ggml.c 331 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922
  1. #include "ggml.h"
  2. #if defined(_MSC_VER) || defined(__MINGW32__)
  3. #include <malloc.h> // using malloc.h with MSC/MINGW
  4. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  5. #include <alloca.h>
  6. #endif
  7. #include <assert.h>
  8. #include <time.h>
  9. #include <math.h>
  10. #include <stdlib.h>
  11. #include <string.h>
  12. #include <stdint.h>
  13. #include <stdio.h>
  14. #include <float.h>
  15. // if C99 - static_assert is noop
  16. // ref: https://stackoverflow.com/a/53923785/4039976
  17. #ifndef static_assert
  18. #define static_assert(cond, msg) struct global_scope_noop_trick
  19. #endif
  20. #if defined _MSC_VER || defined(__MINGW32__)
  21. #if !defined(__MINGW32__)
  22. #include <Windows.h>
  23. #else
  24. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  25. #include <windows.h>
  26. #include <errno.h>
  27. #endif
  28. typedef volatile LONG atomic_int;
  29. typedef atomic_int atomic_bool;
  30. static void atomic_store(atomic_int* ptr, LONG val) {
  31. InterlockedExchange(ptr, val);
  32. }
  33. static LONG atomic_load(atomic_int* ptr) {
  34. return InterlockedCompareExchange(ptr, 0, 0);
  35. }
  36. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  37. return InterlockedExchangeAdd(ptr, inc);
  38. }
  39. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  40. return atomic_fetch_add(ptr, -(dec));
  41. }
  42. typedef HANDLE pthread_t;
  43. typedef DWORD thread_ret_t;
  44. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. #ifdef __HAIKU__
  66. #define static_assert(cond, msg) _Static_assert(cond, msg)
  67. #endif
  68. /*#define GGML_PERF*/
  69. #define GGML_DEBUG 0
  70. #define GGML_GELU_FP16
  71. #define GGML_SILU_FP16
  72. #define GGML_SOFT_MAX_UNROLL 4
  73. #define GGML_VEC_DOT_UNROLL 2
  74. #ifdef GGML_USE_ACCELERATE
  75. // uncomment to use vDSP for soft max computation
  76. // note: not sure if it is actually faster
  77. //#define GGML_SOFT_MAX_ACCELERATE
  78. #endif
  79. #if UINTPTR_MAX == 0xFFFFFFFF
  80. #define GGML_MEM_ALIGN 4
  81. #else
  82. #define GGML_MEM_ALIGN 16
  83. #endif
  84. #define UNUSED(x) (void)(x)
  85. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  86. #define GGML_ASSERT(x) \
  87. do { \
  88. if (!(x)) { \
  89. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  90. abort(); \
  91. } \
  92. } while (0)
  93. #ifdef GGML_USE_ACCELERATE
  94. #include <Accelerate/Accelerate.h>
  95. #elif GGML_USE_OPENBLAS
  96. #include <cblas.h>
  97. #endif
  98. #undef MIN
  99. #undef MAX
  100. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  101. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  102. // floating point type used to accumulate sums
  103. typedef double ggml_float;
  104. // 16-bit float
  105. // on Arm, we use __fp16
  106. // on x86, we use uint16_t
  107. #ifdef __ARM_NEON
  108. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  109. //
  110. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  111. //
  112. #include <arm_neon.h>
  113. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  114. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  115. #define GGML_FP16_TO_FP32(x) (x)
  116. #define GGML_FP32_TO_FP16(x) (x)
  117. #else
  118. #ifdef __wasm_simd128__
  119. #include <wasm_simd128.h>
  120. #else
  121. #ifdef __POWER9_VECTOR__
  122. #include <altivec.h>
  123. #undef bool
  124. #define bool _Bool
  125. #else
  126. #include <immintrin.h>
  127. #endif
  128. #endif
  129. #ifdef __F16C__
  130. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  131. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  132. #else
  133. // FP16 <-> FP32
  134. // ref: https://github.com/Maratyszcza/FP16
  135. static inline float fp32_from_bits(uint32_t w) {
  136. union {
  137. uint32_t as_bits;
  138. float as_value;
  139. } fp32;
  140. fp32.as_bits = w;
  141. return fp32.as_value;
  142. }
  143. static inline uint32_t fp32_to_bits(float f) {
  144. union {
  145. float as_value;
  146. uint32_t as_bits;
  147. } fp32;
  148. fp32.as_value = f;
  149. return fp32.as_bits;
  150. }
  151. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  152. const uint32_t w = (uint32_t) h << 16;
  153. const uint32_t sign = w & UINT32_C(0x80000000);
  154. const uint32_t two_w = w + w;
  155. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  156. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  157. const float exp_scale = 0x1.0p-112f;
  158. #else
  159. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  160. #endif
  161. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  162. const uint32_t magic_mask = UINT32_C(126) << 23;
  163. const float magic_bias = 0.5f;
  164. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  165. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  166. const uint32_t result = sign |
  167. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  168. return fp32_from_bits(result);
  169. }
  170. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  171. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  172. const float scale_to_inf = 0x1.0p+112f;
  173. const float scale_to_zero = 0x1.0p-110f;
  174. #else
  175. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  176. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  177. #endif
  178. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  179. const uint32_t w = fp32_to_bits(f);
  180. const uint32_t shl1_w = w + w;
  181. const uint32_t sign = w & UINT32_C(0x80000000);
  182. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  183. if (bias < UINT32_C(0x71000000)) {
  184. bias = UINT32_C(0x71000000);
  185. }
  186. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  187. const uint32_t bits = fp32_to_bits(base);
  188. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  189. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  190. const uint32_t nonsign = exp_bits + mantissa_bits;
  191. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  192. }
  193. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  194. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  195. #endif // __F16C__
  196. #endif // __ARM_NEON
  197. //
  198. // global data
  199. //
  200. // precomputed gelu table for f16 (128 KB)
  201. static ggml_fp16_t table_gelu_f16[1 << 16];
  202. // precomputed silu table for f16 (128 KB)
  203. static ggml_fp16_t table_silu_f16[1 << 16];
  204. // precomputed exp table for f16 (128 KB)
  205. static ggml_fp16_t table_exp_f16[1 << 16];
  206. // precomputed f32 table for f16 (256 KB)
  207. static float table_f32_f16[1 << 16];
  208. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  209. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  210. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  211. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  212. uint16_t s;
  213. memcpy(&s, &f, sizeof(uint16_t));
  214. return table_f32_f16[s];
  215. }
  216. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  217. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  218. #endif
  219. // note: do not use these inside ggml.c
  220. // these are meant to be used via the ggml.h API
  221. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  222. return GGML_FP16_TO_FP32(x);
  223. }
  224. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  225. return GGML_FP32_TO_FP16(x);
  226. }
  227. //
  228. // timing
  229. //
  230. #if defined(_MSC_VER) || defined(__MINGW32__)
  231. static int64_t timer_freq;
  232. void ggml_time_init(void) {
  233. LARGE_INTEGER frequency;
  234. QueryPerformanceFrequency(&frequency);
  235. timer_freq = frequency.QuadPart;
  236. }
  237. int64_t ggml_time_ms(void) {
  238. LARGE_INTEGER t;
  239. QueryPerformanceCounter(&t);
  240. return (t.QuadPart * 1000) / timer_freq;
  241. }
  242. int64_t ggml_time_us(void) {
  243. LARGE_INTEGER t;
  244. QueryPerformanceCounter(&t);
  245. return (t.QuadPart * 1000000) / timer_freq;
  246. }
  247. #else
  248. void ggml_time_init(void) {}
  249. int64_t ggml_time_ms(void) {
  250. struct timespec ts;
  251. clock_gettime(CLOCK_MONOTONIC, &ts);
  252. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  253. }
  254. int64_t ggml_time_us(void) {
  255. struct timespec ts;
  256. clock_gettime(CLOCK_MONOTONIC, &ts);
  257. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  258. }
  259. #endif
  260. int64_t ggml_cycles(void) {
  261. return clock();
  262. }
  263. int64_t ggml_cycles_per_ms(void) {
  264. return CLOCKS_PER_SEC/1000;
  265. }
  266. #ifdef GGML_PERF
  267. #define ggml_perf_time_ms() ggml_time_ms()
  268. #define ggml_perf_time_us() ggml_time_us()
  269. #define ggml_perf_cycles() ggml_cycles()
  270. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  271. #else
  272. #define ggml_perf_time_ms() 0
  273. #define ggml_perf_time_us() 0
  274. #define ggml_perf_cycles() 0
  275. #define ggml_perf_cycles_per_ms() 0
  276. #endif
  277. //
  278. // cache line
  279. //
  280. #if defined(__cpp_lib_hardware_interference_size)
  281. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  282. #else
  283. #if defined(__POWER9_VECTOR__)
  284. #define CACHE_LINE_SIZE 128
  285. #else
  286. #define CACHE_LINE_SIZE 64
  287. #endif
  288. #endif
  289. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  290. //
  291. // quantization
  292. //
  293. #define QK 32
  294. // AVX routines provided by GH user Const-me
  295. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  296. #if __AVX2__ || __AVX512F__
  297. // Unpack 32 4-bit fields into 32 bytes
  298. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  299. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  300. {
  301. // Load 16 bytes from memory
  302. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  303. // Expand bytes into uint16_t values
  304. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  305. // Unpack values into individual bytes
  306. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  307. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  308. __m256i low = _mm256_and_si256( lowMask, bytes );
  309. high = _mm256_slli_epi16( high, 4 );
  310. bytes = _mm256_or_si256( low, high );
  311. return bytes;
  312. }
  313. static inline __m128i packNibbles( __m256i bytes )
  314. {
  315. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  316. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  317. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  318. __m256i low = _mm256_and_si256( lowByte, bytes );
  319. high = _mm256_srli_epi16( high, 4 );
  320. bytes = _mm256_or_si256( low, high );
  321. // Compress uint16_t lanes into bytes
  322. __m128i r0 = _mm256_castsi256_si128( bytes );
  323. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  324. return _mm_packus_epi16( r0, r1 );
  325. }
  326. #endif
  327. // method 5
  328. // blocks of QK elements
  329. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  330. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  331. assert(k % QK == 0);
  332. const int nb = k / QK;
  333. const size_t bs = sizeof(float) + QK/2;
  334. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  335. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  336. uint8_t pp[QK/2];
  337. #if __ARM_NEON
  338. #if QK == 32
  339. for (int i = 0; i < nb; i++) {
  340. float amax = 0.0f; // absolute max
  341. float32x4_t srcv [8];
  342. float32x4_t asrcv[8];
  343. float32x4_t amaxv[8];
  344. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  345. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  346. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  347. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  348. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  349. amax = MAX(
  350. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  351. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  352. const float d = amax / ((1 << 3) - 1);
  353. const float id = d ? 1.0/d : 0.0;
  354. *(float *)pd = d;
  355. pd += bs;
  356. for (int l = 0; l < 8; l++) {
  357. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  358. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  359. const int32x4_t vi = vcvtq_s32_f32(vf);
  360. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  361. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  362. }
  363. memcpy(pb, pp, sizeof(pp));
  364. pb += bs;
  365. }
  366. #else
  367. #error "not implemented for QK"
  368. #endif
  369. #elif defined(__AVX2__)
  370. #if QK == 32
  371. for (int i = 0; i < nb; i++) {
  372. // Load elements into 4 AVX vectors
  373. __m256 v0 = _mm256_loadu_ps( x );
  374. __m256 v1 = _mm256_loadu_ps( x + 8 );
  375. __m256 v2 = _mm256_loadu_ps( x + 16 );
  376. __m256 v3 = _mm256_loadu_ps( x + 24 );
  377. x += 32;
  378. // Compute max(abs(e)) for the block
  379. const __m256 signBit = _mm256_set1_ps( -0.0f );
  380. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  381. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  382. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  383. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  384. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  385. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  386. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  387. const float maxScalar = _mm_cvtss_f32( max4 );
  388. // Quantize these floats
  389. const float d = maxScalar / 7.0f;
  390. *(float *)pd = d;
  391. pd += bs;
  392. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  393. const __m256 mul = _mm256_set1_ps( id );
  394. // Apply the multiplier
  395. v0 = _mm256_mul_ps( v0, mul );
  396. v1 = _mm256_mul_ps( v1, mul );
  397. v2 = _mm256_mul_ps( v2, mul );
  398. v3 = _mm256_mul_ps( v3, mul );
  399. // Round to nearest integer
  400. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  401. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  402. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  403. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  404. // Convert floats to integers
  405. __m256i i0 = _mm256_cvtps_epi32( v0 );
  406. __m256i i1 = _mm256_cvtps_epi32( v1 );
  407. __m256i i2 = _mm256_cvtps_epi32( v2 );
  408. __m256i i3 = _mm256_cvtps_epi32( v3 );
  409. // Convert int32 to int16
  410. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  411. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  412. // Convert int16 to int8
  413. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  414. // We got our precious signed bytes, but the order is now wrong
  415. // These AVX2 pack instructions process 16-byte pieces independently
  416. // The following instruction is fixing the order
  417. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  418. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  419. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  420. const __m256i off = _mm256_set1_epi8( 8 );
  421. i0 = _mm256_add_epi8( i0, off );
  422. // Compress the vector into 4 bit/value, and store
  423. __m128i res = packNibbles( i0 );
  424. _mm_storeu_si128( ( __m128i* )pb, res );
  425. pb += bs;
  426. }
  427. #else
  428. #error "not implemented for QK"
  429. #endif
  430. #elif defined(__wasm_simd128__)
  431. #if QK == 32
  432. for (int i = 0; i < nb; i++) {
  433. float amax = 0.0f; // absolute max
  434. v128_t srcv [8];
  435. v128_t asrcv[8];
  436. v128_t amaxv[8];
  437. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  438. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  439. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  440. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  441. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  442. amax = MAX(
  443. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  444. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  445. const float d = amax / ((1 << 3) - 1);
  446. const float id = d ? 1.0/d : 0.0;
  447. *(float *)pd = d;
  448. pd += bs;
  449. for (int l = 0; l < 8; l++) {
  450. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  451. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  452. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  453. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  454. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  455. }
  456. memcpy(pb, pp, sizeof(pp));
  457. pb += bs;
  458. }
  459. #else
  460. #error "not implemented for QK"
  461. #endif
  462. #else
  463. // scalar
  464. for (int i = 0; i < nb; i++) {
  465. float amax = 0.0f; // absolute max
  466. for (int l = 0; l < QK; l++) {
  467. const float v = x[i*QK + l];
  468. amax = MAX(amax, fabsf(v));
  469. }
  470. const float d = amax / ((1 << 3) - 1);
  471. const float id = d ? 1.0f/d : 0.0f;
  472. *(float *)pd = d;
  473. pd += bs;
  474. for (int l = 0; l < QK; l += 2) {
  475. const float v0 = x[i*QK + l + 0]*id;
  476. const float v1 = x[i*QK + l + 1]*id;
  477. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  478. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  479. assert(vi0 >= 0 && vi0 < 16);
  480. assert(vi1 >= 0 && vi1 < 16);
  481. pp[l/2] = vi0 | (vi1 << 4);
  482. }
  483. memcpy(pb, pp, sizeof(pp));
  484. pb += bs;
  485. }
  486. #endif
  487. }
  488. // method 4
  489. // blocks of QK elements
  490. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  491. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  492. assert(k % QK == 0);
  493. const int nb = k / QK;
  494. const size_t bs = 2*sizeof(float) + QK/2;
  495. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  496. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  497. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  498. uint8_t pp[QK/2];
  499. for (int i = 0; i < nb; i++) {
  500. float min = FLT_MAX;
  501. float max = -FLT_MAX;
  502. for (int l = 0; l < QK; l++) {
  503. const float v = x[i*QK + l];
  504. if (v < min) min = v;
  505. if (v > max) max = v;
  506. }
  507. const float d = (max - min) / ((1 << 4) - 1);
  508. const float id = d ? 1.0f/d : 0.0f;
  509. *(float *)pm = min;
  510. *(float *)pd = d;
  511. pm += bs;
  512. pd += bs;
  513. for (int l = 0; l < QK; l += 2) {
  514. const float v0 = (x[i*QK + l + 0] - min)*id;
  515. const float v1 = (x[i*QK + l + 1] - min)*id;
  516. const uint8_t vi0 = round(v0);
  517. const uint8_t vi1 = round(v1);
  518. assert(vi0 >= 0 && vi0 < 16);
  519. assert(vi1 >= 0 && vi1 < 16);
  520. pp[l/2] = vi0 | (vi1 << 4);
  521. }
  522. memcpy(pb, pp, sizeof(pp));
  523. pb += bs;
  524. }
  525. }
  526. // TODO: vectorize
  527. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  528. assert(k % QK == 0);
  529. const int nb = k / QK;
  530. const size_t bs = sizeof(float) + QK/2;
  531. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  532. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  533. // scalar
  534. for (int i = 0; i < nb; i++) {
  535. const float d = *(const float *) (pd + i*bs);
  536. const uint8_t * restrict pp = pb + i*bs;
  537. for (int l = 0; l < QK; l += 2) {
  538. const uint8_t vi = pp[l/2];
  539. const int8_t vi0 = vi & 0xf;
  540. const int8_t vi1 = vi >> 4;
  541. const float v0 = (vi0 - 8)*d;
  542. const float v1 = (vi1 - 8)*d;
  543. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  544. y[i*QK + l + 0] = v0;
  545. y[i*QK + l + 1] = v1;
  546. assert(!isnan(y[i*QK + l + 0]));
  547. assert(!isnan(y[i*QK + l + 1]));
  548. }
  549. }
  550. }
  551. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  552. assert(k % QK == 0);
  553. const int nb = k / QK;
  554. const size_t bs = 2*sizeof(float) + QK/2;
  555. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  556. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  557. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  558. for (int i = 0; i < nb; i++) {
  559. const float d = *(const float *) (pd + i*bs);
  560. const float m = *(const float *) (pm + i*bs);
  561. const uint8_t * restrict pp = pb + i*bs;
  562. for (int l = 0; l < QK; l += 2) {
  563. const uint8_t vi = pp[l/2];
  564. const int8_t vi0 = vi & 0xf;
  565. const int8_t vi1 = vi >> 4;
  566. const float v0 = vi0*d + m;
  567. const float v1 = vi1*d + m;
  568. y[i*QK + l + 0] = v0;
  569. y[i*QK + l + 1] = v1;
  570. assert(!isnan(y[i*QK + l + 0]));
  571. assert(!isnan(y[i*QK + l + 1]));
  572. }
  573. }
  574. }
  575. //
  576. // simd mappings
  577. //
  578. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  579. // we then implement the fundamental computation operations below using only these macros
  580. // adding support for new architectures requires to define the corresponding SIMD macros
  581. //
  582. // GGML_F32_STEP / GGML_F16_STEP
  583. // number of elements to process in a single step
  584. //
  585. // GGML_F32_EPR / GGML_F16_EPR
  586. // number of elements to fit in a single register
  587. //
  588. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  589. #define GGML_SIMD
  590. // F32 NEON
  591. #define GGML_F32_STEP 16
  592. #define GGML_F32_EPR 4
  593. #define GGML_F32x4 float32x4_t
  594. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  595. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  596. #define GGML_F32x4_LOAD vld1q_f32
  597. #define GGML_F32x4_STORE vst1q_f32
  598. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  599. #define GGML_F32x4_ADD vaddq_f32
  600. #define GGML_F32x4_MUL vmulq_f32
  601. #if defined(__ARM_FEATURE_QRDMX)
  602. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  603. #else
  604. #define GGML_F32x4_REDUCE_ONE(x) \
  605. (vgetq_lane_f32(x, 0) + \
  606. vgetq_lane_f32(x, 1) + \
  607. vgetq_lane_f32(x, 2) + \
  608. vgetq_lane_f32(x, 3))
  609. #endif
  610. #define GGML_F32x4_REDUCE(res, x) \
  611. { \
  612. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  613. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  614. } \
  615. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  616. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  617. } \
  618. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  619. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  620. } \
  621. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  622. }
  623. #define GGML_F32_VEC GGML_F32x4
  624. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  625. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  626. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  627. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  628. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  629. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  630. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  631. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  632. // F16 NEON
  633. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  634. #define GGML_F16_STEP 32
  635. #define GGML_F16_EPR 8
  636. #define GGML_F16x8 float16x8_t
  637. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  638. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  639. #define GGML_F16x8_LOAD vld1q_f16
  640. #define GGML_F16x8_STORE vst1q_f16
  641. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  642. #define GGML_F16x8_ADD vaddq_f16
  643. #define GGML_F16x8_MUL vmulq_f16
  644. #define GGML_F16x8_REDUCE(res, x) \
  645. { \
  646. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  647. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  648. } \
  649. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  650. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  651. } \
  652. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  653. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  654. } \
  655. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  656. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  657. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  658. }
  659. #define GGML_F16_VEC GGML_F16x8
  660. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  661. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  662. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  663. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  664. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  665. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  666. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  667. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  668. #else
  669. // if FP16 vector arithmetic is not supported, we use FP32 instead
  670. // and take advantage of the vcvt_ functions to convert to/from FP16
  671. #define GGML_F16_STEP 16
  672. #define GGML_F16_EPR 4
  673. #define GGML_F32Cx4 float32x4_t
  674. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  675. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  676. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  677. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  678. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  679. #define GGML_F32Cx4_ADD vaddq_f32
  680. #define GGML_F32Cx4_MUL vmulq_f32
  681. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  682. #define GGML_F16_VEC GGML_F32Cx4
  683. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  684. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  685. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  686. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  687. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  688. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  689. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  690. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  691. #endif
  692. #elif defined(__AVX__)
  693. #define GGML_SIMD
  694. // F32 AVX
  695. #define GGML_F32_STEP 32
  696. #define GGML_F32_EPR 8
  697. #define GGML_F32x8 __m256
  698. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  699. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  700. #define GGML_F32x8_LOAD _mm256_loadu_ps
  701. #define GGML_F32x8_STORE _mm256_storeu_ps
  702. #if defined(__FMA__)
  703. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  704. #else
  705. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  706. #endif
  707. #define GGML_F32x8_ADD _mm256_add_ps
  708. #define GGML_F32x8_MUL _mm256_mul_ps
  709. #define GGML_F32x8_REDUCE(res, x) \
  710. { \
  711. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  712. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  713. } \
  714. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  715. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  716. } \
  717. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  718. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  719. } \
  720. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  721. _mm256_extractf128_ps(x[0], 1)); \
  722. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  723. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  724. }
  725. // TODO: is this optimal ?
  726. #define GGML_F32_VEC GGML_F32x8
  727. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  728. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  729. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  730. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  731. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  732. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  733. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  734. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  735. // F16 AVX
  736. #define GGML_F16_STEP 32
  737. #define GGML_F16_EPR 8
  738. // F16 arithmetic is not supported by AVX, so we use F32 instead
  739. // we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32
  740. #define GGML_F32Cx8 __m256
  741. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  742. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  743. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  744. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  745. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  746. #define GGML_F32Cx8_ADD _mm256_add_ps
  747. #define GGML_F32Cx8_MUL _mm256_mul_ps
  748. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  749. #define GGML_F16_VEC GGML_F32Cx8
  750. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  751. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  752. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  753. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  754. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  755. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  756. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  757. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  758. #elif defined(__POWER9_VECTOR__)
  759. #define GGML_SIMD
  760. // F32 POWER9
  761. #define GGML_F32_STEP 32
  762. #define GGML_F32_EPR 4
  763. #define GGML_F32x4 vector float
  764. #define GGML_F32x4_ZERO 0.0f
  765. #define GGML_F32x4_SET1 vec_splats
  766. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  767. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  768. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  769. #define GGML_F32x4_ADD vec_add
  770. #define GGML_F32x4_MUL vec_mul
  771. #define GGML_F32x4_REDUCE(res, x) \
  772. { \
  773. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  774. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  775. } \
  776. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  777. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  778. } \
  779. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  780. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  781. } \
  782. res = vec_extract(x[0], 0) + \
  783. vec_extract(x[0], 1) + \
  784. vec_extract(x[0], 2) + \
  785. vec_extract(x[0], 3); \
  786. }
  787. #define GGML_F32_VEC GGML_F32x4
  788. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  789. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  790. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  791. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  792. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  793. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  794. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  795. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  796. // F16 POWER9
  797. #define GGML_F16_STEP GGML_F32_STEP
  798. #define GGML_F16_EPR GGML_F32_EPR
  799. #define GGML_F16_VEC GGML_F32x4
  800. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  801. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  802. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  803. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  804. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  805. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  806. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  807. vec_extract_fp32_from_shortl(vec_xl(0, p))
  808. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  809. #define GGML_F16_VEC_STORE(p, r, i) \
  810. if (i & 0x1) \
  811. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  812. r[i - GGML_ENDIAN_BYTE(0)]), \
  813. 0, p - GGML_F16_EPR)
  814. #elif defined(__wasm_simd128__)
  815. #define GGML_SIMD
  816. // F32 WASM
  817. #define GGML_F32_STEP 16
  818. #define GGML_F32_EPR 4
  819. #define GGML_F32x4 v128_t
  820. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  821. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  822. #define GGML_F32x4_LOAD wasm_v128_load
  823. #define GGML_F32x4_STORE wasm_v128_store
  824. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  825. #define GGML_F32x4_ADD wasm_f32x4_add
  826. #define GGML_F32x4_MUL wasm_f32x4_mul
  827. #define GGML_F32x4_REDUCE(res, x) \
  828. { \
  829. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  830. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  831. } \
  832. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  833. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  834. } \
  835. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  836. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  837. } \
  838. res = wasm_f32x4_extract_lane(x[0], 0) + \
  839. wasm_f32x4_extract_lane(x[0], 1) + \
  840. wasm_f32x4_extract_lane(x[0], 2) + \
  841. wasm_f32x4_extract_lane(x[0], 3); \
  842. }
  843. #define GGML_F32_VEC GGML_F32x4
  844. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  845. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  846. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  847. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  848. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  849. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  850. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  851. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  852. // F16 WASM
  853. #define GGML_F16_STEP 16
  854. #define GGML_F16_EPR 4
  855. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  856. float tmp[4];
  857. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  858. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  859. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  860. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  861. return wasm_v128_load(tmp);
  862. }
  863. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  864. float tmp[4];
  865. wasm_v128_store(tmp, x);
  866. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  867. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  868. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  869. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  870. }
  871. #define GGML_F16x4 v128_t
  872. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  873. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  874. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  875. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  876. #define GGML_F16x4_FMA GGML_F32x4_FMA
  877. #define GGML_F16x4_ADD wasm_f32x4_add
  878. #define GGML_F16x4_MUL wasm_f32x4_mul
  879. #define GGML_F16x4_REDUCE(res, x) \
  880. { \
  881. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  882. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  883. } \
  884. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  885. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  886. } \
  887. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  888. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  889. } \
  890. res = wasm_f32x4_extract_lane(x[0], 0) + \
  891. wasm_f32x4_extract_lane(x[0], 1) + \
  892. wasm_f32x4_extract_lane(x[0], 2) + \
  893. wasm_f32x4_extract_lane(x[0], 3); \
  894. }
  895. #define GGML_F16_VEC GGML_F16x4
  896. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  897. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  898. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  899. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  900. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  901. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  902. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  903. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  904. #elif defined(__SSE3__)
  905. #define GGML_SIMD
  906. // F32 SSE
  907. #define GGML_F32_STEP 32
  908. #define GGML_F32_EPR 4
  909. #define GGML_F32x4 __m128
  910. #define GGML_F32x4_ZERO _mm_setzero_ps()
  911. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  912. #define GGML_F32x4_LOAD _mm_loadu_ps
  913. #define GGML_F32x4_STORE _mm_storeu_ps
  914. #if defined(__FMA__)
  915. // TODO: Does this work?
  916. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  917. #else
  918. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  919. #endif
  920. #define GGML_F32x4_ADD _mm_add_ps
  921. #define GGML_F32x4_MUL _mm_mul_ps
  922. #define GGML_F32x4_REDUCE(res, x) \
  923. { \
  924. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  925. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  926. } \
  927. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  928. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  929. } \
  930. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  931. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  932. } \
  933. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  934. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  935. }
  936. // TODO: is this optimal ?
