| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770 |
- #pragma once
- //
- // GGML Tensor Library
- //
- // This documentation is still a work in progress.
- // If you wish some specific topics to be covered, feel free to drop a comment:
- //
- // https://github.com/ggerganov/whisper.cpp/issues/40
- //
- // ## Overview
- //
- // This library implements:
- //
- // - a set of tensor operations
- // - automatic differentiation
- // - basic optimization algorithms
- //
- // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
- // but is not limited to, the following:
- //
- // - linear regression
- // - support vector machines
- // - neural networks
- //
- // The library allows the user to define a certain function using the available tensor operations. This function
- // definition is represented internally via a computation graph. Each tensor operation in the function definition
- // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
- // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
- // using one of the available optimization algorithms.
- //
- // For example, here we define the function: f(x) = a*x^2 + b
- //
- // {
- // struct ggml_init_params params = {
- // .mem_size = 16*1024*1024,
- // .mem_buffer = NULL,
- // };
- //
- // // memory allocation happens here
- // struct ggml_context * ctx = ggml_init(params);
- //
- // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- //
- // ggml_set_param(ctx, x); // x is an input variable
- //
- // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
- // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
- //
- // ...
- // }
- //
- // Notice that the function definition above does not involve any actual computation. The computation is performed only
- // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
- //
- // {
- // ...
- //
- // struct ggml_cgraph gf = ggml_build_forward(f);
- //
- // // set the input variable and parameter values
- // ggml_set_f32(x, 2.0f);
- // ggml_set_f32(a, 3.0f);
- // ggml_set_f32(b, 4.0f);
- //
- // ggml_graph_compute(ctx0, &gf);
- //
- // printf("f = %f\n", ggml_get_f32_1d(f, 0));
- //
- // ...
- // }
- //
- // The actual computation is performed in the ggml_graph_compute() function.
- //
- // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
- // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
- // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
- // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
- // actually needed.
- //
- // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
- // differentiation and optimization algorithms.
- //
- // The described approach allows to define the function graph once and then compute its forward or backward graphs
- // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
- // the user can avoid the memory allocation overhead at runtime.
- //
- // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
- // citizens, but in theory the library can be extended to support FP8 and integer data types.
- //
- // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
- // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
- // clear that the library needs to support more complex operations. The way to support these operations is not clear
- // yet, but a few examples are demonstrated in the following operations:
- //
- // - ggml_permute()
- // - ggml_conv_1d_1s()
- // - ggml_conv_1d_2s()
- //
- // For each tensor operator, the library implements a forward and backward computation function. The forward function
- // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
- // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
- // calculus class, or watch the following video:
- //
- // What is Automatic Differentiation?
- // https://www.youtube.com/watch?v=wG_nF1awSSY
- //
- //
- // ## Tensor data (struct ggml_tensor)
- //
- // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
- // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
- // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
- //
- // {
- // struct ggml_tensor * c = ggml_add(ctx, a, b);
- //
- // assert(c->src[0] == a);
- // assert(c->src[1] == b);
- // }
- //
- // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
- // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
- // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
- // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
- // contiguous in memory.
- //
- // The data of the tensor is accessed via the "data" pointer. For example:
- //
- // {
- // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
- //
- // // a[1, 2] = 1.0f;
- // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
- //
- // // a[2, 0] = 2.0f;
- // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
- //
- // ...
- // }
- //
- // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
- //
- // ## The matrix multiplication operator (ggml_mul_mat)
- //
- // TODO
- //
- //
- // ## Multi-threading
- //
- // TODO
- //
- //
- // ## Overview of ggml.c
- //
- // TODO
- //
- //
- // ## SIMD optimizations
- //
- // TODO
- //
- //
- // ## Debugging ggml
- //
- // TODO
- //
- //
- #ifdef __cplusplus
- extern "C" {
- #endif
- #include <stdint.h>
- #include <stddef.h>
- #include <stdbool.h>
- #define GGML_MAX_DIMS 4
- #define GGML_MAX_NODES 4096
- #define GGML_MAX_PARAMS 16
- #define GGML_MAX_CONTEXTS 64
- #define GGML_MAX_OPT 4
- #ifdef __ARM_NEON
- // we use the built-in 16-bit float type
- typedef __fp16 ggml_fp16_t;
- #else
- typedef uint16_t ggml_fp16_t;
- #endif
- // convert FP16 <-> FP32
- float ggml_fp16_to_fp32(ggml_fp16_t x);
- ggml_fp16_t ggml_fp32_to_fp16(float x);
- struct ggml_object;
- struct ggml_context;
- enum ggml_type {
- GGML_TYPE_Q4_0,
- GGML_TYPE_Q4_1,
- GGML_TYPE_I8,
- GGML_TYPE_I16,
- GGML_TYPE_I32,
- GGML_TYPE_F16,
- GGML_TYPE_F32,
- GGML_TYPE_COUNT,
- };
- // available tensor operations:
- enum ggml_op {
- GGML_OP_NONE = 0,
- GGML_OP_DUP,
- GGML_OP_ADD,
- GGML_OP_SUB,
- GGML_OP_MUL,
- GGML_OP_DIV,
- GGML_OP_SQR,
- GGML_OP_SQRT,
- GGML_OP_SUM,
- GGML_OP_MEAN,
- GGML_OP_REPEAT,
- GGML_OP_ABS,
- GGML_OP_SGN,
- GGML_OP_NEG,
- GGML_OP_STEP,
- GGML_OP_RELU,
- GGML_OP_GELU,
- GGML_OP_SILU,
- GGML_OP_NORM, // normalize
- GGML_OP_RMS_NORM,
- GGML_OP_MUL_MAT,
- GGML_OP_SCALE,
- GGML_OP_CPY,
- GGML_OP_RESHAPE,
