server.cpp 219 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376
  1. #include "chat.h"
  2. #include "utils.hpp"
  3. #include "arg.h"
  4. #include "common.h"
  5. #include "json-schema-to-grammar.h"
  6. #include "llama.h"
  7. #include "log.h"
  8. #include "sampling.h"
  9. #include "speculative.h"
  10. #include "mtmd.h"
  11. #include "mtmd-helper.h"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. ERROR_TYPE_EXCEED_CONTEXT_SIZE, // custom error
  78. };
  79. static bool server_task_type_need_embd(server_task_type task_type) {
  80. switch (task_type) {
  81. case SERVER_TASK_TYPE_EMBEDDING:
  82. case SERVER_TASK_TYPE_RERANK:
  83. return true;
  84. default:
  85. return false;
  86. }
  87. }
  88. static bool server_task_type_need_logits(server_task_type task_type) {
  89. switch (task_type) {
  90. case SERVER_TASK_TYPE_COMPLETION:
  91. case SERVER_TASK_TYPE_INFILL:
  92. return true;
  93. default:
  94. return false;
  95. }
  96. }
  97. struct slot_params {
  98. bool stream = true;
  99. bool include_usage = false;
  100. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  101. bool return_tokens = false;
  102. bool return_progress = false;
  103. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  104. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  105. int32_t n_predict = -1; // new tokens to predict
  106. int32_t n_indent = 0; // minimum line indentation for the generated text in number of whitespace characters
  107. int64_t t_max_prompt_ms = -1; // TODO: implement
  108. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  109. std::vector<common_adapter_lora_info> lora;
  110. std::vector<std::string> antiprompt;
  111. std::vector<std::string> response_fields;
  112. bool timings_per_token = false;
  113. bool post_sampling_probs = false;
  114. struct common_params_sampling sampling;
  115. struct common_params_speculative speculative;
  116. // OAI-compat fields
  117. bool verbose = false;
  118. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  119. std::string oaicompat_model;
  120. std::string oaicompat_cmpl_id;
  121. common_chat_syntax oaicompat_chat_syntax;
  122. // Embeddings
  123. int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
  124. json to_json(bool only_metrics = false) const {
  125. std::vector<std::string> samplers;
  126. samplers.reserve(sampling.samplers.size());
  127. for (const auto & sampler : sampling.samplers) {
  128. samplers.emplace_back(common_sampler_type_to_str(sampler));
  129. }
  130. json lora = json::array();
  131. for (size_t i = 0; i < this->lora.size(); ++i) {
  132. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  133. }
  134. if (only_metrics) {
  135. return json {
  136. {"n_predict", n_predict}, // Server configured n_predict
  137. {"seed", sampling.seed},
  138. {"temperature", sampling.temp},
  139. {"dynatemp_range", sampling.dynatemp_range},
  140. {"dynatemp_exponent", sampling.dynatemp_exponent},
  141. {"top_k", sampling.top_k},
  142. {"top_p", sampling.top_p},
  143. {"min_p", sampling.min_p},
  144. {"top_n_sigma", sampling.top_n_sigma},
  145. {"xtc_probability", sampling.xtc_probability},
  146. {"xtc_threshold", sampling.xtc_threshold},
  147. {"typical_p", sampling.typ_p},
  148. {"repeat_last_n", sampling.penalty_last_n},
  149. {"repeat_penalty", sampling.penalty_repeat},
  150. {"presence_penalty", sampling.penalty_present},
  151. {"frequency_penalty", sampling.penalty_freq},
  152. {"dry_multiplier", sampling.dry_multiplier},
  153. {"dry_base", sampling.dry_base},
  154. {"dry_allowed_length", sampling.dry_allowed_length},
  155. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  156. {"mirostat", sampling.mirostat},
  157. {"mirostat_tau", sampling.mirostat_tau},
  158. {"mirostat_eta", sampling.mirostat_eta},
  159. {"max_tokens", n_predict}, // User configured n_predict
  160. {"n_keep", n_keep},
  161. {"n_discard", n_discard},
  162. {"ignore_eos", sampling.ignore_eos},
  163. {"stream", stream},
  164. {"n_probs", sampling.n_probs},
  165. {"min_keep", sampling.min_keep},
  166. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  167. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  168. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  169. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  170. {"samplers", samplers},
  171. {"speculative.n_max", speculative.n_max},
  172. {"speculative.n_min", speculative.n_min},
  173. {"speculative.p_min", speculative.p_min},
  174. {"timings_per_token", timings_per_token},
  175. {"post_sampling_probs", post_sampling_probs},
  176. {"lora", lora},
  177. };
  178. }
  179. auto grammar_triggers = json::array();
  180. for (const auto & trigger : sampling.grammar_triggers) {
  181. server_grammar_trigger ct(trigger);
  182. grammar_triggers.push_back(ct.to_json());
  183. }
  184. return json {
  185. {"n_predict", n_predict}, // Server configured n_predict
  186. {"seed", sampling.seed},
  187. {"temperature", sampling.temp},
  188. {"dynatemp_range", sampling.dynatemp_range},
  189. {"dynatemp_exponent", sampling.dynatemp_exponent},
  190. {"top_k", sampling.top_k},
  191. {"top_p", sampling.top_p},
  192. {"min_p", sampling.min_p},
  193. {"top_n_sigma", sampling.top_n_sigma},
  194. {"xtc_probability", sampling.xtc_probability},
  195. {"xtc_threshold", sampling.xtc_threshold},
  196. {"typical_p", sampling.typ_p},
  197. {"repeat_last_n", sampling.penalty_last_n},
  198. {"repeat_penalty", sampling.penalty_repeat},
  199. {"presence_penalty", sampling.penalty_present},
  200. {"frequency_penalty", sampling.penalty_freq},
  201. {"dry_multiplier", sampling.dry_multiplier},
  202. {"dry_base", sampling.dry_base},
  203. {"dry_allowed_length", sampling.dry_allowed_length},
  204. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  205. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  206. {"mirostat", sampling.mirostat},
  207. {"mirostat_tau", sampling.mirostat_tau},
  208. {"mirostat_eta", sampling.mirostat_eta},
  209. {"stop", antiprompt},
  210. {"max_tokens", n_predict}, // User configured n_predict
  211. {"n_keep", n_keep},
  212. {"n_discard", n_discard},
  213. {"ignore_eos", sampling.ignore_eos},
  214. {"stream", stream},
  215. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  216. {"n_probs", sampling.n_probs},
  217. {"min_keep", sampling.min_keep},
  218. {"grammar", sampling.grammar},
  219. {"grammar_lazy", sampling.grammar_lazy},
  220. {"grammar_triggers", grammar_triggers},
  221. {"preserved_tokens", sampling.preserved_tokens},
  222. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  223. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  224. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  225. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  226. {"samplers", samplers},
  227. {"speculative.n_max", speculative.n_max},
  228. {"speculative.n_min", speculative.n_min},
  229. {"speculative.p_min", speculative.p_min},
  230. {"timings_per_token", timings_per_token},
  231. {"post_sampling_probs", post_sampling_probs},
  232. {"lora", lora},
  233. };
  234. }
  235. };
  236. struct server_task {
  237. int id = -1; // to be filled by server_queue
  238. int index = -1; // used when there are multiple prompts (batch request)
  239. server_task_type type;
  240. // used by SERVER_TASK_TYPE_CANCEL
  241. int id_target = -1;
  242. // used by SERVER_TASK_TYPE_INFERENCE
  243. slot_params params;
  244. server_tokens prompt_tokens;
  245. int id_selected_slot = -1;
  246. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  247. struct slot_action {
  248. int slot_id;
  249. std::string filename;
  250. std::string filepath;
  251. };
  252. slot_action slot_action;
  253. // used by SERVER_TASK_TYPE_METRICS
  254. bool metrics_reset_bucket = false;
  255. // used by SERVER_TASK_TYPE_SET_LORA
  256. std::vector<common_adapter_lora_info> set_lora;
  257. server_task(server_task_type type) : type(type) {}
  258. static slot_params params_from_json_cmpl(
  259. const llama_context * ctx,
  260. const common_params & params_base,
  261. const json & data) {
  262. const llama_model * model = llama_get_model(ctx);
  263. const llama_vocab * vocab = llama_model_get_vocab(model);
  264. slot_params params;
  265. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  266. slot_params defaults;
  267. defaults.sampling = params_base.sampling;
  268. defaults.speculative = params_base.speculative;
  269. defaults.n_keep = params_base.n_keep;
  270. defaults.antiprompt = params_base.antiprompt;
  271. // enabling this will output extra debug information in the HTTP responses from the server
  272. params.verbose = params_base.verbosity > 9;
  273. params.timings_per_token = json_value(data, "timings_per_token", false);
  274. params.stream = json_value(data, "stream", false);
  275. auto stream_opt = json_value(data, "stream_options", json::object());
  276. params.include_usage = json_value(stream_opt, "include_usage", false);
  277. params.cache_prompt = json_value(data, "cache_prompt", true);
  278. params.return_tokens = json_value(data, "return_tokens", false);
  279. params.return_progress = json_value(data, "return_progress", false);
  280. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  281. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  282. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  283. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  284. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  285. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  286. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  287. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  288. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  289. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  290. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  291. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  292. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  293. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  294. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  295. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  296. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  297. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  298. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  299. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  300. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  301. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  302. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  303. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  304. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  305. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  306. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  307. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  308. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  309. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  310. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  311. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  312. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  313. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  314. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  315. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  316. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  317. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  318. // Use OpenAI API logprobs only if n_probs wasn't provided