  937. #define GGML_F32_VEC GGML_F32x4
  938. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  939. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  940. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  941. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  942. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  943. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  944. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  945. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  946. // F16 SSE
  947. #define GGML_F16_STEP 32
  948. #define GGML_F16_EPR 4
  949. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  950. float tmp[4];
  951. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  952. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  953. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  954. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  955. return _mm_loadu_ps(tmp);
  956. }
  957. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  958. float arr[4];
  959. _mm_storeu_ps(arr, y);
  960. x[0] = GGML_FP32_TO_FP16(arr[0]);
  961. x[1] = GGML_FP32_TO_FP16(arr[1]);
  962. x[2] = GGML_FP32_TO_FP16(arr[2]);
  963. x[3] = GGML_FP32_TO_FP16(arr[3]);
  964. }
  965. #define GGML_F32Cx4 __m128
  966. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  967. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  968. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  969. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  970. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  971. #define GGML_F32Cx4_ADD _mm_add_ps
  972. #define GGML_F32Cx4_MUL _mm_mul_ps
  973. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  974. #define GGML_F16_VEC GGML_F32Cx4
  975. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  976. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  977. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  978. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  979. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  980. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  981. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  982. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  983. #endif
  984. // GGML_F32_ARR / GGML_F16_ARR
  985. // number of registers to use per step
  986. #ifdef GGML_SIMD
  987. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  988. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  989. #endif
  990. //
  991. // fundamental operations
  992. //
  993. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  994. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  995. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  996. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  997. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  998. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  999. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1000. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1001. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1002. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1003. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1004. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1005. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1006. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1007. ggml_float sumf = 0.0;
  1008. #ifdef GGML_SIMD
  1009. const int np = (n & ~(GGML_F32_STEP - 1));
  1010. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1011. GGML_F32_VEC ax[GGML_F32_ARR];
  1012. GGML_F32_VEC ay[GGML_F32_ARR];
  1013. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1014. for (int j = 0; j < GGML_F32_ARR; j++) {
  1015. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1016. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1017. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1018. }
  1019. }
  1020. // reduce sum0..sum3 to sum0
  1021. GGML_F32_VEC_REDUCE(sumf, sum);
  1022. // leftovers
  1023. for (int i = np; i < n; ++i) {
  1024. sumf += x[i]*y[i];
  1025. }
  1026. #else
  1027. // scalar
  1028. for (int i = 0; i < n; ++i) {
  1029. sumf += x[i]*y[i];
  1030. }
  1031. #endif
  1032. *s = sumf;
  1033. }
  1034. #if __AVX512F__ && QK == 32
  1035. static inline __m512 dot_q4_0_oneblock_avx512(
  1036. __m512 acc,
  1037. const uint8_t * pd0,
  1038. const uint8_t * pd1,
  1039. const uint8_t * pb0,
  1040. const uint8_t * pb1,
  1041. size_t bs,
  1042. int i
  1043. ) {
  1044. const float * d0_0 = (const float *) (pd0 + i*bs);
  1045. const float * d1_0 = (const float *) (pd1 + i*bs);
  1046. const uint8_t * restrict p0 = pb0 + (i+0)*bs;
  1047. const uint8_t * restrict p1 = pb1 + (i+0)*bs;
  1048. // Compute combined scale for the block
  1049. float scaleScalar = d0_0[0] * d1_0[0];
  1050. __m512 scale = _mm512_set1_ps( scaleScalar );
  1051. __m256i bx = bytesFromNibbles( p0 );
  1052. __m256i by = bytesFromNibbles( p1 );
  1053. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1054. const __m256i off = _mm256_set1_epi8( 8 );
  1055. bx = _mm256_sub_epi8( bx, off );
  1056. by = _mm256_sub_epi8( by, off );
  1057. // Sign-extend 16 signed bytes into int16_t
  1058. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1059. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1060. // Compute products of int16_t integers, add pairwise
  1061. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1062. // Convert int32_t to float
  1063. __m512 p = _mm512_cvtepi32_ps( i64 );
  1064. // Apply the scale, and accumulate
  1065. return _mm512_fmadd_ps( scale, p, acc );
  1066. }
  1067. #endif
  1068. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1069. ggml_float sumf = 0.0;
  1070. #if defined(GGML_SIMD)
  1071. const int np = (n & ~(GGML_F16_STEP - 1));
  1072. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1073. GGML_F16_VEC ax[GGML_F16_ARR];
  1074. GGML_F16_VEC ay[GGML_F16_ARR];
  1075. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1076. for (int j = 0; j < GGML_F16_ARR; j++) {
  1077. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1078. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1079. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1080. }
  1081. }
  1082. // reduce sum0..sum3 to sum0
  1083. GGML_F16_VEC_REDUCE(sumf, sum);
  1084. // leftovers
  1085. for (int i = np; i < n; ++i) {
  1086. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1087. }
  1088. #else
  1089. for (int i = 0; i < n; ++i) {
  1090. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1091. }
  1092. #endif
  1093. *s = sumf;
  1094. }
  1095. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1096. const int nb = n / QK;
  1097. assert(n % QK == 0);
  1098. assert(nb % 2 == 0);
  1099. const size_t bs = sizeof(float) + QK/2;
  1100. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1101. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1102. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1103. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1104. float sumf = 0.0;
  1105. #ifdef __ARM_NEON
  1106. #if QK == 32
  1107. float sum0 = 0.0f;
  1108. float sum1 = 0.0f;
  1109. for (int i = 0; i < nb; i += 2) {
  1110. const float d0_0 = *(const float *) (pd0 + i*bs);
  1111. const float d1_0 = *(const float *) (pd1 + i*bs);
  1112. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1113. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1114. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1115. const uint8_t * restrict p0 = pb0 + i*bs;
  1116. const uint8_t * restrict p1 = pb1 + i*bs;
  1117. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1118. const int8x16_t s8b = vdupq_n_s8(0x8);
  1119. const uint8x16_t v0_0 = vld1q_u8(p0);
  1120. const uint8x16_t v1_0 = vld1q_u8(p1);
  1121. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1122. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1123. // 4-bit -> 8-bit
  1124. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1125. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1126. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1127. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1128. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1129. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1130. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1131. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1132. // sub 8
  1133. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1134. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1135. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1136. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1137. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1138. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1139. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1140. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1141. #if defined(__ARM_FEATURE_DOTPROD)
  1142. // dot product into int16x8_t
  1143. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1144. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1145. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1146. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1147. // scalar
  1148. #if defined(__ARM_FEATURE_QRDMX)
  1149. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1150. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1151. #else
  1152. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1153. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1154. #endif
  1155. #else
  1156. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1157. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1158. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1159. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1160. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1161. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1162. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1163. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1164. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1165. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1166. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1167. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1168. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1169. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1170. // scalar
  1171. #if defined(__ARM_FEATURE_QRDMX)
  1172. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1173. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1174. #else
  1175. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1176. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1177. #endif
  1178. #endif
  1179. }
  1180. sumf = sum0 + sum1;
  1181. #else
  1182. #error "not implemented for QK"
  1183. #endif
  1184. #elif defined(__AVX512F__)
  1185. #if QK == 32
  1186. // Initialize accumulator with zeros
  1187. __m512 acc0 = _mm512_setzero_ps();
  1188. __m512 acc1 = _mm512_setzero_ps();
  1189. const int superblock_size = 8;
  1190. const int superblock_count = nb / superblock_size;
  1191. const int remainder = nb % superblock_size;
  1192. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1193. int i = superblock_ix * superblock_size;
  1194. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
  1195. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
  1196. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
  1197. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
  1198. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
  1199. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
  1200. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
  1201. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
  1202. }
  1203. // Remainders
  1204. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1205. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
  1206. }
  1207. // Horizontal sum of all lanes of the accumulator
  1208. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1209. #else
  1210. #error "not implemented for QK"
  1211. #endif
  1212. #elif defined(__AVX2__)
  1213. #if QK == 32
  1214. const size_t countBlocks = nb;
  1215. // Initialize accumulator with zeros
  1216. __m256 acc = _mm256_setzero_ps();
  1217. // Main loop
  1218. for (int i = 0; i < nb; ++i) {
  1219. const float * d0_0 = (const float *) (pd0 + i*bs);
  1220. const float * d1_0 = (const float *) (pd1 + i*bs);
  1221. const uint8_t * restrict p0 = pb0 + i*bs;
  1222. const uint8_t * restrict p1 = pb1 + i*bs;
  1223. // Compute combined scale for the block
  1224. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1225. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1226. __m256i bx = bytesFromNibbles( p0 );
  1227. __m256i by = bytesFromNibbles( p1 );
  1228. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1229. const __m256i off = _mm256_set1_epi8( 8 );
  1230. bx = _mm256_sub_epi8( bx, off );
  1231. by = _mm256_sub_epi8( by, off );
  1232. // Sign-extend first 16 signed bytes into int16_t
  1233. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1234. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1235. // Compute products of int16_t integers, add pairwise
  1236. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1237. // Sign-extend last 16 signed bytes into int16_t vectors
  1238. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1239. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1240. // Accumulate products of int16_t integers
  1241. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1242. // Convert int32_t to float
  1243. __m256 p = _mm256_cvtepi32_ps( i32 );
  1244. // Apply the scale, and accumulate
  1245. acc = _mm256_fmadd_ps( scale, p, acc );
  1246. }
  1247. // Return horizontal sum of the acc vector
  1248. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1249. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1250. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1251. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1252. sumf = _mm_cvtss_f32( res );
  1253. #else
  1254. #error "not implemented for QK"
  1255. #endif
  1256. #elif defined(__wasm_simd128__)
  1257. #if QK == 32
  1258. // wasm simd
  1259. float sum0 = 0.0f;
  1260. float sum1 = 0.0f;
  1261. for (int i = 0; i < nb; i += 2) {
  1262. const float d0_0 = *(const float *) (pd0 + i*bs);
  1263. const float d1_0 = *(const float *) (pd1 + i*bs);
  1264. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1265. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1266. const uint8_t * restrict p0 = pb0 + i*bs;
  1267. const uint8_t * restrict p1 = pb1 + i*bs;
  1268. const v128_t m4b = wasm_u8x16_splat(0xf);
  1269. const v128_t s8b = wasm_i8x16_splat(0x8);
  1270. const v128_t v0_0 = wasm_v128_load(p0);
  1271. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1272. const v128_t v1_0 = wasm_v128_load(p1);
  1273. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1274. // 4-bit -> 8-bit
  1275. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1276. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1277. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1278. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1279. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1280. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1281. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1282. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1283. // sub 8
  1284. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1285. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1286. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1287. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1288. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1289. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1290. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1291. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1292. // dot product into int16x8_t
  1293. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1294. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1295. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1296. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1297. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1298. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1299. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1300. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1301. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1302. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1303. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1304. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1305. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1306. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1307. sum0 += d0_0*d1_0*(
  1308. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1309. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1310. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1311. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1312. sum1 += d0_1*d1_1*(
  1313. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1314. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1315. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1316. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1317. }
  1318. sumf = sum0 + sum1;
  1319. #else
  1320. #error "not implemented for QK"
  1321. #endif
  1322. #else
  1323. // scalar
  1324. for (int i = 0; i < nb; i++) {
  1325. const float d0 = *(const float *) (pd0 + i*bs);
  1326. const float d1 = *(const float *) (pd1 + i*bs);
  1327. const uint8_t * restrict p0 = pb0 + i*bs;
  1328. const uint8_t * restrict p1 = pb1 + i*bs;
  1329. for (int j = 0; j < QK/2; j++) {
  1330. const uint8_t v0 = p0[j];
  1331. const uint8_t v1 = p1[j];
  1332. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1333. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1334. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1335. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1336. sumf += f0*f2 + f1*f3;
  1337. }
  1338. }
  1339. #endif
  1340. *s = sumf;
  1341. }
  1342. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1343. const int nb = n / QK;
  1344. const size_t bs = 2*sizeof(float) + QK/2;
  1345. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1346. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1347. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1348. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1349. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1350. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1351. float sumf = 0.0;
  1352. #if defined(__AVX2__)
  1353. #if QK == 32
  1354. // Initialize accumulator with zeros
  1355. __m256 acc = _mm256_setzero_ps();
  1356. // Accumulator for constant offsets
  1357. float acc_offset = 0.0f;
  1358. // Main loop
  1359. for (int i = 0; i < nb; ++i) {
  1360. const float * m0 = (const float *) (pm0 + i*bs);
  1361. const float * m1 = (const float *) (pm1 + i*bs);
  1362. const float * d0 = (const float *) (pd0 + i*bs);
  1363. const float * d1 = (const float *) (pd1 + i*bs);
  1364. const uint8_t * restrict p0 = pb0 + i*bs;
  1365. const uint8_t * restrict p1 = pb1 + i*bs;
  1366. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1367. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1368. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1369. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1370. // Compute combined scale for the block
  1371. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1372. // Compute cross scales for the block
  1373. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1374. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1375. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1376. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1377. __m256i bx = bytesFromNibbles( p0 );
  1378. __m256i by = bytesFromNibbles( p1 );
  1379. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1380. // Sign-extend first 16 signed bytes into int16_t
  1381. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1382. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1383. // Compute products of int16_t integers, add pairwise
  1384. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1385. // Sign-extend last 16 signed bytes into int16_t vectors
  1386. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1387. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1388. // Accumulate products of int16_t integers
  1389. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1390. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1391. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1392. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1393. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1394. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1395. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1396. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1397. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1398. // Convert int32_t to float
  1399. __m256 p = _mm256_cvtepi32_ps( i32 );
  1400. // Apply the scale, and accumulate
  1401. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1402. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1403. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1404. // acc_offset += m0*m1 (for each entry in the block)
  1405. acc_offset += (*m0)*(*m1);
  1406. }
  1407. // Return horizontal sum of the acc vector
  1408. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1409. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1410. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1411. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1412. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1413. #else
  1414. #error "not implemented for QK"
  1415. #endif
  1416. #else
  1417. // scalar
  1418. for (int i = 0; i < nb; i++) {
  1419. const float m0 = *(const float *) (pm0 + i*bs);
  1420. const float m1 = *(const float *) (pm1 + i*bs);
  1421. const float d0 = *(const float *) (pd0 + i*bs);
  1422. const float d1 = *(const float *) (pd1 + i*bs);
  1423. const uint8_t * restrict p0 = pb0 + i*bs;
  1424. const uint8_t * restrict p1 = pb1 + i*bs;
  1425. for (int j = 0; j < QK/2; j++) {
  1426. const uint8_t v0 = p0[j];
  1427. const uint8_t v1 = p1[j];
  1428. const float f0 = d0*(v0 & 0xf) + m0;
  1429. const float f1 = d0*(v0 >> 4) + m0;
  1430. const float f2 = d1*(v1 & 0xf) + m1;
  1431. const float f3 = d1*(v1 >> 4) + m1;
  1432. sumf += f0*f2 + f1*f3;
  1433. }
  1434. }
  1435. #endif
  1436. *s = sumf;
  1437. }
  1438. // compute GGML_VEC_DOT_UNROLL dot products at once
  1439. // xs - x row stride in bytes
  1440. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1441. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1442. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1443. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1444. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1445. }
  1446. #if defined(GGML_SIMD)
  1447. const int np = (n & ~(GGML_F16_STEP - 1));
  1448. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1449. GGML_F16_VEC ax[GGML_F16_ARR];
  1450. GGML_F16_VEC ay[GGML_F16_ARR];
  1451. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1452. for (int j = 0; j < GGML_F16_ARR; j++) {
  1453. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1454. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1455. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1456. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1457. }
  1458. }
  1459. }
  1460. // reduce sum0..sum3 to sum0
  1461. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1462. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1463. }
  1464. // leftovers
  1465. for (int i = np; i < n; ++i) {
  1466. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1467. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1468. }
  1469. }
  1470. #else
  1471. for (int i = 0; i < n; ++i) {
  1472. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1473. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1474. }
  1475. }
  1476. #endif
  1477. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1478. s[i] = sumf[i];
  1479. }
  1480. }
  1481. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1482. #if defined(GGML_SIMD)
  1483. const int np = (n & ~(GGML_F32_STEP - 1));
  1484. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1485. GGML_F32_VEC ax[GGML_F32_ARR];
  1486. GGML_F32_VEC ay[GGML_F32_ARR];
  1487. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1488. for (int j = 0; j < GGML_F32_ARR; j++) {
  1489. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1490. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1491. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1492. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1493. }
  1494. }
  1495. // leftovers
  1496. for (int i = np; i < n; ++i) {
  1497. y[i] += x[i]*v;
  1498. }
  1499. #else
  1500. // scalar
  1501. for (int i = 0; i < n; ++i) {
  1502. y[i] += x[i]*v;
  1503. }
  1504. #endif
  1505. }
  1506. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, ggml_fp16_t * restrict x, const float v) {
  1507. #if defined(GGML_SIMD)
  1508. const int np = (n & ~(GGML_F16_STEP - 1));
  1509. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1510. GGML_F16_VEC ax[GGML_F16_ARR];
  1511. GGML_F16_VEC ay[GGML_F16_ARR];
  1512. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1513. for (int j = 0; j < GGML_F16_ARR; j++) {
  1514. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1515. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1516. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1517. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1518. }
  1519. }
  1520. // leftovers
  1521. for (int i = np; i < n; ++i) {
  1522. GGML_ASSERT(false);
  1523. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1524. }
  1525. #else
  1526. for (int i = 0; i < n; ++i) {
  1527. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1528. }
  1529. #endif
  1530. }
  1531. inline static void ggml_vec_mad_q4_0(const int n, float * restrict y, void * restrict x, const float v) {
  1532. assert(n % QK == 0);
  1533. const int nb = n / QK;
  1534. const size_t bs = sizeof(float) + QK/2;
  1535. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1536. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  1537. #if __ARM_NEON
  1538. #if QK == 32
  1539. for (int i = 0; i < nb; ++i) {
  1540. const float d0 = v*(*(const float *) (pd + i*bs));
  1541. const uint8_t * restrict pp = pb + i*bs;
  1542. const uint8x8_t m4b = vdup_n_u8(0xf);
  1543. const int8x8_t s8b = vdup_n_s8(0x8);
  1544. const float32x4_t vd = vdupq_n_f32(d0);
  1545. for (int j = 0; j < 2; j++) {
  1546. const uint8x8_t vx = vld1_u8(pp + j*8);
  1547. const int8x8_t vxl = vreinterpret_s8_u8(vand_u8(vx, m4b));
  1548. const int8x8_t vxh = vreinterpret_s8_u8(vshr_n_u8(vx, 4));
  1549. // sub 8
  1550. const int8x8_t vxls = vsub_s8(vxl, s8b);
  1551. const int8x8_t vxhs = vsub_s8(vxh, s8b);
  1552. //const int8x8_t vxlt = vzip_s8(vxls, vxhs)[0];
  1553. //const int8x8_t vxht = vzip_s8(vxls, vxhs)[1];
  1554. const int8x8_t vxlt = vzip1_s8(vxls, vxhs);
  1555. const int8x8_t vxht = vzip2_s8(vxls, vxhs);
  1556. const int8x16_t vxq = vcombine_s8(vxlt, vxht);
  1557. // convert to 2x int16x8_t
  1558. const int16x8_t vxq0 = vmovl_s8(vget_low_s8 (vxq));
  1559. const int16x8_t vxq1 = vmovl_s8(vget_high_s8(vxq));
  1560. // convert to 4x float32x4_t
  1561. const float32x4_t vx0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq0)));
  1562. const float32x4_t vx1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq0)));
  1563. const float32x4_t vx2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vxq1)));
  1564. const float32x4_t vx3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vxq1)));
  1565. const float32x4_t vy0 = vld1q_f32(y + i*32 + j*16 + 0);
  1566. const float32x4_t vy1 = vld1q_f32(y + i*32 + j*16 + 4);
  1567. const float32x4_t vy2 = vld1q_f32(y + i*32 + j*16 + 8);
  1568. const float32x4_t vy3 = vld1q_f32(y + i*32 + j*16 + 12);
  1569. const float32x4_t vr0 = vfmaq_f32(vy0, vx0, vd);
  1570. const float32x4_t vr1 = vfmaq_f32(vy1, vx1, vd);
  1571. const float32x4_t vr2 = vfmaq_f32(vy2, vx2, vd);
  1572. const float32x4_t vr3 = vfmaq_f32(vy3, vx3, vd);
  1573. vst1q_f32(y + i*32 + j*16 + 0, vr0);
  1574. vst1q_f32(y + i*32 + j*16 + 4, vr1);
  1575. vst1q_f32(y + i*32 + j*16 + 8, vr2);
  1576. vst1q_f32(y + i*32 + j*16 + 12, vr3);
  1577. }
  1578. }
  1579. #endif
  1580. #else
  1581. // scalar
  1582. for (int i = 0; i < nb; i++) {
  1583. const float d = *(const float *) (pd + i*bs);
  1584. const uint8_t * restrict pp = pb + i*bs;
  1585. for (int l = 0; l < QK; l += 2) {
  1586. const uint8_t vi = pp[l/2];
  1587. const int8_t vi0 = vi & 0xf;
  1588. const int8_t vi1 = vi >> 4;
  1589. const float v0 = (vi0 - 8)*d;
  1590. const float v1 = (vi1 - 8)*d;
  1591. y[i*QK + l + 0] += v0*v;
  1592. y[i*QK + l + 1] += v1*v;
  1593. assert(!isnan(y[i*QK + l + 0]));
  1594. assert(!isnan(y[i*QK + l + 1]));
  1595. assert(!isinf(y[i*QK + l + 0]));
  1596. assert(!isinf(y[i*QK + l + 1]));
  1597. }
  1598. }
  1599. #endif
  1600. }
  1601. inline static void ggml_vec_mad_q4_1(const int n, float * restrict y, void * restrict x, const float v) {
  1602. assert(n % QK == 0);
  1603. const int nb = n / QK;
  1604. const size_t bs = 2*sizeof(float) + QK/2;
  1605. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  1606. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  1607. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1608. for (int i = 0; i < nb; i++) {
  1609. const float d = *(const float *) (pd + i*bs);
  1610. const float m = *(const float *) (pm + i*bs);
  1611. const uint8_t * restrict pp = pb + i*bs;
  1612. for (int l = 0; l < QK; l += 2) {
  1613. const uint8_t vi = pp[l/2];
  1614. const uint8_t vi0 = vi & 0xf;
  1615. const uint8_t vi1 = vi >> 4;
  1616. const float v0 = d*vi0 + m;
  1617. const float v1 = d*vi1 + m;
  1618. y[i*QK + l + 0] += v0*v;
  1619. y[i*QK + l + 1] += v1*v;
  1620. assert(!isnan(y[i*QK + l + 0]));
  1621. assert(!isnan(y[i*QK + l + 1]));
  1622. assert(!isinf(y[i*QK + l + 0]));
  1623. assert(!isinf(y[i*QK + l + 1]));
  1624. //printf("mad: v0 %f v1 %f, i = %d, l = %d, d = %f, vi = %d, vi0 = %d, vi1 = %d\n", v0, v1, i, l, d, vi, vi0, vi1);
  1625. }
  1626. }
  1627. }
  1628. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1629. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1630. #if defined(GGML_SIMD)
  1631. const int np = (n & ~(GGML_F32_STEP - 1));
  1632. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1633. GGML_F32_VEC ay[GGML_F32_ARR];
  1634. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1635. for (int j = 0; j < GGML_F32_ARR; j++) {
  1636. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1637. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1638. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1639. }
  1640. }
  1641. // leftovers
  1642. for (int i = np; i < n; ++i) {
  1643. y[i] *= v;
  1644. }
  1645. #else
  1646. // scalar
  1647. for (int i = 0; i < n; ++i) {
  1648. y[i] *= v;
  1649. }
  1650. #endif
  1651. }
  1652. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1653. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1654. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1655. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1656. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1657. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1658. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1659. static const ggml_float GELU_COEF_A = 0.044715;
  1660. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1661. inline static float ggml_gelu_f32(float x) {
  1662. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1663. }
  1664. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1665. const uint16_t * i16 = (const uint16_t *) x;
  1666. for (int i = 0; i < n; ++i) {
  1667. y[i] = table_gelu_f16[i16[i]];
  1668. }
  1669. }
  1670. #ifdef GGML_GELU_FP16
  1671. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1672. uint16_t t;
  1673. for (int i = 0; i < n; ++i) {
  1674. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1675. memcpy(&t, &fp16, sizeof(uint16_t));
  1676. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1677. }
  1678. }
  1679. #else
  1680. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1681. for (int i = 0; i < n; ++i) {
  1682. y[i] = ggml_gelu_f32(x[i]);
  1683. }
  1684. }
  1685. #endif
  1686. // Sigmoid Linear Unit (SiLU) function
  1687. inline static float ggml_silu_f32(float x) {
  1688. return x/(1.0 + exp(-x));
  1689. }
  1690. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1691. const uint16_t * i16 = (const uint16_t *) x;
  1692. for (int i = 0; i < n; ++i) {
  1693. y[i] = table_silu_f16[i16[i]];
  1694. }
  1695. }
  1696. #ifdef GGML_SILU_FP16
  1697. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1698. uint16_t t;
  1699. for (int i = 0; i < n; ++i) {
  1700. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1701. memcpy(&t, &fp16, sizeof(uint16_t));
  1702. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1703. }
  1704. }
  1705. #else
  1706. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1707. for (int i = 0; i < n; ++i) {
  1708. y[i] = ggml_silu_f32(x[i]);
  1709. }
  1710. }
  1711. #endif
  1712. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1713. #ifndef GGML_USE_ACCELERATE
  1714. ggml_float sum = 0.0;
  1715. for (int i = 0; i < n; ++i) {
  1716. sum += x[i];
  1717. }
  1718. *s = sum;
  1719. #else
  1720. vDSP_sve(x, 1, s, n);
  1721. #endif
  1722. }
  1723. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1724. #ifndef GGML_USE_ACCELERATE
  1725. ggml_float max = -INFINITY;
  1726. for (int i = 0; i < n; ++i) {
  1727. max = MAX(max, x[i]);
  1728. }
  1729. *s = max;
  1730. #else
  1731. vDSP_maxv(x, 1, s, n);
  1732. #endif
  1733. }
  1734. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1735. //
  1736. // logging
  1737. //
  1738. #if (GGML_DEBUG >= 1)
  1739. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1740. #else
  1741. #define GGML_PRINT_DEBUG(...)
  1742. #endif
  1743. #if (GGML_DEBUG >= 5)
  1744. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1745. #else
  1746. #define GGML_PRINT_DEBUG_5(...)
  1747. #endif
  1748. #if (GGML_DEBUG >= 10)
  1749. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1750. #else
  1751. #define GGML_PRINT_DEBUG_10(...)
  1752. #endif
  1753. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1754. //
  1755. // data types
  1756. //
  1757. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1758. QK,
  1759. QK,
  1760. 1,
  1761. 1,
  1762. 1,
  1763. 1,
  1764. 1,
  1765. };
  1766. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1767. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1768. sizeof(float ) + QK/2,
  1769. sizeof(float )*2 + QK/2,
  1770. sizeof(int8_t ),
  1771. sizeof(int16_t),
  1772. sizeof(int32_t),
  1773. sizeof(ggml_fp16_t),
  1774. sizeof(float ),
  1775. };
  1776. // don't forget to update the array above when adding new types
  1777. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1778. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1779. "NONE",
  1780. "DUP",
  1781. "ADD",
  1782. "SUB",
  1783. "MUL",
  1784. "DIV",
  1785. "SQR",
  1786. "SQRT",
  1787. "SUM",
  1788. "MEAN",
  1789. "REPEAT",
  1790. "ABS",
  1791. "SGN",
  1792. "NEG",
  1793. "STEP",
  1794. "RELU",
  1795. "GELU",
  1796. "SILU",
  1797. "NORM",
  1798. "RMS_NORM",
  1799. "MUL_MAT",
  1800. "SCALE",
  1801. "CPY",
  1802. "RESHAPE",
  1803. "VIEW",
  1804. "PERMUTE",
  1805. "TRANSPOSE",
  1806. "GET_ROWS",
  1807. "DIAG_MASK_INF",
  1808. "SOFT_MAX",
  1809. "ROPE",
  1810. "CONV_1D_1S",
  1811. "CONV_1D_2S",
  1812. "FLASH_ATTN",
  1813. "FLASH_FF",
  1814. };
  1815. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1816. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1817. "none",
  1818. "x",
  1819. "x+y",
  1820. "x-y",
  1821. "x*y",
  1822. "x/y",
  1823. "x^2",
  1824. "√x",
  1825. "Σx",
  1826. "Σx/n",
  1827. "repeat(x)",
  1828. "abs(x)",
  1829. "sgn(x)",
  1830. "-x",
  1831. "step(x)",
  1832. "relu(x)",
  1833. "gelu(x)",
  1834. "silu(x)",
  1835. "norm(x)",
  1836. "rms_norm(x)",
  1837. "X*Y",
  1838. "x*v",
  1839. "x-\\>y",
  1840. "reshape(x)",
  1841. "view(x)",
  1842. "permute(x)",
  1843. "transpose(x)",
  1844. "get_rows(x)",
  1845. "diag_mask_inf(x)",
  1846. "soft_max(x)",
  1847. "rope(x)",
  1848. "conv_1d_1s(x)",
  1849. "conv_1d_2s(x)",
  1850. "flash_attn(x)",
  1851. "flash_ff(x)",
  1852. };
  1853. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1854. //
  1855. // ggml object
  1856. //
  1857. struct ggml_object {
  1858. size_t offs;
  1859. size_t size;
  1860. struct ggml_object * next;
  1861. char padding[8];
  1862. };
  1863. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1864. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1865. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1866. //
  1867. // ggml context
  1868. //
  1869. struct ggml_context {
  1870. size_t mem_size;
  1871. void * mem_buffer;
  1872. bool mem_buffer_owned;
  1873. int n_objects;
  1874. struct ggml_object * objects_begin;
  1875. struct ggml_object * objects_end;
  1876. struct ggml_scratch scratch;
  1877. struct ggml_scratch scratch_save;
  1878. };
  1879. struct ggml_context_container {
  1880. bool used;
  1881. struct ggml_context context;
  1882. };
  1883. //
  1884. // compute types
  1885. //
  1886. enum ggml_task_type {
  1887. GGML_TASK_INIT = 0,
  1888. GGML_TASK_COMPUTE,
  1889. GGML_TASK_FINALIZE,
  1890. };
  1891. struct ggml_compute_params {
  1892. enum ggml_task_type type;
  1893. int ith, nth;
  1894. // work buffer for all threads
  1895. size_t wsize;
  1896. void * wdata;
  1897. };
  1898. //
  1899. // ggml state
  1900. //
  1901. struct ggml_state {
  1902. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1903. };
  1904. // global state
  1905. static struct ggml_state g_state;
  1906. static atomic_int g_state_barrier = 0;
  1907. // barrier via spin lock
  1908. inline static void ggml_critical_section_start(void) {
  1909. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1910. while (processing > 0) {
  1911. // wait for other threads to finish
  1912. atomic_fetch_sub(&g_state_barrier, 1);
  1913. sched_yield(); // TODO: reconsider this
  1914. processing = atomic_fetch_add(&g_state_barrier, 1);
  1915. }
  1916. }
  1917. // TODO: make this somehow automatically executed
  1918. // some sort of "sentry" mechanism
  1919. inline static void ggml_critical_section_end(void) {
  1920. atomic_fetch_sub(&g_state_barrier, 1);
  1921. }
  1922. ////////////////////////////////////////////////////////////////////////////////
  1923. void ggml_print_object(const struct ggml_object * obj) {
  1924. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1925. obj->offs, obj->size, (const void *) obj->next);
  1926. }
  1927. void ggml_print_objects(const struct ggml_context * ctx) {
  1928. struct ggml_object * obj = ctx->objects_begin;
  1929. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1930. while (obj != NULL) {
  1931. ggml_print_object(obj);
  1932. obj = obj->next;
  1933. }
  1934. GGML_PRINT("%s: --- end ---\n", __func__);
  1935. }
  1936. int ggml_nelements(const struct ggml_tensor * tensor) {
  1937. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1938. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1939. }
  1940. int ggml_nrows(const struct ggml_tensor * tensor) {
  1941. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1942. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1943. }
  1944. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1945. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1946. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  1947. }
  1948. int ggml_blck_size(enum ggml_type type) {
  1949. return GGML_BLCK_SIZE[type];
  1950. }
  1951. size_t ggml_type_size(enum ggml_type type) {
  1952. return GGML_TYPE_SIZE[type];
  1953. }
  1954. float ggml_type_sizef(enum ggml_type type) {
  1955. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  1956. }
  1957. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1958. return GGML_TYPE_SIZE[tensor->type];
  1959. }
  1960. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1961. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1962. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1963. }
  1964. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1965. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1966. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1967. }
  1968. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1969. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1970. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1971. }
  1972. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1973. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1974. return
  1975. (t0->ne[0] == t1->ne[0]) &&
  1976. (t0->ne[2] == t1->ne[2]) &&
  1977. (t0->ne[3] == t1->ne[3]);
  1978. }
  1979. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1980. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1981. return
  1982. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1983. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  1984. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1985. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1986. }
  1987. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1988. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1989. return
  1990. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1991. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1992. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1993. }
  1994. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1995. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1996. return
  1997. (t0->ne[0] == t1->ne[0] ) &&
