| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071 |
- #!/usr/bin/env python
- import gguf
- import argparse
- import concurrent.futures
- import copy
- import enum
- import faulthandler
- import functools
- import io
- import itertools
- import json
- import math
- import mmap
- import pickle
- import re
- import signal
- import struct
- import sys
- import zipfile
- import numpy as np
- from abc import ABCMeta, abstractmethod
- from dataclasses import dataclass
- from pathlib import Path
- from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, TypeVar, Union)
- from sentencepiece import SentencePieceProcessor # type: ignore
- if TYPE_CHECKING:
- from typing_extensions import TypeAlias
- if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
- faulthandler.register(signal.SIGUSR1)
- NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
- ARCH=gguf.MODEL_ARCH.LLAMA
- NAMES=gguf.MODEL_TENSOR_NAMES[ARCH]
- #
- # data types
- #
- @dataclass(frozen=True)
- class UnquantizedDataType:
- name: str
- DT_F16 = UnquantizedDataType('F16')
- DT_F32 = UnquantizedDataType('F32')
- DT_I32 = UnquantizedDataType('I32')
- DT_BF16 = UnquantizedDataType('BF16')
- DataType = Union[UnquantizedDataType]
- DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = {
- DT_BF16: np.dtype(np.uint16),
- DT_F16: np.dtype(np.float16),
- DT_F32: np.dtype(np.float32),
- DT_I32: np.dtype(np.int32),
- }
- NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \
- {dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()}
- SAFETENSORS_DATA_TYPES: Dict[str, DataType] = {
- 'BF16': DT_BF16,
- 'F16': DT_F16,
- 'F32': DT_F32,
- 'I32': DT_I32,
- }
- # TODO: match this with `llama_ftype`
- # TODO: rename to LLAMAFileType
- # TODO: move to `gguf.py`
- class GGMLFileType(enum.IntEnum):
- AllF32 = 0
- MostlyF16 = 1 # except 1d tensors
- def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType:
- if len(tensor.shape) == 1:
- # 1D tensors are always F32.
- return DT_F32
- elif self == GGMLFileType.AllF32:
- return DT_F32
- elif self == GGMLFileType.MostlyF16:
- return DT_F16
- else:
- raise ValueError(self)
- #
- # hparams loading
- #
- @dataclass
- class Params:
- n_vocab: int
- n_embd: int
- n_mult: int
- n_layer: int
- n_ctx: int
- n_ff: int
- n_head: int
- n_head_kv: int
- f_norm_eps: float
- ftype: Optional[GGMLFileType] = None
- @staticmethod
- def find_n_mult(n_ff: int, n_embd: int) -> int:
- # hardcoded magic range
- for n_mult in range(8192, 1, -1):
- calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
- if calc_ff == n_ff:
- return n_mult
- raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
- @staticmethod
- def guessed(model: 'LazyModel') -> 'Params':
- # try transformer naming first
- n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
- # try transformer naming first
- if "model.layers.0.self_attn.q_proj.weight" in model:
- n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
- elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
- n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
- else:
- n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
- if n_layer < 1:
- raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
- "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
- n_head = n_embd // 128 # guessed
- n_mult = 256 # guessed
- # TODO: verify this
- n_ff = int(2 * (4 * n_embd) / 3)
- n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
- return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = n_mult,
- n_layer = n_layer,
- n_ctx = -1,
- n_ff = n_ff,
- n_head = n_head,
- n_head_kv = n_head,
- f_norm_eps = 1e-5,
- )
- @staticmethod
- def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
- config = json.load(open(config_path))
- n_vocab = config["vocab_size"]
- n_embd = config["hidden_size"]
- n_layer = config["num_hidden_layers"]
- n_ff = config["intermediate_size"]
- n_head = config["num_attention_heads"]
- n_head_kv = config["num_key_value_heads"] if "num_key_value_heads" in config else n_head
- f_norm_eps = config["rms_norm_eps"]
- n_mult = Params.find_n_mult(n_ff, n_embd)
- if "max_sequence_length" in config:
- n_ctx = config["max_sequence_length"]
- elif "max_position_embeddings" in config:
- n_ctx = config["max_position_embeddings"]
- else:
- raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
- "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
- return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = n_mult,
- n_layer = n_layer,
- n_ctx = n_ctx,
- n_ff = n_ff,
- n_head = n_head,
- n_head_kv = n_head_kv,
- f_norm_eps = f_norm_eps,
- )
- # LLaMA v2 70B params.json
- # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1
- @staticmethod
- def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
- config = json.load(open(config_path))
- n_vocab = config["vocab_size"]
- n_embd = config["dim"]
- n_layer = config["n_layers"]