  319. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  320. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  321. }
  322. if (data.contains("lora")) {
  323. if (data.at("lora").is_array()) {
  324. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  325. } else {
  326. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  327. }
  328. } else {
  329. params.lora = params_base.lora_adapters;
  330. }
  331. // TODO: add more sanity checks for the input parameters
  332. if (params.sampling.penalty_last_n < -1) {
  333. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  334. }
  335. if (params.sampling.dry_penalty_last_n < -1) {
  336. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  337. }
  338. if (params.sampling.penalty_last_n == -1) {
  339. // note: should be the slot's context and not the full context, but it's ok
  340. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  341. }
  342. if (params.sampling.dry_penalty_last_n == -1) {
  343. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  344. }
  345. if (params.sampling.dry_base < 1.0f) {
  346. params.sampling.dry_base = defaults.sampling.dry_base;
  347. }
  348. // sequence breakers for DRY
  349. {
  350. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  351. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  352. if (data.contains("dry_sequence_breakers")) {
  353. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  354. if (params.sampling.dry_sequence_breakers.empty()) {
  355. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  356. }
  357. }
  358. }
  359. // process "json_schema" and "grammar"
  360. if (data.contains("json_schema") && !data.contains("grammar")) {
  361. try {
  362. auto schema = json_value(data, "json_schema", json::object());
  363. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  364. params.sampling.grammar = json_schema_to_grammar(schema);
  365. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  366. } catch (const std::exception & e) {
  367. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  368. }
  369. } else {
  370. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  371. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  372. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  373. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  374. }
  375. {
  376. auto it = data.find("chat_format");
  377. if (it != data.end()) {
  378. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  379. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  380. } else {
  381. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  382. }
  383. common_reasoning_format reasoning_format = params_base.reasoning_format;
  384. if (data.contains("reasoning_format")) {
  385. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  386. }
  387. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  388. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  389. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  390. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  391. }
  392. {
  393. const auto preserved_tokens = data.find("preserved_tokens");
  394. if (preserved_tokens != data.end()) {
  395. for (const auto & t : *preserved_tokens) {
  396. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  397. if (ids.size() == 1) {
  398. SRV_DBG("Preserved token: %d\n", ids[0]);
  399. params.sampling.preserved_tokens.insert(ids[0]);
  400. } else {
  401. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  402. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  403. }
  404. }
  405. }
  406. const auto grammar_triggers = data.find("grammar_triggers");
  407. if (grammar_triggers != data.end()) {
  408. for (const auto & t : *grammar_triggers) {
  409. server_grammar_trigger ct(t);
  410. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  411. const auto & word = ct.value.value;
  412. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  413. if (ids.size() == 1) {
  414. auto token = ids[0];
  415. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  416. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  417. }
  418. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  419. common_grammar_trigger trigger;
  420. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  421. trigger.value = word;
  422. trigger.token = token;
  423. params.sampling.grammar_triggers.push_back(std::move(trigger));
  424. } else {
  425. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  426. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  427. }
  428. } else {
  429. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  430. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  431. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  432. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  433. } else {
  434. throw std::runtime_error("Unknown grammar trigger type");
  435. }
  436. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  437. }
  438. }
  439. }
  440. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  441. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  442. }
  443. }
  444. {
  445. params.sampling.logit_bias.clear();
  446. const auto & logit_bias = data.find("logit_bias");
  447. if (logit_bias != data.end() && logit_bias->is_array()) {
  448. const int n_vocab = llama_vocab_n_tokens(vocab);
  449. for (const auto & el : *logit_bias) {
  450. // TODO: we may want to throw errors here, in case "el" is incorrect
  451. if (el.is_array() && el.size() == 2) {
  452. float bias;
  453. if (el[1].is_number()) {
  454. bias = el[1].get<float>();
  455. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  456. bias = -INFINITY;
  457. } else {
  458. continue;
  459. }
  460. if (el[0].is_number_integer()) {
  461. llama_token tok = el[0].get<llama_token>();
  462. if (tok >= 0 && tok < n_vocab) {
  463. params.sampling.logit_bias.push_back({tok, bias});
  464. }
  465. } else if (el[0].is_string()) {
  466. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  467. for (auto tok : toks) {
  468. params.sampling.logit_bias.push_back({tok, bias});
  469. }
  470. }
  471. }
  472. }
  473. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  474. const int n_vocab = llama_vocab_n_tokens(vocab);
  475. for (const auto & el : logit_bias->items()) {
  476. float bias;
  477. const auto & key = el.key();
  478. const auto & value = el.value();
  479. if (value.is_number()) {
  480. bias = value.get<float>();
  481. } else if (value.is_boolean() && !value.get<bool>()) {
  482. bias = -INFINITY;
  483. } else {
  484. continue;
  485. }
  486. char *end;
  487. llama_token tok = strtol(key.c_str(), &end, 10);
  488. if (*end == 0) {
  489. if (tok >= 0 && tok < n_vocab) {
  490. params.sampling.logit_bias.push_back({tok, bias});
  491. }
  492. } else {
  493. auto toks = common_tokenize(vocab, key, false);
  494. for (auto tok : toks) {
  495. params.sampling.logit_bias.push_back({tok, bias});
  496. }
  497. }
  498. }
  499. }
  500. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  501. if (params.sampling.ignore_eos) {
  502. params.sampling.logit_bias.insert(
  503. params.sampling.logit_bias.end(),
  504. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  505. }
  506. }
  507. {
  508. params.antiprompt.clear();
  509. const auto & stop = data.find("stop");
  510. if (stop != data.end() && stop->is_array()) {
  511. for (const auto & word : *stop) {
  512. if (!word.empty()) {
  513. params.antiprompt.push_back(word);
  514. }
  515. }
  516. }
  517. // set reverse prompt from cli args if not set in the request
  518. if (params.antiprompt.empty()) {
  519. params.antiprompt = defaults.antiprompt;
  520. }
  521. }
  522. {
  523. const auto samplers = data.find("samplers");
  524. if (samplers != data.end()) {
  525. if (samplers->is_array()) {
  526. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  527. } else if (samplers->is_string()){
  528. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  529. }
  530. } else {
  531. params.sampling.samplers = defaults.sampling.samplers;
  532. }
  533. }
  534. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  535. params.oaicompat_model = json_value(data, "model", model_name);
  536. return params;
  537. }
  538. // utility function
  539. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  540. std::unordered_set<int> ids(tasks.size());
  541. for (size_t i = 0; i < tasks.size(); i++) {
  542. ids.insert(tasks[i].id);
  543. }
  544. return ids;
  545. }
  546. };
  547. struct result_timings {
  548. int32_t cache_n = -1;
  549. int32_t prompt_n = -1;
  550. double prompt_ms;
  551. double prompt_per_token_ms;
  552. double prompt_per_second;
  553. int32_t predicted_n = -1;
  554. double predicted_ms;
  555. double predicted_per_token_ms;
  556. double predicted_per_second;
  557. // Optional speculative metrics - only included when > 0
  558. int32_t draft_n = 0;
  559. int32_t draft_n_accepted = 0;
  560. json to_json() const {
  561. json base = {
  562. {"cache_n", cache_n},
  563. {"prompt_n", prompt_n},
  564. {"prompt_ms", prompt_ms},
  565. {"prompt_per_token_ms", prompt_per_token_ms},
  566. {"prompt_per_second", prompt_per_second},
  567. {"predicted_n", predicted_n},
  568. {"predicted_ms", predicted_ms},
  569. {"predicted_per_token_ms", predicted_per_token_ms},
  570. {"predicted_per_second", predicted_per_second},
  571. };
  572. if (draft_n > 0) {
  573. base["draft_n"] = draft_n;
  574. base["draft_n_accepted"] = draft_n_accepted;
  575. }
  576. return base;
  577. }
  578. };