  1998. (t0->ne[1] == t1->ne[1] ) &&
  1999. (t0->ne[2] == t1->ne[2] ) &&
  2000. (t0->ne[3] == t1->ne[3] );
  2001. }
  2002. // check if t1 can be represented as a repeatition of t0
  2003. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2004. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2005. return
  2006. (t1->ne[0]%t0->ne[0] == 0) &&
  2007. (t1->ne[1]%t0->ne[1] == 0) &&
  2008. (t1->ne[2]%t0->ne[2] == 0) &&
  2009. (t1->ne[3]%t0->ne[3] == 0);
  2010. }
  2011. static inline int ggml_up32(int n) {
  2012. return (n + 31) & ~31;
  2013. }
  2014. static inline int ggml_up64(int n) {
  2015. return (n + 63) & ~63;
  2016. }
  2017. static inline int ggml_up(int n, int m) {
  2018. // assert m is a power of 2
  2019. GGML_ASSERT((m & (m - 1)) == 0);
  2020. return (n + m - 1) & ~(m - 1);
  2021. }
  2022. // assert that pointer is aligned to GGML_MEM_ALIGN
  2023. #define ggml_assert_aligned(ptr) \
  2024. assert(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2025. ////////////////////////////////////////////////////////////////////////////////
  2026. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2027. // make this function thread safe
  2028. ggml_critical_section_start();
  2029. static bool is_first_call = true;
  2030. if (is_first_call) {
  2031. // initialize GELU, SILU and EXP F32 tables
  2032. {
  2033. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2034. ggml_fp16_t ii;
  2035. for (int i = 0; i < (1 << 16); ++i) {
  2036. uint16_t ui = i;
  2037. memcpy(&ii, &ui, sizeof(ii));
  2038. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2039. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2040. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2041. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2042. }
  2043. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2044. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2045. }
  2046. // initialize g_state
  2047. {
  2048. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2049. g_state = (struct ggml_state) {
  2050. /*.contexts =*/ { { 0 } },
  2051. };
  2052. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2053. g_state.contexts[i].used = false;
  2054. }
  2055. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2056. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2057. }
  2058. is_first_call = false;
  2059. }
  2060. // find non-used context in g_state
  2061. struct ggml_context * ctx = NULL;
  2062. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2063. if (!g_state.contexts[i].used) {
  2064. g_state.contexts[i].used = true;
  2065. ctx = &g_state.contexts[i].context;
  2066. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2067. break;
  2068. }
  2069. }
  2070. if (ctx == NULL) {
  2071. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2072. ggml_critical_section_end();
  2073. return NULL;
  2074. }
  2075. *ctx = (struct ggml_context) {
  2076. /*.mem_size =*/ params.mem_size,
  2077. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2078. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2079. /*.n_objects =*/ 0,
  2080. /*.objects_begin =*/ NULL,
  2081. /*.objects_end =*/ NULL,
  2082. /*.scratch =*/ { 0, 0, NULL, },
  2083. /*.scratch_save =*/ { 0, 0, NULL, },
  2084. };
  2085. ggml_assert_aligned(ctx->mem_buffer);
  2086. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2087. ggml_critical_section_end();
  2088. return ctx;
  2089. }
  2090. void ggml_free(struct ggml_context * ctx) {
  2091. // make this function thread safe
  2092. ggml_critical_section_start();
  2093. bool found = false;
  2094. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2095. if (&g_state.contexts[i].context == ctx) {
  2096. g_state.contexts[i].used = false;
  2097. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2098. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2099. if (ctx->mem_buffer_owned) {
  2100. free(ctx->mem_buffer);
  2101. }
  2102. found = true;
  2103. break;
  2104. }
  2105. }
  2106. if (!found) {
  2107. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2108. }
  2109. ggml_critical_section_end();
  2110. }
  2111. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2112. return ctx->objects_end->offs + ctx->objects_end->size;
  2113. }
  2114. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2115. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2116. ctx->scratch = scratch;
  2117. return result;
  2118. }
  2119. ////////////////////////////////////////////////////////////////////////////////
  2120. struct ggml_tensor * ggml_new_tensor_impl(
  2121. struct ggml_context * ctx,
  2122. enum ggml_type type,
  2123. int n_dims,
  2124. const int* ne,
  2125. void* data) {
  2126. // always insert objects at the end of the context's memory pool
  2127. struct ggml_object * obj_cur = ctx->objects_end;
  2128. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2129. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2130. const size_t cur_end = cur_offs + cur_size;
  2131. size_t size_needed = 0;
  2132. if (data == NULL) {
  2133. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2134. for (int i = 1; i < n_dims; i++) {
  2135. size_needed *= ne[i];
  2136. }
  2137. // align to GGML_MEM_ALIGN
  2138. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2139. }
  2140. char * const mem_buffer = ctx->mem_buffer;
  2141. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2142. if (ctx->scratch.data == NULL || data != NULL) {
  2143. size_needed += sizeof(struct ggml_tensor);
  2144. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2145. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2146. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2147. assert(false);
  2148. return NULL;
  2149. }
  2150. *obj_new = (struct ggml_object) {
  2151. .offs = cur_end + GGML_OBJECT_SIZE,
  2152. .size = size_needed,
  2153. .next = NULL,
  2154. };
  2155. } else {
  2156. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2157. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2158. assert(false);
  2159. return NULL;
  2160. }
  2161. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2162. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2163. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2164. assert(false);
  2165. return NULL;
  2166. }
  2167. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2168. *obj_new = (struct ggml_object) {
  2169. .offs = cur_end + GGML_OBJECT_SIZE,
  2170. .size = sizeof(struct ggml_tensor),
  2171. .next = NULL,
  2172. };
  2173. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2174. ctx->scratch.offs += size_needed;
  2175. }
  2176. if (obj_cur != NULL) {
  2177. obj_cur->next = obj_new;
  2178. } else {
  2179. // this is the first object in this context
  2180. ctx->objects_begin = obj_new;
  2181. }
  2182. ctx->objects_end = obj_new;
  2183. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2184. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2185. ggml_assert_aligned(result);
  2186. *result = (struct ggml_tensor) {
  2187. /*.type =*/ type,
  2188. /*.n_dims =*/ n_dims,
  2189. /*.ne =*/ { 1, 1, 1, 1 },
  2190. /*.nb =*/ { 0, 0, 0, 0 },
  2191. /*.op =*/ GGML_OP_NONE,
  2192. /*.is_param =*/ false,
  2193. /*.grad =*/ NULL,
  2194. /*.src0 =*/ NULL,
  2195. /*.src1 =*/ NULL,
  2196. /*.opt =*/ { NULL },
  2197. /*.n_tasks =*/ 0,
  2198. /*.perf_runs =*/ 0,
  2199. /*.perf_cycles =*/ 0,
  2200. /*.perf_time_us =*/ 0,
  2201. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2202. /*.pad =*/ { 0 },
  2203. };
  2204. ggml_assert_aligned(result->data);
  2205. for (int i = 0; i < n_dims; i++) {
  2206. result->ne[i] = ne[i];
  2207. }
  2208. result->nb[0] = GGML_TYPE_SIZE[type];
  2209. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2210. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2211. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2212. }
  2213. ctx->n_objects++;
  2214. return result;
  2215. }
  2216. struct ggml_tensor * ggml_new_tensor(
  2217. struct ggml_context * ctx,
  2218. enum ggml_type type,
  2219. int n_dims,
  2220. const int * ne) {
  2221. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2222. }
  2223. struct ggml_tensor * ggml_new_tensor_1d(
  2224. struct ggml_context * ctx,
  2225. enum ggml_type type,
  2226. int ne0) {
  2227. return ggml_new_tensor(ctx, type, 1, &ne0);
  2228. }
  2229. struct ggml_tensor * ggml_new_tensor_2d(
  2230. struct ggml_context * ctx,
  2231. enum ggml_type type,
  2232. int ne0,
  2233. int ne1) {
  2234. const int ne[2] = { ne0, ne1 };
  2235. return ggml_new_tensor(ctx, type, 2, ne);
  2236. }
  2237. struct ggml_tensor * ggml_new_tensor_3d(
  2238. struct ggml_context * ctx,
  2239. enum ggml_type type,
  2240. int ne0,
  2241. int ne1,
  2242. int ne2) {
  2243. const int ne[3] = { ne0, ne1, ne2 };
  2244. return ggml_new_tensor(ctx, type, 3, ne);
  2245. }
  2246. struct ggml_tensor * ggml_new_tensor_4d(
  2247. struct ggml_context * ctx,
  2248. enum ggml_type type,
  2249. int ne0,
  2250. int ne1,
  2251. int ne2,
  2252. int ne3) {
  2253. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2254. return ggml_new_tensor(ctx, type, 4, ne);
  2255. }
  2256. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2257. ctx->scratch_save = ctx->scratch;
  2258. ctx->scratch.data = NULL;
  2259. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2260. ctx->scratch = ctx->scratch_save;
  2261. ggml_set_i32(result, value);
  2262. return result;
  2263. }
  2264. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2265. ctx->scratch_save = ctx->scratch;
  2266. ctx->scratch.data = NULL;
  2267. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2268. ctx->scratch = ctx->scratch_save;
  2269. ggml_set_f32(result, value);
  2270. return result;
  2271. }
  2272. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2273. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2274. }
  2275. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2276. memset(tensor->data, 0, ggml_nbytes(tensor));
  2277. return tensor;
  2278. }
  2279. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2280. const int n = ggml_nrows(tensor);
  2281. const int nc = tensor->ne[0];
  2282. const size_t n1 = tensor->nb[1];
  2283. char * const data = tensor->data;
  2284. switch (tensor->type) {
  2285. case GGML_TYPE_Q4_0:
  2286. {
  2287. GGML_ASSERT(false);
  2288. } break;
  2289. case GGML_TYPE_Q4_1:
  2290. {
  2291. GGML_ASSERT(false);
  2292. } break;
  2293. case GGML_TYPE_I8:
  2294. {
  2295. assert(tensor->nb[0] == sizeof(int8_t));
  2296. for (int i = 0; i < n; i++) {
  2297. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2298. }
  2299. } break;
  2300. case GGML_TYPE_I16:
  2301. {
  2302. assert(tensor->nb[0] == sizeof(int16_t));
  2303. for (int i = 0; i < n; i++) {
  2304. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2305. }
  2306. } break;
  2307. case GGML_TYPE_I32:
  2308. {
  2309. assert(tensor->nb[0] == sizeof(int32_t));
  2310. for (int i = 0; i < n; i++) {
  2311. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2312. }
  2313. } break;
  2314. case GGML_TYPE_F16:
  2315. {
  2316. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2317. for (int i = 0; i < n; i++) {
  2318. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2319. }
  2320. } break;
  2321. case GGML_TYPE_F32:
  2322. {
  2323. assert(tensor->nb[0] == sizeof(float));
  2324. for (int i = 0; i < n; i++) {
  2325. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2326. }
  2327. } break;
  2328. case GGML_TYPE_COUNT:
  2329. {
  2330. GGML_ASSERT(false);
  2331. } break;
  2332. }
  2333. return tensor;
  2334. }
  2335. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2336. const int n = ggml_nrows(tensor);
  2337. const int nc = tensor->ne[0];
  2338. const size_t n1 = tensor->nb[1];
  2339. char * const data = tensor->data;
  2340. switch (tensor->type) {
  2341. case GGML_TYPE_Q4_0:
  2342. {
  2343. GGML_ASSERT(false);
  2344. } break;
  2345. case GGML_TYPE_Q4_1:
  2346. {
  2347. GGML_ASSERT(false);
  2348. } break;
  2349. case GGML_TYPE_I8:
  2350. {
  2351. assert(tensor->nb[0] == sizeof(int8_t));
  2352. for (int i = 0; i < n; i++) {
  2353. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2354. }
  2355. } break;
  2356. case GGML_TYPE_I16:
  2357. {
  2358. assert(tensor->nb[0] == sizeof(int16_t));
  2359. for (int i = 0; i < n; i++) {
  2360. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2361. }
  2362. } break;
  2363. case GGML_TYPE_I32:
  2364. {
  2365. assert(tensor->nb[0] == sizeof(int32_t));
  2366. for (int i = 0; i < n; i++) {
  2367. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2368. }
  2369. } break;
  2370. case GGML_TYPE_F16:
  2371. {
  2372. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2373. for (int i = 0; i < n; i++) {
  2374. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2375. }
  2376. } break;
  2377. case GGML_TYPE_F32:
  2378. {
  2379. assert(tensor->nb[0] == sizeof(float));
  2380. for (int i = 0; i < n; i++) {
  2381. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2382. }
  2383. } break;
  2384. case GGML_TYPE_COUNT:
  2385. {
  2386. GGML_ASSERT(false);
  2387. } break;
  2388. }
  2389. return tensor;
  2390. }
  2391. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2392. switch (tensor->type) {
  2393. case GGML_TYPE_Q4_0:
  2394. {
  2395. GGML_ASSERT(false);
  2396. } break;
  2397. case GGML_TYPE_Q4_1:
  2398. {
  2399. GGML_ASSERT(false);
  2400. } break;
  2401. case GGML_TYPE_I8:
  2402. {
  2403. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2404. return ((int8_t *)(tensor->data))[i];
  2405. } break;
  2406. case GGML_TYPE_I16:
  2407. {
  2408. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2409. return ((int16_t *)(tensor->data))[i];
  2410. } break;
  2411. case GGML_TYPE_I32:
  2412. {
  2413. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2414. return ((int32_t *)(tensor->data))[i];
  2415. } break;
  2416. case GGML_TYPE_F16:
  2417. {
  2418. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2419. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2420. } break;
  2421. case GGML_TYPE_F32:
  2422. {
  2423. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2424. return ((float *)(tensor->data))[i];
  2425. } break;
  2426. case GGML_TYPE_COUNT:
  2427. {
  2428. GGML_ASSERT(false);
  2429. } break;
  2430. }
  2431. return 0.0f;
  2432. }
  2433. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2434. switch (tensor->type) {
  2435. case GGML_TYPE_Q4_0:
  2436. {
  2437. GGML_ASSERT(false);
  2438. } break;
  2439. case GGML_TYPE_Q4_1:
  2440. {
  2441. GGML_ASSERT(false);
  2442. } break;
  2443. case GGML_TYPE_I8:
  2444. {
  2445. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2446. ((int8_t *)(tensor->data))[i] = value;
  2447. } break;
  2448. case GGML_TYPE_I16:
  2449. {
  2450. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2451. ((int16_t *)(tensor->data))[i] = value;
  2452. } break;
  2453. case GGML_TYPE_I32:
  2454. {
  2455. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2456. ((int32_t *)(tensor->data))[i] = value;
  2457. } break;
  2458. case GGML_TYPE_F16:
  2459. {
  2460. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2461. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2462. } break;
  2463. case GGML_TYPE_F32:
  2464. {
  2465. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2466. ((float *)(tensor->data))[i] = value;
  2467. } break;
  2468. case GGML_TYPE_COUNT:
  2469. {
  2470. GGML_ASSERT(false);
  2471. } break;
  2472. }
  2473. }
  2474. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2475. switch (tensor->type) {
  2476. case GGML_TYPE_Q4_0:
  2477. {
  2478. GGML_ASSERT(false);
  2479. } break;
  2480. case GGML_TYPE_Q4_1:
  2481. {
  2482. GGML_ASSERT(false);
  2483. } break;
  2484. case GGML_TYPE_I8:
  2485. {
  2486. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2487. return ((int8_t *)(tensor->data))[i];
  2488. } break;
  2489. case GGML_TYPE_I16:
  2490. {
  2491. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2492. return ((int16_t *)(tensor->data))[i];
  2493. } break;
  2494. case GGML_TYPE_I32:
  2495. {
  2496. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2497. return ((int32_t *)(tensor->data))[i];
  2498. } break;
  2499. case GGML_TYPE_F16:
  2500. {
  2501. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2502. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2503. } break;
  2504. case GGML_TYPE_F32:
  2505. {
  2506. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2507. return ((float *)(tensor->data))[i];
  2508. } break;
  2509. case GGML_TYPE_COUNT:
  2510. {
  2511. GGML_ASSERT(false);
  2512. } break;
  2513. }
  2514. return 0.0f;
  2515. }
  2516. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2517. switch (tensor->type) {
  2518. case GGML_TYPE_Q4_0:
  2519. {
  2520. GGML_ASSERT(false);
  2521. } break;
  2522. case GGML_TYPE_Q4_1:
  2523. {
  2524. GGML_ASSERT(false);
  2525. } break;
  2526. case GGML_TYPE_I8:
  2527. {
  2528. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2529. ((int8_t *)(tensor->data))[i] = value;
  2530. } break;
  2531. case GGML_TYPE_I16:
  2532. {
  2533. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2534. ((int16_t *)(tensor->data))[i] = value;
  2535. } break;
  2536. case GGML_TYPE_I32:
  2537. {
  2538. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2539. ((int32_t *)(tensor->data))[i] = value;
  2540. } break;
  2541. case GGML_TYPE_F16:
  2542. {
  2543. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2544. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2545. } break;
  2546. case GGML_TYPE_F32:
  2547. {
  2548. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2549. ((float *)(tensor->data))[i] = value;
  2550. } break;
  2551. case GGML_TYPE_COUNT:
  2552. {
  2553. GGML_ASSERT(false);
  2554. } break;
  2555. }
  2556. }
  2557. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2558. return tensor->data;
  2559. }
  2560. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2561. assert(tensor->type == GGML_TYPE_F32);
  2562. return (float *)(tensor->data);
  2563. }
  2564. struct ggml_tensor * ggml_view_tensor(
  2565. struct ggml_context * ctx,
  2566. const struct ggml_tensor * src) {
  2567. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2568. }
  2569. ////////////////////////////////////////////////////////////////////////////////
  2570. // ggml_dup
  2571. struct ggml_tensor * ggml_dup_impl(
  2572. struct ggml_context * ctx,
  2573. struct ggml_tensor * a,
  2574. bool inplace) {
  2575. bool is_node = false;
  2576. if (!inplace && (a->grad)) {
  2577. is_node = true;
  2578. }
  2579. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2580. result->op = GGML_OP_DUP;
  2581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2582. result->src0 = a;
  2583. result->src1 = NULL;
  2584. return result;
  2585. }
  2586. struct ggml_tensor * ggml_dup(
  2587. struct ggml_context * ctx,
  2588. struct ggml_tensor * a) {
  2589. return ggml_dup_impl(ctx, a, false);
  2590. }
  2591. struct ggml_tensor * ggml_dup_inplace(
  2592. struct ggml_context * ctx,
  2593. struct ggml_tensor * a) {
  2594. return ggml_dup_impl(ctx, a, true);
  2595. }
  2596. // ggml_add
  2597. struct ggml_tensor * ggml_add_impl(
  2598. struct ggml_context * ctx,
  2599. struct ggml_tensor * a,
  2600. struct ggml_tensor * b,
  2601. bool inplace) {
  2602. GGML_ASSERT(ggml_are_same_shape(a, b));
  2603. bool is_node = false;
  2604. if (!inplace && (a->grad || b->grad)) {
  2605. is_node = true;
  2606. }
  2607. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2608. result->op = GGML_OP_ADD;
  2609. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2610. result->src0 = a;
  2611. result->src1 = b;
  2612. return result;
  2613. }
  2614. struct ggml_tensor * ggml_add(
  2615. struct ggml_context * ctx,
  2616. struct ggml_tensor * a,
  2617. struct ggml_tensor * b) {
  2618. return ggml_add_impl(ctx, a, b, false);
  2619. }
  2620. struct ggml_tensor * ggml_add_inplace(
  2621. struct ggml_context * ctx,
  2622. struct ggml_tensor * a,
  2623. struct ggml_tensor * b) {
  2624. return ggml_add_impl(ctx, a, b, true);
  2625. }
  2626. // ggml_sub
  2627. struct ggml_tensor * ggml_sub_impl(
  2628. struct ggml_context * ctx,
  2629. struct ggml_tensor * a,
  2630. struct ggml_tensor * b,
  2631. bool inplace) {
  2632. GGML_ASSERT(ggml_are_same_shape(a, b));
  2633. bool is_node = false;
  2634. if (!inplace && (a->grad || b->grad)) {
  2635. is_node = true;
  2636. }
  2637. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2638. result->op = GGML_OP_SUB;
  2639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2640. result->src0 = a;
  2641. result->src1 = b;
  2642. return result;
  2643. }
  2644. struct ggml_tensor * ggml_sub(
  2645. struct ggml_context * ctx,
  2646. struct ggml_tensor * a,
  2647. struct ggml_tensor * b) {
  2648. return ggml_sub_impl(ctx, a, b, false);
  2649. }
  2650. struct ggml_tensor * ggml_sub_inplace(
  2651. struct ggml_context * ctx,
  2652. struct ggml_tensor * a,
  2653. struct ggml_tensor * b) {
  2654. return ggml_sub_impl(ctx, a, b, true);
  2655. }
  2656. // ggml_mul
  2657. struct ggml_tensor * ggml_mul_impl(
  2658. struct ggml_context * ctx,
  2659. struct ggml_tensor * a,
  2660. struct ggml_tensor * b,
  2661. bool inplace) {
  2662. GGML_ASSERT(ggml_are_same_shape(a, b));
  2663. bool is_node = false;
  2664. if (!inplace && (a->grad || b->grad)) {
  2665. is_node = true;
  2666. }
  2667. if (inplace) {
  2668. GGML_ASSERT(is_node == false);
  2669. }
  2670. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2671. result->op = GGML_OP_MUL;
  2672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2673. result->src0 = a;
  2674. result->src1 = b;
  2675. return result;
  2676. }
  2677. struct ggml_tensor * ggml_mul(
  2678. struct ggml_context * ctx,
  2679. struct ggml_tensor * a,
  2680. struct ggml_tensor * b) {
  2681. return ggml_mul_impl(ctx, a, b, false);
  2682. }
  2683. struct ggml_tensor * ggml_mul_inplace(
  2684. struct ggml_context * ctx,
  2685. struct ggml_tensor * a,
  2686. struct ggml_tensor * b) {
  2687. return ggml_mul_impl(ctx, a, b, true);
  2688. }
  2689. // ggml_div
  2690. struct ggml_tensor * ggml_div_impl(
  2691. struct ggml_context * ctx,
  2692. struct ggml_tensor * a,
  2693. struct ggml_tensor * b,
  2694. bool inplace) {
  2695. GGML_ASSERT(ggml_are_same_shape(a, b));
  2696. bool is_node = false;
  2697. if (!inplace && (a->grad || b->grad)) {
  2698. is_node = true;
  2699. }
  2700. if (inplace) {
  2701. GGML_ASSERT(is_node == false);
  2702. }
  2703. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2704. result->op = GGML_OP_DIV;
  2705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2706. result->src0 = a;
  2707. result->src1 = b;
  2708. return result;
  2709. }
  2710. struct ggml_tensor * ggml_div(
  2711. struct ggml_context * ctx,
  2712. struct ggml_tensor * a,
  2713. struct ggml_tensor * b) {
  2714. return ggml_div_impl(ctx, a, b, false);
  2715. }
  2716. struct ggml_tensor * ggml_div_inplace(
  2717. struct ggml_context * ctx,
  2718. struct ggml_tensor * a,
  2719. struct ggml_tensor * b) {
  2720. return ggml_div_impl(ctx, a, b, true);
  2721. }
  2722. // ggml_sqr
  2723. struct ggml_tensor * ggml_sqr_impl(
  2724. struct ggml_context * ctx,
  2725. struct ggml_tensor * a,
  2726. bool inplace) {
  2727. bool is_node = false;
  2728. if (!inplace && (a->grad)) {
  2729. is_node = true;
  2730. }
  2731. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2732. result->op = GGML_OP_SQR;
  2733. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2734. result->src0 = a;
  2735. result->src1 = NULL;
  2736. return result;
  2737. }
  2738. struct ggml_tensor * ggml_sqr(
  2739. struct ggml_context * ctx,
  2740. struct ggml_tensor * a) {
  2741. return ggml_sqr_impl(ctx, a, false);
  2742. }
  2743. struct ggml_tensor * ggml_sqr_inplace(
  2744. struct ggml_context * ctx,
  2745. struct ggml_tensor * a) {
  2746. return ggml_sqr_impl(ctx, a, true);
  2747. }
  2748. // ggml_sqrt
  2749. struct ggml_tensor * ggml_sqrt_impl(
  2750. struct ggml_context * ctx,
  2751. struct ggml_tensor * a,
  2752. bool inplace) {
  2753. bool is_node = false;
  2754. if (!inplace && (a->grad)) {
  2755. is_node = true;
  2756. }
  2757. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2758. result->op = GGML_OP_SQRT;
  2759. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2760. result->src0 = a;
  2761. result->src1 = NULL;
  2762. return result;
  2763. }
  2764. struct ggml_tensor * ggml_sqrt(
  2765. struct ggml_context * ctx,
  2766. struct ggml_tensor * a) {
  2767. return ggml_sqrt_impl(ctx, a, false);
  2768. }
  2769. struct ggml_tensor * ggml_sqrt_inplace(
  2770. struct ggml_context * ctx,
  2771. struct ggml_tensor * a) {
  2772. return ggml_sqrt_impl(ctx, a, true);
  2773. }
  2774. // ggml_sum
  2775. struct ggml_tensor * ggml_sum(
  2776. struct ggml_context * ctx,
  2777. struct ggml_tensor * a) {
  2778. bool is_node = false;
  2779. if (a->grad) {
  2780. is_node = true;
  2781. }
  2782. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2783. result->op = GGML_OP_SUM;
  2784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2785. result->src0 = a;
  2786. result->src1 = NULL;
  2787. return result;
  2788. }
  2789. // ggml_mean
  2790. struct ggml_tensor * ggml_mean(
  2791. struct ggml_context * ctx,
  2792. struct ggml_tensor * a) {
  2793. bool is_node = false;
  2794. if (a->grad) {
  2795. GGML_ASSERT(false); // TODO: implement
  2796. is_node = true;
  2797. }
  2798. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2799. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2800. result->op = GGML_OP_MEAN;
  2801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2802. result->src0 = a;
  2803. result->src1 = NULL;
  2804. return result;
  2805. }
  2806. // ggml_repeat
  2807. struct ggml_tensor * ggml_repeat(
  2808. struct ggml_context * ctx,
  2809. struct ggml_tensor * a,
  2810. struct ggml_tensor * b) {
  2811. GGML_ASSERT(ggml_can_repeat(a, b));
  2812. bool is_node = false;
  2813. if (a->grad) {
  2814. is_node = true;
  2815. }
  2816. if (ggml_are_same_shape(a, b) && !is_node) {
  2817. return a;
  2818. }
  2819. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2820. result->op = GGML_OP_REPEAT;
  2821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2822. result->src0 = a;
  2823. result->src1 = b;
  2824. return result;
  2825. }
  2826. // ggml_abs
  2827. struct ggml_tensor * ggml_abs_impl(
  2828. struct ggml_context * ctx,
  2829. struct ggml_tensor * a,
  2830. bool inplace) {
  2831. bool is_node = false;
  2832. if (!inplace && (a->grad)) {
  2833. is_node = true;
  2834. }
  2835. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2836. result->op = GGML_OP_ABS;
  2837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2838. result->src0 = a;
  2839. result->src1 = NULL;
  2840. return result;
  2841. }
  2842. struct ggml_tensor * ggml_abs(
  2843. struct ggml_context * ctx,
  2844. struct ggml_tensor * a) {
  2845. return ggml_abs_impl(ctx, a, false);
  2846. }
  2847. struct ggml_tensor * ggml_abs_inplace(
  2848. struct ggml_context * ctx,
  2849. struct ggml_tensor * a) {
  2850. return ggml_abs_impl(ctx, a, true);
  2851. }
  2852. // ggml_sgn
  2853. struct ggml_tensor * ggml_sgn_impl(
  2854. struct ggml_context * ctx,
  2855. struct ggml_tensor * a,
  2856. bool inplace) {
  2857. bool is_node = false;
  2858. if (!inplace && (a->grad)) {
  2859. is_node = true;
  2860. }
  2861. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2862. result->op = GGML_OP_SGN;
  2863. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2864. result->src0 = a;
  2865. result->src1 = NULL;
  2866. return result;
  2867. }
  2868. struct ggml_tensor * ggml_sgn(
  2869. struct ggml_context * ctx,
  2870. struct ggml_tensor * a) {
  2871. return ggml_sgn_impl(ctx, a, false);
  2872. }
  2873. struct ggml_tensor * ggml_sgn_inplace(
  2874. struct ggml_context * ctx,
  2875. struct ggml_tensor * a) {
  2876. return ggml_sgn_impl(ctx, a, true);
  2877. }
  2878. // ggml_neg
  2879. struct ggml_tensor * ggml_neg_impl(
  2880. struct ggml_context * ctx,
  2881. struct ggml_tensor * a,
  2882. bool inplace) {
  2883. bool is_node = false;
  2884. if (!inplace && (a->grad)) {
  2885. is_node = true;
  2886. }
  2887. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2888. result->op = GGML_OP_NEG;
  2889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2890. result->src0 = a;
  2891. result->src1 = NULL;
  2892. return result;
  2893. }
  2894. struct ggml_tensor * ggml_neg(
  2895. struct ggml_context * ctx,
  2896. struct ggml_tensor * a) {
  2897. return ggml_neg_impl(ctx, a, false);
  2898. }
  2899. struct ggml_tensor * ggml_neg_inplace(
  2900. struct ggml_context * ctx,
  2901. struct ggml_tensor * a) {
  2902. return ggml_neg_impl(ctx, a, true);
  2903. }
  2904. // ggml_step
  2905. struct ggml_tensor * ggml_step_impl(
  2906. struct ggml_context * ctx,
  2907. struct ggml_tensor * a,
  2908. bool inplace) {
  2909. bool is_node = false;
  2910. if (!inplace && (a->grad)) {
  2911. is_node = true;
  2912. }
  2913. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2914. result->op = GGML_OP_STEP;
  2915. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2916. result->src0 = a;
  2917. result->src1 = NULL;
  2918. return result;
  2919. }
  2920. struct ggml_tensor * ggml_step(
  2921. struct ggml_context * ctx,
  2922. struct ggml_tensor * a) {
  2923. return ggml_step_impl(ctx, a, false);
  2924. }
  2925. struct ggml_tensor * ggml_step_inplace(
  2926. struct ggml_context * ctx,
  2927. struct ggml_tensor * a) {
  2928. return ggml_step_impl(ctx, a, true);
  2929. }
  2930. // ggml_relu
  2931. struct ggml_tensor * ggml_relu_impl(
  2932. struct ggml_context * ctx,
  2933. struct ggml_tensor * a,
  2934. bool inplace) {
  2935. bool is_node = false;
  2936. if (!inplace && (a->grad)) {
  2937. is_node = true;
  2938. }
  2939. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2940. result->op = GGML_OP_RELU;
  2941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2942. result->src0 = a;
  2943. result->src1 = NULL;
  2944. return result;
  2945. }
  2946. struct ggml_tensor * ggml_relu(
  2947. struct ggml_context * ctx,
  2948. struct ggml_tensor * a) {
  2949. return ggml_relu_impl(ctx, a, false);
  2950. }
  2951. struct ggml_tensor * ggml_relu_inplace(
  2952. struct ggml_context * ctx,
  2953. struct ggml_tensor * a) {
  2954. return ggml_relu_impl(ctx, a, true);
  2955. }
  2956. // ggml_gelu
  2957. struct ggml_tensor * ggml_gelu_impl(
  2958. struct ggml_context * ctx,
  2959. struct ggml_tensor * a,
  2960. bool inplace) {
  2961. bool is_node = false;
  2962. if (!inplace && (a->grad)) {
  2963. is_node = true;
  2964. }
  2965. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2966. result->op = GGML_OP_GELU;
  2967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2968. result->src0 = a;
  2969. result->src1 = NULL;
  2970. return result;
  2971. }
  2972. struct ggml_tensor * ggml_gelu(
  2973. struct ggml_context * ctx,
  2974. struct ggml_tensor * a) {
  2975. return ggml_gelu_impl(ctx, a, false);
  2976. }
  2977. struct ggml_tensor * ggml_gelu_inplace(
  2978. struct ggml_context * ctx,
  2979. struct ggml_tensor * a) {
  2980. return ggml_gelu_impl(ctx, a, true);
  2981. }
  2982. // ggml_silu
  2983. struct ggml_tensor * ggml_silu_impl(
  2984. struct ggml_context * ctx,
  2985. struct ggml_tensor * a,
  2986. bool inplace) {
  2987. bool is_node = false;
  2988. if (!inplace && (a->grad)) {
  2989. is_node = true;
  2990. }
  2991. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2992. result->op = GGML_OP_SILU;
  2993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2994. result->src0 = a;
  2995. result->src1 = NULL;
  2996. return result;
  2997. }
  2998. struct ggml_tensor * ggml_silu(
  2999. struct ggml_context * ctx,
  3000. struct ggml_tensor * a) {
  3001. return ggml_silu_impl(ctx, a, false);
  3002. }
  3003. struct ggml_tensor * ggml_silu_inplace(
  3004. struct ggml_context * ctx,
  3005. struct ggml_tensor * a) {
  3006. return ggml_silu_impl(ctx, a, true);
  3007. }
  3008. // ggml_norm
  3009. struct ggml_tensor * ggml_norm_impl(
  3010. struct ggml_context * ctx,
  3011. struct ggml_tensor * a,
  3012. bool inplace) {
  3013. bool is_node = false;
  3014. if (!inplace && (a->grad)) {
  3015. GGML_ASSERT(false); // TODO: implement backward
  3016. is_node = true;
  3017. }
  3018. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3019. result->op = GGML_OP_NORM;
  3020. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3021. result->src0 = a;
  3022. result->src1 = NULL; // TODO: maybe store epsilon here?
  3023. return result;
  3024. }
  3025. struct ggml_tensor * ggml_norm(
  3026. struct ggml_context * ctx,
  3027. struct ggml_tensor * a) {
  3028. return ggml_norm_impl(ctx, a, false);
  3029. }
  3030. struct ggml_tensor * ggml_norm_inplace(
  3031. struct ggml_context * ctx,
  3032. struct ggml_tensor * a) {
  3033. return ggml_norm_impl(ctx, a, true);
  3034. }
  3035. struct ggml_tensor * ggml_rms_norm_impl(
  3036. struct ggml_context * ctx,
  3037. struct ggml_tensor * a,
  3038. bool inplace) {
  3039. bool is_node = false;
  3040. if (!inplace && (a->grad)) {
  3041. GGML_ASSERT(false); // TODO: implement backward
  3042. is_node = true;
  3043. }
  3044. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3045. result->op = GGML_OP_RMS_NORM;
  3046. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3047. result->src0 = a;
  3048. result->src1 = NULL; // TODO: maybe store epsilon here?
  3049. return result;
  3050. }
  3051. struct ggml_tensor * ggml_rms_norm(
  3052. struct ggml_context * ctx,
  3053. struct ggml_tensor * a) {
  3054. return ggml_rms_norm_impl(ctx, a, false);
  3055. }
  3056. struct ggml_tensor * ggml_rms_norm_inplace(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a) {
  3059. return ggml_rms_norm_impl(ctx, a, true);
  3060. }
  3061. // ggml_mul_mat
  3062. struct ggml_tensor * ggml_mul_mat(
  3063. struct ggml_context * ctx,
  3064. struct ggml_tensor * a,
  3065. struct ggml_tensor * b) {
  3066. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3067. bool is_node = false;
  3068. if (a->grad || b->grad) {
  3069. is_node = true;
  3070. }
  3071. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3072. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3073. result->op = GGML_OP_MUL_MAT;
  3074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3075. result->src0 = a;
  3076. result->src1 = b;
  3077. return result;
  3078. }
  3079. // ggml_scale
  3080. struct ggml_tensor * ggml_scale_impl(
  3081. struct ggml_context * ctx,
  3082. struct ggml_tensor * a,
  3083. struct ggml_tensor * b,
  3084. bool inplace) {
  3085. GGML_ASSERT(ggml_is_scalar(b));
  3086. GGML_ASSERT(ggml_is_padded_1d(a));
  3087. bool is_node = false;
  3088. if (!inplace && (a->grad || b->grad)) {
  3089. GGML_ASSERT(false); // TODO: implement backward
  3090. is_node = true;
  3091. }
  3092. // TODO: when implement backward, fix this:
  3093. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3094. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3095. result->op = GGML_OP_SCALE;
  3096. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3097. result->src0 = a;
  3098. result->src1 = b;
  3099. return result;
  3100. }
  3101. struct ggml_tensor * ggml_scale(
  3102. struct ggml_context * ctx,
  3103. struct ggml_tensor * a,
  3104. struct ggml_tensor * b) {
  3105. return ggml_scale_impl(ctx, a, b, false);
  3106. }
  3107. struct ggml_tensor * ggml_scale_inplace(
  3108. struct ggml_context * ctx,
  3109. struct ggml_tensor * a,
  3110. struct ggml_tensor * b) {
  3111. return ggml_scale_impl(ctx, a, b, true);
  3112. }
  3113. // ggml_cpy
  3114. struct ggml_tensor * ggml_cpy_impl(
  3115. struct ggml_context * ctx,
  3116. struct ggml_tensor * a,
  3117. struct ggml_tensor * b,
  3118. bool inplace) {
  3119. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3120. bool is_node = false;
  3121. if (!inplace && (a->grad || b->grad)) {
  3122. GGML_ASSERT(false); // TODO: implement backward
  3123. is_node = true;
  3124. }
  3125. // make a view of the destination
  3126. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3127. result->op = GGML_OP_CPY;
  3128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3129. result->src0 = a;
  3130. result->src1 = b;
  3131. return result;
  3132. }
  3133. struct ggml_tensor * ggml_cpy(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a,
  3136. struct ggml_tensor * b) {
  3137. return ggml_cpy_impl(ctx, a, b, false);
  3138. }
  3139. struct ggml_tensor * ggml_cpy_inplace(
  3140. struct ggml_context * ctx,
  3141. struct ggml_tensor * a,
  3142. struct ggml_tensor * b) {
  3143. return ggml_cpy_impl(ctx, a, b, true);
  3144. }
  3145. // ggml_reshape
  3146. struct ggml_tensor * ggml_reshape(
  3147. struct ggml_context * ctx,
  3148. struct ggml_tensor * a,
  3149. struct ggml_tensor * b) {
  3150. GGML_ASSERT(ggml_is_contiguous(a));
  3151. GGML_ASSERT(ggml_is_contiguous(b));
  3152. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3153. bool is_node = false;
  3154. if (a->grad || b->grad) {
  3155. GGML_ASSERT(false); // TODO: implement backward
  3156. is_node = true;
  3157. }
  3158. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3159. result->op = GGML_OP_RESHAPE;
  3160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3161. result->src0 = a;
  3162. result->src1 = NULL;
  3163. return result;
  3164. }
  3165. struct ggml_tensor * ggml_reshape_2d(
  3166. struct ggml_context * ctx,
  3167. struct ggml_tensor * a,
  3168. int ne0,
  3169. int ne1) {
  3170. GGML_ASSERT(ggml_is_contiguous(a));
  3171. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3172. bool is_node = false;
  3173. if (a->grad) {
  3174. GGML_ASSERT(false); // TODO: implement backward
  3175. is_node = true;
  3176. }
  3177. const int ne[2] = { ne0, ne1 };
  3178. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3179. result->op = GGML_OP_RESHAPE;
  3180. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3181. result->src0 = a;
  3182. result->src1 = NULL;
  3183. return result;
  3184. }
  3185. struct ggml_tensor * ggml_reshape_3d(
  3186. struct ggml_context * ctx,
  3187. struct ggml_tensor * a,
  3188. int ne0,
  3189. int ne1,
  3190. int ne2) {
  3191. GGML_ASSERT(ggml_is_contiguous(a));
  3192. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3193. bool is_node = false;
  3194. if (a->grad) {
  3195. GGML_ASSERT(false); // TODO: implement backward
  3196. is_node = true;
  3197. }
  3198. const int ne[3] = { ne0, ne1, ne2 };
  3199. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3200. result->op = GGML_OP_RESHAPE;
  3201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3202. result->src0 = a;
  3203. result->src1 = NULL;
  3204. return result;
  3205. }
  3206. // ggml_view_1d
  3207. struct ggml_tensor * ggml_view_1d(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a,
  3210. int ne0,
  3211. size_t offset) {
  3212. if (a->grad) {
  3213. GGML_ASSERT(false); // gradient propagation is not supported
  3214. }
  3215. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3216. result->op = GGML_OP_VIEW;
  3217. result->grad = NULL;
  3218. result->src0 = a;
  3219. result->src1 = NULL; // TODO: maybe store the offset here?
  3220. return result;
  3221. }
  3222. // ggml_view_2d
  3223. struct ggml_tensor * ggml_view_2d(
  3224. struct ggml_context * ctx,
  3225. struct ggml_tensor * a,
  3226. int ne0,
  3227. int ne1,
  3228. size_t nb1,
  3229. size_t offset) {
  3230. if (a->grad) {
  3231. GGML_ASSERT(false); // gradient propagation is not supported
  3232. }
  3233. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3234. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3235. result->nb[1] = nb1;
  3236. result->nb[2] = result->nb[1]*ne1;
  3237. result->nb[3] = result->nb[2];
  3238. result->op = GGML_OP_VIEW;
  3239. result->grad = NULL;
  3240. result->src0 = a;
  3241. result->src1 = NULL; // TODO: maybe store the offset here?
  3242. return result;
  3243. }
  3244. // ggml_permute
  3245. struct ggml_tensor * ggml_permute(
  3246. struct ggml_context * ctx,
  3247. struct ggml_tensor * a,
  3248. int axis0,
  3249. int axis1,
  3250. int axis2,
  3251. int axis3) {
  3252. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3253. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3254. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3255. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3256. GGML_ASSERT(axis0 != axis1);
  3257. GGML_ASSERT(axis0 != axis2);
  3258. GGML_ASSERT(axis0 != axis3);
  3259. GGML_ASSERT(axis1 != axis2);
  3260. GGML_ASSERT(axis1 != axis3);
  3261. GGML_ASSERT(axis2 != axis3);
  3262. bool is_node = false;
  3263. if (a->grad) {
  3264. GGML_ASSERT(false); // TODO: implement backward
  3265. is_node = true;
  3266. }
  3267. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3268. int ne[GGML_MAX_DIMS];
  3269. int nb[GGML_MAX_DIMS];
  3270. ne[axis0] = a->ne[0];
  3271. ne[axis1] = a->ne[1];
  3272. ne[axis2] = a->ne[2];
  3273. ne[axis3] = a->ne[3];
  3274. nb[axis0] = a->nb[0];
  3275. nb[axis1] = a->nb[1];
  3276. nb[axis2] = a->nb[2];
  3277. nb[axis3] = a->nb[3];
  3278. result->ne[0] = ne[0];
  3279. result->ne[1] = ne[1];
  3280. result->ne[2] = ne[2];
  3281. result->ne[3] = ne[3];
  3282. result->nb[0] = nb[0];
  3283. result->nb[1] = nb[1];
  3284. result->nb[2] = nb[2];
  3285. result->nb[3] = nb[3];
  3286. result->op = GGML_OP_PERMUTE;
  3287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3288. result->src0 = a;
  3289. result->src1 = NULL; // TODO: maybe store the permutation here?