- n_mult = config["multiple_of"]
- n_ctx = 2048 if config["norm_eps"] == 1e-06 else 4096 # hack to determine LLaMA v1 vs v2
- n_ff = -1
- n_head = config["n_heads"]
- n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head
- f_norm_eps = config["norm_eps"]
- if n_vocab == -1:
- n_vocab = model["tok_embeddings.weight"].shape[0]
- if n_ff == -1:
- n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
- return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = n_mult,
- n_layer = n_layer,
- n_ctx = n_ctx,
- n_ff = n_ff,
- n_head = n_head,
- n_head_kv = n_head_kv,
- f_norm_eps = f_norm_eps,
- )
- @staticmethod
- def load(model_plus: 'ModelPlus') -> 'Params':
- hf_config_path = model_plus.paths[0].parent / "config.json"
- orig_config_path = model_plus.paths[0].parent / "params.json"
- if hf_config_path.exists():
- params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
- elif orig_config_path.exists():
- params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
- else:
- params = Params.guessed(model_plus.model)
- return params
- #
- # vocab
- #
- class BpeVocab:
- def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
- self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
- added_tokens: Dict[str, int]
- if fname_added_tokens is not None:
- added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
- else:
- added_tokens = {}
- vocab_size: int = len(self.bpe_tokenizer)
- expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
- actual_ids = sorted(added_tokens.values())
- if expected_ids != actual_ids:
- raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
- items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
- self.added_tokens_list = [text for (text, idx) in items]
- self.vocab_size_base: int = vocab_size
- self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
- self.fname_tokenizer = fname_tokenizer
- self.fname_added_tokens = fname_added_tokens
- def bpe_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- tokenizer = self.bpe_tokenizer
- from transformers.models.gpt2 import tokenization_gpt2
- byte_encoder = tokenization_gpt2.bytes_to_unicode()
- byte_decoder = {v: k for k, v in byte_encoder.items()}
- for i, item in enumerate(tokenizer):
- text: bytes = item.encode("utf-8")
- score: float = -i
- yield text, score, gguf.TokenType.USER_DEFINED
- def added_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- for text in self.added_tokens_list:
- score = -1000.0
- yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
- def all_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- yield from self.bpe_tokens()
- yield from self.added_tokens()
- def __repr__(self) -> str:
- return f"BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
- class SentencePieceVocab:
- def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
- self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
- added_tokens: Dict[str, int]
- if fname_added_tokens is not None:
- added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
- else:
- added_tokens = {}
- vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
- expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
- actual_ids = sorted(added_tokens.values())
- if expected_ids != actual_ids:
- raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
- items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
- self.added_tokens_list = [text for (text, idx) in items]
- self.vocab_size_base: int = vocab_size
- self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
- self.fname_tokenizer = fname_tokenizer
- self.fname_added_tokens = fname_added_tokens
- def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- tokenizer = self.sentencepiece_tokenizer
- for i in range(tokenizer.vocab_size()):
- piece = tokenizer.id_to_piece(i)
- text: bytes = piece.encode("utf-8")
- score: float = tokenizer.get_score(i)
- toktype = gguf.TokenType.NORMAL
- if tokenizer.is_unknown(i):
- toktype = gguf.TokenType.UNKNOWN
- if tokenizer.is_control(i):
- toktype = gguf.TokenType.CONTROL
- # NOTE: I think added_tokens are user defined.
- # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
- # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
- if tokenizer.is_unused(i):
- toktype = gguf.TokenType.UNUSED
- if tokenizer.is_byte(i):
- toktype = gguf.TokenType.BYTE
- yield text, score, toktype
- def added_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- for text in self.added_tokens_list:
- score = -1000.0
- yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
- def all_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- yield from self.sentencepiece_tokens()
- yield from self.added_tokens()
- def __repr__(self) -> str:
- return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
- Vocab = Union[BpeVocab, SentencePieceVocab]
- #
- # data loading
- # TODO: reuse (probably move to gguf.py?)