  579. struct result_prompt_progress {
  580. int32_t total = 0;
  581. int32_t cache = 0;
  582. int32_t processed = 0;
  583. int64_t time_ms = 0;
  584. json to_json() const {
  585. return json {
  586. {"total", total},
  587. {"cache", cache},
  588. {"processed", processed},
  589. {"time_ms", time_ms},
  590. };
  591. }
  592. };
  593. struct server_task_result {
  594. int id = -1;
  595. int id_slot = -1;
  596. virtual bool is_error() {
  597. // only used by server_task_result_error
  598. return false;
  599. }
  600. virtual bool is_stop() {
  601. // only used by server_task_result_cmpl_*
  602. return false;
  603. }
  604. virtual int get_index() {
  605. return -1;
  606. }
  607. virtual json to_json() = 0;
  608. virtual ~server_task_result() = default;
  609. };
  610. // using shared_ptr for polymorphism of server_task_result
  611. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  612. inline std::string stop_type_to_str(stop_type type) {
  613. switch (type) {
  614. case STOP_TYPE_EOS: return "eos";
  615. case STOP_TYPE_WORD: return "word";
  616. case STOP_TYPE_LIMIT: return "limit";
  617. default: return "none";
  618. }
  619. }
  620. struct completion_token_output {
  621. llama_token tok;
  622. float prob;
  623. std::string text_to_send;
  624. struct prob_info {
  625. llama_token tok;
  626. std::string txt;
  627. float prob;
  628. };
  629. std::vector<prob_info> probs;
  630. json to_json(bool post_sampling_probs) const {
  631. json probs_for_token = json::array();
  632. for (const auto & p : probs) {
  633. std::string txt(p.txt);
  634. txt.resize(validate_utf8(txt));
  635. probs_for_token.push_back(json {
  636. {"id", p.tok},
  637. {"token", txt},
  638. {"bytes", str_to_bytes(p.txt)},
  639. {
  640. post_sampling_probs ? "prob" : "logprob",
  641. post_sampling_probs ? p.prob : logarithm(p.prob)
  642. },
  643. });
  644. }
  645. return probs_for_token;
  646. }
  647. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  648. json out = json::array();
  649. for (const auto & p : probs) {
  650. std::string txt(p.text_to_send);
  651. txt.resize(validate_utf8(txt));
  652. out.push_back(json {
  653. {"id", p.tok},
  654. {"token", txt},
  655. {"bytes", str_to_bytes(p.text_to_send)},
  656. {
  657. post_sampling_probs ? "prob" : "logprob",
  658. post_sampling_probs ? p.prob : logarithm(p.prob)
  659. },
  660. {
  661. post_sampling_probs ? "top_probs" : "top_logprobs",
  662. p.to_json(post_sampling_probs)
  663. },
  664. });
  665. }
  666. return out;
  667. }
  668. static float logarithm(float x) {
  669. // nlohmann::json converts -inf to null, so we need to prevent that
  670. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  671. }
  672. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  673. std::vector<unsigned char> bytes;
  674. for (unsigned char c : str) {
  675. bytes.push_back(c);
  676. }
  677. return bytes;
  678. }
  679. };
  680. struct ctx_checkpoint {
  681. llama_pos pos_min;
  682. llama_pos pos_max;
  683. std::vector<uint8_t> data;
  684. };
  685. struct server_task_result_cmpl_final : server_task_result {
  686. int index = 0;
  687. std::string content;
  688. llama_tokens tokens;
  689. bool stream;
  690. bool include_usage;
  691. result_timings timings;
  692. std::string prompt;
  693. bool truncated;
  694. int32_t n_decoded;
  695. int32_t n_prompt_tokens;
  696. int32_t n_tokens_cached;
  697. bool has_new_line;
  698. std::string stopping_word;
  699. stop_type stop = STOP_TYPE_NONE;
  700. bool post_sampling_probs;
  701. std::vector<completion_token_output> probs_output;
  702. std::vector<std::string> response_fields;
  703. slot_params generation_params;
  704. // OAI-compat fields
  705. bool verbose = false;
  706. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  707. std::string oaicompat_model;
  708. std::string oaicompat_cmpl_id;
  709. common_chat_msg oaicompat_msg;
  710. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  711. virtual int get_index() override {
  712. return index;
  713. }
  714. virtual bool is_stop() override {
  715. return true; // in stream mode, final responses are considered stop
  716. }
  717. virtual json to_json() override {
  718. switch (oaicompat) {
  719. case OAICOMPAT_TYPE_NONE:
  720. return to_json_non_oaicompat();
  721. case OAICOMPAT_TYPE_COMPLETION:
  722. return to_json_oaicompat();
  723. case OAICOMPAT_TYPE_CHAT:
  724. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  725. default:
  726. GGML_ASSERT(false && "Invalid oaicompat_type");
  727. }
  728. }
  729. json to_json_non_oaicompat() {
  730. json res = json {
  731. {"index", index},
  732. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  733. {"tokens", stream ? llama_tokens {} : tokens},
  734. {"id_slot", id_slot},
  735. {"stop", true},
  736. {"model", oaicompat_model},
  737. {"tokens_predicted", n_decoded},
  738. {"tokens_evaluated", n_prompt_tokens},
  739. {"generation_settings", generation_params.to_json()},
  740. {"prompt", prompt},
  741. {"has_new_line", has_new_line},
  742. {"truncated", truncated},
  743. {"stop_type", stop_type_to_str(stop)},
  744. {"stopping_word", stopping_word},
  745. {"tokens_cached", n_tokens_cached},
  746. {"timings", timings.to_json()},
  747. };
  748. if (!stream && !probs_output.empty()) {
  749. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  750. }
  751. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  752. }
  753. json to_json_oaicompat() {
  754. std::time_t t = std::time(0);
  755. json logprobs = json(nullptr); // OAI default to null
  756. if (!stream && probs_output.size() > 0) {
  757. logprobs = json{
  758. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  759. };
  760. }
  761. json finish_reason = "length";
  762. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  763. finish_reason = "stop";
  764. }
  765. json res = json {
  766. {"choices", json::array({
  767. json{
  768. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  769. {"index", index},
  770. {"logprobs", logprobs},
  771. {"finish_reason", finish_reason},
  772. }
  773. })},
  774. {"created", t},
  775. {"model", oaicompat_model},
  776. {"system_fingerprint", build_info},
  777. {"object", "text_completion"},
  778. {"usage", json {
  779. {"completion_tokens", n_decoded},
  780. {"prompt_tokens", n_prompt_tokens},
  781. {"total_tokens", n_decoded + n_prompt_tokens}
  782. }},
  783. {"id", oaicompat_cmpl_id}
  784. };
  785. // extra fields for debugging purposes
  786. if (verbose) {
  787. res["__verbose"] = to_json_non_oaicompat();
  788. }
  789. if (timings.prompt_n >= 0) {
  790. res.push_back({"timings", timings.to_json()});
  791. }
  792. return res;
  793. }
  794. json to_json_oaicompat_chat() {
  795. std::string finish_reason = "length";
  796. common_chat_msg msg;
  797. if (!oaicompat_msg.empty()) {
  798. msg = oaicompat_msg;
  799. } else {
  800. msg.role = "assistant";
  801. msg.content = content;
  802. }
  803. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  804. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  805. }
  806. json choice {
  807. {"finish_reason", finish_reason},
  808. {"index", 0},
  809. {"message", msg.to_json_oaicompat<json>()},
  810. };
  811. if (!stream && probs_output.size() > 0) {
  812. choice["logprobs"] = json{
  813. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  814. };
  815. }
  816. std::time_t t = std::time(0);
  817. json res = json {
  818. {"choices", json::array({choice})},
  819. {"created", t},
  820. {"model", oaicompat_model},
  821. {"system_fingerprint", build_info},
  822. {"object", "chat.completion"},
  823. {"usage", json {
  824. {"completion_tokens", n_decoded},
  825. {"prompt_tokens", n_prompt_tokens},
  826. {"total_tokens", n_decoded + n_prompt_tokens}
  827. }},
  828. {"id", oaicompat_cmpl_id}
  829. };
  830. // extra fields for debugging purposes
  831. if (verbose) {
  832. res["__verbose"] = to_json_non_oaicompat();
  833. }
  834. if (timings.prompt_n >= 0) {
  835. res.push_back({"timings", timings.to_json()});
  836. }
  837. return res;
  838. }
  839. json to_json_oaicompat_chat_stream() {
  840. std::time_t t = std::time(0);
  841. std::string finish_reason = "length";
  842. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  843. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  844. }
  845. json deltas = json::array();
  846. for (const auto & diff : oaicompat_msg_diffs) {
  847. deltas.push_back({
  848. {"choices", json::array({
  849. json {
  850. {"finish_reason", nullptr},
  851. {"index", 0},
  852. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  853. },
  854. })},
  855. {"created", t},
  856. {"id", oaicompat_cmpl_id},
  857. {"model", oaicompat_model},
  858. {"system_fingerprint", build_info},
  859. {"object", "chat.completion.chunk"},
  860. });
  861. }
  862. deltas.push_back({
  863. {"choices", json::array({
  864. json {
  865. {"finish_reason", finish_reason},
  866. {"index", 0},
  867. {"delta", json::object()},
  868. },
  869. })},
  870. {"created", t},
  871. {"id", oaicompat_cmpl_id},
  872. {"model", oaicompat_model},
  873. {"system_fingerprint", build_info},
  874. {"object", "chat.completion.chunk"},
  875. });
  876. if (include_usage) {
  877. // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
  878. // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
  879. deltas.push_back({
  880. {"choices", json::array()},
  881. {"created", t},
  882. {"id", oaicompat_cmpl_id},
  883. {"model", oaicompat_model},
  884. {"system_fingerprint", build_info},
  885. {"object", "chat.completion.chunk"},
  886. {"usage", json {
  887. {"completion_tokens", n_decoded},
  888. {"prompt_tokens", n_prompt_tokens},
  889. {"total_tokens", n_decoded + n_prompt_tokens},
  890. }},
  891. });
  892. }
  893. if (timings.prompt_n >= 0) {
  894. deltas.back().push_back({"timings", timings.to_json()});
  895. }
  896. // extra fields for debugging purposes
  897. if (verbose && !deltas.empty()) {
  898. deltas.front()["__verbose"] = to_json_non_oaicompat();
  899. }
  900. return deltas;
  901. }
  902. };
  903. struct server_task_result_cmpl_partial : server_task_result {
  904. int index = 0;
  905. std::string content;
  906. llama_tokens tokens;
  907. int32_t n_decoded;
  908. int32_t n_prompt_tokens;
  909. bool post_sampling_probs;
  910. bool is_progress = false;
  911. completion_token_output prob_output;
  912. result_timings timings;