  3290. return result;
  3291. }
  3292. // ggml_transpose
  3293. struct ggml_tensor * ggml_transpose(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a) {
  3296. bool is_node = false;
  3297. if (a->grad) {
  3298. GGML_ASSERT(false); // TODO: implement backward
  3299. is_node = true;
  3300. }
  3301. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3302. result->ne[0] = a->ne[1];
  3303. result->ne[1] = a->ne[0];
  3304. result->nb[0] = a->nb[1];
  3305. result->nb[1] = a->nb[0];
  3306. result->op = GGML_OP_TRANSPOSE;
  3307. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3308. result->src0 = a;
  3309. result->src1 = NULL;
  3310. return result;
  3311. }
  3312. // ggml_get_rows
  3313. struct ggml_tensor * ggml_get_rows(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a,
  3316. struct ggml_tensor * b) {
  3317. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3318. bool is_node = false;
  3319. if (a->grad || b->grad) {
  3320. GGML_ASSERT(false); // TODO: implement backward
  3321. is_node = true;
  3322. }
  3323. // TODO: implement non F32 return
  3324. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3325. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3326. result->op = GGML_OP_GET_ROWS;
  3327. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3328. result->src0 = a;
  3329. result->src1 = b;
  3330. return result;
  3331. }
  3332. // ggml_diag_mask_inf
  3333. struct ggml_tensor * ggml_diag_mask_inf(
  3334. struct ggml_context * ctx,
  3335. struct ggml_tensor * a,
  3336. int n_past) {
  3337. bool is_node = false;
  3338. if (a->grad) {
  3339. GGML_ASSERT(false); // TODO: implement backward
  3340. is_node = true;
  3341. }
  3342. // TODO: when implement backward, fix this:
  3343. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3344. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3345. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3346. result->op = GGML_OP_DIAG_MASK_INF;
  3347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3348. result->src0 = a;
  3349. result->src1 = b;
  3350. return result;
  3351. }
  3352. // ggml_soft_max
  3353. struct ggml_tensor * ggml_soft_max(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a) {
  3356. bool is_node = false;
  3357. if (a->grad) {
  3358. GGML_ASSERT(false); // TODO: implement backward
  3359. is_node = true;
  3360. }
  3361. // TODO: when implement backward, fix this:
  3362. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3363. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3364. result->op = GGML_OP_SOFT_MAX;
  3365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3366. result->src0 = a;
  3367. result->src1 = NULL;
  3368. return result;
  3369. }
  3370. // ggml_rope
  3371. struct ggml_tensor * ggml_rope(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a,
  3374. int n_past,
  3375. int n_dims,
  3376. int mode) {
  3377. GGML_ASSERT(n_past >= 0);
  3378. bool is_node = false;
  3379. if (a->grad) {
  3380. GGML_ASSERT(false); // TODO: implement backward
  3381. is_node = true;
  3382. }
  3383. // TODO: when implement backward, fix this:
  3384. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3385. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3386. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3387. ((int32_t *) b->data)[0] = n_past;
  3388. ((int32_t *) b->data)[1] = n_dims;
  3389. ((int32_t *) b->data)[2] = mode;
  3390. result->op = GGML_OP_ROPE;
  3391. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3392. result->src0 = a;
  3393. result->src1 = b;
  3394. return result;
  3395. }
  3396. // ggml_conv_1d_1s
  3397. struct ggml_tensor * ggml_conv_1d_1s(
  3398. struct ggml_context * ctx,
  3399. struct ggml_tensor * a,
  3400. struct ggml_tensor * b) {
  3401. GGML_ASSERT(ggml_is_matrix(b));
  3402. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3403. GGML_ASSERT(a->ne[3] == 1);
  3404. bool is_node = false;
  3405. if (a->grad || b->grad) {
  3406. GGML_ASSERT(false); // TODO: implement backward
  3407. is_node = true;
  3408. }
  3409. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3410. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3411. result->op = GGML_OP_CONV_1D_1S;
  3412. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3413. result->src0 = a;
  3414. result->src1 = b;
  3415. return result;
  3416. }
  3417. // ggml_conv_1d_2s
  3418. struct ggml_tensor * ggml_conv_1d_2s(
  3419. struct ggml_context * ctx,
  3420. struct ggml_tensor * a,
  3421. struct ggml_tensor * b) {
  3422. GGML_ASSERT(ggml_is_matrix(b));
  3423. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3424. GGML_ASSERT(a->ne[3] == 1);
  3425. bool is_node = false;
  3426. if (a->grad || b->grad) {
  3427. GGML_ASSERT(false); // TODO: implement backward
  3428. is_node = true;
  3429. }
  3430. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3431. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3432. result->op = GGML_OP_CONV_1D_2S;
  3433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3434. result->src0 = a;
  3435. result->src1 = b;
  3436. return result;
  3437. }
  3438. // ggml_flash_attn
  3439. struct ggml_tensor * ggml_flash_attn(
  3440. struct ggml_context * ctx,
  3441. struct ggml_tensor * q,
  3442. struct ggml_tensor * k,
  3443. struct ggml_tensor * v,
  3444. bool masked) {
  3445. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3446. // TODO: check if vT can be multiplied by (k*qT)
  3447. bool is_node = false;
  3448. if (q->grad || k->grad || v->grad) {
  3449. GGML_ASSERT(false); // TODO: implement backward
  3450. is_node = true;
  3451. }
  3452. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3453. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3454. result->op = GGML_OP_FLASH_ATTN;
  3455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3456. result->src0 = q;
  3457. result->src1 = k;
  3458. result->opt[0] = v;
  3459. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3460. return result;
  3461. }
  3462. // ggml_flash_ff
  3463. struct ggml_tensor * ggml_flash_ff(
  3464. struct ggml_context * ctx,
  3465. struct ggml_tensor * a,
  3466. struct ggml_tensor * b0,
  3467. struct ggml_tensor * b1,
  3468. struct ggml_tensor * c0,
  3469. struct ggml_tensor * c1) {
  3470. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3471. // TODO: more checks
  3472. bool is_node = false;
  3473. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3474. GGML_ASSERT(false); // TODO: implement backward
  3475. is_node = true;
  3476. }
  3477. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3478. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3479. result->op = GGML_OP_FLASH_FF;
  3480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3481. result->src0 = a;
  3482. result->src1 = b0;
  3483. result->opt[0] = b1;
  3484. result->opt[1] = c0;
  3485. result->opt[2] = c1;
  3486. return result;
  3487. }
  3488. ////////////////////////////////////////////////////////////////////////////////
  3489. void ggml_set_param(
  3490. struct ggml_context * ctx,
  3491. struct ggml_tensor * tensor) {
  3492. tensor->is_param = true;
  3493. GGML_ASSERT(tensor->grad == NULL);
  3494. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3495. }
  3496. // ggml_compute_forward_dup
  3497. static void ggml_compute_forward_dup_f16(
  3498. const struct ggml_compute_params * params,
  3499. const struct ggml_tensor * src0,
  3500. struct ggml_tensor * dst) {
  3501. GGML_ASSERT(params->ith == 0);
  3502. GGML_ASSERT(ggml_is_contiguous(dst));
  3503. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3505. return;
  3506. }
  3507. const int ne00 = src0->ne[0];
  3508. const int ne01 = src0->ne[1];
  3509. const int ne02 = src0->ne[2];
  3510. const int ne03 = src0->ne[3];
  3511. const size_t nb00 = src0->nb[0];
  3512. const size_t nb01 = src0->nb[1];
  3513. const size_t nb02 = src0->nb[2];
  3514. const size_t nb03 = src0->nb[3];
  3515. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3516. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3517. return;
  3518. }
  3519. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3520. if (dst->type == GGML_TYPE_F16) {
  3521. int id = 0;
  3522. const size_t rs = ne00*nb00;
  3523. for (int i03 = 0; i03 < ne03; i03++) {
  3524. for (int i02 = 0; i02 < ne02; i02++) {
  3525. for (int i01 = 0; i01 < ne01; i01++) {
  3526. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3527. char * dst_ptr = (char *) dst->data + id*rs;
  3528. memcpy(dst_ptr, src0_ptr, rs);
  3529. id++;
  3530. }
  3531. }
  3532. }
  3533. } else if (dst->type == GGML_TYPE_F32) {
  3534. int id = 0;
  3535. float * dst_ptr = (float *) dst->data;
  3536. for (int i03 = 0; i03 < ne03; i03++) {
  3537. for (int i02 = 0; i02 < ne02; i02++) {
  3538. for (int i01 = 0; i01 < ne01; i01++) {
  3539. for (int i00 = 0; i00 < ne00; i00++) {
  3540. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3541. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3542. id++;
  3543. }
  3544. }
  3545. }
  3546. }
  3547. } else {
  3548. GGML_ASSERT(false); // TODO: implement
  3549. }
  3550. } else {
  3551. //printf("%s: this is not optimal - fix me\n", __func__);
  3552. if (dst->type == GGML_TYPE_F32) {
  3553. int id = 0;
  3554. float * dst_ptr = (float *) dst->data;
  3555. for (int i03 = 0; i03 < ne03; i03++) {
  3556. for (int i02 = 0; i02 < ne02; i02++) {
  3557. for (int i01 = 0; i01 < ne01; i01++) {
  3558. for (int i00 = 0; i00 < ne00; i00++) {
  3559. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3560. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3561. id++;
  3562. }
  3563. }
  3564. }
  3565. }
  3566. } else if (dst->type == GGML_TYPE_F16) {
  3567. int id = 0;
  3568. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3569. for (int i03 = 0; i03 < ne03; i03++) {
  3570. for (int i02 = 0; i02 < ne02; i02++) {
  3571. for (int i01 = 0; i01 < ne01; i01++) {
  3572. for (int i00 = 0; i00 < ne00; i00++) {
  3573. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3574. dst_ptr[id] = *src0_ptr;
  3575. id++;
  3576. }
  3577. }
  3578. }
  3579. }
  3580. } else {
  3581. GGML_ASSERT(false); // TODO: implement
  3582. }
  3583. }
  3584. }
  3585. static void ggml_compute_forward_dup_f32(
  3586. const struct ggml_compute_params * params,
  3587. const struct ggml_tensor * src0,
  3588. struct ggml_tensor * dst) {
  3589. GGML_ASSERT(params->ith == 0);
  3590. GGML_ASSERT(ggml_is_contiguous(dst));
  3591. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3592. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3593. return;
  3594. }
  3595. const int ne00 = src0->ne[0];
  3596. const int ne01 = src0->ne[1];
  3597. const int ne02 = src0->ne[2];
  3598. const int ne03 = src0->ne[3];
  3599. const size_t nb00 = src0->nb[0];
  3600. const size_t nb01 = src0->nb[1];
  3601. const size_t nb02 = src0->nb[2];
  3602. const size_t nb03 = src0->nb[3];
  3603. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3604. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3605. return;
  3606. }
  3607. if (src0->nb[0] == sizeof(float)) {
  3608. if (dst->type == GGML_TYPE_F32) {
  3609. int id = 0;
  3610. const size_t rs = ne00*nb00;
  3611. for (int i03 = 0; i03 < ne03; i03++) {
  3612. for (int i02 = 0; i02 < ne02; i02++) {
  3613. for (int i01 = 0; i01 < ne01; i01++) {
  3614. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3615. char * dst_ptr = (char *) dst->data + id*rs;
  3616. memcpy(dst_ptr, src0_ptr, rs);
  3617. id++;
  3618. }
  3619. }
  3620. }
  3621. } else if (dst->type == GGML_TYPE_F16) {
  3622. int id = 0;
  3623. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3624. for (int i03 = 0; i03 < ne03; i03++) {
  3625. for (int i02 = 0; i02 < ne02; i02++) {
  3626. for (int i01 = 0; i01 < ne01; i01++) {
  3627. for (int i00 = 0; i00 < ne00; i00++) {
  3628. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3629. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3630. id++;
  3631. }
  3632. }
  3633. }
  3634. }
  3635. } else {
  3636. GGML_ASSERT(false); // TODO: implement
  3637. }
  3638. } else {
  3639. //printf("%s: this is not optimal - fix me\n", __func__);
  3640. if (dst->type == GGML_TYPE_F32) {
  3641. int id = 0;
  3642. float * dst_ptr = (float *) dst->data;
  3643. for (int i03 = 0; i03 < ne03; i03++) {
  3644. for (int i02 = 0; i02 < ne02; i02++) {
  3645. for (int i01 = 0; i01 < ne01; i01++) {
  3646. for (int i00 = 0; i00 < ne00; i00++) {
  3647. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3648. dst_ptr[id] = *src0_ptr;
  3649. id++;
  3650. }
  3651. }
  3652. }
  3653. }
  3654. } else if (dst->type == GGML_TYPE_F16) {
  3655. int id = 0;
  3656. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3657. for (int i03 = 0; i03 < ne03; i03++) {
  3658. for (int i02 = 0; i02 < ne02; i02++) {
  3659. for (int i01 = 0; i01 < ne01; i01++) {
  3660. for (int i00 = 0; i00 < ne00; i00++) {
  3661. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3662. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3663. id++;
  3664. }
  3665. }
  3666. }
  3667. }
  3668. } else {
  3669. GGML_ASSERT(false); // TODO: implement
  3670. }
  3671. }
  3672. }
  3673. static void ggml_compute_forward_dup(
  3674. const struct ggml_compute_params * params,
  3675. const struct ggml_tensor * src0,
  3676. struct ggml_tensor * dst) {
  3677. switch (src0->type) {
  3678. case GGML_TYPE_F16:
  3679. {
  3680. ggml_compute_forward_dup_f16(params, src0, dst);
  3681. } break;
  3682. case GGML_TYPE_F32:
  3683. {
  3684. ggml_compute_forward_dup_f32(params, src0, dst);
  3685. } break;
  3686. case GGML_TYPE_Q4_0:
  3687. case GGML_TYPE_Q4_1:
  3688. case GGML_TYPE_I8:
  3689. case GGML_TYPE_I16:
  3690. case GGML_TYPE_I32:
  3691. case GGML_TYPE_COUNT:
  3692. {
  3693. GGML_ASSERT(false);
  3694. } break;
  3695. }
  3696. }
  3697. // ggml_compute_forward_add
  3698. static void ggml_compute_forward_add_f32(
  3699. const struct ggml_compute_params * params,
  3700. const struct ggml_tensor * src0,
  3701. const struct ggml_tensor * src1,
  3702. struct ggml_tensor * dst) {
  3703. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3704. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3705. return;
  3706. }
  3707. const int ith = params->ith;
  3708. const int nth = params->nth;
  3709. const int n = ggml_nrows(src0);
  3710. const int nc = src0->ne[0];
  3711. const size_t nb00 = src0->nb[0];
  3712. const size_t nb01 = src0->nb[1];
  3713. const size_t nb10 = src1->nb[0];
  3714. const size_t nb11 = src1->nb[1];
  3715. const size_t nb0 = dst->nb[0];
  3716. const size_t nb1 = dst->nb[1];
  3717. GGML_ASSERT( nb0 == sizeof(float));
  3718. GGML_ASSERT(nb00 == sizeof(float));
  3719. if (nb10 == sizeof(float)) {
  3720. const int j0 = (n/nth)*ith;
  3721. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3722. for (int j = j0; j < j1; j++) {
  3723. ggml_vec_add_f32(nc,
  3724. (float *) ((char *) dst->data + j*nb1),
  3725. (float *) ((char *) src0->data + j*nb01),
  3726. (float *) ((char *) src1->data + j*nb11));
  3727. }
  3728. } else {
  3729. // src1 is not contiguous
  3730. for (int j = ith; j < n; j += nth) {
  3731. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3732. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3733. for (int i = 0; i < nc; i++) {
  3734. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3735. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3736. }
  3737. }
  3738. }
  3739. }
  3740. static void ggml_compute_forward_add(
  3741. const struct ggml_compute_params * params,
  3742. const struct ggml_tensor * src0,
  3743. const struct ggml_tensor * src1,
  3744. struct ggml_tensor * dst) {
  3745. switch (src0->type) {
  3746. case GGML_TYPE_F32:
  3747. {
  3748. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3749. } break;
  3750. case GGML_TYPE_Q4_0:
  3751. case GGML_TYPE_Q4_1:
  3752. case GGML_TYPE_I8:
  3753. case GGML_TYPE_I16:
  3754. case GGML_TYPE_I32:
  3755. case GGML_TYPE_F16:
  3756. case GGML_TYPE_COUNT:
  3757. {
  3758. GGML_ASSERT(false);
  3759. } break;
  3760. }
  3761. }
  3762. // ggml_compute_forward_sub
  3763. static void ggml_compute_forward_sub_f32(
  3764. const struct ggml_compute_params * params,
  3765. const struct ggml_tensor * src0,
  3766. const struct ggml_tensor * src1,
  3767. struct ggml_tensor * dst) {
  3768. assert(params->ith == 0);
  3769. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3770. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3771. return;
  3772. }
  3773. const int n = ggml_nrows(src0);
  3774. const int nc = src0->ne[0];
  3775. assert( dst->nb[0] == sizeof(float));
  3776. assert(src0->nb[0] == sizeof(float));
  3777. assert(src1->nb[0] == sizeof(float));
  3778. for (int i = 0; i < n; i++) {
  3779. ggml_vec_sub_f32(nc,
  3780. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3781. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3782. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3783. }
  3784. }
  3785. static void ggml_compute_forward_sub(
  3786. const struct ggml_compute_params * params,
  3787. const struct ggml_tensor * src0,
  3788. const struct ggml_tensor * src1,
  3789. struct ggml_tensor * dst) {
  3790. switch (src0->type) {
  3791. case GGML_TYPE_F32:
  3792. {
  3793. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3794. } break;
  3795. case GGML_TYPE_Q4_0:
  3796. case GGML_TYPE_Q4_1:
  3797. case GGML_TYPE_I8:
  3798. case GGML_TYPE_I16:
  3799. case GGML_TYPE_I32:
  3800. case GGML_TYPE_F16:
  3801. case GGML_TYPE_COUNT:
  3802. {
  3803. GGML_ASSERT(false);
  3804. } break;
  3805. }
  3806. }
  3807. // ggml_compute_forward_mul
  3808. static void ggml_compute_forward_mul_f32(
  3809. const struct ggml_compute_params * params,
  3810. const struct ggml_tensor * src0,
  3811. const struct ggml_tensor * src1,
  3812. struct ggml_tensor * dst) {
  3813. assert(params->ith == 0);
  3814. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3816. return;
  3817. }
  3818. const int n = ggml_nrows(src0);
  3819. const int nc = src0->ne[0];
  3820. assert( dst->nb[0] == sizeof(float));
  3821. assert(src0->nb[0] == sizeof(float));
  3822. assert(src1->nb[0] == sizeof(float));
  3823. for (int i = 0; i < n; i++) {
  3824. ggml_vec_mul_f32(nc,
  3825. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3826. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3827. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3828. }
  3829. }
  3830. static void ggml_compute_forward_mul(
  3831. const struct ggml_compute_params * params,
  3832. const struct ggml_tensor * src0,
  3833. const struct ggml_tensor * src1,
  3834. struct ggml_tensor * dst) {
  3835. switch (src0->type) {
  3836. case GGML_TYPE_F32:
  3837. {
  3838. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3839. } break;
  3840. case GGML_TYPE_Q4_0:
  3841. case GGML_TYPE_Q4_1:
  3842. case GGML_TYPE_I8:
  3843. case GGML_TYPE_I16:
  3844. case GGML_TYPE_I32:
  3845. case GGML_TYPE_F16:
  3846. case GGML_TYPE_COUNT:
  3847. {
  3848. GGML_ASSERT(false);
  3849. } break;
  3850. }
  3851. }
  3852. // ggml_compute_forward_div
  3853. static void ggml_compute_forward_div_f32(
  3854. const struct ggml_compute_params * params,
  3855. const struct ggml_tensor * src0,
  3856. const struct ggml_tensor * src1,
  3857. struct ggml_tensor * dst) {
  3858. assert(params->ith == 0);
  3859. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3860. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3861. return;
  3862. }
  3863. const int n = ggml_nrows(src0);
  3864. const int nc = src0->ne[0];
  3865. assert( dst->nb[0] == sizeof(float));
  3866. assert(src0->nb[0] == sizeof(float));
  3867. assert(src1->nb[0] == sizeof(float));
  3868. for (int i = 0; i < n; i++) {
  3869. ggml_vec_div_f32(nc,
  3870. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3871. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3872. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3873. }
  3874. }
  3875. static void ggml_compute_forward_div(
  3876. const struct ggml_compute_params * params,
  3877. const struct ggml_tensor * src0,
  3878. const struct ggml_tensor * src1,
  3879. struct ggml_tensor * dst) {
  3880. switch (src0->type) {
  3881. case GGML_TYPE_F32:
  3882. {
  3883. ggml_compute_forward_div_f32(params, src0, src1, dst);
  3884. } break;
  3885. case GGML_TYPE_Q4_0:
  3886. case GGML_TYPE_Q4_1:
  3887. case GGML_TYPE_I8:
  3888. case GGML_TYPE_I16:
  3889. case GGML_TYPE_I32:
  3890. case GGML_TYPE_F16:
  3891. case GGML_TYPE_COUNT:
  3892. {
  3893. GGML_ASSERT(false);
  3894. } break;
  3895. }
  3896. }
  3897. // ggml_compute_forward_sqr
  3898. static void ggml_compute_forward_sqr_f32(
  3899. const struct ggml_compute_params * params,
  3900. const struct ggml_tensor * src0,
  3901. struct ggml_tensor * dst) {
  3902. assert(params->ith == 0);
  3903. assert(ggml_are_same_shape(src0, dst));
  3904. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3905. return;
  3906. }
  3907. const int n = ggml_nrows(src0);
  3908. const int nc = src0->ne[0];
  3909. assert( dst->nb[0] == sizeof(float));
  3910. assert(src0->nb[0] == sizeof(float));
  3911. for (int i = 0; i < n; i++) {
  3912. ggml_vec_sqr_f32(nc,
  3913. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3914. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3915. }
  3916. }
  3917. static void ggml_compute_forward_sqr(
  3918. const struct ggml_compute_params * params,
  3919. const struct ggml_tensor * src0,
  3920. struct ggml_tensor * dst) {
  3921. switch (src0->type) {
  3922. case GGML_TYPE_F32:
  3923. {
  3924. ggml_compute_forward_sqr_f32(params, src0, dst);
  3925. } break;
  3926. case GGML_TYPE_Q4_0:
  3927. case GGML_TYPE_Q4_1:
  3928. case GGML_TYPE_I8:
  3929. case GGML_TYPE_I16:
  3930. case GGML_TYPE_I32:
  3931. case GGML_TYPE_F16:
  3932. case GGML_TYPE_COUNT:
  3933. {
  3934. GGML_ASSERT(false);
  3935. } break;
  3936. }
  3937. }
  3938. // ggml_compute_forward_sqrt
  3939. static void ggml_compute_forward_sqrt_f32(
  3940. const struct ggml_compute_params * params,
  3941. const struct ggml_tensor * src0,
  3942. struct ggml_tensor * dst) {
  3943. assert(params->ith == 0);
  3944. assert(ggml_are_same_shape(src0, dst));
  3945. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3946. return;
  3947. }
  3948. const int n = ggml_nrows(src0);
  3949. const int nc = src0->ne[0];
  3950. assert( dst->nb[0] == sizeof(float));
  3951. assert(src0->nb[0] == sizeof(float));
  3952. for (int i = 0; i < n; i++) {
  3953. ggml_vec_sqrt_f32(nc,
  3954. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3955. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3956. }
  3957. }
  3958. static void ggml_compute_forward_sqrt(
  3959. const struct ggml_compute_params * params,
  3960. const struct ggml_tensor * src0,
  3961. struct ggml_tensor * dst) {
  3962. switch (src0->type) {
  3963. case GGML_TYPE_F32:
  3964. {
  3965. ggml_compute_forward_sqrt_f32(params, src0, dst);
  3966. } break;
  3967. case GGML_TYPE_Q4_0:
  3968. case GGML_TYPE_Q4_1:
  3969. case GGML_TYPE_I8:
  3970. case GGML_TYPE_I16:
  3971. case GGML_TYPE_I32:
  3972. case GGML_TYPE_F16:
  3973. case GGML_TYPE_COUNT:
  3974. {
  3975. GGML_ASSERT(false);
  3976. } break;
  3977. }
  3978. }
  3979. // ggml_compute_forward_sum
  3980. static void ggml_compute_forward_sum_f32(
  3981. const struct ggml_compute_params * params,
  3982. const struct ggml_tensor * src0,
  3983. struct ggml_tensor * dst) {
  3984. assert(params->ith == 0);
  3985. assert(ggml_is_scalar(dst));
  3986. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3987. return;
  3988. }
  3989. assert(ggml_is_scalar(dst));
  3990. assert(src0->nb[0] == sizeof(float));
  3991. const int ne00 = src0->ne[0];
  3992. const int ne01 = src0->ne[1];
  3993. const int ne02 = src0->ne[2];
  3994. const int ne03 = src0->ne[3];
  3995. const size_t nb01 = src0->nb[1];
  3996. const size_t nb02 = src0->nb[2];
  3997. const size_t nb03 = src0->nb[3];
  3998. for (int i03 = 0; i03 < ne03; i03++) {
  3999. for (int i02 = 0; i02 < ne02; i02++) {
  4000. for (int i01 = 0; i01 < ne01; i01++) {
  4001. ggml_vec_sum_f32(ne00,
  4002. (float *) (dst->data),
  4003. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4004. }
  4005. }
  4006. }
  4007. }
  4008. static void ggml_compute_forward_sum(
  4009. const struct ggml_compute_params * params,
  4010. const struct ggml_tensor * src0,
  4011. struct ggml_tensor * dst) {
  4012. switch (src0->type) {
  4013. case GGML_TYPE_F32:
  4014. {
  4015. ggml_compute_forward_sum_f32(params, src0, dst);
  4016. } break;
  4017. case GGML_TYPE_Q4_0:
  4018. case GGML_TYPE_Q4_1:
  4019. case GGML_TYPE_I8:
  4020. case GGML_TYPE_I16:
  4021. case GGML_TYPE_I32:
  4022. case GGML_TYPE_F16:
  4023. case GGML_TYPE_COUNT:
  4024. {
  4025. GGML_ASSERT(false);
  4026. } break;
  4027. }
  4028. }
  4029. // ggml_compute_forward_mean
  4030. static void ggml_compute_forward_mean_f32(
  4031. const struct ggml_compute_params * params,
  4032. const struct ggml_tensor * src0,
  4033. struct ggml_tensor * dst) {
  4034. assert(params->ith == 0);
  4035. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4036. return;
  4037. }
  4038. assert(src0->nb[0] == sizeof(float));
  4039. const int ne00 = src0->ne[0];
  4040. const int ne01 = src0->ne[1];
  4041. const int ne02 = src0->ne[2];
  4042. const int ne03 = src0->ne[3];
  4043. const size_t nb01 = src0->nb[1];
  4044. const size_t nb02 = src0->nb[2];
  4045. const size_t nb03 = src0->nb[3];
  4046. const int ne0 = dst->ne[0];
  4047. const int ne1 = dst->ne[1];
  4048. const int ne2 = dst->ne[2];
  4049. const int ne3 = dst->ne[3];
  4050. assert(ne0 == 1);
  4051. assert(ne1 == ne01);
  4052. assert(ne2 == ne02);
  4053. assert(ne3 == ne03);
  4054. UNUSED(ne0);
  4055. UNUSED(ne1);
  4056. UNUSED(ne2);
  4057. UNUSED(ne3);
  4058. const size_t nb1 = dst->nb[1];
  4059. const size_t nb2 = dst->nb[2];
  4060. const size_t nb3 = dst->nb[3];
  4061. for (int i03 = 0; i03 < ne03; i03++) {
  4062. for (int i02 = 0; i02 < ne02; i02++) {
  4063. for (int i01 = 0; i01 < ne01; i01++) {
  4064. ggml_vec_sum_f32(ne00,
  4065. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4066. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4067. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4068. }
  4069. }
  4070. }
  4071. }
  4072. static void ggml_compute_forward_mean(
  4073. const struct ggml_compute_params * params,
  4074. const struct ggml_tensor * src0,
  4075. struct ggml_tensor * dst) {
  4076. switch (src0->type) {
  4077. case GGML_TYPE_F32:
  4078. {
  4079. ggml_compute_forward_mean_f32(params, src0, dst);
  4080. } break;
  4081. case GGML_TYPE_Q4_0:
  4082. case GGML_TYPE_Q4_1:
  4083. case GGML_TYPE_I8:
  4084. case GGML_TYPE_I16:
  4085. case GGML_TYPE_I32:
  4086. case GGML_TYPE_F16:
  4087. case GGML_TYPE_COUNT:
  4088. {
  4089. GGML_ASSERT(false);
  4090. } break;
  4091. }
  4092. }
  4093. // ggml_compute_forward_repeat
  4094. static void ggml_compute_forward_repeat_f32(
  4095. const struct ggml_compute_params * params,
  4096. const struct ggml_tensor * src0,
  4097. struct ggml_tensor * dst) {
  4098. assert(params->ith == 0);
  4099. assert(ggml_can_repeat(src0, dst));
  4100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4101. return;
  4102. }
  4103. // TODO: implement support for rank > 2 tensors
  4104. assert(src0->ne[2] == 1);
  4105. assert(src0->ne[3] == 1);
  4106. assert( dst->ne[2] == 1);
  4107. assert( dst->ne[3] == 1);
  4108. const int nc = dst->ne[0];
  4109. const int nr = dst->ne[1];
  4110. const int nc0 = src0->ne[0];
  4111. const int nr0 = src0->ne[1];
  4112. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4113. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4114. // TODO: support for transposed / permuted tensors
  4115. assert( dst->nb[0] == sizeof(float));
  4116. assert(src0->nb[0] == sizeof(float));
  4117. // TODO: maybe this is not optimal?
  4118. for (int i = 0; i < nrr; i++) {
  4119. for (int j = 0; j < ncr; j++) {
  4120. for (int k = 0; k < nr0; k++) {
  4121. ggml_vec_cpy_f32(nc0,
  4122. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4123. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4124. }
  4125. }
  4126. }
  4127. }
  4128. static void ggml_compute_forward_repeat(
  4129. const struct ggml_compute_params * params,
  4130. const struct ggml_tensor * src0,
  4131. struct ggml_tensor * dst) {
  4132. switch (src0->type) {
  4133. case GGML_TYPE_F32:
  4134. {
  4135. ggml_compute_forward_repeat_f32(params, src0, dst);
  4136. } break;
  4137. case GGML_TYPE_Q4_0:
  4138. case GGML_TYPE_Q4_1:
  4139. case GGML_TYPE_I8:
  4140. case GGML_TYPE_I16:
  4141. case GGML_TYPE_I32:
  4142. case GGML_TYPE_F16:
  4143. case GGML_TYPE_COUNT:
  4144. {
  4145. GGML_ASSERT(false);
  4146. } break;
  4147. }
  4148. }
  4149. // ggml_compute_forward_abs
  4150. static void ggml_compute_forward_abs_f32(
  4151. const struct ggml_compute_params * params,
  4152. const struct ggml_tensor * src0,
  4153. struct ggml_tensor * dst) {
  4154. assert(params->ith == 0);
  4155. assert(ggml_are_same_shape(src0, dst));
  4156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4157. return;
  4158. }
  4159. const int n = ggml_nrows(src0);
  4160. const int nc = src0->ne[0];
  4161. assert(dst->nb[0] == sizeof(float));
  4162. assert(src0->nb[0] == sizeof(float));
  4163. for (int i = 0; i < n; i++) {
  4164. ggml_vec_abs_f32(nc,
  4165. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4166. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4167. }
  4168. }
  4169. static void ggml_compute_forward_abs(
  4170. const struct ggml_compute_params * params,
  4171. const struct ggml_tensor * src0,
  4172. struct ggml_tensor * dst) {
  4173. switch (src0->type) {
  4174. case GGML_TYPE_F32:
  4175. {
  4176. ggml_compute_forward_abs_f32(params, src0, dst);
  4177. } break;
  4178. case GGML_TYPE_Q4_0:
  4179. case GGML_TYPE_Q4_1:
  4180. case GGML_TYPE_I8:
  4181. case GGML_TYPE_I16:
  4182. case GGML_TYPE_I32:
  4183. case GGML_TYPE_F16:
  4184. case GGML_TYPE_COUNT:
  4185. {
  4186. GGML_ASSERT(false);
  4187. } break;
  4188. }
  4189. }
  4190. // ggml_compute_forward_sgn
  4191. static void ggml_compute_forward_sgn_f32(
  4192. const struct ggml_compute_params * params,
  4193. const struct ggml_tensor * src0,
  4194. struct ggml_tensor * dst) {
  4195. assert(params->ith == 0);
  4196. assert(ggml_are_same_shape(src0, dst));
  4197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4198. return;
  4199. }
  4200. const int n = ggml_nrows(src0);
  4201. const int nc = src0->ne[0];
  4202. assert(dst->nb[0] == sizeof(float));
  4203. assert(src0->nb[0] == sizeof(float));
  4204. for (int i = 0; i < n; i++) {
  4205. ggml_vec_sgn_f32(nc,
  4206. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4207. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4208. }
  4209. }
  4210. static void ggml_compute_forward_sgn(
  4211. const struct ggml_compute_params * params,
  4212. const struct ggml_tensor * src0,
  4213. struct ggml_tensor * dst) {
  4214. switch (src0->type) {
  4215. case GGML_TYPE_F32:
  4216. {
  4217. ggml_compute_forward_sgn_f32(params, src0, dst);
  4218. } break;
  4219. case GGML_TYPE_Q4_0:
  4220. case GGML_TYPE_Q4_1:
  4221. case GGML_TYPE_I8:
  4222. case GGML_TYPE_I16:
  4223. case GGML_TYPE_I32:
  4224. case GGML_TYPE_F16:
  4225. case GGML_TYPE_COUNT:
  4226. {
  4227. GGML_ASSERT(false);
  4228. } break;
  4229. }
  4230. }
  4231. // ggml_compute_forward_neg
  4232. static void ggml_compute_forward_neg_f32(
  4233. const struct ggml_compute_params * params,
  4234. const struct ggml_tensor * src0,
  4235. struct ggml_tensor * dst) {
  4236. assert(params->ith == 0);
  4237. assert(ggml_are_same_shape(src0, dst));
  4238. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4239. return;
  4240. }
  4241. const int n = ggml_nrows(src0);
  4242. const int nc = src0->ne[0];
  4243. assert(dst->nb[0] == sizeof(float));
  4244. assert(src0->nb[0] == sizeof(float));
  4245. for (int i = 0; i < n; i++) {
  4246. ggml_vec_neg_f32(nc,
  4247. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4248. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4249. }
  4250. }
  4251. static void ggml_compute_forward_neg(
  4252. const struct ggml_compute_params * params,
  4253. const struct ggml_tensor * src0,
  4254. struct ggml_tensor * dst) {
  4255. switch (src0->type) {
  4256. case GGML_TYPE_F32:
  4257. {
  4258. ggml_compute_forward_neg_f32(params, src0, dst);
  4259. } break;
  4260. case GGML_TYPE_Q4_0:
  4261. case GGML_TYPE_Q4_1:
  4262. case GGML_TYPE_I8:
  4263. case GGML_TYPE_I16:
  4264. case GGML_TYPE_I32:
  4265. case GGML_TYPE_F16:
  4266. case GGML_TYPE_COUNT:
  4267. {
  4268. GGML_ASSERT(false);
  4269. } break;
  4270. }
  4271. }
  4272. // ggml_compute_forward_step
  4273. static void ggml_compute_forward_step_f32(
  4274. const struct ggml_compute_params * params,
  4275. const struct ggml_tensor * src0,
  4276. struct ggml_tensor * dst) {
  4277. assert(params->ith == 0);
  4278. assert(ggml_are_same_shape(src0, dst));
  4279. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4280. return;
  4281. }
  4282. const int n = ggml_nrows(src0);
  4283. const int nc = src0->ne[0];
  4284. assert(dst->nb[0] == sizeof(float));
  4285. assert(src0->nb[0] == sizeof(float));
  4286. for (int i = 0; i < n; i++) {
  4287. ggml_vec_step_f32(nc,
  4288. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4289. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4290. }
  4291. }
  4292. static void ggml_compute_forward_step(
  4293. const struct ggml_compute_params * params,
  4294. const struct ggml_tensor * src0,
  4295. struct ggml_tensor * dst) {
  4296. switch (src0->type) {
  4297. case GGML_TYPE_F32:
  4298. {
  4299. ggml_compute_forward_step_f32(params, src0, dst);
  4300. } break;
  4301. case GGML_TYPE_Q4_0:
  4302. case GGML_TYPE_Q4_1:
  4303. case GGML_TYPE_I8:
  4304. case GGML_TYPE_I16:
  4305. case GGML_TYPE_I32:
  4306. case GGML_TYPE_F16:
  4307. case GGML_TYPE_COUNT:
  4308. {
  4309. GGML_ASSERT(false);
  4310. } break;
  4311. }
  4312. }
  4313. // ggml_compute_forward_relu
  4314. static void ggml_compute_forward_relu_f32(
  4315. const struct ggml_compute_params * params,
  4316. const struct ggml_tensor * src0,
  4317. struct ggml_tensor * dst) {
  4318. assert(params->ith == 0);
  4319. assert(ggml_are_same_shape(src0, dst));
  4320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4321. return;
  4322. }
  4323. const int n = ggml_nrows(src0);
  4324. const int nc = src0->ne[0];
  4325. assert(dst->nb[0] == sizeof(float));
  4326. assert(src0->nb[0] == sizeof(float));
  4327. for (int i = 0; i < n; i++) {
  4328. ggml_vec_relu_f32(nc,
  4329. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4330. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4331. }
  4332. }
  4333. static void ggml_compute_forward_relu(
  4334. const struct ggml_compute_params * params,
  4335. const struct ggml_tensor * src0,
  4336. struct ggml_tensor * dst) {
  4337. switch (src0->type) {
  4338. case GGML_TYPE_F32:
  4339. {
  4340. ggml_compute_forward_relu_f32(params, src0, dst);
  4341. } break;
  4342. case GGML_TYPE_Q4_0:
  4343. case GGML_TYPE_Q4_1:
  4344. case GGML_TYPE_I8:
  4345. case GGML_TYPE_I16:
  4346. case GGML_TYPE_I32:
  4347. case GGML_TYPE_F16:
  4348. case GGML_TYPE_COUNT:
  4349. {
  4350. GGML_ASSERT(false);
  4351. } break;
  4352. }
  4353. }
  4354. // ggml_compute_forward_gelu
  4355. static void ggml_compute_forward_gelu_f32(
  4356. const struct ggml_compute_params * params,
  4357. const struct ggml_tensor * src0,
  4358. struct ggml_tensor * dst) {
  4359. GGML_ASSERT(ggml_is_contiguous(src0));
  4360. GGML_ASSERT(ggml_is_contiguous(dst));
  4361. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4362. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4363. return;
  4364. }
  4365. const int ith = params->ith;
  4366. const int nth = params->nth;
  4367. const int nc = src0->ne[0];
  4368. const int nr = ggml_nrows(src0);
  4369. // rows per thread
  4370. const int dr = (nr + nth - 1)/nth;
  4371. // row range for this thread
  4372. const int ir0 = dr*ith;
  4373. const int ir1 = MIN(ir0 + dr, nr);
  4374. for (int i1 = ir0; i1 < ir1; i1++) {
  4375. ggml_vec_gelu_f32(nc,
  4376. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4377. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4378. #ifndef NDEBUG
  4379. for (int k = 0; k < nc; k++) {
  4380. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4381. UNUSED(x);
  4382. assert(!isnan(x));
  4383. assert(!isinf(x));
  4384. }
  4385. #endif
  4386. }
  4387. }
  4388. static void ggml_compute_forward_gelu(
  4389. const struct ggml_compute_params * params,
  4390. const struct ggml_tensor * src0,
  4391. struct ggml_tensor * dst) {
  4392. switch (src0->type) {
  4393. case GGML_TYPE_F32:
  4394. {
  4395. ggml_compute_forward_gelu_f32(params, src0, dst);
  4396. } break;
  4397. case GGML_TYPE_Q4_0:
  4398. case GGML_TYPE_Q4_1:
  4399. case GGML_TYPE_I8:
  4400. case GGML_TYPE_I16:
  4401. case GGML_TYPE_I32:
  4402. case GGML_TYPE_F16:
  4403. case GGML_TYPE_COUNT:
  4404. {
  4405. GGML_ASSERT(false);
  4406. } break;
  4407. }
  4408. //printf("XXXXXXXX gelu\n");
  4409. }
  4410. // ggml_compute_forward_silu
  4411. static void ggml_compute_forward_silu_f32(
  4412. const struct ggml_compute_params * params,