- #
- def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
- #print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
- if n_head_kv is not None and n_head != n_head_kv:
- n_head //= n_head_kv
- return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
- class Tensor(metaclass=ABCMeta):
- data_type: DataType
- @abstractmethod
- def astype(self, data_type: DataType) -> 'Tensor': ...
- @abstractmethod
- def permute(self, n_head: int, n_head_kv: int) -> 'Tensor': ...
- @abstractmethod
- def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ...
- @abstractmethod
- def part(self, n_part: int) -> 'UnquantizedTensor': ...
- @abstractmethod
- def to_ggml(self) -> 'GGMLCompatibleTensor': ...
- def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray:
- assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
- fp32_arr = bf16_arr.astype(np.uint32) << 16
- return fp32_arr.view(np.float32)
- class UnquantizedTensor(Tensor):
- def __init__(self, ndarray: NDArray) -> None:
- assert isinstance(ndarray, np.ndarray)
- self.ndarray = ndarray
- self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
- def astype(self, data_type: DataType) -> Tensor:
- dtype = DATA_TYPE_TO_NUMPY[data_type]
- if self.data_type == DT_BF16:
- self.ndarray = bf16_to_fp32(self.ndarray)
- return UnquantizedTensor(self.ndarray.astype(dtype))
- def to_ggml(self) -> 'UnquantizedTensor':
- return self
- def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
- r = self.ndarray.shape[0] // 3
- return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head))
- def part(self, n_part: int) -> 'UnquantizedTensor':
- r = self.ndarray.shape[0] // 3
- return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
- def permute(self, n_head: int, n_head_kv: int) -> 'UnquantizedTensor':
- return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
- def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray:
- tensor = lazy_tensor.load()
- assert isinstance(tensor, UnquantizedTensor)
- # double-check:
- actual_shape = list(tensor.ndarray.shape)
- assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
- if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
- if convert:
- tensor.ndarray = tensor.ndarray.astype(expected_dtype)
- else:
- raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
- return tensor.ndarray
- GGMLCompatibleTensor = Union[UnquantizedTensor]
- class DeferredPermutedTensor(Tensor):
- def __init__(self, base: Tensor, n_head: int, n_head_kv: int) -> None:
- self.base = base
- self.n_head = n_head
- self.data_type = self.base.data_type
- def astype(self, data_type: DataType) -> Tensor:
- return self.base.astype(data_type).permute(self.n_head, self.n_head_kv)
- def to_ggml(self) -> GGMLCompatibleTensor:
- return self.base.to_ggml().permute(self.n_head, self.n_head_kv)
- def permute(self, n_head: int, n_head_kv: int) -> Tensor:
- raise Exception("shouldn't permute twice")
- @dataclass
- class LazyTensor:
- _load: Callable[[], Tensor]
- shape: List[int]
- data_type: DataType
- description: str
- def load(self) -> Tensor:
- ret = self._load()
- assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description)
- return ret
- def astype(self, data_type: DataType) -> 'LazyTensor':
- self.validate_conversion_to(data_type)
- def load() -> Tensor:
- return self.load().astype(data_type)
- return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
- def validate_conversion_to(self, data_type: DataType) -> None:
- if data_type == self.data_type:
- return
- LazyModel = Dict[str, LazyTensor]
- @dataclass
- class ModelPlus:
- model: LazyModel
- paths: List[Path] # Where this was read from.
- format: Literal['ggml', 'torch', 'safetensors']
- vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab.
- def merge_sharded(models: List[LazyModel]) -> LazyModel:
- # Original LLaMA models have each file contain one part of each tensor.
- # Use a dict instead of a set to preserve order.