  913. result_prompt_progress progress;
  914. // OAI-compat fields
  915. bool verbose = false;
  916. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  917. std::string oaicompat_model;
  918. std::string oaicompat_cmpl_id;
  919. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  920. virtual int get_index() override {
  921. return index;
  922. }
  923. virtual bool is_stop() override {
  924. return false; // in stream mode, partial responses are not considered stop
  925. }
  926. virtual json to_json() override {
  927. switch (oaicompat) {
  928. case OAICOMPAT_TYPE_NONE:
  929. return to_json_non_oaicompat();
  930. case OAICOMPAT_TYPE_COMPLETION:
  931. return to_json_oaicompat();
  932. case OAICOMPAT_TYPE_CHAT:
  933. return to_json_oaicompat_chat();
  934. default:
  935. GGML_ASSERT(false && "Invalid oaicompat_type");
  936. }
  937. }
  938. json to_json_non_oaicompat() {
  939. // non-OAI-compat JSON
  940. json res = json {
  941. {"index", index},
  942. {"content", content},
  943. {"tokens", tokens},
  944. {"stop", false},
  945. {"id_slot", id_slot},
  946. {"tokens_predicted", n_decoded},
  947. {"tokens_evaluated", n_prompt_tokens},
  948. };
  949. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  950. if (timings.prompt_n > 0) {
  951. res.push_back({"timings", timings.to_json()});
  952. }
  953. if (is_progress) {
  954. res.push_back({"prompt_progress", progress.to_json()});
  955. }
  956. if (!prob_output.probs.empty()) {
  957. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  958. }
  959. return res;
  960. }
  961. json to_json_oaicompat() {
  962. std::time_t t = std::time(0);
  963. json logprobs = json(nullptr); // OAI default to null
  964. if (prob_output.probs.size() > 0) {
  965. logprobs = json{
  966. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  967. };
  968. }
  969. json res = json {
  970. {"choices", json::array({
  971. json{
  972. {"text", content},
  973. {"index", index},
  974. {"logprobs", logprobs},
  975. {"finish_reason", nullptr},
  976. }
  977. })},
  978. {"created", t},
  979. {"model", oaicompat_model},
  980. {"system_fingerprint", build_info},
  981. {"object", "text_completion"},
  982. {"id", oaicompat_cmpl_id}
  983. };
  984. // extra fields for debugging purposes
  985. if (verbose) {
  986. res["__verbose"] = to_json_non_oaicompat();
  987. }
  988. if (timings.prompt_n >= 0) {
  989. res.push_back({"timings", timings.to_json()});
  990. }
  991. if (is_progress) {
  992. res.push_back({"prompt_progress", progress.to_json()});
  993. }
  994. return res;
  995. }
  996. json to_json_oaicompat_chat() {
  997. bool first = n_decoded == 1;
  998. std::time_t t = std::time(0);
  999. json choices;
  1000. std::vector<json> deltas;
  1001. auto add_delta = [&](const json & delta) {
  1002. deltas.push_back({
  1003. {"choices", json::array({
  1004. json {
  1005. {"finish_reason", nullptr},
  1006. {"index", 0},
  1007. {"delta", delta},
  1008. },
  1009. })},
  1010. {"created", t},
  1011. {"id", oaicompat_cmpl_id},
  1012. {"model", oaicompat_model},
  1013. {"system_fingerprint", build_info},
  1014. {"object", "chat.completion.chunk"},
  1015. });
  1016. };
  1017. // We have to send an initial update to conform to openai behavior
  1018. if (first || is_progress) {
  1019. add_delta({
  1020. {"role", "assistant"},
  1021. {"content", nullptr},
  1022. });
  1023. }
  1024. for (const auto & diff : oaicompat_msg_diffs) {
  1025. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  1026. }
  1027. if (!deltas.empty()) {
  1028. auto & last_json = deltas[deltas.size() - 1];
  1029. GGML_ASSERT(last_json.at("choices").size() >= 1);
  1030. if (prob_output.probs.size() > 0) {
  1031. last_json.at("choices").at(0)["logprobs"] = json {
  1032. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  1033. };
  1034. }
  1035. if (timings.prompt_n >= 0) {
  1036. last_json.push_back({"timings", timings.to_json()});
  1037. }
  1038. if (is_progress) {
  1039. last_json.push_back({"prompt_progress", progress.to_json()});
  1040. }
  1041. }
  1042. return deltas;
  1043. }
  1044. };
  1045. struct server_task_result_embd : server_task_result {
  1046. int index = 0;
  1047. std::vector<std::vector<float>> embedding;
  1048. int32_t n_tokens;
  1049. // OAI-compat fields
  1050. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  1051. virtual int get_index() override {
  1052. return index;
  1053. }
  1054. virtual json to_json() override {
  1055. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  1056. ? to_json_oaicompat()
  1057. : to_json_non_oaicompat();
  1058. }
  1059. json to_json_non_oaicompat() {
  1060. return json {
  1061. {"index", index},
  1062. {"embedding", embedding},
  1063. };
  1064. }
  1065. json to_json_oaicompat() {
  1066. return json {
  1067. {"index", index},
  1068. {"embedding", embedding[0]},
  1069. {"tokens_evaluated", n_tokens},
  1070. };
  1071. }
  1072. };
  1073. struct server_task_result_rerank : server_task_result {
  1074. int index = 0;
  1075. float score = -1e6;
  1076. int32_t n_tokens;
  1077. virtual int get_index() override {
  1078. return index;
  1079. }
  1080. virtual json to_json() override {
  1081. return json {
  1082. {"index", index},
  1083. {"score", score},
  1084. {"tokens_evaluated", n_tokens},
  1085. };
  1086. }
  1087. };
  1088. // this function maybe used outside of server_task_result_error
  1089. static json format_error_response(const std::string & message, const enum error_type type) {
  1090. std::string type_str;
  1091. int code = 500;
  1092. switch (type) {
  1093. case ERROR_TYPE_INVALID_REQUEST:
  1094. type_str = "invalid_request_error";
  1095. code = 400;
  1096. break;
  1097. case ERROR_TYPE_AUTHENTICATION:
  1098. type_str = "authentication_error";
  1099. code = 401;
  1100. break;
  1101. case ERROR_TYPE_NOT_FOUND:
  1102. type_str = "not_found_error";
  1103. code = 404;
  1104. break;
  1105. case ERROR_TYPE_SERVER:
  1106. type_str = "server_error";
  1107. code = 500;
  1108. break;
  1109. case ERROR_TYPE_PERMISSION:
  1110. type_str = "permission_error";
  1111. code = 403;
  1112. break;
  1113. case ERROR_TYPE_NOT_SUPPORTED:
  1114. type_str = "not_supported_error";
  1115. code = 501;
  1116. break;
  1117. case ERROR_TYPE_UNAVAILABLE:
  1118. type_str = "unavailable_error";
  1119. code = 503;
  1120. break;
  1121. case ERROR_TYPE_EXCEED_CONTEXT_SIZE:
  1122. type_str = "exceed_context_size_error";
  1123. code = 400;
  1124. break;
  1125. }
  1126. return json {
  1127. {"code", code},
  1128. {"message", message},
  1129. {"type", type_str},
  1130. };
  1131. }
  1132. struct server_task_result_error : server_task_result {
  1133. int index = 0;
  1134. error_type err_type = ERROR_TYPE_SERVER;
  1135. std::string err_msg;
  1136. // for ERROR_TYPE_EXCEED_CONTEXT_SIZE
  1137. int32_t n_prompt_tokens = 0;
  1138. int32_t n_ctx = 0;
  1139. virtual bool is_error() override {
  1140. return true;
  1141. }
  1142. virtual json to_json() override {
  1143. json res = format_error_response(err_msg, err_type);
  1144. if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  1145. res["n_prompt_tokens"] = n_prompt_tokens;
  1146. res["n_ctx"] = n_ctx;
  1147. }
  1148. return res;
  1149. }
  1150. };
  1151. struct server_task_result_metrics : server_task_result {
  1152. int n_idle_slots;
  1153. int n_processing_slots;
  1154. int n_tasks_deferred;
  1155. int64_t t_start;
  1156. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  1157. uint64_t n_prompt_tokens_processed_total = 0;
  1158. uint64_t t_prompt_processing_total = 0;
  1159. uint64_t n_tokens_predicted_total = 0;
  1160. uint64_t t_tokens_generation_total = 0;
  1161. uint64_t n_past_max = 0;
  1162. uint64_t n_prompt_tokens_processed = 0;
  1163. uint64_t t_prompt_processing = 0;
  1164. uint64_t n_tokens_predicted = 0;
  1165. uint64_t t_tokens_generation = 0;
  1166. uint64_t n_decode_total = 0;
  1167. uint64_t n_busy_slots_total = 0;
  1168. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1169. // therefore, we use json to temporarily store the slot.to_json() result
  1170. json slots_data = json::array();
  1171. virtual json to_json() override {
  1172. return json {
  1173. { "idle", n_idle_slots },
  1174. { "processing", n_processing_slots },
  1175. { "deferred", n_tasks_deferred },
  1176. { "t_start", t_start },
  1177. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1178. { "t_tokens_generation_total", t_tokens_generation_total },
  1179. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1180. { "t_prompt_processing_total", t_prompt_processing_total },
  1181. { "n_past_max", n_past_max },
  1182. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1183. { "t_prompt_processing", t_prompt_processing },
  1184. { "n_tokens_predicted", n_tokens_predicted },
  1185. { "t_tokens_generation", t_tokens_generation },
  1186. { "n_decode_total", n_decode_total },
  1187. { "n_busy_slots_total", n_busy_slots_total },
  1188. { "slots", slots_data },
  1189. };
  1190. }
  1191. };
  1192. struct server_task_result_slot_save_load : server_task_result {
  1193. std::string filename;
  1194. bool is_save; // true = save, false = load
  1195. size_t n_tokens;
  1196. size_t n_bytes;
  1197. double t_ms;
  1198. virtual json to_json() override {
  1199. if (is_save) {
  1200. return json {
  1201. { "id_slot", id_slot },
  1202. { "filename", filename },
  1203. { "n_saved", n_tokens },
  1204. { "n_written", n_bytes },
  1205. { "timings", {
  1206. { "save_ms", t_ms }
  1207. }},
  1208. };
  1209. } else {
  1210. return json {
  1211. { "id_slot", id_slot },
  1212. { "filename", filename },
  1213. { "n_restored", n_tokens },
  1214. { "n_read", n_bytes },
  1215. { "timings", {
  1216. { "restore_ms", t_ms }
  1217. }},
  1218. };
  1219. }
  1220. }
  1221. };
  1222. struct server_task_result_slot_erase : server_task_result {
  1223. size_t n_erased;
  1224. virtual json to_json() override {
  1225. return json {
  1226. { "id_slot", id_slot },
  1227. { "n_erased", n_erased },
  1228. };
  1229. }
  1230. };
  1231. struct server_task_result_apply_lora : server_task_result {
  1232. virtual json to_json() override {
  1233. return json {{ "success", true }};
  1234. }
  1235. };
  1236. struct server_slot {
  1237. int id;
  1238. int id_task = -1;
  1239. // only used for completion/embedding/infill/rerank
  1240. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1241. llama_batch batch_spec = {};
  1242. llama_context * ctx = nullptr;
