11724. //const int n_past = ((int32_t *) dst->op_params)[0];
  11725. const int n_dims = ((int32_t *) dst->op_params)[1];
  11726. const int mode = ((int32_t *) dst->op_params)[2];
  11727. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11728. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11729. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11730. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11731. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11732. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11733. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11734. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11735. GGML_TENSOR_UNARY_OP_LOCALS
  11736. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11737. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11738. GGML_ASSERT(nb00 == sizeof(float));
  11739. const int ith = params->ith;
  11740. const int nth = params->nth;
  11741. const int nr = ggml_nrows(dst);
  11742. GGML_ASSERT(n_dims <= ne0);
  11743. GGML_ASSERT(n_dims % 2 == 0);
  11744. // rows per thread
  11745. const int dr = (nr + nth - 1)/nth;
  11746. // row range for this thread
  11747. const int ir0 = dr*ith;
  11748. const int ir1 = MIN(ir0 + dr, nr);
  11749. // row index used to determine which thread to use
  11750. int ir = 0;
  11751. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11752. float corr_dims[2];
  11753. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11754. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  11755. const float * freq_factors = NULL;
  11756. if (src2 != NULL) {
  11757. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11758. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11759. freq_factors = (const float *) src2->data;
  11760. }
  11761. // backward process uses inverse rotation by cos and sin.
  11762. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11763. // this essentially just switches the sign of sin.
  11764. const float sin_sign = forward ? 1.0f : -1.0f;
  11765. const int32_t * pos = (const int32_t *) src1->data;
  11766. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11767. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11768. const int64_t p = pos[i2];
  11769. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11770. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11771. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11772. if (ir++ < ir0) continue;
  11773. if (ir > ir1) break;
  11774. if (!is_neox) {
  11775. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11776. const float cos_theta = cache[i0 + 0];
  11777. const float sin_theta = cache[i0 + 1];
  11778. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11779. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11780. const float x0 = src[0];
  11781. const float x1 = src[1];
  11782. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11783. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11784. }
  11785. } else {
  11786. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11787. const int64_t ic = i0/2;
  11788. const float cos_theta = cache[i0 + 0];
  11789. const float sin_theta = cache[i0 + 1];
  11790. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11791. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11792. const float x0 = src[0];
  11793. const float x1 = src[n_dims/2];
  11794. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11795. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11796. }
  11797. }
  11798. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11799. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11800. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11801. dst_data[0] = src[0];
  11802. dst_data[1] = src[1];
  11803. }
  11804. }
  11805. }
  11806. }
  11807. }
  11808. // TODO: deduplicate f16/f32 code
  11809. static void ggml_compute_forward_rope_f16(
  11810. const struct ggml_compute_params * params,
  11811. struct ggml_tensor * dst,
  11812. const bool forward) {
  11813. const struct ggml_tensor * src0 = dst->src[0];
  11814. const struct ggml_tensor * src1 = dst->src[1];
  11815. const struct ggml_tensor * src2 = dst->src[2];
  11816. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11817. //const int n_past = ((int32_t *) dst->op_params)[0];
  11818. const int n_dims = ((int32_t *) dst->op_params)[1];
  11819. const int mode = ((int32_t *) dst->op_params)[2];
  11820. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11821. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11822. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11823. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11824. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11825. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11826. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11827. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11828. GGML_TENSOR_UNARY_OP_LOCALS
  11829. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11830. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11831. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11832. const int ith = params->ith;
  11833. const int nth = params->nth;
  11834. const int nr = ggml_nrows(dst);
  11835. GGML_ASSERT(n_dims <= ne0);
  11836. GGML_ASSERT(n_dims % 2 == 0);
  11837. // rows per thread
  11838. const int dr = (nr + nth - 1)/nth;
  11839. // row range for this thread
  11840. const int ir0 = dr*ith;
  11841. const int ir1 = MIN(ir0 + dr, nr);
  11842. // row index used to determine which thread to use
  11843. int ir = 0;
  11844. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11845. float corr_dims[2];
  11846. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11847. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  11848. const float * freq_factors = NULL;
  11849. if (src2 != NULL) {
  11850. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11851. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11852. freq_factors = (const float *) src2->data;
  11853. }
  11854. // backward process uses inverse rotation by cos and sin.
  11855. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11856. // this essentially just switches the sign of sin.
  11857. const float sin_sign = forward ? 1.0f : -1.0f;
  11858. const int32_t * pos = (const int32_t *) src1->data;
  11859. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11860. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11861. const int64_t p = pos[i2];
  11862. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11863. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11864. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11865. if (ir++ < ir0) continue;
  11866. if (ir > ir1) break;
  11867. if (!is_neox) {
  11868. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11869. const float cos_theta = cache[i0 + 0];
  11870. const float sin_theta = cache[i0 + 1];
  11871. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11872. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11873. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11874. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11875. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11876. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11877. }
  11878. } else {
  11879. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11880. const int64_t ic = i0/2;
  11881. const float cos_theta = cache[i0 + 0];
  11882. const float sin_theta = cache[i0 + 1];
  11883. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11884. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11885. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11886. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11887. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11888. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11889. }
  11890. }
  11891. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11892. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11893. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11894. dst_data[0] = src[0];
  11895. dst_data[1] = src[1];
  11896. }
  11897. }
  11898. }
  11899. }
  11900. }
  11901. static void ggml_compute_forward_rope(
  11902. const struct ggml_compute_params * params,
  11903. struct ggml_tensor * dst) {
  11904. const struct ggml_tensor * src0 = dst->src[0];
  11905. switch (src0->type) {
  11906. case GGML_TYPE_F16:
  11907. {
  11908. ggml_compute_forward_rope_f16(params, dst, true);
  11909. } break;
  11910. case GGML_TYPE_F32:
  11911. {
  11912. ggml_compute_forward_rope_f32(params, dst, true);
  11913. } break;
  11914. default:
  11915. {
  11916. GGML_ABORT("fatal error");
  11917. }
  11918. }
  11919. }
  11920. // ggml_compute_forward_rope_back
  11921. static void ggml_compute_forward_rope_back(
  11922. const struct ggml_compute_params * params,
  11923. struct ggml_tensor * dst) {
  11924. const struct ggml_tensor * src0 = dst->src[0];
  11925. switch (src0->type) {
  11926. case GGML_TYPE_F16:
  11927. {
  11928. ggml_compute_forward_rope_f16(params, dst, false);
  11929. } break;
  11930. case GGML_TYPE_F32:
  11931. {
  11932. ggml_compute_forward_rope_f32(params, dst, false);
  11933. } break;
  11934. default:
  11935. {
  11936. GGML_ABORT("fatal error");
  11937. }
  11938. }
  11939. }
  11940. // ggml_compute_forward_conv_transpose_1d
  11941. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11942. const struct ggml_compute_params * params,
  11943. struct ggml_tensor * dst) {
  11944. const struct ggml_tensor * src0 = dst->src[0];
  11945. const struct ggml_tensor * src1 = dst->src[1];
  11946. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11947. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11948. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11949. GGML_TENSOR_BINARY_OP_LOCALS
  11950. const int ith = params->ith;
  11951. const int nth = params->nth;
  11952. const int nk = ne00*ne01*ne02;
  11953. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11954. GGML_ASSERT(nb10 == sizeof(float));
  11955. if (ith == 0) {
  11956. memset(params->wdata, 0, params->wsize);
  11957. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11958. {
  11959. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11960. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11961. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11962. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11963. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11964. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11965. dst_data[i00*ne02 + i02] = src[i00];
  11966. }
  11967. }
  11968. }
  11969. }
  11970. // permute source data (src1) from (L x Cin) to (Cin x L)
  11971. {
  11972. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11973. ggml_fp16_t * dst_data = wdata;
  11974. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11975. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11976. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11977. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11978. }
  11979. }
  11980. }
  11981. // need to zero dst since we are accumulating into it
  11982. memset(dst->data, 0, ggml_nbytes(dst));
  11983. }
  11984. ggml_barrier(params->threadpool);
  11985. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11986. // total rows in dst
  11987. const int nr = ne1;
  11988. // rows per thread
  11989. const int dr = (nr + nth - 1)/nth;
  11990. // row range for this thread
  11991. const int ir0 = dr*ith;
  11992. const int ir1 = MIN(ir0 + dr, nr);
  11993. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11994. ggml_fp16_t * const wdata_src = wdata + nk;
  11995. for (int i1 = ir0; i1 < ir1; i1++) {
  11996. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11997. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11998. for (int i10 = 0; i10 < ne10; i10++) {
  11999. const int i1n = i10*ne11;
  12000. for (int i00 = 0; i00 < ne00; i00++) {
  12001. float v = 0;
  12002. ggml_vec_dot_f16(ne02, &v, 0,
  12003. (ggml_fp16_t *) wdata_src + i1n, 0,
  12004. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12005. dst_data[i10*s0 + i00] += v;
  12006. }
  12007. }
  12008. }
  12009. }
  12010. static void ggml_compute_forward_conv_transpose_1d_f32(
  12011. const struct ggml_compute_params * params,
  12012. struct ggml_tensor * dst) {
  12013. const struct ggml_tensor * src0 = dst->src[0];
  12014. const struct ggml_tensor * src1 = dst->src[1];
  12015. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12016. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12017. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12018. GGML_TENSOR_BINARY_OP_LOCALS
  12019. const int ith = params->ith;
  12020. const int nth = params->nth;
  12021. const int nk = ne00*ne01*ne02;
  12022. GGML_ASSERT(nb00 == sizeof(float));
  12023. GGML_ASSERT(nb10 == sizeof(float));
  12024. if (ith == 0) {
  12025. memset(params->wdata, 0, params->wsize);
  12026. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12027. {
  12028. float * const wdata = (float *) params->wdata + 0;
  12029. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12030. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12031. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12032. float * dst_data = wdata + i01*ne00*ne02;
  12033. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12034. dst_data[i00*ne02 + i02] = src[i00];
  12035. }
  12036. }
  12037. }
  12038. }
  12039. // prepare source data (src1)
  12040. {
  12041. float * const wdata = (float *) params->wdata + nk;
  12042. float * dst_data = wdata;
  12043. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12044. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12045. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12046. dst_data[i10*ne11 + i11] = src[i10];
  12047. }
  12048. }
  12049. }
  12050. // need to zero dst since we are accumulating into it
  12051. memset(dst->data, 0, ggml_nbytes(dst));
  12052. }
  12053. ggml_barrier(params->threadpool);
  12054. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12055. // total rows in dst
  12056. const int nr = ne1;
  12057. // rows per thread
  12058. const int dr = (nr + nth - 1)/nth;
  12059. // row range for this thread
  12060. const int ir0 = dr*ith;
  12061. const int ir1 = MIN(ir0 + dr, nr);
  12062. float * const wdata = (float *) params->wdata + 0;
  12063. float * const wdata_src = wdata + nk;
  12064. for (int i1 = ir0; i1 < ir1; i1++) {
  12065. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12066. float * wdata_kernel = wdata + i1*ne02*ne00;
  12067. for (int i10 = 0; i10 < ne10; i10++) {
  12068. const int i1n = i10*ne11;
  12069. for (int i00 = 0; i00 < ne00; i00++) {
  12070. float v = 0;
  12071. ggml_vec_dot_f32(ne02, &v, 0,
  12072. wdata_src + i1n, 0,
  12073. wdata_kernel + i00*ne02, 0, 1);
  12074. dst_data[i10*s0 + i00] += v;
  12075. }
  12076. }
  12077. }
  12078. }
  12079. static void ggml_compute_forward_conv_transpose_1d(
  12080. const struct ggml_compute_params * params,
  12081. struct ggml_tensor * dst) {
  12082. const struct ggml_tensor * src0 = dst->src[0];
  12083. switch (src0->type) {
  12084. case GGML_TYPE_F16:
  12085. {
  12086. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12087. } break;
  12088. case GGML_TYPE_F32:
  12089. {
  12090. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12091. } break;
  12092. default:
  12093. {
  12094. GGML_ABORT("fatal error");
  12095. }
  12096. }
  12097. }
  12098. // ggml_compute_forward_im2col_f32
  12099. // src0: kernel [OC, IC, KH, KW]
  12100. // src1: image [N, IC, IH, IW]
  12101. // dst: result [N, OH, OW, IC*KH*KW]
  12102. static void ggml_compute_forward_im2col_f32(
  12103. const struct ggml_compute_params * params,
  12104. struct ggml_tensor * dst) {
  12105. const struct ggml_tensor * src0 = dst->src[0];
  12106. const struct ggml_tensor * src1 = dst->src[1];
  12107. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12108. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12109. GGML_TENSOR_BINARY_OP_LOCALS;
  12110. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12111. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12112. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12113. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12114. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12115. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12116. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12117. const int ith = params->ith;
  12118. const int nth = params->nth;
  12119. const int64_t N = is_2D ? ne13 : ne12;
  12120. const int64_t IC = is_2D ? ne12 : ne11;
  12121. const int64_t IH = is_2D ? ne11 : 1;
  12122. const int64_t IW = ne10;
  12123. const int64_t KH = is_2D ? ne01 : 1;
  12124. const int64_t KW = ne00;
  12125. const int64_t OH = is_2D ? ne2 : 1;
  12126. const int64_t OW = ne1;
  12127. int ofs0 = is_2D ? nb13 : nb12;
  12128. int ofs1 = is_2D ? nb12 : nb11;
  12129. GGML_ASSERT(nb10 == sizeof(float));
  12130. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12131. {
  12132. float * const wdata = (float *) dst->data;
  12133. for (int64_t in = 0; in < N; in++) {
  12134. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12135. for (int64_t iow = 0; iow < OW; iow++) {
  12136. for (int64_t iic = ith; iic < IC; iic += nth) {
  12137. // micro kernel
  12138. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12139. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12140. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12141. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12142. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12143. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12144. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12145. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12146. } else {
  12147. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12148. }
  12149. }
  12150. }
  12151. }
  12152. }
  12153. }
  12154. }
  12155. }
  12156. }
  12157. // ggml_compute_forward_im2col_f16
  12158. // src0: kernel [OC, IC, KH, KW]
  12159. // src1: image [N, IC, IH, IW]
  12160. // dst: result [N, OH, OW, IC*KH*KW]
  12161. static void ggml_compute_forward_im2col_f16(
  12162. const struct ggml_compute_params * params,
  12163. struct ggml_tensor * dst) {
  12164. const struct ggml_tensor * src0 = dst->src[0];
  12165. const struct ggml_tensor * src1 = dst->src[1];
  12166. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12167. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12168. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12169. GGML_TENSOR_BINARY_OP_LOCALS;
  12170. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12171. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12172. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12173. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12174. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12175. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12176. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12177. const int ith = params->ith;
  12178. const int nth = params->nth;
  12179. const int64_t N = is_2D ? ne13 : ne12;
  12180. const int64_t IC = is_2D ? ne12 : ne11;
  12181. const int64_t IH = is_2D ? ne11 : 1;
  12182. const int64_t IW = ne10;
  12183. const int64_t KH = is_2D ? ne01 : 1;
  12184. const int64_t KW = ne00;
  12185. const int64_t OH = is_2D ? ne2 : 1;
  12186. const int64_t OW = ne1;
  12187. int ofs0 = is_2D ? nb13 : nb12;
  12188. int ofs1 = is_2D ? nb12 : nb11;
  12189. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12190. GGML_ASSERT(nb10 == sizeof(float));
  12191. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12192. {
  12193. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12194. for (int64_t in = 0; in < N; in++) {
  12195. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12196. for (int64_t iow = 0; iow < OW; iow++) {
  12197. for (int64_t iic = ith; iic < IC; iic += nth) {
  12198. // micro kernel
  12199. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12200. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12201. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12202. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12203. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12204. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12205. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12206. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12207. } else {
  12208. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12209. }
  12210. }
  12211. }
  12212. }
  12213. }
  12214. }
  12215. }
  12216. }
  12217. }
  12218. static void ggml_compute_forward_im2col(
  12219. const struct ggml_compute_params * params,
  12220. struct ggml_tensor * dst) {
  12221. switch (dst->type) {
  12222. case GGML_TYPE_F16:
  12223. {
  12224. ggml_compute_forward_im2col_f16(params, dst);
  12225. } break;
  12226. case GGML_TYPE_F32:
  12227. {
  12228. ggml_compute_forward_im2col_f32(params, dst);
  12229. } break;
  12230. default:
  12231. {
  12232. GGML_ABORT("fatal error");
  12233. }
  12234. }
  12235. }
  12236. // ggml_compute_forward_im2col_back_f32
  12237. static void ggml_compute_forward_im2col_back_f32(
  12238. const struct ggml_compute_params * params,
  12239. struct ggml_tensor * dst) {
  12240. const struct ggml_tensor * src0 = dst->src[0];
  12241. const struct ggml_tensor * src1 = dst->src[1];
  12242. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12243. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12244. GGML_TENSOR_BINARY_OP_LOCALS;
  12245. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12246. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12247. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12248. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12249. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12250. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12251. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12252. const int ith = params->ith;
  12253. const int nth = params->nth;
  12254. const int64_t N = is_2D ? ne3 : ne2;
  12255. const int64_t IC = is_2D ? ne2 : ne1;
  12256. const int64_t IH = is_2D ? ne1 : 1;
  12257. const int64_t IW = ne0;
  12258. const int64_t KH = is_2D ? ne01 : 1;
  12259. const int64_t KW = ne00;
  12260. const int64_t OH = is_2D ? ne12 : 1;
  12261. const int64_t OW = ne11;
  12262. int ofs0 = is_2D ? nb3 : nb2;
  12263. int ofs1 = is_2D ? nb2 : nb1;
  12264. GGML_ASSERT(nb0 == sizeof(float));
  12265. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12266. {
  12267. float * const wdata = (float *) dst->data;
  12268. for (int64_t in = 0; in < N; in++) {
  12269. for (int64_t iic = ith; iic < IC; iic += nth) {
  12270. for (int64_t iih = 0; iih < IH; iih++) {
  12271. for (int64_t iiw = 0; iiw < IW; iiw++) {
  12272. // micro kernel
  12273. float grad = 0.0f;
  12274. for (int64_t ikh = 0; ikh < KH; ikh++) {
  12275. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12276. // For s0 > 1 some values were skipped over in the forward pass.
  12277. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
  12278. const int64_t tmpw = (iiw + p0 - ikw*d0);
  12279. if (tmpw % s0 != 0) {
  12280. continue;
  12281. }
  12282. const int64_t iow = tmpw / s0;
  12283. // Equivalent logic as above except for s1.
  12284. int64_t ioh;
  12285. if (is_2D) {
  12286. const int64_t tmph = iih + p1 - ikh*d1;
  12287. if (tmph % s1 != 0) {
  12288. continue;
  12289. }
  12290. ioh = tmph / s1;
  12291. } else {
  12292. ioh = 0;
  12293. }
  12294. if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
  12295. continue;
  12296. }
  12297. const float * const src_data = (const float *) src1->data
  12298. + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12299. grad += src_data[iic*(KH*KW) + ikh*KW + ikw];
  12300. }
  12301. }
  12302. float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
  12303. dst_data[iih*IW + iiw] = grad;
  12304. }
  12305. }
  12306. }
  12307. }
  12308. }
  12309. }
  12310. // ggml_compute_forward_conv_transpose_2d
  12311. static void ggml_compute_forward_conv_transpose_2d(
  12312. const struct ggml_compute_params * params,
  12313. struct ggml_tensor * dst) {
  12314. const struct ggml_tensor * src0 = dst->src[0];
  12315. const struct ggml_tensor * src1 = dst->src[1];
  12316. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12317. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12318. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12319. GGML_TENSOR_BINARY_OP_LOCALS
  12320. const int ith = params->ith;
  12321. const int nth = params->nth;
  12322. const int nk = ne00*ne01*ne02*ne03;
  12323. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12324. GGML_ASSERT(nb10 == sizeof(float));
  12325. if (ith == 0) {
  12326. memset(params->wdata, 0, params->wsize);
  12327. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12328. {
  12329. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12330. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12331. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12332. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12333. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12334. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12335. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12336. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12337. }
  12338. }
  12339. }
  12340. }
  12341. }
  12342. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12343. {
  12344. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12345. for (int i12 = 0; i12 < ne12; i12++) {
  12346. for (int i11 = 0; i11 < ne11; i11++) {
  12347. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12348. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12349. for (int i10 = 0; i10 < ne10; i10++) {
  12350. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12351. }
  12352. }
  12353. }
  12354. }
  12355. memset(dst->data, 0, ggml_nbytes(dst));
  12356. }
  12357. ggml_barrier(params->threadpool);
  12358. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12359. // total patches in dst
  12360. const int np = ne2;
  12361. // patches per thread
  12362. const int dp = (np + nth - 1)/nth;
  12363. // patch range for this thread
  12364. const int ip0 = dp*ith;
  12365. const int ip1 = MIN(ip0 + dp, np);
  12366. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12367. ggml_fp16_t * const wdata_src = wdata + nk;
  12368. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12369. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12370. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12371. for (int i11 = 0; i11 < ne11; i11++) {
  12372. for (int i10 = 0; i10 < ne10; i10++) {
  12373. const int i1n = i11*ne10*ne12 + i10*ne12;
  12374. for (int i01 = 0; i01 < ne01; i01++) {
  12375. for (int i00 = 0; i00 < ne00; i00++) {
  12376. float v = 0;
  12377. ggml_vec_dot_f16(ne03, &v, 0,
  12378. wdata_src + i1n, 0,
  12379. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12380. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12381. }
  12382. }
  12383. }
  12384. }
  12385. }
  12386. }
  12387. // ggml_compute_forward_pool_1d_sk_p0
  12388. static void ggml_compute_forward_pool_1d_sk_p0(
  12389. const struct ggml_compute_params * params,
  12390. const enum ggml_op_pool op,
  12391. const int k,
  12392. struct ggml_tensor * dst) {
  12393. const struct ggml_tensor * src = dst->src[0];
  12394. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12395. if (params->ith != 0) {
  12396. return;
  12397. }
  12398. const char * cdata = (const char *)src->data;
  12399. const char * const data_end = cdata + ggml_nbytes(src);
  12400. float * drow = (float *)dst->data;
  12401. const int64_t rs = dst->ne[0];
  12402. while (cdata < data_end) {
  12403. const void * srow = (const void *)cdata;
  12404. int j = 0;
  12405. for (int64_t i = 0; i < rs; ++i) {
  12406. switch (op) {
  12407. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12408. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12409. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12410. }
  12411. for (int ki = 0; ki < k; ++ki) {
  12412. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12413. switch (op) {
  12414. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  12415. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  12416. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12417. }
  12418. ++j;
  12419. }
  12420. switch (op) {
  12421. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12422. case GGML_OP_POOL_MAX: break;
  12423. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12424. }
  12425. }
  12426. cdata += src->nb[1];
  12427. drow += rs;
  12428. }
  12429. }
  12430. // ggml_compute_forward_pool_1d
  12431. static void ggml_compute_forward_pool_1d(
  12432. const struct ggml_compute_params * params,
  12433. struct ggml_tensor * dst) {
  12434. const int32_t * opts = (const int32_t *)dst->op_params;
  12435. enum ggml_op_pool op = opts[0];
  12436. const int k0 = opts[1];
  12437. const int s0 = opts[2];
  12438. const int p0 = opts[3];
  12439. GGML_ASSERT(p0 == 0); // padding not supported
  12440. GGML_ASSERT(k0 == s0); // only s = k supported
  12441. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12442. }
  12443. // ggml_compute_forward_pool_2d
  12444. static void ggml_compute_forward_pool_2d(
  12445. const struct ggml_compute_params * params,
  12446. struct ggml_tensor * dst) {
  12447. const struct ggml_tensor * src = dst->src[0];
  12448. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12449. if (params->ith != 0) {
  12450. return;
  12451. }
  12452. const int32_t * opts = (const int32_t *)dst->op_params;
  12453. enum ggml_op_pool op = opts[0];
  12454. const int k0 = opts[1];
  12455. const int k1 = opts[2];
  12456. const int s0 = opts[3];
  12457. const int s1 = opts[4];
  12458. const int p0 = opts[5];
  12459. const int p1 = opts[6];
  12460. const char * cdata = (const char*)src->data;
  12461. const char * const data_end = cdata + ggml_nbytes(src);
  12462. const int64_t px = dst->ne[0];
  12463. const int64_t py = dst->ne[1];
  12464. const int64_t pa = px * py;
  12465. float * dplane = (float *)dst->data;
  12466. const int ka = k0 * k1;
  12467. const int offset0 = -p0;
  12468. const int offset1 = -p1;
  12469. while (cdata < data_end) {
  12470. for (int oy = 0; oy < py; ++oy) {
  12471. float * const drow = dplane + oy * px;
  12472. for (int ox = 0; ox < px; ++ox) {
  12473. float * const out = drow + ox;
  12474. switch (op) {
  12475. case GGML_OP_POOL_AVG: *out = 0; break;
  12476. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12477. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12478. }
  12479. const int ix = offset0 + ox * s0;
  12480. const int iy = offset1 + oy * s1;
  12481. for (int ky = 0; ky < k1; ++ky) {
  12482. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12483. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  12484. for (int kx = 0; kx < k0; ++kx) {
  12485. int j = ix + kx;
  12486. if (j < 0 || j >= src->ne[0]) continue;
  12487. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12488. switch (op) {
  12489. case GGML_OP_POOL_AVG: *out += srow_j; break;
  12490. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  12491. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12492. }
  12493. }
  12494. }
  12495. switch (op) {
  12496. case GGML_OP_POOL_AVG: *out /= ka; break;
  12497. case GGML_OP_POOL_MAX: break;
  12498. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12499. }
  12500. }
  12501. }
  12502. cdata += src->nb[2];
  12503. dplane += pa;
  12504. }
  12505. }
  12506. // ggml_compute_forward_pool_2d_back
  12507. static void ggml_compute_forward_pool_2d_back(
  12508. const struct ggml_compute_params * params,
  12509. struct ggml_tensor * dst) {
  12510. const struct ggml_tensor * src = dst->src[0];
  12511. const struct ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
  12512. assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
  12513. if (params->ith != 0) {
  12514. return;
  12515. }
  12516. const int32_t * opts = (const int32_t *)dst->op_params;
  12517. enum ggml_op_pool op = opts[0];
  12518. const int k0 = opts[1];
  12519. const int k1 = opts[2];
  12520. const int s0 = opts[3];
  12521. const int s1 = opts[4];
  12522. const int p0 = opts[5];
  12523. const int p1 = opts[6];
  12524. char * cdata = (char *) dst->data;
  12525. const char * cdataf = (const char *) dstf->data;
  12526. const char * const data_end = cdata + ggml_nbytes(dst);
  12527. GGML_ASSERT(params->ith == 0);
  12528. memset(cdata, 0, ggml_nbytes(dst));
  12529. const int64_t px = src->ne[0];
  12530. const int64_t py = src->ne[1];
  12531. const int64_t pa = px * py;
  12532. const float * splane = (const float *) src->data;
  12533. const int ka = k0 * k1;
  12534. const int offset0 = -p0;
  12535. const int offset1 = -p1;
  12536. while (cdata < data_end) {
  12537. for (int oy = 0; oy < py; ++oy) {
  12538. const float * const srow = splane + oy * px;
  12539. for (int ox = 0; ox < px; ++ox) {
  12540. const float grad0 = srow[ox];
  12541. const int ix = offset0 + ox * s0;
  12542. const int iy = offset1 + oy * s1;
  12543. if (op == GGML_OP_POOL_MAX) {
  12544. float maxval = -FLT_MAX;
  12545. int kxmax = -1;
  12546. int kymax = -1;
  12547. for (int ky = 0; ky < k1; ++ky) {
  12548. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  12549. continue;
  12550. }
  12551. const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
  12552. for (int kx = 0; kx < k0; ++kx) {
  12553. int j = ix + kx;
  12554. if (j < 0 || j >= dst->ne[0]) {
  12555. continue;
  12556. }
  12557. const float val = dst->type == GGML_TYPE_F32 ?