  4413. const struct ggml_tensor * src0,
  4414. struct ggml_tensor * dst) {
  4415. GGML_ASSERT(ggml_is_contiguous(src0));
  4416. GGML_ASSERT(ggml_is_contiguous(dst));
  4417. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4418. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4419. return;
  4420. }
  4421. const int ith = params->ith;
  4422. const int nth = params->nth;
  4423. const int nc = src0->ne[0];
  4424. const int nr = ggml_nrows(src0);
  4425. // rows per thread
  4426. const int dr = (nr + nth - 1)/nth;
  4427. // row range for this thread
  4428. const int ir0 = dr*ith;
  4429. const int ir1 = MIN(ir0 + dr, nr);
  4430. for (int i1 = ir0; i1 < ir1; i1++) {
  4431. ggml_vec_silu_f32(nc,
  4432. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4433. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4434. #ifndef NDEBUG
  4435. for (int k = 0; k < nc; k++) {
  4436. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4437. UNUSED(x);
  4438. assert(!isnan(x));
  4439. assert(!isinf(x));
  4440. }
  4441. #endif
  4442. }
  4443. }
  4444. static void ggml_compute_forward_silu(
  4445. const struct ggml_compute_params * params,
  4446. const struct ggml_tensor * src0,
  4447. struct ggml_tensor * dst) {
  4448. switch (src0->type) {
  4449. case GGML_TYPE_F32:
  4450. {
  4451. ggml_compute_forward_silu_f32(params, src0, dst);
  4452. } break;
  4453. case GGML_TYPE_Q4_0:
  4454. case GGML_TYPE_Q4_1:
  4455. case GGML_TYPE_I8:
  4456. case GGML_TYPE_I16:
  4457. case GGML_TYPE_I32:
  4458. case GGML_TYPE_F16:
  4459. case GGML_TYPE_COUNT:
  4460. {
  4461. GGML_ASSERT(false);
  4462. } break;
  4463. }
  4464. }
  4465. // ggml_compute_forward_norm
  4466. static void ggml_compute_forward_norm_f32(
  4467. const struct ggml_compute_params * params,
  4468. const struct ggml_tensor * src0,
  4469. struct ggml_tensor * dst) {
  4470. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4471. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4472. return;
  4473. }
  4474. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4475. const int ith = params->ith;
  4476. const int nth = params->nth;
  4477. const int ne00 = src0->ne[0];
  4478. const int ne01 = src0->ne[1];
  4479. const int ne02 = src0->ne[2];
  4480. const int ne03 = src0->ne[3];
  4481. const size_t nb01 = src0->nb[1];
  4482. const size_t nb02 = src0->nb[2];
  4483. const size_t nb03 = src0->nb[3];
  4484. const size_t nb1 = dst->nb[1];
  4485. const size_t nb2 = dst->nb[2];
  4486. const size_t nb3 = dst->nb[3];
  4487. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4488. // TODO: optimize
  4489. for (int i03 = 0; i03 < ne03; i03++) {
  4490. for (int i02 = 0; i02 < ne02; i02++) {
  4491. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4492. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4493. ggml_float mean = 0.0;
  4494. for (int i00 = 0; i00 < ne00; i00++) {
  4495. mean += x[i00];
  4496. }
  4497. mean /= ne00;
  4498. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4499. ggml_float sum2 = 0.0;
  4500. for (int i00 = 0; i00 < ne00; i00++) {
  4501. ggml_float v = x[i00] - mean;
  4502. y[i00] = v;
  4503. sum2 += v*v;
  4504. }
  4505. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4506. ggml_vec_scale_f32(ne00, y, scale);
  4507. }
  4508. }
  4509. }
  4510. }
  4511. static void ggml_compute_forward_norm(
  4512. const struct ggml_compute_params * params,
  4513. const struct ggml_tensor * src0,
  4514. struct ggml_tensor * dst) {
  4515. switch (src0->type) {
  4516. case GGML_TYPE_F32:
  4517. {
  4518. ggml_compute_forward_norm_f32(params, src0, dst);
  4519. } break;
  4520. case GGML_TYPE_Q4_0:
  4521. case GGML_TYPE_Q4_1:
  4522. case GGML_TYPE_I8:
  4523. case GGML_TYPE_I16:
  4524. case GGML_TYPE_I32:
  4525. case GGML_TYPE_F16:
  4526. case GGML_TYPE_COUNT:
  4527. {
  4528. GGML_ASSERT(false);
  4529. } break;
  4530. }
  4531. }
  4532. static void ggml_compute_forward_rms_norm_f32(
  4533. const struct ggml_compute_params * params,
  4534. const struct ggml_tensor * src0,
  4535. struct ggml_tensor * dst) {
  4536. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4537. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4538. return;
  4539. }
  4540. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4541. const int ith = params->ith;
  4542. const int nth = params->nth;
  4543. const int ne00 = src0->ne[0];
  4544. const int ne01 = src0->ne[1];
  4545. const int ne02 = src0->ne[2];
  4546. const int ne03 = src0->ne[3];
  4547. const size_t nb01 = src0->nb[1];
  4548. const size_t nb02 = src0->nb[2];
  4549. const size_t nb03 = src0->nb[3];
  4550. const size_t nb1 = dst->nb[1];
  4551. const size_t nb2 = dst->nb[2];
  4552. const size_t nb3 = dst->nb[3];
  4553. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4554. // TODO: optimize
  4555. for (int i03 = 0; i03 < ne03; i03++) {
  4556. for (int i02 = 0; i02 < ne02; i02++) {
  4557. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4558. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4559. ggml_float mean = 0.0;
  4560. for (int i00 = 0; i00 < ne00; i00++) {
  4561. mean += x[i00] * x[i00];
  4562. }
  4563. mean /= ne00;
  4564. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4565. memcpy(y, x, ne00 * sizeof(float));
  4566. // for (int i00 = 0; i00 < ne00; i00++) {
  4567. // y[i00] = x[i00];
  4568. // }
  4569. const float scale = 1.0/sqrt(mean + eps);
  4570. ggml_vec_scale_f32(ne00, y, scale);
  4571. }
  4572. }
  4573. }
  4574. }
  4575. static void ggml_compute_forward_rms_norm(
  4576. const struct ggml_compute_params * params,
  4577. const struct ggml_tensor * src0,
  4578. struct ggml_tensor * dst) {
  4579. switch (src0->type) {
  4580. case GGML_TYPE_F32:
  4581. {
  4582. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4583. } break;
  4584. case GGML_TYPE_Q4_0:
  4585. case GGML_TYPE_Q4_1:
  4586. case GGML_TYPE_I8:
  4587. case GGML_TYPE_I16:
  4588. case GGML_TYPE_I32:
  4589. case GGML_TYPE_F16:
  4590. case GGML_TYPE_COUNT:
  4591. {
  4592. GGML_ASSERT(false);
  4593. } break;
  4594. }
  4595. }
  4596. // ggml_compute_forward_mul_mat
  4597. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4598. // helper function to determine if it is better to use BLAS or not
  4599. // for large matrices, BLAS is faster
  4600. static bool ggml_compute_forward_mul_mat_use_blas(
  4601. const struct ggml_tensor * src0,
  4602. const struct ggml_tensor * src1,
  4603. struct ggml_tensor * dst) {
  4604. UNUSED(src0);
  4605. const int ne10 = src1->ne[0];
  4606. const int ne0 = dst->ne[0];
  4607. const int ne1 = dst->ne[1];
  4608. // TODO: find the optimal values for these
  4609. if (ggml_is_contiguous(src0) &&
  4610. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4611. //printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
  4612. return true;
  4613. }
  4614. return false;
  4615. }
  4616. #endif
  4617. static void ggml_compute_forward_mul_mat_f32(
  4618. const struct ggml_compute_params * params,
  4619. const struct ggml_tensor * src0,
  4620. const struct ggml_tensor * src1,
  4621. struct ggml_tensor * dst) {
  4622. int64_t t0 = ggml_perf_time_us();
  4623. UNUSED(t0);
  4624. const int ne00 = src0->ne[0];
  4625. const int ne01 = src0->ne[1];
  4626. const int ne02 = src0->ne[2];
  4627. const int ne03 = src0->ne[3];
  4628. const int ne10 = src1->ne[0];
  4629. const int ne11 = src1->ne[1];
  4630. const int ne12 = src1->ne[2];
  4631. const int ne13 = src1->ne[3];
  4632. const int ne0 = dst->ne[0];
  4633. const int ne1 = dst->ne[1];
  4634. const int ne2 = dst->ne[2];
  4635. const int ne3 = dst->ne[3];
  4636. const int ne = ne0*ne1*ne2*ne3;
  4637. const int nb00 = src0->nb[0];
  4638. const int nb01 = src0->nb[1];
  4639. const int nb02 = src0->nb[2];
  4640. const int nb03 = src0->nb[3];
  4641. const int nb10 = src1->nb[0];
  4642. const int nb11 = src1->nb[1];
  4643. const int nb12 = src1->nb[2];
  4644. const int nb13 = src1->nb[3];
  4645. const int nb0 = dst->nb[0];
  4646. const int nb1 = dst->nb[1];
  4647. const int nb2 = dst->nb[2];
  4648. const int nb3 = dst->nb[3];
  4649. const int ith = params->ith;
  4650. const int nth = params->nth;
  4651. assert(ne02 == ne12);
  4652. assert(ne03 == ne13);
  4653. assert(ne2 == ne12);
  4654. assert(ne3 == ne13);
  4655. // TODO: we don't support permuted src0
  4656. assert(nb00 == sizeof(float) || nb01 == sizeof(float));
  4657. // dst cannot be transposed or permuted
  4658. assert(nb0 == sizeof(float));
  4659. assert(nb0 <= nb1);
  4660. assert(nb1 <= nb2);
  4661. assert(nb2 <= nb3);
  4662. assert(ne0 == ne01);
  4663. assert(ne1 == ne11);
  4664. assert(ne2 == ne02);
  4665. assert(ne3 == ne03);
  4666. // nb01 >= nb00 - src0 is not transposed
  4667. // compute by src0 rows
  4668. //
  4669. // nb00 < nb01 - src0 is transposed
  4670. // compute by src0 columns
  4671. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4672. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4673. GGML_ASSERT(nb10 == sizeof(float));
  4674. if (params->ith != 0) {
  4675. return;
  4676. }
  4677. if (params->type == GGML_TASK_INIT) {
  4678. return;
  4679. }
  4680. if (params->type == GGML_TASK_FINALIZE) {
  4681. return;
  4682. }
  4683. for (int i03 = 0; i03 < ne03; i03++) {
  4684. for (int i02 = 0; i02 < ne02; i02++) {
  4685. const float * x = (float *) (src0->data);
  4686. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4687. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4688. // zT = y * xT
  4689. {
  4690. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4691. ne11, ne01, ne10,
  4692. 1.0f, y, ne10,
  4693. x, ne10,
  4694. 0.0f, d, ne01);
  4695. }
  4696. }
  4697. }
  4698. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4699. return;
  4700. }
  4701. #endif
  4702. if (params->type == GGML_TASK_INIT) {
  4703. if (nb01 >= nb00) {
  4704. return;
  4705. }
  4706. // TODO: fix this memset (wsize is overestimated)
  4707. memset(params->wdata, 0, params->wsize);
  4708. return;
  4709. }
  4710. if (params->type == GGML_TASK_FINALIZE) {
  4711. if (nb01 >= nb00) {
  4712. return;
  4713. }
  4714. // TODO: fix this memset (wsize is overestimated)
  4715. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4716. float * const wdata = params->wdata;
  4717. // cols per thread
  4718. const int dc = (ne + nth - 1)/nth;
  4719. // col range for this thread
  4720. const int ic0 = dc*ith;
  4721. const int ic1 = MIN(ic0 + dc, ne);
  4722. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  4723. for (int k = 1; k < nth; k++) {
  4724. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  4725. }
  4726. return;
  4727. }
  4728. if (nb01 >= nb00) {
  4729. // TODO: do not support transposed src1
  4730. assert(nb10 == sizeof(float));
  4731. // parallelize by src0 rows using ggml_vec_dot_f32
  4732. // total rows in src0
  4733. const int nr = ne01*ne02*ne03;
  4734. // rows per thread
  4735. const int dr = (nr + nth - 1)/nth;
  4736. // row range for this thread
  4737. const int ir0 = dr*ith;
  4738. const int ir1 = MIN(ir0 + dr, nr);
  4739. for (int ir = ir0; ir < ir1; ++ir) {
  4740. // src0 indices
  4741. const int i03 = ir/(ne02*ne01);
  4742. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4743. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4744. for (int ic = 0; ic < ne11; ++ic) {
  4745. // src1 indices
  4746. const int i13 = i03;
  4747. const int i12 = i02;
  4748. const int i11 = ic;
  4749. // dst indices
  4750. const int i0 = i01;
  4751. const int i1 = i11;
  4752. const int i2 = i02;
  4753. const int i3 = i03;
  4754. ggml_vec_dot_f32(ne00,
  4755. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4756. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4757. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4758. }
  4759. }
  4760. } else {
  4761. // parallelize by src1 columns using ggml_vec_mad_f32
  4762. // each thread has its own work data
  4763. // during FINALIZE we accumulate all work data into dst
  4764. // total columns in src1
  4765. const int nc = ne10;
  4766. // columns per thread
  4767. const int dc = (nc + nth - 1)/nth;
  4768. // column range for this thread
  4769. const int ic0 = dc*ith;
  4770. const int ic1 = MIN(ic0 + dc, nc);
  4771. // work data for thread
  4772. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  4773. float * const wdata = params->wdata;
  4774. for (int i13 = 0; i13 < ne13; ++i13) {
  4775. for (int i12 = 0; i12 < ne12; ++i12) {
  4776. for (int i11 = 0; i11 < ne11; ++i11) {
  4777. for (int ic = ic0; ic < ic1; ++ic) {
  4778. // src1 indices
  4779. const int i10 = ic;
  4780. // src0 indices
  4781. const int i03 = i13;
  4782. const int i02 = i12;
  4783. const int i00 = ic;
  4784. // dst indices
  4785. const int i1 = i11;
  4786. const int i2 = i12;
  4787. const int i3 = i13;
  4788. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  4789. ggml_vec_mad_f32(ne01,
  4790. (float *) (wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0),
  4791. (float *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03)),
  4792. *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13)));
  4793. }
  4794. }
  4795. }
  4796. }
  4797. }
  4798. //int64_t t1 = ggml_perf_time_us();
  4799. //static int64_t acc = 0;
  4800. //acc += t1 - t0;
  4801. //if (t1 - t0 > 10) {
  4802. // printf("\n");
  4803. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4804. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4805. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4806. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4807. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4808. //}
  4809. }
  4810. static void ggml_compute_forward_mul_mat_f16_f32(
  4811. const struct ggml_compute_params * params,
  4812. const struct ggml_tensor * src0,
  4813. const struct ggml_tensor * src1,
  4814. struct ggml_tensor * dst) {
  4815. int64_t t0 = ggml_perf_time_us();
  4816. UNUSED(t0);
  4817. const int ne00 = src0->ne[0];
  4818. const int ne01 = src0->ne[1];
  4819. const int ne02 = src0->ne[2];
  4820. const int ne03 = src0->ne[3];
  4821. const int ne10 = src1->ne[0];
  4822. const int ne11 = src1->ne[1];
  4823. const int ne12 = src1->ne[2];
  4824. const int ne13 = src1->ne[3];
  4825. const int ne0 = dst->ne[0];
  4826. const int ne1 = dst->ne[1];
  4827. const int ne2 = dst->ne[2];
  4828. const int ne3 = dst->ne[3];
  4829. const int ne = ne0*ne1*ne2*ne3;
  4830. const int nb00 = src0->nb[0];
  4831. const int nb01 = src0->nb[1];
  4832. const int nb02 = src0->nb[2];
  4833. const int nb03 = src0->nb[3];
  4834. const int nb10 = src1->nb[0];
  4835. const int nb11 = src1->nb[1];
  4836. const int nb12 = src1->nb[2];
  4837. const int nb13 = src1->nb[3];
  4838. const int nb0 = dst->nb[0];
  4839. const int nb1 = dst->nb[1];
  4840. const int nb2 = dst->nb[2];
  4841. const int nb3 = dst->nb[3];
  4842. const int ith = params->ith;
  4843. const int nth = params->nth;
  4844. GGML_ASSERT(ne02 == ne12);
  4845. GGML_ASSERT(ne03 == ne13);
  4846. GGML_ASSERT(ne2 == ne12);
  4847. GGML_ASSERT(ne3 == ne13);
  4848. // TODO: we don't support permuted src0
  4849. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
  4850. // dst cannot be transposed or permuted
  4851. GGML_ASSERT(nb0 == sizeof(float));
  4852. GGML_ASSERT(nb0 <= nb1);
  4853. GGML_ASSERT(nb1 <= nb2);
  4854. GGML_ASSERT(nb2 <= nb3);
  4855. GGML_ASSERT(ne0 == ne01);
  4856. GGML_ASSERT(ne1 == ne11);
  4857. GGML_ASSERT(ne2 == ne02);
  4858. GGML_ASSERT(ne3 == ne03);
  4859. // nb01 >= nb00 - src0 is not transposed
  4860. // compute by src0 rows
  4861. //
  4862. // nb00 < nb01 - src0 is transposed
  4863. // compute by src0 columns
  4864. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4865. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4866. GGML_ASSERT(nb10 == sizeof(float));
  4867. if (params->ith != 0) {
  4868. return;
  4869. }
  4870. if (params->type == GGML_TASK_INIT) {
  4871. return;
  4872. }
  4873. if (params->type == GGML_TASK_FINALIZE) {
  4874. return;
  4875. }
  4876. float * const wdata = params->wdata;
  4877. for (int i03 = 0; i03 < ne03; i03++) {
  4878. for (int i02 = 0; i02 < ne02; i02++) {
  4879. {
  4880. int id = 0;
  4881. for (int i01 = 0; i01 < ne01; ++i01) {
  4882. for (int i00 = 0; i00 < ne00; ++i00) {
  4883. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4884. }
  4885. }
  4886. }
  4887. const float * x = wdata;
  4888. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4889. // float * z = wdata + ne00*ne01;
  4890. // z = x * yT
  4891. //{
  4892. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4893. // ne01, ne11, ne00,
  4894. // 1.0f, x, ne00,
  4895. // y, ne00,
  4896. // 0.0f, z, ne11);
  4897. //}
  4898. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4899. // transpose z
  4900. //for (int j = 0; j < ne11; ++j) {
  4901. // for (int i = 0; i < ne01; ++i) {
  4902. // d[j*ne01 + i] = z[i*ne11 + j];
  4903. // }
  4904. //}
  4905. {
  4906. #if 1
  4907. // zT = y * xT
  4908. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4909. ne11, ne01, ne10,
  4910. 1.0f, y, ne00,
  4911. x, ne00,
  4912. 0.0f, d, ne01);
  4913. #else
  4914. // zT = (xT * y)T
  4915. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  4916. ne01, ne11, ne10,
  4917. 1.0f, x, ne00,
  4918. y, ne00,
  4919. 0.0f, d, ne01);
  4920. #endif
  4921. }
  4922. }
  4923. }
  4924. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4925. return;
  4926. }
  4927. #endif
  4928. if (params->type == GGML_TASK_INIT) {
  4929. if (nb01 >= nb00) {
  4930. ggml_fp16_t * const wdata = params->wdata;
  4931. int id = 0;
  4932. for (int i13 = 0; i13 < ne13; ++i13) {
  4933. for (int i12 = 0; i12 < ne12; ++i12) {
  4934. for (int i11 = 0; i11 < ne11; ++i11) {
  4935. for (int i10 = 0; i10 < ne10; ++i10) {
  4936. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4937. }
  4938. }
  4939. }
  4940. }
  4941. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4942. return;
  4943. }
  4944. // TODO: fix this memset (wsize is overestimated)
  4945. memset(params->wdata, 0, params->wsize);
  4946. return;
  4947. }
  4948. if (params->type == GGML_TASK_FINALIZE) {
  4949. if (nb01 >= nb00) {
  4950. return;
  4951. }
  4952. // TODO: fix this memset (wsize is overestimated)
  4953. //assert(params->wsize == (ggml_nbytes(dst) + CACHE_LINE_SIZE)*nth);
  4954. ggml_fp16_t * const wdata = params->wdata;
  4955. // cols per thread
  4956. const int dc = (ne + nth - 1)/nth;
  4957. // col range for this thread
  4958. const int ic0 = dc*ith;
  4959. const int ic1 = MIN(ic0 + dc, ne);
  4960. for (int i = ic0; i < ic1; ++i) {
  4961. ((float *) dst->data)[i] = GGML_FP16_TO_FP32(wdata[i]);
  4962. }
  4963. for (int k = 1; k < nth; k++) {
  4964. for (int i = ic0; i < ic1; ++i) {
  4965. ((float *) dst->data)[i] += GGML_FP16_TO_FP32(wdata[(ne + CACHE_LINE_SIZE_F32)*k + i]);
  4966. }
  4967. }
  4968. return;
  4969. }
  4970. if (nb01 >= nb00) {
  4971. // fp16 -> half the size, so divide by 2
  4972. // TODO: do not support transposed src1
  4973. assert(nb10/2 == sizeof(ggml_fp16_t));
  4974. // parallelize by src0 rows using ggml_vec_dot_f16
  4975. // total rows in src0
  4976. const int nr = ne01*ne02*ne03;
  4977. // rows per thread
  4978. const int dr = (nr + nth - 1)/nth;
  4979. // row range for this thread
  4980. const int ir0 = dr*ith;
  4981. const int ir1 = MIN(ir0 + dr, nr);
  4982. ggml_fp16_t * wdata = params->wdata;
  4983. for (int ir = ir0; ir < ir1; ++ir) {
  4984. // src0 indices
  4985. const int i03 = ir/(ne02*ne01);
  4986. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4987. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4988. const int i13 = i03;
  4989. const int i12 = i02;
  4990. const int i0 = i01;
  4991. const int i2 = i02;
  4992. const int i3 = i03;
  4993. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4994. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  4995. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  4996. assert(ne00 % 32 == 0);
  4997. for (int ic = 0; ic < ne11; ++ic) {
  4998. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  4999. }
  5000. }
  5001. } else {
  5002. // parallelize by src1 columns using ggml_vec_mad_f16
  5003. // each thread has its own work data
  5004. // during FINALIZE we accumulate all work data into dst
  5005. // total columns in src1
  5006. const int nc = ne10;
  5007. // columns per thread
  5008. const int dc = (nc + nth - 1)/nth;
  5009. // column range for this thread
  5010. const int ic0 = dc*ith;
  5011. const int ic1 = MIN(ic0 + dc, nc);
  5012. // work data for thread
  5013. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5014. ggml_fp16_t * const wdata = params->wdata;
  5015. for (int i13 = 0; i13 < ne13; ++i13) {
  5016. for (int i12 = 0; i12 < ne12; ++i12) {
  5017. for (int i11 = 0; i11 < ne11; ++i11) {
  5018. // dst indices
  5019. const int i1 = i11;
  5020. const int i2 = i12;
  5021. const int i3 = i13;
  5022. ggml_fp16_t * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5023. for (int ic = ic0; ic < ic1; ++ic) {
  5024. // src1 indices
  5025. const int i10 = ic;
  5026. // src0 indices
  5027. const int i03 = i13;
  5028. const int i02 = i12;
  5029. const int i00 = ic;
  5030. assert(sizeof(ggml_fp16_t)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5031. ggml_fp16_t * src0_col = (ggml_fp16_t *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5032. float src1_val = * (float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5033. ggml_vec_mad_f16(ne01, dst_row, src0_col, src1_val);
  5034. }
  5035. }
  5036. }
  5037. }
  5038. }
  5039. //int64_t t1 = ggml_time_us();
  5040. //static int64_t acc = 0;
  5041. //acc += t1 - t0;
  5042. //if (t1 - t0 > 10) {
  5043. // printf("\n");
  5044. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5045. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5046. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5047. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5048. //}
  5049. }
  5050. static void ggml_compute_forward_mul_mat_q4_0_f32(
  5051. const struct ggml_compute_params * params,
  5052. const struct ggml_tensor * src0,
  5053. const struct ggml_tensor * src1,
  5054. struct ggml_tensor * dst) {
  5055. int64_t t0 = ggml_perf_time_us();
  5056. UNUSED(t0);
  5057. const int ne00 = src0->ne[0];
  5058. const int ne01 = src0->ne[1];
  5059. const int ne02 = src0->ne[2];
  5060. const int ne03 = src0->ne[3];
  5061. const int ne10 = src1->ne[0];
  5062. const int ne11 = src1->ne[1];
  5063. const int ne12 = src1->ne[2];
  5064. const int ne13 = src1->ne[3];
  5065. const int ne0 = dst->ne[0];
  5066. const int ne1 = dst->ne[1];
  5067. const int ne2 = dst->ne[2];
  5068. const int ne3 = dst->ne[3];
  5069. const int ne = ne0*ne1*ne2*ne3;
  5070. const int nb00 = src0->nb[0];
  5071. const int nb01 = src0->nb[1];
  5072. const int nb02 = src0->nb[2];
  5073. const int nb03 = src0->nb[3];
  5074. const int nb10 = src1->nb[0];
  5075. const int nb11 = src1->nb[1];
  5076. const int nb12 = src1->nb[2];
  5077. const int nb13 = src1->nb[3];
  5078. const int nb0 = dst->nb[0];
  5079. const int nb1 = dst->nb[1];
  5080. const int nb2 = dst->nb[2];
  5081. const int nb3 = dst->nb[3];
  5082. const int ith = params->ith;
  5083. const int nth = params->nth;
  5084. GGML_ASSERT(ne02 == ne12);
  5085. GGML_ASSERT(ne03 == ne13);
  5086. GGML_ASSERT(ne2 == ne12);
  5087. GGML_ASSERT(ne3 == ne13);
  5088. // TODO: we don't support permuted src0
  5089. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5090. // dst cannot be transposed or permuted
  5091. GGML_ASSERT(nb0 == sizeof(float));
  5092. GGML_ASSERT(nb0 <= nb1);
  5093. GGML_ASSERT(nb1 <= nb2);
  5094. GGML_ASSERT(nb2 <= nb3);
  5095. GGML_ASSERT(ne0 == ne01);
  5096. GGML_ASSERT(ne1 == ne11);
  5097. GGML_ASSERT(ne2 == ne02);
  5098. GGML_ASSERT(ne3 == ne03);
  5099. // nb01 >= nb00 - src0 is not transposed
  5100. // compute by src0 rows
  5101. //
  5102. // nb00 < nb01 - src0 is transposed
  5103. // compute by src0 columns
  5104. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5105. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5106. GGML_ASSERT(nb10 == sizeof(float));
  5107. if (params->ith != 0) {
  5108. return;
  5109. }
  5110. if (params->type == GGML_TASK_INIT) {
  5111. return;
  5112. }
  5113. if (params->type == GGML_TASK_FINALIZE) {
  5114. return;
  5115. }
  5116. float * const wdata = params->wdata;
  5117. for (int i03 = 0; i03 < ne03; i03++) {
  5118. for (int i02 = 0; i02 < ne02; i02++) {
  5119. {
  5120. int id = 0;
  5121. for (int i01 = 0; i01 < ne01; ++i01) {
  5122. //for (int i00 = 0; i00 < ne00; ++i00) {
  5123. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5124. //}
  5125. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5126. id += ne00;
  5127. }
  5128. }
  5129. const float * x = wdata;
  5130. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5131. // float * z = wdata + ne00*ne01;
  5132. // z = x * yT
  5133. //{
  5134. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5135. // ne01, ne11, ne00,
  5136. // 1.0f, x, ne00,
  5137. // y, ne00,
  5138. // 0.0f, z, ne11);
  5139. //}
  5140. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5141. // transpose z
  5142. //for (int j = 0; j < ne11; ++j) {
  5143. // for (int i = 0; i < ne01; ++i) {
  5144. // d[j*ne01 + i] = z[i*ne11 + j];
  5145. // }
  5146. //}
  5147. {
  5148. #if 1
  5149. // zT = y * xT
  5150. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5151. ne11, ne01, ne10,
  5152. 1.0f, y, ne00,
  5153. x, ne00,
  5154. 0.0f, d, ne01);
  5155. #else
  5156. // zT = (xT * y)T
  5157. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5158. ne01, ne11, ne10,
  5159. 1.0f, x, ne00,
  5160. y, ne00,
  5161. 0.0f, d, ne01);
  5162. #endif
  5163. }
  5164. }
  5165. }
  5166. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5167. return;
  5168. }
  5169. #endif
  5170. if (params->type == GGML_TASK_INIT) {
  5171. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5172. if (nb01 >= nb00) {
  5173. char * wdata = params->wdata;
  5174. for (int i13 = 0; i13 < ne13; ++i13) {
  5175. for (int i12 = 0; i12 < ne12; ++i12) {
  5176. for (int i11 = 0; i11 < ne11; ++i11) {
  5177. //for (int i10 = 0; i10 < ne10; ++i10) {
  5178. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5179. //}
  5180. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5181. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5182. }
  5183. }
  5184. }
  5185. return;
  5186. }
  5187. // TODO: fix this memset (wsize is overestimated)
  5188. memset(params->wdata, 0, params->wsize);
  5189. return;
  5190. }
  5191. if (params->type == GGML_TASK_FINALIZE) {
  5192. if (nb01 >= nb00) {
  5193. return;
  5194. }
  5195. float * const wdata = params->wdata;
  5196. // cols per thread
  5197. const int dc = (ne + nth - 1)/nth;
  5198. // col range for this thread
  5199. const int ic0 = dc*ith;
  5200. const int ic1 = MIN(ic0 + dc, ne);
  5201. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5202. for (int k = 1; k < nth; k++) {
  5203. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5204. }
  5205. return;
  5206. }
  5207. if (nb01 >= nb00) {
  5208. // TODO: do not support transposed src1
  5209. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5210. // total rows in src0
  5211. const int nr = ne01*ne02*ne03;
  5212. // rows per thread
  5213. const int dr = (nr + nth - 1)/nth;
  5214. // row range for this thread
  5215. const int ir0 = dr*ith;
  5216. const int ir1 = MIN(ir0 + dr, nr);
  5217. void * wdata = params->wdata;
  5218. for (int ir = ir0; ir < ir1; ++ir) {
  5219. // src0 indices
  5220. const int i03 = ir/(ne02*ne01);
  5221. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5222. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5223. const int i13 = i03;
  5224. const int i12 = i02;
  5225. const int i0 = i01;
  5226. const int i2 = i02;
  5227. const int i3 = i03;
  5228. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5229. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5230. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5231. assert(ne00 % 32 == 0);
  5232. for (int ic = 0; ic < ne11; ++ic) {
  5233. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5234. }
  5235. }
  5236. } else {
  5237. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5238. // parallelize by src1 columns using ggml_vec_mad_q4_0
  5239. // each thread has its own work data
  5240. // during FINALIZE we accumulate all work data into dst
  5241. // total columns in src1
  5242. const int nc = ne10;
  5243. // columns per thread
  5244. const int dc = (nc + nth - 1)/nth;
  5245. // column range for this thread
  5246. const int ic0 = dc*ith;
  5247. const int ic1 = MIN(ic0 + dc, nc);
  5248. // work data for thread
  5249. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5250. float * const wdata = params->wdata;
  5251. for (int i13 = 0; i13 < ne13; ++i13) {
  5252. for (int i12 = 0; i12 < ne12; ++i12) {
  5253. for (int i11 = 0; i11 < ne11; ++i11) {
  5254. // dst indices
  5255. const int i1 = i11;
  5256. const int i2 = i12;
  5257. const int i3 = i13;
  5258. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5259. for (int ic = ic0; ic < ic1; ++ic) {
  5260. // src1 indices
  5261. const int i10 = ic;
  5262. // src0 indices
  5263. const int i03 = i13;
  5264. const int i02 = i12;
  5265. const int i00 = ic;
  5266. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5267. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5268. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5269. ggml_vec_mad_q4_0(ne01, dst_row, src0_col, src1_val);
  5270. }
  5271. }
  5272. }
  5273. }
  5274. }
  5275. //int64_t t1 = ggml_time_us();
  5276. //static int64_t acc = 0;
  5277. //acc += t1 - t0;
  5278. //if (t1 - t0 > 10) {
  5279. // printf("\n");
  5280. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5281. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5282. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5283. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5284. //}
  5285. }
  5286. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5287. const struct ggml_compute_params * params,
  5288. const struct ggml_tensor * src0,
  5289. const struct ggml_tensor * src1,
  5290. struct ggml_tensor * dst) {
  5291. int64_t t0 = ggml_perf_time_us();
  5292. UNUSED(t0);
  5293. const int ne00 = src0->ne[0];
  5294. const int ne01 = src0->ne[1];
  5295. const int ne02 = src0->ne[2];
  5296. const int ne03 = src0->ne[3];
  5297. const int ne10 = src1->ne[0];
  5298. const int ne11 = src1->ne[1];
  5299. const int ne12 = src1->ne[2];
  5300. const int ne13 = src1->ne[3];
  5301. const int ne0 = dst->ne[0];
  5302. const int ne1 = dst->ne[1];
  5303. const int ne2 = dst->ne[2];
  5304. const int ne3 = dst->ne[3];
  5305. const int ne = ne0*ne1*ne2*ne3;
  5306. const int nb00 = src0->nb[0];
  5307. const int nb01 = src0->nb[1];
  5308. const int nb02 = src0->nb[2];
  5309. const int nb03 = src0->nb[3];
  5310. const int nb10 = src1->nb[0];
  5311. const int nb11 = src1->nb[1];
  5312. const int nb12 = src1->nb[2];
  5313. const int nb13 = src1->nb[3];
  5314. const int nb0 = dst->nb[0];
  5315. const int nb1 = dst->nb[1];
  5316. const int nb2 = dst->nb[2];
  5317. const int nb3 = dst->nb[3];
  5318. const int ith = params->ith;
  5319. const int nth = params->nth;
  5320. GGML_ASSERT(ne02 == ne12);
  5321. GGML_ASSERT(ne03 == ne13);
  5322. GGML_ASSERT(ne2 == ne12);
  5323. GGML_ASSERT(ne3 == ne13);
  5324. // TODO: we don't support permuted src0
  5325. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1] || nb01 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5326. // dst cannot be transposed or permuted
  5327. GGML_ASSERT(nb0 == sizeof(float));
  5328. GGML_ASSERT(nb0 <= nb1);
  5329. GGML_ASSERT(nb1 <= nb2);
  5330. GGML_ASSERT(nb2 <= nb3);
  5331. GGML_ASSERT(ne0 == ne01);
  5332. GGML_ASSERT(ne1 == ne11);
  5333. GGML_ASSERT(ne2 == ne02);
  5334. GGML_ASSERT(ne3 == ne03);
  5335. // nb01 >= nb00 - src0 is not transposed
  5336. // compute by src0 rows
  5337. //
  5338. // nb00 < nb01 - src0 is transposed
  5339. // compute by src0 columns
  5340. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5341. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5342. GGML_ASSERT(nb10 == sizeof(float));
  5343. if (params->ith != 0) {
  5344. return;
  5345. }
  5346. if (params->type == GGML_TASK_INIT) {
  5347. return;
  5348. }
  5349. if (params->type == GGML_TASK_FINALIZE) {
  5350. return;
  5351. }
  5352. float * const wdata = params->wdata;
  5353. for (int i03 = 0; i03 < ne03; i03++) {
  5354. for (int i02 = 0; i02 < ne02; i02++) {
  5355. {
  5356. int id = 0;
  5357. for (int i01 = 0; i01 < ne01; ++i01) {
  5358. //for (int i00 = 0; i00 < ne00; ++i00) {
  5359. // wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5360. //}
  5361. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5362. id += ne00;
  5363. }
  5364. }
  5365. const float * x = wdata;
  5366. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5367. // float * z = wdata + ne00*ne01;
  5368. // z = x * yT
  5369. //{
  5370. // cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5371. // ne01, ne11, ne00,
  5372. // 1.0f, x, ne00,
  5373. // y, ne00,
  5374. // 0.0f, z, ne11);
  5375. //}
  5376. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5377. // transpose z
  5378. //for (int j = 0; j < ne11; ++j) {
  5379. // for (int i = 0; i < ne01; ++i) {
  5380. // d[j*ne01 + i] = z[i*ne11 + j];
  5381. // }
  5382. //}
  5383. {
  5384. #if 1
  5385. // zT = y * xT
  5386. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5387. ne11, ne01, ne10,
  5388. 1.0f, y, ne00,
  5389. x, ne00,
  5390. 0.0f, d, ne01);
  5391. #else
  5392. // zT = (xT * y)T
  5393. cblas_sgemm(CblasColMajor, CblasTrans, CblasNoTrans,
  5394. ne01, ne11, ne10,
  5395. 1.0f, x, ne00,
  5396. y, ne00,
  5397. 0.0f, d, ne01);
  5398. #endif
  5399. }
  5400. }
  5401. }
  5402. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5403. return;
  5404. }
  5405. #endif
  5406. if (params->type == GGML_TASK_INIT) {
  5407. //printf("HHHHHHHHH ith = %d, nth = %d\n", ith, nth);
  5408. if (nb01 >= nb00) {
  5409. char * wdata = params->wdata;
  5410. for (int i13 = 0; i13 < ne13; ++i13) {
  5411. for (int i12 = 0; i12 < ne12; ++i12) {
  5412. for (int i11 = 0; i11 < ne11; ++i11) {
  5413. //for (int i10 = 0; i10 < ne10; ++i10) {
  5414. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5415. //}
  5416. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5417. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5418. }
  5419. }
  5420. }
  5421. return;
  5422. }
  5423. // TODO: fix this memset (wsize is overestimated)
  5424. memset(params->wdata, 0, params->wsize);
  5425. return;
  5426. }
  5427. if (params->type == GGML_TASK_FINALIZE) {
  5428. if (nb01 >= nb00) {
  5429. return;
  5430. }
  5431. float * const wdata = params->wdata;
  5432. // cols per thread
  5433. const int dc = (ne + nth - 1)/nth;
  5434. // col range for this thread
  5435. const int ic0 = dc*ith;
  5436. const int ic1 = MIN(ic0 + dc, ne);
  5437. ggml_vec_cpy_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + ic0);
  5438. for (int k = 1; k < nth; k++) {
  5439. ggml_vec_acc_f32(ic1 - ic0, (float *) dst->data + ic0, wdata + (ne + CACHE_LINE_SIZE_F32)*k + ic0);
  5440. }
  5441. return;
  5442. }
  5443. if (nb01 >= nb00) {
  5444. // TODO: do not support transposed src1
  5445. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5446. // total rows in src0
  5447. const int nr = ne01*ne02*ne03;
  5448. // rows per thread
  5449. const int dr = (nr + nth - 1)/nth;
  5450. // row range for this thread
  5451. const int ir0 = dr*ith;
  5452. const int ir1 = MIN(ir0 + dr, nr);
  5453. void * wdata = params->wdata;
  5454. for (int ir = ir0; ir < ir1; ++ir) {
  5455. // src0 indices
  5456. const int i03 = ir/(ne02*ne01);
  5457. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5458. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5459. const int i13 = i03;
  5460. const int i12 = i02;
  5461. const int i0 = i01;
  5462. const int i2 = i02;
  5463. const int i3 = i03;
  5464. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5465. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5466. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5467. assert(ne00 % 32 == 0);
  5468. for (int ic = 0; ic < ne11; ++ic) {
  5469. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5470. }
  5471. }
  5472. } else {
  5473. //printf("AAAAA ith = %d, nth = %d\n", ith, nth);
  5474. // parallelize by src1 columns using ggml_vec_mad_q4_1
  5475. // each thread has its own work data
  5476. // during FINALIZE we accumulate all work data into dst
  5477. // total columns in src1
  5478. const int nc = ne10;
  5479. // columns per thread
  5480. const int dc = (nc + nth - 1)/nth;
  5481. // column range for this thread
  5482. const int ic0 = dc*ith;
  5483. const int ic1 = MIN(ic0 + dc, nc);
  5484. // work data for thread
  5485. const int wo = (ne + CACHE_LINE_SIZE_F32)*ith;
  5486. float * const wdata = params->wdata;
  5487. for (int i13 = 0; i13 < ne13; ++i13) {
  5488. for (int i12 = 0; i12 < ne12; ++i12) {
  5489. for (int i11 = 0; i11 < ne11; ++i11) {
  5490. // dst indices
  5491. const int i1 = i11;
  5492. const int i2 = i12;
  5493. const int i3 = i13;
  5494. float * dst_row = wdata + wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0;