- names = {name: None for model in models for name in model}
- def convert(name: str) -> LazyTensor:
- lazy_tensors: List[LazyTensor] = [model[name] for model in models]
- if len(lazy_tensors) == 1:
- # only one file; don't go through this procedure since there might
- # be quantized tensors
- return lazy_tensors[0]
- if len(lazy_tensors[0].shape) == 1:
- # the tensor is just duplicated in every file
- return lazy_tensors[0]
- if name.startswith('tok_embeddings.') or \
- name.endswith('.attention.wo.weight') or \
- name.endswith('.feed_forward.w2.weight'):
- # split by columns
- axis = 1
- else:
- # split by rows
- axis = 0
- concatenated_shape = list(lazy_tensors[0].shape)
- concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
- def load() -> UnquantizedTensor:
- ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
- concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
- return UnquantizedTensor(concatenated)
- description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
- return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
- return {name: convert(name) for name in names}
- def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
- formats = set(mp.format for mp in models_plus)
- assert len(formats) == 1, "different formats?"
- format = formats.pop()
- paths = [path for mp in models_plus for path in mp.paths]
- # Use the first non-None vocab, if any.
- try:
- vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
- except StopIteration:
- vocab = None
- if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
- # Transformers models put different tensors in different files, but
- # don't split indivdual tensors between files.
- model: LazyModel = {}
- for mp in models_plus:
- model.update(mp.model)
- else:
- model = merge_sharded([mp.model for mp in models_plus])
- return ModelPlus(model, paths, format, vocab)
- def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().permute(n_head, n_head_kv)
- return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
- def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().permute_part(n_part, n_head)
- s = lazy_tensor.shape.copy()
- s[0] = s[0] // 3
- return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
- def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().part(n_part)
- s = lazy_tensor.shape.copy()
- s[0] = s[0] // 3
- return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
- # Functionality that simulates `torch.load` but where individual tensors are
- # only loaded into memory on demand, not all at once.
- # PyTorch can't do this natively as of time of writing:
- # - https://github.com/pytorch/pytorch/issues/64327
- # This allows us to de-shard without multiplying RAM usage, and also
- # conveniently drops the PyTorch dependency (though we still need numpy).
- @dataclass
- class LazyStorageKind:
- data_type: DataType
- @dataclass
- class LazyStorage:
- load: Callable[[int, int], NDArray]
- kind: LazyStorageKind
- description: str
- class LazyUnpickler(pickle.Unpickler):
- def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
- super().__init__(fp)
- self.data_base_path = data_base_path
- self.zip_file = zip_file
- def persistent_load(self, pid: Any) -> Any:
- assert pid[0] == 'storage'
- assert isinstance(pid[1], LazyStorageKind)
- data_type = pid[1].data_type
- filename_stem = pid[2]
- filename = self.data_base_path + '/' + filename_stem
- info = self.zip_file.getinfo(filename)
- def load(offset: int, elm_count: int) -> NDArray:
- dtype = DATA_TYPE_TO_NUMPY.get(data_type)
- if dtype is None:
- raise Exception("tensor stored in unsupported format")
- fp = self.zip_file.open(info)
- fp.seek(offset * dtype.itemsize)
- size = elm_count * dtype.itemsize
- data = fp.read(size)
- assert len(data) == size
- return np.frombuffer(data, dtype)
- description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
- return LazyStorage(load=load, kind=pid[1], description=description)
- # @staticmethod
- def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
- # pyright: ignore[reportSelfClsParameterName]
- requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
- assert isinstance(storage, LazyStorage)
- def load() -> UnquantizedTensor:
- elm_count = stride[0] * size[0]
- return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
- description = f'pickled storage_offset={storage_offset} in {storage.description}'
- return LazyTensor(load, list(size), storage.kind.data_type, description)
- # @staticmethod
- def rebuild_from_type_v2(func, new_type, args, state):
- return func(*args)
- CLASSES: Dict[Any, Any] = {
- ('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2,
- ('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2,
- ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
- ('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
- ('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
- ('torch', 'IntStorage'): LazyStorageKind(DT_I32),
- ('torch', 'Tensor'): LazyTensor,
- }
- def find_class(self, module: str, name: str) -> Any:
- if not module.startswith('torch'):
- return super().find_class(module, name)
- return self.CLASSES[(module, name)]
- def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
- zf = zipfile.ZipFile(outer_fp)
- pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
- assert len(pickle_paths) == 1, pickle_paths
- pickle_fp = zf.open(pickle_paths[0], 'r')
- unpickler = LazyUnpickler(pickle_fp,
- data_base_path=pickle_paths[0][:-4],
- zip_file=zf)
- model = unpickler.load()
- as_dict = dict(model.items())
- return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
- def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
- header_size, = struct.unpack('<Q', fp.read(8))
- header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size))
- # Use mmap for the actual data to avoid race conditions with the file offset.
- mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
- byte_buf = mapped[8 + header_size:]
- def convert(info: Dict[str, Any]) -> LazyTensor:
- data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
- numpy_dtype = DATA_TYPE_TO_NUMPY[data_type]
- shape: List[int] = info['shape']
- begin, end = info['data_offsets']
- assert 0 <= begin <= end <= len(byte_buf)
- assert end - begin == math.prod(shape) * numpy_dtype.itemsize
- buf = byte_buf[begin:end]
- def load() -> UnquantizedTensor:
- return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
- description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
- return LazyTensor(load, shape, data_type, description)
- model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
- return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
- def must_read(fp: IO[bytes], length: int) -> bytes:
- ret = fp.read(length)
- if len(ret) < length:
- raise Exception("unexpectedly reached end of file")
- return ret
- @functools.lru_cache(maxsize=None)
- def lazy_load_file(path: Path) -> ModelPlus:
- fp = open(path, 'rb')
- first8 = fp.read(8)
- fp.seek(0)
- if first8[:2] == b'PK':
- # A zip file, i.e. PyTorch format
- return lazy_load_torch_file(fp, path)
- elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
- # Probably safetensors
- return lazy_load_safetensors_file(fp, path)
- else:
- raise ValueError(f"unknown format: {path}")
- In = TypeVar('In')
- Out = TypeVar('Out')
- def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int) -> Iterable[Out]:
- '''Parallel map, but with backpressure. If the caller doesn't call `next`
- fast enough, this will stop calling `func` at some point rather than
- letting results pile up in memory. Specifically, there is a max of one
- output value buffered per thread.'''
- with concurrent.futures.ThreadPoolExecutor() as executor:
- futures: List[concurrent.futures.Future[Out]] = []
- items_rev = list(iterable)[::-1]
- for i in range(min(concurrency, len(items_rev))):
- futures.append(executor.submit(func, items_rev.pop()))
- while futures:
- result = futures.pop(0).result()
- if items_rev:
- futures.append(executor.submit(func, items_rev.pop()))
- yield result
- def check_vocab_size(params: Params, vocab: Vocab) -> None:
- if params.n_vocab != vocab.vocab_size:
- assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
- if params.n_vocab == vocab.vocab_size_base:
- print("Ignoring added_tokens.json since model matches vocab size without it.")
- vocab.added_tokens_list = []
- vocab.vocab_size = vocab.vocab_size_base
- return
- msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
- if vocab.fname_added_tokens is not None:
- msg += f" combined with {vocab.fname_added_tokens}"
- msg += f" has {vocab.vocab_size})."
- if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None:
- msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
- raise Exception(msg)
- class OutputFile:
- def __init__(self, fname_out: Path) -> None:
- self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
- def add_meta_arch(self, params: Params) -> None:
- self.gguf.add_name ("LLaMA")
- self.gguf.add_context_length (params.n_ctx)
- self.gguf.add_embedding_length (params.n_embd)
- self.gguf.add_block_count (params.n_layer)
- self.gguf.add_feed_forward_length (params.n_ff)
- self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
- self.gguf.add_head_count (params.n_head)
- self.gguf.add_head_count_kv (params.n_head_kv)
- self.gguf.add_layer_norm_rms_eps (params.f_norm_eps)
- if params.ftype:
- self.gguf.add_file_type(params.ftype)
- def add_meta_vocab(self, vocab: Vocab) -> None:
- tokens = []
- scores = []
- toktypes = []
- # NOTE: `all_tokens` returns the the base vocabulary and added tokens
- # TODO: add special tokens?