  12558. ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
  12559. if (val <= maxval) {
  12560. continue;
  12561. }
  12562. maxval = val;
  12563. kxmax = kx;
  12564. kymax = ky;
  12565. }
  12566. }
  12567. if (kxmax == -1 || kymax == -1) {
  12568. continue;
  12569. }
  12570. void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
  12571. const int j = ix + kxmax;
  12572. if (dst->type == GGML_TYPE_F32) {
  12573. ((float *) drow)[j] += grad0;
  12574. } else {
  12575. ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
  12576. }
  12577. } else if (op == GGML_OP_POOL_AVG) {
  12578. const float grad = grad0 / ka;
  12579. for (int ky = 0; ky < k1; ++ky) {
  12580. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  12581. continue;
  12582. }
  12583. void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
  12584. for (int kx = 0; kx < k0; ++kx) {
  12585. int j = ix + kx;
  12586. if (j < 0 || j >= dst->ne[0]) {
  12587. continue;
  12588. }
  12589. if (dst->type == GGML_TYPE_F32) {
  12590. ((float *) drow)[j] += grad;
  12591. } else {
  12592. ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
  12593. }
  12594. }
  12595. }
  12596. } else {
  12597. GGML_ASSERT(false);
  12598. }
  12599. }
  12600. }
  12601. cdata += dst->nb[2];
  12602. cdataf += dst->nb[2];
  12603. splane += pa;
  12604. }
  12605. }
  12606. // ggml_compute_forward_upscale
  12607. static void ggml_compute_forward_upscale_f32(
  12608. const struct ggml_compute_params * params,
  12609. struct ggml_tensor * dst) {
  12610. const struct ggml_tensor * src0 = dst->src[0];
  12611. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12612. const int ith = params->ith;
  12613. const int nth = params->nth;
  12614. GGML_TENSOR_UNARY_OP_LOCALS
  12615. const float sf0 = (float)ne0/src0->ne[0];
  12616. const float sf1 = (float)ne1/src0->ne[1];
  12617. const float sf2 = (float)ne2/src0->ne[2];
  12618. const float sf3 = (float)ne3/src0->ne[3];
  12619. // TODO: optimize
  12620. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12621. const int64_t i03 = i3 / sf3;
  12622. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12623. const int64_t i02 = i2 / sf2;
  12624. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12625. const int64_t i01 = i1 / sf1;
  12626. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12627. const int64_t i00 = i0 / sf0;
  12628. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12629. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12630. *y = *x;
  12631. }
  12632. }
  12633. }
  12634. }
  12635. }
  12636. static void ggml_compute_forward_upscale(
  12637. const struct ggml_compute_params * params,
  12638. struct ggml_tensor * dst) {
  12639. const struct ggml_tensor * src0 = dst->src[0];
  12640. switch (src0->type) {
  12641. case GGML_TYPE_F32:
  12642. {
  12643. ggml_compute_forward_upscale_f32(params, dst);
  12644. } break;
  12645. default:
  12646. {
  12647. GGML_ABORT("fatal error");
  12648. }
  12649. }
  12650. }
  12651. // ggml_compute_forward_pad
  12652. static void ggml_compute_forward_pad_f32(
  12653. const struct ggml_compute_params * params,
  12654. struct ggml_tensor * dst) {
  12655. const struct ggml_tensor * src0 = dst->src[0];
  12656. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12657. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12658. const int ith = params->ith;
  12659. const int nth = params->nth;
  12660. GGML_TENSOR_UNARY_OP_LOCALS
  12661. float * dst_ptr = (float *) dst->data;
  12662. // TODO: optimize
  12663. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12664. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12665. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12666. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12667. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12668. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12669. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12670. dst_ptr[dst_idx] = *src_ptr;
  12671. } else {
  12672. dst_ptr[dst_idx] = 0;
  12673. }
  12674. }
  12675. }
  12676. }
  12677. }
  12678. }
  12679. static void ggml_compute_forward_pad(
  12680. const struct ggml_compute_params * params,
  12681. struct ggml_tensor * dst) {
  12682. const struct ggml_tensor * src0 = dst->src[0];
  12683. switch (src0->type) {
  12684. case GGML_TYPE_F32:
  12685. {
  12686. ggml_compute_forward_pad_f32(params, dst);
  12687. } break;
  12688. default:
  12689. {
  12690. GGML_ABORT("fatal error");
  12691. }
  12692. }
  12693. }
  12694. // ggml_compute_forward_arange
  12695. static void ggml_compute_forward_arange_f32(
  12696. const struct ggml_compute_params * params,
  12697. struct ggml_tensor * dst) {
  12698. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12699. const int ith = params->ith;
  12700. const int nth = params->nth;
  12701. const float start = ggml_get_op_params_f32(dst, 0);
  12702. const float stop = ggml_get_op_params_f32(dst, 1);
  12703. const float step = ggml_get_op_params_f32(dst, 2);
  12704. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12705. GGML_ASSERT(ggml_nelements(dst) == steps);
  12706. for (int64_t i = ith; i < steps; i+= nth) {
  12707. float value = start + step * i;
  12708. ((float *)dst->data)[i] = value;
  12709. }
  12710. }
  12711. static void ggml_compute_forward_arange(
  12712. const struct ggml_compute_params * params,
  12713. struct ggml_tensor * dst) {
  12714. switch (dst->type) {
  12715. case GGML_TYPE_F32:
  12716. {
  12717. ggml_compute_forward_arange_f32(params, dst);
  12718. } break;
  12719. default:
  12720. {
  12721. GGML_ABORT("fatal error");
  12722. }
  12723. }
  12724. }
  12725. static void ggml_compute_forward_timestep_embedding_f32(
  12726. const struct ggml_compute_params * params,
  12727. struct ggml_tensor * dst) {
  12728. const struct ggml_tensor * src0 = dst->src[0];
  12729. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12730. const int ith = params->ith;
  12731. const int nth = params->nth;
  12732. GGML_TENSOR_UNARY_OP_LOCALS
  12733. const int dim = ggml_get_op_params_i32(dst, 0);
  12734. const int max_period = ggml_get_op_params_i32(dst, 1);
  12735. int half = dim / 2;
  12736. for (int64_t i = 0; i < ne00; i++) {
  12737. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12738. for (int64_t j = ith; j < half; j += nth) {
  12739. float timestep = ((float *)src0->data)[i];
  12740. float freq = (float)expf(-logf(max_period) * j / half);
  12741. float arg = timestep * freq;
  12742. embed_data[j] = cosf(arg);
  12743. embed_data[j + half] = sinf(arg);
  12744. }
  12745. if (dim % 2 != 0 && ith == 0) {
  12746. embed_data[dim] = 0.f;
  12747. }
  12748. }
  12749. }
  12750. static void ggml_compute_forward_timestep_embedding(
  12751. const struct ggml_compute_params * params,
  12752. struct ggml_tensor * dst) {
  12753. const struct ggml_tensor * src0 = dst->src[0];
  12754. switch (src0->type) {
  12755. case GGML_TYPE_F32:
  12756. {
  12757. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12758. } break;
  12759. default:
  12760. {
  12761. GGML_ABORT("fatal error");
  12762. }
  12763. }
  12764. }
  12765. // ggml_compute_forward_argsort
  12766. static void ggml_compute_forward_argsort_f32(
  12767. const struct ggml_compute_params * params,
  12768. struct ggml_tensor * dst) {
  12769. const struct ggml_tensor * src0 = dst->src[0];
  12770. GGML_TENSOR_UNARY_OP_LOCALS
  12771. GGML_ASSERT(nb0 == sizeof(float));
  12772. const int ith = params->ith;
  12773. const int nth = params->nth;
  12774. const int64_t nr = ggml_nrows(src0);
  12775. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12776. for (int64_t i = ith; i < nr; i += nth) {
  12777. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12778. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12779. for (int64_t j = 0; j < ne0; j++) {
  12780. dst_data[j] = j;
  12781. }
  12782. // C doesn't have a functional sort, so we do a bubble sort instead
  12783. for (int64_t j = 0; j < ne0; j++) {
  12784. for (int64_t k = j + 1; k < ne0; k++) {
  12785. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12786. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12787. int32_t tmp = dst_data[j];
  12788. dst_data[j] = dst_data[k];
  12789. dst_data[k] = tmp;
  12790. }
  12791. }
  12792. }
  12793. }
  12794. }
  12795. static void ggml_compute_forward_argsort(
  12796. const struct ggml_compute_params * params,
  12797. struct ggml_tensor * dst) {
  12798. const struct ggml_tensor * src0 = dst->src[0];
  12799. switch (src0->type) {
  12800. case GGML_TYPE_F32:
  12801. {
  12802. ggml_compute_forward_argsort_f32(params, dst);
  12803. } break;
  12804. default:
  12805. {
  12806. GGML_ABORT("fatal error");
  12807. }
  12808. }
  12809. }
  12810. // ggml_compute_forward_flash_attn_ext
  12811. static void ggml_compute_forward_flash_attn_ext_f16(
  12812. const struct ggml_compute_params * params,
  12813. const struct ggml_tensor * q,
  12814. const struct ggml_tensor * k,
  12815. const struct ggml_tensor * v,
  12816. const struct ggml_tensor * mask,
  12817. struct ggml_tensor * dst) {
  12818. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12819. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12820. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12821. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12822. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12823. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12824. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12825. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12826. const int ith = params->ith;
  12827. const int nth = params->nth;
  12828. const int64_t D = neq0;
  12829. const int64_t N = neq1;
  12830. GGML_ASSERT(ne0 == D);
  12831. GGML_ASSERT(ne2 == N);
  12832. // input tensor rows must be contiguous
  12833. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12834. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12835. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12836. GGML_ASSERT(neq0 == D);
  12837. GGML_ASSERT(nek0 == D);
  12838. GGML_ASSERT(nev0 == D);
  12839. GGML_ASSERT(neq1 == N);
  12840. GGML_ASSERT(nev0 == D);
  12841. // dst cannot be transposed or permuted
  12842. GGML_ASSERT(nb0 == sizeof(float));
  12843. GGML_ASSERT(nb0 <= nb1);
  12844. GGML_ASSERT(nb1 <= nb2);
  12845. GGML_ASSERT(nb2 <= nb3);
  12846. // broadcast factors
  12847. const int64_t rk2 = neq2/nek2;
  12848. const int64_t rk3 = neq3/nek3;
  12849. const int64_t rv2 = neq2/nev2;
  12850. const int64_t rv3 = neq3/nev3;
  12851. // parallelize by q rows using ggml_vec_dot_f32
  12852. // total rows in q
  12853. const int nr = neq1*neq2*neq3;
  12854. // rows per thread
  12855. const int dr = (nr + nth - 1)/nth;
  12856. // row range for this thread
  12857. const int ir0 = dr*ith;
  12858. const int ir1 = MIN(ir0 + dr, nr);
  12859. float scale = 1.0f;
  12860. float max_bias = 0.0f;
  12861. float logit_softcap = 0.0f;
  12862. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12863. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12864. memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
  12865. if (logit_softcap != 0) {
  12866. scale /= logit_softcap;
  12867. }
  12868. const uint32_t n_head = neq2;
  12869. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12870. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12871. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12872. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12873. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12874. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12875. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12876. GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type");
  12877. GGML_ASSERT(v_to_float && "fattn: unsupported V-type");
  12878. // loop over n_batch and n_head
  12879. for (int ir = ir0; ir < ir1; ++ir) {
  12880. // q indices
  12881. const int iq3 = ir/(neq2*neq1);
  12882. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12883. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12884. const uint32_t h = iq2; // head index
  12885. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12886. float S = 0.0f; // sum
  12887. float M = -INFINITY; // maximum KQ value
  12888. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12889. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12890. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12891. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12892. if (v->type == GGML_TYPE_F16) {
  12893. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12894. } else {
  12895. memset(VKQ32, 0, D*sizeof(float));
  12896. }
  12897. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12898. // k indices
  12899. const int ik3 = iq3 / rk3;
  12900. const int ik2 = iq2 / rk2;
  12901. // v indices
  12902. const int iv3 = iq3 / rv3;
  12903. const int iv2 = iq2 / rv2;
  12904. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12905. q_to_vec_dot(pq, Q_q, D);
  12906. // online softmax / attention
  12907. // loop over n_kv and n_head_kv
  12908. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12909. for (int64_t ic = 0; ic < nek1; ++ic) {
  12910. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12911. if (mv == -INFINITY) {
  12912. continue;
  12913. }
  12914. float s; // KQ value
  12915. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12916. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12917. s = s*scale; // scale KQ value
  12918. if (logit_softcap != 0.0f) {
  12919. s = logit_softcap*tanhf(s);
  12920. }
  12921. s += mv; // apply mask
  12922. const float Mold = M;
  12923. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12924. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12925. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12926. if (v->type == GGML_TYPE_F16) {
  12927. if (s > M) {
  12928. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12929. M = s;
  12930. ms = expf(Mold - M);
  12931. // V = V*expf(Mold - M)
  12932. ggml_vec_scale_f16(D, VKQ16, ms);
  12933. } else {
  12934. // no new maximum, ms == 1.0f, vs != 1.0f
  12935. vs = expf(s - M);
  12936. }
  12937. // V += v*expf(s - M)
  12938. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12939. } else {
  12940. if (s > M) {
  12941. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12942. M = s;
  12943. ms = expf(Mold - M);
  12944. // V = V*expf(Mold - M)
  12945. ggml_vec_scale_f32(D, VKQ32, ms);
  12946. } else {
  12947. // no new maximum, ms == 1.0f, vs != 1.0f
  12948. vs = expf(s - M);
  12949. }
  12950. v_to_float(v_data, V32, D);
  12951. // V += v*expf(s - M)
  12952. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12953. }
  12954. S = S*ms + vs; // scale and increment sum with partial sum
  12955. }
  12956. if (v->type == GGML_TYPE_F16) {
  12957. for (int64_t d = 0; d < D; ++d) {
  12958. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12959. }
  12960. }
  12961. // V /= S
  12962. const float S_inv = 1.0f/S;
  12963. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12964. // dst indices
  12965. const int i1 = iq1;
  12966. const int i2 = iq2;
  12967. const int i3 = iq3;
  12968. // original
  12969. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12970. // permute(0, 2, 1, 3)
  12971. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12972. }
  12973. }
  12974. static void ggml_compute_forward_flash_attn_ext(
  12975. const struct ggml_compute_params * params,
  12976. const struct ggml_tensor * q,
  12977. const struct ggml_tensor * k,
  12978. const struct ggml_tensor * v,
  12979. const struct ggml_tensor * mask,
  12980. struct ggml_tensor * dst) {
  12981. switch (dst->op_params[3]) {
  12982. case GGML_PREC_DEFAULT:
  12983. case GGML_PREC_F32:
  12984. {
  12985. // uses F32 accumulators
  12986. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12987. } break;
  12988. default:
  12989. {
  12990. GGML_ABORT("fatal error");
  12991. }
  12992. }
  12993. }
  12994. // ggml_compute_forward_flash_attn_back
  12995. static void ggml_compute_forward_flash_attn_back_f32(
  12996. const struct ggml_compute_params * params,
  12997. const bool masked,
  12998. struct ggml_tensor * dst) {
  12999. const struct ggml_tensor * q = dst->src[0];
  13000. const struct ggml_tensor * k = dst->src[1];
  13001. const struct ggml_tensor * v = dst->src[2];
  13002. const struct ggml_tensor * d = dst->src[3];
  13003. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13004. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13005. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13006. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13007. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13008. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13009. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  13010. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  13011. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13012. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13013. const int ith = params->ith;
  13014. const int nth = params->nth;
  13015. const int64_t D = neq0;
  13016. const int64_t N = neq1;
  13017. const int64_t P = nek1 - N;
  13018. const int64_t M = P + N;
  13019. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  13020. const int mxDM = MAX(D, Mup);
  13021. // GGML_ASSERT(ne0 == D);
  13022. // GGML_ASSERT(ne1 == N);
  13023. GGML_ASSERT(P >= 0);
  13024. GGML_ASSERT(nbq0 == sizeof(float));
  13025. GGML_ASSERT(nbk0 == sizeof(float));
  13026. GGML_ASSERT(nbv0 == sizeof(float));
  13027. GGML_ASSERT(neq0 == D);
  13028. GGML_ASSERT(nek0 == D);
  13029. GGML_ASSERT(nev1 == D);
  13030. GGML_ASSERT(ned0 == D);
  13031. GGML_ASSERT(neq1 == N);
  13032. GGML_ASSERT(nek1 == N + P);
  13033. GGML_ASSERT(nev1 == D);
  13034. GGML_ASSERT(ned1 == N);
  13035. // dst cannot be transposed or permuted
  13036. GGML_ASSERT(nb0 == sizeof(float));
  13037. GGML_ASSERT(nb0 <= nb1);
  13038. GGML_ASSERT(nb1 <= nb2);
  13039. GGML_ASSERT(nb2 <= nb3);
  13040. if (ith == 0) {
  13041. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13042. }
  13043. ggml_barrier(params->threadpool);
  13044. const int64_t elem_q = ggml_nelements(q);
  13045. const int64_t elem_k = ggml_nelements(k);
  13046. enum ggml_type result_type = dst->type;
  13047. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13048. const size_t tsize = ggml_type_size(result_type);
  13049. const size_t offs_q = 0;
  13050. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13051. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13052. void * grad_q = (char *) dst->data;
  13053. void * grad_k = (char *) dst->data + offs_k;
  13054. void * grad_v = (char *) dst->data + offs_v;
  13055. const size_t nbgq1 = nb0*neq0;
  13056. const size_t nbgq2 = nb0*neq0*neq1;
  13057. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13058. const size_t nbgk1 = nb0*nek0;
  13059. const size_t nbgk2 = nb0*nek0*nek1;
  13060. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13061. const size_t nbgv1 = nb0*nev0;
  13062. const size_t nbgv2 = nb0*nev0*nev1;
  13063. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13064. // parallelize by k rows using ggml_vec_dot_f32
  13065. // total rows in k
  13066. const int nr = nek2*nek3;
  13067. // rows per thread
  13068. const int dr = (nr + nth - 1)/nth;
  13069. // row range for this thread
  13070. const int ir0 = dr*ith;
  13071. const int ir1 = MIN(ir0 + dr, nr);
  13072. const float scale = 1.0f/sqrtf(D);
  13073. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13074. // how often k2 (and v2) is repeated in q2
  13075. int nrep = neq2/nek2;
  13076. for (int ir = ir0; ir < ir1; ++ir) {
  13077. // q indices
  13078. const int ik3 = ir/(nek2);
  13079. const int ik2 = ir - ik3*nek2;
  13080. const int iq3 = ik3;
  13081. const int id3 = ik3;
  13082. const int iv3 = ik3;
  13083. const int iv2 = ik2;
  13084. for (int irep = 0; irep < nrep; ++irep) {
  13085. const int iq2 = ik2 + irep*nek2;
  13086. const int id2 = iq2;
  13087. // (ik2 + irep*nek2) % nek2 == ik2
  13088. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13089. const int id1 = iq1;
  13090. // not sure about CACHE_LINE_SIZE_F32..
  13091. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13092. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13093. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13094. for (int i = M; i < Mup; ++i) {
  13095. S[i] = -INFINITY;
  13096. }
  13097. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13098. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13099. // k indices
  13100. const int ik1 = ic;
  13101. // S indices
  13102. const int i1 = ik1;
  13103. ggml_vec_dot_f32(neq0,
  13104. S + i1, 0,
  13105. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13106. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13107. }
  13108. // scale
  13109. ggml_vec_scale_f32(masked_begin, S, scale);
  13110. for (int64_t i = masked_begin; i < M; i++) {
  13111. S[i] = -INFINITY;
  13112. }
  13113. // softmax
  13114. // exclude known -INF S[..] values from max and loop
  13115. // dont forget to set their SM values to zero
  13116. {
  13117. float max = -INFINITY;
  13118. ggml_vec_max_f32(masked_begin, &max, S);
  13119. ggml_float sum = 0.0;
  13120. {
  13121. #ifdef GGML_SOFT_MAX_ACCELERATE
  13122. max = -max;
  13123. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13124. vvexpf(SM, SM, &Mup);
  13125. ggml_vec_sum_f32(Mup, &sum, SM);
  13126. #else
  13127. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13128. #endif
  13129. }
  13130. assert(sum > 0.0);
  13131. sum = 1.0/sum;
  13132. ggml_vec_scale_f32(masked_begin, SM, sum);
  13133. }
  13134. // step-by-step explanation
  13135. {
  13136. // forward-process shape grads from backward process
  13137. // parallel_for ik2,ik3:
  13138. // for irep:
  13139. // iq2 = ik2 + irep*nek2
  13140. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13141. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13142. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13143. // for iq1:
  13144. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13145. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13146. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13147. // S0 = -Inf [D,1,1,1]
  13148. // ~S1[i] = dot(kcur[:D,i], qcur)
  13149. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13150. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13151. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13152. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13153. // ~S5[i] = dot(vcur[:,i], S4)
  13154. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13155. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13156. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13157. // dst backward-/ grad[dst] = d
  13158. //
  13159. // output gradients with their dependencies:
  13160. //
  13161. // grad[kcur] = grad[S1].T @ qcur
  13162. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13163. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13164. // grad[S4] = grad[S5] @ vcur
  13165. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13166. // grad[qcur] = grad[S1] @ kcur
  13167. // grad[vcur] = grad[S5].T @ S4
  13168. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13169. //
  13170. // in post-order:
  13171. //
  13172. // S1 = qcur @ kcur.T
  13173. // S2 = S1 * scale
  13174. // S3 = diag_mask_inf(S2, P)
  13175. // S4 = softmax(S3)
  13176. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13177. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13178. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13179. // grad[qcur] = grad[S1] @ kcur
  13180. // grad[kcur] = grad[S1].T @ qcur
  13181. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13182. //
  13183. // using less variables (SM=S4):
  13184. //
  13185. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13186. // SM = softmax(S)
  13187. // S = d[:D,iq1,iq2,iq3] @ vcur
  13188. // dot_SM_gradSM = dot(SM, S)
  13189. // S = SM * (S - dot(SM, S))
  13190. // S = diag_mask_zero(S, P) * scale
  13191. //
  13192. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13193. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13194. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13195. }
  13196. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13197. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13198. // for ic:
  13199. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13200. // exclude known future zero S[..] values from operation
  13201. ggml_vec_set_f32(masked_begin, S, 0);
  13202. for (int64_t ic = 0; ic < D; ++ic) {
  13203. ggml_vec_mad_f32(masked_begin,
  13204. S,
  13205. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13206. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13207. }
  13208. // S = SM * (S - dot(SM, S))
  13209. float dot_SM_gradSM = 0;
  13210. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13211. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13212. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13213. // S = diag_mask_zero(S, P) * scale
  13214. // already done by above ggml_vec_set_f32
  13215. // exclude known zero S[..] values from operation
  13216. ggml_vec_scale_f32(masked_begin, S, scale);
  13217. // S shape [M,1]
  13218. // SM shape [M,1]
  13219. // kcur shape [D,M]
  13220. // qcur shape [D,1]
  13221. // vcur shape [M,D]
  13222. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13223. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13224. // for ic:
  13225. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13226. // exclude known zero S[..] values from loop
  13227. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13228. ggml_vec_mad_f32(D,
  13229. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13230. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13231. S[ic]);
  13232. }
  13233. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13234. // for ic:
  13235. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13236. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13237. // exclude known zero S[..] values from loop
  13238. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13239. ggml_vec_mad_f32(D,
  13240. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13241. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13242. S[ic]);
  13243. }
  13244. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13245. // for ic:
  13246. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13247. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13248. // exclude known zero SM[..] values from mad
  13249. for (int64_t ic = 0; ic < D; ++ic) {
  13250. ggml_vec_mad_f32(masked_begin,
  13251. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13252. SM,
  13253. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13254. }
  13255. }
  13256. }
  13257. }
  13258. }
  13259. static void ggml_compute_forward_flash_attn_back(
  13260. const struct ggml_compute_params * params,
  13261. const bool masked,
  13262. struct ggml_tensor * dst) {
  13263. const struct ggml_tensor * q = dst->src[0];
  13264. switch (q->type) {
  13265. case GGML_TYPE_F32:
  13266. {
  13267. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13268. } break;
  13269. default:
  13270. {
  13271. GGML_ABORT("fatal error");
  13272. }
  13273. }
  13274. }
  13275. // ggml_compute_forward_ssm_conv
  13276. static void ggml_compute_forward_ssm_conv_f32(
  13277. const struct ggml_compute_params * params,
  13278. struct ggml_tensor * dst) {
  13279. const struct ggml_tensor * src0 = dst->src[0]; // conv_x
  13280. const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
  13281. const int ith = params->ith;
  13282. const int nth = params->nth;
  13283. const int nc = src1->ne[0]; // d_conv
  13284. const int ncs = src0->ne[0]; // d_conv - 1 + n_t
  13285. const int nr = src0->ne[1]; // d_inner
  13286. const int n_t = dst->ne[1]; // tokens per sequence
  13287. const int n_s = dst->ne[2]; // number of sequences in the batch
  13288. GGML_ASSERT( dst->ne[0] == nr);
  13289. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13290. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13291. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13292. // rows per thread
  13293. const int dr = (nr + nth - 1)/nth;
  13294. // row range for this thread
  13295. const int ir0 = dr*ith;
  13296. const int ir1 = MIN(ir0 + dr, nr);
  13297. const int ir = ir1 - ir0;
  13298. for (int i3 = 0; i3 < n_s; ++i3) {
  13299. for (int i2 = 0; i2 < n_t; ++i2) {
  13300. // {d_conv - 1 + n_t, d_inner, n_seqs}
  13301. // sliding window
  13302. const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
  13303. const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
  13304. float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
  13305. // TODO: transpose the output for smaller strides for big batches?
  13306. // d_inner
  13307. for (int i1 = 0; i1 < ir; ++i1) {
  13308. // rowwise dot product
  13309. // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
  13310. float sumf = 0.0f;
  13311. // d_conv
  13312. for (int i0 = 0; i0 < nc; ++i0) {
  13313. sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
  13314. }
  13315. x[i1] = sumf;
  13316. }
  13317. }
  13318. }
  13319. }
  13320. static void ggml_compute_forward_ssm_conv(
  13321. const struct ggml_compute_params * params,
  13322. struct ggml_tensor * dst) {
  13323. switch (dst->src[0]->type) {
  13324. case GGML_TYPE_F32:
  13325. {
  13326. ggml_compute_forward_ssm_conv_f32(params, dst);
  13327. } break;
  13328. default:
  13329. {
  13330. GGML_ABORT("fatal error");
  13331. }
  13332. }
  13333. }
  13334. // ggml_compute_forward_ssm_scan
  13335. static void ggml_compute_forward_ssm_scan_f32(
  13336. const struct ggml_compute_params * params,
  13337. struct ggml_tensor * dst) {
  13338. const struct ggml_tensor * src0 = dst->src[0]; // s
  13339. const struct ggml_tensor * src1 = dst->src[1]; // x
  13340. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13341. const struct ggml_tensor * src3 = dst->src[3]; // A
  13342. const struct ggml_tensor * src4 = dst->src[4]; // B
  13343. const struct ggml_tensor * src5 = dst->src[5]; // C
  13344. const int ith = params->ith;
  13345. const int nth = params->nth;
  13346. const int64_t nc = src0->ne[0]; // d_state
  13347. const int64_t nr = src0->ne[1]; // d_inner
  13348. const int64_t n_t = src1->ne[1]; // number of tokens per sequence
  13349. const int64_t n_s = src0->ne[2]; // number of sequences in the batch
  13350. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13351. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13352. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13353. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13354. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13355. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13356. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13357. // required for the dot product between s and C
  13358. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13359. // required for per-sequence offsets for states
  13360. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13361. // required to get correct offset for state destination (i.e. src1->nb[3])
  13362. GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
  13363. // rows per thread
  13364. const int dr = (nr + nth - 1)/nth;
  13365. // row range for this thread
  13366. const int ir0 = dr*ith;
  13367. const int ir1 = MIN(ir0 + dr, nr);
  13368. const int ir = ir1 - ir0;
  13369. for (int i3 = 0; i3 < n_s; ++i3) {
  13370. for (int i2 = 0; i2 < n_t; ++i2) {
  13371. const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
  13372. const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  13373. const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
  13374. const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13375. const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
  13376. const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
  13377. float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  13378. float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
  13379. // use the output as the source for the next token-wise iterations
  13380. if (i2 > 0) { s0 = s; }
  13381. // d_inner
  13382. for (int i1 = 0; i1 < ir; ++i1) {
  13383. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13384. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13385. float x_dt = x[i1] * dt_soft_plus;
  13386. float sumf = 0.0f;
  13387. // d_state
  13388. for (int i0 = 0; i0 < nc; ++i0) {
  13389. int i = i0 + i1*nc;
  13390. // state = prev_state * dA + dB * x
  13391. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13392. // y = rowwise_dotprod(state, C)
  13393. sumf += state * C[i0];
  13394. s[i] = state;
  13395. }
  13396. y[i1] = sumf;
  13397. }
  13398. }
  13399. }
  13400. }
  13401. static void ggml_compute_forward_ssm_scan(
  13402. const struct ggml_compute_params * params,
  13403. struct ggml_tensor * dst) {
  13404. switch (dst->src[0]->type) {
  13405. case GGML_TYPE_F32:
  13406. {
  13407. ggml_compute_forward_ssm_scan_f32(params, dst);
  13408. } break;
  13409. default:
  13410. {
  13411. GGML_ABORT("fatal error");
  13412. }
  13413. }
  13414. }
  13415. // ggml_compute_forward_win_part
  13416. static void ggml_compute_forward_win_part_f32(
  13417. const struct ggml_compute_params * params,
  13418. struct ggml_tensor * dst) {
  13419. UNUSED(params);
  13420. const struct ggml_tensor * src0 = dst->src[0];
  13421. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13422. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13423. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13424. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13425. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13426. assert(ne00 == ne0);
  13427. assert(ne3 == nep0*nep1);
  13428. // TODO: optimize / multi-thread
  13429. for (int py = 0; py < nep1; ++py) {
  13430. for (int px = 0; px < nep0; ++px) {
  13431. const int64_t i3 = py*nep0 + px;
  13432. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13433. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13434. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13435. const int64_t i02 = py*w + i2;
  13436. const int64_t i01 = px*w + i1;
  13437. const int64_t i00 = i0;
  13438. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13439. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13440. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13441. ((float *) dst->data)[i] = 0.0f;
  13442. } else {
  13443. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13444. }
  13445. }
  13446. }
  13447. }
  13448. }
  13449. }
  13450. }
  13451. static void ggml_compute_forward_win_part(
  13452. const struct ggml_compute_params * params,
  13453. struct ggml_tensor * dst) {
  13454. const struct ggml_tensor * src0 = dst->src[0];
  13455. switch (src0->type) {
  13456. case GGML_TYPE_F32:
  13457. {
  13458. ggml_compute_forward_win_part_f32(params, dst);
  13459. } break;
  13460. default:
  13461. {
  13462. GGML_ABORT("fatal error");
  13463. }
  13464. }
  13465. }
  13466. // ggml_compute_forward_win_unpart
  13467. static void ggml_compute_forward_win_unpart_f32(
  13468. const struct ggml_compute_params * params,
  13469. struct ggml_tensor * dst) {
  13470. UNUSED(params);
  13471. const struct ggml_tensor * src0 = dst->src[0];
  13472. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13473. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13474. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13475. // padding
  13476. const int px = (w - ne1%w)%w;
  13477. //const int py = (w - ne2%w)%w;
  13478. const int npx = (px + ne1)/w;
  13479. //const int npy = (py + ne2)/w;
  13480. assert(ne0 == ne00);
  13481. // TODO: optimize / multi-thread
  13482. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13483. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13484. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13485. const int ip2 = i2/w;
  13486. const int ip1 = i1/w;
  13487. const int64_t i02 = i2%w;
  13488. const int64_t i01 = i1%w;
  13489. const int64_t i00 = i0;
  13490. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13491. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13492. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13493. }
  13494. }
  13495. }
  13496. }
  13497. static void ggml_compute_forward_win_unpart(
  13498. const struct ggml_compute_params * params,
  13499. struct ggml_tensor * dst) {
  13500. const struct ggml_tensor * src0 = dst->src[0];
  13501. switch (src0->type) {
  13502. case GGML_TYPE_F32:
  13503. {
  13504. ggml_compute_forward_win_unpart_f32(params, dst);
  13505. } break;
  13506. default:
  13507. {
  13508. GGML_ABORT("fatal error");
  13509. }
  13510. }
  13511. }
  13512. //gmml_compute_forward_unary
  13513. static void ggml_compute_forward_unary(
  13514. const struct ggml_compute_params * params,
  13515. struct ggml_tensor * dst) {
  13516. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13517. switch (op) {
  13518. case GGML_UNARY_OP_ABS:
  13519. {
  13520. ggml_compute_forward_abs(params, dst);
  13521. } break;
  13522. case GGML_UNARY_OP_SGN:
  13523. {
  13524. ggml_compute_forward_sgn(params, dst);
  13525. } break;
  13526. case GGML_UNARY_OP_NEG:
  13527. {
  13528. ggml_compute_forward_neg(params, dst);
  13529. } break;
  13530. case GGML_UNARY_OP_STEP:
  13531. {
  13532. ggml_compute_forward_step(params, dst);
  13533. } break;
  13534. case GGML_UNARY_OP_TANH:
  13535. {
  13536. ggml_compute_forward_tanh(params, dst);
  13537. } break;
  13538. case GGML_UNARY_OP_ELU:
  13539. {
  13540. ggml_compute_forward_elu(params, dst);
  13541. } break;
  13542. case GGML_UNARY_OP_RELU:
  13543. {
  13544. ggml_compute_forward_relu(params, dst);
  13545. } break;
  13546. case GGML_UNARY_OP_SIGMOID:
  13547. {
  13548. ggml_compute_forward_sigmoid(params, dst);
  13549. } break;
  13550. case GGML_UNARY_OP_GELU:
  13551. {
  13552. ggml_compute_forward_gelu(params, dst);
  13553. } break;
  13554. case GGML_UNARY_OP_GELU_QUICK:
  13555. {
  13556. ggml_compute_forward_gelu_quick(params, dst);
  13557. } break;
  13558. case GGML_UNARY_OP_SILU:
  13559. {
  13560. ggml_compute_forward_silu(params, dst);
  13561. } break;
  13562. case GGML_UNARY_OP_HARDSWISH:
  13563. {
  13564. ggml_compute_forward_hardswish(params, dst);
  13565. } break;
  13566. case GGML_UNARY_OP_HARDSIGMOID:
  13567. {
  13568. ggml_compute_forward_hardsigmoid(params, dst);
  13569. } break;
  13570. case GGML_UNARY_OP_EXP:
  13571. {
  13572. ggml_compute_forward_exp(params, dst);
  13573. } break;
  13574. default:
  13575. {
  13576. GGML_ABORT("fatal error");
  13577. }
  13578. }
  13579. }
  13580. // ggml_compute_forward_get_rel_pos
  13581. static void ggml_compute_forward_get_rel_pos_f16(
  13582. const struct ggml_compute_params * params,
  13583. struct ggml_tensor * dst) {
  13584. UNUSED(params);
  13585. const struct ggml_tensor * src0 = dst->src[0];
  13586. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13587. GGML_TENSOR_UNARY_OP_LOCALS
  13588. const int64_t w = ne1;
  13589. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13590. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13591. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13592. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13593. const int64_t pos = (w - i1 - 1) + i2;
  13594. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13595. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13596. }
  13597. }
  13598. }
  13599. }
  13600. static void ggml_compute_forward_get_rel_pos(
  13601. const struct ggml_compute_params * params,
  13602. struct ggml_tensor * dst) {
  13603. const struct ggml_tensor * src0 = dst->src[0];
  13604. switch (src0->type) {
  13605. case GGML_TYPE_F16:
  13606. case GGML_TYPE_BF16:
  13607. {
  13608. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13609. } break;
  13610. default:
  13611. {
  13612. GGML_ABORT("fatal error");
  13613. }
  13614. }
  13615. }
  13616. // ggml_compute_forward_add_rel_pos
  13617. static void ggml_compute_forward_add_rel_pos_f32(
  13618. const struct ggml_compute_params * params,
  13619. struct ggml_tensor * dst) {
  13620. const struct ggml_tensor * src0 = dst->src[0];
  13621. const struct ggml_tensor * src1 = dst->src[1];
  13622. const struct ggml_tensor * src2 = dst->src[2];
  13623. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13624. if (!inplace) {
  13625. if (params->ith == 0) {
  13626. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13627. }
  13628. ggml_barrier(params->threadpool);
  13629. }
  13630. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13631. float * src1_data = (float *) src1->data;
  13632. float * src2_data = (float *) src2->data;
  13633. float * dst_data = (float *) dst->data;
  13634. const int64_t ne10 = src1->ne[0];
  13635. const int64_t ne11 = src1->ne[1];
  13636. const int64_t ne12 = src1->ne[2];
  13637. const int64_t ne13 = src1->ne[3];
  13638. const int ith = params->ith;
  13639. const int nth = params->nth;
  13640. // total patches in dst
  13641. const int np = ne13;
  13642. // patches per thread
  13643. const int dp = (np + nth - 1)/nth;
  13644. // patch range for this thread
  13645. const int ip0 = dp*ith;
  13646. const int ip1 = MIN(ip0 + dp, np);
  13647. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13648. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13649. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13650. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13651. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13652. const int64_t jp0 = jp1 + i10;
  13653. const float src1_e = src1_data[jp0];
  13654. const float src2_e = src2_data[jp0];
  13655. const int64_t jdh = jp0 * ne10;
  13656. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13657. for (int64_t j = 0; j < ne10; ++j) {
  13658. dst_data[jdh + j ] += src2_e;
  13659. dst_data[jdw + j*ne10] += src1_e;
  13660. }
  13661. }
  13662. }
  13663. }
  13664. }
  13665. }
  13666. static void ggml_compute_forward_add_rel_pos(
  13667. const struct ggml_compute_params * params,
  13668. struct ggml_tensor * dst) {
  13669. const struct ggml_tensor * src0 = dst->src[0];
  13670. switch (src0->type) {
  13671. case GGML_TYPE_F32:
  13672. {
  13673. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13674. } break;
  13675. default:
  13676. {
  13677. GGML_ABORT("fatal error");
  13678. }
  13679. }
  13680. }
  13681. // ggml_compute_forward_rwkv_wkv
  13682. static void ggml_compute_forward_rwkv_wkv_f32(
  13683. const struct ggml_compute_params * params,
  13684. struct ggml_tensor * dst) {
  13685. const size_t T = dst->src[1]->ne[3];
  13686. const size_t C = dst->ne[0];
  13687. const size_t H = dst->src[1]->ne[2];
  13688. const size_t n_seqs = dst->src[5]->ne[1];
  13689. float * dst_data = (float *) dst->data;
  13690. float * state = ((float *) dst->data) + C * T;
  13691. if (params->ith != 0) {
  13692. return;
  13693. }
  13694. memset(dst_data, 0, T * C * sizeof(float));
  13695. float * k = (float *) dst->src[0]->data;
  13696. float * v = (float *) dst->src[1]->data;
  13697. float * r = (float *) dst->src[2]->data;
  13698. float * time_faaaa = (float *) dst->src[3]->data;
  13699. float * time_decay = (float *) dst->src[4]->data;
  13700. size_t t_stride = H * (C / H);
  13701. size_t h_stride = C / H;
  13702. size_t h_stride_2d = (C / H) * (C / H);
  13703. // basically fused operations:
  13704. // dst = r @ (time_faaaa * (k @ v) + state),
  13705. // state = time_decay * state + (k @ v),
  13706. // recursive through each token
  13707. for (size_t t = 0; t < T; t++) {
  13708. size_t t_offset = t * t_stride;
  13709. size_t state_offset = (C / H) * C * (t / (T / n_seqs));
  13710. float * state_cur = state + state_offset;
  13711. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  13712. for (size_t h = 0; h < H; h++) {
  13713. size_t h_offset = h * h_stride;
  13714. size_t t_h_offset = t_offset + h_offset;
  13715. size_t h_2d_offset = h * h_stride_2d;
  13716. for (size_t i = 0; i < C / H; i++) {
  13717. size_t t_h_i_offset = t_h_offset + i;
  13718. size_t h_i_offset = h_offset + i;
  13719. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  13720. float k_val = k[t_h_i_offset];
  13721. float r_val = r[t_h_i_offset];
  13722. float time_faaaa_val = time_faaaa[h_i_offset];
  13723. // RWKV v6: different time_decay for each token.