  5495. for (int ic = ic0; ic < ic1; ++ic) {
  5496. // src1 indices
  5497. const int i10 = ic;
  5498. // src0 indices
  5499. const int i03 = i13;
  5500. const int i02 = i12;
  5501. const int i00 = ic;
  5502. assert(sizeof(float)*(wo + i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + ne01) <= params->wsize);
  5503. void * src0_col = (void *) ((char *) src0->data + (i00*nb00 + i02*nb02 + i03*nb03));
  5504. float src1_val = *(float *) ((char *) src1->data + (i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  5505. ggml_vec_mad_q4_1(ne01, dst_row, src0_col, src1_val);
  5506. }
  5507. }
  5508. }
  5509. }
  5510. }
  5511. //int64_t t1 = ggml_time_us();
  5512. //static int64_t acc = 0;
  5513. //acc += t1 - t0;
  5514. //if (t1 - t0 > 10) {
  5515. // printf("\n");
  5516. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5517. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5518. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5519. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5520. //}
  5521. }
  5522. static void ggml_compute_forward_mul_mat(
  5523. const struct ggml_compute_params * params,
  5524. const struct ggml_tensor * src0,
  5525. const struct ggml_tensor * src1,
  5526. struct ggml_tensor * dst) {
  5527. switch (src0->type) {
  5528. case GGML_TYPE_Q4_0:
  5529. {
  5530. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5531. } break;
  5532. case GGML_TYPE_Q4_1:
  5533. {
  5534. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5535. } break;
  5536. case GGML_TYPE_F16:
  5537. {
  5538. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5539. } break;
  5540. case GGML_TYPE_F32:
  5541. {
  5542. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5543. } break;
  5544. case GGML_TYPE_I8:
  5545. case GGML_TYPE_I16:
  5546. case GGML_TYPE_I32:
  5547. case GGML_TYPE_COUNT:
  5548. {
  5549. GGML_ASSERT(false);
  5550. } break;
  5551. }
  5552. #if 0
  5553. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5554. static int first = 8;
  5555. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5556. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5557. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5558. if (first) {
  5559. --first;
  5560. } else {
  5561. for (int k = 0; k < dst->ne[1]; ++k) {
  5562. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5563. for (int i = 0; i < 16; ++i) {
  5564. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5565. }
  5566. printf("\n");
  5567. }
  5568. printf("\n");
  5569. }
  5570. printf("\n");
  5571. exit(0);
  5572. }
  5573. } else {
  5574. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5575. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5576. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5577. }
  5578. #endif
  5579. }
  5580. // ggml_compute_forward_scale
  5581. static void ggml_compute_forward_scale_f32(
  5582. const struct ggml_compute_params * params,
  5583. const struct ggml_tensor * src0,
  5584. const struct ggml_tensor * src1,
  5585. struct ggml_tensor * dst) {
  5586. GGML_ASSERT(ggml_is_contiguous(src0));
  5587. GGML_ASSERT(ggml_is_contiguous(dst));
  5588. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5589. GGML_ASSERT(ggml_is_scalar(src1));
  5590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5591. return;
  5592. }
  5593. // scale factor
  5594. const float v = *(float *) src1->data;
  5595. const int ith = params->ith;
  5596. const int nth = params->nth;
  5597. const int nc = src0->ne[0];
  5598. const int nr = ggml_nrows(src0);
  5599. // rows per thread
  5600. const int dr = (nr + nth - 1)/nth;
  5601. // row range for this thread
  5602. const int ir0 = dr*ith;
  5603. const int ir1 = MIN(ir0 + dr, nr);
  5604. for (int i1 = ir0; i1 < ir1; i1++) {
  5605. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5606. }
  5607. }
  5608. static void ggml_compute_forward_scale(
  5609. const struct ggml_compute_params * params,
  5610. const struct ggml_tensor * src0,
  5611. const struct ggml_tensor * src1,
  5612. struct ggml_tensor * dst) {
  5613. switch (src0->type) {
  5614. case GGML_TYPE_F32:
  5615. {
  5616. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5617. } break;
  5618. case GGML_TYPE_Q4_0:
  5619. case GGML_TYPE_Q4_1:
  5620. case GGML_TYPE_I8:
  5621. case GGML_TYPE_I16:
  5622. case GGML_TYPE_I32:
  5623. case GGML_TYPE_F16:
  5624. case GGML_TYPE_COUNT:
  5625. {
  5626. GGML_ASSERT(false);
  5627. } break;
  5628. }
  5629. }
  5630. // ggml_compute_forward_cpy
  5631. static void ggml_compute_forward_cpy(
  5632. const struct ggml_compute_params * params,
  5633. const struct ggml_tensor * src0,
  5634. struct ggml_tensor * dst) {
  5635. ggml_compute_forward_dup(params, src0, dst);
  5636. }
  5637. // ggml_compute_forward_reshape
  5638. static void ggml_compute_forward_reshape(
  5639. const struct ggml_compute_params * params,
  5640. const struct ggml_tensor * src0,
  5641. struct ggml_tensor * dst) {
  5642. // NOP
  5643. UNUSED(params);
  5644. UNUSED(src0);
  5645. UNUSED(dst);
  5646. }
  5647. // ggml_compute_forward_view
  5648. static void ggml_compute_forward_view(
  5649. const struct ggml_compute_params * params,
  5650. const struct ggml_tensor * src0) {
  5651. // NOP
  5652. UNUSED(params);
  5653. UNUSED(src0);
  5654. }
  5655. // ggml_compute_forward_permute
  5656. static void ggml_compute_forward_permute(
  5657. const struct ggml_compute_params * params,
  5658. const struct ggml_tensor * src0) {
  5659. // NOP
  5660. UNUSED(params);
  5661. UNUSED(src0);
  5662. }
  5663. // ggml_compute_forward_transpose
  5664. static void ggml_compute_forward_transpose(
  5665. const struct ggml_compute_params * params,
  5666. const struct ggml_tensor * src0) {
  5667. // NOP
  5668. UNUSED(params);
  5669. UNUSED(src0);
  5670. }
  5671. // ggml_compute_forward_get_rows
  5672. static void ggml_compute_forward_get_rows_q4_0(
  5673. const struct ggml_compute_params * params,
  5674. const struct ggml_tensor * src0,
  5675. const struct ggml_tensor * src1,
  5676. struct ggml_tensor * dst) {
  5677. assert(params->ith == 0);
  5678. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5679. return;
  5680. }
  5681. const int nc = src0->ne[0];
  5682. const int nr = ggml_nelements(src1);
  5683. assert( dst->ne[0] == nc);
  5684. assert( dst->ne[1] == nr);
  5685. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5686. for (int i = 0; i < nr; ++i) {
  5687. const int r = ((int32_t *) src1->data)[i];
  5688. dequantize_row_q4_0(
  5689. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5690. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5691. }
  5692. }
  5693. static void ggml_compute_forward_get_rows_q4_1(
  5694. const struct ggml_compute_params * params,
  5695. const struct ggml_tensor * src0,
  5696. const struct ggml_tensor * src1,
  5697. struct ggml_tensor * dst) {
  5698. assert(params->ith == 0);
  5699. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5700. return;
  5701. }
  5702. const int nc = src0->ne[0];
  5703. const int nr = ggml_nelements(src1);
  5704. assert( dst->ne[0] == nc);
  5705. assert( dst->ne[1] == nr);
  5706. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5707. for (int i = 0; i < nr; ++i) {
  5708. const int r = ((int32_t *) src1->data)[i];
  5709. dequantize_row_q4_1(
  5710. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5711. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5712. }
  5713. }
  5714. static void ggml_compute_forward_get_rows_f16(
  5715. const struct ggml_compute_params * params,
  5716. const struct ggml_tensor * src0,
  5717. const struct ggml_tensor * src1,
  5718. struct ggml_tensor * dst) {
  5719. assert(params->ith == 0);
  5720. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5721. return;
  5722. }
  5723. const int nc = src0->ne[0];
  5724. const int nr = ggml_nelements(src1);
  5725. assert( dst->ne[0] == nc);
  5726. assert( dst->ne[1] == nr);
  5727. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5728. for (int i = 0; i < nr; ++i) {
  5729. const int r = ((int32_t *) src1->data)[i];
  5730. for (int j = 0; j < nc; ++j) {
  5731. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5732. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5733. }
  5734. }
  5735. }
  5736. static void ggml_compute_forward_get_rows_f32(
  5737. const struct ggml_compute_params * params,
  5738. const struct ggml_tensor * src0,
  5739. const struct ggml_tensor * src1,
  5740. struct ggml_tensor * dst) {
  5741. assert(params->ith == 0);
  5742. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5743. return;
  5744. }
  5745. const int nc = src0->ne[0];
  5746. const int nr = ggml_nelements(src1);
  5747. assert( dst->ne[0] == nc);
  5748. assert( dst->ne[1] == nr);
  5749. assert(src0->nb[0] == sizeof(float));
  5750. for (int i = 0; i < nr; ++i) {
  5751. const int r = ((int32_t *) src1->data)[i];
  5752. ggml_vec_cpy_f32(nc,
  5753. (float *) ((char *) dst->data + i*dst->nb[1]),
  5754. (float *) ((char *) src0->data + r*src0->nb[1]));
  5755. }
  5756. }
  5757. static void ggml_compute_forward_get_rows(
  5758. const struct ggml_compute_params * params,
  5759. const struct ggml_tensor * src0,
  5760. const struct ggml_tensor * src1,
  5761. struct ggml_tensor * dst) {
  5762. switch (src0->type) {
  5763. case GGML_TYPE_Q4_0:
  5764. {
  5765. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5766. } break;
  5767. case GGML_TYPE_Q4_1:
  5768. {
  5769. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5770. } break;
  5771. case GGML_TYPE_F16:
  5772. {
  5773. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5774. } break;
  5775. case GGML_TYPE_F32:
  5776. {
  5777. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5778. } break;
  5779. case GGML_TYPE_I8:
  5780. case GGML_TYPE_I16:
  5781. case GGML_TYPE_I32:
  5782. case GGML_TYPE_COUNT:
  5783. {
  5784. GGML_ASSERT(false);
  5785. } break;
  5786. }
  5787. //static bool first = true;
  5788. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5789. //if (first) {
  5790. // first = false;
  5791. //} else {
  5792. // for (int k = 0; k < dst->ne[1]; ++k) {
  5793. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5794. // for (int i = 0; i < 16; ++i) {
  5795. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5796. // }
  5797. // printf("\n");
  5798. // }
  5799. // printf("\n");
  5800. // }
  5801. // printf("\n");
  5802. // exit(0);
  5803. //}
  5804. }
  5805. // ggml_compute_forward_diag_mask_inf
  5806. static void ggml_compute_forward_diag_mask_inf_f32(
  5807. const struct ggml_compute_params * params,
  5808. const struct ggml_tensor * src0,
  5809. const struct ggml_tensor * src1,
  5810. struct ggml_tensor * dst) {
  5811. assert(params->ith == 0);
  5812. assert(src1->type == GGML_TYPE_I32);
  5813. assert(ggml_nelements(src1) == 1);
  5814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5815. return;
  5816. }
  5817. const int n_past = ((int32_t *) src1->data)[0];
  5818. // TODO: handle transposed/permuted matrices
  5819. const int n = ggml_nrows(src0);
  5820. const int nc = src0->ne[0];
  5821. const int nr = src0->ne[1];
  5822. const int nz = n/nr;
  5823. assert( dst->nb[0] == sizeof(float));
  5824. assert(src0->nb[0] == sizeof(float));
  5825. for (int k = 0; k < nz; k++) {
  5826. for (int j = 0; j < nr; j++) {
  5827. for (int i = n_past; i < nc; i++) {
  5828. if (i > n_past + j) {
  5829. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5830. }
  5831. }
  5832. }
  5833. }
  5834. }
  5835. static void ggml_compute_forward_diag_mask_inf(
  5836. const struct ggml_compute_params * params,
  5837. const struct ggml_tensor * src0,
  5838. const struct ggml_tensor * src1,
  5839. struct ggml_tensor * dst) {
  5840. switch (src0->type) {
  5841. case GGML_TYPE_F32:
  5842. {
  5843. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5844. } break;
  5845. case GGML_TYPE_Q4_0:
  5846. case GGML_TYPE_Q4_1:
  5847. case GGML_TYPE_I8:
  5848. case GGML_TYPE_I16:
  5849. case GGML_TYPE_I32:
  5850. case GGML_TYPE_F16:
  5851. case GGML_TYPE_COUNT:
  5852. {
  5853. GGML_ASSERT(false);
  5854. } break;
  5855. }
  5856. }
  5857. // ggml_compute_forward_soft_max
  5858. static void ggml_compute_forward_soft_max_f32(
  5859. const struct ggml_compute_params * params,
  5860. const struct ggml_tensor * src0,
  5861. struct ggml_tensor * dst) {
  5862. GGML_ASSERT(ggml_is_contiguous(src0));
  5863. GGML_ASSERT(ggml_is_contiguous(dst));
  5864. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5865. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5866. return;
  5867. }
  5868. // TODO: handle transposed/permuted matrices
  5869. const int ith = params->ith;
  5870. const int nth = params->nth;
  5871. const int nc = src0->ne[0];
  5872. const int nr = ggml_nrows(src0);
  5873. // rows per thread
  5874. const int dr = (nr + nth - 1)/nth;
  5875. // row range for this thread
  5876. const int ir0 = dr*ith;
  5877. const int ir1 = MIN(ir0 + dr, nr);
  5878. for (int i1 = ir0; i1 < ir1; i1++) {
  5879. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5880. #ifndef NDEBUG
  5881. for (int i = 0; i < nc; ++i) {
  5882. //printf("p[%d] = %f\n", i, p[i]);
  5883. assert(!isnan(p[i]));
  5884. }
  5885. #endif
  5886. float max = -INFINITY;
  5887. ggml_vec_max_f32(nc, &max, p);
  5888. ggml_float sum = 0.0;
  5889. uint16_t scvt;
  5890. for (int i = 0; i < nc; i++) {
  5891. if (p[i] == -INFINITY) {
  5892. p[i] = 0.0f;
  5893. } else {
  5894. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5895. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5896. memcpy(&scvt, &s, sizeof(scvt));
  5897. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5898. sum += val;
  5899. p[i] = val;
  5900. }
  5901. }
  5902. assert(sum > 0.0f);
  5903. sum = 1.0/sum;
  5904. ggml_vec_scale_f32(nc, p, sum);
  5905. #ifndef NDEBUG
  5906. for (int i = 0; i < nc; ++i) {
  5907. assert(!isnan(p[i]));
  5908. assert(!isinf(p[i]));
  5909. }
  5910. #endif
  5911. }
  5912. }
  5913. static void ggml_compute_forward_soft_max(
  5914. const struct ggml_compute_params * params,
  5915. const struct ggml_tensor * src0,
  5916. struct ggml_tensor * dst) {
  5917. switch (src0->type) {
  5918. case GGML_TYPE_F32:
  5919. {
  5920. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5921. } break;
  5922. case GGML_TYPE_Q4_0:
  5923. case GGML_TYPE_Q4_1:
  5924. case GGML_TYPE_I8:
  5925. case GGML_TYPE_I16:
  5926. case GGML_TYPE_I32:
  5927. case GGML_TYPE_F16:
  5928. case GGML_TYPE_COUNT:
  5929. {
  5930. GGML_ASSERT(false);
  5931. } break;
  5932. }
  5933. }
  5934. // ggml_compute_forward_rope
  5935. static void ggml_compute_forward_rope_f32(
  5936. const struct ggml_compute_params * params,
  5937. const struct ggml_tensor * src0,
  5938. const struct ggml_tensor * src1,
  5939. struct ggml_tensor * dst) {
  5940. assert(params->ith == 0);
  5941. assert(src1->type == GGML_TYPE_I32);
  5942. assert(ggml_nelements(src1) == 3);
  5943. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5944. return;
  5945. }
  5946. const int n_past = ((int32_t *) src1->data)[0];
  5947. const int n_dims = ((int32_t *) src1->data)[1];
  5948. const int mode = ((int32_t *) src1->data)[2];
  5949. //const int ne0 = src0->ne[0];
  5950. const int ne1 = src0->ne[1];
  5951. const int ne2 = src0->ne[2];
  5952. const int ne3 = src0->ne[3];
  5953. const int nb0 = src0->nb[0];
  5954. const int nb1 = src0->nb[1];
  5955. const int nb2 = src0->nb[2];
  5956. const int nb3 = src0->nb[3];
  5957. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5958. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5959. assert(nb0 == sizeof(float));
  5960. // TODO: optimize
  5961. for (int i3 = 0; i3 < ne3; i3++) {
  5962. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5963. const int p = (mode == 0 ? n_past + i2 : i2);
  5964. for (int i1 = 0; i1 < ne1; i1++) {
  5965. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5966. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5967. const double cos_theta = cos(p*theta);
  5968. const double sin_theta = sin(p*theta);
  5969. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5970. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5971. double x0 = src[0];
  5972. double x1 = src[1];
  5973. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5974. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5975. }
  5976. }
  5977. }
  5978. }
  5979. }
  5980. static void ggml_compute_forward_rope_f16(
  5981. const struct ggml_compute_params * params,
  5982. const struct ggml_tensor * src0,
  5983. const struct ggml_tensor * src1,
  5984. struct ggml_tensor * dst) {
  5985. assert(params->ith == 0);
  5986. assert(src1->type == GGML_TYPE_I32);
  5987. assert(ggml_nelements(src1) == 3);
  5988. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5989. return;
  5990. }
  5991. const int n_past = ((int32_t *) src1->data)[0];
  5992. const int n_dims = ((int32_t *) src1->data)[1];
  5993. const int mode = ((int32_t *) src1->data)[2];
  5994. //const int ne0 = src0->ne[0];
  5995. const int ne1 = src0->ne[1];
  5996. const int ne2 = src0->ne[2];
  5997. const int ne3 = src0->ne[3];
  5998. const int nb0 = src0->nb[0];
  5999. const int nb1 = src0->nb[1];
  6000. const int nb2 = src0->nb[2];
  6001. const int nb3 = src0->nb[3];
  6002. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6003. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6004. assert(nb0 == sizeof(ggml_fp16_t));
  6005. for (int i3 = 0; i3 < ne3; i3++) {
  6006. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6007. const int p = (mode == 0 ? n_past + i2 : i2);
  6008. for (int i1 = 0; i1 < ne1; i1++) {
  6009. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6010. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  6011. const double cos_theta = cos(p*theta);
  6012. const double sin_theta = sin(p*theta);
  6013. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6014. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6015. double x0 = ggml_fp16_to_fp32(src[0]);
  6016. double x1 = ggml_fp16_to_fp32(src[1]);
  6017. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6018. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6019. }
  6020. }
  6021. }
  6022. }
  6023. }
  6024. static void ggml_compute_forward_rope(
  6025. const struct ggml_compute_params * params,
  6026. const struct ggml_tensor * src0,
  6027. const struct ggml_tensor * src1,
  6028. struct ggml_tensor * dst) {
  6029. switch (src0->type) {
  6030. case GGML_TYPE_F16:
  6031. {
  6032. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6033. } break;
  6034. case GGML_TYPE_F32:
  6035. {
  6036. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6037. } break;
  6038. case GGML_TYPE_Q4_0:
  6039. case GGML_TYPE_Q4_1:
  6040. case GGML_TYPE_I8:
  6041. case GGML_TYPE_I16:
  6042. case GGML_TYPE_I32:
  6043. case GGML_TYPE_COUNT:
  6044. {
  6045. GGML_ASSERT(false);
  6046. } break;
  6047. }
  6048. }
  6049. // ggml_compute_forward_conv_1d_1s
  6050. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6051. const struct ggml_compute_params * params,
  6052. const struct ggml_tensor * src0,
  6053. const struct ggml_tensor * src1,
  6054. struct ggml_tensor * dst) {
  6055. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6056. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6057. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6058. int64_t t0 = ggml_perf_time_us();
  6059. UNUSED(t0);
  6060. const int ne00 = src0->ne[0];
  6061. const int ne01 = src0->ne[1];
  6062. const int ne02 = src0->ne[2];
  6063. //const int ne03 = src0->ne[3];
  6064. const int ne10 = src1->ne[0];
  6065. const int ne11 = src1->ne[1];
  6066. //const int ne12 = src1->ne[2];
  6067. //const int ne13 = src1->ne[3];
  6068. //const int ne0 = dst->ne[0];
  6069. //const int ne1 = dst->ne[1];
  6070. //const int ne2 = dst->ne[2];
  6071. //const int ne3 = dst->ne[3];
  6072. //const int ne = ne0*ne1*ne2*ne3;
  6073. const int nb00 = src0->nb[0];
  6074. const int nb01 = src0->nb[1];
  6075. const int nb02 = src0->nb[2];
  6076. //const int nb03 = src0->nb[3];
  6077. const int nb10 = src1->nb[0];
  6078. const int nb11 = src1->nb[1];
  6079. //const int nb12 = src1->nb[2];
  6080. //const int nb13 = src1->nb[3];
  6081. //const int nb0 = dst->nb[0];
  6082. const int nb1 = dst->nb[1];
  6083. //const int nb2 = dst->nb[2];
  6084. //const int nb3 = dst->nb[3];
  6085. const int ith = params->ith;
  6086. const int nth = params->nth;
  6087. const int nk = ne00;
  6088. const int nh = nk/2;
  6089. const int ew0 = ggml_up32(ne01);
  6090. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6091. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6092. GGML_ASSERT(nb10 == sizeof(float));
  6093. if (params->type == GGML_TASK_INIT) {
  6094. // TODO: fix this memset (wsize is overestimated)
  6095. memset(params->wdata, 0, params->wsize);
  6096. // prepare kernel data (src0)
  6097. {
  6098. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6099. for (int i02 = 0; i02 < ne02; i02++) {
  6100. for (int i01 = 0; i01 < ne01; i01++) {
  6101. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6102. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6103. for (int i00 = 0; i00 < ne00; i00++) {
  6104. dst_data[i00*ew0 + i01] = src[i00];
  6105. }
  6106. }
  6107. }
  6108. }
  6109. // prepare source data (src1)
  6110. {
  6111. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6112. for (int i11 = 0; i11 < ne11; i11++) {
  6113. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6114. ggml_fp16_t * dst_data = wdata;
  6115. for (int i10 = 0; i10 < ne10; i10++) {
  6116. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6117. }
  6118. }
  6119. }
  6120. return;
  6121. }
  6122. if (params->type == GGML_TASK_FINALIZE) {
  6123. return;
  6124. }
  6125. // total rows in dst
  6126. const int nr = ne02;
  6127. // rows per thread
  6128. const int dr = (nr + nth - 1)/nth;
  6129. // row range for this thread
  6130. const int ir0 = dr*ith;
  6131. const int ir1 = MIN(ir0 + dr, nr);
  6132. for (int i1 = ir0; i1 < ir1; i1++) {
  6133. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6134. for (int i0 = 0; i0 < ne10; ++i0) {
  6135. dst_data[i0] = 0;
  6136. for (int k = -nh; k <= nh; k++) {
  6137. float v = 0.0f;
  6138. ggml_vec_dot_f16(ew0, &v,
  6139. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6140. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6141. dst_data[i0] += v;
  6142. }
  6143. }
  6144. }
  6145. }
  6146. static void ggml_compute_forward_conv_1d_1s_f32(
  6147. const struct ggml_compute_params * params,
  6148. const struct ggml_tensor * src0,
  6149. const struct ggml_tensor * src1,
  6150. struct ggml_tensor * dst) {
  6151. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6152. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6153. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6154. int64_t t0 = ggml_perf_time_us();
  6155. UNUSED(t0);
  6156. const int ne00 = src0->ne[0];
  6157. const int ne01 = src0->ne[1];
  6158. const int ne02 = src0->ne[2];
  6159. //const int ne03 = src0->ne[3];
  6160. const int ne10 = src1->ne[0];
  6161. const int ne11 = src1->ne[1];
  6162. //const int ne12 = src1->ne[2];
  6163. //const int ne13 = src1->ne[3];
  6164. //const int ne0 = dst->ne[0];
  6165. //const int ne1 = dst->ne[1];
  6166. //const int ne2 = dst->ne[2];
  6167. //const int ne3 = dst->ne[3];
  6168. //const int ne = ne0*ne1*ne2*ne3;
  6169. const int nb00 = src0->nb[0];
  6170. const int nb01 = src0->nb[1];
  6171. const int nb02 = src0->nb[2];
  6172. //const int nb03 = src0->nb[3];
  6173. const int nb10 = src1->nb[0];
  6174. const int nb11 = src1->nb[1];
  6175. //const int nb12 = src1->nb[2];
  6176. //const int nb13 = src1->nb[3];
  6177. //const int nb0 = dst->nb[0];
  6178. const int nb1 = dst->nb[1];
  6179. //const int nb2 = dst->nb[2];
  6180. //const int nb3 = dst->nb[3];
  6181. const int ith = params->ith;
  6182. const int nth = params->nth;
  6183. const int nk = ne00;
  6184. const int nh = nk/2;
  6185. const int ew0 = ggml_up32(ne01);
  6186. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6187. GGML_ASSERT(nb00 == sizeof(float));
  6188. GGML_ASSERT(nb10 == sizeof(float));
  6189. if (params->type == GGML_TASK_INIT) {
  6190. // TODO: fix this memset (wsize is overestimated)
  6191. memset(params->wdata, 0, params->wsize);
  6192. // prepare kernel data (src0)
  6193. {
  6194. float * const wdata = (float *) params->wdata + 0;
  6195. for (int i02 = 0; i02 < ne02; i02++) {
  6196. for (int i01 = 0; i01 < ne01; i01++) {
  6197. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6198. float * dst_data = wdata + i02*ew0*ne00;
  6199. for (int i00 = 0; i00 < ne00; i00++) {
  6200. dst_data[i00*ew0 + i01] = src[i00];
  6201. }
  6202. }
  6203. }
  6204. }
  6205. // prepare source data (src1)
  6206. {
  6207. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6208. for (int i11 = 0; i11 < ne11; i11++) {
  6209. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6210. float * dst_data = wdata;
  6211. for (int i10 = 0; i10 < ne10; i10++) {
  6212. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6213. }
  6214. }
  6215. }
  6216. return;
  6217. }
  6218. if (params->type == GGML_TASK_FINALIZE) {
  6219. return;
  6220. }
  6221. // total rows in dst
  6222. const int nr = ne02;
  6223. // rows per thread
  6224. const int dr = (nr + nth - 1)/nth;
  6225. // row range for this thread
  6226. const int ir0 = dr*ith;
  6227. const int ir1 = MIN(ir0 + dr, nr);
  6228. for (int i1 = ir0; i1 < ir1; i1++) {
  6229. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6230. for (int i0 = 0; i0 < ne10; ++i0) {
  6231. dst_data[i0] = 0;
  6232. for (int k = -nh; k <= nh; k++) {
  6233. float v = 0.0f;
  6234. ggml_vec_dot_f32(ew0, &v,
  6235. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6236. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6237. dst_data[i0] += v;
  6238. }
  6239. }
  6240. }
  6241. }
  6242. static void ggml_compute_forward_conv_1d_1s(
  6243. const struct ggml_compute_params * params,
  6244. const struct ggml_tensor * src0,
  6245. const struct ggml_tensor * src1,
  6246. struct ggml_tensor * dst) {
  6247. switch (src0->type) {
  6248. case GGML_TYPE_F16:
  6249. {
  6250. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6251. } break;
  6252. case GGML_TYPE_F32:
  6253. {
  6254. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6255. } break;
  6256. case GGML_TYPE_Q4_0:
  6257. case GGML_TYPE_Q4_1:
  6258. case GGML_TYPE_I8:
  6259. case GGML_TYPE_I16:
  6260. case GGML_TYPE_I32:
  6261. case GGML_TYPE_COUNT:
  6262. {
  6263. GGML_ASSERT(false);
  6264. } break;
  6265. }
  6266. }
  6267. // ggml_compute_forward_conv_1d_2s
  6268. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6269. const struct ggml_compute_params * params,
  6270. const struct ggml_tensor * src0,
  6271. const struct ggml_tensor * src1,
  6272. struct ggml_tensor * dst) {
  6273. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6274. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6275. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6276. int64_t t0 = ggml_perf_time_us();
  6277. UNUSED(t0);
  6278. const int ne00 = src0->ne[0];
  6279. const int ne01 = src0->ne[1];
  6280. const int ne02 = src0->ne[2];
  6281. //const int ne03 = src0->ne[3];
  6282. const int ne10 = src1->ne[0];
  6283. const int ne11 = src1->ne[1];
  6284. //const int ne12 = src1->ne[2];
  6285. //const int ne13 = src1->ne[3];
  6286. //const int ne0 = dst->ne[0];
  6287. //const int ne1 = dst->ne[1];
  6288. //const int ne2 = dst->ne[2];
  6289. //const int ne3 = dst->ne[3];
  6290. //const int ne = ne0*ne1*ne2*ne3;
  6291. const int nb00 = src0->nb[0];
  6292. const int nb01 = src0->nb[1];
  6293. const int nb02 = src0->nb[2];
  6294. //const int nb03 = src0->nb[3];
  6295. const int nb10 = src1->nb[0];
  6296. const int nb11 = src1->nb[1];
  6297. //const int nb12 = src1->nb[2];
  6298. //const int nb13 = src1->nb[3];
  6299. //const int nb0 = dst->nb[0];
  6300. const int nb1 = dst->nb[1];
  6301. //const int nb2 = dst->nb[2];
  6302. //const int nb3 = dst->nb[3];
  6303. const int ith = params->ith;
  6304. const int nth = params->nth;
  6305. const int nk = ne00;
  6306. const int nh = nk/2;
  6307. const int ew0 = ggml_up32(ne01);
  6308. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6309. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6310. GGML_ASSERT(nb10 == sizeof(float));
  6311. if (params->type == GGML_TASK_INIT) {
  6312. // TODO: fix this memset (wsize is overestimated)
  6313. memset(params->wdata, 0, params->wsize);
  6314. // prepare kernel data (src0)
  6315. {
  6316. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6317. for (int i02 = 0; i02 < ne02; i02++) {
  6318. for (int i01 = 0; i01 < ne01; i01++) {
  6319. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6320. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6321. for (int i00 = 0; i00 < ne00; i00++) {
  6322. dst_data[i00*ew0 + i01] = src[i00];
  6323. }
  6324. }
  6325. }
  6326. }
  6327. // prepare source data (src1)
  6328. {
  6329. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6330. for (int i11 = 0; i11 < ne11; i11++) {
  6331. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6332. ggml_fp16_t * dst_data = wdata;
  6333. for (int i10 = 0; i10 < ne10; i10++) {
  6334. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6335. }
  6336. }
  6337. }
  6338. return;
  6339. }
  6340. if (params->type == GGML_TASK_FINALIZE) {
  6341. return;
  6342. }
  6343. // total rows in dst
  6344. const int nr = ne02;
  6345. // rows per thread
  6346. const int dr = (nr + nth - 1)/nth;
  6347. // row range for this thread
  6348. const int ir0 = dr*ith;
  6349. const int ir1 = MIN(ir0 + dr, nr);
  6350. for (int i1 = ir0; i1 < ir1; i1++) {
  6351. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6352. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6353. dst_data[i0/2] = 0;
  6354. for (int k = -nh; k <= nh; k++) {
  6355. float v = 0.0f;
  6356. ggml_vec_dot_f16(ew0, &v,
  6357. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6358. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6359. dst_data[i0/2] += v;
  6360. }
  6361. }
  6362. }
  6363. }
  6364. static void ggml_compute_forward_conv_1d_2s_f32(
  6365. const struct ggml_compute_params * params,
  6366. const struct ggml_tensor * src0,
  6367. const struct ggml_tensor * src1,
  6368. struct ggml_tensor * dst) {
  6369. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6370. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6371. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6372. int64_t t0 = ggml_perf_time_us();
  6373. UNUSED(t0);
  6374. const int ne00 = src0->ne[0];
  6375. const int ne01 = src0->ne[1];
  6376. const int ne02 = src0->ne[2];
  6377. //const int ne03 = src0->ne[3];
  6378. const int ne10 = src1->ne[0];
  6379. const int ne11 = src1->ne[1];
  6380. //const int ne12 = src1->ne[2];
  6381. //const int ne13 = src1->ne[3];
  6382. //const int ne0 = dst->ne[0];
  6383. //const int ne1 = dst->ne[1];
  6384. //const int ne2 = dst->ne[2];
  6385. //const int ne3 = dst->ne[3];
  6386. //const int ne = ne0*ne1*ne2*ne3;
  6387. const int nb00 = src0->nb[0];
  6388. const int nb01 = src0->nb[1];
  6389. const int nb02 = src0->nb[2];
  6390. //const int nb03 = src0->nb[3];
  6391. const int nb10 = src1->nb[0];
  6392. const int nb11 = src1->nb[1];
  6393. //const int nb12 = src1->nb[2];
  6394. //const int nb13 = src1->nb[3];
  6395. //const int nb0 = dst->nb[0];
  6396. const int nb1 = dst->nb[1];
  6397. //const int nb2 = dst->nb[2];
  6398. //const int nb3 = dst->nb[3];
  6399. const int ith = params->ith;
  6400. const int nth = params->nth;
  6401. const int nk = ne00;
  6402. const int nh = nk/2;
  6403. const int ew0 = ggml_up32(ne01);
  6404. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6405. GGML_ASSERT(nb00 == sizeof(float));
  6406. GGML_ASSERT(nb10 == sizeof(float));
  6407. if (params->type == GGML_TASK_INIT) {
  6408. // TODO: fix this memset (wsize is overestimated)
  6409. memset(params->wdata, 0, params->wsize);
  6410. // prepare kernel data (src0)
  6411. {
  6412. float * const wdata = (float *) params->wdata + 0;
  6413. for (int i02 = 0; i02 < ne02; i02++) {
  6414. for (int i01 = 0; i01 < ne01; i01++) {
  6415. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6416. float * dst_data = wdata + i02*ew0*ne00;
  6417. for (int i00 = 0; i00 < ne00; i00++) {
  6418. dst_data[i00*ew0 + i01] = src[i00];
  6419. }
  6420. }
  6421. }
  6422. }
  6423. // prepare source data (src1)
  6424. {
  6425. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6426. for (int i11 = 0; i11 < ne11; i11++) {
  6427. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6428. float * dst_data = wdata;
  6429. for (int i10 = 0; i10 < ne10; i10++) {
  6430. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6431. }
  6432. }
  6433. }
  6434. return;
  6435. }
  6436. if (params->type == GGML_TASK_FINALIZE) {
  6437. return;
  6438. }
  6439. // total rows in dst
  6440. const int nr = ne02;
  6441. // rows per thread
  6442. const int dr = (nr + nth - 1)/nth;
  6443. // row range for this thread
  6444. const int ir0 = dr*ith;
  6445. const int ir1 = MIN(ir0 + dr, nr);
  6446. for (int i1 = ir0; i1 < ir1; i1++) {
  6447. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6448. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6449. dst_data[i0/2] = 0;
  6450. for (int k = -nh; k <= nh; k++) {
  6451. float v = 0.0f;
  6452. ggml_vec_dot_f32(ew0, &v,
  6453. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6454. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6455. dst_data[i0/2] += v;
  6456. }
  6457. }
  6458. }
  6459. }
  6460. static void ggml_compute_forward_conv_1d_2s(
  6461. const struct ggml_compute_params * params,
  6462. const struct ggml_tensor * src0,
  6463. const struct ggml_tensor * src1,
  6464. struct ggml_tensor * dst) {
  6465. switch (src0->type) {
  6466. case GGML_TYPE_F16:
  6467. {
  6468. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6469. } break;
  6470. case GGML_TYPE_F32:
  6471. {
  6472. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6473. } break;
  6474. case GGML_TYPE_Q4_0:
  6475. case GGML_TYPE_Q4_1:
  6476. case GGML_TYPE_I8:
  6477. case GGML_TYPE_I16:
  6478. case GGML_TYPE_I32:
  6479. case GGML_TYPE_COUNT:
  6480. {
  6481. GGML_ASSERT(false);
  6482. } break;
  6483. }
  6484. }
  6485. // ggml_compute_forward_flash_attn
  6486. static void ggml_compute_forward_flash_attn_f32(
  6487. const struct ggml_compute_params * params,
  6488. const struct ggml_tensor * q,
  6489. const struct ggml_tensor * k,
  6490. const struct ggml_tensor * v,
  6491. const bool masked,
  6492. struct ggml_tensor * dst) {
  6493. int64_t t0 = ggml_perf_time_us();
  6494. UNUSED(t0);
  6495. const int neq0 = q->ne[0];
  6496. const int neq1 = q->ne[1];
  6497. const int neq2 = q->ne[2];
  6498. const int neq3 = q->ne[3];
  6499. const int nek0 = k->ne[0];
  6500. const int nek1 = k->ne[1];
  6501. //const int nek2 = k->ne[2];
  6502. //const int nek3 = k->ne[3];
  6503. //const int nev0 = v->ne[0];
  6504. const int nev1 = v->ne[1];
  6505. //const int nev2 = v->ne[2];
  6506. //const int nev3 = v->ne[3];
  6507. const int ne0 = dst->ne[0];
  6508. const int ne1 = dst->ne[1];
  6509. //const int ne2 = dst->ne[2];
  6510. //const int ne3 = dst->ne[3];
  6511. const int nbk0 = k->nb[0];
  6512. const int nbk1 = k->nb[1];
  6513. const int nbk2 = k->nb[2];
  6514. const int nbk3 = k->nb[3];
  6515. const int nbq0 = q->nb[0];
  6516. const int nbq1 = q->nb[1];
  6517. const int nbq2 = q->nb[2];
  6518. const int nbq3 = q->nb[3];
  6519. const int nbv0 = v->nb[0];
  6520. const int nbv1 = v->nb[1];
  6521. const int nbv2 = v->nb[2];
  6522. const int nbv3 = v->nb[3];
  6523. const int nb0 = dst->nb[0];
  6524. const int nb1 = dst->nb[1];
  6525. const int nb2 = dst->nb[2];
  6526. const int nb3 = dst->nb[3];
  6527. const int ith = params->ith;
  6528. const int nth = params->nth;
  6529. const int D = neq0;
  6530. const int N = neq1;
  6531. const int P = nek1 - N;
  6532. const int M = P + N;
  6533. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6534. GGML_ASSERT(ne0 == D);
  6535. GGML_ASSERT(ne1 == N);
  6536. GGML_ASSERT(P >= 0);
  6537. GGML_ASSERT(nbq0 == sizeof(float));
  6538. GGML_ASSERT(nbk0 == sizeof(float));
  6539. GGML_ASSERT(nbv0 == sizeof(float));
  6540. GGML_ASSERT(neq0 == D);
  6541. GGML_ASSERT(nek0 == D);
  6542. GGML_ASSERT(nev1 == D);
  6543. GGML_ASSERT(neq1 == N);
  6544. GGML_ASSERT(nek1 == N + P);
  6545. GGML_ASSERT(nev1 == D);
  6546. // dst cannot be transposed or permuted
  6547. GGML_ASSERT(nb0 == sizeof(float));
  6548. GGML_ASSERT(nb0 <= nb1);
  6549. GGML_ASSERT(nb1 <= nb2);
  6550. GGML_ASSERT(nb2 <= nb3);
  6551. if (params->type == GGML_TASK_INIT) {
  6552. return;
  6553. }
  6554. if (params->type == GGML_TASK_FINALIZE) {
  6555. return;
  6556. }
  6557. // parallelize by q rows using ggml_vec_dot_f32
  6558. // total rows in q
  6559. const int nr = neq1*neq2*neq3;
  6560. // rows per thread
  6561. const int dr = (nr + nth - 1)/nth;
  6562. // row range for this thread
  6563. const int ir0 = dr*ith;
  6564. const int ir1 = MIN(ir0 + dr, nr);
  6565. const float scale = 1.0/sqrt((double) D);