- for text, score, toktype in vocab.all_tokens():
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- self.gguf.add_tokenizer_model("llama")
- self.gguf.add_token_list(tokens)
- self.gguf.add_token_scores(scores)
- self.gguf.add_token_types(toktypes)
- def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
- n_elements = 1
- for dim in tensor.shape:
- n_elements *= dim
- data_type = DATA_TYPE_TO_NUMPY[tensor.data_type]
- data_nbytes = n_elements * data_type.itemsize
- self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes)
- def write_meta(self) -> None:
- self.gguf.write_header_to_file()
- self.gguf.write_kv_data_to_file()
- def write_tensor_info(self) -> None:
- self.gguf.write_ti_data_to_file()
- def close(self) -> None:
- self.gguf.close()
- @staticmethod
- def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab) -> None:
- check_vocab_size(params, vocab)
- of = OutputFile(fname_out)
- # meta data
- of.add_meta_arch(params)
- of.add_meta_vocab(vocab)
- of.write_meta()
- of.close()
- @staticmethod
- def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None:
- check_vocab_size(params, vocab)
- of = OutputFile(fname_out)
- # meta data
- of.add_meta_arch(params)
- of.add_meta_vocab(vocab)
- # tensor info
- for name, lazy_tensor in model.items():
- of.add_tensor_info(name, lazy_tensor)
- of.write_meta()
- of.write_tensor_info()
- def do_item(item: Tuple[str, LazyTensor]) -> NDArray:
- name, lazy_tensor = item
- return lazy_tensor.load().to_ggml().ndarray
- # tensor data
- ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8)
- for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
- size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
- padi = len(str(len(model)))
- print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}")
- of.gguf.write_tensor_data(ndarray)
- of.close()
- def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
- wq_type = model[NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
- if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
- return GGMLFileType.AllF32
- if output_type_str == "f16" or (output_type_str is None and wq_type in (DT_F16, DT_BF16)):
- return GGMLFileType.MostlyF16
- name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
- raise Exception(f"Unexpected combination of types: {name_to_type}")
- def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
- return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
- for (name, tensor) in model.items()}
- def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
- tmap = gguf.get_tensor_name_map(ARCH, params.n_layer)
- tmp = model
- # HF models permut or pack some of the tensors, so we need to undo that
- for i in itertools.count():
- if f"model.layers.{i}.self_attn.q_proj.weight" in model:
- print(f"Permuting layer {i}")
- tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
- tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
- #tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
- elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
- print(f"Unpacking and permuting layer {i}")
- tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
- tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
- tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
- else:
- break
- out: LazyModel = {}
- for name, lazy_tensor in model.items():
- name_new = name
- if name in tmap:
- name_new = tmap[name]
- elif name.endswith(".weight") and name[:-7] in tmap:
- name_new = tmap[name[:-7]] + ".weight"
- elif name.endswith(".bias") and name[:-5] in tmap:
- name_new = tmap[name[:-5]] + ".bias"
- else:
- raise Exception(f"Unexpected tensor name: {name}")
- if gguf.should_skip_tensor_TMP(ARCH, params.n_layer, name_new):
- print(f"skipping tensor {name_new}")
- continue
- else:
- print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type} | {lazy_tensor.shape}")
- out[name_new] = lazy_tensor
- return out
- def nth_multifile_path(path: Path, n: int) -> Optional[Path]:
- '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
- the nth path in the model.
- '''
- # Support the following patterns:
- patterns: List[Tuple[str, str]] = [
- # - x.00.pth, x.01.pth, etc.
- (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
- # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
- (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
- # x.bin, x.bin.1, etc.
- (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
- ]
- for regex, replacement in patterns:
- if re.search(regex, path.name):
- new_path = path.with_name(re.sub(regex, replacement, path.name))
- if new_path.exists():
- return new_path
- return None
- def find_multifile_paths(path: Path) -> List[Path]:
- '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
- the whole list of paths in the model.
- '''
- ret: List[Path] = []
- for i in itertools.count():
- nth_path = nth_multifile_path(path, i)
- if nth_path is None:
- break
- ret.append(nth_path)
- if not ret:
- # No matches. This should only happen if the file was named, e.g.,
- # foo.0, and there was no file named foo. Oh well, try to process it
- # as a single file.
- return [path]
- return ret
- def load_some_model(path: Path) -> ModelPlus:
- '''Load a model of any supported format.'''