  13724. float time_decay_val = time_decay[t_h_i_offset];
  13725. for (size_t j = 0; j < C / H; j ++) {
  13726. size_t t_h_j_offset = t_h_offset + j;
  13727. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  13728. float v_val = v[t_h_j_offset];
  13729. float kv_val = v_val * k_val;
  13730. float prev_state_val = state_prev[h_2d_i_j_offset];
  13731. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  13732. dst_data[t_h_j_offset] += temp_val * r_val;
  13733. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  13734. }
  13735. }
  13736. }
  13737. }
  13738. }
  13739. static void ggml_compute_forward_rwkv_wkv(
  13740. const struct ggml_compute_params * params,
  13741. struct ggml_tensor * dst) {
  13742. const struct ggml_tensor * src0 = dst->src[0];
  13743. switch (src0->type) {
  13744. case GGML_TYPE_F32:
  13745. {
  13746. ggml_compute_forward_rwkv_wkv_f32(params, dst);
  13747. } break;
  13748. default:
  13749. {
  13750. GGML_ABORT("fatal error");
  13751. }
  13752. }
  13753. }
  13754. // ggml_compute_forward_map_unary
  13755. static void ggml_compute_forward_map_unary_f32(
  13756. const struct ggml_compute_params * params,
  13757. struct ggml_tensor * dst,
  13758. const ggml_unary_op_f32_t fun) {
  13759. const struct ggml_tensor * src0 = dst->src[0];
  13760. if (params->ith != 0) {
  13761. return;
  13762. }
  13763. assert(ggml_is_contiguous_1(src0));
  13764. assert(ggml_is_contiguous_1(dst));
  13765. assert(ggml_are_same_shape(src0, dst));
  13766. const int n = ggml_nrows(src0);
  13767. const int nc = src0->ne[0];
  13768. for (int i = 0; i < n; i++) {
  13769. fun(nc,
  13770. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13771. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13772. }
  13773. }
  13774. static void ggml_compute_forward_map_unary(
  13775. const struct ggml_compute_params * params,
  13776. struct ggml_tensor * dst,
  13777. const ggml_unary_op_f32_t fun) {
  13778. const struct ggml_tensor * src0 = dst->src[0];
  13779. switch (src0->type) {
  13780. case GGML_TYPE_F32:
  13781. {
  13782. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13783. } break;
  13784. default:
  13785. {
  13786. GGML_ABORT("fatal error");
  13787. }
  13788. }
  13789. }
  13790. // ggml_compute_forward_map_binary
  13791. static void ggml_compute_forward_map_binary_f32(
  13792. const struct ggml_compute_params * params,
  13793. struct ggml_tensor * dst,
  13794. const ggml_binary_op_f32_t fun) {
  13795. const struct ggml_tensor * src0 = dst->src[0];
  13796. const struct ggml_tensor * src1 = dst->src[1];
  13797. if (params->ith != 0) {
  13798. return;
  13799. }
  13800. assert(ggml_is_contiguous_1(src0));
  13801. assert(ggml_is_contiguous_1(src1));
  13802. assert(ggml_is_contiguous_1(dst));
  13803. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13804. const int n = ggml_nrows(src0);
  13805. const int nc = src0->ne[0];
  13806. for (int i = 0; i < n; i++) {
  13807. fun(nc,
  13808. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13809. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13810. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13811. }
  13812. }
  13813. static void ggml_compute_forward_map_binary(
  13814. const struct ggml_compute_params * params,
  13815. struct ggml_tensor * dst,
  13816. const ggml_binary_op_f32_t fun) {
  13817. const struct ggml_tensor * src0 = dst->src[0];
  13818. switch (src0->type) {
  13819. case GGML_TYPE_F32:
  13820. {
  13821. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13822. } break;
  13823. default:
  13824. {
  13825. GGML_ABORT("fatal error");
  13826. }
  13827. }
  13828. }
  13829. // ggml_compute_forward_map_custom1
  13830. static void ggml_compute_forward_map_custom1_f32(
  13831. const struct ggml_compute_params * params,
  13832. struct ggml_tensor * dst,
  13833. const ggml_custom1_op_f32_t fun) {
  13834. const struct ggml_tensor * a = dst->src[0];
  13835. if (params->ith != 0) {
  13836. return;
  13837. }
  13838. fun(dst, a);
  13839. }
  13840. // ggml_compute_forward_map_custom2
  13841. static void ggml_compute_forward_map_custom2_f32(
  13842. const struct ggml_compute_params * params,
  13843. struct ggml_tensor * dst,
  13844. const ggml_custom2_op_f32_t fun) {
  13845. const struct ggml_tensor * a = dst->src[0];
  13846. const struct ggml_tensor * b = dst->src[1];
  13847. if (params->ith != 0) {
  13848. return;
  13849. }
  13850. fun(dst, a, b);
  13851. }
  13852. // ggml_compute_forward_map_custom3
  13853. static void ggml_compute_forward_map_custom3_f32(
  13854. const struct ggml_compute_params * params,
  13855. struct ggml_tensor * dst,
  13856. const ggml_custom3_op_f32_t fun) {
  13857. const struct ggml_tensor * a = dst->src[0];
  13858. const struct ggml_tensor * b = dst->src[1];
  13859. const struct ggml_tensor * c = dst->src[1];
  13860. if (params->ith != 0) {
  13861. return;
  13862. }
  13863. fun(dst, a, b, c);
  13864. }
  13865. // ggml_compute_forward_map_custom1
  13866. static void ggml_compute_forward_map_custom1(
  13867. const struct ggml_compute_params * params,
  13868. struct ggml_tensor * dst) {
  13869. const struct ggml_tensor * a = dst->src[0];
  13870. struct ggml_map_custom1_op_params p;
  13871. memcpy(&p, dst->op_params, sizeof(p));
  13872. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13873. }
  13874. // ggml_compute_forward_map_custom2
  13875. static void ggml_compute_forward_map_custom2(
  13876. const struct ggml_compute_params * params,
  13877. struct ggml_tensor * dst) {
  13878. const struct ggml_tensor * a = dst->src[0];
  13879. const struct ggml_tensor * b = dst->src[1];
  13880. struct ggml_map_custom2_op_params p;
  13881. memcpy(&p, dst->op_params, sizeof(p));
  13882. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13883. }
  13884. // ggml_compute_forward_map_custom3
  13885. static void ggml_compute_forward_map_custom3(
  13886. const struct ggml_compute_params * params,
  13887. struct ggml_tensor * dst) {
  13888. const struct ggml_tensor * a = dst->src[0];
  13889. const struct ggml_tensor * b = dst->src[1];
  13890. const struct ggml_tensor * c = dst->src[2];
  13891. struct ggml_map_custom3_op_params p;
  13892. memcpy(&p, dst->op_params, sizeof(p));
  13893. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13894. }
  13895. // ggml_compute_forward_cross_entropy_loss
  13896. static void ggml_compute_forward_cross_entropy_loss_f32(
  13897. const struct ggml_compute_params * params,
  13898. struct ggml_tensor * dst) {
  13899. const struct ggml_tensor * src0 = dst->src[0];
  13900. const struct ggml_tensor * src1 = dst->src[1];
  13901. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  13902. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  13903. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  13904. GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
  13905. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13906. GGML_ASSERT(ggml_is_scalar(dst));
  13907. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  13908. // TODO: handle transposed/permuted matrices
  13909. const int64_t nc = src0->ne[0];
  13910. const int64_t nr = ggml_nrows(src0);
  13911. const int ith = params->ith;
  13912. const int nth = params->nth;
  13913. float * sums = (float *) params->wdata;
  13914. float * st = ((float *) params->wdata) + nth + ith*nc;
  13915. float sum_thread = 0.0f;
  13916. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13917. // rows per thread
  13918. const int64_t dr = (nr + nth - 1)/nth;
  13919. // row range for this thread
  13920. const int64_t ir0 = dr*ith;
  13921. const int64_t ir1 = MIN(ir0 + dr, nr);
  13922. for (int64_t i1 = ir0; i1 < ir1; ++i1) {
  13923. const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
  13924. const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
  13925. #ifndef NDEBUG
  13926. for (int64_t i = 0; i < nc; ++i) {
  13927. //printf("p[%d] = %f\n", i, p[i]);
  13928. assert(!isnan(s0[i]));
  13929. assert(!isnan(s1[i]));
  13930. }
  13931. #endif
  13932. float max = -INFINITY;
  13933. ggml_vec_max_f32(nc, &max, s0);
  13934. const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
  13935. assert(sum_softmax >= 0.0);
  13936. ggml_vec_add1_f32(nc, st, st, -sum_softmax);
  13937. ggml_vec_mul_f32(nc, st, st, s1);
  13938. float sum_st = 0.0f;
  13939. ggml_vec_sum_f32(nc, &sum_st, st);
  13940. sum_thread += sum_st;
  13941. #ifndef NDEBUG
  13942. for (int64_t i = 0; i < nc; ++i) {
  13943. assert(!isnan(st[i]));
  13944. assert(!isinf(st[i]));
  13945. }
  13946. #endif
  13947. }
  13948. sums[ith] = sum_thread;
  13949. ggml_barrier(params->threadpool);
  13950. if (ith == 0) {
  13951. float * dp = (float *) dst->data;
  13952. ggml_vec_sum_f32(nth, dp, sums);
  13953. dp[0] *= -1.0f / (float) nr;
  13954. }
  13955. }
  13956. static void ggml_compute_forward_cross_entropy_loss(
  13957. const struct ggml_compute_params * params,
  13958. struct ggml_tensor * dst) {
  13959. const struct ggml_tensor * src0 = dst->src[0];
  13960. switch (src0->type) {
  13961. case GGML_TYPE_F32:
  13962. {
  13963. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13964. } break;
  13965. default:
  13966. {
  13967. GGML_ABORT("fatal error");
  13968. }
  13969. }
  13970. }
  13971. // ggml_compute_forward_cross_entropy_loss_back
  13972. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13973. const struct ggml_compute_params * params,
  13974. struct ggml_tensor * dst) {
  13975. const struct ggml_tensor * src0 = dst->src[0];
  13976. const struct ggml_tensor * src1 = dst->src[1];
  13977. const struct ggml_tensor * opt0 = dst->src[2];
  13978. GGML_ASSERT(ggml_is_contiguous(dst));
  13979. GGML_ASSERT(ggml_is_contiguous(src0));
  13980. GGML_ASSERT(ggml_is_contiguous(src1));
  13981. GGML_ASSERT(ggml_is_contiguous(opt0));
  13982. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13983. const int64_t ith = params->ith;
  13984. const int64_t nth = params->nth;
  13985. // TODO: handle transposed/permuted matrices
  13986. const int64_t nc = src0->ne[0];
  13987. const int64_t nr = ggml_nrows(src0);
  13988. // rows per thread
  13989. const int64_t dr = (nr + nth - 1)/nth;
  13990. // row range for this thread
  13991. const int64_t ir0 = dr*ith;
  13992. const int64_t ir1 = MIN(ir0 + dr, nr);
  13993. const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
  13994. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13995. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13996. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13997. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13998. #ifndef NDEBUG
  13999. for (int64_t i = 0; i < nc; ++i) {
  14000. //printf("p[%d] = %f\n", i, p[i]);
  14001. assert(!isnan(s0[i]));
  14002. assert(!isnan(s1[i]));
  14003. }
  14004. #endif
  14005. // soft_max
  14006. float max = -INFINITY;
  14007. ggml_vec_max_f32(nc, &max, s0);
  14008. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14009. assert(sum > 0.0);
  14010. ggml_vec_scale_f32(nc, ds0, 1.0/sum);
  14011. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14012. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14013. ggml_vec_scale_f32(nc, ds0, d_by_nr);
  14014. #ifndef NDEBUG
  14015. for (int64_t i = 0; i < nc; ++i) {
  14016. assert(!isnan(ds0[i]));
  14017. assert(!isinf(ds0[i]));
  14018. }
  14019. #endif
  14020. }
  14021. }
  14022. static void ggml_compute_forward_cross_entropy_loss_back(
  14023. const struct ggml_compute_params * params,
  14024. struct ggml_tensor * dst) {
  14025. const struct ggml_tensor * src0 = dst->src[0];
  14026. switch (src0->type) {
  14027. case GGML_TYPE_F32:
  14028. {
  14029. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14030. } break;
  14031. default:
  14032. {
  14033. GGML_ABORT("fatal error");
  14034. }
  14035. }
  14036. }
  14037. static void ggml_compute_forward_opt_step_adamw_f32(
  14038. const struct ggml_compute_params * params,
  14039. struct ggml_tensor * dst) {
  14040. const struct ggml_tensor * src0 = dst->src[0];
  14041. const struct ggml_tensor * src0_grad = dst->src[1];
  14042. const struct ggml_tensor * src0_grad_m = dst->src[2];
  14043. const struct ggml_tensor * src0_grad_v = dst->src[3];
  14044. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  14045. const int ith = params->ith;
  14046. const int nth = params->nth;
  14047. const int nr = ggml_nrows(src0);
  14048. GGML_TENSOR_UNARY_OP_LOCALS
  14049. GGML_ASSERT(nb00 == sizeof(float));
  14050. // rows per thread
  14051. const int dr = (nr + nth - 1)/nth;
  14052. // row range for this thread
  14053. const int ir0 = dr*ith;
  14054. const int ir1 = MIN(ir0 + dr, nr);
  14055. /* const float gnorm = 1.0f; */
  14056. int64_t iter; memcpy(&iter, &dst->op_params[0], sizeof(int64_t));
  14057. const float alpha = ggml_get_op_params_f32(dst, 2);
  14058. const float beta1 = ggml_get_op_params_f32(dst, 3);
  14059. const float beta2 = ggml_get_op_params_f32(dst, 4);
  14060. const float eps = ggml_get_op_params_f32(dst, 5);
  14061. const float wd = ggml_get_op_params_f32(dst, 6);
  14062. const float beta1h = alpha/(1.0f - powf(beta1, iter));
  14063. const float beta2h = 1.0f/(1.0f - powf(beta2, iter));
  14064. for (int ir = ir0; ir < ir1; ++ir) {
  14065. const int64_t i03 = ir/(ne02*ne01);
  14066. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  14067. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  14068. const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
  14069. float * w = (float *) ((char *) src0->data + offset); // weight
  14070. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  14071. float * m = (float *) ((char *) src0_grad_m->data + offset);
  14072. float * v = (float *) ((char *) src0_grad_v->data + offset);
  14073. for (int i00 = 0; i00 < ne00; ++i00) {
  14074. m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
  14075. v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
  14076. const float mh = m[i00]*beta1h;
  14077. const float vh = sqrtf(v[i00]*beta2h) + eps;
  14078. // The weight decay is applied independently of the Adam momenta m and v.
  14079. // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
  14080. // See: https://arxiv.org/pdf/1711.05101v3.pdf
  14081. w[i00] = w[i00]*(1.0f - alpha*wd) - mh/vh;
  14082. }
  14083. }
  14084. ggml_barrier(params->threadpool);
  14085. if (ith != 0) {
  14086. return;
  14087. }
  14088. iter++;
  14089. memcpy(&dst->op_params[0], &iter, sizeof(int64_t));
  14090. }
  14091. static void ggml_compute_forward_opt_step_adamw(
  14092. const struct ggml_compute_params * params,
  14093. struct ggml_tensor * dst) {
  14094. const struct ggml_tensor * src0 = dst->src[0];
  14095. switch (src0->type) {
  14096. case GGML_TYPE_F32:
  14097. {
  14098. ggml_compute_forward_opt_step_adamw_f32(params, dst);
  14099. } break;
  14100. default:
  14101. {
  14102. GGML_ABORT("fatal error");
  14103. }
  14104. }
  14105. }
  14106. /////////////////////////////////
  14107. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  14108. GGML_ASSERT(params);
  14109. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14110. return;
  14111. }
  14112. switch (tensor->op) {
  14113. case GGML_OP_DUP:
  14114. {
  14115. ggml_compute_forward_dup(params, tensor);
  14116. } break;
  14117. case GGML_OP_ADD:
  14118. {
  14119. ggml_compute_forward_add(params, tensor);
  14120. } break;
  14121. case GGML_OP_ADD1:
  14122. {
  14123. ggml_compute_forward_add1(params, tensor);
  14124. } break;
  14125. case GGML_OP_ACC:
  14126. {
  14127. ggml_compute_forward_acc(params, tensor);
  14128. } break;
  14129. case GGML_OP_SUB:
  14130. {
  14131. ggml_compute_forward_sub(params, tensor);
  14132. } break;
  14133. case GGML_OP_MUL:
  14134. {
  14135. ggml_compute_forward_mul(params, tensor);
  14136. } break;
  14137. case GGML_OP_DIV:
  14138. {
  14139. ggml_compute_forward_div(params, tensor);
  14140. } break;
  14141. case GGML_OP_SQR:
  14142. {
  14143. ggml_compute_forward_sqr(params, tensor);
  14144. } break;
  14145. case GGML_OP_SQRT:
  14146. {
  14147. ggml_compute_forward_sqrt(params, tensor);
  14148. } break;
  14149. case GGML_OP_LOG:
  14150. {
  14151. ggml_compute_forward_log(params, tensor);
  14152. } break;
  14153. case GGML_OP_SIN:
  14154. {
  14155. ggml_compute_forward_sin(params, tensor);
  14156. } break;
  14157. case GGML_OP_COS:
  14158. {
  14159. ggml_compute_forward_cos(params, tensor);
  14160. } break;
  14161. case GGML_OP_SUM:
  14162. {
  14163. ggml_compute_forward_sum(params, tensor);
  14164. } break;
  14165. case GGML_OP_SUM_ROWS:
  14166. {
  14167. ggml_compute_forward_sum_rows(params, tensor);
  14168. } break;
  14169. case GGML_OP_MEAN:
  14170. {
  14171. ggml_compute_forward_mean(params, tensor);
  14172. } break;
  14173. case GGML_OP_ARGMAX:
  14174. {
  14175. ggml_compute_forward_argmax(params, tensor);
  14176. } break;
  14177. case GGML_OP_COUNT_EQUAL:
  14178. {
  14179. ggml_compute_forward_count_equal(params, tensor);
  14180. } break;
  14181. case GGML_OP_REPEAT:
  14182. {
  14183. ggml_compute_forward_repeat(params, tensor);
  14184. } break;
  14185. case GGML_OP_REPEAT_BACK:
  14186. {
  14187. ggml_compute_forward_repeat_back(params, tensor);
  14188. } break;
  14189. case GGML_OP_CONCAT:
  14190. {
  14191. ggml_compute_forward_concat(params, tensor);
  14192. } break;
  14193. case GGML_OP_SILU_BACK:
  14194. {
  14195. ggml_compute_forward_silu_back(params, tensor);
  14196. } break;
  14197. case GGML_OP_NORM:
  14198. {
  14199. ggml_compute_forward_norm(params, tensor);
  14200. } break;
  14201. case GGML_OP_RMS_NORM:
  14202. {
  14203. ggml_compute_forward_rms_norm(params, tensor);
  14204. } break;
  14205. case GGML_OP_RMS_NORM_BACK:
  14206. {
  14207. ggml_compute_forward_rms_norm_back(params, tensor);
  14208. } break;
  14209. case GGML_OP_GROUP_NORM:
  14210. {
  14211. ggml_compute_forward_group_norm(params, tensor);
  14212. } break;
  14213. case GGML_OP_MUL_MAT:
  14214. {
  14215. ggml_compute_forward_mul_mat(params, tensor);
  14216. } break;
  14217. case GGML_OP_MUL_MAT_ID:
  14218. {
  14219. ggml_compute_forward_mul_mat_id(params, tensor);
  14220. } break;
  14221. case GGML_OP_OUT_PROD:
  14222. {
  14223. ggml_compute_forward_out_prod(params, tensor);
  14224. } break;
  14225. case GGML_OP_SCALE:
  14226. {
  14227. ggml_compute_forward_scale(params, tensor);
  14228. } break;
  14229. case GGML_OP_SET:
  14230. {
  14231. ggml_compute_forward_set(params, tensor);
  14232. } break;
  14233. case GGML_OP_CPY:
  14234. {
  14235. ggml_compute_forward_cpy(params, tensor);
  14236. } break;
  14237. case GGML_OP_CONT:
  14238. {
  14239. ggml_compute_forward_cont(params, tensor);
  14240. } break;
  14241. case GGML_OP_RESHAPE:
  14242. {
  14243. ggml_compute_forward_reshape(params, tensor);
  14244. } break;
  14245. case GGML_OP_VIEW:
  14246. {
  14247. ggml_compute_forward_view(params, tensor);
  14248. } break;
  14249. case GGML_OP_PERMUTE:
  14250. {
  14251. ggml_compute_forward_permute(params, tensor);
  14252. } break;
  14253. case GGML_OP_TRANSPOSE:
  14254. {
  14255. ggml_compute_forward_transpose(params, tensor);
  14256. } break;
  14257. case GGML_OP_GET_ROWS:
  14258. {
  14259. ggml_compute_forward_get_rows(params, tensor);
  14260. } break;
  14261. case GGML_OP_GET_ROWS_BACK:
  14262. {
  14263. ggml_compute_forward_get_rows_back(params, tensor);
  14264. } break;
  14265. case GGML_OP_DIAG:
  14266. {
  14267. ggml_compute_forward_diag(params, tensor);
  14268. } break;
  14269. case GGML_OP_DIAG_MASK_INF:
  14270. {
  14271. ggml_compute_forward_diag_mask_inf(params, tensor);
  14272. } break;
  14273. case GGML_OP_DIAG_MASK_ZERO:
  14274. {
  14275. ggml_compute_forward_diag_mask_zero(params, tensor);
  14276. } break;
  14277. case GGML_OP_SOFT_MAX:
  14278. {
  14279. ggml_compute_forward_soft_max(params, tensor);
  14280. } break;
  14281. case GGML_OP_SOFT_MAX_BACK:
  14282. {
  14283. ggml_compute_forward_soft_max_back(params, tensor);
  14284. } break;
  14285. case GGML_OP_ROPE:
  14286. {
  14287. ggml_compute_forward_rope(params, tensor);
  14288. } break;
  14289. case GGML_OP_ROPE_BACK:
  14290. {
  14291. ggml_compute_forward_rope_back(params, tensor);
  14292. } break;
  14293. case GGML_OP_CLAMP:
  14294. {
  14295. ggml_compute_forward_clamp(params, tensor);
  14296. } break;
  14297. case GGML_OP_CONV_TRANSPOSE_1D:
  14298. {
  14299. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14300. } break;
  14301. case GGML_OP_IM2COL:
  14302. {
  14303. ggml_compute_forward_im2col(params, tensor);
  14304. } break;
  14305. case GGML_OP_IM2COL_BACK:
  14306. {
  14307. ggml_compute_forward_im2col_back_f32(params, tensor);
  14308. } break;
  14309. case GGML_OP_CONV_TRANSPOSE_2D:
  14310. {
  14311. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14312. } break;
  14313. case GGML_OP_POOL_1D:
  14314. {
  14315. ggml_compute_forward_pool_1d(params, tensor);
  14316. } break;
  14317. case GGML_OP_POOL_2D:
  14318. {
  14319. ggml_compute_forward_pool_2d(params, tensor);
  14320. } break;
  14321. case GGML_OP_POOL_2D_BACK:
  14322. {
  14323. ggml_compute_forward_pool_2d_back(params, tensor);
  14324. } break;
  14325. case GGML_OP_UPSCALE:
  14326. {
  14327. ggml_compute_forward_upscale(params, tensor);
  14328. } break;
  14329. case GGML_OP_PAD:
  14330. {
  14331. ggml_compute_forward_pad(params, tensor);
  14332. } break;
  14333. case GGML_OP_ARANGE:
  14334. {
  14335. ggml_compute_forward_arange(params, tensor);
  14336. } break;
  14337. case GGML_OP_TIMESTEP_EMBEDDING:
  14338. {
  14339. ggml_compute_forward_timestep_embedding(params, tensor);
  14340. } break;
  14341. case GGML_OP_ARGSORT:
  14342. {
  14343. ggml_compute_forward_argsort(params, tensor);
  14344. } break;
  14345. case GGML_OP_LEAKY_RELU:
  14346. {
  14347. ggml_compute_forward_leaky_relu(params, tensor);
  14348. } break;
  14349. case GGML_OP_FLASH_ATTN_EXT:
  14350. {
  14351. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14352. } break;
  14353. case GGML_OP_FLASH_ATTN_BACK:
  14354. {
  14355. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14356. GGML_ASSERT(t == 0 || t == 1);
  14357. bool masked = t != 0;
  14358. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14359. } break;
  14360. case GGML_OP_SSM_CONV:
  14361. {
  14362. ggml_compute_forward_ssm_conv(params, tensor);
  14363. } break;
  14364. case GGML_OP_SSM_SCAN:
  14365. {
  14366. ggml_compute_forward_ssm_scan(params, tensor);
  14367. } break;
  14368. case GGML_OP_WIN_PART:
  14369. {
  14370. ggml_compute_forward_win_part(params, tensor);
  14371. } break;
  14372. case GGML_OP_WIN_UNPART:
  14373. {
  14374. ggml_compute_forward_win_unpart(params, tensor);
  14375. } break;
  14376. case GGML_OP_UNARY:
  14377. {
  14378. ggml_compute_forward_unary(params, tensor);
  14379. } break;
  14380. case GGML_OP_GET_REL_POS:
  14381. {
  14382. ggml_compute_forward_get_rel_pos(params, tensor);
  14383. } break;
  14384. case GGML_OP_ADD_REL_POS:
  14385. {
  14386. ggml_compute_forward_add_rel_pos(params, tensor);
  14387. } break;
  14388. case GGML_OP_RWKV_WKV:
  14389. {
  14390. ggml_compute_forward_rwkv_wkv(params, tensor);
  14391. } break;
  14392. case GGML_OP_MAP_UNARY:
  14393. {
  14394. ggml_unary_op_f32_t fun;
  14395. memcpy(&fun, tensor->op_params, sizeof(fun));
  14396. ggml_compute_forward_map_unary(params, tensor, fun);
  14397. }
  14398. break;
  14399. case GGML_OP_MAP_BINARY:
  14400. {
  14401. ggml_binary_op_f32_t fun;
  14402. memcpy(&fun, tensor->op_params, sizeof(fun));
  14403. ggml_compute_forward_map_binary(params, tensor, fun);
  14404. }
  14405. break;
  14406. case GGML_OP_MAP_CUSTOM1_F32:
  14407. {
  14408. ggml_custom1_op_f32_t fun;
  14409. memcpy(&fun, tensor->op_params, sizeof(fun));
  14410. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14411. }
  14412. break;
  14413. case GGML_OP_MAP_CUSTOM2_F32:
  14414. {
  14415. ggml_custom2_op_f32_t fun;
  14416. memcpy(&fun, tensor->op_params, sizeof(fun));
  14417. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14418. }
  14419. break;
  14420. case GGML_OP_MAP_CUSTOM3_F32:
  14421. {
  14422. ggml_custom3_op_f32_t fun;
  14423. memcpy(&fun, tensor->op_params, sizeof(fun));
  14424. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14425. }
  14426. break;
  14427. case GGML_OP_MAP_CUSTOM1:
  14428. {
  14429. ggml_compute_forward_map_custom1(params, tensor);
  14430. }
  14431. break;
  14432. case GGML_OP_MAP_CUSTOM2:
  14433. {
  14434. ggml_compute_forward_map_custom2(params, tensor);
  14435. }
  14436. break;
  14437. case GGML_OP_MAP_CUSTOM3:
  14438. {
  14439. ggml_compute_forward_map_custom3(params, tensor);
  14440. }
  14441. break;
  14442. case GGML_OP_CROSS_ENTROPY_LOSS:
  14443. {
  14444. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14445. }
  14446. break;
  14447. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14448. {
  14449. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14450. }
  14451. break;
  14452. case GGML_OP_OPT_STEP_ADAMW:
  14453. {
  14454. ggml_compute_forward_opt_step_adamw(params, tensor);
  14455. }
  14456. break;
  14457. case GGML_OP_NONE:
  14458. {
  14459. // nop
  14460. } break;
  14461. case GGML_OP_COUNT:
  14462. {
  14463. GGML_ABORT("fatal error");
  14464. }
  14465. }
  14466. }
  14467. ////////////////////////////////////////////////////////////////////////////////
  14468. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14469. size = ggml_hash_size(size);
  14470. struct ggml_hash_set result;
  14471. result.size = size;
  14472. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14473. result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
  14474. return result;
  14475. }
  14476. void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
  14477. memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
  14478. }
  14479. void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
  14480. GGML_FREE(hash_set->used);
  14481. GGML_FREE(hash_set->keys);
  14482. }
  14483. size_t ggml_hash_size(size_t min_sz) {
  14484. // next primes after powers of two
  14485. static const size_t primes[] = {
  14486. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14487. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14488. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14489. 16777259, 33554467, 67108879, 134217757, 268435459,
  14490. 536870923, 1073741827, 2147483659
  14491. };
  14492. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14493. // find the smallest prime that is larger or equal than min_sz
  14494. size_t l = 0;
  14495. size_t r = n_primes;
  14496. while (l < r) {
  14497. size_t m = (l + r)/2;
  14498. if (primes[m] < min_sz) {
  14499. l = m + 1;
  14500. } else {
  14501. r = m;
  14502. }
  14503. }
  14504. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14505. return sz;
  14506. }
  14507. struct hash_map {
  14508. struct ggml_hash_set set;
  14509. struct ggml_tensor ** vals;
  14510. };
  14511. static struct hash_map * ggml_new_hash_map(size_t size) {
  14512. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14513. result->set = ggml_hash_set_new(size);
  14514. result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
  14515. return result;
  14516. }
  14517. static void ggml_hash_map_free(struct hash_map * map) {
  14518. ggml_hash_set_free(&map->set);
  14519. GGML_FREE(map->vals);
  14520. GGML_FREE(map);
  14521. }
  14522. // gradient checkpointing
  14523. static struct ggml_tensor * ggml_recompute_graph_node(
  14524. struct ggml_context * ctx,
  14525. struct ggml_cgraph * graph,
  14526. struct hash_map * replacements,
  14527. struct ggml_tensor * node) {
  14528. if (node == NULL) {
  14529. return NULL;
  14530. }
  14531. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14532. return node;
  14533. }
  14534. if (!ggml_hash_contains(&graph->visited_hash_set, node)) {
  14535. return node;
  14536. }
  14537. int count_children = 0;