  1243. llama_context * ctx_dft = nullptr;
  1244. // multimodal
  1245. mtmd_context * mctx = nullptr;
  1246. common_speculative * spec = nullptr;
  1247. std::vector<common_adapter_lora_info> lora;
  1248. int32_t alora_invocation_start = -1;
  1249. // the index relative to completion multi-task request
  1250. size_t index = 0;
  1251. struct slot_params params;
  1252. slot_state state = SLOT_STATE_IDLE;
  1253. // used to determine the slot that has been used the longest
  1254. int64_t t_last_used = -1;
  1255. // generation props
  1256. int32_t n_ctx = 0; // context size per slot
  1257. int32_t n_past = 0;
  1258. int32_t n_decoded = 0;
  1259. int32_t n_remaining = -1;
  1260. int32_t i_batch = -1;
  1261. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1262. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1263. int32_t n_prompt_tokens = 0;
  1264. int32_t n_prompt_tokens_cache = 0;
  1265. int32_t n_prompt_tokens_processed = 0;
  1266. // input prompt tokens
  1267. server_tokens prompt_tokens;
  1268. size_t last_nl_pos = 0;
  1269. std::string generated_text;
  1270. llama_tokens generated_tokens;
  1271. common_chat_msg chat_msg;
  1272. server_tokens cache_tokens;
  1273. std::vector<completion_token_output> generated_token_probs;
  1274. std::vector<ctx_checkpoint> ctx_checkpoints;
  1275. bool has_next_token = true;
  1276. bool has_new_line = false;
  1277. bool truncated = false;
  1278. stop_type stop;
  1279. std::string stopping_word;
  1280. // sampling
  1281. json json_schema;
  1282. struct common_sampler * smpl = nullptr;
  1283. llama_token sampled;
  1284. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1285. std::vector<std::string> generated_tool_call_ids;
  1286. // stats
  1287. size_t n_sent_text = 0; // number of sent text character
  1288. int64_t t_start_process_prompt;
  1289. int64_t t_start_generation;
  1290. double t_prompt_processing; // ms
  1291. double t_token_generation; // ms
  1292. std::function<void(int)> callback_on_release;
  1293. // Speculative decoding stats
  1294. int32_t n_draft_total = 0; // Total draft tokens generated
  1295. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1296. void reset() {
  1297. SLT_DBG(*this, "%s", "\n");
  1298. n_prompt_tokens = 0;
  1299. n_prompt_tokens_cache = 0;
  1300. last_nl_pos = 0;
  1301. generated_text = "";
  1302. has_new_line = false;
  1303. truncated = false;
  1304. stop = STOP_TYPE_NONE;
  1305. stopping_word = "";
  1306. n_past = 0;
  1307. n_sent_text = 0;
  1308. task_type = SERVER_TASK_TYPE_COMPLETION;
  1309. chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1310. generated_tokens.clear();
  1311. generated_token_probs.clear();
  1312. chat_msg = {};
  1313. json_schema = json();
  1314. generated_tool_call_ids.clear();
  1315. // clear speculative decoding stats
  1316. n_draft_total = 0;
  1317. n_draft_accepted = 0;
  1318. // clear alora start
  1319. alora_invocation_start = -1;
  1320. }
  1321. bool need_embd() const {
  1322. return server_task_type_need_embd(task_type);
  1323. }
  1324. bool need_logits() const {
  1325. return server_task_type_need_logits(task_type);
  1326. }
  1327. // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
  1328. // also we cannot split if the pooling would require any past tokens
  1329. bool can_split() const {
  1330. return
  1331. !need_embd() ||
  1332. (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
  1333. }
  1334. bool can_batch_with(server_slot & other_slot) const {
  1335. return task_type == other_slot.task_type && are_lora_equal(lora, other_slot.lora);
  1336. }
  1337. bool has_budget(const common_params & global_params) {
  1338. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1339. return true; // limitless
  1340. }
  1341. n_remaining = -1;
  1342. if (params.n_predict != -1) {
  1343. n_remaining = params.n_predict - n_decoded;
  1344. } else if (global_params.n_predict != -1) {
  1345. n_remaining = global_params.n_predict - n_decoded;
  1346. }
  1347. return n_remaining > 0; // no budget
  1348. }
  1349. bool is_processing() const {
  1350. return state != SLOT_STATE_IDLE;
  1351. }
  1352. bool can_speculate() const {
  1353. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1354. }
  1355. void add_token(const completion_token_output & token) {
  1356. if (!is_processing()) {
  1357. SLT_WRN(*this, "%s", "slot is not processing\n");
  1358. return;
  1359. }
  1360. generated_token_probs.push_back(token);
  1361. }
  1362. void release() {
  1363. if (is_processing()) {
  1364. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1365. t_last_used = ggml_time_us();
  1366. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1367. state = SLOT_STATE_IDLE;
  1368. callback_on_release(id);
  1369. }
  1370. }
  1371. result_timings get_timings() const {
  1372. result_timings timings;
  1373. timings.cache_n = n_prompt_tokens_cache;
  1374. timings.prompt_n = n_prompt_tokens_processed;
  1375. timings.prompt_ms = t_prompt_processing;
  1376. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1377. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1378. timings.predicted_n = n_decoded;
  1379. timings.predicted_ms = t_token_generation;
  1380. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1381. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1382. // Add speculative metrics
  1383. if (n_draft_total > 0) {
  1384. timings.draft_n = n_draft_total;
  1385. timings.draft_n_accepted = n_draft_accepted;
  1386. }
  1387. return timings;
  1388. }
  1389. const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
  1390. auto previous_msg = chat_msg;
  1391. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  1392. auto new_msg = common_chat_parse(
  1393. generated_text,
  1394. /* is_partial= */ stop != STOP_TYPE_EOS,
  1395. params.oaicompat_chat_syntax);
  1396. if (!new_msg.empty()) {
  1397. new_msg.ensure_tool_call_ids_set(generated_tool_call_ids, gen_tool_call_id);
  1398. chat_msg = new_msg;
  1399. diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
  1400. }
  1401. return chat_msg;
  1402. }
  1403. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1404. size_t stop_pos = std::string::npos;
  1405. for (const std::string & word : params.antiprompt) {
  1406. size_t pos;
  1407. if (is_full_stop) {
  1408. const size_t tmp = word.size() + last_token_size;
  1409. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1410. pos = text.find(word, from_pos);
  1411. } else {
  1412. // otherwise, partial stop
  1413. pos = string_find_partial_stop(text, word);
  1414. }
  1415. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1416. if (is_full_stop) {
  1417. stop = STOP_TYPE_WORD;
  1418. stopping_word = word;
  1419. has_next_token = false;
  1420. }
  1421. stop_pos = pos;
  1422. }
  1423. }
  1424. return stop_pos;
  1425. }
  1426. void print_timings() const {
  1427. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1428. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1429. const double t_gen = t_token_generation / n_decoded;
  1430. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1431. SLT_INF(*this,
  1432. "\n"
  1433. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1434. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1435. " total time = %10.2f ms / %5d tokens\n",
  1436. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1437. t_token_generation, n_decoded, t_gen, n_gen_second,
  1438. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1439. if (n_draft_total > 0) {
  1440. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1441. SLT_INF(*this,
  1442. "\n"
  1443. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1444. draft_ratio, n_draft_accepted, n_draft_total
  1445. );
  1446. }
  1447. }
  1448. json to_json(bool only_metrics = false) const {
  1449. if (only_metrics) {
  1450. return json {
  1451. {"id", id},
  1452. {"id_task", id_task},
  1453. {"n_ctx", n_ctx},
  1454. {"speculative", can_speculate()},
  1455. {"is_processing", is_processing()},
  1456. {"params", params.to_json(true)},
  1457. {"next_token",
  1458. {
  1459. {"has_next_token", has_next_token},
  1460. {"has_new_line", has_new_line},
  1461. {"n_remain", n_remaining},
  1462. {"n_decoded", n_decoded},
  1463. }
  1464. },
  1465. };
  1466. }
  1467. return json {
  1468. {"id", id},
  1469. {"id_task", id_task},
  1470. {"n_ctx", n_ctx},
  1471. {"speculative", can_speculate()},
  1472. {"is_processing", is_processing()},
  1473. {"params", params.to_json()},
  1474. {"prompt", prompt_tokens.detokenize(ctx, true)},
  1475. {"next_token",
  1476. {
  1477. {"has_next_token", has_next_token},
  1478. {"has_new_line", has_new_line},
  1479. {"n_remain", n_remaining},
  1480. {"n_decoded", n_decoded},
  1481. {"stopping_word", stopping_word},
  1482. }
  1483. },
  1484. };
  1485. }
  1486. };
  1487. struct server_metrics {
  1488. int64_t t_start = 0;
  1489. uint64_t n_prompt_tokens_processed_total = 0;
  1490. uint64_t t_prompt_processing_total = 0;
  1491. uint64_t n_tokens_predicted_total = 0;
  1492. uint64_t t_tokens_generation_total = 0;
  1493. uint64_t n_past_max = 0;
  1494. uint64_t n_prompt_tokens_processed = 0;
  1495. uint64_t t_prompt_processing = 0;
  1496. uint64_t n_tokens_predicted = 0;
  1497. uint64_t t_tokens_generation = 0;
  1498. uint64_t n_decode_total = 0;
  1499. uint64_t n_busy_slots_total = 0;
  1500. void init() {
  1501. t_start = ggml_time_us();
  1502. }
  1503. void on_prompt_eval(const server_slot & slot) {
  1504. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1505. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1506. t_prompt_processing += slot.t_prompt_processing;
  1507. t_prompt_processing_total += slot.t_prompt_processing;
  1508. if (slot.n_past > 0) {
  1509. n_past_max = std::max(n_past_max, (uint64_t) slot.n_past);
  1510. }
  1511. }
  1512. void on_prediction(const server_slot & slot) {
  1513. n_tokens_predicted_total += slot.n_decoded;
  1514. n_tokens_predicted += slot.n_decoded;
  1515. t_tokens_generation += slot.t_token_generation;
  1516. t_tokens_generation_total += slot.t_token_generation;
  1517. }
  1518. void on_decoded(const std::vector<server_slot> & slots) {
  1519. n_decode_total++;
  1520. for (const auto & slot : slots) {
  1521. if (slot.is_processing()) {
  1522. n_busy_slots_total++;
  1523. }
  1524. if (slot.n_past > 0) {
  1525. n_past_max = std::max(n_past_max, (uint64_t) slot.n_past);
  1526. }
  1527. }
  1528. }
  1529. void reset_bucket() {