  6566. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6567. for (int ir = ir0; ir < ir1; ++ir) {
  6568. // q indices
  6569. const int iq3 = ir/(neq2*neq1);
  6570. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6571. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6572. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6573. for (int i = M; i < Mup; ++i) {
  6574. S[i] = -INFINITY;
  6575. }
  6576. for (int ic = 0; ic < nek1; ++ic) {
  6577. // k indices
  6578. const int ik3 = iq3;
  6579. const int ik2 = iq2;
  6580. const int ik1 = ic;
  6581. // S indices
  6582. const int i1 = ik1;
  6583. ggml_vec_dot_f32(neq0,
  6584. S + i1,
  6585. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6586. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6587. }
  6588. // scale
  6589. ggml_vec_scale_f32(nek1, S, scale);
  6590. if (masked) {
  6591. for (int i = P; i < M; i++) {
  6592. if (i > P + iq1) {
  6593. S[i] = -INFINITY;
  6594. }
  6595. }
  6596. }
  6597. // softmax
  6598. {
  6599. float max = -INFINITY;
  6600. ggml_vec_max_f32(M, &max, S);
  6601. float sum = 0.0f;
  6602. {
  6603. #ifdef GGML_SOFT_MAX_ACCELERATE
  6604. max = -max;
  6605. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6606. vvexpf(S, S, &Mup);
  6607. ggml_vec_sum_f32(Mup, &sum, S);
  6608. #else
  6609. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6610. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6611. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6612. float * SS = S + i;
  6613. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6614. if (SS[j] == -INFINITY) {
  6615. SS[j] = 0.0f;
  6616. } else {
  6617. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6618. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6619. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6620. sump[j] += val;
  6621. SS[j] = val;
  6622. }
  6623. }
  6624. }
  6625. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6626. sum += sump[i];
  6627. }
  6628. #endif
  6629. }
  6630. assert(sum > 0.0f);
  6631. sum = 1.0/sum;
  6632. ggml_vec_scale_f32(M, S, sum);
  6633. #ifndef NDEBUG
  6634. for (int i = 0; i < M; ++i) {
  6635. assert(!isnan(S[i]));
  6636. assert(!isinf(S[i]));
  6637. }
  6638. #endif
  6639. }
  6640. for (int ic = 0; ic < nev1; ++ic) {
  6641. // dst indices
  6642. const int i1 = iq1;
  6643. const int i2 = iq2;
  6644. const int i3 = iq3;
  6645. ggml_vec_dot_f32(nek1,
  6646. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6647. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6648. S);
  6649. }
  6650. }
  6651. }
  6652. static void ggml_compute_forward_flash_attn_f16(
  6653. const struct ggml_compute_params * params,
  6654. const struct ggml_tensor * q,
  6655. const struct ggml_tensor * k,
  6656. const struct ggml_tensor * v,
  6657. const bool masked,
  6658. struct ggml_tensor * dst) {
  6659. int64_t t0 = ggml_perf_time_us();
  6660. UNUSED(t0);
  6661. const int neq0 = q->ne[0];
  6662. const int neq1 = q->ne[1];
  6663. const int neq2 = q->ne[2];
  6664. const int neq3 = q->ne[3];
  6665. const int nek0 = k->ne[0];
  6666. const int nek1 = k->ne[1];
  6667. //const int nek2 = k->ne[2];
  6668. //const int nek3 = k->ne[3];
  6669. //const int nev0 = v->ne[0];
  6670. const int nev1 = v->ne[1];
  6671. //const int nev2 = v->ne[2];
  6672. //const int nev3 = v->ne[3];
  6673. const int ne0 = dst->ne[0];
  6674. const int ne1 = dst->ne[1];
  6675. //const int ne2 = dst->ne[2];
  6676. //const int ne3 = dst->ne[3];
  6677. const int nbk0 = k->nb[0];
  6678. const int nbk1 = k->nb[1];
  6679. const int nbk2 = k->nb[2];
  6680. const int nbk3 = k->nb[3];
  6681. const int nbq0 = q->nb[0];
  6682. const int nbq1 = q->nb[1];
  6683. const int nbq2 = q->nb[2];
  6684. const int nbq3 = q->nb[3];
  6685. const int nbv0 = v->nb[0];
  6686. const int nbv1 = v->nb[1];
  6687. const int nbv2 = v->nb[2];
  6688. const int nbv3 = v->nb[3];
  6689. const int nb0 = dst->nb[0];
  6690. const int nb1 = dst->nb[1];
  6691. const int nb2 = dst->nb[2];
  6692. const int nb3 = dst->nb[3];
  6693. const int ith = params->ith;
  6694. const int nth = params->nth;
  6695. const int D = neq0;
  6696. const int N = neq1;
  6697. const int P = nek1 - N;
  6698. const int M = P + N;
  6699. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6700. GGML_ASSERT(ne0 == D);
  6701. GGML_ASSERT(ne1 == N);
  6702. GGML_ASSERT(P >= 0);
  6703. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6704. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6705. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6706. GGML_ASSERT(neq0 == D);
  6707. GGML_ASSERT(nek0 == D);
  6708. GGML_ASSERT(nev1 == D);
  6709. GGML_ASSERT(neq1 == N);
  6710. GGML_ASSERT(nek1 == N + P);
  6711. GGML_ASSERT(nev1 == D);
  6712. // dst cannot be transposed or permuted
  6713. GGML_ASSERT(nb0 == sizeof(float));
  6714. GGML_ASSERT(nb0 <= nb1);
  6715. GGML_ASSERT(nb1 <= nb2);
  6716. GGML_ASSERT(nb2 <= nb3);
  6717. if (params->type == GGML_TASK_INIT) {
  6718. return;
  6719. }
  6720. if (params->type == GGML_TASK_FINALIZE) {
  6721. return;
  6722. }
  6723. // parallelize by q rows using ggml_vec_dot_f32
  6724. // total rows in q
  6725. const int nr = neq1*neq2*neq3;
  6726. // rows per thread
  6727. const int dr = (nr + nth - 1)/nth;
  6728. // row range for this thread
  6729. const int ir0 = dr*ith;
  6730. const int ir1 = MIN(ir0 + dr, nr);
  6731. const float scale = 1.0/sqrt((double) D);
  6732. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6733. for (int ir = ir0; ir < ir1; ++ir) {
  6734. // q indices
  6735. const int iq3 = ir/(neq2*neq1);
  6736. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6737. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6738. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6739. for (int i = M; i < Mup; ++i) {
  6740. S[i] = -INFINITY;
  6741. }
  6742. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6743. for (int ic = 0; ic < nek1; ++ic) {
  6744. // k indices
  6745. const int ik3 = iq3;
  6746. const int ik2 = iq2;
  6747. const int ik1 = ic;
  6748. // S indices
  6749. const int i1 = ik1;
  6750. ggml_vec_dot_f16(neq0,
  6751. S + i1,
  6752. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6753. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6754. }
  6755. } else {
  6756. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6757. // k indices
  6758. const int ik3 = iq3;
  6759. const int ik2 = iq2;
  6760. const int ik1 = ic;
  6761. // S indices
  6762. const int i1 = ik1;
  6763. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6764. S + i1,
  6765. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6766. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6767. }
  6768. }
  6769. // scale
  6770. ggml_vec_scale_f32(nek1, S, scale);
  6771. if (masked) {
  6772. for (int i = P; i < M; i++) {
  6773. if (i > P + iq1) {
  6774. S[i] = -INFINITY;
  6775. }
  6776. }
  6777. }
  6778. // softmax
  6779. {
  6780. float max = -INFINITY;
  6781. ggml_vec_max_f32(M, &max, S);
  6782. float sum = 0.0f;
  6783. {
  6784. #ifdef GGML_SOFT_MAX_ACCELERATE
  6785. max = -max;
  6786. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6787. vvexpf(S, S, &Mup);
  6788. ggml_vec_sum_f32(Mup, &sum, S);
  6789. #else
  6790. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6791. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6792. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6793. float * SS = S + i;
  6794. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6795. if (SS[j] == -INFINITY) {
  6796. SS[j] = 0.0f;
  6797. } else {
  6798. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6799. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6800. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6801. sump[j] += val;
  6802. SS[j] = val;
  6803. }
  6804. }
  6805. }
  6806. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6807. sum += sump[i];
  6808. }
  6809. #endif
  6810. }
  6811. assert(sum > 0.0f);
  6812. sum = 1.0/sum;
  6813. ggml_vec_scale_f32(M, S, sum);
  6814. #ifndef NDEBUG
  6815. for (int i = 0; i < M; ++i) {
  6816. assert(!isnan(S[i]));
  6817. assert(!isinf(S[i]));
  6818. }
  6819. #endif
  6820. }
  6821. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6822. for (int i = 0; i < M; i++) {
  6823. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6824. }
  6825. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6826. for (int ic = 0; ic < nev1; ++ic) {
  6827. // dst indices
  6828. const int i1 = iq1;
  6829. const int i2 = iq2;
  6830. const int i3 = iq3;
  6831. ggml_vec_dot_f16(nek1,
  6832. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6833. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6834. S16);
  6835. }
  6836. } else {
  6837. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6838. // dst indices
  6839. const int i1 = iq1;
  6840. const int i2 = iq2;
  6841. const int i3 = iq3;
  6842. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6843. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6844. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6845. S16);
  6846. }
  6847. }
  6848. }
  6849. }
  6850. static void ggml_compute_forward_flash_attn(
  6851. const struct ggml_compute_params * params,
  6852. const struct ggml_tensor * q,
  6853. const struct ggml_tensor * k,
  6854. const struct ggml_tensor * v,
  6855. const bool masked,
  6856. struct ggml_tensor * dst) {
  6857. switch (q->type) {
  6858. case GGML_TYPE_F16:
  6859. {
  6860. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6861. } break;
  6862. case GGML_TYPE_F32:
  6863. {
  6864. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6865. } break;
  6866. case GGML_TYPE_Q4_0:
  6867. case GGML_TYPE_Q4_1:
  6868. case GGML_TYPE_I8:
  6869. case GGML_TYPE_I16:
  6870. case GGML_TYPE_I32:
  6871. case GGML_TYPE_COUNT:
  6872. {
  6873. GGML_ASSERT(false);
  6874. } break;
  6875. }
  6876. }
  6877. // ggml_compute_forward_flash_ff
  6878. static void ggml_compute_forward_flash_ff_f16(
  6879. const struct ggml_compute_params * params,
  6880. const struct ggml_tensor * a, // F16
  6881. const struct ggml_tensor * b0, // F16 fc_w
  6882. const struct ggml_tensor * b1, // F32 fc_b
  6883. const struct ggml_tensor * c0, // F16 proj_w
  6884. const struct ggml_tensor * c1, // F32 proj_b
  6885. struct ggml_tensor * dst) {
  6886. int64_t t0 = ggml_perf_time_us();
  6887. UNUSED(t0);
  6888. const int nea0 = a->ne[0];
  6889. const int nea1 = a->ne[1];
  6890. const int nea2 = a->ne[2];
  6891. const int nea3 = a->ne[3];
  6892. const int neb00 = b0->ne[0];
  6893. const int neb01 = b0->ne[1];
  6894. //const int neb02 = b0->ne[2];
  6895. //const int neb03 = b0->ne[3];
  6896. const int neb10 = b1->ne[0];
  6897. const int neb11 = b1->ne[1];
  6898. //const int neb12 = b1->ne[2];
  6899. //const int neb13 = b1->ne[3];
  6900. const int nec00 = c0->ne[0];
  6901. const int nec01 = c0->ne[1];
  6902. //const int nec02 = c0->ne[2];
  6903. //const int nec03 = c0->ne[3];
  6904. const int nec10 = c1->ne[0];
  6905. const int nec11 = c1->ne[1];
  6906. //const int nec12 = c1->ne[2];
  6907. //const int nec13 = c1->ne[3];
  6908. const int ne0 = dst->ne[0];
  6909. const int ne1 = dst->ne[1];
  6910. const int ne2 = dst->ne[2];
  6911. //const int ne3 = dst->ne[3];
  6912. const int nba0 = a->nb[0];
  6913. const int nba1 = a->nb[1];
  6914. const int nba2 = a->nb[2];
  6915. const int nba3 = a->nb[3];
  6916. const int nbb00 = b0->nb[0];
  6917. const int nbb01 = b0->nb[1];
  6918. const int nbb02 = b0->nb[2];
  6919. const int nbb03 = b0->nb[3];
  6920. const int nbb10 = b1->nb[0];
  6921. //const int nbb11 = b1->nb[1];
  6922. //const int nbb12 = b1->nb[2];
  6923. //const int nbb13 = b1->nb[3];
  6924. const int nbc00 = c0->nb[0];
  6925. const int nbc01 = c0->nb[1];
  6926. const int nbc02 = c0->nb[2];
  6927. const int nbc03 = c0->nb[3];
  6928. const int nbc10 = c1->nb[0];
  6929. //const int nbc11 = c1->nb[1];
  6930. //const int nbc12 = c1->nb[2];
  6931. //const int nbc13 = c1->nb[3];
  6932. const int nb0 = dst->nb[0];
  6933. const int nb1 = dst->nb[1];
  6934. const int nb2 = dst->nb[2];
  6935. const int nb3 = dst->nb[3];
  6936. const int ith = params->ith;
  6937. const int nth = params->nth;
  6938. const int D = nea0;
  6939. //const int N = nea1;
  6940. const int M = neb01;
  6941. GGML_ASSERT(ne0 == nea0);
  6942. GGML_ASSERT(ne1 == nea1);
  6943. GGML_ASSERT(ne2 == nea2);
  6944. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6945. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6946. GGML_ASSERT(nbb10 == sizeof(float));
  6947. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6948. GGML_ASSERT(nbc10 == sizeof(float));
  6949. GGML_ASSERT(neb00 == D);
  6950. GGML_ASSERT(neb01 == M);
  6951. GGML_ASSERT(neb10 == M);
  6952. GGML_ASSERT(neb11 == 1);
  6953. GGML_ASSERT(nec00 == M);
  6954. GGML_ASSERT(nec01 == D);
  6955. GGML_ASSERT(nec10 == D);
  6956. GGML_ASSERT(nec11 == 1);
  6957. // dst cannot be transposed or permuted
  6958. GGML_ASSERT(nb0 == sizeof(float));
  6959. GGML_ASSERT(nb0 <= nb1);
  6960. GGML_ASSERT(nb1 <= nb2);
  6961. GGML_ASSERT(nb2 <= nb3);
  6962. if (params->type == GGML_TASK_INIT) {
  6963. return;
  6964. }
  6965. if (params->type == GGML_TASK_FINALIZE) {
  6966. return;
  6967. }
  6968. // parallelize by a rows using ggml_vec_dot_f32
  6969. // total rows in a
  6970. const int nr = nea1*nea2*nea3;
  6971. // rows per thread
  6972. const int dr = (nr + nth - 1)/nth;
  6973. // row range for this thread
  6974. const int ir0 = dr*ith;
  6975. const int ir1 = MIN(ir0 + dr, nr);
  6976. for (int ir = ir0; ir < ir1; ++ir) {
  6977. // a indices
  6978. const int ia3 = ir/(nea2*nea1);
  6979. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6980. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6981. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6982. for (int ic = 0; ic < neb01; ++ic) {
  6983. // b0 indices
  6984. const int ib03 = ia3;
  6985. const int ib02 = ia2;
  6986. const int ib01 = ic;
  6987. // S indices
  6988. const int i1 = ib01;
  6989. ggml_vec_dot_f16(nea0,
  6990. S + i1,
  6991. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6992. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6993. }
  6994. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6995. //ggml_vec_gelu_f32(neb01, S, S);
  6996. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6997. for (int i = 0; i < M; i++) {
  6998. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6999. }
  7000. ggml_vec_gelu_f16(neb01, S16, S16);
  7001. {
  7002. // dst indices
  7003. const int i1 = ia1;
  7004. const int i2 = ia2;
  7005. const int i3 = ia3;
  7006. for (int ic = 0; ic < nec01; ++ic) {
  7007. ggml_vec_dot_f16(neb01,
  7008. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7009. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7010. S16);
  7011. }
  7012. ggml_vec_add_f32(nec01,
  7013. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7014. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7015. (float *) c1->data);
  7016. }
  7017. }
  7018. }
  7019. static void ggml_compute_forward_flash_ff(
  7020. const struct ggml_compute_params * params,
  7021. const struct ggml_tensor * a,
  7022. const struct ggml_tensor * b0,
  7023. const struct ggml_tensor * b1,
  7024. const struct ggml_tensor * c0,
  7025. const struct ggml_tensor * c1,
  7026. struct ggml_tensor * dst) {
  7027. switch (b0->type) {
  7028. case GGML_TYPE_F16:
  7029. {
  7030. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7031. } break;
  7032. case GGML_TYPE_F32:
  7033. {
  7034. GGML_ASSERT(false); // TODO
  7035. } break;
  7036. case GGML_TYPE_Q4_0:
  7037. case GGML_TYPE_Q4_1:
  7038. case GGML_TYPE_I8:
  7039. case GGML_TYPE_I16:
  7040. case GGML_TYPE_I32:
  7041. case GGML_TYPE_COUNT:
  7042. {
  7043. GGML_ASSERT(false);
  7044. } break;
  7045. }
  7046. }
  7047. /////////////////////////////////
  7048. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7049. GGML_ASSERT(params);
  7050. switch (tensor->op) {
  7051. case GGML_OP_DUP:
  7052. {
  7053. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7054. } break;
  7055. case GGML_OP_ADD:
  7056. {
  7057. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7058. } break;
  7059. case GGML_OP_SUB:
  7060. {
  7061. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7062. } break;
  7063. case GGML_OP_MUL:
  7064. {
  7065. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7066. } break;
  7067. case GGML_OP_DIV:
  7068. {
  7069. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7070. } break;
  7071. case GGML_OP_SQR:
  7072. {
  7073. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7074. } break;
  7075. case GGML_OP_SQRT:
  7076. {
  7077. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7078. } break;
  7079. case GGML_OP_SUM:
  7080. {
  7081. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7082. } break;
  7083. case GGML_OP_MEAN:
  7084. {
  7085. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7086. } break;
  7087. case GGML_OP_REPEAT:
  7088. {
  7089. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7090. } break;
  7091. case GGML_OP_ABS:
  7092. {
  7093. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7094. } break;
  7095. case GGML_OP_SGN:
  7096. {
  7097. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7098. } break;
  7099. case GGML_OP_NEG:
  7100. {
  7101. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7102. } break;
  7103. case GGML_OP_STEP:
  7104. {
  7105. ggml_compute_forward_step(params, tensor->src0, tensor);
  7106. } break;
  7107. case GGML_OP_RELU:
  7108. {
  7109. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7110. } break;
  7111. case GGML_OP_GELU:
  7112. {
  7113. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7114. } break;
  7115. case GGML_OP_SILU:
  7116. {
  7117. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7118. } break;
  7119. case GGML_OP_NORM:
  7120. {
  7121. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7122. } break;
  7123. case GGML_OP_RMS_NORM:
  7124. {
  7125. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7126. } break;
  7127. case GGML_OP_MUL_MAT:
  7128. {
  7129. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7130. } break;
  7131. case GGML_OP_SCALE:
  7132. {
  7133. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7134. } break;
  7135. case GGML_OP_CPY:
  7136. {
  7137. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7138. } break;
  7139. case GGML_OP_RESHAPE:
  7140. {
  7141. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7142. } break;
  7143. case GGML_OP_VIEW:
  7144. {
  7145. ggml_compute_forward_view(params, tensor->src0);
  7146. } break;
  7147. case GGML_OP_PERMUTE:
  7148. {
  7149. ggml_compute_forward_permute(params, tensor->src0);
  7150. } break;
  7151. case GGML_OP_TRANSPOSE:
  7152. {
  7153. ggml_compute_forward_transpose(params, tensor->src0);
  7154. } break;
  7155. case GGML_OP_GET_ROWS:
  7156. {
  7157. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7158. } break;
  7159. case GGML_OP_DIAG_MASK_INF:
  7160. {
  7161. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7162. } break;
  7163. case GGML_OP_SOFT_MAX:
  7164. {
  7165. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7166. } break;
  7167. case GGML_OP_ROPE:
  7168. {
  7169. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7170. } break;
  7171. case GGML_OP_CONV_1D_1S:
  7172. {
  7173. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7174. } break;
  7175. case GGML_OP_CONV_1D_2S:
  7176. {
  7177. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7178. } break;
  7179. case GGML_OP_FLASH_ATTN:
  7180. {
  7181. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7182. GGML_ASSERT(t == 0 || t == 1);
  7183. bool masked = t != 0;
  7184. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7185. } break;
  7186. case GGML_OP_FLASH_FF:
  7187. {
  7188. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7189. } break;
  7190. case GGML_OP_NONE:
  7191. {
  7192. // nop
  7193. } break;
  7194. case GGML_OP_COUNT:
  7195. {
  7196. GGML_ASSERT(false);
  7197. } break;
  7198. }
  7199. }
  7200. ////////////////////////////////////////////////////////////////////////////////
  7201. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7202. struct ggml_tensor * src0 = tensor->src0;
  7203. struct ggml_tensor * src1 = tensor->src1;
  7204. switch (tensor->op) {
  7205. case GGML_OP_DUP:
  7206. {
  7207. if (src0->grad) {
  7208. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7209. }
  7210. } break;
  7211. case GGML_OP_ADD:
  7212. {
  7213. if (src0->grad) {
  7214. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7215. }
  7216. if (src1->grad) {
  7217. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7218. }
  7219. } break;
  7220. case GGML_OP_SUB:
  7221. {
  7222. if (src0->grad) {
  7223. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7224. }
  7225. if (src1->grad) {
  7226. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7227. }
  7228. } break;
  7229. case GGML_OP_MUL:
  7230. {
  7231. if (src0->grad) {
  7232. src0->grad =
  7233. ggml_add_impl(ctx,
  7234. src0->grad,
  7235. ggml_mul(ctx, src1, tensor->grad),
  7236. inplace);
  7237. }
  7238. if (src1->grad) {
  7239. src1->grad =
  7240. ggml_add_impl(ctx,
  7241. src1->grad,
  7242. ggml_mul(ctx, src0, tensor->grad),
  7243. inplace);
  7244. }
  7245. } break;
  7246. case GGML_OP_DIV:
  7247. {
  7248. if (src0->grad) {
  7249. src0->grad =
  7250. ggml_add_impl(ctx,
  7251. src0->grad,
  7252. ggml_div(ctx, tensor->grad, src1),
  7253. inplace);
  7254. }
  7255. if (src1->grad) {
  7256. src1->grad =
  7257. ggml_sub_impl(ctx,
  7258. src1->grad,
  7259. ggml_mul(ctx,
  7260. tensor->grad,
  7261. ggml_div(ctx, tensor, src1)),
  7262. inplace);
  7263. }
  7264. } break;
  7265. case GGML_OP_SQR:
  7266. {
  7267. if (src0->grad) {
  7268. src0->grad =
  7269. ggml_add_impl(ctx,
  7270. src0->grad,
  7271. ggml_mul(ctx,
  7272. ggml_mul(ctx, src0, tensor->grad),
  7273. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7274. inplace);
  7275. }
  7276. } break;
  7277. case GGML_OP_SQRT:
  7278. {
  7279. if (src0->grad) {
  7280. src0->grad =
  7281. ggml_add_impl(ctx,
  7282. src0->grad,
  7283. ggml_div(ctx,
  7284. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7285. tensor),
  7286. inplace);
  7287. }
  7288. } break;
  7289. case GGML_OP_SUM:
  7290. {
  7291. if (src0->grad) {
  7292. src0->grad =
  7293. ggml_add_impl(ctx,
  7294. src0->grad,
  7295. ggml_repeat(ctx, tensor->grad, src0->grad),
  7296. inplace);
  7297. }
  7298. } break;
  7299. case GGML_OP_MEAN:
  7300. {
  7301. GGML_ASSERT(false); // TODO: implement
  7302. } break;
  7303. case GGML_OP_REPEAT:
  7304. {
  7305. if (src0->grad) {
  7306. src0->grad =
  7307. ggml_add_impl(ctx,
  7308. src0->grad,
  7309. ggml_sum(ctx, tensor->grad),
  7310. inplace);
  7311. }
  7312. } break;
  7313. case GGML_OP_ABS:
  7314. {
  7315. if (src0->grad) {
  7316. src0->grad =
  7317. ggml_add_impl(ctx,
  7318. src0->grad,
  7319. ggml_mul(ctx,
  7320. ggml_sgn(ctx, src0),
  7321. tensor->grad),
  7322. inplace);
  7323. }
  7324. } break;
  7325. case GGML_OP_SGN:
  7326. {
  7327. if (src0->grad) {
  7328. // noop
  7329. }
  7330. } break;
  7331. case GGML_OP_NEG:
  7332. {
  7333. if (src0->grad) {
  7334. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7335. }
  7336. } break;
  7337. case GGML_OP_STEP:
  7338. {
  7339. if (src0->grad) {
  7340. // noop
  7341. }
  7342. } break;
  7343. case GGML_OP_RELU:
  7344. {
  7345. if (src0->grad) {
  7346. src0->grad = ggml_sub_impl(ctx,
  7347. src0->grad,
  7348. ggml_mul(ctx,
  7349. ggml_step(ctx, src0),
  7350. tensor->grad),
  7351. inplace);
  7352. }
  7353. } break;
  7354. case GGML_OP_GELU:
  7355. {
  7356. GGML_ASSERT(false); // TODO: not implemented
  7357. } break;
  7358. case GGML_OP_SILU:
  7359. {
  7360. GGML_ASSERT(false); // TODO: not implemented
  7361. } break;
  7362. case GGML_OP_NORM:
  7363. {
  7364. GGML_ASSERT(false); // TODO: not implemented
  7365. } break;
  7366. case GGML_OP_RMS_NORM:
  7367. {
  7368. GGML_ASSERT(false); // TODO: not implemented
  7369. } break;
  7370. case GGML_OP_MUL_MAT:
  7371. {
  7372. if (src0->grad) {
  7373. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7374. GGML_ASSERT(false);
  7375. }
  7376. if (src1->grad) {
  7377. src1->grad =
  7378. ggml_add_impl(ctx,
  7379. src1->grad,
  7380. // TODO: fix transpose, the node will break the graph connections
  7381. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7382. inplace);
  7383. }
  7384. } break;
  7385. case GGML_OP_SCALE:
  7386. {
  7387. GGML_ASSERT(false); // TODO: not implemented
  7388. } break;
  7389. case GGML_OP_CPY:
  7390. {
  7391. GGML_ASSERT(false); // TODO: not implemented
  7392. } break;
  7393. case GGML_OP_RESHAPE:
  7394. {
  7395. GGML_ASSERT(false); // TODO: not implemented
  7396. } break;
  7397. case GGML_OP_VIEW:
  7398. {
  7399. GGML_ASSERT(false); // not supported
  7400. } break;
  7401. case GGML_OP_PERMUTE:
  7402. {
  7403. GGML_ASSERT(false); // TODO: not implemented
  7404. } break;
  7405. case GGML_OP_TRANSPOSE:
  7406. {
  7407. GGML_ASSERT(false); // TODO: not implemented
  7408. } break;
  7409. case GGML_OP_GET_ROWS:
  7410. {
  7411. GGML_ASSERT(false); // TODO: not implemented
  7412. } break;
  7413. case GGML_OP_DIAG_MASK_INF:
  7414. {
  7415. GGML_ASSERT(false); // TODO: not implemented
  7416. } break;
  7417. case GGML_OP_SOFT_MAX:
  7418. {
  7419. GGML_ASSERT(false); // TODO: not implemented
  7420. } break;
  7421. case GGML_OP_ROPE:
  7422. {
  7423. GGML_ASSERT(false); // TODO: not implemented
  7424. } break;
  7425. case GGML_OP_CONV_1D_1S:
  7426. {
  7427. GGML_ASSERT(false); // TODO: not implemented
  7428. } break;
  7429. case GGML_OP_CONV_1D_2S:
  7430. {
  7431. GGML_ASSERT(false); // TODO: not implemented
  7432. } break;
  7433. case GGML_OP_FLASH_ATTN:
  7434. {
  7435. GGML_ASSERT(false); // not supported
  7436. } break;
  7437. case GGML_OP_FLASH_FF:
  7438. {
  7439. GGML_ASSERT(false); // not supported
  7440. } break;
  7441. case GGML_OP_NONE:
  7442. {
  7443. // nop
  7444. } break;
  7445. case GGML_OP_COUNT:
  7446. {
  7447. GGML_ASSERT(false);
  7448. } break;
  7449. }
  7450. }
  7451. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7452. if (node->grad == NULL) {
  7453. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7454. // it can also happen during forward pass, if the user performs computations with constants
  7455. if (node->op != GGML_OP_NONE) {
  7456. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7457. }
  7458. }
  7459. // check if already visited
  7460. for (int i = 0; i < cgraph->n_nodes; i++) {
  7461. if (cgraph->nodes[i] == node) {
  7462. return;
  7463. }
  7464. }
  7465. for (int i = 0; i < cgraph->n_leafs; i++) {
  7466. if (cgraph->leafs[i] == node) {
  7467. return;
  7468. }
  7469. }
  7470. if (node->src0) {
  7471. ggml_visit_parents(cgraph, node->src0);
  7472. }
  7473. if (node->src1) {
  7474. ggml_visit_parents(cgraph, node->src1);
  7475. }
  7476. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7477. if (node->opt[i]) {
  7478. ggml_visit_parents(cgraph, node->opt[i]);
  7479. }
  7480. }
  7481. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7482. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7483. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7484. cgraph->leafs[cgraph->n_leafs] = node;
  7485. cgraph->n_leafs++;
  7486. } else {
  7487. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7488. cgraph->nodes[cgraph->n_nodes] = node;
  7489. cgraph->grads[cgraph->n_nodes] = node->grad;
  7490. cgraph->n_nodes++;
  7491. }
  7492. }
  7493. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7494. if (!expand) {
  7495. cgraph->n_nodes = 0;
  7496. cgraph->n_leafs = 0;
  7497. }
  7498. const int n0 = cgraph->n_nodes;
  7499. UNUSED(n0);
  7500. ggml_visit_parents(cgraph, tensor);
  7501. const int n_new = cgraph->n_nodes - n0;
  7502. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7503. if (n_new > 0) {
  7504. // the last added node should always be starting point
  7505. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7506. }
  7507. }
  7508. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7509. ggml_build_forward_impl(cgraph, tensor, true);
  7510. }
  7511. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7512. struct ggml_cgraph result = {
  7513. /*.n_nodes =*/ 0,
  7514. /*.n_leafs =*/ 0,
  7515. /*.n_threads =*/ 0,
  7516. /*.work_size =*/ 0,
  7517. /*.work =*/ NULL,
  7518. /*.nodes =*/ { NULL },
  7519. /*.grads =*/ { NULL },
  7520. /*.leafs =*/ { NULL },
  7521. /*.perf_runs =*/ 0,
  7522. /*.perf_cycles =*/ 0,
  7523. /*.perf_time_us =*/ 0,
  7524. };
  7525. ggml_build_forward_impl(&result, tensor, false);
  7526. return result;
  7527. }
  7528. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7529. struct ggml_cgraph result = *gf;
  7530. GGML_ASSERT(gf->n_nodes > 0);
  7531. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7532. if (keep) {
  7533. for (int i = 0; i < gf->n_nodes; i++) {
  7534. struct ggml_tensor * node = gf->nodes[i];
  7535. if (node->grad) {
  7536. node->grad = ggml_dup_tensor(ctx, node);
  7537. gf->grads[i] = node->grad;
  7538. }
  7539. }
  7540. }
  7541. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7542. struct ggml_tensor * node = gf->nodes[i];
  7543. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7544. if (node->grad) {
  7545. ggml_compute_backward(ctx, node, keep);
  7546. }
  7547. }
  7548. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7549. struct ggml_tensor * node = gf->nodes[i];
  7550. if (node->is_param) {
  7551. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7552. ggml_build_forward_impl(&result, node->grad, true);
  7553. }
  7554. }
  7555. return result;
  7556. }
  7557. //
  7558. // thread data
  7559. //
  7560. // synchronization is done via busy loops
  7561. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7562. //
  7563. #ifdef __APPLE__
  7564. //#include <os/lock.h>
  7565. //
  7566. //typedef os_unfair_lock ggml_lock_t;
  7567. //
  7568. //#define ggml_lock_init(x) UNUSED(x)
  7569. //#define ggml_lock_destroy(x) UNUSED(x)
  7570. //#define ggml_lock_lock os_unfair_lock_lock
  7571. //#define ggml_lock_unlock os_unfair_lock_unlock
  7572. //
  7573. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7574. typedef int ggml_lock_t;
  7575. #define ggml_lock_init(x) UNUSED(x)
  7576. #define ggml_lock_destroy(x) UNUSED(x)
  7577. #define ggml_lock_lock(x) UNUSED(x)
  7578. #define ggml_lock_unlock(x) UNUSED(x)
  7579. #define GGML_LOCK_INITIALIZER 0
  7580. typedef pthread_t ggml_thread_t;
  7581. #define ggml_thread_create pthread_create
  7582. #define ggml_thread_join pthread_join
  7583. #else
  7584. //typedef pthread_spinlock_t ggml_lock_t;
  7585. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7586. //#define ggml_lock_destroy pthread_spin_destroy
  7587. //#define ggml_lock_lock pthread_spin_lock
  7588. //#define ggml_lock_unlock pthread_spin_unlock
  7589. typedef int ggml_lock_t;
  7590. #define ggml_lock_init(x) UNUSED(x)
  7591. #define ggml_lock_destroy(x) UNUSED(x)
  7592. #define ggml_lock_lock(x) UNUSED(x)
  7593. #define ggml_lock_unlock(x) UNUSED(x)
  7594. #define GGML_LOCK_INITIALIZER 0
  7595. typedef pthread_t ggml_thread_t;
  7596. #define ggml_thread_create pthread_create
  7597. #define ggml_thread_join pthread_join
  7598. #endif
  7599. struct ggml_compute_state_shared {
  7600. ggml_lock_t spin;
  7601. int n_threads;
  7602. // synchronization primitives
  7603. atomic_int n_ready;
  7604. atomic_bool has_work;
  7605. atomic_bool stop; // stop all threads
  7606. };
  7607. struct ggml_compute_state {
  7608. ggml_thread_t thrd;
  7609. struct ggml_compute_params params;
  7610. struct ggml_tensor * node;
  7611. struct ggml_compute_state_shared * shared;
  7612. };
  7613. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7614. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7615. const int n_threads = state->shared->n_threads;
  7616. while (true) {
  7617. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7618. atomic_store(&state->shared->has_work, false);
  7619. } else {
  7620. while (atomic_load(&state->shared->has_work)) {
  7621. if (atomic_load(&state->shared->stop)) {
  7622. return 0;
  7623. }
  7624. ggml_lock_lock (&state->shared->spin);
  7625. ggml_lock_unlock(&state->shared->spin);
  7626. }
  7627. }
  7628. atomic_fetch_sub(&state->shared->n_ready, 1);
  7629. // wait for work
  7630. while (!atomic_load(&state->shared->has_work)) {
  7631. if (atomic_load(&state->shared->stop)) {
  7632. return 0;
  7633. }
  7634. ggml_lock_lock (&state->shared->spin);
  7635. ggml_lock_unlock(&state->shared->spin);
  7636. }
  7637. // check if we should stop
  7638. if (atomic_load(&state->shared->stop)) {
  7639. break;
  7640. }
  7641. if (state->node) {
  7642. if (state->params.ith < state->params.nth) {
  7643. ggml_compute_forward(&state->params, state->node);
  7644. }
  7645. state->node = NULL;
  7646. } else {
  7647. break;
  7648. }
  7649. }
  7650. return 0;
  7651. }
  7652. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7653. const int n_threads = cgraph->n_threads;
  7654. struct ggml_compute_state_shared state_shared = {
  7655. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7656. /*.n_threads =*/ n_threads,
  7657. /*.n_ready =*/ 0,
  7658. /*.has_work =*/ false,
  7659. /*.stop =*/ false,
  7660. };
  7661. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7662. // create thread pool
  7663. if (n_threads > 1) {
  7664. ggml_lock_init(&state_shared.spin);
  7665. atomic_store(&state_shared.has_work, true);
  7666. for (int j = 0; j < n_threads - 1; j++) {
  7667. workers[j] = (struct ggml_compute_state) {
  7668. .thrd = 0,
  7669. .params = {
  7670. .type = GGML_TASK_COMPUTE,
  7671. .ith = j + 1,
  7672. .nth = n_threads,
  7673. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7674. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7675. },
  7676. .node = NULL,
  7677. .shared = &state_shared,
  7678. };
  7679. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7680. GGML_ASSERT(rc == 0);
  7681. UNUSED(rc);
  7682. }
  7683. }
  7684. // initialize tasks + work buffer
  7685. {
  7686. size_t work_size = 0;
  7687. // thread scheduling for the different operations
  7688. for (int i = 0; i < cgraph->n_nodes; i++) {
  7689. struct ggml_tensor * node = cgraph->nodes[i];
  7690. switch (node->op) {
  7691. case GGML_OP_DUP:
  7692. {
  7693. node->n_tasks = 1;
  7694. } break;
  7695. case GGML_OP_ADD:
  7696. {
  7697. node->n_tasks = n_threads;
  7698. } break;
  7699. case GGML_OP_SUB:
  7700. case GGML_OP_MUL:
  7701. case GGML_OP_DIV:
  7702. case GGML_OP_SQR:
  7703. case GGML_OP_SQRT:
  7704. case GGML_OP_SUM:
  7705. case GGML_OP_MEAN:
  7706. case GGML_OP_REPEAT:
  7707. case GGML_OP_ABS:
  7708. case GGML_OP_SGN:
  7709. case GGML_OP_NEG:
  7710. case GGML_OP_STEP:
  7711. case GGML_OP_RELU:
  7712. {
  7713. node->n_tasks = 1;
  7714. } break;
  7715. case GGML_OP_GELU:
  7716. {
  7717. node->n_tasks = n_threads;
  7718. } break;
  7719. case GGML_OP_SILU:
  7720. {
  7721. node->n_tasks = n_threads;
  7722. } break;
  7723. case GGML_OP_NORM:
  7724. case GGML_OP_RMS_NORM:
  7725. {
  7726. node->n_tasks = n_threads;
  7727. } break;
  7728. case GGML_OP_MUL_MAT:
  7729. {
  7730. node->n_tasks = n_threads;
  7731. // TODO: use different scheduling for different matrix sizes
  7732. //const int nr0 = ggml_nrows(node->src0);
  7733. //const int nr1 = ggml_nrows(node->src1);
  7734. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7735. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7736. size_t cur = 0;
  7737. // TODO: better way to determine if the matrix is transposed
  7738. if (node->src0->nb[1] < node->src0->nb[0]) {
  7739. cur = ggml_nbytes(node)*node->n_tasks; // TODO: this can become (n_tasks-1)
  7740. // TODO: overestimated by factor of x2 for FP16
  7741. } else {
  7742. if (node->src0->type == GGML_TYPE_F16 &&
  7743. node->src1->type == GGML_TYPE_F32) {
  7744. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7745. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7746. node->n_tasks = 1; // TODO: this actually is doing nothing
  7747. // the threads are still spinning
  7748. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7749. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7750. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7751. //printf("cur = %zu\n", cur);
  7752. } else {
  7753. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7754. }
  7755. #else
  7756. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7757. #endif
  7758. } else if (node->src0->type == GGML_TYPE_F32 &&
  7759. node->src1->type == GGML_TYPE_F32) {
  7760. cur = 0;
  7761. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7762. node->src1->type == GGML_TYPE_F32) {
  7763. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7764. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7765. node->n_tasks = 1;
  7766. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7767. } else {
  7768. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7769. }
  7770. #else
  7771. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7772. #endif