  14538. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14539. if (node->src[k]) {
  14540. ++count_children;
  14541. }
  14542. }
  14543. if (count_children == 0) {
  14544. return node;
  14545. }
  14546. size_t i = ggml_hash_find(&replacements->set, node);
  14547. GGML_ASSERT(i != GGML_HASHSET_FULL); // assert that not full
  14548. if (replacements->set.keys[i] == node) {
  14549. return replacements->vals[i];
  14550. }
  14551. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14552. // insert clone into replacements
  14553. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14554. replacements->set.keys[i] = node;
  14555. replacements->vals[i] = clone;
  14556. clone->op = node->op;
  14557. clone->grad = node->grad;
  14558. clone->flags = node->flags;
  14559. clone->extra = node->extra;
  14560. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14561. clone->nb[k] = node->nb[k];
  14562. }
  14563. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14564. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14565. }
  14566. if (node->view_src != NULL) {
  14567. clone->data = (node->view_src->data == NULL)
  14568. ? NULL // view_src not yet allocated
  14569. : (char *) node->view_src->data // view_src already allocated
  14570. + node->view_offs;
  14571. clone->view_src = node->view_src;
  14572. clone->view_offs = node->view_offs;
  14573. }
  14574. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14575. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14576. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14577. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14578. return clone;
  14579. }
  14580. void ggml_build_backward_gradient_checkpointing(
  14581. struct ggml_context * ctx,
  14582. struct ggml_cgraph * gf,
  14583. struct ggml_cgraph * gb,
  14584. struct ggml_cgraph * gb_tmp,
  14585. struct ggml_tensor * * checkpoints,
  14586. int n_checkpoints) {
  14587. ggml_graph_cpy(gf, gb_tmp);
  14588. ggml_build_backward_expand(ctx, gf, gb_tmp, false);
  14589. if (n_checkpoints <= 0) {
  14590. ggml_graph_cpy(gb_tmp, gb);
  14591. return;
  14592. }
  14593. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14594. // insert checkpoints in replacements
  14595. for (int i = 0; i < n_checkpoints; ++i) {
  14596. size_t k = ggml_hash_find(&replacements->set, checkpoints[i]);
  14597. GGML_ASSERT(k != GGML_HASHSET_FULL); // assert that not full
  14598. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14599. replacements->set.keys[k] = checkpoints[i];
  14600. replacements->vals[k] = checkpoints[i];
  14601. }
  14602. ggml_graph_cpy(gf, gb);
  14603. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14604. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14605. // by recomputing them from checkpoints
  14606. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14607. struct ggml_tensor * node = gb_tmp->nodes[i];
  14608. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14609. // insert new tensors recomputing src, reusing already made replacements,
  14610. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14611. // recurse for input tensors,
  14612. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14613. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14614. }
  14615. // insert rewritten backward node with replacements made into resulting backward graph gb
  14616. ggml_build_forward_expand(gb, node);
  14617. }
  14618. ggml_hash_map_free(replacements);
  14619. }
  14620. // utility functions to change gradients
  14621. // if a is in acc_table, modify gradients in-place and mark result as gradient accumulator
  14622. // else if a is in zero_table, replace a
  14623. // else, just add/subtract/etc. the gradients
  14624. static struct ggml_tensor * ggml_add_or_set(
  14625. struct ggml_context * ctx,
  14626. struct ggml_tensor * a,
  14627. struct ggml_tensor * b,
  14628. struct ggml_hash_set * zero_table,
  14629. struct ggml_hash_set * acc_table) {
  14630. if (ggml_hash_contains(acc_table, a)) {
  14631. struct ggml_tensor * ret = ggml_add_impl(ctx, a, b, true);
  14632. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14633. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14634. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14635. return ret;
  14636. }
  14637. if (ggml_hash_contains(zero_table, a)) {
  14638. return b;
  14639. }
  14640. return ggml_add_impl(ctx, a, b, false);
  14641. }
  14642. static struct ggml_tensor * ggml_acc_or_set(
  14643. struct ggml_context * ctx,
  14644. struct ggml_tensor * a,
  14645. struct ggml_tensor * b,
  14646. const size_t nb1,
  14647. const size_t nb2,
  14648. const size_t nb3,
  14649. const size_t offset,
  14650. struct ggml_hash_set * zero_table,
  14651. struct ggml_hash_set * acc_table) {
  14652. if (ggml_hash_contains(acc_table, a)) {
  14653. struct ggml_tensor * ret = ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  14654. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14655. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14656. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14657. return ret;
  14658. }
  14659. if (ggml_hash_contains(zero_table, a)) {
  14660. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
  14661. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14662. }
  14663. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14664. }
  14665. static struct ggml_tensor * ggml_add1_or_set(
  14666. struct ggml_context * ctx,
  14667. struct ggml_tensor * a,
  14668. struct ggml_tensor * b,
  14669. struct ggml_hash_set * zero_table,
  14670. struct ggml_hash_set * acc_table) {
  14671. if (ggml_hash_contains(acc_table, a)) {
  14672. struct ggml_tensor * ret = ggml_add1_impl(ctx, a, b, true);
  14673. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14674. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14675. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14676. return ret;
  14677. }
  14678. if (ggml_hash_contains(zero_table, a)) {
  14679. return ggml_repeat(ctx, b, a);
  14680. }
  14681. return ggml_add1_impl(ctx, a, b, false);
  14682. }
  14683. static struct ggml_tensor * ggml_sub_or_set(
  14684. struct ggml_context * ctx,
  14685. struct ggml_tensor * a,
  14686. struct ggml_tensor * b,
  14687. struct ggml_hash_set * zero_table,
  14688. struct ggml_hash_set * acc_table) {
  14689. if (ggml_hash_contains(acc_table, a)) {
  14690. struct ggml_tensor * ret = ggml_sub_impl(ctx, a, b, true);
  14691. const size_t insert_result = ggml_hash_insert(acc_table, ret);
  14692. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  14693. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  14694. return ret;
  14695. }
  14696. if (ggml_hash_contains(zero_table, a)) {
  14697. return ggml_neg(ctx, b);
  14698. }
  14699. return ggml_sub_impl(ctx, a, b, false);
  14700. }
  14701. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table, struct ggml_hash_set * acc_table) {
  14702. struct ggml_tensor * src0 = tensor->src[0];
  14703. struct ggml_tensor * src1 = tensor->src[1];
  14704. struct ggml_tensor * src2 = tensor->src[2];
  14705. switch (tensor->op) {
  14706. case GGML_OP_DUP:
  14707. {
  14708. if (src0->grad) {
  14709. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14710. }
  14711. } break;
  14712. case GGML_OP_ADD:
  14713. {
  14714. if (src0->grad) {
  14715. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14716. }
  14717. if (src1->grad) {
  14718. if (ggml_are_same_shape(src0, src1)) {
  14719. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
  14720. } else {
  14721. src1->grad = ggml_add_or_set(ctx, src1->grad, ggml_repeat_back(ctx, tensor->grad, src1), zero_table, acc_table);
  14722. }
  14723. }
  14724. } break;
  14725. case GGML_OP_ADD1:
  14726. {
  14727. if (src0->grad) {
  14728. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14729. }
  14730. if (src1->grad) {
  14731. src1->grad = ggml_add_or_set(ctx,
  14732. src1->grad,
  14733. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14734. zero_table, acc_table);
  14735. }
  14736. } break;
  14737. case GGML_OP_ACC:
  14738. {
  14739. if (src0->grad) {
  14740. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14741. }
  14742. if (src1->grad) {
  14743. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14744. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14745. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14746. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14747. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14748. tensor->grad,
  14749. src1->grad->ne[0],
  14750. src1->grad->ne[1],
  14751. src1->grad->ne[2],
  14752. src1->grad->ne[3],
  14753. nb1, nb2, nb3, offset);
  14754. src1->grad =
  14755. ggml_add_or_set(ctx,
  14756. src1->grad,
  14757. ggml_reshape(ctx,
  14758. ggml_cont(ctx, tensor_grad_view),
  14759. src1->grad),
  14760. zero_table, acc_table);
  14761. }
  14762. } break;
  14763. case GGML_OP_SUB:
  14764. {
  14765. if (src0->grad) {
  14766. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  14767. }
  14768. if (src1->grad) {
  14769. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table, acc_table);
  14770. }
  14771. } break;
  14772. case GGML_OP_MUL:
  14773. {
  14774. if (src0->grad) {
  14775. src0->grad =
  14776. ggml_add_or_set(ctx,
  14777. src0->grad,
  14778. ggml_mul(ctx, src1, tensor->grad),
  14779. zero_table, acc_table);
  14780. }
  14781. if (src1->grad) {
  14782. src1->grad =
  14783. ggml_add_or_set(ctx,
  14784. src1->grad,
  14785. ggml_mul(ctx, src0, tensor->grad),
  14786. zero_table, acc_table);
  14787. }
  14788. } break;
  14789. case GGML_OP_DIV:
  14790. {
  14791. if (src0->grad) {
  14792. src0->grad =
  14793. ggml_add_or_set(ctx,
  14794. src0->grad,
  14795. ggml_div(ctx, tensor->grad, src1),
  14796. zero_table, acc_table);
  14797. }
  14798. if (src1->grad) {
  14799. src1->grad =
  14800. ggml_sub_or_set(ctx,
  14801. src1->grad,
  14802. ggml_mul(ctx,
  14803. tensor->grad,
  14804. ggml_div(ctx, tensor, src1)),
  14805. zero_table, acc_table);
  14806. }
  14807. } break;
  14808. case GGML_OP_SQR:
  14809. {
  14810. if (src0->grad) {
  14811. src0->grad =
  14812. ggml_add_or_set(ctx,
  14813. src0->grad,
  14814. ggml_scale(ctx,
  14815. ggml_mul(ctx, src0, tensor->grad),
  14816. 2.0f),
  14817. zero_table, acc_table);
  14818. }
  14819. } break;
  14820. case GGML_OP_SQRT:
  14821. {
  14822. if (src0->grad) {
  14823. src0->grad =
  14824. ggml_add_or_set(ctx,
  14825. src0->grad,
  14826. ggml_scale(ctx,
  14827. ggml_div(ctx,
  14828. tensor->grad,
  14829. tensor),
  14830. 0.5f),
  14831. zero_table, acc_table);
  14832. }
  14833. } break;
  14834. case GGML_OP_LOG:
  14835. {
  14836. if (src0->grad) {
  14837. src0->grad =
  14838. ggml_add_or_set(ctx,
  14839. src0->grad,
  14840. ggml_div(ctx,
  14841. tensor->grad,
  14842. src0),
  14843. zero_table, acc_table);
  14844. }
  14845. } break;
  14846. case GGML_OP_SIN:
  14847. {
  14848. if (src0->grad) {
  14849. src0->grad =
  14850. ggml_add_or_set(ctx,
  14851. src0->grad,
  14852. ggml_mul(ctx,
  14853. tensor->grad,
  14854. ggml_cos(ctx, src0)),
  14855. zero_table, acc_table);
  14856. }
  14857. } break;
  14858. case GGML_OP_COS:
  14859. {
  14860. if (src0->grad) {
  14861. src0->grad =
  14862. ggml_sub_or_set(ctx,
  14863. src0->grad,
  14864. ggml_mul(ctx,
  14865. tensor->grad,
  14866. ggml_sin(ctx, src0)),
  14867. zero_table, acc_table);
  14868. }
  14869. } break;
  14870. case GGML_OP_SUM:
  14871. {
  14872. if (src0->grad) {
  14873. src0->grad =
  14874. ggml_add1_or_set(ctx,
  14875. src0->grad,
  14876. tensor->grad,
  14877. zero_table, acc_table);
  14878. }
  14879. } break;
  14880. case GGML_OP_SUM_ROWS:
  14881. {
  14882. if (src0->grad) {
  14883. src0->grad =
  14884. ggml_add_or_set(ctx,
  14885. src0->grad,
  14886. ggml_repeat(ctx,
  14887. tensor->grad,
  14888. src0->grad),
  14889. zero_table, acc_table);
  14890. }
  14891. } break;
  14892. case GGML_OP_MEAN:
  14893. case GGML_OP_ARGMAX:
  14894. case GGML_OP_COUNT_EQUAL:
  14895. {
  14896. GGML_ABORT("fatal error"); // TODO: implement
  14897. }
  14898. case GGML_OP_REPEAT:
  14899. {
  14900. // necessary for llama
  14901. if (src0->grad) {
  14902. src0->grad = ggml_add_or_set(ctx,
  14903. src0->grad,
  14904. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14905. zero_table, acc_table);
  14906. }
  14907. } break;
  14908. case GGML_OP_REPEAT_BACK:
  14909. {
  14910. if (src0->grad) {
  14911. // TODO: test this
  14912. src0->grad = ggml_add_or_set(ctx,
  14913. src0->grad,
  14914. ggml_repeat(ctx, tensor->grad, src0->grad),
  14915. zero_table, acc_table);
  14916. }
  14917. } break;
  14918. case GGML_OP_CONCAT:
  14919. {
  14920. GGML_ABORT("fatal error"); // TODO: implement
  14921. }
  14922. case GGML_OP_SILU_BACK:
  14923. {
  14924. GGML_ABORT("fatal error"); // TODO: not implemented
  14925. }
  14926. case GGML_OP_NORM:
  14927. {
  14928. GGML_ABORT("fatal error"); // TODO: not implemented
  14929. }
  14930. case GGML_OP_RMS_NORM:
  14931. {
  14932. // necessary for llama
  14933. if (src0->grad) {
  14934. float eps;
  14935. memcpy(&eps, tensor->op_params, sizeof(float));
  14936. src0->grad = ggml_add_or_set(ctx,
  14937. src0->grad,
  14938. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14939. zero_table, acc_table);
  14940. }
  14941. } break;
  14942. case GGML_OP_RMS_NORM_BACK:
  14943. {
  14944. GGML_ABORT("fatal error"); // TODO: not implemented
  14945. }
  14946. case GGML_OP_GROUP_NORM:
  14947. {
  14948. GGML_ABORT("fatal error"); // TODO: not implemented
  14949. }
  14950. case GGML_OP_MUL_MAT:
  14951. {
  14952. // https://cs231n.github.io/optimization-2/#staged
  14953. // # forward pass
  14954. // s0 = np.random.randn(5, 10)
  14955. // s1 = np.random.randn(10, 3)
  14956. // t = s0.dot(s1)
  14957. // # now suppose we had the gradient on t from above in the circuit
  14958. // dt = np.random.randn(*t.shape) # same shape as t
  14959. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14960. // ds1 = t.T.dot(dt)
  14961. // tensor.shape [m,p,qq,rr]
  14962. // src0.shape [n,m,q1,r1]
  14963. // src1.shape [n,p,qq,rr]
  14964. // necessary for llama
  14965. if (src0->grad) {
  14966. struct ggml_tensor * s1_tg =
  14967. ggml_out_prod(ctx, // [n,m,qq,rr]
  14968. src1, // [n,p,qq,rr]
  14969. tensor->grad); // [m,p,qq,rr]
  14970. const int64_t qq = s1_tg->ne[2];
  14971. const int64_t rr = s1_tg->ne[3];
  14972. const int64_t q1 = src0->ne[2];
  14973. const int64_t r1 = src0->ne[3];
  14974. const bool ne2_broadcasted = qq > q1;
  14975. const bool ne3_broadcasted = rr > r1;
  14976. if (ne2_broadcasted || ne3_broadcasted) {
  14977. // sum broadcast repetitions of s1_tg into shape of src0
  14978. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14979. }
  14980. src0->grad =
  14981. ggml_add_or_set(ctx,
  14982. src0->grad, // [n,m,q1,r1]
  14983. s1_tg, // [n,m,q1,r1]
  14984. zero_table, acc_table);
  14985. }
  14986. if (src1->grad) {
  14987. src1->grad =
  14988. ggml_add_or_set(ctx,
  14989. src1->grad, // [n,p,qq,rr]
  14990. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14991. // ggml_cont(ctx, // [m,n,q1,r1]
  14992. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14993. // tensor->grad), // [m,p,qq,rr]
  14994. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14995. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14996. // // and then use ggml_out_prod
  14997. ggml_out_prod(ctx, // [n,p,qq,rr]
  14998. src0, // [n,m,q1,r1]
  14999. ggml_transpose(ctx, // [p,m,qq,rr]
  15000. tensor->grad)), // [m,p,qq,rr]
  15001. zero_table, acc_table);
  15002. }
  15003. } break;
  15004. case GGML_OP_MUL_MAT_ID:
  15005. {
  15006. GGML_ABORT("fatal error"); // TODO: not implemented
  15007. }
  15008. case GGML_OP_OUT_PROD:
  15009. {
  15010. GGML_ABORT("fatal error"); // TODO: not implemented
  15011. }
  15012. case GGML_OP_SCALE:
  15013. {
  15014. // necessary for llama
  15015. if (src0->grad) {
  15016. float s;
  15017. memcpy(&s, tensor->op_params, sizeof(float));
  15018. src0->grad =
  15019. ggml_add_or_set(ctx,
  15020. src0->grad,
  15021. ggml_scale_impl(ctx, tensor->grad, s, false),
  15022. zero_table, acc_table);
  15023. }
  15024. } break;
  15025. case GGML_OP_SET:
  15026. {
  15027. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15028. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15029. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15030. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15031. struct ggml_tensor * tensor_grad_view = NULL;
  15032. if (src0->grad || src1->grad) {
  15033. GGML_ASSERT(src0->type == tensor->type);
  15034. GGML_ASSERT(tensor->grad->type == tensor->type);
  15035. GGML_ASSERT(!src1->grad || src1->grad->type == tensor->grad->type);
  15036. tensor_grad_view = ggml_view_4d(ctx,
  15037. tensor->grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
  15038. nb1, nb2, nb3, offset);
  15039. }
  15040. if (src0->grad) {
  15041. src0->grad = ggml_add_or_set(ctx,
  15042. src0->grad,
  15043. ggml_acc_impl(ctx,
  15044. tensor->grad,
  15045. ggml_neg(ctx, tensor_grad_view),
  15046. nb1, nb2, nb3, offset, false),
  15047. zero_table, acc_table);
  15048. }
  15049. if (src1->grad) {
  15050. src1->grad =
  15051. ggml_add_or_set(ctx,
  15052. src1->grad,
  15053. ggml_reshape(ctx,
  15054. ggml_cont(ctx, tensor_grad_view),
  15055. src1->grad),
  15056. zero_table, acc_table);
  15057. }
  15058. } break;
  15059. case GGML_OP_CPY:
  15060. {
  15061. // necessary for llama
  15062. // cpy overwrites value of src1 by src0 and returns view(src1)
  15063. // the overwriting is mathematically equivalent to:
  15064. // tensor = src0 * 1 + src1 * 0
  15065. if (src0->grad) {
  15066. // dsrc0 = dtensor * 1
  15067. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15068. }
  15069. if (src1->grad) {
  15070. // dsrc1 = dtensor * 0 -> noop
  15071. }
  15072. } break;
  15073. case GGML_OP_CONT:
  15074. {
  15075. // same as cpy
  15076. if (src0->grad) {
  15077. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15078. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15079. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15080. }
  15081. } break;
  15082. case GGML_OP_RESHAPE:
  15083. {
  15084. // necessary for llama
  15085. if (src0->grad) {
  15086. src0->grad =
  15087. ggml_add_or_set(ctx, src0->grad,
  15088. ggml_reshape(ctx,
  15089. ggml_is_contiguous(tensor->grad)
  15090. ? tensor->grad
  15091. : ggml_cont(ctx, tensor->grad),
  15092. src0->grad),
  15093. zero_table, acc_table);
  15094. }
  15095. } break;
  15096. case GGML_OP_VIEW:
  15097. {
  15098. // necessary for llama
  15099. if (src0->grad) {
  15100. size_t offset;
  15101. memcpy(&offset, tensor->op_params, sizeof(offset));
  15102. size_t nb1 = tensor->nb[1];
  15103. size_t nb2 = tensor->nb[2];
  15104. size_t nb3 = tensor->nb[3];
  15105. if (src0->type != src0->grad->type) {
  15106. // gradient is typically F32, but src0 could be other type
  15107. size_t ng = ggml_element_size(src0->grad);
  15108. size_t n0 = ggml_element_size(src0);
  15109. GGML_ASSERT(offset % n0 == 0);
  15110. GGML_ASSERT(nb1 % n0 == 0);
  15111. GGML_ASSERT(nb2 % n0 == 0);
  15112. GGML_ASSERT(nb3 % n0 == 0);
  15113. offset = (offset / n0) * ng;
  15114. nb1 = (nb1 / n0) * ng;
  15115. nb2 = (nb2 / n0) * ng;
  15116. nb3 = (nb3 / n0) * ng;
  15117. }
  15118. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table, acc_table);
  15119. }
  15120. } break;
  15121. case GGML_OP_PERMUTE:
  15122. {
  15123. // necessary for llama
  15124. if (src0->grad) {
  15125. int32_t * axes = (int32_t *) tensor->op_params;
  15126. int axis0 = axes[0] & 0x3;
  15127. int axis1 = axes[1] & 0x3;
  15128. int axis2 = axes[2] & 0x3;
  15129. int axis3 = axes[3] & 0x3;
  15130. int axes_backward[4] = {0,0,0,0};
  15131. axes_backward[axis0] = 0;
  15132. axes_backward[axis1] = 1;
  15133. axes_backward[axis2] = 2;
  15134. axes_backward[axis3] = 3;
  15135. src0->grad =
  15136. ggml_add_or_set(ctx, src0->grad,
  15137. ggml_permute(ctx,
  15138. tensor->grad,
  15139. axes_backward[0],
  15140. axes_backward[1],
  15141. axes_backward[2],
  15142. axes_backward[3]),
  15143. zero_table, acc_table);
  15144. }
  15145. } break;
  15146. case GGML_OP_TRANSPOSE:
  15147. {
  15148. // necessary for llama
  15149. if (src0->grad) {
  15150. src0->grad =
  15151. ggml_add_or_set(ctx, src0->grad,
  15152. ggml_transpose(ctx, tensor->grad),
  15153. zero_table, acc_table);
  15154. }
  15155. } break;
  15156. case GGML_OP_GET_ROWS:
  15157. {
  15158. // necessary for llama (only for tokenizer)
  15159. if (src0->grad) {
  15160. src0->grad =
  15161. ggml_add_or_set(ctx, src0->grad,
  15162. // last ggml_get_rows_back argument src0->grad is only
  15163. // necessary to setup correct output shape
  15164. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15165. zero_table, acc_table);
  15166. }
  15167. if (src1->grad) {
  15168. // noop
  15169. }
  15170. } break;
  15171. case GGML_OP_GET_ROWS_BACK:
  15172. {
  15173. GGML_ABORT("fatal error"); // TODO: not implemented
  15174. }
  15175. case GGML_OP_DIAG:
  15176. {
  15177. GGML_ABORT("fatal error"); // TODO: not implemented
  15178. }
  15179. case GGML_OP_DIAG_MASK_INF:
  15180. {
  15181. // necessary for llama
  15182. if (src0->grad) {
  15183. const int n_past = ((int32_t *) tensor->op_params)[0];
  15184. src0->grad =
  15185. ggml_add_or_set(ctx, src0->grad,
  15186. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15187. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15188. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15189. zero_table, acc_table);
  15190. }
  15191. } break;
  15192. case GGML_OP_DIAG_MASK_ZERO:
  15193. {
  15194. // necessary for llama
  15195. if (src0->grad) {
  15196. const int n_past = ((int32_t *) tensor->op_params)[0];
  15197. src0->grad =
  15198. ggml_add_or_set(ctx, src0->grad,
  15199. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15200. zero_table, acc_table);
  15201. }
  15202. } break;
  15203. case GGML_OP_SOFT_MAX:
  15204. {
  15205. // necessary for llama
  15206. if (src0->grad) {
  15207. src0->grad =
  15208. ggml_add_or_set(ctx, src0->grad,
  15209. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15210. zero_table, acc_table);
  15211. }
  15212. GGML_ASSERT((!src1 || !src1->grad) && "backward pass for softmax mask not implemented");
  15213. } break;
  15214. case GGML_OP_SOFT_MAX_BACK:
  15215. {
  15216. GGML_ABORT("fatal error"); // TODO: not implemented
  15217. }
  15218. case GGML_OP_ROPE:
  15219. {
  15220. // necessary for llama
  15221. if (src0->grad) {
  15222. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15223. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15224. const int mode = ((int32_t *) tensor->op_params)[2];
  15225. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15226. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  15227. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  15228. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15229. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15230. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15231. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15232. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15233. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15234. src0->grad = ggml_add_or_set(ctx,
  15235. src0->grad,
  15236. ggml_rope_back(ctx,
  15237. tensor->grad,
  15238. src1,
  15239. src2,
  15240. n_dims,
  15241. mode,
  15242. n_ctx_orig,
  15243. freq_base,
  15244. freq_scale,
  15245. ext_factor,
  15246. attn_factor,
  15247. beta_fast,
  15248. beta_slow),
  15249. zero_table, acc_table);
  15250. }
  15251. GGML_ASSERT((!src2 || !src2->grad) && "gradients for freq factors not implemented");
  15252. } break;
  15253. case GGML_OP_ROPE_BACK:
  15254. {
  15255. if (src0->grad) {
  15256. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15257. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15258. const int mode = ((int32_t *) tensor->op_params)[2];
  15259. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15260. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  15261. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  15262. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15263. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15264. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15265. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15266. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15267. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15268. src0->grad = ggml_add_or_set(ctx,
  15269. src0->grad,
  15270. ggml_rope_impl(ctx,
  15271. tensor->grad,
  15272. src1,
  15273. src2,
  15274. n_dims,
  15275. mode,
  15276. n_ctx_orig,
  15277. freq_base,
  15278. freq_scale,
  15279. ext_factor,
  15280. attn_factor,
  15281. beta_fast,
  15282. beta_slow,
  15283. false),
  15284. zero_table, acc_table);
  15285. }
  15286. } break;
  15287. case GGML_OP_CLAMP:
  15288. {
  15289. GGML_ABORT("fatal error"); // TODO: not implemented
  15290. }
  15291. case GGML_OP_CONV_TRANSPOSE_1D:
  15292. {
  15293. GGML_ABORT("fatal error"); // TODO: not implemented
  15294. }
  15295. case GGML_OP_IM2COL:
  15296. {
  15297. if (src1->grad) {
  15298. const int32_t s0 = ggml_get_op_params_i32(tensor, 0);
  15299. const int32_t s1 = ggml_get_op_params_i32(tensor, 1);
  15300. const int32_t p0 = ggml_get_op_params_i32(tensor, 2);
  15301. const int32_t p1 = ggml_get_op_params_i32(tensor, 3);
  15302. const int32_t d0 = ggml_get_op_params_i32(tensor, 4);
  15303. const int32_t d1 = ggml_get_op_params_i32(tensor, 5);
  15304. const bool is_2D = ggml_get_op_params_i32(tensor, 6) == 1;
  15305. src1->grad = ggml_add_or_set(ctx,
  15306. src1->grad,
  15307. ggml_im2col_back(ctx, src0, tensor->grad, src1->ne, s0, s1, p0, p1, d0, d1, is_2D),
  15308. zero_table, acc_table);
  15309. }
  15310. } break;
  15311. case GGML_OP_IM2COL_BACK:
  15312. {
  15313. GGML_ABORT("fatal error"); // TODO: not implemented
  15314. }
  15315. case GGML_OP_CONV_TRANSPOSE_2D:
  15316. {
  15317. GGML_ABORT("fatal error"); // TODO: not implemented
  15318. }
  15319. case GGML_OP_POOL_1D:
  15320. {
  15321. GGML_ABORT("fatal error"); // TODO: not implemented
  15322. }
  15323. case GGML_OP_POOL_2D:
  15324. {
  15325. if (src0->grad) {
  15326. const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0);
  15327. const int32_t k0 = ggml_get_op_params_i32(tensor, 1);
  15328. const int32_t k1 = ggml_get_op_params_i32(tensor, 2);
  15329. const int32_t s0 = ggml_get_op_params_i32(tensor, 3);
  15330. const int32_t s1 = ggml_get_op_params_i32(tensor, 4);
  15331. const int32_t p0 = ggml_get_op_params_i32(tensor, 5);
  15332. const int32_t p1 = ggml_get_op_params_i32(tensor, 6);
  15333. src0->grad = ggml_add_or_set(ctx,
  15334. src0->grad,
  15335. ggml_pool_2d_back(ctx, tensor->grad, src0, op, k0, k1, s0, s1, p0, p1),
  15336. zero_table, acc_table);
  15337. }
  15338. } break;
  15339. case GGML_OP_POOL_2D_BACK:
  15340. {
  15341. GGML_ABORT("fatal error"); // TODO: not implemented
  15342. }
  15343. case GGML_OP_UPSCALE:
  15344. {
  15345. GGML_ABORT("fatal error"); // TODO: not implemented
  15346. }
  15347. case GGML_OP_PAD:
  15348. {
  15349. GGML_ABORT("fatal error"); // TODO: not implemented
  15350. }
  15351. case GGML_OP_ARANGE:
  15352. {
  15353. GGML_ABORT("fatal error"); // TODO: not implemented
  15354. }
  15355. case GGML_OP_TIMESTEP_EMBEDDING:
  15356. {
  15357. GGML_ABORT("fatal error"); // TODO: not implemented
  15358. }
  15359. case GGML_OP_ARGSORT:
  15360. {
  15361. GGML_ABORT("fatal error"); // TODO: not implemented
  15362. }
  15363. case GGML_OP_LEAKY_RELU:
  15364. {
  15365. GGML_ABORT("fatal error"); // TODO: not implemented
  15366. }
  15367. case GGML_OP_FLASH_ATTN_EXT:
  15368. {
  15369. GGML_ABORT("FA backward pass not adapted after rework");