- GGML_OP_VIEW,
- GGML_OP_PERMUTE,
- GGML_OP_TRANSPOSE,
- GGML_OP_GET_ROWS,
- GGML_OP_DIAG_MASK_INF,
- GGML_OP_SOFT_MAX,
- GGML_OP_ROPE,
- GGML_OP_CONV_1D_1S,
- GGML_OP_CONV_1D_2S,
- GGML_OP_FLASH_ATTN,
- GGML_OP_FLASH_FF,
- GGML_OP_COUNT,
- };
- // n-dimensional tensor
- struct ggml_tensor {
- enum ggml_type type;
- int n_dims;
- int ne[GGML_MAX_DIMS]; // number of elements
- size_t nb[GGML_MAX_DIMS]; // stride in bytes:
- // nb[0] = sizeof(type)
- // nb[1] = nb[0] * ne[0] + padding
- // nb[i] = nb[i-1] * ne[i-1]
- // compute data
- enum ggml_op op;
- bool is_param;
- struct ggml_tensor * grad;
- struct ggml_tensor * src0;
- struct ggml_tensor * src1;
- struct ggml_tensor * opt[GGML_MAX_OPT];
- // thread scheduling
- int n_tasks;
- // performance
- int perf_runs;
- int64_t perf_cycles;
- int64_t perf_time_us;
- void * data;
- char padding[8];
- };
- // computation graph
- struct ggml_cgraph {
- int n_nodes;
- int n_leafs;
- int n_threads;
- size_t work_size;
- struct ggml_tensor * work;
- struct ggml_tensor * nodes[GGML_MAX_NODES];
- struct ggml_tensor * grads[GGML_MAX_NODES];
- struct ggml_tensor * leafs[GGML_MAX_NODES];
- // performance
- int perf_runs;
- int64_t perf_cycles;
- int64_t perf_time_us;
- };
- // scratch buffer
- struct ggml_scratch {
- size_t offs;
- size_t size;
- void * data;
- };
- struct ggml_init_params {
- // memory pool
- size_t mem_size; // bytes
- void * mem_buffer; // if NULL, memory will be allocated internally
- };
- void ggml_time_init(void); // call this once at the beginning of the program
- int64_t ggml_time_ms(void);
- int64_t ggml_time_us(void);
- int64_t ggml_cycles(void);
- int64_t ggml_cycles_per_ms(void);
- void ggml_print_object (const struct ggml_object * obj);
- void ggml_print_objects(const struct ggml_context * ctx);
- int ggml_nelements(const struct ggml_tensor * tensor);
- size_t ggml_nbytes (const struct ggml_tensor * tensor);
- int ggml_blck_size (enum ggml_type type);
- size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
- float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
- size_t ggml_element_size(const struct ggml_tensor * tensor);
- struct ggml_context * ggml_init(struct ggml_init_params params);
- void ggml_free(struct ggml_context * ctx);
- size_t ggml_used_mem(const struct ggml_context * ctx);
- size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
- struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int *ne);
- struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int ne0);
- struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int ne0,
- int ne1);
- struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int ne0,
- int ne1,
- int ne2);
- struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int ne0,
- int ne1,
- int ne2,
- int ne3);
- struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
- struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
- struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
- struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
- struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
- struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
- struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
- int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
- void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
- float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
- void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
- void * ggml_get_data (const struct ggml_tensor * tensor);
- float * ggml_get_data_f32(const struct ggml_tensor * tensor);
- //
- // operations on tensors with backpropagation
- //
- struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // return scalar
- // TODO: compute sum along rows
- struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // mean along rows
- struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // if a is the same shape as b, and a is not parameter, return a
- // otherwise, return a new tensor: repeat(a) to fit in b
- struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // TODO: double-check this computation is correct
- struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // normalize along rows
- // TODO: eps is hardcoded to 1e-5 for now
- struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // A: m rows, n columns
- // B: p rows, n columns (i.e. we transpose it internally)
- // result is m columns, p rows
- struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- //
- // operations on tensors without backpropagation
- //
- // in-place, returns view(a)
- struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // a -> b, return view(b)
- struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // return view(a), b specifies the new shape
- // TODO: when we start computing gradient, make a copy instead of view
- struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // return view(a)
- // TODO: when we start computing gradient, make a copy instead of view
- struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int ne0,
- int ne1);
- // return view(a)
- // TODO: when we start computing gradient, make a copy instead of view
- struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int ne0,
- int ne1,
- int ne2);
- // offset in bytes
- struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int ne0,
- size_t offset);
- struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int ne0,
- int ne1,
- size_t nb1, // row stride in bytes
- size_t offset);
- struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3);
- // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
- struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // set elements above the diagonal to -INF
- // in-place, returns view(a)
- struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // in-place, returns view(a)
- struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // rotary position embedding
- // in-place, returns view(a)
- // if mode == 1, skip n_past elements
- // TODO: avoid creating a new tensor every time
- struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_dims,
- int mode);
- // padding = 1
- // TODO: we don't support extra parameters for now
- // that's why we are hard-coding the stride, padding, and dilation
- // not great ..