  7773. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7774. node->src1->type == GGML_TYPE_F32) {
  7775. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7776. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7777. node->n_tasks = 1;
  7778. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7779. } else {
  7780. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7781. }
  7782. #else
  7783. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7784. #endif
  7785. } else {
  7786. GGML_ASSERT(false);
  7787. }
  7788. }
  7789. work_size = MAX(work_size, cur);
  7790. } break;
  7791. case GGML_OP_SCALE:
  7792. {
  7793. node->n_tasks = n_threads;
  7794. } break;
  7795. case GGML_OP_CPY:
  7796. case GGML_OP_RESHAPE:
  7797. case GGML_OP_VIEW:
  7798. case GGML_OP_PERMUTE:
  7799. case GGML_OP_TRANSPOSE:
  7800. case GGML_OP_GET_ROWS:
  7801. case GGML_OP_DIAG_MASK_INF:
  7802. {
  7803. node->n_tasks = 1;
  7804. } break;
  7805. case GGML_OP_SOFT_MAX:
  7806. {
  7807. node->n_tasks = n_threads;
  7808. } break;
  7809. case GGML_OP_ROPE:
  7810. {
  7811. node->n_tasks = 1;
  7812. } break;
  7813. case GGML_OP_CONV_1D_1S:
  7814. case GGML_OP_CONV_1D_2S:
  7815. {
  7816. node->n_tasks = n_threads;
  7817. GGML_ASSERT(node->src0->ne[3] == 1);
  7818. GGML_ASSERT(node->src1->ne[2] == 1);
  7819. GGML_ASSERT(node->src1->ne[3] == 1);
  7820. size_t cur = 0;
  7821. const int nk = node->src0->ne[0];
  7822. if (node->src0->type == GGML_TYPE_F16 &&
  7823. node->src1->type == GGML_TYPE_F32) {
  7824. cur = sizeof(ggml_fp16_t)*(
  7825. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7826. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7827. );
  7828. } else if (node->src0->type == GGML_TYPE_F32 &&
  7829. node->src1->type == GGML_TYPE_F32) {
  7830. cur = sizeof(float)*(
  7831. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7832. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7833. );
  7834. } else {
  7835. GGML_ASSERT(false);
  7836. }
  7837. work_size = MAX(work_size, cur);
  7838. } break;
  7839. case GGML_OP_FLASH_ATTN:
  7840. {
  7841. node->n_tasks = n_threads;
  7842. size_t cur = 0;
  7843. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7844. if (node->src1->type == GGML_TYPE_F32) {
  7845. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7846. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7847. }
  7848. if (node->src1->type == GGML_TYPE_F16) {
  7849. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7850. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7851. }
  7852. work_size = MAX(work_size, cur);
  7853. } break;
  7854. case GGML_OP_FLASH_FF:
  7855. {
  7856. node->n_tasks = n_threads;
  7857. size_t cur = 0;
  7858. if (node->src1->type == GGML_TYPE_F32) {
  7859. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7860. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7861. }
  7862. if (node->src1->type == GGML_TYPE_F16) {
  7863. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7864. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7865. }
  7866. work_size = MAX(work_size, cur);
  7867. } break;
  7868. case GGML_OP_NONE:
  7869. {
  7870. node->n_tasks = 1;
  7871. } break;
  7872. case GGML_OP_COUNT:
  7873. {
  7874. GGML_ASSERT(false);
  7875. } break;
  7876. }
  7877. }
  7878. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7879. GGML_ASSERT(false); // TODO: better handling
  7880. }
  7881. if (work_size > 0 && cgraph->work == NULL) {
  7882. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7883. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7884. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7885. }
  7886. }
  7887. const int64_t perf_start_cycles = ggml_perf_cycles();
  7888. const int64_t perf_start_time_us = ggml_perf_time_us();
  7889. for (int i = 0; i < cgraph->n_nodes; i++) {
  7890. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7891. struct ggml_tensor * node = cgraph->nodes[i];
  7892. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7893. //if (node->grad == NULL && node->perf_runs > 0) {
  7894. // continue;
  7895. //}
  7896. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7897. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7898. // INIT
  7899. struct ggml_compute_params params = {
  7900. /*.type =*/ GGML_TASK_INIT,
  7901. /*.ith =*/ 0,
  7902. /*.nth =*/ node->n_tasks,
  7903. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7904. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7905. };
  7906. ggml_compute_forward(&params, node);
  7907. // COMPUTE
  7908. if (node->n_tasks > 1) {
  7909. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7910. atomic_store(&state_shared.has_work, false);
  7911. }
  7912. while (atomic_load(&state_shared.has_work)) {
  7913. ggml_lock_lock (&state_shared.spin);
  7914. ggml_lock_unlock(&state_shared.spin);
  7915. }
  7916. // launch thread pool
  7917. for (int j = 0; j < n_threads - 1; j++) {
  7918. workers[j].params = (struct ggml_compute_params) {
  7919. .type = GGML_TASK_COMPUTE,
  7920. .ith = j + 1,
  7921. .nth = node->n_tasks,
  7922. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7923. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7924. };
  7925. workers[j].node = node;
  7926. }
  7927. atomic_fetch_sub(&state_shared.n_ready, 1);
  7928. while (atomic_load(&state_shared.n_ready) > 0) {
  7929. ggml_lock_lock (&state_shared.spin);
  7930. ggml_lock_unlock(&state_shared.spin);
  7931. }
  7932. atomic_store(&state_shared.has_work, true);
  7933. }
  7934. params.type = GGML_TASK_COMPUTE;
  7935. ggml_compute_forward(&params, node);
  7936. // wait for thread pool
  7937. if (node->n_tasks > 1) {
  7938. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7939. atomic_store(&state_shared.has_work, false);
  7940. }
  7941. while (atomic_load(&state_shared.has_work)) {
  7942. ggml_lock_lock (&state_shared.spin);
  7943. ggml_lock_unlock(&state_shared.spin);
  7944. }
  7945. atomic_fetch_sub(&state_shared.n_ready, 1);
  7946. while (atomic_load(&state_shared.n_ready) != 0) {
  7947. ggml_lock_lock (&state_shared.spin);
  7948. ggml_lock_unlock(&state_shared.spin);
  7949. }
  7950. }
  7951. // FINALIZE
  7952. if (node->n_tasks > 1) {
  7953. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7954. atomic_store(&state_shared.has_work, false);
  7955. }
  7956. while (atomic_load(&state_shared.has_work)) {
  7957. ggml_lock_lock (&state_shared.spin);
  7958. ggml_lock_unlock(&state_shared.spin);
  7959. }
  7960. // launch thread pool
  7961. for (int j = 0; j < n_threads - 1; j++) {
  7962. workers[j].params = (struct ggml_compute_params) {
  7963. .type = GGML_TASK_FINALIZE,
  7964. .ith = j + 1,
  7965. .nth = node->n_tasks,
  7966. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7967. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7968. };
  7969. workers[j].node = node;
  7970. }
  7971. atomic_fetch_sub(&state_shared.n_ready, 1);
  7972. while (atomic_load(&state_shared.n_ready) > 0) {
  7973. ggml_lock_lock (&state_shared.spin);
  7974. ggml_lock_unlock(&state_shared.spin);
  7975. }
  7976. atomic_store(&state_shared.has_work, true);
  7977. }
  7978. params.type = GGML_TASK_FINALIZE;
  7979. ggml_compute_forward(&params, node);
  7980. // wait for thread pool
  7981. if (node->n_tasks > 1) {
  7982. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7983. atomic_store(&state_shared.has_work, false);
  7984. }
  7985. while (atomic_load(&state_shared.has_work)) {
  7986. ggml_lock_lock (&state_shared.spin);
  7987. ggml_lock_unlock(&state_shared.spin);
  7988. }
  7989. atomic_fetch_sub(&state_shared.n_ready, 1);
  7990. while (atomic_load(&state_shared.n_ready) != 0) {
  7991. ggml_lock_lock (&state_shared.spin);
  7992. ggml_lock_unlock(&state_shared.spin);
  7993. }
  7994. }
  7995. // performance stats (node)
  7996. {
  7997. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7998. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7999. node->perf_runs++;
  8000. node->perf_cycles += perf_cycles_cur;
  8001. node->perf_time_us += perf_time_us_cur;
  8002. }
  8003. }
  8004. // join thread pool
  8005. if (n_threads > 1) {
  8006. atomic_store(&state_shared.stop, true);
  8007. atomic_store(&state_shared.has_work, true);
  8008. for (int j = 0; j < n_threads - 1; j++) {
  8009. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8010. GGML_ASSERT(rc == 0);
  8011. UNUSED(rc);
  8012. }
  8013. ggml_lock_destroy(&state_shared.spin);
  8014. }
  8015. // performance stats (graph)
  8016. {
  8017. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8018. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8019. cgraph->perf_runs++;
  8020. cgraph->perf_cycles += perf_cycles_cur;
  8021. cgraph->perf_time_us += perf_time_us_cur;
  8022. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8023. __func__, cgraph->perf_runs,
  8024. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8025. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8026. (double) perf_time_us_cur / 1000.0,
  8027. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8028. }
  8029. }
  8030. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8031. for (int i = 0; i < cgraph->n_nodes; i++) {
  8032. struct ggml_tensor * grad = cgraph->grads[i];
  8033. if (grad) {
  8034. ggml_set_zero(grad);
  8035. }
  8036. }
  8037. }
  8038. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8039. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8040. GGML_PRINT("=== GRAPH ===\n");
  8041. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8042. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  8043. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8044. for (int i = 0; i < cgraph->n_nodes; i++) {
  8045. struct ggml_tensor * node = cgraph->nodes[i];
  8046. perf_total_per_op_us[node->op] += node->perf_time_us;
  8047. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8048. i,
  8049. node->ne[0], node->ne[1], node->ne[2],
  8050. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8051. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8052. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8053. (double) node->perf_time_us / 1000.0,
  8054. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8055. }
  8056. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8057. for (int i = 0; i < cgraph->n_leafs; i++) {
  8058. struct ggml_tensor * node = cgraph->leafs[i];
  8059. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  8060. i,
  8061. node->ne[0], node->ne[1],
  8062. GGML_OP_LABEL[node->op]);
  8063. }
  8064. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8065. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8066. }
  8067. GGML_PRINT("========================================\n");
  8068. }
  8069. // check if node is part of the graph
  8070. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8071. if (cgraph == NULL) {
  8072. return true;
  8073. }
  8074. for (int i = 0; i < cgraph->n_nodes; i++) {
  8075. if (cgraph->nodes[i] == node) {
  8076. return true;
  8077. }
  8078. }
  8079. return false;
  8080. }
  8081. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8082. for (int i = 0; i < cgraph->n_nodes; i++) {
  8083. struct ggml_tensor * parent = cgraph->nodes[i];
  8084. if (parent->grad == node) {
  8085. return parent;
  8086. }
  8087. }
  8088. return NULL;
  8089. }
  8090. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8091. char color[16];
  8092. FILE * fp = fopen(filename, "w");
  8093. GGML_ASSERT(fp);
  8094. fprintf(fp, "digraph G {\n");
  8095. fprintf(fp, " newrank = true;\n");
  8096. fprintf(fp, " rankdir = LR;\n");
  8097. for (int i = 0; i < gb->n_nodes; i++) {
  8098. struct ggml_tensor * node = gb->nodes[i];
  8099. if (ggml_graph_get_parent(gb, node) != NULL) {
  8100. continue;
  8101. }
  8102. if (node->is_param) {
  8103. snprintf(color, sizeof(color), "yellow");
  8104. } else if (node->grad) {
  8105. if (ggml_graph_find(gf, node)) {
  8106. snprintf(color, sizeof(color), "green");
  8107. } else {
  8108. snprintf(color, sizeof(color), "lightblue");
  8109. }
  8110. } else {
  8111. snprintf(color, sizeof(color), "white");
  8112. }
  8113. fprintf(fp, " \"%p\" [ \
  8114. style = filled; fillcolor = %s; shape = record; \
  8115. label=\"%d [%d, %d] | <x>%s",
  8116. (void *) node, color,
  8117. i, node->ne[0], node->ne[1],
  8118. GGML_OP_SYMBOL[node->op]);
  8119. if (node->grad) {
  8120. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8121. } else {
  8122. fprintf(fp, "\"; ]\n");
  8123. }
  8124. }
  8125. for (int i = 0; i < gb->n_leafs; i++) {
  8126. struct ggml_tensor * node = gb->leafs[i];
  8127. snprintf(color, sizeof(color), "pink");
  8128. if (ggml_nelements(node) == 1) {
  8129. fprintf(fp, " \"%p\" [ \
  8130. style = filled; fillcolor = %s; shape = record; \
  8131. label=\"<x>%.1e\"; ]\n",
  8132. (void *) node, color, ggml_get_f32_1d(node, 0));
  8133. } else {
  8134. fprintf(fp, " \"%p\" [ \
  8135. style = filled; fillcolor = %s; shape = record; \
  8136. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  8137. (void *) node, color,
  8138. i, node->ne[0], node->ne[1]);
  8139. }
  8140. }
  8141. for (int i = 0; i < gb->n_nodes; i++) {
  8142. struct ggml_tensor * node = gb->nodes[i];
  8143. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8144. if (node->src0) {
  8145. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8146. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8147. parent0 ? (void *) parent0 : (void *) node->src0,
  8148. parent0 ? "g" : "x",
  8149. parent ? (void *) parent : (void *) node,
  8150. parent ? "g" : "x",
  8151. parent ? "empty" : "vee",
  8152. parent ? "dashed" : "solid");
  8153. }
  8154. if (node->src1) {
  8155. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8156. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8157. parent1 ? (void *) parent1 : (void *) node->src1,
  8158. parent1 ? "g" : "x",
  8159. parent ? (void *) parent : (void *) node,
  8160. parent ? "g" : "x",
  8161. parent ? "empty" : "vee",
  8162. parent ? "dashed" : "solid");
  8163. }
  8164. }
  8165. for (int i = 0; i < gb->n_leafs; i++) {
  8166. struct ggml_tensor * node = gb->leafs[i];
  8167. if (node->src0) {
  8168. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8169. (void *) node->src0, "x",
  8170. (void *) node, "x");
  8171. }
  8172. if (node->src1) {
  8173. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8174. (void *) node->src1, "x",
  8175. (void *) node, "x");
  8176. }
  8177. }
  8178. fprintf(fp, "}\n");
  8179. fclose(fp);
  8180. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8181. }
  8182. ////////////////////////////////////////////////////////////////////////////////
  8183. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8184. int i = 0;
  8185. for (int p = 0; p < np; ++p) {
  8186. const int ne = ggml_nelements(ps[p]) ;
  8187. // TODO: add function to set tensor from array
  8188. for (int j = 0; j < ne; ++j) {
  8189. ggml_set_f32_1d(ps[p], j, x[i++]);
  8190. }
  8191. }
  8192. }
  8193. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8194. int i = 0;
  8195. for (int p = 0; p < np; ++p) {
  8196. const int ne = ggml_nelements(ps[p]) ;
  8197. // TODO: add function to get all elements at once
  8198. for (int j = 0; j < ne; ++j) {
  8199. x[i++] = ggml_get_f32_1d(ps[p], j);
  8200. }
  8201. }
  8202. }
  8203. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8204. int i = 0;
  8205. for (int p = 0; p < np; ++p) {
  8206. const int ne = ggml_nelements(ps[p]) ;
  8207. // TODO: add function to get all elements at once
  8208. for (int j = 0; j < ne; ++j) {
  8209. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8210. }
  8211. }
  8212. }
  8213. //
  8214. // ADAM
  8215. //
  8216. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8217. //
  8218. static enum ggml_opt_result ggml_opt_adam(
  8219. struct ggml_context * ctx,
  8220. struct ggml_opt_params params,
  8221. struct ggml_tensor * f,
  8222. struct ggml_cgraph * gf,
  8223. struct ggml_cgraph * gb) {
  8224. GGML_ASSERT(ggml_is_scalar(f));
  8225. gf->n_threads = params.n_threads;
  8226. gb->n_threads = params.n_threads;
  8227. // these will store the parameters we want to optimize
  8228. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8229. int np = 0;
  8230. int nx = 0;
  8231. for (int i = 0; i < gf->n_nodes; ++i) {
  8232. if (gf->nodes[i]->is_param) {
  8233. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8234. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8235. ps[np++] = gf->nodes[i];
  8236. nx += ggml_nelements(gf->nodes[i]);
  8237. }
  8238. }
  8239. // constants
  8240. const float alpha = params.adam.alpha;
  8241. const float beta1 = params.adam.beta1;
  8242. const float beta2 = params.adam.beta2;
  8243. const float eps = params.adam.eps;
  8244. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8245. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8246. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8247. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8248. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8249. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8250. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8251. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8252. // initialize
  8253. ggml_vec_set_f32(nx, m, 0.0f);
  8254. ggml_vec_set_f32(nx, v, 0.0f);
  8255. // update view
  8256. ggml_opt_get_params(np, ps, x);
  8257. // compute the function value
  8258. ggml_graph_reset (gf);
  8259. ggml_set_f32 (f->grad, 1.0f);
  8260. ggml_graph_compute(ctx, gb);
  8261. float fx_prev = ggml_get_f32_1d(f, 0);
  8262. if (pf) {
  8263. pf[0] = fx_prev;
  8264. }
  8265. int n_no_improvement = 0;
  8266. float fx_best = fx_prev;
  8267. // run the optimizer
  8268. for (int t = 0; t < params.adam.n_iter; ++t) {
  8269. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8270. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8271. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8272. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8273. for (int i = 0; i < np; ++i) {
  8274. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8275. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8276. }
  8277. const int64_t t_start_wall = ggml_time_us();
  8278. const int64_t t_start_cpu = ggml_cycles();
  8279. UNUSED(t_start_wall);
  8280. UNUSED(t_start_cpu);
  8281. {
  8282. // update the gradient
  8283. ggml_opt_get_grad(np, ps, g1);
  8284. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8285. ggml_vec_scale_f32(nx, m, beta1);
  8286. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8287. // g2 = g1^2
  8288. ggml_vec_sqr_f32 (nx, g2, g1);
  8289. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8290. ggml_vec_scale_f32(nx, v, beta2);
  8291. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8292. // m^hat = m_t / (1 - beta1^t)
  8293. // v^hat = v_t / (1 - beta2^t)
  8294. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8295. ggml_vec_cpy_f32 (nx, mh, m);
  8296. ggml_vec_cpy_f32 (nx, vh, v);
  8297. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8298. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8299. ggml_vec_sqrt_f32 (nx, vh, vh);
  8300. ggml_vec_acc1_f32 (nx, vh, eps);
  8301. ggml_vec_div_f32 (nx, mh, mh, vh);
  8302. ggml_vec_sub_f32 (nx, x, x, mh);
  8303. // update the parameters
  8304. ggml_opt_set_params(np, ps, x);
  8305. }
  8306. ggml_graph_reset (gf);
  8307. ggml_set_f32 (f->grad, 1.0f);
  8308. ggml_graph_compute(ctx, gb);
  8309. const float fx = ggml_get_f32_1d(f, 0);
  8310. // check convergence
  8311. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8312. GGML_PRINT_DEBUG("converged\n");
  8313. return GGML_OPT_OK;
  8314. }
  8315. // delta-based convergence test
  8316. if (pf != NULL) {
  8317. // need at least params.past iterations to start checking for convergence
  8318. if (params.past <= t) {
  8319. const float rate = (pf[t%params.past] - fx)/fx;
  8320. if (fabs(rate) < params.delta) {
  8321. return GGML_OPT_OK;
  8322. }
  8323. }
  8324. pf[t%params.past] = fx;
  8325. }
  8326. // check for improvement
  8327. if (params.max_no_improvement > 0) {
  8328. if (fx_best > fx) {
  8329. fx_best = fx;
  8330. n_no_improvement = 0;
  8331. } else {
  8332. ++n_no_improvement;
  8333. if (n_no_improvement >= params.max_no_improvement) {
  8334. return GGML_OPT_OK;
  8335. }
  8336. }
  8337. }
  8338. fx_prev = fx;
  8339. {
  8340. const int64_t t_end_cpu = ggml_cycles();
  8341. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8342. UNUSED(t_end_cpu);
  8343. const int64_t t_end_wall = ggml_time_us();
  8344. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8345. UNUSED(t_end_wall);
  8346. }
  8347. }
  8348. return GGML_OPT_DID_NOT_CONVERGE;
  8349. }
  8350. //
  8351. // L-BFGS
  8352. //
  8353. // the L-BFGS implementation below is based on the following implementation:
  8354. //
  8355. // https://github.com/chokkan/liblbfgs
  8356. //
  8357. struct ggml_lbfgs_iteration_data {
  8358. float alpha;
  8359. float ys;
  8360. float * s;
  8361. float * y;
  8362. };
  8363. static enum ggml_opt_result linesearch_backtracking(
  8364. struct ggml_context * ctx,
  8365. const struct ggml_opt_params * params,
  8366. int nx,
  8367. float * x,
  8368. float * fx,
  8369. float * g,
  8370. float * d,
  8371. float * step,
  8372. const float * xp,
  8373. struct ggml_tensor * f,
  8374. struct ggml_cgraph * gf,
  8375. struct ggml_cgraph * gb,
  8376. const int np,
  8377. struct ggml_tensor * ps[]) {
  8378. int count = 0;
  8379. float width = 0.0f;
  8380. float dg = 0.0f;
  8381. float finit = 0.0f;
  8382. float dginit = 0.0f;
  8383. float dgtest = 0.0f;
  8384. const float dec = 0.5f;
  8385. const float inc = 2.1f;
  8386. if (*step <= 0.) {
  8387. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8388. }
  8389. // compute the initial gradient in the search direction
  8390. ggml_vec_dot_f32(nx, &dginit, g, d);
  8391. // make sure that d points to a descent direction
  8392. if (0 < dginit) {
  8393. return GGML_LINESEARCH_FAIL;
  8394. }
  8395. // initialize local variables
  8396. finit = *fx;
  8397. dgtest = params->lbfgs.ftol*dginit;
  8398. while (true) {
  8399. ggml_vec_cpy_f32(nx, x, xp);
  8400. ggml_vec_mad_f32(nx, x, d, *step);
  8401. // evaluate the function and gradient values
  8402. {
  8403. ggml_opt_set_params(np, ps, x);
  8404. ggml_graph_reset (gf);
  8405. ggml_set_f32 (f->grad, 1.0f);
  8406. ggml_graph_compute(ctx, gb);
  8407. ggml_opt_get_grad(np, ps, g);
  8408. *fx = ggml_get_f32_1d(f, 0);
  8409. }
  8410. ++count;
  8411. if (*fx > finit + (*step)*dgtest) {
  8412. width = dec;
  8413. } else {
  8414. // Armijo condition is satisfied
  8415. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8416. return count;
  8417. }
  8418. ggml_vec_dot_f32(nx, &dg, g, d);
  8419. // check the Wolfe condition
  8420. if (dg < params->lbfgs.wolfe * dginit) {
  8421. width = inc;
  8422. } else {
  8423. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8424. // regular Wolfe conditions
  8425. return count;
  8426. }
  8427. if(dg > -params->lbfgs.wolfe*dginit) {
  8428. width = dec;
  8429. } else {
  8430. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8431. return count;
  8432. }
  8433. return count;
  8434. }
  8435. }
  8436. if (*step < params->lbfgs.min_step) {
  8437. return GGML_LINESEARCH_MINIMUM_STEP;
  8438. }
  8439. if (*step > params->lbfgs.max_step) {
  8440. return GGML_LINESEARCH_MAXIMUM_STEP;
  8441. }
  8442. if (params->lbfgs.max_linesearch <= count) {
  8443. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8444. }
  8445. (*step) *= width;
  8446. }
  8447. return GGML_LINESEARCH_FAIL;
  8448. }
  8449. static enum ggml_opt_result ggml_opt_lbfgs(
  8450. struct ggml_context * ctx,
  8451. struct ggml_opt_params params,
  8452. struct ggml_tensor * f,
  8453. struct ggml_cgraph * gf,
  8454. struct ggml_cgraph * gb) {
  8455. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8456. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8457. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8458. return GGML_OPT_INVALID_WOLFE;
  8459. }
  8460. }
  8461. gf->n_threads = params.n_threads;
  8462. gb->n_threads = params.n_threads;
  8463. const int m = params.lbfgs.m;
  8464. // these will store the parameters we want to optimize
  8465. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8466. int np = 0;
  8467. int nx = 0;
  8468. for (int i = 0; i < gf->n_nodes; ++i) {
  8469. if (gf->nodes[i]->is_param) {
  8470. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8471. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8472. ps[np++] = gf->nodes[i];
  8473. nx += ggml_nelements(gf->nodes[i]);
  8474. }
  8475. }
  8476. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8477. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8478. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8479. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8480. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8481. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8482. float fx = 0.0f; // cost function value
  8483. float xnorm = 0.0f; // ||x||
  8484. float gnorm = 0.0f; // ||g||
  8485. float step = 0.0f;
  8486. // initialize x from the graph nodes
  8487. ggml_opt_get_params(np, ps, x);
  8488. // the L-BFGS memory
  8489. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8490. for (int i = 0; i < m; ++i) {
  8491. lm[i].alpha = 0.0f;
  8492. lm[i].ys = 0.0f;
  8493. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8494. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8495. }
  8496. // evaluate the function value and its gradient
  8497. {
  8498. ggml_opt_set_params(np, ps, x);
  8499. ggml_graph_reset (gf);
  8500. ggml_set_f32 (f->grad, 1.0f);
  8501. ggml_graph_compute(ctx, gb);
  8502. ggml_opt_get_grad(np, ps, g);
  8503. fx = ggml_get_f32_1d(f, 0);
  8504. }
  8505. if (pf) {
  8506. pf[0] = fx;
  8507. }
  8508. float fx_best = fx;
  8509. // search direction = -gradient
  8510. ggml_vec_neg_f32(nx, d, g);
  8511. // ||x||, ||g||
  8512. ggml_vec_norm_f32(nx, &xnorm, x);
  8513. ggml_vec_norm_f32(nx, &gnorm, g);
  8514. if (xnorm < 1.0f) {
  8515. xnorm = 1.0f;
  8516. }
  8517. // already optimized
  8518. if (gnorm/xnorm <= params.lbfgs.eps) {
  8519. return GGML_OPT_OK;
  8520. }
  8521. // initial step
  8522. ggml_vec_norm_inv_f32(nx, &step, d);
  8523. int j = 0;
  8524. int k = 1;
  8525. int ls = 0;
  8526. int end = 0;
  8527. int bound = 0;
  8528. int n_no_improvement = 0;
  8529. float ys = 0.0f;
  8530. float yy = 0.0f;
  8531. float beta = 0.0f;
  8532. while (true) {
  8533. // store the current position and gradient vectors
  8534. ggml_vec_cpy_f32(nx, xp, x);
  8535. ggml_vec_cpy_f32(nx, gp, g);
  8536. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8537. if (ls < 0) {
  8538. // linesearch failed - go back to the previous point and return
  8539. ggml_vec_cpy_f32(nx, x, xp);
  8540. ggml_vec_cpy_f32(nx, g, gp);
  8541. return ls;
  8542. }
  8543. ggml_vec_norm_f32(nx, &xnorm, x);
  8544. ggml_vec_norm_f32(nx, &gnorm, g);
  8545. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8546. if (xnorm < 1.0) {
  8547. xnorm = 1.0;
  8548. }
  8549. if (gnorm/xnorm <= params.lbfgs.eps) {
  8550. // converged
  8551. return GGML_OPT_OK;
  8552. }
  8553. // delta-based convergence test
  8554. if (pf != NULL) {
  8555. // need at least params.past iterations to start checking for convergence
  8556. if (params.past <= k) {
  8557. const float rate = (pf[k%params.past] - fx)/fx;
  8558. if (fabs(rate) < params.delta) {
  8559. return GGML_OPT_OK;
  8560. }
  8561. }
  8562. pf[k%params.past] = fx;
  8563. }
  8564. // check for improvement
  8565. if (params.max_no_improvement > 0) {
  8566. if (fx < fx_best) {
  8567. fx_best = fx;
  8568. n_no_improvement = 0;
  8569. } else {
  8570. n_no_improvement++;
  8571. if (n_no_improvement >= params.max_no_improvement) {
  8572. return GGML_OPT_OK;
  8573. }
  8574. }
  8575. }
  8576. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8577. // reached the maximum number of iterations
  8578. return GGML_OPT_DID_NOT_CONVERGE;
  8579. }
  8580. // update vectors s and y:
  8581. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8582. // y_{k+1} = g_{k+1} - g_{k}.
  8583. //
  8584. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8585. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8586. // compute scalars ys and yy:
  8587. // ys = y^t \cdot s -> 1 / \rho.
  8588. // yy = y^t \cdot y.
  8589. //
  8590. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8591. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8592. lm[end].ys = ys;
  8593. // find new search direction
  8594. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8595. bound = (m <= k) ? m : k;
  8596. k++;
  8597. end = (end + 1)%m;
  8598. // initialize search direction with -g
  8599. ggml_vec_neg_f32(nx, d, g);
  8600. j = end;
  8601. for (int i = 0; i < bound; ++i) {
  8602. j = (j + m - 1) % m;
  8603. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8604. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8605. lm[j].alpha /= lm[j].ys;
  8606. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8607. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8608. }
  8609. ggml_vec_scale_f32(nx, d, ys/yy);
  8610. for (int i = 0; i < bound; ++i) {
  8611. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8612. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8613. beta /= lm[j].ys;
  8614. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8615. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8616. j = (j + 1)%m;
  8617. }
  8618. step = 1.0;
  8619. }
  8620. return GGML_OPT_DID_NOT_CONVERGE;
  8621. }
  8622. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8623. struct ggml_opt_params result;
  8624. switch (type) {
  8625. case GGML_OPT_ADAM:
  8626. {
  8627. result = (struct ggml_opt_params) {
  8628. .type = GGML_OPT_ADAM,
  8629. .n_threads = 1,
  8630. .past = 0,
  8631. .delta = 1e-5f,
  8632. .max_no_improvement = 100,
  8633. .print_forward_graph = true,
  8634. .print_backward_graph = true,
  8635. .adam = {
  8636. .n_iter = 10000,
  8637. .alpha = 0.001f,
  8638. .beta1 = 0.9f,
  8639. .beta2 = 0.999f,
  8640. .eps = 1e-8f,
  8641. .eps_f = 1e-5f,
  8642. .eps_g = 1e-3f,
  8643. },
  8644. };
  8645. } break;
  8646. case GGML_OPT_LBFGS:
  8647. {
  8648. result = (struct ggml_opt_params) {
  8649. .type = GGML_OPT_LBFGS,
  8650. .n_threads = 1,
  8651. .past = 0,
  8652. .delta = 1e-5f,
  8653. .max_no_improvement = 0,
  8654. .print_forward_graph = true,
  8655. .print_backward_graph = true,
  8656. .lbfgs = {
  8657. .m = 6,
  8658. .n_iter = 100,
  8659. .max_linesearch = 20,
  8660. .eps = 1e-5f,
  8661. .ftol = 1e-4f,
  8662. .wolfe = 0.9f,
  8663. .min_step = 1e-20f,
  8664. .max_step = 1e+20f,
  8665. .linesearch = GGML_LINESEARCH_DEFAULT,
  8666. },
  8667. };
  8668. } break;
  8669. }
  8670. return result;
  8671. }
  8672. enum ggml_opt_result ggml_opt(
  8673. struct ggml_context * ctx,
  8674. struct ggml_opt_params params,
  8675. struct ggml_tensor * f) {
  8676. bool free_ctx = false;
  8677. if (ctx == NULL) {
  8678. struct ggml_init_params params_ctx = {
  8679. .mem_size = 16*1024*1024,
  8680. .mem_buffer = NULL,
  8681. };
  8682. ctx = ggml_init(params_ctx);
  8683. if (ctx == NULL) {
  8684. return GGML_OPT_NO_CONTEXT;
  8685. }
  8686. free_ctx = true;
  8687. }
  8688. enum ggml_opt_result result = GGML_OPT_OK;
  8689. // build forward + backward compute graphs
  8690. struct ggml_cgraph gf = ggml_build_forward (f);
  8691. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8692. switch (params.type) {
  8693. case GGML_OPT_ADAM:
  8694. {
  8695. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8696. } break;
  8697. case GGML_OPT_LBFGS:
  8698. {
  8699. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8700. } break;
  8701. }
  8702. if (params.print_forward_graph) {
  8703. ggml_graph_print (&gf);
  8704. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8705. }
  8706. if (params.print_backward_graph) {
  8707. ggml_graph_print (&gb);
  8708. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8709. }
  8710. if (free_ctx) {
  8711. ggml_free(ctx);
  8712. }
  8713. return result;
  8714. }
  8715. ////////////////////////////////////////////////////////////////////////////////
  8716. size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8717. const int nb = k / qk;
  8718. const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
  8719. const size_t row_size = nb*bs;
  8720. assert(k % qk == 0);
  8721. const size_t pp_size = qk / 2;
  8722. uint8_t * pp = (uint8_t *) alloca(pp_size);
  8723. char * pdst = (char *) dst;
  8724. for (int j = 0; j < n; j += k) {
  8725. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8726. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8727. for (int i = 0; i < nb; i++) {
  8728. float amax = 0.0f; // absolute max
  8729. {
  8730. for (int l = 0; l < qk; l++) {
  8731. const float v = src[j + i*qk + l];
  8732. amax = MAX(amax, fabsf(v));
  8733. }
  8734. const float d = amax / ((1 << 3) - 1);
  8735. const float id = d ? 1.0f/d : 0.0f;
  8736. *(float *) pd = d;
  8737. pd += bs;
  8738. for (int l = 0; l < qk; l += 2) {
  8739. const float v0 = (src[j + i*qk + l + 0])*id;
  8740. const float v1 = (src[j + i*qk + l + 1])*id;
  8741. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  8742. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  8743. assert(vi0 >= 0 && vi0 < 16);
  8744. assert(vi1 >= 0 && vi1 < 16);
  8745. hist[vi0]++;
  8746. hist[vi1]++;
  8747. pp[l/2] = vi0 | (vi1 << 4);
  8748. }
  8749. memcpy(pb, pp, pp_size);
  8750. pb += bs;
  8751. }
  8752. }
  8753. }
  8754. return (n/k)*row_size;
  8755. }
  8756. size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8757. const int nb = k / qk;
  8758. const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
  8759. const size_t row_size = nb*bs;
  8760. assert(k % qk == 0);
  8761. const size_t pp_size = qk / 2;
  8762. uint8_t * pp = (uint8_t *) alloca(pp_size);
  8763. char * pdst = (char *) dst;
  8764. for (int j = 0; j < n; j += k) {
  8765. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8766. uint8_t * pm = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8767. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
  8768. //printf("n = %d, k = %d, nb = %d, row_size = %d, j = %d, pm = %p, pd = %p, pb = %p\n", n, k, nb, row_size, j, pm, pd, pb);
  8769. for (int i = 0; i < nb; i++) {
  8770. float min = FLT_MAX;
  8771. float max = -FLT_MAX;
  8772. {
  8773. for (int l = 0; l < qk; l++) {
  8774. const float v = src[j + i*qk + l];
  8775. if (v < min) min = v;
  8776. if (v > max) max = v;
  8777. }
  8778. const float d = (max - min) / ((1 << 4) - 1);
  8779. const float id = d ? 1.0f/d : 0.0f;
  8780. *(float *) pd = d;
  8781. *(float *) pm = min;
  8782. pd += bs;
  8783. pm += bs;
  8784. for (int l = 0; l < qk; l += 2) {
  8785. const float v0 = (src[j + i*qk + l + 0] - min)*id;
  8786. const float v1 = (src[j + i*qk + l + 1] - min)*id;
  8787. const uint8_t vi0 = round(v0);
  8788. const uint8_t vi1 = round(v1);
  8789. assert(vi0 >= 0 && vi0 < 16);
  8790. assert(vi1 >= 0 && vi1 < 16);
  8791. hist[vi0]++;
  8792. hist[vi1]++;
  8793. pp[l/2] = vi0 | (vi1 << 4);
  8794. }
  8795. memcpy(pb, pp, pp_size);
  8796. pb += bs;
  8797. }
  8798. }
  8799. }
  8800. return (n/k)*row_size;
  8801. }
  8802. ////////////////////////////////////////////////////////////////////////////////
  8803. int ggml_cpu_has_avx(void) {
  8804. #if defined(__AVX__)
  8805. return 1;
  8806. #else
  8807. return 0;
  8808. #endif
  8809. }
  8810. int ggml_cpu_has_avx2(void) {
  8811. #if defined(__AVX2__)
  8812. return 1;
  8813. #else
  8814. return 0;
  8815. #endif
  8816. }
  8817. int ggml_cpu_has_avx512(void) {
  8818. #if defined(__AVX512F__)
  8819. return 1;
  8820. #else
  8821. return 0;
  8822. #endif
  8823. }
  8824. int ggml_cpu_has_fma(void) {
  8825. #if defined(__FMA__)
  8826. return 1;
  8827. #else
  8828. return 0;
  8829. #endif
  8830. }
  8831. int ggml_cpu_has_neon(void) {
  8832. #if defined(__ARM_NEON)
  8833. return 1;
  8834. #else
  8835. return 0;
  8836. #endif
  8837. }
  8838. int ggml_cpu_has_arm_fma(void) {
  8839. #if defined(__ARM_FEATURE_FMA)
  8840. return 1;
  8841. #else
  8842. return 0;
  8843. #endif
  8844. }
  8845. int ggml_cpu_has_f16c(void) {
  8846. #if defined(__F16C__)
  8847. return 1;
  8848. #else
  8849. return 0;
  8850. #endif
  8851. }
  8852. int ggml_cpu_has_fp16_va(void) {
  8853. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8854. return 1;
  8855. #else
  8856. return 0;
  8857. #endif
  8858. }
  8859. int ggml_cpu_has_wasm_simd(void) {
  8860. #if defined(__wasm_simd128__)
  8861. return 1;
  8862. #else
  8863. return 0;
  8864. #endif
  8865. }
  8866. int ggml_cpu_has_blas(void) {
  8867. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8868. return 1;
  8869. #else
  8870. return 0;
  8871. #endif
  8872. }
  8873. int ggml_cpu_has_sse3(void) {
  8874. #if defined(__SSE3__)
  8875. return 1;
  8876. #else
  8877. return 0;
  8878. #endif
  8879. }
  8880. int ggml_cpu_has_vsx(void) {
  8881. #if defined(__POWER9_VECTOR__)
  8882. return 1;
  8883. #else
  8884. return 0;
  8885. #endif
  8886. }
  8887. ////////////////////////////////////////////////////////////////////////////////