  15370. struct ggml_tensor * flash_grad = NULL;
  15371. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15372. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15373. GGML_ASSERT(t == 0 || t == 1);
  15374. bool masked = t != 0;
  15375. flash_grad =
  15376. ggml_flash_attn_back(ctx,
  15377. src0,
  15378. src1,
  15379. tensor->src[2],
  15380. tensor->grad,
  15381. masked);
  15382. }
  15383. const int64_t elem_q = ggml_nelements(src0);
  15384. const int64_t elem_k = ggml_nelements(src1);
  15385. const int64_t elem_v = ggml_nelements(src2);
  15386. enum ggml_type result_type = flash_grad->type;
  15387. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15388. const size_t tsize = ggml_type_size(result_type);
  15389. const size_t offs_q = 0;
  15390. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15391. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15392. if (src0->grad) {
  15393. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15394. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15395. src0->grad = ggml_add_or_set(ctx,
  15396. src0->grad,
  15397. grad_q,
  15398. zero_table, acc_table);
  15399. }
  15400. if (src1->grad) {
  15401. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15402. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15403. src1->grad = ggml_add_or_set(ctx,
  15404. src1->grad,
  15405. grad_k,
  15406. zero_table, acc_table);
  15407. }
  15408. if (src2->grad) {
  15409. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15410. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15411. src2->grad = ggml_add_or_set(ctx,
  15412. src2->grad,
  15413. grad_v,
  15414. zero_table, acc_table);
  15415. }
  15416. } break;
  15417. case GGML_OP_FLASH_ATTN_BACK:
  15418. {
  15419. GGML_ABORT("fatal error"); // not supported
  15420. }
  15421. case GGML_OP_SSM_CONV:
  15422. case GGML_OP_SSM_SCAN:
  15423. {
  15424. GGML_ABORT("fatal error"); // TODO: not implemented
  15425. }
  15426. case GGML_OP_WIN_PART:
  15427. case GGML_OP_WIN_UNPART:
  15428. case GGML_OP_UNARY:
  15429. {
  15430. switch (ggml_get_unary_op(tensor)) {
  15431. case GGML_UNARY_OP_ABS:
  15432. {
  15433. if (src0->grad) {
  15434. src0->grad =
  15435. ggml_add_or_set(ctx,
  15436. src0->grad,
  15437. ggml_mul(ctx,
  15438. ggml_sgn(ctx, src0),
  15439. tensor->grad),
  15440. zero_table, acc_table);
  15441. }
  15442. } break;
  15443. case GGML_UNARY_OP_SGN:
  15444. {
  15445. if (src0->grad) {
  15446. // noop
  15447. }
  15448. } break;
  15449. case GGML_UNARY_OP_NEG:
  15450. {
  15451. if (src0->grad) {
  15452. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table, acc_table);
  15453. }
  15454. } break;
  15455. case GGML_UNARY_OP_STEP:
  15456. {
  15457. if (src0->grad) {
  15458. // noop
  15459. }
  15460. } break;
  15461. case GGML_UNARY_OP_TANH:
  15462. {
  15463. GGML_ABORT("fatal error"); // TODO: not implemented
  15464. }
  15465. case GGML_UNARY_OP_ELU:
  15466. {
  15467. GGML_ABORT("fatal error"); // TODO: not implemented
  15468. }
  15469. case GGML_UNARY_OP_RELU:
  15470. {
  15471. if (src0->grad) {
  15472. src0->grad = ggml_add_or_set(ctx,
  15473. src0->grad,
  15474. ggml_mul(ctx,
  15475. ggml_step(ctx, src0),
  15476. tensor->grad),
  15477. zero_table, acc_table);
  15478. }
  15479. } break;
  15480. case GGML_UNARY_OP_SIGMOID:
  15481. {
  15482. GGML_ABORT("fatal error"); // TODO: not implemented
  15483. }
  15484. case GGML_UNARY_OP_GELU:
  15485. {
  15486. GGML_ABORT("fatal error"); // TODO: not implemented
  15487. }
  15488. case GGML_UNARY_OP_GELU_QUICK:
  15489. {
  15490. GGML_ABORT("fatal error"); // TODO: not implemented
  15491. }
  15492. case GGML_UNARY_OP_SILU:
  15493. {
  15494. // necessary for llama
  15495. if (src0->grad) {
  15496. src0->grad = ggml_add_or_set(ctx,
  15497. src0->grad,
  15498. ggml_silu_back(ctx, src0, tensor->grad),
  15499. zero_table, acc_table);
  15500. }
  15501. } break;
  15502. case GGML_UNARY_OP_EXP:
  15503. {
  15504. if (src0->grad) {
  15505. src0->grad = ggml_add_or_set(ctx,
  15506. src0->grad,
  15507. ggml_mul(ctx, tensor, tensor->grad),
  15508. zero_table, acc_table);
  15509. }
  15510. } break;
  15511. default:
  15512. GGML_ABORT("fatal error");
  15513. }
  15514. } break;
  15515. case GGML_OP_GET_REL_POS:
  15516. case GGML_OP_ADD_REL_POS:
  15517. case GGML_OP_RWKV_WKV:
  15518. case GGML_OP_MAP_UNARY:
  15519. case GGML_OP_MAP_BINARY:
  15520. case GGML_OP_MAP_CUSTOM1_F32:
  15521. case GGML_OP_MAP_CUSTOM2_F32:
  15522. case GGML_OP_MAP_CUSTOM3_F32:
  15523. case GGML_OP_MAP_CUSTOM1:
  15524. case GGML_OP_MAP_CUSTOM2:
  15525. case GGML_OP_MAP_CUSTOM3:
  15526. {
  15527. GGML_ABORT("fatal error"); // not supported
  15528. }
  15529. case GGML_OP_CROSS_ENTROPY_LOSS:
  15530. {
  15531. if (src0->grad) {
  15532. src0->grad = ggml_add_or_set(ctx,
  15533. src0->grad,
  15534. ggml_cross_entropy_loss_back(ctx,
  15535. src0,
  15536. src1,
  15537. tensor->grad),
  15538. zero_table, acc_table);
  15539. }
  15540. GGML_ASSERT(!src1->grad && "backward pass for labels not implemented");
  15541. } break;
  15542. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15543. {
  15544. GGML_ABORT("fatal error"); // not supported
  15545. }
  15546. case GGML_OP_OPT_STEP_ADAMW:
  15547. {
  15548. GGML_ABORT("fatal error"); // not supported
  15549. }
  15550. case GGML_OP_NONE:
  15551. {
  15552. // nop
  15553. } break;
  15554. case GGML_OP_COUNT:
  15555. {
  15556. GGML_ABORT("fatal error");
  15557. }
  15558. }
  15559. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15560. if (tensor->src[i] && tensor->src[i]->grad) {
  15561. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15562. }
  15563. }
  15564. }
  15565. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15566. if (node->grad == NULL) {
  15567. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15568. // it can also happen during forward pass, if the user performs computations with constants
  15569. if (node->op != GGML_OP_NONE) {
  15570. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15571. }
  15572. }
  15573. // check if already visited
  15574. if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
  15575. return;
  15576. }
  15577. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15578. const int k =
  15579. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15580. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15581. /* unknown order, just fall back to using i*/ i;
  15582. if (node->src[k]) {
  15583. ggml_visit_parents(cgraph, node->src[k]);
  15584. }
  15585. }
  15586. if (node->op == GGML_OP_NONE && !(node->flags & GGML_TENSOR_FLAG_PARAM)) {
  15587. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15588. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15589. if (strlen(node->name) == 0) {
  15590. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15591. }
  15592. cgraph->leafs[cgraph->n_leafs] = node;
  15593. cgraph->n_leafs++;
  15594. } else {
  15595. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15596. if (strlen(node->name) == 0) {
  15597. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15598. }
  15599. cgraph->nodes[cgraph->n_nodes] = node;
  15600. cgraph->n_nodes++;
  15601. }
  15602. }
  15603. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15604. if (!expand) {
  15605. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15606. ggml_graph_clear(cgraph);
  15607. }
  15608. const int n0 = cgraph->n_nodes;
  15609. ggml_visit_parents(cgraph, tensor);
  15610. const int n_new = cgraph->n_nodes - n0;
  15611. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15612. if (n_new > 0) {
  15613. // the last added node should always be starting point
  15614. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15615. }
  15616. }
  15617. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15618. ggml_build_forward_impl(cgraph, tensor, true);
  15619. }
  15620. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate) {
  15621. GGML_ASSERT(gf->n_nodes > 0);
  15622. GGML_ASSERT(gf->grads);
  15623. for (int i = 0; i < gf->n_nodes; ++i) {
  15624. struct ggml_tensor * node = gf->nodes[i];
  15625. if (node->type == GGML_TYPE_I32) {
  15626. continue;
  15627. }
  15628. bool needs_grad = node->flags & GGML_TENSOR_FLAG_PARAM;
  15629. bool ignore_src[GGML_MAX_SRC] = {false};
  15630. switch (node->op) {
  15631. // gradients in node->src[0] for one reason or another have no effect on output gradients
  15632. case GGML_OP_IM2COL: // only used for its shape
  15633. case GGML_OP_IM2COL_BACK: // same as IM2COL
  15634. ignore_src[0] = true;
  15635. break;
  15636. case GGML_OP_UNARY: {
  15637. const enum ggml_unary_op uop = ggml_get_unary_op(node);
  15638. // SGN and STEP unary ops are piecewise constant
  15639. if (uop == GGML_UNARY_OP_SGN || uop == GGML_UNARY_OP_STEP) {
  15640. ignore_src[0] = true;
  15641. }
  15642. } break;
  15643. // gradients in node->src[1] for one reason or another have no effect on output gradients
  15644. case GGML_OP_CPY: // gradients in CPY target are irrelevant
  15645. case GGML_OP_GET_ROWS: // row indices not differentiable
  15646. case GGML_OP_GET_ROWS_BACK: // same as for GET_ROWS
  15647. case GGML_OP_ROPE: // positions not differentiable
  15648. ignore_src[1] = true;
  15649. break;
  15650. default:
  15651. break;
  15652. }
  15653. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15654. if (!node->src[j] || !node->src[j]->grad || ignore_src[j]) {
  15655. continue;
  15656. }
  15657. GGML_ASSERT(node->src[j]->type == GGML_TYPE_F32 || node->src[j]->type == GGML_TYPE_F16);
  15658. needs_grad = true;
  15659. break;
  15660. }
  15661. if (!needs_grad) {
  15662. continue;
  15663. }
  15664. // inplace operations are currently not supported
  15665. GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW ||
  15666. node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE);
  15667. // create a new tensor with the same type and shape as the node and set it as grad
  15668. node->grad = ggml_dup_tensor(ctx, node);
  15669. }
  15670. // keep tables of original gradients for replacement/accumulation logic
  15671. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15672. struct ggml_hash_set acc_table = ggml_hash_set_new(gf->size);
  15673. for (int i = 0; i < gf->n_nodes; i++) {
  15674. struct ggml_tensor * node = gf->nodes[i];
  15675. if (node->grad) {
  15676. {
  15677. const size_t insert_result = ggml_hash_insert(&zero_table, node->grad);
  15678. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  15679. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  15680. }
  15681. // only gradients of trainable parameters should be accumulated
  15682. if (accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) {
  15683. const size_t insert_result = ggml_hash_insert(&acc_table, node->grad);
  15684. GGML_ASSERT(insert_result != GGML_HASHSET_FULL);
  15685. GGML_ASSERT(insert_result != GGML_HASHSET_ALREADY_EXISTS);
  15686. }
  15687. }
  15688. }
  15689. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15690. struct ggml_tensor * node = gf->nodes[i];
  15691. // inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
  15692. // use allocator to automatically make inplace operations
  15693. if (node->grad) {
  15694. ggml_compute_backward(ctx, node, &zero_table, &acc_table);
  15695. }
  15696. }
  15697. for (int i = 0; i < gf->n_nodes; i++) {
  15698. struct ggml_tensor * node = gf->nodes[i];
  15699. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15700. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15701. ggml_build_forward_expand(gb, node->grad);
  15702. }
  15703. }
  15704. ggml_hash_set_free(&zero_table);
  15705. ggml_hash_set_free(&acc_table);
  15706. }
  15707. void ggml_build_opt_adamw(
  15708. struct ggml_context * ctx,
  15709. struct ggml_cgraph * gf,
  15710. struct ggml_cgraph * gb,
  15711. float alpha,
  15712. float beta1,
  15713. float beta2,
  15714. float eps,
  15715. float wd) {
  15716. for (int i = 0; i < gf->n_nodes; i++) {
  15717. struct ggml_tensor * node = gf->nodes[i];
  15718. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15719. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15720. struct ggml_tensor * opt_step = ggml_opt_step_adamw(ctx, node, node->grad, alpha, beta1, beta2, eps, wd);
  15721. ggml_build_forward_expand(gb, opt_step);
  15722. }
  15723. }
  15724. }
  15725. static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
  15726. void * ptr = *p;
  15727. ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
  15728. *p = (void *) ((char *) ptr + size);
  15729. return ptr;
  15730. }
  15731. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15732. size_t hash_size = ggml_hash_size(size * 2);
  15733. void * p = 0;
  15734. incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
  15735. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
  15736. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
  15737. incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
  15738. if (grads) {
  15739. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
  15740. }
  15741. incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15742. size_t nbytes = (size_t) p;
  15743. return nbytes;
  15744. }
  15745. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15746. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15747. }
  15748. size_t ggml_graph_overhead(void) {
  15749. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15750. }
  15751. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15752. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15753. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15754. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15755. // the size of the hash table is doubled since it needs to hold both nodes and leafs
  15756. size_t hash_size = ggml_hash_size(size * 2);
  15757. void * p = cgraph + 1;
  15758. struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15759. struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15760. struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15761. struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
  15762. ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15763. // check that we allocated the correct amount of memory
  15764. assert(obj_size == (size_t)((char *)p - (char *)cgraph));
  15765. *cgraph = (struct ggml_cgraph) {
  15766. /*.size =*/ size,
  15767. /*.n_nodes =*/ 0,
  15768. /*.n_leafs =*/ 0,
  15769. /*.nodes =*/ nodes_ptr,
  15770. /*.grads =*/ grads_ptr,
  15771. /*.leafs =*/ leafs_ptr,
  15772. /*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
  15773. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15774. };
  15775. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15776. return cgraph;
  15777. }
  15778. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15779. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15780. }
  15781. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15782. struct ggml_cgraph cgraph = {
  15783. /*.size =*/ 0,
  15784. /*.n_nodes =*/ i1 - i0,
  15785. /*.n_leafs =*/ 0,
  15786. /*.nodes =*/ cgraph0->nodes + i0,
  15787. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15788. /*.leafs =*/ NULL,
  15789. /*.hash_table =*/ { 0, NULL, NULL },
  15790. /*.order =*/ cgraph0->order,
  15791. };
  15792. return cgraph;
  15793. }
  15794. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15795. GGML_ASSERT(dst->size >= src->n_leafs);
  15796. GGML_ASSERT(dst->size >= src->n_nodes);
  15797. GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
  15798. dst->n_leafs = src->n_leafs;
  15799. dst->n_nodes = src->n_nodes;
  15800. dst->order = src->order;
  15801. for (int i = 0; i < src->n_leafs; ++i) {
  15802. dst->leafs[i] = src->leafs[i];
  15803. }
  15804. for (int i = 0; i < src->n_nodes; ++i) {
  15805. dst->nodes[i] = src->nodes[i];
  15806. }
  15807. if (src->grads) {
  15808. GGML_ASSERT(dst->grads != NULL);
  15809. for (int i = 0; i < src->n_nodes; ++i) {
  15810. dst->grads[i] = src->grads[i];
  15811. }
  15812. }
  15813. for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
  15814. // copy all hashset keys (tensors) that are in use
  15815. if (ggml_bitset_get(src->visited_hash_set.used, i)) {
  15816. ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
  15817. }
  15818. }
  15819. }
  15820. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15821. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15822. ggml_graph_cpy(cgraph, result);
  15823. return result;
  15824. }
  15825. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15826. GGML_ASSERT(cgraph->grads != NULL);
  15827. for (int i = 0; i < cgraph->n_nodes; i++) {
  15828. struct ggml_tensor * node = cgraph->nodes[i];
  15829. // initial gradients of loss should be 1, 0 otherwise
  15830. if (node->grad) {
  15831. if (node->flags & GGML_TENSOR_FLAG_LOSS) {
  15832. GGML_ASSERT(node->grad->buffer);
  15833. GGML_ASSERT(node->type == GGML_TYPE_F32);
  15834. GGML_ASSERT(ggml_is_scalar(node));
  15835. const float onef = 1.0f;
  15836. ggml_backend_tensor_set(node->grad, &onef, 0, ggml_nbytes(node->grad));
  15837. } else {
  15838. ggml_set_zero(node->grad);
  15839. }
  15840. }
  15841. GGML_ASSERT(node);
  15842. if (node->op == GGML_OP_OPT_STEP_ADAMW) {
  15843. // set iteration to 1 and clear momenta
  15844. ggml_set_op_params_i32(node, 0, 1);
  15845. ggml_set_zero(node->src[2]);
  15846. ggml_set_zero(node->src[3]);
  15847. }
  15848. }
  15849. }
  15850. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15851. cgraph->n_leafs = 0;
  15852. cgraph->n_nodes = 0;
  15853. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15854. }
  15855. int ggml_graph_size(struct ggml_cgraph * cgraph) {
  15856. return cgraph->size;
  15857. }
  15858. struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) {
  15859. if (i < 0) {
  15860. GGML_ASSERT(cgraph->n_nodes + i >= 0);
  15861. return cgraph->nodes[cgraph->n_nodes + i];
  15862. }
  15863. GGML_ASSERT(i < cgraph->n_nodes);
  15864. return cgraph->nodes[i];
  15865. }
  15866. struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) {
  15867. return cgraph->nodes;
  15868. }
  15869. int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) {
  15870. return cgraph->n_nodes;
  15871. }
  15872. void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15873. GGML_ASSERT(cgraph->size > cgraph->n_nodes);
  15874. cgraph->nodes[cgraph->n_nodes] = tensor;
  15875. cgraph->n_nodes++;
  15876. }
  15877. // Android's libc implementation "bionic" does not support setting affinity
  15878. #if defined(__gnu_linux__)
  15879. static void set_numa_thread_affinity(int thread_n) {
  15880. if (!ggml_is_numa()) {
  15881. return;
  15882. }
  15883. int node_num;
  15884. int rv;
  15885. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15886. switch(g_state.numa.numa_strategy) {
  15887. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15888. // run thread on node_num thread_n / (threads per node)
  15889. node_num = thread_n % g_state.numa.n_nodes;
  15890. break;
  15891. case GGML_NUMA_STRATEGY_ISOLATE:
  15892. // run thread on current_node
  15893. node_num = g_state.numa.current_node;
  15894. break;
  15895. case GGML_NUMA_STRATEGY_NUMACTL:
  15896. // use the cpuset that numactl gave us
  15897. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15898. if (rv) {
  15899. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15900. }
  15901. return;
  15902. default:
  15903. return;
  15904. }
  15905. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15906. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15907. CPU_ZERO_S(setsize, cpus);
  15908. for (size_t i = 0; i < node->n_cpus; ++i) {
  15909. CPU_SET_S(node->cpus[i], setsize, cpus);
  15910. }
  15911. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15912. if (rv) {
  15913. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15914. }
  15915. CPU_FREE(cpus);
  15916. }
  15917. static void clear_numa_thread_affinity(void) {
  15918. if (!ggml_is_numa()) {
  15919. return;
  15920. }
  15921. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15922. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15923. CPU_ZERO_S(setsize, cpus);
  15924. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15925. CPU_SET_S(i, setsize, cpus);
  15926. }
  15927. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15928. if (rv) {
  15929. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15930. }
  15931. CPU_FREE(cpus);
  15932. }
  15933. #else
  15934. // TODO: Windows etc.
  15935. // (the linux implementation may also work on BSD, someone should test)
  15936. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15937. static void clear_numa_thread_affinity(void) {}
  15938. #endif
  15939. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  15940. int n_tasks = 0;
  15941. if (ggml_is_empty(node)) {
  15942. // no need to multi-thread a no-op
  15943. n_tasks = 1;
  15944. return n_tasks;
  15945. }
  15946. switch (node->op) {
  15947. case GGML_OP_CPY:
  15948. case GGML_OP_DUP:
  15949. case GGML_OP_CONT:
  15950. case GGML_OP_ADD:
  15951. case GGML_OP_ADD1:
  15952. case GGML_OP_ACC:
  15953. {
  15954. n_tasks = n_threads;
  15955. } break;
  15956. case GGML_OP_SUB:
  15957. case GGML_OP_SQR:
  15958. case GGML_OP_SQRT:
  15959. case GGML_OP_LOG:
  15960. case GGML_OP_SIN:
  15961. case GGML_OP_COS:
  15962. case GGML_OP_SUM:
  15963. case GGML_OP_SUM_ROWS:
  15964. case GGML_OP_MEAN:
  15965. case GGML_OP_ARGMAX:
  15966. {
  15967. n_tasks = 1;
  15968. } break;
  15969. case GGML_OP_COUNT_EQUAL:
  15970. {
  15971. n_tasks = n_threads;
  15972. } break;
  15973. case GGML_OP_REPEAT:
  15974. case GGML_OP_REPEAT_BACK:
  15975. case GGML_OP_LEAKY_RELU:
  15976. {
  15977. n_tasks = 1;
  15978. } break;
  15979. case GGML_OP_UNARY:
  15980. switch (ggml_get_unary_op(node)) {
  15981. case GGML_UNARY_OP_ABS:
  15982. case GGML_UNARY_OP_SGN:
  15983. case GGML_UNARY_OP_NEG:
  15984. case GGML_UNARY_OP_STEP:
  15985. case GGML_UNARY_OP_TANH:
  15986. case GGML_UNARY_OP_ELU:
  15987. case GGML_UNARY_OP_RELU:
  15988. case GGML_UNARY_OP_SIGMOID:
  15989. case GGML_UNARY_OP_HARDSWISH:
  15990. case GGML_UNARY_OP_HARDSIGMOID:
  15991. case GGML_UNARY_OP_EXP:
  15992. {
  15993. n_tasks = 1;
  15994. } break;
  15995. case GGML_UNARY_OP_GELU:
  15996. case GGML_UNARY_OP_GELU_QUICK:
  15997. case GGML_UNARY_OP_SILU:
  15998. {
  15999. n_tasks = n_threads;
  16000. } break;
  16001. default:
  16002. GGML_ABORT("fatal error");
  16003. }
  16004. break;
  16005. case GGML_OP_SILU_BACK:
  16006. case GGML_OP_MUL:
  16007. case GGML_OP_DIV:
  16008. case GGML_OP_NORM:
  16009. case GGML_OP_RMS_NORM:
  16010. case GGML_OP_RMS_NORM_BACK:
  16011. case GGML_OP_GROUP_NORM:
  16012. case GGML_OP_CONCAT:
  16013. case GGML_OP_MUL_MAT:
  16014. case GGML_OP_MUL_MAT_ID:
  16015. case GGML_OP_OUT_PROD:
  16016. {
  16017. n_tasks = n_threads;
  16018. } break;
  16019. case GGML_OP_GET_ROWS:
  16020. {
  16021. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  16022. // decreases performance with GPU offloading
  16023. //n_tasks = n_threads;
  16024. n_tasks = 1;
  16025. } break;
  16026. case GGML_OP_SCALE:
  16027. case GGML_OP_SET:
  16028. case GGML_OP_RESHAPE:
  16029. case GGML_OP_VIEW:
  16030. case GGML_OP_PERMUTE:
  16031. case GGML_OP_TRANSPOSE:
  16032. case GGML_OP_GET_ROWS_BACK:
  16033. case GGML_OP_DIAG:
  16034. {
  16035. n_tasks = 1;
  16036. } break;
  16037. case GGML_OP_DIAG_MASK_ZERO:
  16038. case GGML_OP_DIAG_MASK_INF:
  16039. case GGML_OP_SOFT_MAX_BACK:
  16040. case GGML_OP_ROPE:
  16041. case GGML_OP_ROPE_BACK:
  16042. case GGML_OP_ADD_REL_POS:
  16043. {
  16044. n_tasks = n_threads;
  16045. } break;
  16046. case GGML_OP_CLAMP:
  16047. {
  16048. n_tasks = 1; //TODO
  16049. } break;
  16050. case GGML_OP_SOFT_MAX:
  16051. {
  16052. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  16053. } break;
  16054. case GGML_OP_IM2COL:
  16055. case GGML_OP_IM2COL_BACK:
  16056. case GGML_OP_CONV_TRANSPOSE_1D:
  16057. case GGML_OP_CONV_TRANSPOSE_2D:
  16058. {
  16059. n_tasks = n_threads;
  16060. } break;
  16061. case GGML_OP_POOL_1D:
  16062. case GGML_OP_POOL_2D:
  16063. case GGML_OP_POOL_2D_BACK:
  16064. {
  16065. n_tasks = 1;
  16066. } break;
  16067. case GGML_OP_UPSCALE:
  16068. case GGML_OP_PAD:
  16069. case GGML_OP_ARANGE:
  16070. case GGML_OP_TIMESTEP_EMBEDDING:
  16071. case GGML_OP_ARGSORT:
  16072. case GGML_OP_FLASH_ATTN_EXT:
  16073. case GGML_OP_FLASH_ATTN_BACK:
  16074. case GGML_OP_SSM_CONV:
  16075. case GGML_OP_SSM_SCAN:
  16076. {
  16077. n_tasks = n_threads;
  16078. } break;
  16079. case GGML_OP_WIN_PART:
  16080. case GGML_OP_WIN_UNPART:
  16081. case GGML_OP_GET_REL_POS:
  16082. case GGML_OP_RWKV_WKV:
  16083. case GGML_OP_MAP_UNARY:
  16084. case GGML_OP_MAP_BINARY:
  16085. case GGML_OP_MAP_CUSTOM1_F32:
  16086. case GGML_OP_MAP_CUSTOM2_F32:
  16087. case GGML_OP_MAP_CUSTOM3_F32:
  16088. {
  16089. n_tasks = 1;
  16090. } break;
  16091. case GGML_OP_MAP_CUSTOM1:
  16092. {
  16093. struct ggml_map_custom1_op_params p;
  16094. memcpy(&p, node->op_params, sizeof(p));
  16095. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16096. n_tasks = n_threads;
  16097. } else {
  16098. n_tasks = MIN(p.n_tasks, n_threads);
  16099. }
  16100. } break;
  16101. case GGML_OP_MAP_CUSTOM2:
  16102. {
  16103. struct ggml_map_custom2_op_params p;
  16104. memcpy(&p, node->op_params, sizeof(p));
  16105. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16106. n_tasks = n_threads;
  16107. } else {
  16108. n_tasks = MIN(p.n_tasks, n_threads);
  16109. }
  16110. } break;
  16111. case GGML_OP_MAP_CUSTOM3:
  16112. {
  16113. struct ggml_map_custom3_op_params p;
  16114. memcpy(&p, node->op_params, sizeof(p));
  16115. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16116. n_tasks = n_threads;
  16117. } else {
  16118. n_tasks = MIN(p.n_tasks, n_threads);
  16119. }
  16120. } break;
  16121. case GGML_OP_CROSS_ENTROPY_LOSS:
  16122. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16123. case GGML_OP_OPT_STEP_ADAMW:
  16124. {
  16125. n_tasks = n_threads;
  16126. } break;
  16127. case GGML_OP_NONE:
  16128. {
  16129. n_tasks = 1;
  16130. } break;
  16131. case GGML_OP_COUNT:
  16132. {
  16133. GGML_ABORT("fatal error");
  16134. }
  16135. default:
  16136. {
  16137. fprintf(stderr, "%s: op not implemented: ", __func__);
  16138. if (node->op < GGML_OP_COUNT) {
  16139. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16140. } else {
  16141. fprintf(stderr, "%d\n", node->op);
  16142. }
  16143. GGML_ABORT("fatal error");
  16144. }
  16145. }
  16146. assert(n_tasks > 0);
  16147. return n_tasks;
  16148. }
  16149. static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
  16150. #if defined(_WIN32)
  16151. #include "windows.h"
  16152. // TODO: support > 64 CPUs
  16153. bool ggml_thread_apply_affinity(bool * mask) {
  16154. HANDLE h = GetCurrentThread();
  16155. uint64_t bitmask = 0ULL;
  16156. assert(GGML_MAX_N_THREADS >= 64);
  16157. for (int32_t i = 0; i < 8; i++) {
  16158. int32_t idx = i * 8;
  16159. uint8_t val = 0;
  16160. val |= mask[idx + 0] << 0;
  16161. val |= mask[idx + 1] << 1;
  16162. val |= mask[idx + 2] << 2;
  16163. val |= mask[idx + 3] << 3;
  16164. val |= mask[idx + 4] << 4;
  16165. val |= mask[idx + 5] << 5;
  16166. val |= mask[idx + 6] << 6;
  16167. val |= mask[idx + 7] << 7;
  16168. bitmask |= (uint64_t)val << idx;
  16169. }
  16170. for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) {
  16171. if (mask[i]) {
  16172. fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n");
  16173. break;
  16174. }
  16175. }
  16176. DWORD_PTR m = (DWORD_PTR)bitmask;
  16177. m = SetThreadAffinityMask(h, m);
  16178. return m != 0;
  16179. }
  16180. static bool ggml_thread_apply_priority(int32_t prio) {
  16181. // Note that on Windows the Process Priority Class must be updated in order to set Thread priority.
  16182. // This is up to the applications.