  1530. n_prompt_tokens_processed = 0;
  1531. t_prompt_processing = 0;
  1532. n_tokens_predicted = 0;
  1533. t_tokens_generation = 0;
  1534. }
  1535. };
  1536. struct server_queue {
  1537. int id = 0;
  1538. bool running;
  1539. // queues
  1540. std::deque<server_task> queue_tasks;
  1541. std::deque<server_task> queue_tasks_deferred;
  1542. std::mutex mutex_tasks;
  1543. std::condition_variable condition_tasks;
  1544. // callback functions
  1545. std::function<void(server_task &&)> callback_new_task;
  1546. std::function<void(void)> callback_update_slots;
  1547. // Add a new task to the end of the queue
  1548. int post(server_task && task, bool front = false) {
  1549. std::unique_lock<std::mutex> lock(mutex_tasks);
  1550. GGML_ASSERT(task.id != -1);
  1551. // if this is cancel task make sure to clean up pending tasks
  1552. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1553. cleanup_pending_task(task.id_target);
  1554. }
  1555. const int task_id = task.id;
  1556. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1557. if (front) {
  1558. queue_tasks.push_front(std::move(task));
  1559. } else {
  1560. queue_tasks.push_back(std::move(task));
  1561. }
  1562. condition_tasks.notify_one();
  1563. return task_id;
  1564. }
  1565. // multi-task version of post()
  1566. int post(std::vector<server_task> && tasks, bool front = false) {
  1567. std::unique_lock<std::mutex> lock(mutex_tasks);
  1568. for (auto & task : tasks) {
  1569. if (task.id == -1) {
  1570. task.id = id++;
  1571. }
  1572. // if this is cancel task make sure to clean up pending tasks
  1573. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1574. cleanup_pending_task(task.id_target);
  1575. }
  1576. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1577. if (front) {
  1578. queue_tasks.push_front(std::move(task));
  1579. } else {
  1580. queue_tasks.push_back(std::move(task));
  1581. }
  1582. }
  1583. condition_tasks.notify_one();
  1584. return 0;
  1585. }
  1586. // Add a new task, but defer until one slot is available
  1587. void defer(server_task && task) {
  1588. std::unique_lock<std::mutex> lock(mutex_tasks);
  1589. QUE_DBG("defer task, id = %d\n", task.id);
  1590. queue_tasks_deferred.push_back(std::move(task));
  1591. condition_tasks.notify_one();
  1592. }
  1593. // Get the next id for creating a new task
  1594. int get_new_id() {
  1595. std::unique_lock<std::mutex> lock(mutex_tasks);
  1596. int new_id = id++;
  1597. return new_id;
  1598. }
  1599. // Register function to process a new task
  1600. void on_new_task(std::function<void(server_task &&)> callback) {
  1601. callback_new_task = std::move(callback);
  1602. }
  1603. // Register the function to be called when all slots data is ready to be processed
  1604. void on_update_slots(std::function<void(void)> callback) {
  1605. callback_update_slots = std::move(callback);
  1606. }
  1607. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1608. void pop_deferred_task() {
  1609. std::unique_lock<std::mutex> lock(mutex_tasks);
  1610. if (!queue_tasks_deferred.empty()) {
  1611. queue_tasks.emplace_front(std::move(queue_tasks_deferred.front()));
  1612. queue_tasks_deferred.pop_front();
  1613. }
  1614. condition_tasks.notify_one();
  1615. }
  1616. // end the start_loop routine
  1617. void terminate() {
  1618. std::unique_lock<std::mutex> lock(mutex_tasks);
  1619. running = false;
  1620. condition_tasks.notify_all();
  1621. }
  1622. /**
  1623. * Main loop consists of these steps:
  1624. * - Wait until a new task arrives
  1625. * - Process the task (i.e. maybe copy data into slot)
  1626. * - Check if multitask is finished
  1627. * - Update all slots
  1628. */
  1629. void start_loop() {
  1630. running = true;
  1631. while (true) {
  1632. QUE_DBG("%s", "processing new tasks\n");
  1633. while (true) {
  1634. std::unique_lock<std::mutex> lock(mutex_tasks);
  1635. if (!running) {
  1636. QUE_DBG("%s", "terminate\n");
  1637. return;
  1638. }
  1639. if (queue_tasks.empty()) {
  1640. lock.unlock();
  1641. break;
  1642. }
  1643. server_task task = std::move(queue_tasks.front());
  1644. queue_tasks.pop_front();
  1645. lock.unlock();
  1646. QUE_DBG("processing task, id = %d\n", task.id);
  1647. callback_new_task(std::move(task));
  1648. }
  1649. // all tasks in the current loop is processed, slots data is now ready
  1650. QUE_DBG("%s", "update slots\n");
  1651. callback_update_slots();
  1652. QUE_DBG("%s", "waiting for new tasks\n");
  1653. {
  1654. std::unique_lock<std::mutex> lock(mutex_tasks);
  1655. if (!running) {
  1656. QUE_DBG("%s", "terminate\n");
  1657. return;
  1658. }
  1659. if (queue_tasks.empty()) {
  1660. condition_tasks.wait(lock, [&]{
  1661. return (!queue_tasks.empty() || !running);
  1662. });
  1663. }
  1664. }
  1665. }
  1666. }
  1667. private:
  1668. void cleanup_pending_task(int id_target) {
  1669. // no need lock because this is called exclusively by post()
  1670. auto rm_func = [id_target](const server_task & task) {
  1671. return task.id_target == id_target;
  1672. };
  1673. queue_tasks.erase(
  1674. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1675. queue_tasks.end());
  1676. queue_tasks_deferred.erase(
  1677. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1678. queue_tasks_deferred.end());
  1679. }
  1680. };
  1681. struct server_response {
  1682. bool running = true;
  1683. // for keeping track of all tasks waiting for the result
  1684. std::unordered_set<int> waiting_task_ids;
  1685. // the main result queue (using ptr for polymorphism)
  1686. std::vector<server_task_result_ptr> queue_results;
  1687. std::mutex mutex_results;
  1688. std::condition_variable condition_results;
  1689. // add the id_task to the list of tasks waiting for response
  1690. void add_waiting_task_id(int id_task) {
  1691. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1692. std::unique_lock<std::mutex> lock(mutex_results);
  1693. waiting_task_ids.insert(id_task);
  1694. }
  1695. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1696. std::unique_lock<std::mutex> lock(mutex_results);
  1697. for (const auto & task : tasks) {
  1698. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1699. waiting_task_ids.insert(task.id);
  1700. }
  1701. }
  1702. // when the request is finished, we can remove task associated with it
  1703. void remove_waiting_task_id(int id_task) {
  1704. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1705. std::unique_lock<std::mutex> lock(mutex_results);
  1706. waiting_task_ids.erase(id_task);
  1707. // make sure to clean up all pending results
  1708. queue_results.erase(
  1709. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1710. return res->id == id_task;
  1711. }),
  1712. queue_results.end());
  1713. }
  1714. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1715. std::unique_lock<std::mutex> lock(mutex_results);
  1716. for (const auto & id_task : id_tasks) {
  1717. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1718. waiting_task_ids.erase(id_task);
  1719. }
  1720. }
  1721. // This function blocks the thread until there is a response for one of the id_tasks
  1722. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1723. while (true) {
  1724. std::unique_lock<std::mutex> lock(mutex_results);
  1725. condition_results.wait(lock, [&]{
  1726. if (!running) {
  1727. SRV_DBG("%s : queue result stop\n", __func__);
  1728. std::terminate(); // we cannot return here since the caller is HTTP code
  1729. }
  1730. return !queue_results.empty();
  1731. });
  1732. for (size_t i = 0; i < queue_results.size(); i++) {
  1733. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1734. server_task_result_ptr res = std::move(queue_results[i]);
  1735. queue_results.erase(queue_results.begin() + i);
  1736. return res;
  1737. }
  1738. }
  1739. }
  1740. // should never reach here
  1741. }
  1742. // same as recv(), but have timeout in seconds
  1743. // if timeout is reached, nullptr is returned
  1744. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1745. while (true) {
  1746. std::unique_lock<std::mutex> lock(mutex_results);
  1747. for (int i = 0; i < (int) queue_results.size(); i++) {
  1748. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1749. server_task_result_ptr res = std::move(queue_results[i]);
  1750. queue_results.erase(queue_results.begin() + i);
  1751. return res;
  1752. }
  1753. }
  1754. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1755. if (!running) {
  1756. SRV_DBG("%s : queue result stop\n", __func__);
  1757. std::terminate(); // we cannot return here since the caller is HTTP code
  1758. }
  1759. if (cr_res == std::cv_status::timeout) {
  1760. return nullptr;
  1761. }
  1762. }
  1763. // should never reach here
  1764. }
  1765. // single-task version of recv()
  1766. server_task_result_ptr recv(int id_task) {
  1767. std::unordered_set<int> id_tasks = {id_task};
  1768. return recv(id_tasks);
  1769. }
  1770. // Send a new result to a waiting id_task
  1771. void send(server_task_result_ptr && result) {
  1772. SRV_DBG("sending result for task id = %d\n", result->id);
  1773. std::unique_lock<std::mutex> lock(mutex_results);
  1774. for (const auto & id_task : waiting_task_ids) {
  1775. if (result->id == id_task) {
  1776. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1777. queue_results.emplace_back(std::move(result));
  1778. condition_results.notify_all();
  1779. return;
  1780. }
  1781. }
  1782. }
  1783. // terminate the waiting loop
  1784. void terminate() {
  1785. running = false;
  1786. condition_results.notify_all();
  1787. }
  1788. };
  1789. struct server_context {
  1790. common_params params_base;
  1791. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1792. common_init_result llama_init;
  1793. common_init_result llama_init_dft;
  1794. llama_model * model = nullptr;
  1795. llama_context * ctx = nullptr;
  1796. // multimodal
  1797. mtmd_context * mctx = nullptr;
  1798. const llama_vocab * vocab = nullptr;
  1799. bool vocab_dft_compatible = true;
  1800. llama_model * model_dft = nullptr;
  1801. llama_context_params cparams_dft;
  1802. llama_batch batch {};
  1803. bool clean_kv_cache = true;
  1804. bool add_bos_token = true;
  1805. int32_t n_ctx; // total context for all clients / slots
  1806. // slots / clients
  1807. std::vector<server_slot> slots;
  1808. json default_generation_settings_for_props;
  1809. server_queue queue_tasks;
  1810. server_response queue_results;