- struct ggml_tensor * ggml_conv_1d_1s(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- struct ggml_tensor * ggml_conv_1d_2s(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- struct ggml_tensor * ggml_flash_attn(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- bool masked);
- struct ggml_tensor * ggml_flash_ff(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b0,
- struct ggml_tensor * b1,
- struct ggml_tensor * c0,
- struct ggml_tensor * c1);
- //
- // automatic differentiation
- //
- void ggml_set_param(
- struct ggml_context * ctx,
- struct ggml_tensor * tensor);
- void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
- struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
- struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
- void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
- void ggml_graph_reset (struct ggml_cgraph * cgraph);
- // print info and performance information for the graph
- void ggml_graph_print(const struct ggml_cgraph * cgraph);
- // dump the graph into a file using the dot format
- void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
- //
- // optimization
- //
- // optimization methods
- enum ggml_opt_type {
- GGML_OPT_ADAM,
- GGML_OPT_LBFGS,
- };
- // linesearch methods
- enum ggml_linesearch {
- GGML_LINESEARCH_DEFAULT = 1,
- GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
- GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
- GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
- };
- // optimization return values
- enum ggml_opt_result {
- GGML_OPT_OK = 0,
- GGML_OPT_DID_NOT_CONVERGE,
- GGML_OPT_NO_CONTEXT,
- GGML_OPT_INVALID_WOLFE,
- GGML_OPT_FAIL,
- GGML_LINESEARCH_FAIL = -128,
- GGML_LINESEARCH_MINIMUM_STEP,
- GGML_LINESEARCH_MAXIMUM_STEP,
- GGML_LINESEARCH_MAXIMUM_ITERATIONS,
- GGML_LINESEARCH_INVALID_PARAMETERS,
- };
- // optimization parameters
- //
- // see ggml.c (ggml_opt_default_params) for default values
- //
- struct ggml_opt_params {
- enum ggml_opt_type type;
- int n_threads;
- // delta-based convergence test
- //
- // if past == 0 - disabled
- // if past > 0:
- // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
- //
- int past;
- float delta;
- // maximum number of iterations without improvement
- //
- // if 0 - disabled
- // if > 0:
- // assume convergence if no cost improvement in this number of iterations
- //
- int max_no_improvement;
- bool print_forward_graph;
- bool print_backward_graph;
- // ADAM parameters
- struct {
- int n_iter;
- float alpha; // learning rate
- float beta1;
- float beta2;
- float eps; // epsilon for numerical stability
- float eps_f; // epsilon for convergence test
- float eps_g; // epsilon for convergence test
- } adam;
- // LBFGS parameters
- struct {
- int m; // number of corrections to approximate the inv. Hessian
- int n_iter;
- int max_linesearch;
- float eps; // convergence tolerance
- float ftol; // line search tolerance
- float wolfe;
- float min_step;
- float max_step;
- enum ggml_linesearch linesearch;
- } lbfgs;
- };
- struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
- // optimize the function defined by the tensor f
- enum ggml_opt_result ggml_opt(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f);
- //
- // quantization
- //
- size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
- size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);
- //
- // system info
- //
- int ggml_cpu_has_avx(void);
- int ggml_cpu_has_avx2(void);
- int ggml_cpu_has_avx512(void);
- int ggml_cpu_has_fma(void);
- int ggml_cpu_has_neon(void);
- int ggml_cpu_has_arm_fma(void);
- int ggml_cpu_has_f16c(void);
- int ggml_cpu_has_fp16_va(void);
- int ggml_cpu_has_wasm_simd(void);
- int ggml_cpu_has_blas(void);
- int ggml_cpu_has_sse3(void);
- int ggml_cpu_has_vsx(void);
- #ifdef __cplusplus
- }
- #endif
|