  16183. DWORD p = THREAD_PRIORITY_NORMAL;
  16184. switch (prio) {
  16185. case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
  16186. case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
  16187. case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
  16188. case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
  16189. }
  16190. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16191. // Keep inherited policy/priority
  16192. return true;
  16193. }
  16194. if (!SetThreadPriority(GetCurrentThread(), p)) {
  16195. fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError());
  16196. return false;
  16197. }
  16198. return true;
  16199. }
  16200. #elif defined(__APPLE__)
  16201. #include <sys/types.h>
  16202. #include <sys/resource.h>
  16203. static bool ggml_thread_apply_affinity(const bool * mask) {
  16204. // Not supported on Apple platforms
  16205. UNUSED(mask);
  16206. return true;
  16207. }
  16208. static bool ggml_thread_apply_priority(int32_t prio) {
  16209. struct sched_param p;
  16210. int32_t policy = SCHED_OTHER;
  16211. switch (prio) {
  16212. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  16213. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  16214. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  16215. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  16216. }
  16217. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16218. // Keep inherited policy/priority
  16219. return true;
  16220. }
  16221. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  16222. if (err != 0) {
  16223. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  16224. return false;
  16225. }
  16226. return true;
  16227. }
  16228. #elif defined(__gnu_linux__)
  16229. // TODO: this may not work on BSD, to be verified
  16230. static bool ggml_thread_apply_affinity(const bool * mask) {
  16231. cpu_set_t cpuset;
  16232. int err;
  16233. CPU_ZERO(&cpuset);
  16234. for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  16235. if (mask[i]) {
  16236. GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i);
  16237. CPU_SET(i, &cpuset);
  16238. }
  16239. }
  16240. #ifdef __ANDROID__
  16241. err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
  16242. if (err < 0) {
  16243. err = errno;
  16244. }
  16245. #else
  16246. err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
  16247. #endif
  16248. if (err != 0) {
  16249. fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err);
  16250. return false;
  16251. }
  16252. return true;
  16253. }
  16254. static bool ggml_thread_apply_priority(int32_t prio) {
  16255. struct sched_param p;
  16256. int32_t policy = SCHED_OTHER;
  16257. switch (prio) {
  16258. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  16259. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  16260. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  16261. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  16262. }
  16263. if (prio == GGML_SCHED_PRIO_NORMAL) {
  16264. // Keep inherited policy/priority
  16265. return true;
  16266. }
  16267. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  16268. if (err != 0) {
  16269. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  16270. return false;
  16271. }
  16272. return true;
  16273. }
  16274. #else // unsupported platforms
  16275. static bool ggml_thread_apply_affinity(const bool * mask) {
  16276. UNUSED(mask);
  16277. return true;
  16278. }
  16279. static bool ggml_thread_apply_priority(int32_t prio) {
  16280. UNUSED(prio);
  16281. return true;
  16282. }
  16283. #endif
  16284. static bool ggml_thread_cpumask_is_valid(const bool * mask) {
  16285. for (int i = 0; i < GGML_MAX_N_THREADS; i++) {
  16286. if (mask[i]) { return true; }
  16287. }
  16288. return false;
  16289. }
  16290. static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) {
  16291. if (!strict) {
  16292. memcpy(local_mask, global_mask, GGML_MAX_N_THREADS);
  16293. return;
  16294. } else {
  16295. memset(local_mask, 0, GGML_MAX_N_THREADS);
  16296. int32_t base_idx = *iter;
  16297. for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  16298. int32_t idx = base_idx + i;
  16299. if (idx >= GGML_MAX_N_THREADS) {
  16300. // Just a cheaper modulo
  16301. idx -= GGML_MAX_N_THREADS;
  16302. }
  16303. if (global_mask[idx]) {
  16304. local_mask[idx] = 1;
  16305. *iter = idx + 1;
  16306. return;
  16307. }
  16308. }
  16309. }
  16310. }
  16311. void ggml_threadpool_free(struct ggml_threadpool* threadpool) {
  16312. if (!threadpool) return;
  16313. const int n_threads = threadpool->n_threads_max;
  16314. #ifndef GGML_USE_OPENMP
  16315. struct ggml_compute_state* workers = threadpool->workers;
  16316. ggml_mutex_lock(&threadpool->mutex);
  16317. threadpool->stop = true;
  16318. threadpool->pause = false;
  16319. ggml_cond_broadcast(&threadpool->cond);
  16320. ggml_mutex_unlock(&threadpool->mutex);
  16321. for (int j = 1; j < n_threads; j++) {
  16322. int32_t rc = ggml_thread_join(workers[j].thrd, NULL);
  16323. GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED);
  16324. UNUSED(rc);
  16325. }
  16326. ggml_mutex_destroy(&threadpool->mutex);
  16327. ggml_cond_destroy(&threadpool->cond);
  16328. #endif // GGML_USE_OPENMP
  16329. const size_t workers_size = sizeof(struct ggml_compute_state) * n_threads;
  16330. ggml_aligned_free(threadpool->workers, workers_size);
  16331. ggml_aligned_free(threadpool, sizeof(struct ggml_threadpool));
  16332. }
  16333. #ifndef GGML_USE_OPENMP
  16334. // pause/resume must be called under mutex
  16335. static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) {
  16336. GGML_PRINT_DEBUG("Pausing threadpool\n");
  16337. threadpool->pause = true;
  16338. ggml_cond_broadcast(&threadpool->cond);
  16339. }
  16340. static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) {
  16341. GGML_PRINT_DEBUG("Resuming threadpool\n");
  16342. threadpool->pause = false;
  16343. ggml_cond_broadcast(&threadpool->cond);
  16344. }
  16345. #endif
  16346. void ggml_threadpool_pause(struct ggml_threadpool * threadpool) {
  16347. #ifndef GGML_USE_OPENMP
  16348. ggml_mutex_lock(&threadpool->mutex);
  16349. if (!threadpool->pause) {
  16350. ggml_threadpool_pause_locked(threadpool);
  16351. }
  16352. ggml_mutex_unlock(&threadpool->mutex);
  16353. #else
  16354. UNUSED(threadpool);
  16355. #endif
  16356. }
  16357. void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
  16358. #ifndef GGML_USE_OPENMP
  16359. ggml_mutex_lock(&threadpool->mutex);
  16360. if (threadpool->pause) {
  16361. ggml_threadpool_resume_locked(threadpool);
  16362. }
  16363. ggml_mutex_unlock(&threadpool->mutex);
  16364. #else
  16365. UNUSED(threadpool);
  16366. #endif
  16367. }
  16368. struct ggml_cplan ggml_graph_plan(
  16369. const struct ggml_cgraph * cgraph,
  16370. int n_threads,
  16371. struct ggml_threadpool * threadpool) {
  16372. if (threadpool == NULL) {
  16373. GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  16374. }
  16375. if (n_threads <= 0) {
  16376. n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
  16377. }
  16378. size_t work_size = 0;
  16379. struct ggml_cplan cplan;
  16380. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16381. int max_tasks = 1;
  16382. // thread scheduling for the different operations + work buffer size estimation
  16383. for (int i = 0; i < cgraph->n_nodes; i++) {
  16384. struct ggml_tensor * node = cgraph->nodes[i];
  16385. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  16386. max_tasks = MAX(max_tasks, n_tasks);
  16387. size_t cur = 0;
  16388. switch (node->op) {
  16389. case GGML_OP_CPY:
  16390. case GGML_OP_DUP:
  16391. {
  16392. if (ggml_is_quantized(node->type) ||
  16393. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16394. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16395. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16396. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16397. }
  16398. } break;
  16399. case GGML_OP_ADD:
  16400. case GGML_OP_ADD1:
  16401. {
  16402. if (ggml_is_quantized(node->src[0]->type)) {
  16403. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16404. }
  16405. } break;
  16406. case GGML_OP_ACC:
  16407. {
  16408. if (ggml_is_quantized(node->src[0]->type)) {
  16409. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16410. }
  16411. } break;
  16412. case GGML_OP_COUNT_EQUAL:
  16413. {
  16414. cur = ggml_type_size(node->type)*n_tasks;
  16415. } break;
  16416. case GGML_OP_MUL_MAT:
  16417. {
  16418. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16419. if (node->src[1]->type != vec_dot_type) {
  16420. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16421. }
  16422. } break;
  16423. case GGML_OP_MUL_MAT_ID:
  16424. {
  16425. cur = 0;
  16426. const struct ggml_tensor * src0 = node->src[0];
  16427. const struct ggml_tensor * src1 = node->src[1];
  16428. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16429. if (src1->type != vec_dot_type) {
  16430. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16431. }
  16432. const int n_as = src0->ne[2];
  16433. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16434. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16435. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16436. } break;
  16437. case GGML_OP_OUT_PROD:
  16438. {
  16439. if (ggml_is_quantized(node->src[0]->type)) {
  16440. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16441. }
  16442. } break;
  16443. case GGML_OP_SOFT_MAX:
  16444. case GGML_OP_ROPE:
  16445. {
  16446. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16447. } break;
  16448. case GGML_OP_CONV_TRANSPOSE_1D:
  16449. {
  16450. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16451. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16452. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16453. const int64_t ne00 = node->src[0]->ne[0]; // K
  16454. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16455. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16456. const int64_t ne10 = node->src[1]->ne[0]; // L
  16457. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16458. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16459. node->src[0]->type == GGML_TYPE_BF16) &&
  16460. node->src[1]->type == GGML_TYPE_F32) {
  16461. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16462. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16463. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16464. node->src[1]->type == GGML_TYPE_F32) {
  16465. cur += sizeof(float)*ne00*ne01*ne02;
  16466. cur += sizeof(float)*ne10*ne11;
  16467. } else {
  16468. GGML_ABORT("fatal error");
  16469. }
  16470. } break;
  16471. case GGML_OP_CONV_TRANSPOSE_2D:
  16472. {
  16473. const int64_t ne00 = node->src[0]->ne[0]; // W
  16474. const int64_t ne01 = node->src[0]->ne[1]; // H
  16475. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16476. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16477. const int64_t ne10 = node->src[1]->ne[0]; // W
  16478. const int64_t ne11 = node->src[1]->ne[1]; // H
  16479. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16480. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16481. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16482. } break;
  16483. case GGML_OP_FLASH_ATTN_EXT:
  16484. {
  16485. const int64_t ne00 = node->src[0]->ne[0]; // D
  16486. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16487. } break;
  16488. case GGML_OP_FLASH_ATTN_BACK:
  16489. {
  16490. const int64_t D = node->src[0]->ne[0];
  16491. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16492. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16493. if (node->src[1]->type == GGML_TYPE_F32) {
  16494. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16495. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16496. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16497. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16498. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16499. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16500. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16501. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16502. }
  16503. } break;
  16504. case GGML_OP_CROSS_ENTROPY_LOSS:
  16505. {
  16506. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16507. } break;
  16508. case GGML_OP_COUNT:
  16509. {
  16510. GGML_ABORT("fatal error");
  16511. }
  16512. default:
  16513. break;
  16514. }
  16515. work_size = MAX(work_size, cur);
  16516. }
  16517. if (work_size > 0) {
  16518. work_size += CACHE_LINE_SIZE*(n_threads);
  16519. }
  16520. cplan.threadpool = threadpool;
  16521. cplan.n_threads = MIN(max_tasks, n_threads);
  16522. cplan.work_size = work_size;
  16523. cplan.work_data = NULL;
  16524. return cplan;
  16525. }
  16526. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16527. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16528. struct ggml_threadpool * tp = state->threadpool;
  16529. const struct ggml_cgraph * cgraph = tp->cgraph;
  16530. const struct ggml_cplan * cplan = tp->cplan;
  16531. set_numa_thread_affinity(state->ith);
  16532. struct ggml_compute_params params = {
  16533. /*.ith =*/ state->ith,
  16534. /*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed),
  16535. /*.wsize =*/ cplan->work_size,
  16536. /*.wdata =*/ cplan->work_data,
  16537. /*.threadpool=*/ tp,
  16538. };
  16539. for (int node_n = 0; node_n < cgraph->n_nodes && !tp->abort; node_n++) {
  16540. struct ggml_tensor * node = cgraph->nodes[node_n];
  16541. ggml_compute_forward(&params, node);
  16542. if (state->ith == 0 && cplan->abort_callback &&
  16543. cplan->abort_callback(cplan->abort_callback_data)) {
  16544. tp->abort = true;
  16545. tp->ec = GGML_STATUS_ABORTED;
  16546. }
  16547. ggml_barrier(state->threadpool);
  16548. }
  16549. return 0;
  16550. }
  16551. #ifndef GGML_USE_OPENMP
  16552. // check if thread is active
  16553. static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) {
  16554. struct ggml_threadpool * threadpool = state->threadpool;
  16555. int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed);
  16556. return (state->ith < n_threads);
  16557. }
  16558. // check if thread is ready to proceed (exit from polling or sleeping)
  16559. static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) {
  16560. struct ggml_threadpool * threadpool = state->threadpool;
  16561. if (state->pending || threadpool->stop || threadpool->pause) { return true; }
  16562. // check for new graph/work
  16563. int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed);
  16564. if (new_graph != state->last_graph) {
  16565. state->pending = ggml_graph_compute_thread_active(state);
  16566. state->last_graph = new_graph;
  16567. }
  16568. return state->pending;
  16569. }
  16570. // sync thread state after polling
  16571. static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) {
  16572. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  16573. #ifdef GGML_TSAN_ENABLED
  16574. atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst);
  16575. #else
  16576. atomic_thread_fence(memory_order_seq_cst);
  16577. #endif
  16578. UNUSED(state);
  16579. }
  16580. static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) {
  16581. struct ggml_threadpool * threadpool = state->threadpool;
  16582. // Skip polling for unused threads
  16583. if (!ggml_graph_compute_thread_active(state)) {
  16584. return state->pending;
  16585. }
  16586. // This seems to make 0 ... 100 a decent range for polling level across modern processors.
  16587. // Perhaps, we can adjust it dynamically based on load and things.
  16588. const uint64_t n_rounds = 1024UL * 128 * threadpool->poll;
  16589. for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) {
  16590. // No new work. Keep polling.
  16591. ggml_thread_cpu_relax();
  16592. }
  16593. return state->pending;
  16594. }
  16595. static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) {
  16596. struct ggml_threadpool * threadpool = state->threadpool;
  16597. if (ggml_graph_compute_poll_for_work(state)) {
  16598. ggml_graph_compute_thread_sync(state);
  16599. return state->pending;
  16600. }
  16601. ggml_mutex_lock_shared(&threadpool->mutex);
  16602. while (!ggml_graph_compute_thread_ready(state)) {
  16603. // No new work. Wait for the signal.
  16604. GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith);
  16605. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  16606. }
  16607. ggml_mutex_unlock_shared(&threadpool->mutex);
  16608. return state->pending;
  16609. }
  16610. static thread_ret_t ggml_graph_compute_secondary_thread(void* data) {
  16611. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16612. struct ggml_threadpool * threadpool = state->threadpool;
  16613. ggml_thread_apply_priority(threadpool->prio);
  16614. if (ggml_thread_cpumask_is_valid(state->cpumask)) {
  16615. ggml_thread_apply_affinity(state->cpumask);
  16616. }
  16617. while (true) {
  16618. // Check if we need to sleep
  16619. while (threadpool->pause) {
  16620. GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith);
  16621. ggml_mutex_lock_shared(&threadpool->mutex);
  16622. if (threadpool->pause) {
  16623. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  16624. }
  16625. GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith);
  16626. ggml_mutex_unlock_shared(&threadpool->mutex);
  16627. }
  16628. // This needs to be checked for after the cond_wait
  16629. if (threadpool->stop) break;
  16630. // Check if there is new work
  16631. // The main thread is the only one that can dispatch new work
  16632. ggml_graph_compute_check_for_work(state);
  16633. if (state->pending) {
  16634. state->pending = false;
  16635. ggml_graph_compute_thread(state);
  16636. }
  16637. }
  16638. return (thread_ret_t) 0;
  16639. }
  16640. // Start processing new graph
  16641. static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads)
  16642. {
  16643. // Always take the mutex here because the worker threads are doing hybrid poll/wait
  16644. ggml_mutex_lock(&threadpool->mutex);
  16645. GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n", threadpool->n_threads_cur, n_threads);
  16646. // Update the number of active threads
  16647. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  16648. // Indicate the graph is ready to be processed
  16649. // We need the full seq-cst fence here because of the polling threads (used in thread_sync)
  16650. atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst);
  16651. if (threadpool->pause) {
  16652. // Update main thread prio and affinity to match the threadpool settings
  16653. ggml_thread_apply_priority(threadpool->prio);
  16654. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  16655. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  16656. }
  16657. // resume does cond broadcast
  16658. ggml_threadpool_resume_locked(threadpool);
  16659. } else {
  16660. ggml_cond_broadcast(&threadpool->cond);
  16661. }
  16662. ggml_mutex_unlock(&threadpool->mutex);
  16663. }
  16664. #endif // GGML_USE_OPENMP
  16665. void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
  16666. p->n_threads = n_threads;
  16667. p->prio = 0; // default priority (usually means normal or inherited)
  16668. p->poll = 50; // hybrid-polling enabled
  16669. p->strict_cpu = false; // no strict placement (all threads share same cpumask)
  16670. p->paused = false; // threads are ready to go
  16671. memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
  16672. }
  16673. struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
  16674. struct ggml_threadpool_params p;
  16675. ggml_threadpool_params_init(&p, n_threads);
  16676. return p;
  16677. }
  16678. bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
  16679. if (p0->n_threads != p1->n_threads ) return false;
  16680. if (p0->prio != p1->prio ) return false;
  16681. if (p0->poll != p1->poll ) return false;
  16682. if (p0->strict_cpu != p1->strict_cpu ) return false;
  16683. return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
  16684. }
  16685. static struct ggml_threadpool * ggml_threadpool_new_impl(
  16686. struct ggml_threadpool_params * tpp,
  16687. struct ggml_cgraph * cgraph,
  16688. struct ggml_cplan * cplan) {
  16689. struct ggml_threadpool * threadpool =
  16690. ggml_aligned_malloc(sizeof(struct ggml_threadpool));
  16691. {
  16692. threadpool->cgraph = cgraph;
  16693. threadpool->cplan = cplan;
  16694. threadpool->n_graph = 0;
  16695. threadpool->n_barrier = 0;
  16696. threadpool->n_barrier_passed = 0;
  16697. threadpool->current_chunk = 0;
  16698. threadpool->stop = false;
  16699. threadpool->pause = tpp->paused;
  16700. threadpool->abort = false;
  16701. threadpool->workers = NULL;
  16702. threadpool->n_threads_max = tpp->n_threads;
  16703. threadpool->n_threads_cur = tpp->n_threads;
  16704. threadpool->poll = tpp->poll;
  16705. threadpool->prio = tpp->prio;
  16706. threadpool->ec = GGML_STATUS_SUCCESS;
  16707. }
  16708. // Allocate and init workers state
  16709. const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads;
  16710. struct ggml_compute_state * workers = ggml_aligned_malloc(workers_size);
  16711. memset(workers, 0, workers_size);
  16712. for (int j = 0; j < tpp->n_threads; j++) {
  16713. workers[j].threadpool = threadpool;
  16714. workers[j].ith = j;
  16715. }
  16716. threadpool->workers = workers;
  16717. #ifndef GGML_USE_OPENMP
  16718. ggml_mutex_init(&threadpool->mutex);
  16719. ggml_cond_init(&threadpool->cond);
  16720. // Spin the threads for all workers, and update CPU placements.
  16721. // Place the main thread last (towards the higher numbered CPU cores).
  16722. int32_t cpumask_iter = 0;
  16723. for (int j = 1; j < tpp->n_threads; j++) {
  16724. ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
  16725. int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]);
  16726. GGML_ASSERT(rc == 0);
  16727. }
  16728. ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter);
  16729. if (!threadpool->pause) {
  16730. // Update main thread prio and affinity at the start, otherwise we'll do it in resume
  16731. ggml_thread_apply_priority(threadpool->prio);
  16732. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  16733. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  16734. }
  16735. }
  16736. #endif // GGML_USE_OPENMP
  16737. return threadpool;
  16738. }
  16739. struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
  16740. return ggml_threadpool_new_impl(tpp, NULL, NULL);
  16741. }
  16742. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16743. GGML_ASSERT(cplan);
  16744. GGML_ASSERT(cplan->n_threads > 0);
  16745. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  16746. int n_threads = cplan->n_threads;
  16747. struct ggml_threadpool * threadpool = cplan->threadpool;
  16748. bool disposable_threadpool = false;
  16749. if (threadpool == NULL) {
  16750. GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  16751. disposable_threadpool = true;
  16752. struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
  16753. threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
  16754. } else {
  16755. // Reset some of the parameters that need resetting
  16756. // No worker threads should be accessing the parameters below at this stage
  16757. threadpool->cgraph = cgraph;
  16758. threadpool->cplan = cplan;
  16759. threadpool->current_chunk = 0;
  16760. threadpool->abort = false;
  16761. threadpool->ec = GGML_STATUS_SUCCESS;
  16762. }
  16763. #ifdef GGML_USE_OPENMP
  16764. if (n_threads > 1) {
  16765. #pragma omp parallel num_threads(n_threads)
  16766. {
  16767. #pragma omp single
  16768. {
  16769. // update the number of threads from the actual number of threads that we got from OpenMP
  16770. n_threads = omp_get_num_threads();
  16771. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  16772. }
  16773. ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
  16774. }
  16775. } else {
  16776. atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed);
  16777. ggml_graph_compute_thread(&threadpool->workers[0]);
  16778. }
  16779. #else
  16780. if (n_threads > threadpool->n_threads_max) {
  16781. GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads_max);
  16782. n_threads = threadpool->n_threads_max;
  16783. }
  16784. // Kick all threads to start the new graph
  16785. ggml_graph_compute_kickoff(threadpool, n_threads);
  16786. // This is a work thread too
  16787. ggml_graph_compute_thread(&threadpool->workers[0]);
  16788. #endif
  16789. // don't leave affinity set on the main thread
  16790. clear_numa_thread_affinity();
  16791. enum ggml_status ret = threadpool->ec;
  16792. if (disposable_threadpool) {
  16793. ggml_threadpool_free(threadpool);
  16794. }
  16795. return ret;
  16796. }
  16797. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16798. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
  16799. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16800. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16801. return ggml_graph_compute(cgraph, &cplan);
  16802. }
  16803. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16804. for (int i = 0; i < cgraph->n_leafs; i++) {
  16805. struct ggml_tensor * leaf = cgraph->leafs[i];
  16806. if (strcmp(leaf->name, name) == 0) {
  16807. return leaf;
  16808. }
  16809. }
  16810. for (int i = 0; i < cgraph->n_nodes; i++) {
  16811. struct ggml_tensor * node = cgraph->nodes[i];
  16812. if (strcmp(node->name, name) == 0) {
  16813. return node;
  16814. }
  16815. }
  16816. return NULL;
  16817. }
  16818. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16819. const int64_t * ne = tensor->ne;
  16820. const size_t * nb = tensor->nb;
  16821. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16822. ggml_type_name(tensor->type),
  16823. ggml_op_name (tensor->op),
  16824. ggml_n_dims(tensor),
  16825. ne[0], ne[1], ne[2], ne[3],
  16826. nb[0], nb[1], nb[2], nb[3],
  16827. tensor->data,
  16828. tensor->name);
  16829. }
  16830. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16831. const int64_t * ne = tensor->ne;
  16832. const size_t * nb = tensor->nb;
  16833. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16834. arg,
  16835. ggml_type_name(tensor->type),
  16836. ggml_op_name (tensor->op),
  16837. ggml_n_dims(tensor),
  16838. ne[0], ne[1], ne[2], ne[3],
  16839. nb[0], nb[1], nb[2], nb[3],
  16840. tensor->data,
  16841. tensor->name);
  16842. }
  16843. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16844. uint64_t size_eval = 0;
  16845. // compute size of intermediate results
  16846. // TODO: does not take into account scratch buffers !!!!
  16847. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16848. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16849. }
  16850. // print
  16851. {
  16852. FILE * fout = stdout;
  16853. fprintf(fout, "\n");
  16854. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16855. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16856. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16857. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16858. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16859. // header
  16860. fprintf(fout, "\n");
  16861. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16862. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16863. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16864. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16865. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16866. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16867. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16868. }
  16869. // header
  16870. fprintf(fout, "\n");
  16871. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16872. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16873. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16874. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16875. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16876. if (cgraph->nodes[i]->src[j]) {
  16877. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16878. }
  16879. }
  16880. fprintf(fout, "\n");
  16881. }
  16882. fprintf(fout, "\n");
  16883. }
  16884. // write binary data
  16885. {
  16886. FILE * fout = ggml_fopen(fname, "wb");
  16887. if (!fout) {
  16888. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  16889. return;
  16890. }
  16891. // header
  16892. {
  16893. const uint32_t magic = GGML_FILE_MAGIC;
  16894. const uint32_t version = GGML_FILE_VERSION;
  16895. const uint32_t n_leafs = cgraph->n_leafs;
  16896. const uint32_t n_nodes = cgraph->n_nodes;
  16897. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16898. fwrite(&version, sizeof(uint32_t), 1, fout);
  16899. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16900. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16901. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16902. }
  16903. // leafs
  16904. {
  16905. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16906. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16907. const uint32_t type = tensor->type;
  16908. const uint32_t op = tensor->op;
  16909. const int32_t flags = tensor->flags;
  16910. fwrite(&type, sizeof(uint32_t), 1, fout);
  16911. fwrite(&op, sizeof(uint32_t), 1, fout);
  16912. fwrite(&flags, sizeof(int32_t), 1, fout);
  16913. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16914. const uint64_t ne = tensor->ne[j];
  16915. const uint64_t nb = tensor->nb[j];
  16916. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16917. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16918. }
  16919. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16920. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16921. // dump the data
  16922. // TODO: pad this to 32 byte boundary
  16923. {
  16924. const size_t size = ggml_nbytes(tensor);
  16925. fwrite(tensor->data, sizeof(char), size, fout);
  16926. }
  16927. }
  16928. }
  16929. // nodes
  16930. {
  16931. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16932. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16933. const uint32_t type = tensor->type;
  16934. const uint32_t op = tensor->op;
  16935. const int32_t flags = tensor->flags;
  16936. fwrite(&type, sizeof(uint32_t), 1, fout);
  16937. fwrite(&op, sizeof(uint32_t), 1, fout);
  16938. fwrite(&flags, sizeof(int32_t), 1, fout);
  16939. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16940. const uint64_t ne = tensor->ne[j];
  16941. const uint64_t nb = tensor->nb[j];
  16942. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16943. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16944. }
  16945. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16946. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16947. // output the op arguments
  16948. {
  16949. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16950. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16951. args[j] = tensor->src[j];
  16952. }
  16953. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16954. if (args[j]) {
  16955. int32_t idx = -1;
  16956. // check if leaf
  16957. {
  16958. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16959. if (args[j] == cgraph->leafs[k]) {
  16960. idx = k;
  16961. break;
  16962. }
  16963. }
  16964. }
  16965. // check if node
  16966. if (idx == -1) {
  16967. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16968. if (args[j] == cgraph->nodes[k]) {
  16969. idx = cgraph->n_leafs + k;
  16970. break;
  16971. }
  16972. }
  16973. }
  16974. if (idx == -1) {
  16975. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16976. fclose(fout);
  16977. return;
  16978. }
  16979. fwrite(&idx, sizeof(int32_t), 1, fout);
  16980. } else {
  16981. const int32_t nul = -1;
  16982. fwrite(&nul, sizeof(int32_t), 1, fout);
  16983. }
  16984. }
  16985. }
  16986. // dump the data
  16987. // TODO: pad this to 32 byte boundary
  16988. if ((flags & GGML_TENSOR_FLAG_PARAM)) {
  16989. const size_t size = ggml_nbytes(tensor);
  16990. fwrite(tensor->data, sizeof(char), size, fout);
  16991. }
  16992. }
  16993. }
  16994. fclose(fout);
  16995. }
  16996. }
  16997. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16998. assert(*ctx_data == NULL);
  16999. assert(*ctx_eval == NULL);
  17000. struct ggml_cgraph * result = NULL;
  17001. struct ggml_tensor * data = NULL;
  17002. // read file into data
  17003. {
  17004. FILE * fin = ggml_fopen(fname, "rb");
  17005. if (!fin) {
  17006. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  17007. return result;
  17008. }
  17009. size_t fsize = 0;
  17010. fseek(fin, 0, SEEK_END);
  17011. fsize = ftell(fin);
  17012. fseek(fin, 0, SEEK_SET);
  17013. // create the data context
  17014. {
  17015. const size_t overhead = 1*ggml_tensor_overhead();
  17016. struct ggml_init_params params = {
  17017. .mem_size = fsize + overhead,
  17018. .mem_buffer = NULL,
  17019. .no_alloc = false,
  17020. };
  17021. *ctx_data = ggml_init(params);
  17022. if (!*ctx_data) {
  17023. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17024. fclose(fin);
  17025. return result;
  17026. }
  17027. }
  17028. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  17029. {
  17030. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  17031. if (ret != fsize) {
  17032. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  17033. fclose(fin);
  17034. return result;
  17035. }
  17036. }
  17037. fclose(fin);
  17038. }
  17039. // populate result
  17040. {
  17041. char * ptr = (char *) data->data;
  17042. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  17043. if (magic != GGML_FILE_MAGIC) {
  17044. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  17045. return result;
  17046. }
  17047. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  17048. if (version != GGML_FILE_VERSION) {
  17049. fprintf(stderr, "%s: invalid version number\n", __func__);
  17050. return result;
  17051. }
  17052. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  17053. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  17054. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  17055. const int graph_size = MAX(n_leafs, n_nodes);
  17056. // create the data context
  17057. {
  17058. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  17059. struct ggml_init_params params = {
  17060. .mem_size = size_eval + overhead,
  17061. .mem_buffer = NULL,
  17062. .no_alloc = true,
  17063. };
  17064. *ctx_eval = ggml_init(params);
  17065. if (!*ctx_eval) {
  17066. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  17067. return result;
  17068. }
  17069. }
  17070. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  17071. result->n_leafs = n_leafs;
  17072. result->n_nodes = n_nodes;
  17073. // leafs
  17074. {
  17075. uint32_t type;
  17076. uint32_t op;
  17077. int32_t flags;
  17078. for (uint32_t i = 0; i < n_leafs; ++i) {
  17079. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17080. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17081. flags = *(const int32_t *) ptr; ptr += sizeof(flags);
  17082. int64_t ne[GGML_MAX_DIMS];
  17083. size_t nb[GGML_MAX_DIMS];
  17084. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17085. uint64_t ne_cur;
  17086. uint64_t nb_cur;
  17087. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17088. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17089. ne[j] = ne_cur;
  17090. nb[j] = nb_cur;
  17091. }
  17092. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17093. tensor->op = (enum ggml_op) op;
  17094. tensor->flags = flags;
  17095. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  17096. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  17097. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17098. tensor->nb[j] = nb[j];
  17099. }
  17100. tensor->data = (void *) ptr; ptr += ggml_nbytes(tensor);
  17101. result->leafs[i] = tensor;
  17102. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17103. }
  17104. }
  17105. ggml_set_no_alloc(*ctx_eval, false);
  17106. // nodes
  17107. {
  17108. uint32_t type;
  17109. uint32_t op;
  17110. int32_t flags;
  17111. for (uint32_t i = 0; i < n_nodes; ++i) {
  17112. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  17113. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  17114. flags = *(const int32_t *) ptr; ptr += sizeof(flags);
  17115. enum ggml_op eop = (enum ggml_op) op;
  17116. int64_t ne[GGML_MAX_DIMS];
  17117. size_t nb[GGML_MAX_DIMS];
  17118. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17119. uint64_t ne_cur;
  17120. uint64_t nb_cur;
  17121. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  17122. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  17123. ne[j] = ne_cur;
  17124. nb[j] = nb_cur;
  17125. }
  17126. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  17127. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  17128. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  17129. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  17130. // parse args
  17131. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17132. const int32_t arg_idx = ptr_arg_idx[j];
  17133. if (arg_idx == -1) {
  17134. continue;
  17135. }
  17136. if (arg_idx < result->n_leafs) {
  17137. args[j] = result->leafs[arg_idx];
  17138. } else {
  17139. args[j] = result->nodes[arg_idx - result->n_leafs];
  17140. }
  17141. }
  17142. // create the tensor
  17143. // "view" operations are handled differently
  17144. // TODO: handle inplace ops - currently a copy is always made
  17145. struct ggml_tensor * tensor = NULL;
  17146. switch (eop) {
  17147. // TODO: implement other view ops
  17148. case GGML_OP_RESHAPE:
  17149. {
  17150. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  17151. } break;
  17152. case GGML_OP_VIEW:
  17153. {
  17154. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17155. size_t offs;
  17156. memcpy(&offs, ptr_op_params, sizeof(offs));
  17157. tensor->data = ((char *) tensor->data) + offs;
  17158. } break;
  17159. case GGML_OP_TRANSPOSE:
  17160. {
  17161. tensor = ggml_transpose(*ctx_eval, args[0]);
  17162. } break;
  17163. case GGML_OP_PERMUTE:
  17164. {
  17165. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  17166. } break;
  17167. default:
  17168. {
  17169. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  17170. tensor->op = eop;
  17171. } break;
  17172. }
  17173. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  17174. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  17175. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17176. tensor->nb[j] = nb[j];
  17177. }
  17178. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  17179. tensor->src[j] = args[j];
  17180. }
  17181. result->nodes[i] = tensor;
  17182. // TODO tensor data is be duplicated due to ggml_new_tensor call above
  17183. if (flags & GGML_TENSOR_FLAG_PARAM) {
  17184. tensor->data = (void *) ptr; ptr += ggml_nbytes(tensor);
  17185. }
  17186. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  17187. }
  17188. }
  17189. }
  17190. return result;
  17191. }
  17192. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  17193. GGML_LOG_INFO("=== GRAPH ===\n");
  17194. GGML_LOG_INFO("n_nodes = %d\n", cgraph->n_nodes);
  17195. for (int i = 0; i < cgraph->n_nodes; i++) {
  17196. struct ggml_tensor * node = cgraph->nodes[i];
  17197. GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
  17198. i,
  17199. node->ne[0], node->ne[1], node->ne[2],
  17200. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
  17201. }
  17202. GGML_LOG_INFO("n_leafs = %d\n", cgraph->n_leafs);
  17203. for (int i = 0; i < cgraph->n_leafs; i++) {
  17204. struct ggml_tensor * node = cgraph->leafs[i];
  17205. GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  17206. i,
  17207. node->ne[0], node->ne[1],
  17208. ggml_op_name(node->op),
  17209. ggml_get_name(node));
  17210. }
  17211. GGML_LOG_INFO("========================================\n");
  17212. }
  17213. // check if node is part of the graph
  17214. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17215. if (cgraph == NULL) {
  17216. return true;
  17217. }
  17218. for (int i = 0; i < cgraph->n_nodes; i++) {
  17219. if (cgraph->nodes[i] == node) {
  17220. return true;
  17221. }
  17222. }
  17223. return false;
  17224. }
  17225. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  17226. for (int i = 0; i < cgraph->n_nodes; i++) {
  17227. struct ggml_tensor * parent = cgraph->nodes[i];
  17228. if (parent->grad == node) {
  17229. return parent;
  17230. }
  17231. }
  17232. return NULL;
  17233. }
  17234. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17235. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  17236. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  17237. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  17238. gparent0 ? (void *) gparent0 : (void *) parent,
  17239. gparent0 ? "g" : "x",
  17240. gparent ? (void *) gparent : (void *) node,
  17241. gparent ? "g" : "x",
  17242. gparent ? "empty" : "vee",
  17243. gparent ? "dashed" : "solid",
  17244. label);
  17245. }
  17246. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  17247. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  17248. (void *) parent, "x",
  17249. (void *) node, "x",
  17250. label);
  17251. }
  17252. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  17253. char color[16];
  17254. FILE * fp = ggml_fopen(filename, "w");
  17255. GGML_ASSERT(fp);
  17256. fprintf(fp, "digraph G {\n");
  17257. fprintf(fp, " newrank = true;\n");
  17258. fprintf(fp, " rankdir = TB;\n");
  17259. for (int i = 0; i < gb->n_nodes; i++) {
  17260. struct ggml_tensor * node = gb->nodes[i];
  17261. if (ggml_graph_get_parent(gb, node) != NULL) {
  17262. continue;
  17263. }
  17264. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  17265. snprintf(color, sizeof(color), "yellow");
  17266. } else if (node->grad) {
  17267. if (ggml_graph_find(gf, node)) {
  17268. snprintf(color, sizeof(color), "green");
  17269. } else {
  17270. snprintf(color, sizeof(color), "lightblue");
  17271. }
  17272. } else {
  17273. snprintf(color, sizeof(color), "white");
  17274. }
  17275. fprintf(fp, " \"%p\" [ "
  17276. "style = filled; fillcolor = %s; shape = record; "
  17277. "label=\"",
  17278. (void *) node, color);
  17279. if (strlen(node->name) > 0) {
  17280. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17281. } else {
  17282. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17283. }
  17284. if (ggml_is_matrix(node)) {
  17285. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  17286. } else {
  17287. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  17288. }
  17289. if (node->grad) {
  17290. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  17291. } else {
  17292. fprintf(fp, "\"; ]\n");
  17293. }
  17294. }
  17295. for (int i = 0; i < gb->n_leafs; i++) {
  17296. struct ggml_tensor * node = gb->leafs[i];
  17297. snprintf(color, sizeof(color), "pink");
  17298. fprintf(fp, " \"%p\" [ "
  17299. "style = filled; fillcolor = %s; shape = record; "
  17300. "label=\"<x>",
  17301. (void *) node, color);
  17302. if (strlen(node->name) > 0) {
  17303. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17304. } else {
  17305. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17306. }
  17307. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17308. if (ggml_nelements(node) < 5 && node->data != NULL) {
  17309. fprintf(fp, " | (");
  17310. for (int j = 0; j < ggml_nelements(node); j++) {
  17311. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17312. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17313. }
  17314. else if (node->type == GGML_TYPE_F32 ||
  17315. node->type == GGML_TYPE_F16 ||
  17316. node->type == GGML_TYPE_BF16) {
  17317. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17318. }
  17319. else {
  17320. fprintf(fp, "#");
  17321. }
  17322. if (j < ggml_nelements(node) - 1) {
  17323. fprintf(fp, ", ");
  17324. }
  17325. }
  17326. fprintf(fp, ")");
  17327. }
  17328. fprintf(fp, "\"; ]\n");
  17329. }
  17330. for (int i = 0; i < gb->n_nodes; i++) {
  17331. struct ggml_tensor * node = gb->nodes[i];
  17332. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17333. if (node->src[j]) {
  17334. char label[16];
  17335. snprintf(label, sizeof(label), "src %d", j);
  17336. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17337. }
  17338. }
  17339. }
  17340. for (int i = 0; i < gb->n_leafs; i++) {
  17341. struct ggml_tensor * node = gb->leafs[i];
  17342. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17343. if (node->src[j]) {
  17344. char label[16];
  17345. snprintf(label, sizeof(label), "src %d", j);
  17346. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17347. }
  17348. }
  17349. }
  17350. fprintf(fp, "}\n");
  17351. fclose(fp);
  17352. GGML_LOG_INFO("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17353. }
  17354. ////////////////////////////////////////////////////////////////////////////////
  17355. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17356. int i = 0;
  17357. for (int p = 0; p < np; ++p) {
  17358. const int64_t ne = ggml_nelements(ps[p]) ;
  17359. // TODO: add function to set tensor from array
  17360. for (int64_t j = 0; j < ne; ++j) {
  17361. ggml_set_f32_1d(ps[p], j, x[i++]);