  1811. server_metrics metrics;
  1812. // Necessary similarity of prompt for slot selection
  1813. float slot_prompt_similarity = 0.0f;
  1814. common_chat_templates_ptr chat_templates;
  1815. oaicompat_parser_options oai_parser_opt;
  1816. ~server_context() {
  1817. mtmd_free(mctx);
  1818. // Clear any sampling context
  1819. for (server_slot & slot : slots) {
  1820. common_sampler_free(slot.smpl);
  1821. slot.smpl = nullptr;
  1822. llama_free(slot.ctx_dft);
  1823. slot.ctx_dft = nullptr;
  1824. common_speculative_free(slot.spec);
  1825. slot.spec = nullptr;
  1826. llama_batch_free(slot.batch_spec);
  1827. }
  1828. llama_batch_free(batch);
  1829. }
  1830. bool load_model(const common_params & params) {
  1831. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1832. params_base = params;
  1833. llama_init = common_init_from_params(params_base);
  1834. model = llama_init.model.get();
  1835. ctx = llama_init.context.get();
  1836. if (model == nullptr) {
  1837. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1838. return false;
  1839. }
  1840. vocab = llama_model_get_vocab(model);
  1841. n_ctx = llama_n_ctx(ctx);
  1842. add_bos_token = llama_vocab_get_add_bos(vocab);
  1843. if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
  1844. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  1845. auto params_dft = params_base;
  1846. params_dft.devices = params_base.speculative.devices;
  1847. params_dft.model = params_base.speculative.model;
  1848. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1849. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1850. params_dft.n_parallel = 1;
  1851. params_dft.cache_type_k = params_base.speculative.cache_type_k;
  1852. params_dft.cache_type_v = params_base.speculative.cache_type_v;
  1853. params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads;
  1854. params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads;
  1855. params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;
  1856. llama_init_dft = common_init_from_params(params_dft);
  1857. model_dft = llama_init_dft.model.get();
  1858. if (model_dft == nullptr) {
  1859. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  1860. return false;
  1861. }
  1862. vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
  1863. if (!vocab_dft_compatible) {
  1864. SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  1865. }
  1866. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1867. cparams_dft = common_context_params_to_llama(params_dft);
  1868. cparams_dft.n_batch = n_ctx_dft;
  1869. // the context is not needed - we will create one for each slot
  1870. llama_init_dft.context.reset();
  1871. }
  1872. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1873. try {
  1874. common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs);
  1875. } catch (const std::exception & e) {
  1876. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1877. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1878. chat_templates = common_chat_templates_init(model, "chatml");
  1879. }
  1880. std::string & mmproj_path = params_base.mmproj.path;
  1881. if (!mmproj_path.empty()) {
  1882. mtmd_context_params mparams = mtmd_context_params_default();
  1883. mparams.use_gpu = params_base.mmproj_use_gpu;
  1884. mparams.print_timings = false;
  1885. mparams.n_threads = params_base.cpuparams.n_threads;
  1886. mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
  1887. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  1888. if (mctx == nullptr) {
  1889. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  1890. return false;
  1891. }
  1892. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  1893. if (params_base.ctx_shift) {
  1894. params_base.ctx_shift = false;
  1895. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  1896. }
  1897. if (params_base.n_cache_reuse) {
  1898. params_base.n_cache_reuse = 0;
  1899. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  1900. }
  1901. if (!params_base.speculative.model.path.empty()) {
  1902. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  1903. return false;
  1904. }
  1905. }
  1906. if (!llama_memory_can_shift(llama_get_memory(ctx))) {
  1907. if (params_base.ctx_shift) {
  1908. params_base.ctx_shift = false;
  1909. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  1910. }
  1911. if (params_base.n_cache_reuse) {
  1912. params_base.n_cache_reuse = 0;
  1913. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  1914. }
  1915. }
  1916. return true;
  1917. }
  1918. void init() {
  1919. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1920. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1921. for (int i = 0; i < params_base.n_parallel; i++) {
  1922. server_slot slot;
  1923. slot.id = i;
  1924. slot.ctx = ctx;
  1925. slot.n_ctx = n_ctx_slot;
  1926. slot.n_predict = params_base.n_predict;
  1927. slot.mctx = mctx;
  1928. slot.cache_tokens.has_mtmd = mctx != nullptr;
  1929. if (model_dft) {
  1930. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1931. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1932. if (slot.ctx_dft == nullptr) {
  1933. SRV_ERR("%s", "failed to create draft context\n");
  1934. return;
  1935. }
  1936. slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
  1937. if (slot.spec == nullptr) {
  1938. SRV_ERR("%s", "failed to create speculator\n");
  1939. return;
  1940. }
  1941. for (auto &pair : params_base.speculative.replacements) {
  1942. common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
  1943. }
  1944. }
  1945. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1946. slot.params.sampling = params_base.sampling;
  1947. slot.params.n_keep = params_base.n_keep;
  1948. slot.callback_on_release = [this](int) {
  1949. queue_tasks.pop_deferred_task();
  1950. };
  1951. slot.reset();
  1952. slots.push_back(std::move(slot));
  1953. }
  1954. default_generation_settings_for_props = slots[0].to_json();
  1955. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1956. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1957. {
  1958. const int32_t n_batch = llama_n_batch(ctx);
  1959. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1960. }
  1961. metrics.init();
  1962. // thinking is enabled if:
  1963. // 1. It's not explicitly disabled (reasoning_budget == 0)
  1964. // 2. The chat template supports it
  1965. const bool enable_thinking = params_base.use_jinja && params_base.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get());
  1966. SRV_INF("Enable thinking? %d\n", enable_thinking);
  1967. oai_parser_opt = {
  1968. /* use_jinja */ params_base.use_jinja,
  1969. /* prefill_assistant */ params_base.prefill_assistant,
  1970. /* reasoning_format */ params_base.reasoning_format,
  1971. /* chat_template_kwargs */ params_base.default_template_kwargs,
  1972. /* common_chat_templates */ chat_templates.get(),
  1973. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  1974. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  1975. /* enable_thinking */ enable_thinking,
  1976. };
  1977. }
  1978. server_slot * get_slot_by_id(int id) {
  1979. for (server_slot & slot : slots) {
  1980. if (slot.id == id) {
  1981. return &slot;
  1982. }
  1983. }
  1984. return nullptr;
  1985. }
  1986. server_slot * get_available_slot(const server_task & task) {
  1987. server_slot * ret = nullptr;
  1988. // find the slot that has at least n% prompt similarity
  1989. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1990. int lcs_len = 0;
  1991. float similarity = 0;
  1992. for (server_slot & slot : slots) {
  1993. // skip the slot if it is not available
  1994. if (slot.is_processing()) {
  1995. continue;
  1996. }
  1997. // skip the slot if it does not contains cached tokens
  1998. if (slot.cache_tokens.empty()) {
  1999. continue;
  2000. }
  2001. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  2002. int cur_lcs_len = slot.cache_tokens.get_common_prefix(task.prompt_tokens);
  2003. // fraction of the common subsequence length compared to the current slot's prompt length
  2004. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  2005. // select the current slot if the criteria match
  2006. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  2007. lcs_len = cur_lcs_len;
  2008. similarity = cur_similarity;
  2009. ret = &slot;
  2010. }
  2011. }
  2012. if (ret != nullptr) {
  2013. SLT_INF(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %.3f (> %.3f thold)\n", lcs_len, similarity, slot_prompt_similarity);
  2014. }
  2015. }
  2016. // find the slot that has been least recently used
  2017. if (ret == nullptr) {
  2018. int64_t t_last = -1;
  2019. for (server_slot & slot : slots) {
  2020. // skip the slot if it is not available
  2021. if (slot.is_processing()) {
  2022. continue;
  2023. }
  2024. // select the current slot if the criteria match
  2025. if (!ret || slot.t_last_used <= t_last) {
  2026. t_last = slot.t_last_used;
  2027. ret = &slot;
  2028. }
  2029. }
  2030. if (ret != nullptr) {
  2031. SLT_INF(*ret, "selected slot by LRU, t_last = %" PRId64 "\n", t_last);
  2032. }
  2033. }
  2034. return ret;
  2035. }
  2036. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  2037. slot.reset();
  2038. slot.id_task = task.id;
  2039. slot.index = task.index;
  2040. slot.task_type = task.type;
  2041. slot.params = std::move(task.params);
  2042. slot.prompt_tokens = std::move(task.prompt_tokens);
  2043. if (!are_lora_equal(slot.params.lora, slot.lora)) {
  2044. // if lora has changed, check to see if the cache should be cleared
  2045. if (lora_should_clear_cache(slot.lora, slot.params.lora)) {
  2046. SLT_INF(slot, "clearing cache for lora change. %zu loras -> %zu loras\n", slot.lora.size(), slot.params.lora.size());
  2047. slot.cache_tokens.clear();
  2048. } else {
  2049. SLT_INF(slot, "keeping cache for alora. %zu target loras\n", slot.params.lora.size());
  2050. }
  2051. slot.lora = slot.params.lora;
  2052. }
  2053. // if using alora, make sure it's only a single one requested and active
  2054. size_t alora_invocation_start = slot.prompt_tokens.size();
  2055. if (lora_all_alora(slot.lora)) {
  2056. const auto & enabled_ids = lora_get_enabled_ids(slot.lora);
  2057. // TODO: This will error out if a user requests two aloras, but only
  2058. // provides the activation string for one. We could, instead search
  2059. // for all requested alora activation strings and then either keep
  2060. // only the last one, or reject if multiple are found.