- # Be extra-friendly and accept either a file or a directory:
- if path.is_dir():
- # Check if it's a set of safetensors files first
- files = list(path.glob("model-00001-of-*.safetensors"))
- if not files:
- # Try the PyTorch patterns too, with lower priority
- globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
- files = [file for glob in globs for file in path.glob(glob)]
- if not files:
- raise Exception(f"Can't find model in directory {path}")
- if len(files) > 1:
- raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
- path = files[0]
- paths = find_multifile_paths(path)
- models_plus: List[ModelPlus] = []
- for path in paths:
- print(f"Loading model file {path}")
- models_plus.append(lazy_load_file(path))
- model_plus = merge_multifile_models(models_plus)
- return model_plus
- def load_vocab(path: Path, vocabtype: Optional[str]) -> Union[BpeVocab, SentencePieceVocab]:
- # Be extra-friendly and accept either a file or a directory. Also, if it's
- # a directory, it might be the model directory, and tokenizer.model might
- # be in the parent of that.
- if path.is_dir():
- vocab_file = "tokenizer.model"
- if vocabtype == 'bpe':
- vocab_file = "vocab.json"
- path2 = path / vocab_file
- # Use `.parent` instead of /.. to handle the symlink case better.
- path3 = path.parent / vocab_file
- if path2.exists():
- path = path2
- elif path3.exists():
- path = path3
- else:
- raise FileNotFoundError(
- f"Could not find {vocab_file} in {path} or its parent; "
- "if it's in another directory, pass the directory as --vocab-dir")
- print(f"Loading vocab file '{path}', type '{vocabtype}'")
- added_tokens_path = path.parent / "added_tokens.json"
- if vocabtype == "bpe":
- return BpeVocab(path, added_tokens_path if added_tokens_path.exists() else None)
- elif vocabtype == "spm":
- return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
- else:
- raise ValueError(f"Unsupported vocabulary type {vocabtype}")
- def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
- namestr = {
- GGMLFileType.AllF32: "f32",
- GGMLFileType.MostlyF16: "f16",
- }[file_type]
- ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
- if ret in model_paths:
- sys.stderr.write(
- f"Error: Default output path ({ret}) would overwrite the input. "
- "Please explicitly specify a path using --outfile.\n")
- sys.exit(1)
- return ret
- def do_dump_model(model_plus: ModelPlus) -> None:
- print(f"model_plus.paths = {model_plus.paths!r}")
- print(f"model_plus.format = {model_plus.format!r}")
- print(f"model_plus.vocab = {model_plus.vocab!r}")
- for name, lazy_tensor in model_plus.model.items():
- print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
- def main(args_in: Optional[List[str]] = None) -> None:
- parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
- parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
- parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
- parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
- parser.add_argument("--outtype", choices=["f32", "f16"], help="output format (default: based on input)")
- parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
- parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
- parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
- args = parser.parse_args(args_in)
- if args.dump_single:
- model_plus = lazy_load_file(args.model)
- do_dump_model(model_plus)
- model_plus = load_some_model(args.model)
- params = Params.load(model_plus)
- if params.n_ctx == -1:
- if args.ctx is None:
- raise Exception("The model doesn't have a context size, and you didn't specify one with --ctx\n"
- "Please specify one with --ctx:\n"
- " - LLaMA v1: --ctx 2048\n"
- " - LLaMA v2: --ctx 4096\n")
- params.n_ctx = args.ctx
- if args.outtype:
- params.ftype = {
- "f32": GGMLFileType.AllF32,
- "f16": GGMLFileType.MostlyF16,
- }[args.outtype]
- print(f"params = {params}")
- vocab: Vocab
- if args.vocab_only:
- vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
- assert args.outfile, "need --outfile if using --vocab-only"
- outfile = args.outfile
- OutputFile.write_vocab_only(outfile, params, vocab)
- print(f"Wrote {outfile}")
- else:
- if args.dump:
- do_dump_model(model_plus)
- return
- if model_plus.vocab is not None and args.vocab_dir is None:
- vocab = model_plus.vocab
- else:
- vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
- vocab = load_vocab(vocab_dir, args.vocabtype)
- model = model_plus.model
- model = convert_model_names(model, params)
- ftype = pick_output_type(model, args.outtype)
- model = convert_to_output_type(model, ftype)
- outfile = args.outfile or default_outfile(model_plus.paths, ftype)
- params.ftype = ftype
- print(f"Writing {outfile}, format {ftype}")
- OutputFile.write_all(outfile, params, model, vocab)
- print(f"Wrote {outfile}")
- if __name__ == '__main__':
- main()
|