  17362. }
  17363. }
  17364. }
  17365. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17366. int i = 0;
  17367. for (int p = 0; p < np; ++p) {
  17368. const int64_t ne = ggml_nelements(ps[p]) ;
  17369. // TODO: add function to get all elements at once
  17370. for (int64_t j = 0; j < ne; ++j) {
  17371. x[i++] = ggml_get_f32_1d(ps[p], j);
  17372. }
  17373. }
  17374. }
  17375. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17376. int64_t i = 0;
  17377. for (int p = 0; p < np; ++p) {
  17378. const int64_t ne = ggml_nelements(ps[p]) ;
  17379. // TODO: add function to get all elements at once
  17380. for (int64_t j = 0; j < ne; ++j) {
  17381. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17382. }
  17383. }
  17384. }
  17385. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17386. int64_t i = 0;
  17387. for (int p = 0; p < np; ++p) {
  17388. const int64_t ne = ggml_nelements(ps[p]) ;
  17389. // TODO: add function to get all elements at once
  17390. for (int64_t j = 0; j < ne; ++j) {
  17391. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17392. }
  17393. }
  17394. }
  17395. //
  17396. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17397. //
  17398. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17399. //
  17400. static enum ggml_opt_result ggml_opt_adam(
  17401. struct ggml_context * ctx,
  17402. struct ggml_opt_context * opt,
  17403. struct ggml_opt_params params,
  17404. struct ggml_tensor * f,
  17405. struct ggml_cgraph * gf,
  17406. struct ggml_cgraph * gb,
  17407. ggml_opt_callback callback,
  17408. void * callback_data) {
  17409. GGML_ASSERT(ggml_is_scalar(f));
  17410. GGML_ASSERT(f->type == GGML_TYPE_F32);
  17411. // these will store the parameters we want to optimize
  17412. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17413. int np = 0;
  17414. int64_t nx = 0;
  17415. for (int i = 0; i < gf->n_nodes; ++i) {
  17416. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17417. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17418. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17419. ps[np++] = gf->nodes[i];
  17420. nx += ggml_nelements(gf->nodes[i]);
  17421. }
  17422. }
  17423. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17424. int iter = opt->iter;
  17425. ggml_opt_init(opt->ctx, opt, params, nx);
  17426. opt->iter = iter;
  17427. }
  17428. // constants
  17429. float sched = params.adam.sched;
  17430. const float alpha = params.adam.alpha;
  17431. const float decay = params.adam.decay * alpha;
  17432. const float beta1 = params.adam.beta1;
  17433. const float beta2 = params.adam.beta2;
  17434. const float eps = params.adam.eps;
  17435. const float gclip = params.adam.gclip;
  17436. const int decay_min_ndim = params.adam.decay_min_ndim;
  17437. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17438. const float accum_norm = 1.0f / (float) n_accum;
  17439. float * g = opt->adam.g->data; // gradients
  17440. float * m = opt->adam.m->data; // first moment
  17441. float * v = opt->adam.v->data; // second moment
  17442. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17443. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
  17444. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17445. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17446. bool cancel = false;
  17447. // compute the function value
  17448. float fx = 0;
  17449. ggml_set_zero(opt->adam.g);
  17450. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17451. if (callback) {
  17452. callback(callback_data, accum_step, &sched, &cancel);
  17453. if (cancel) {
  17454. return GGML_OPT_RESULT_CANCEL;
  17455. }
  17456. }
  17457. // ggml_graph_reset (gf);
  17458. ggml_set_f32 (f->grad, 1.0f);
  17459. ggml_graph_compute(gb, &cplan);
  17460. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17461. fx += ggml_get_f32_1d(f, 0);
  17462. }
  17463. fx *= accum_norm;
  17464. opt->adam.fx_prev = fx;
  17465. opt->adam.fx_best = opt->adam.fx_prev;
  17466. if (pf) {
  17467. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17468. }
  17469. opt->loss_before = opt->adam.fx_prev;
  17470. opt->loss_after = opt->adam.fx_prev;
  17471. // initialize
  17472. if (opt->just_initialized) {
  17473. opt->adam.n_no_improvement = 0;
  17474. opt->just_initialized = false;
  17475. }
  17476. float * fx_best = &opt->adam.fx_best;
  17477. float * fx_prev = &opt->adam.fx_prev;
  17478. int * n_no_improvement = &opt->adam.n_no_improvement;
  17479. int iter0 = opt->iter;
  17480. // run the optimizer
  17481. for (int t = 0; t < params.adam.n_iter; ++t) {
  17482. opt->iter = iter0 + t + 1;
  17483. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17484. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17485. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17486. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17487. for (int i = 0; i < np; ++i) {
  17488. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17489. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17490. }
  17491. const int64_t t_start_wall = ggml_time_us();
  17492. const int64_t t_start_cpu = ggml_cycles();
  17493. UNUSED(t_start_wall);
  17494. UNUSED(t_start_cpu);
  17495. {
  17496. float gnorm = 1.0f;
  17497. if (gclip > 0.0f) {
  17498. // gradient clipping
  17499. ggml_float sum = 0.0;
  17500. for (int64_t i = 0; i < nx; ++i) {
  17501. sum += (ggml_float)(g[i]*g[i]);
  17502. }
  17503. ggml_float norm = sqrt(sum);
  17504. if (norm > (ggml_float) gclip) {
  17505. gnorm = (float) ((ggml_float) gclip / norm);
  17506. }
  17507. }
  17508. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17509. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17510. int64_t i = 0;
  17511. for (int p = 0; p < np; ++p) {
  17512. const int64_t ne = ggml_nelements(ps[p]);
  17513. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17514. for (int64_t j = 0; j < ne; ++j) {
  17515. float x = ggml_get_f32_1d(ps[p], j);
  17516. float g_ = g[i]*gnorm;
  17517. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17518. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17519. float mh = m[i]*beta1h;
  17520. float vh = v[i]*beta2h;
  17521. vh = sqrtf(vh) + eps;
  17522. x = x*(1.0f - p_decay) - mh/vh;
  17523. ggml_set_f32_1d(ps[p], j, x);
  17524. ++i;
  17525. }
  17526. }
  17527. }
  17528. fx = 0;
  17529. ggml_set_zero(opt->adam.g);
  17530. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17531. if (callback) {
  17532. callback(callback_data, accum_step, &sched, &cancel);
  17533. if (cancel) {
  17534. return GGML_OPT_RESULT_CANCEL;;
  17535. }
  17536. }
  17537. // ggml_graph_reset (gf);
  17538. ggml_set_f32 (f->grad, 1.0f);
  17539. ggml_graph_compute(gb, &cplan);
  17540. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17541. fx += ggml_get_f32_1d(f, 0);
  17542. }
  17543. fx *= accum_norm;
  17544. opt->loss_after = fx;
  17545. // check convergence
  17546. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17547. GGML_PRINT_DEBUG("converged\n");
  17548. return GGML_OPT_RESULT_OK;
  17549. }
  17550. // delta-based convergence test
  17551. if (pf != NULL) {
  17552. // need at least params.past iterations to start checking for convergence
  17553. if (params.past <= iter0 + t) {
  17554. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17555. if (fabsf(rate) < params.delta) {
  17556. return GGML_OPT_RESULT_OK;
  17557. }
  17558. }
  17559. pf[(iter0 + t)%params.past] = fx;
  17560. }
  17561. // check for improvement
  17562. if (params.max_no_improvement > 0) {
  17563. if (fx_best[0] > fx) {
  17564. fx_best[0] = fx;
  17565. n_no_improvement[0] = 0;
  17566. } else {
  17567. ++n_no_improvement[0];
  17568. if (n_no_improvement[0] >= params.max_no_improvement) {
  17569. return GGML_OPT_RESULT_OK;
  17570. }
  17571. }
  17572. }
  17573. fx_prev[0] = fx;
  17574. {
  17575. const int64_t t_end_cpu = ggml_cycles();
  17576. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17577. UNUSED(t_end_cpu);
  17578. const int64_t t_end_wall = ggml_time_us();
  17579. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17580. UNUSED(t_end_wall);
  17581. }
  17582. }
  17583. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17584. }
  17585. //
  17586. // L-BFGS
  17587. //
  17588. // the L-BFGS implementation below is based on the following implementation:
  17589. //
  17590. // https://github.com/chokkan/liblbfgs
  17591. //
  17592. struct ggml_lbfgs_iteration_data {
  17593. float alpha;
  17594. float ys;
  17595. float * s;
  17596. float * y;
  17597. };
  17598. static enum ggml_opt_result linesearch_backtracking(
  17599. const struct ggml_opt_params * params,
  17600. int nx,
  17601. float * x,
  17602. float * fx,
  17603. float * g,
  17604. float * d,
  17605. float * step,
  17606. const float * xp,
  17607. struct ggml_tensor * f,
  17608. struct ggml_cgraph * gb,
  17609. struct ggml_cplan * cplan,
  17610. const int np,
  17611. struct ggml_tensor * ps[],
  17612. bool * cancel,
  17613. ggml_opt_callback callback,
  17614. void * callback_data) {
  17615. int count = 0;
  17616. float width = 0.0f;
  17617. float dg = 0.0f;
  17618. float finit = 0.0f;
  17619. float dginit = 0.0f;
  17620. float dgtest = 0.0f;
  17621. const float dec = 0.5f;
  17622. const float inc = 2.1f;
  17623. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17624. const float accum_norm = 1.0f / (float) n_accum;
  17625. if (*step <= 0.f) {
  17626. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17627. }
  17628. // compute the initial gradient in the search direction
  17629. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17630. // make sure that d points to a descent direction
  17631. if (0 < dginit) {
  17632. return GGML_LINESEARCH_FAIL;
  17633. }
  17634. // initialize local variables
  17635. finit = *fx;
  17636. dgtest = params->lbfgs.ftol*dginit;
  17637. while (true) {
  17638. ggml_vec_cpy_f32(nx, x, xp);
  17639. ggml_vec_mad_f32(nx, x, d, *step);
  17640. // evaluate the function and gradient values
  17641. {
  17642. ggml_opt_set_params(np, ps, x);
  17643. *fx = 0;
  17644. memset(g, 0, sizeof(float)*nx);
  17645. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17646. if (callback) {
  17647. // LBFG-S does not support learning rate -> ignore learning schedule
  17648. float sched = 0;
  17649. callback(callback_data, accum_step, &sched, cancel);
  17650. if (*cancel) {
  17651. return GGML_OPT_RESULT_CANCEL;
  17652. }
  17653. }
  17654. // ggml_graph_reset (gf);
  17655. ggml_set_f32 (f->grad, 1.0f);
  17656. ggml_graph_compute(gb, cplan);
  17657. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17658. *fx += ggml_get_f32_1d(f, 0);
  17659. }
  17660. *fx *= accum_norm;
  17661. }
  17662. ++count;
  17663. if (*fx > finit + (*step)*dgtest) {
  17664. width = dec;
  17665. } else {
  17666. // Armijo condition is satisfied
  17667. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17668. return count;
  17669. }
  17670. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17671. // check the Wolfe condition
  17672. if (dg < params->lbfgs.wolfe * dginit) {
  17673. width = inc;
  17674. } else {
  17675. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17676. // regular Wolfe conditions
  17677. return count;
  17678. }
  17679. if(dg > -params->lbfgs.wolfe*dginit) {
  17680. width = dec;
  17681. } else {
  17682. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17683. return count;
  17684. }
  17685. }
  17686. }
  17687. if (*step < params->lbfgs.min_step) {
  17688. return GGML_LINESEARCH_MINIMUM_STEP;
  17689. }
  17690. if (*step > params->lbfgs.max_step) {
  17691. return GGML_LINESEARCH_MAXIMUM_STEP;
  17692. }
  17693. if (params->lbfgs.max_linesearch <= count) {
  17694. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17695. }
  17696. (*step) *= width;
  17697. }
  17698. GGML_ABORT("line search failed");
  17699. //return GGML_LINESEARCH_FAIL;
  17700. }
  17701. static enum ggml_opt_result ggml_opt_lbfgs(
  17702. struct ggml_context * ctx,
  17703. struct ggml_opt_context * opt,
  17704. struct ggml_opt_params params,
  17705. struct ggml_tensor * f,
  17706. struct ggml_cgraph * gf,
  17707. struct ggml_cgraph * gb,
  17708. ggml_opt_callback callback,
  17709. void * callback_data) {
  17710. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17711. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17712. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17713. return GGML_OPT_RESULT_INVALID_WOLFE;
  17714. }
  17715. }
  17716. const int m = params.lbfgs.m;
  17717. // these will store the parameters we want to optimize
  17718. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17719. int np = 0;
  17720. int nx = 0;
  17721. for (int i = 0; i < gf->n_nodes; ++i) {
  17722. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17723. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17724. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17725. ps[np++] = gf->nodes[i];
  17726. nx += ggml_nelements(gf->nodes[i]);
  17727. }
  17728. }
  17729. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17730. int iter = opt->iter;
  17731. ggml_opt_init(ctx, opt, params, nx);
  17732. opt->iter = iter;
  17733. }
  17734. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads, NULL);
  17735. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17736. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17737. float * x = opt->lbfgs.x->data; // current parameters
  17738. float * xp = opt->lbfgs.xp->data; // previous parameters
  17739. float * g = opt->lbfgs.g->data; // current gradient
  17740. float * gp = opt->lbfgs.gp->data; // previous gradient
  17741. float * d = opt->lbfgs.d->data; // search direction
  17742. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17743. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17744. const float accum_norm = 1.0f / (float) n_accum;
  17745. float fx = 0.0f; // cost function value
  17746. float xnorm = 0.0f; // ||x||
  17747. float gnorm = 0.0f; // ||g||
  17748. // initialize x from the graph nodes
  17749. ggml_opt_get_params(np, ps, x);
  17750. // the L-BFGS memory
  17751. float * lm_alpha = opt->lbfgs.lmal->data;
  17752. float * lm_ys = opt->lbfgs.lmys->data;
  17753. float * lm_s = opt->lbfgs.lms->data;
  17754. float * lm_y = opt->lbfgs.lmy->data;
  17755. bool cancel = false;
  17756. // evaluate the function value and its gradient
  17757. {
  17758. ggml_opt_set_params(np, ps, x);
  17759. fx = 0;
  17760. memset(g, 0, sizeof(float)*nx);
  17761. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17762. if (callback) {
  17763. // LBFG-S does not support learning rate -> ignore learning schedule
  17764. float sched = 0;
  17765. callback(callback_data, accum_step, &sched, &cancel);
  17766. if (cancel) {
  17767. return GGML_OPT_RESULT_CANCEL;
  17768. }
  17769. }
  17770. // ggml_graph_reset (gf);
  17771. ggml_set_f32 (f->grad, 1.0f);
  17772. ggml_graph_compute(gb, &cplan);
  17773. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17774. fx += ggml_get_f32_1d(f, 0);
  17775. }
  17776. fx *= accum_norm;
  17777. opt->loss_before = fx;
  17778. opt->loss_after = fx;
  17779. }
  17780. // search direction = -gradient
  17781. ggml_vec_neg_f32(nx, d, g);
  17782. // ||x||, ||g||
  17783. ggml_vec_norm_f32(nx, &xnorm, x);
  17784. ggml_vec_norm_f32(nx, &gnorm, g);
  17785. if (xnorm < 1.0f) {
  17786. xnorm = 1.0f;
  17787. }
  17788. // already optimized
  17789. if (gnorm/xnorm <= params.lbfgs.eps) {
  17790. return GGML_OPT_RESULT_OK;
  17791. }
  17792. if (opt->just_initialized) {
  17793. if (pf) {
  17794. pf[0] = fx;
  17795. }
  17796. opt->lbfgs.fx_best = fx;
  17797. // initial step
  17798. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17799. opt->lbfgs.j = 0;
  17800. opt->lbfgs.k = 1;
  17801. opt->lbfgs.end = 0;
  17802. opt->lbfgs.n_no_improvement = 0;
  17803. opt->just_initialized = false;
  17804. }
  17805. float * fx_best = &opt->lbfgs.fx_best;
  17806. float * step = &opt->lbfgs.step;
  17807. int * j = &opt->lbfgs.j;
  17808. int * k = &opt->lbfgs.k;
  17809. int * end = &opt->lbfgs.end;
  17810. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17811. int ls = 0;
  17812. int bound = 0;
  17813. float ys = 0.0f;
  17814. float yy = 0.0f;
  17815. float beta = 0.0f;
  17816. int it = 0;
  17817. while (true) {
  17818. // store the current position and gradient vectors
  17819. ggml_vec_cpy_f32(nx, xp, x);
  17820. ggml_vec_cpy_f32(nx, gp, g);
  17821. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17822. // to determine if the optimization should be cancelled
  17823. // this is a simple change, but not doing this atm, since I don't have a nice
  17824. // way to test and don't want to break something with so many changes lined up
  17825. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17826. if (cancel) {
  17827. return GGML_OPT_RESULT_CANCEL;
  17828. }
  17829. if (ls < 0) {
  17830. // linesearch failed - go back to the previous point and return
  17831. ggml_vec_cpy_f32(nx, x, xp);
  17832. ggml_vec_cpy_f32(nx, g, gp);
  17833. return ls;
  17834. }
  17835. opt->loss_after = fx;
  17836. ggml_vec_norm_f32(nx, &xnorm, x);
  17837. ggml_vec_norm_f32(nx, &gnorm, g);
  17838. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17839. if (xnorm < 1.0f) {
  17840. xnorm = 1.0f;
  17841. }
  17842. if (gnorm/xnorm <= params.lbfgs.eps) {
  17843. // converged
  17844. return GGML_OPT_RESULT_OK;
  17845. }
  17846. // delta-based convergence test
  17847. if (pf != NULL) {
  17848. // need at least params.past iterations to start checking for convergence
  17849. if (params.past <= k[0]) {
  17850. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17851. if (fabsf(rate) < params.delta) {
  17852. return GGML_OPT_RESULT_OK;
  17853. }
  17854. }
  17855. pf[k[0]%params.past] = fx;
  17856. }
  17857. // check for improvement
  17858. if (params.max_no_improvement > 0) {
  17859. if (fx < fx_best[0]) {
  17860. fx_best[0] = fx;
  17861. n_no_improvement[0] = 0;
  17862. } else {
  17863. n_no_improvement[0]++;
  17864. if (n_no_improvement[0] >= params.max_no_improvement) {
  17865. return GGML_OPT_RESULT_OK;
  17866. }
  17867. }
  17868. }
  17869. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17870. // reached the maximum number of iterations
  17871. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17872. }
  17873. // update vectors s and y:
  17874. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17875. // y_{k+1} = g_{k+1} - g_{k}.
  17876. //
  17877. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17878. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17879. // compute scalars ys and yy:
  17880. // ys = y^t \cdot s -> 1 / \rho.
  17881. // yy = y^t \cdot y.
  17882. //
  17883. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17884. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17885. lm_ys[end[0]] = ys;
  17886. // find new search direction
  17887. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17888. bound = (m <= k[0]) ? m : k[0];
  17889. k[0]++;
  17890. it++;
  17891. end[0] = (end[0] + 1)%m;
  17892. // initialize search direction with -g
  17893. ggml_vec_neg_f32(nx, d, g);
  17894. j[0] = end[0];
  17895. for (int i = 0; i < bound; ++i) {
  17896. j[0] = (j[0] + m - 1) % m;
  17897. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17898. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17899. lm_alpha[j[0]] /= lm_ys[j[0]];
  17900. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17901. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17902. }
  17903. ggml_vec_scale_f32(nx, d, ys/yy);
  17904. for (int i = 0; i < bound; ++i) {
  17905. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17906. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17907. beta /= lm_ys[j[0]];
  17908. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17909. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17910. j[0] = (j[0] + 1)%m;
  17911. }
  17912. step[0] = 1.0;
  17913. }
  17914. GGML_ABORT("lbfgs failed");
  17915. //return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17916. }
  17917. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17918. struct ggml_opt_params result;
  17919. switch (type) {
  17920. case GGML_OPT_TYPE_ADAM:
  17921. {
  17922. result = (struct ggml_opt_params) {
  17923. .type = GGML_OPT_TYPE_ADAM,
  17924. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17925. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17926. .past = 0,
  17927. .delta = 1e-5f,
  17928. .max_no_improvement = 100,
  17929. .print_forward_graph = true,
  17930. .print_backward_graph = true,
  17931. .n_gradient_accumulation = 1,
  17932. .adam = {
  17933. .n_iter = 10000,
  17934. .sched = 1.000f,
  17935. .decay = 0.0f,
  17936. .decay_min_ndim = 2,
  17937. .alpha = 0.001f,
  17938. .beta1 = 0.9f,
  17939. .beta2 = 0.999f,
  17940. .eps = 1e-8f,
  17941. .eps_f = 1e-5f,
  17942. .eps_g = 1e-3f,
  17943. .gclip = 0.0f,
  17944. },
  17945. };
  17946. } break;
  17947. case GGML_OPT_TYPE_LBFGS:
  17948. {
  17949. result = (struct ggml_opt_params) {
  17950. .type = GGML_OPT_TYPE_LBFGS,
  17951. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17952. .n_threads = 1,
  17953. .past = 0,
  17954. .delta = 1e-5f,
  17955. .max_no_improvement = 0,
  17956. .print_forward_graph = true,
  17957. .print_backward_graph = true,
  17958. .n_gradient_accumulation = 1,
  17959. .lbfgs = {
  17960. .m = 6,
  17961. .n_iter = 100,
  17962. .max_linesearch = 20,
  17963. .eps = 1e-5f,
  17964. .ftol = 1e-4f,
  17965. .wolfe = 0.9f,
  17966. .min_step = 1e-20f,
  17967. .max_step = 1e+20f,
  17968. .linesearch = GGML_LINESEARCH_DEFAULT,
  17969. },
  17970. };
  17971. } break;
  17972. }
  17973. return result;
  17974. }
  17975. GGML_API void ggml_opt_init(
  17976. struct ggml_context * ctx,
  17977. struct ggml_opt_context * opt,
  17978. struct ggml_opt_params params,
  17979. int64_t nx) {
  17980. opt->ctx = ctx;
  17981. opt->params = params;
  17982. opt->iter = 0;
  17983. opt->nx = nx;
  17984. opt->just_initialized = true;
  17985. if (opt->ctx == NULL) {
  17986. struct ggml_init_params ctx_opt_params;
  17987. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17988. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17989. if (opt->params.past > 0) {
  17990. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17991. }
  17992. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17993. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17994. if (opt->params.past > 0) {
  17995. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17996. }
  17997. }
  17998. ctx_opt_params.mem_buffer = NULL;
  17999. ctx_opt_params.no_alloc = false;
  18000. opt->ctx = ggml_init(ctx_opt_params);
  18001. }
  18002. switch (opt->params.type) {
  18003. case GGML_OPT_TYPE_ADAM:
  18004. {
  18005. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18006. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18007. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18008. opt->adam.pf = params.past > 0
  18009. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  18010. : NULL;
  18011. ggml_set_zero(opt->adam.m);
  18012. ggml_set_zero(opt->adam.v);
  18013. if (opt->adam.pf) {
  18014. ggml_set_zero(opt->adam.pf);
  18015. }
  18016. } break;
  18017. case GGML_OPT_TYPE_LBFGS:
  18018. {
  18019. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18020. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18021. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18022. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18023. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  18024. opt->lbfgs.pf = params.past > 0
  18025. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  18026. : NULL;
  18027. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  18028. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  18029. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18030. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  18031. ggml_set_zero(opt->lbfgs.x);
  18032. ggml_set_zero(opt->lbfgs.xp);
  18033. ggml_set_zero(opt->lbfgs.g);
  18034. ggml_set_zero(opt->lbfgs.gp);
  18035. ggml_set_zero(opt->lbfgs.d);
  18036. if (opt->lbfgs.pf) {
  18037. ggml_set_zero(opt->lbfgs.pf);
  18038. }
  18039. ggml_set_zero(opt->lbfgs.lmal);
  18040. ggml_set_zero(opt->lbfgs.lmys);
  18041. ggml_set_zero(opt->lbfgs.lms);
  18042. ggml_set_zero(opt->lbfgs.lmy);
  18043. } break;
  18044. }
  18045. }
  18046. enum ggml_opt_result ggml_opt(
  18047. struct ggml_context * ctx,
  18048. struct ggml_opt_params params,
  18049. struct ggml_tensor * f) {
  18050. bool free_ctx = false;
  18051. if (ctx == NULL) {
  18052. struct ggml_init_params params_ctx = {
  18053. .mem_size = 16*1024*1024,
  18054. .mem_buffer = NULL,
  18055. .no_alloc = false,
  18056. };
  18057. ctx = ggml_init(params_ctx);
  18058. if (ctx == NULL) {
  18059. return GGML_OPT_RESULT_NO_CONTEXT;
  18060. }
  18061. free_ctx = true;
  18062. }
  18063. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18064. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  18065. ggml_opt_init(ctx, opt, params, 0);
  18066. result = ggml_opt_resume(ctx, opt, f);
  18067. if (free_ctx) {
  18068. ggml_free(ctx);
  18069. }
  18070. return result;
  18071. }
  18072. enum ggml_opt_result ggml_opt_resume(
  18073. struct ggml_context * ctx,
  18074. struct ggml_opt_context * opt,
  18075. struct ggml_tensor * f) {
  18076. // build forward + backward compute graphs
  18077. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  18078. ggml_build_forward_expand(gf, f);
  18079. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  18080. ggml_build_backward_expand(ctx, gf, gb, false);
  18081. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  18082. }
  18083. enum ggml_opt_result ggml_opt_resume_g(
  18084. struct ggml_context * ctx,
  18085. struct ggml_opt_context * opt,
  18086. struct ggml_tensor * f,
  18087. struct ggml_cgraph * gf,
  18088. struct ggml_cgraph * gb,
  18089. ggml_opt_callback callback,
  18090. void * callback_data) {
  18091. GGML_ASSERT(f->grad && "ggml_set_param must be called for at least one ancestor");
  18092. // build forward + backward compute graphs
  18093. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  18094. switch (opt->params.type) {
  18095. case GGML_OPT_TYPE_ADAM:
  18096. {
  18097. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18098. } break;
  18099. case GGML_OPT_TYPE_LBFGS:
  18100. {
  18101. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  18102. } break;
  18103. }
  18104. if (opt->params.print_forward_graph) {
  18105. ggml_graph_print (gf);
  18106. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  18107. }
  18108. if (opt->params.print_backward_graph) {
  18109. ggml_graph_print (gb);
  18110. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  18111. }
  18112. return result;
  18113. }
  18114. ////////////////////////////////////////////////////////////////////////////////
  18115. void ggml_set_input(struct ggml_tensor * tensor) {
  18116. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  18117. }
  18118. void ggml_set_output(struct ggml_tensor * tensor) {
  18119. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  18120. }
  18121. void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  18122. GGML_UNUSED(ctx); // TODO: remove this parameter
  18123. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  18124. }
  18125. void ggml_set_loss(struct ggml_tensor * tensor) {
  18126. GGML_ASSERT(ggml_is_scalar(tensor));
  18127. GGML_ASSERT(tensor->type == GGML_TYPE_F32);
  18128. tensor->flags |= GGML_TENSOR_FLAG_LOSS;
  18129. }
  18130. ////////////////////////////////////////////////////////////////////////////////
  18131. void ggml_quantize_init(enum ggml_type type) {
  18132. ggml_critical_section_start();
  18133. switch (type) {
  18134. case GGML_TYPE_IQ2_XXS:
  18135. case GGML_TYPE_IQ2_XS:
  18136. case GGML_TYPE_IQ2_S:
  18137. case GGML_TYPE_IQ1_S:
  18138. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  18139. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  18140. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  18141. default: // nothing
  18142. break;
  18143. }
  18144. ggml_critical_section_end();
  18145. }
  18146. void ggml_quantize_free(void) {
  18147. ggml_critical_section_start();
  18148. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  18149. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  18150. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  18151. iq3xs_free_impl(256);
  18152. ggml_critical_section_end();
  18153. }
  18154. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  18155. return
  18156. type == GGML_TYPE_IQ2_XXS ||
  18157. type == GGML_TYPE_IQ2_XS ||
  18158. type == GGML_TYPE_IQ1_S;// ||
  18159. //type == GGML_TYPE_IQ1_M;
  18160. }
  18161. size_t ggml_quantize_chunk(
  18162. enum ggml_type type,
  18163. const float * src,
  18164. void * dst,
  18165. int64_t start,
  18166. int64_t nrows,
  18167. int64_t n_per_row,
  18168. const float * imatrix) {
  18169. const int64_t n = (int64_t) nrows * n_per_row;
  18170. if (ggml_quantize_requires_imatrix(type)) {
  18171. GGML_ASSERT(imatrix != NULL);
  18172. }
  18173. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  18174. GGML_ASSERT(start % n_per_row == 0);
  18175. ggml_quantize_init(type); // this is noop if already initialized
  18176. const size_t start_row = start / n_per_row;
  18177. const size_t row_size = ggml_row_size(type, n_per_row);
  18178. size_t result = 0;
  18179. switch (type) {
  18180. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18181. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18182. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18183. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18184. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18185. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18186. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18187. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18188. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18189. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18190. case GGML_TYPE_TQ1_0: result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18191. case GGML_TYPE_TQ2_0: result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18192. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18193. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18194. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18195. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18196. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18197. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18198. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18199. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18200. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18201. case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18202. case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18203. case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  18204. case GGML_TYPE_F16:
  18205. {
  18206. size_t elemsize = sizeof(ggml_fp16_t);
  18207. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  18208. result = n * elemsize;
  18209. } break;
  18210. case GGML_TYPE_BF16:
  18211. {
  18212. size_t elemsize = sizeof(ggml_bf16_t);
  18213. ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
  18214. result = n * elemsize;
  18215. } break;
  18216. case GGML_TYPE_F32:
  18217. {
  18218. size_t elemsize = sizeof(float);
  18219. result = n * elemsize;
  18220. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  18221. } break;
  18222. default:
  18223. assert(false);
  18224. }
  18225. GGML_ASSERT(result == nrows * row_size);
  18226. return result;
  18227. }
  18228. ////////////////////////////////////////////////////////////////////////////////
  18229. struct gguf_str {
  18230. uint64_t n; // GGUFv2
  18231. char * data;
  18232. };
  18233. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  18234. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  18235. [GGUF_TYPE_INT8] = sizeof(int8_t),
  18236. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  18237. [GGUF_TYPE_INT16] = sizeof(int16_t),
  18238. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  18239. [GGUF_TYPE_INT32] = sizeof(int32_t),
  18240. [GGUF_TYPE_FLOAT32] = sizeof(float),
  18241. [GGUF_TYPE_BOOL] = sizeof(bool),
  18242. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  18243. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  18244. [GGUF_TYPE_INT64] = sizeof(int64_t),
  18245. [GGUF_TYPE_FLOAT64] = sizeof(double),
  18246. [GGUF_TYPE_ARRAY] = 0, // undefined
  18247. };
  18248. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18249. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  18250. [GGUF_TYPE_UINT8] = "u8",
  18251. [GGUF_TYPE_INT8] = "i8",
  18252. [GGUF_TYPE_UINT16] = "u16",
  18253. [GGUF_TYPE_INT16] = "i16",
  18254. [GGUF_TYPE_UINT32] = "u32",
  18255. [GGUF_TYPE_INT32] = "i32",
  18256. [GGUF_TYPE_FLOAT32] = "f32",
  18257. [GGUF_TYPE_BOOL] = "bool",
  18258. [GGUF_TYPE_STRING] = "str",
  18259. [GGUF_TYPE_ARRAY] = "arr",
  18260. [GGUF_TYPE_UINT64] = "u64",
  18261. [GGUF_TYPE_INT64] = "i64",
  18262. [GGUF_TYPE_FLOAT64] = "f64",
  18263. };
  18264. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  18265. union gguf_value {
  18266. uint8_t uint8;
  18267. int8_t int8;
  18268. uint16_t uint16;
  18269. int16_t int16;
  18270. uint32_t uint32;
  18271. int32_t int32;
  18272. float float32;
  18273. uint64_t uint64;
  18274. int64_t int64;
  18275. double float64;
  18276. bool bool_;
  18277. struct gguf_str str;
  18278. struct {
  18279. enum gguf_type type;
  18280. uint64_t n; // GGUFv2
  18281. void * data;
  18282. } arr;
  18283. };
  18284. struct gguf_kv {
  18285. struct gguf_str key;
  18286. enum gguf_type type;
  18287. union gguf_value value;
  18288. };
  18289. struct gguf_header {
  18290. char magic[4];
  18291. uint32_t version;
  18292. uint64_t n_tensors; // GGUFv2
  18293. uint64_t n_kv; // GGUFv2
  18294. };
  18295. struct gguf_tensor_info {
  18296. struct gguf_str name;
  18297. uint32_t n_dims;
  18298. uint64_t ne[GGML_MAX_DIMS];
  18299. enum ggml_type type;
  18300. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  18301. // for writing API
  18302. const void * data;
  18303. size_t size;
  18304. };
  18305. struct gguf_context {
  18306. struct gguf_header header;
  18307. struct gguf_kv * kv;
  18308. struct gguf_tensor_info * infos;
  18309. size_t alignment;
  18310. size_t offset; // offset of `data` from beginning of file
  18311. size_t size; // size of `data` in bytes
  18312. //uint8_t * padding;
  18313. void * data;
  18314. };
  18315. static size_t gguf_type_size(enum gguf_type type) {
  18316. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18317. return GGUF_TYPE_SIZE[type];
  18318. }
  18319. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18320. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18321. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18322. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18323. GGML_ASSERT(info->ne[i] > 0);
  18324. }
  18325. // prevent overflow for total number of elements
  18326. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18327. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18328. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18329. }
  18330. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18331. const size_t n = fread(dst, 1, size, file);
  18332. *offset += n;
  18333. return n == size;
  18334. }
  18335. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18336. p->n = 0;
  18337. p->data = NULL;
  18338. bool ok = true;
  18339. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18340. // early exit if string length is invalid, prevents from integer overflow
  18341. if (p->n == SIZE_MAX) {
  18342. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18343. return false;
  18344. }
  18345. p->data = GGML_CALLOC(p->n + 1, 1);
  18346. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18347. return ok;
  18348. }
  18349. static void gguf_free_kv(struct gguf_kv * kv) {
  18350. if (kv->key.data) {
  18351. GGML_FREE(kv->key.data);
  18352. }
  18353. if (kv->type == GGUF_TYPE_STRING) {
  18354. if (kv->value.str.data) {
  18355. GGML_FREE(kv->value.str.data);
  18356. }
  18357. }
  18358. if (kv->type == GGUF_TYPE_ARRAY) {
  18359. if (kv->value.arr.data) {
  18360. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18361. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18362. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18363. if (str->data) {
  18364. GGML_FREE(str->data);
  18365. }
  18366. }
  18367. }
  18368. GGML_FREE(kv->value.arr.data);
  18369. }
  18370. }
  18371. }
  18372. struct gguf_context * gguf_init_empty(void) {
  18373. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18374. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18375. ctx->header.version = GGUF_VERSION;
  18376. ctx->header.n_tensors = 0;
  18377. ctx->header.n_kv = 0;
  18378. ctx->kv = NULL;
  18379. ctx->infos = NULL;
  18380. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18381. ctx->offset = 0;
  18382. ctx->size = 0;
  18383. ctx->data = NULL;
  18384. return ctx;
  18385. }
  18386. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18387. FILE * file = ggml_fopen(fname, "rb");
  18388. if (!file) {
  18389. fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
  18390. return NULL;
  18391. }
  18392. // offset from start of file
  18393. size_t offset = 0;
  18394. char magic[4];
  18395. // check the magic before making allocations
  18396. {
  18397. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18398. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18399. if (magic[i] != GGUF_MAGIC[i]) {
  18400. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18401. fclose(file);
  18402. return NULL;
  18403. }
  18404. }
  18405. }
  18406. bool ok = true;
  18407. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18408. // read the header
  18409. {
  18410. strncpy(ctx->header.magic, magic, 4);
  18411. ctx->kv = NULL;
  18412. ctx->infos = NULL;
  18413. ctx->data = NULL;
  18414. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18415. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18416. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18417. if (ctx->header.version == 1) {
  18418. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18419. fclose(file);
  18420. gguf_free(ctx);
  18421. return NULL;
  18422. }
  18423. // sanity-checks to prevent from integer/buffer overflows
  18424. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18425. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18426. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18427. if (!ok) {
  18428. fprintf(stderr, "%s: failed to read header\n", __func__);
  18429. fclose(file);
  18430. gguf_free(ctx);
  18431. return NULL;
  18432. }
  18433. }
  18434. // read the kv pairs
  18435. {
  18436. const uint64_t n_kv = ctx->header.n_kv;
  18437. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18438. ctx->header.n_kv = 0;
  18439. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18440. for (uint64_t i = 0; i < n_kv; ++i) {
  18441. struct gguf_kv * kv = &ctx->kv[i];
  18442. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18443. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18444. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18445. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18446. switch (kv->type) {
  18447. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18448. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18449. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18450. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18451. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18452. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18453. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18454. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18455. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18456. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18457. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18458. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18459. case GGUF_TYPE_ARRAY:
  18460. {
  18461. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18462. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18463. switch (kv->value.arr.type) {
  18464. case GGUF_TYPE_UINT8:
  18465. case GGUF_TYPE_INT8:
  18466. case GGUF_TYPE_UINT16:
  18467. case GGUF_TYPE_INT16:
  18468. case GGUF_TYPE_UINT32:
  18469. case GGUF_TYPE_INT32:
  18470. case GGUF_TYPE_FLOAT32:
  18471. case GGUF_TYPE_UINT64:
  18472. case GGUF_TYPE_INT64:
  18473. case GGUF_TYPE_FLOAT64:
  18474. case GGUF_TYPE_BOOL:
  18475. {
  18476. // prevent from integer overflow in the malloc below
  18477. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18478. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18479. fclose(file);
  18480. gguf_free(ctx);
  18481. return NULL;
  18482. }
  18483. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18484. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18485. } break;
  18486. case GGUF_TYPE_STRING:
  18487. {
  18488. // prevent from integer overflow in the malloc below
  18489. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18490. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18491. fclose(file);
  18492. gguf_free(ctx);
  18493. return NULL;
  18494. }
  18495. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18496. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18497. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18498. }
  18499. } break;
  18500. case GGUF_TYPE_ARRAY:
  18501. default: GGML_ABORT("invalid type");
  18502. }
  18503. } break;
  18504. default: GGML_ABORT("invalid type");
  18505. }
  18506. if (!ok) {
  18507. break;
  18508. }
  18509. ctx->header.n_kv++;
  18510. }
  18511. if (!ok) {
  18512. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18513. fclose(file);
  18514. gguf_free(ctx);
  18515. return NULL;
  18516. }
  18517. }
  18518. // read the tensor infos
  18519. if (ctx->header.n_tensors > 0) {
  18520. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18521. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18522. struct gguf_tensor_info * info = &ctx->infos[i];
  18523. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18524. info->ne[j] = 1;
  18525. }
  18526. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18527. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18528. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18529. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18530. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18531. }
  18532. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18533. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18534. // TODO: return an error instead of crashing with GGML_ASSERT
  18535. gguf_tensor_info_sanitize(info);
  18536. // make sure there is no duplicated tensor names
  18537. for (uint64_t j = 0; j < i && ok; ++j) {
  18538. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18539. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18540. ok = false;
  18541. }
  18542. }
  18543. if (!ok) {
  18544. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18545. fclose(file);
  18546. gguf_free(ctx);
  18547. return NULL;
  18548. }
  18549. }
  18550. }
  18551. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18552. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18553. if (alignment_idx != -1) {
  18554. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18555. }
  18556. // we require the data section to be aligned, so take into account any padding
  18557. {
  18558. const size_t offset_pad = offset % ctx->alignment;
  18559. if (offset_pad != 0) {
  18560. offset += ctx->alignment - offset_pad;
  18561. fseek(file, offset, SEEK_SET);
  18562. }
  18563. }
  18564. // store the current file offset - this is where the data section starts
  18565. ctx->offset = offset;
  18566. // compute the total size of the data section, taking into account the alignment
  18567. {
  18568. ctx->size = 0;
  18569. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18570. struct gguf_tensor_info * info = &ctx->infos[i];
  18571. const int64_t ne =
  18572. (int64_t) info->ne[0] *
  18573. (int64_t) info->ne[1] *
  18574. (int64_t) info->ne[2] *
  18575. (int64_t) info->ne[3];
  18576. if (ggml_blck_size(info->type) == 0 || ne % ggml_blck_size(info->type) != 0) {
  18577. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
  18578. __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18579. fclose(file);
  18580. gguf_free(ctx);
  18581. return NULL;
  18582. }
  18583. const size_t size_cur = ggml_row_size(info->type, ne);
  18584. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18585. }
  18586. }
  18587. // load the tensor data only if requested
  18588. if (params.ctx != NULL) {
  18589. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18590. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18591. // the ggml_tensor structs to the appropriate locations in the binary blob
  18592. // compute the exact size needed for the new ggml_context
  18593. const size_t mem_size =
  18594. params.no_alloc ?
  18595. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18596. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18597. struct ggml_init_params pdata = {
  18598. .mem_size = mem_size,
  18599. .mem_buffer = NULL,
  18600. .no_alloc = params.no_alloc,
  18601. };
  18602. *params.ctx = ggml_init(pdata);
  18603. if (*params.ctx == NULL) {
  18604. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  18605. fclose(file);
  18606. gguf_free(ctx);
  18607. return NULL;
  18608. }
  18609. struct ggml_context * ctx_data = *params.ctx;
  18610. struct ggml_tensor * data = NULL;
  18611. if (!params.no_alloc) {
  18612. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18613. ok = ok && data != NULL;
  18614. // read the binary blob with the tensor data
  18615. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18616. if (!ok) {
  18617. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18618. fclose(file);
  18619. ggml_free(ctx_data);
  18620. gguf_free(ctx);
  18621. return NULL;
  18622. }
  18623. ctx->data = data->data;
  18624. }
  18625. ggml_set_no_alloc(ctx_data, true);
  18626. // create the tensors
  18627. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18628. const int64_t ne[GGML_MAX_DIMS] = {
  18629. ctx->infos[i].ne[0],
  18630. ctx->infos[i].ne[1],
  18631. ctx->infos[i].ne[2],
  18632. ctx->infos[i].ne[3],
  18633. };
  18634. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18635. ok = ok && cur != NULL;
  18636. if (!ok) {
  18637. break;
  18638. }
  18639. ggml_set_name(cur, ctx->infos[i].name.data);
  18640. // point the data member to the appropriate location in the binary blob using the tensor infos
  18641. if (!params.no_alloc) {
  18642. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18643. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18644. }
  18645. }
  18646. if (!ok) {
  18647. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18648. fclose(file);
  18649. ggml_free(ctx_data);
  18650. gguf_free(ctx);
  18651. return NULL;
  18652. }
  18653. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18654. }
  18655. fclose(file);
  18656. return ctx;
  18657. }
  18658. void gguf_free(struct gguf_context * ctx) {
  18659. if (ctx == NULL) {
  18660. return;
  18661. }
  18662. if (ctx->kv) {
  18663. // free string memory - not great..
  18664. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18665. gguf_free_kv(&ctx->kv[i]);
  18666. }
  18667. GGML_FREE(ctx->kv);
  18668. }
  18669. if (ctx->infos) {
  18670. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18671. struct gguf_tensor_info * info = &ctx->infos[i];
  18672. if (info->name.data) {
  18673. GGML_FREE(info->name.data);
  18674. }
  18675. }
  18676. GGML_FREE(ctx->infos);
  18677. }
  18678. GGML_FREE(ctx);
  18679. }
  18680. const char * gguf_type_name(enum gguf_type type) {
  18681. return GGUF_TYPE_NAME[type];
  18682. }
  18683. int gguf_get_version(const struct gguf_context * ctx) {
  18684. return ctx->header.version;
  18685. }
  18686. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18687. return ctx->alignment;
  18688. }
  18689. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18690. return ctx->offset;
  18691. }
  18692. void * gguf_get_data(const struct gguf_context * ctx) {
  18693. return ctx->data;
  18694. }
  18695. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18696. return ctx->header.n_kv;
  18697. }
  18698. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18699. // return -1 if key not found
  18700. int keyfound = -1;
  18701. const int n_kv = gguf_get_n_kv(ctx);
  18702. for (int i = 0; i < n_kv; ++i) {
  18703. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18704. keyfound = i;
  18705. break;
  18706. }
  18707. }
  18708. return keyfound;
  18709. }
  18710. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18711. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18712. return ctx->kv[key_id].key.data;
  18713. }
  18714. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18715. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18716. return ctx->kv[key_id].type;
  18717. }
  18718. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18719. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18720. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18721. return ctx->kv[key_id].value.arr.type;
  18722. }
  18723. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18724. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18725. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18726. return ctx->kv[key_id].value.arr.data;
  18727. }
  18728. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18729. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18730. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18731. struct gguf_kv * kv = &ctx->kv[key_id];
  18732. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18733. return str->data;
  18734. }
  18735. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18736. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18737. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18738. return ctx->kv[key_id].value.arr.n;
  18739. }
  18740. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18741. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18742. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18743. return ctx->kv[key_id].value.uint8;
  18744. }
  18745. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18746. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18747. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18748. return ctx->kv[key_id].value.int8;
  18749. }
  18750. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18751. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18752. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18753. return ctx->kv[key_id].value.uint16;
  18754. }
  18755. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18756. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18757. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18758. return ctx->kv[key_id].value.int16;
  18759. }
  18760. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18761. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18762. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18763. return ctx->kv[key_id].value.uint32;
  18764. }
  18765. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18766. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18767. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18768. return ctx->kv[key_id].value.int32;
  18769. }
  18770. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18771. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18772. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18773. return ctx->kv[key_id].value.float32;
  18774. }
  18775. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18776. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18777. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18778. return ctx->kv[key_id].value.uint64;
  18779. }
  18780. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18781. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18782. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18783. return ctx->kv[key_id].value.int64;
  18784. }
  18785. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18786. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18787. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18788. return ctx->kv[key_id].value.float64;
  18789. }
  18790. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18791. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18792. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18793. return ctx->kv[key_id].value.bool_;
  18794. }
  18795. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18796. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18797. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18798. return ctx->kv[key_id].value.str.data;
  18799. }
  18800. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18801. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18802. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18803. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18804. return &ctx->kv[key_id].value;
  18805. }
  18806. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18807. return ctx->header.n_tensors;
  18808. }
  18809. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18810. // return -1 if tensor not found
  18811. int tensorfound = -1;
  18812. const int n_tensors = gguf_get_n_tensors(ctx);
  18813. for (int i = 0; i < n_tensors; ++i) {
  18814. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18815. tensorfound = i;
  18816. break;
  18817. }
  18818. }
  18819. return tensorfound;
  18820. }
  18821. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18822. return ctx->infos[i].offset;
  18823. }
  18824. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18825. return ctx->infos[i].name.data;
  18826. }
  18827. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18828. return ctx->infos[i].type;
  18829. }
  18830. // returns the index
  18831. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18832. const int idx = gguf_find_key(ctx, key);
  18833. if (idx >= 0) {
  18834. return idx;
  18835. }
  18836. const int n_kv = gguf_get_n_kv(ctx);
  18837. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18838. ctx->kv[n_kv].key.n = strlen(key);
  18839. ctx->kv[n_kv].key.data = strdup(key);
  18840. ctx->header.n_kv++;
  18841. return n_kv;
  18842. }
  18843. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18844. const int idx = gguf_find_key(ctx, key);
  18845. if (idx >= 0) {
  18846. const int n_kv = gguf_get_n_kv(ctx);
  18847. gguf_free_kv(&ctx->kv[idx]);
  18848. for (int i = idx; i < n_kv-1; ++i) {
  18849. ctx->kv[i] = ctx->kv[i+1];
  18850. }
  18851. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18852. ctx->header.n_kv--;
  18853. }
  18854. }
  18855. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18856. const int idx = gguf_get_or_add_key(ctx, key);
  18857. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18858. ctx->kv[idx].value.uint8 = val;
  18859. }
  18860. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18861. const int idx = gguf_get_or_add_key(ctx, key);
  18862. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18863. ctx->kv[idx].value.int8 = val;
  18864. }
  18865. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18866. const int idx = gguf_get_or_add_key(ctx, key);
  18867. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18868. ctx->kv[idx].value.uint16 = val;
  18869. }
  18870. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18871. const int idx = gguf_get_or_add_key(ctx, key);
  18872. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18873. ctx->kv[idx].value.int16 = val;
  18874. }
  18875. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18876. const int idx = gguf_get_or_add_key(ctx, key);
  18877. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18878. ctx->kv[idx].value.uint32 = val;
  18879. }
  18880. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18881. const int idx = gguf_get_or_add_key(ctx, key);
  18882. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18883. ctx->kv[idx].value.int32 = val;
  18884. }
  18885. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18886. const int idx = gguf_get_or_add_key(ctx, key);
  18887. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18888. ctx->kv[idx].value.float32 = val;
  18889. }
  18890. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18891. const int idx = gguf_get_or_add_key(ctx, key);
  18892. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18893. ctx->kv[idx].value.uint64 = val;
  18894. }
  18895. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18896. const int idx = gguf_get_or_add_key(ctx, key);
  18897. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18898. ctx->kv[idx].value.int64 = val;
  18899. }
  18900. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18901. const int idx = gguf_get_or_add_key(ctx, key);
  18902. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18903. ctx->kv[idx].value.float64 = val;
  18904. }
  18905. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18906. const int idx = gguf_get_or_add_key(ctx, key);
  18907. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18908. ctx->kv[idx].value.bool_ = val;
  18909. }
  18910. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18911. const int idx = gguf_get_or_add_key(ctx, key);
  18912. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18913. ctx->kv[idx].value.str.n = strlen(val);
  18914. ctx->kv[idx].value.str.data = strdup(val);
  18915. }
  18916. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18917. const int idx = gguf_get_or_add_key(ctx, key);
  18918. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18919. ctx->kv[idx].value.arr.type = type;
  18920. ctx->kv[idx].value.arr.n = n;
  18921. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18922. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18923. }
  18924. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18925. const int idx = gguf_get_or_add_key(ctx, key);
  18926. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18927. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18928. ctx->kv[idx].value.arr.n = n;
  18929. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18930. for (int i = 0; i < n; i++) {
  18931. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18932. str->n = strlen(data[i]);
  18933. str->data = strdup(data[i]);
  18934. }
  18935. }
  18936. // set or add KV pairs from another context
  18937. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18938. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18939. switch (src->kv[i].type) {
  18940. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18941. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18942. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18943. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18944. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18945. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18946. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18947. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18948. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18949. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18950. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18951. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18952. case GGUF_TYPE_ARRAY:
  18953. {
  18954. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18955. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18956. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18957. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18958. }
  18959. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18960. GGML_FREE((void *)data);
  18961. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18962. GGML_ABORT("nested arrays not supported");
  18963. } else {
  18964. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18965. }
  18966. } break;
  18967. default: GGML_ABORT("invalid type");
  18968. }
  18969. }
  18970. }
  18971. void gguf_add_tensor(
  18972. struct gguf_context * ctx,
  18973. const struct ggml_tensor * tensor) {
  18974. GGML_ASSERT(tensor);
  18975. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18976. GGML_ABORT("duplicated tensor name");
  18977. }
  18978. const int idx = ctx->header.n_tensors;
  18979. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18980. ctx->infos[idx].name.n = strlen(tensor->name);
  18981. ctx->infos[idx].name.data = strdup(tensor->name);
  18982. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18983. ctx->infos[idx].ne[i] = 1;
  18984. }
  18985. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18986. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18987. ctx->infos[idx].ne[i] = tensor->ne[i];
  18988. }
  18989. ctx->infos[idx].type = tensor->type;
  18990. ctx->infos[idx].offset = 0;
  18991. ctx->infos[idx].data = tensor->data;
  18992. ctx->infos[idx].size = ggml_nbytes(tensor);
  18993. if (ctx->header.n_tensors > 0) {
  18994. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18995. }
  18996. ctx->header.n_tensors++;
  18997. }
  18998. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18999. const int idx = gguf_find_tensor(ctx, name);
  19000. if (idx < 0) {
  19001. GGML_ABORT("tensor not found");
  19002. }
  19003. ctx->infos[idx].type = type;
  19004. }
  19005. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  19006. const int idx = gguf_find_tensor(ctx, name);
  19007. if (idx < 0) {
  19008. GGML_ABORT("tensor not found");
  19009. }
  19010. ctx->infos[idx].data = data;
  19011. ctx->infos[idx].size = size;
  19012. // update offsets
  19013. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  19014. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  19015. }
  19016. }
  19017. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  19018. // fwrite(&val->n, sizeof(val->n), 1, file);
  19019. // fwrite(val->data, sizeof(char), val->n, file);
  19020. //}
  19021. //
  19022. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  19023. // fwrite(val, sizeof(char), size, file);
  19024. //}
  19025. struct gguf_buf {
  19026. void * data;
  19027. size_t size;
  19028. size_t offset;
  19029. };
  19030. static struct gguf_buf gguf_buf_init(size_t size) {
  19031. struct gguf_buf buf = {
  19032. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  19033. /*buf.size =*/ size,
  19034. /*buf.offset =*/ 0,
  19035. };
  19036. return buf;
  19037. }
  19038. static void gguf_buf_free(struct gguf_buf buf) {
  19039. if (buf.data) {
  19040. GGML_FREE(buf.data);
  19041. }
  19042. }
  19043. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  19044. if (buf->offset + size > buf->size) {
  19045. buf->size = 1.5*(buf->offset + size);
  19046. if (buf->data) {
  19047. buf->data = realloc(buf->data, buf->size);
  19048. }
  19049. }
  19050. }
  19051. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  19052. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  19053. if (buf->data) {
  19054. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  19055. }
  19056. buf->offset += sizeof(val->n);
  19057. if (buf->data) {
  19058. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  19059. }
  19060. buf->offset += val->n;
  19061. }
  19062. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  19063. gguf_buf_grow(buf, el_size);
  19064. if (buf->data) {
  19065. memcpy((char *) buf->data + buf->offset, val, el_size);
  19066. }
  19067. buf->offset += el_size;
  19068. }
  19069. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  19070. // write header
  19071. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  19072. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  19073. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  19074. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  19075. // write key-value pairs
  19076. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  19077. struct gguf_kv * kv = &ctx->kv[i];
  19078. gguf_bwrite_str(buf, &kv->key);
  19079. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  19080. switch (kv->type) {
  19081. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  19082. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  19083. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  19084. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  19085. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  19086. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  19087. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  19088. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  19089. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  19090. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  19091. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  19092. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  19093. case GGUF_TYPE_ARRAY:
  19094. {
  19095. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  19096. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  19097. switch (kv->value.arr.type) {
  19098. case GGUF_TYPE_UINT8:
  19099. case GGUF_TYPE_INT8:
  19100. case GGUF_TYPE_UINT16:
  19101. case GGUF_TYPE_INT16:
  19102. case GGUF_TYPE_UINT32:
  19103. case GGUF_TYPE_INT32:
  19104. case GGUF_TYPE_FLOAT32:
  19105. case GGUF_TYPE_UINT64:
  19106. case GGUF_TYPE_INT64:
  19107. case GGUF_TYPE_FLOAT64:
  19108. case GGUF_TYPE_BOOL:
  19109. {
  19110. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  19111. } break;
  19112. case GGUF_TYPE_STRING:
  19113. {
  19114. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  19115. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  19116. }
  19117. } break;
  19118. case GGUF_TYPE_ARRAY:
  19119. default: GGML_ABORT("invalid type");
  19120. }
  19121. } break;
  19122. default: GGML_ABORT("invalid type");
  19123. }
  19124. }
  19125. // write tensor infos
  19126. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19127. struct gguf_tensor_info * info = &ctx->infos[i];
  19128. gguf_bwrite_str(buf, &info->name);
  19129. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  19130. for (uint32_t j = 0; j < info->n_dims; ++j) {
  19131. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  19132. }
  19133. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  19134. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  19135. }
  19136. // we require the data section to be aligned, so take into account any padding
  19137. {
  19138. const size_t offset = buf->offset;
  19139. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  19140. if (offset_pad != offset) {
  19141. uint8_t pad = 0;
  19142. for (size_t i = 0; i < offset_pad - offset; ++i) {
  19143. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19144. }
  19145. }
  19146. }
  19147. if (only_meta) {
  19148. return;
  19149. }
  19150. size_t offset = 0;
  19151. // write tensor data
  19152. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  19153. struct gguf_tensor_info * info = &ctx->infos[i];
  19154. const size_t size = info->size;
  19155. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  19156. gguf_bwrite_el(buf, info->data, size);
  19157. if (size_pad != size) {
  19158. uint8_t pad = 0;
  19159. for (size_t j = 0; j < size_pad - size; ++j) {
  19160. gguf_bwrite_el(buf, &pad, sizeof(pad));
  19161. }
  19162. }
  19163. GGML_ASSERT(offset == info->offset);
  19164. offset += size_pad;
  19165. }
  19166. }
  19167. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  19168. FILE * file = ggml_fopen(fname, "wb");
  19169. if (!file) {
  19170. GGML_ABORT("failed to open file for writing");
  19171. }
  19172. struct gguf_buf buf = gguf_buf_init(16*1024);
  19173. gguf_write_to_buf(ctx, &buf, only_meta);
  19174. fwrite(buf.data, 1, buf.offset, file);
  19175. gguf_buf_free(buf);
  19176. fclose(file);
  19177. }
  19178. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  19179. // no allocs - only compute size
  19180. struct gguf_buf buf = gguf_buf_init(0);
  19181. gguf_write_to_buf(ctx, &buf, true);
  19182. return buf.offset;
  19183. }
  19184. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  19185. struct gguf_buf buf = gguf_buf_init(16*1024);
  19186. gguf_write_to_buf(ctx, &buf, true);
  19187. memcpy(data, buf.data, buf.offset);
  19188. gguf_buf_free(buf);
  19189. }
  19190. ////////////////////////////////////////////////////////////////////////////////
  19191. int ggml_cpu_has_avx(void) {
  19192. #if defined(__AVX__)
  19193. return 1;
  19194. #else
  19195. return 0;
  19196. #endif
  19197. }
  19198. int ggml_cpu_has_avx_vnni(void) {
  19199. #if defined(__AVXVNNI__)
  19200. return 1;
  19201. #else
  19202. return 0;
  19203. #endif
  19204. }
  19205. int ggml_cpu_has_avx2(void) {
  19206. #if defined(__AVX2__)
  19207. return 1;
  19208. #else
  19209. return 0;
  19210. #endif
  19211. }
  19212. int ggml_cpu_has_avx512(void) {
  19213. #if defined(__AVX512F__)
  19214. return 1;
  19215. #else
  19216. return 0;
  19217. #endif
  19218. }
  19219. int ggml_cpu_has_avx512_vbmi(void) {
  19220. #if defined(__AVX512VBMI__)
  19221. return 1;
  19222. #else
  19223. return 0;
  19224. #endif
  19225. }
  19226. int ggml_cpu_has_avx512_vnni(void) {
  19227. #if defined(__AVX512VNNI__)
  19228. return 1;
  19229. #else
  19230. return 0;
  19231. #endif
  19232. }
  19233. int ggml_cpu_has_avx512_bf16(void) {
  19234. #if defined(__AVX512BF16__)
  19235. return 1;
  19236. #else
  19237. return 0;
  19238. #endif
  19239. }
  19240. int ggml_cpu_has_amx_int8(void) {
  19241. #if defined(__AMX_INT8__)
  19242. return 1;
  19243. #else
  19244. return 0;
  19245. #endif
  19246. }
  19247. int ggml_cpu_has_fma(void) {
  19248. #if defined(__FMA__)
  19249. return 1;
  19250. #else
  19251. return 0;
  19252. #endif
  19253. }
  19254. int ggml_cpu_has_neon(void) {
  19255. #if defined(__ARM_ARCH)
  19256. return ggml_arm_arch_features.has_neon;
  19257. #else
  19258. return 0;
  19259. #endif
  19260. }
  19261. int ggml_cpu_has_sve(void) {
  19262. #if defined(__ARM_ARCH)
  19263. return ggml_arm_arch_features.has_sve;
  19264. #else
  19265. return 0;
  19266. #endif
  19267. }
  19268. int ggml_cpu_has_arm_fma(void) {
  19269. #if defined(__ARM_FEATURE_FMA)
  19270. return 1;
  19271. #else
  19272. return 0;
  19273. #endif
  19274. }
  19275. int ggml_cpu_has_riscv_v(void) {
  19276. #if defined(__riscv_v_intrinsic)
  19277. return 1;
  19278. #else
  19279. return 0;
  19280. #endif
  19281. }
  19282. int ggml_cpu_has_metal(void) {
  19283. #if defined(GGML_USE_METAL)
  19284. return 1;
  19285. #else
  19286. return 0;
  19287. #endif
  19288. }
  19289. int ggml_cpu_has_f16c(void) {
  19290. #if defined(__F16C__)
  19291. return 1;
  19292. #else
  19293. return 0;
  19294. #endif
  19295. }
  19296. int ggml_cpu_has_fp16_va(void) {
  19297. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  19298. return 1;
  19299. #else
  19300. return 0;
  19301. #endif
  19302. }
  19303. int ggml_cpu_has_wasm_simd(void) {
  19304. #if defined(__wasm_simd128__)
  19305. return 1;
  19306. #else
  19307. return 0;
  19308. #endif
  19309. }
  19310. int ggml_cpu_has_blas(void) {
  19311. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  19312. return 1;
  19313. #else
  19314. return 0;
  19315. #endif
  19316. }
  19317. int ggml_cpu_has_cuda(void) {
  19318. #if defined(GGML_USE_CUDA)
  19319. return 1;
  19320. #else
  19321. return 0;
  19322. #endif
  19323. }
  19324. int ggml_cpu_has_vulkan(void) {
  19325. #if defined(GGML_USE_VULKAN)
  19326. return 1;
  19327. #else
  19328. return 0;
  19329. #endif
  19330. }
  19331. int ggml_cpu_has_kompute(void) {
  19332. #if defined(GGML_USE_KOMPUTE)
  19333. return 1;
  19334. #else
  19335. return 0;
  19336. #endif
  19337. }
  19338. int ggml_cpu_has_sycl(void) {
  19339. #if defined(GGML_USE_SYCL)
  19340. return 1;
  19341. #else
  19342. return 0;
  19343. #endif
  19344. }
  19345. int ggml_cpu_has_rpc(void) {
  19346. #if defined(GGML_USE_RPC)
  19347. return 1;
  19348. #else
  19349. return 0;
  19350. #endif
  19351. }
  19352. int ggml_cpu_has_cann(void) {
  19353. #if defined(GGML_USE_CANN)
  19354. return 1;
  19355. #else
  19356. return 0;
  19357. #endif
  19358. }
  19359. int ggml_cpu_has_llamafile(void) {
  19360. #if defined(GGML_USE_LLAMAFILE)
  19361. return 1;
  19362. #else
  19363. return 0;
  19364. #endif
  19365. }
  19366. int ggml_cpu_has_gpublas(void) {
  19367. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  19368. }
  19369. int ggml_cpu_has_sse3(void) {
  19370. #if defined(__SSE3__)
  19371. return 1;
  19372. #else
  19373. return 0;
  19374. #endif
  19375. }
  19376. int ggml_cpu_has_ssse3(void) {
  19377. #if defined(__SSSE3__)
  19378. return 1;
  19379. #else
  19380. return 0;
  19381. #endif
  19382. }
  19383. int ggml_cpu_has_vsx(void) {
  19384. #if defined(__POWER9_VECTOR__)
  19385. return 1;
  19386. #else
  19387. return 0;
  19388. #endif
  19389. }
  19390. int ggml_cpu_has_matmul_int8(void) {
  19391. #if defined(__ARM_ARCH)
  19392. return ggml_arm_arch_features.has_i8mm;
  19393. #else
  19394. return 0;
  19395. #endif
  19396. }
  19397. int ggml_cpu_get_sve_cnt(void) {
  19398. #if defined(__ARM_ARCH)
  19399. return ggml_arm_arch_features.sve_cnt;
  19400. #else
  19401. return 0;
  19402. #endif
  19403. }
  19404. void ggml_log_set(ggml_log_callback log_callback, void * user_data) {
  19405. g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default;
  19406. g_logger_state.log_callback_user_data = user_data;
  19407. }
  19408. ////////////////////////////////////////////////////////////////////////////////