  2061. if (enabled_ids.size() != 1) {
  2062. send_error(task, "Cannot run multiple aLoRAs in a single request", ERROR_TYPE_INVALID_REQUEST);
  2063. return false;
  2064. }
  2065. const auto & lora = slot.lora[enabled_ids[0]].ptr;
  2066. // get the pointer and count for the invocation tokens
  2067. const uint64_t n_invocation_tokens = llama_adapter_get_alora_n_invocation_tokens(lora);
  2068. const llama_token * invocation_tokens = llama_adapter_get_alora_invocation_tokens (lora);
  2069. // scan backwards through the prompt tokens to find the last
  2070. // occurrence of the invocation sequence
  2071. int match_idx = static_cast<int>(n_invocation_tokens) - 1;
  2072. for (int i = slot.prompt_tokens.size() - 1; i >= 0; --i) {
  2073. // the token in this position matches the next token to find in
  2074. // the invocation sequence
  2075. if (slot.prompt_tokens[i] == invocation_tokens[match_idx]) {
  2076. // if it's a full match, we've found the start
  2077. if (match_idx == 0) {
  2078. alora_invocation_start = i;
  2079. break;
  2080. }
  2081. // otherwise, check the next token in the sequence
  2082. --match_idx;
  2083. } else {
  2084. // no match in this position, so start looking over again
  2085. match_idx = static_cast<int>(n_invocation_tokens) - 1;
  2086. }
  2087. }
  2088. // if the activation string is not found, disable the alora
  2089. if (alora_invocation_start == slot.prompt_tokens.size()) {
  2090. SLT_DBG(slot, "alora %zu requested, but not found. deactivating\n", enabled_ids[0]);
  2091. slot.lora[enabled_ids[0]].scale = 0.0f;
  2092. } else {
  2093. SLT_DBG(slot, "alora %zu activated starting at %zu\n", enabled_ids[0], alora_invocation_start);
  2094. slot.alora_invocation_start = alora_invocation_start;
  2095. }
  2096. }
  2097. if (!slot.prompt_tokens.validate(ctx)) {
  2098. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  2099. return false;
  2100. }
  2101. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  2102. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  2103. // Might be better to reject the request with a 400 ?
  2104. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  2105. slot.params.n_predict = slot.n_predict;
  2106. }
  2107. {
  2108. if (slot.smpl != nullptr) {
  2109. common_sampler_free(slot.smpl);
  2110. }
  2111. slot.smpl = common_sampler_init(model, slot.params.sampling);
  2112. if (slot.smpl == nullptr) {
  2113. // for now, the only error that may happen here is invalid grammar
  2114. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  2115. return false;
  2116. }
  2117. }
  2118. if (slot.ctx_dft) {
  2119. llama_batch_free(slot.batch_spec);
  2120. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  2121. }
  2122. slot.state = SLOT_STATE_STARTED;
  2123. SLT_INF(slot, "%s", "processing task\n");
  2124. return true;
  2125. }
  2126. void kv_cache_clear() {
  2127. SRV_DBG("%s", "clearing KV cache\n");
  2128. // clear the entire KV cache
  2129. llama_memory_clear(llama_get_memory(ctx), true);
  2130. clean_kv_cache = false;
  2131. }
  2132. bool process_token(completion_token_output & result, server_slot & slot) {
  2133. // remember which tokens were sampled - used for repetition penalties during sampling
  2134. const std::string token_str = result.text_to_send;
  2135. slot.sampled = result.tok;
  2136. slot.generated_text += token_str;
  2137. if (slot.params.return_tokens) {
  2138. slot.generated_tokens.push_back(result.tok);
  2139. }
  2140. slot.has_next_token = true;
  2141. // check if there is incomplete UTF-8 character at the end
  2142. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  2143. // search stop word and delete it
  2144. if (!incomplete) {
  2145. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  2146. const std::string str_test = slot.generated_text.substr(pos);
  2147. bool send_text = true;
  2148. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  2149. if (stop_pos != std::string::npos) {
  2150. slot.generated_text.erase(
  2151. slot.generated_text.begin() + pos + stop_pos,
  2152. slot.generated_text.end());
  2153. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  2154. } else if (slot.has_next_token) {
  2155. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  2156. send_text = stop_pos == std::string::npos;
  2157. }
  2158. // check if there is any token to predict
  2159. if (send_text) {
  2160. // no send the stop word in the response
  2161. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  2162. slot.n_sent_text += result.text_to_send.size();
  2163. // add the token to slot queue and cache
  2164. } else {
  2165. result.text_to_send = "";
  2166. }
  2167. slot.add_token(result);
  2168. if (slot.params.stream) {
  2169. send_partial_response(slot, result, false);
  2170. }
  2171. }
  2172. if (incomplete) {
  2173. slot.has_next_token = true;
  2174. }
  2175. // if context shifting is disabled, make sure that we don't run out of context
  2176. if (!params_base.ctx_shift && slot.n_past + 1 >= slot.n_ctx) {
  2177. slot.stop = STOP_TYPE_LIMIT;
  2178. slot.has_next_token = false;
  2179. SLT_DBG(slot, "stopped due to running out of context, n_past = %d, n_ctx = %d\n", slot.n_past, slot.n_ctx);
  2180. }
  2181. // check the limits
  2182. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  2183. slot.stop = STOP_TYPE_LIMIT;
  2184. slot.has_next_token = false;
  2185. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  2186. }
  2187. if (slot.has_new_line) {
  2188. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  2189. if (slot.params.n_indent > 0) {
  2190. // check the current indentation
  2191. // TODO: improve by not doing it more than once for each new line
  2192. if (slot.last_nl_pos > 0) {
  2193. size_t pos = slot.last_nl_pos;
  2194. int n_indent = 0;
  2195. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  2196. n_indent++;
  2197. pos++;
  2198. }
  2199. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  2200. slot.stop = STOP_TYPE_LIMIT;
  2201. slot.has_next_token = false;
  2202. // cut the last line
  2203. slot.generated_text.erase(pos, std::string::npos);
  2204. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  2205. }
  2206. }
  2207. // find the next new line
  2208. {
  2209. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  2210. if (pos != std::string::npos) {
  2211. slot.last_nl_pos = pos + 1;
  2212. }
  2213. }
  2214. }
  2215. }
  2216. // check if there is a new line in the generated text
  2217. if (result.text_to_send.find('\n') != std::string::npos) {
  2218. slot.has_new_line = true;
  2219. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  2220. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  2221. slot.stop = STOP_TYPE_LIMIT;
  2222. slot.has_next_token = false;
  2223. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  2224. }
  2225. }
  2226. // if context shift is disabled, we stop when it reaches the context limit
  2227. if (slot.n_past >= slot.n_ctx) {
  2228. slot.truncated = true;
  2229. slot.stop = STOP_TYPE_LIMIT;
  2230. slot.has_next_token = false;
  2231. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  2232. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  2233. }
  2234. if (llama_vocab_is_eog(vocab, result.tok)) {
  2235. slot.stop = STOP_TYPE_EOS;
  2236. slot.has_next_token = false;
  2237. SLT_DBG(slot, "%s", "stopped by EOS\n");
  2238. }
  2239. const auto n_ctx_train = llama_model_n_ctx_train(model);
  2240. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  2241. slot.truncated = true;
  2242. slot.stop = STOP_TYPE_LIMIT;
  2243. slot.has_next_token = false; // stop prediction
  2244. SLT_WRN(slot,
  2245. "n_predict (%d) is set for infinite generation. "
  2246. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  2247. slot.params.n_predict, n_ctx_train);
  2248. }
  2249. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  2250. return slot.has_next_token; // continue
  2251. }
  2252. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const {
  2253. size_t n_probs = slot.params.sampling.n_probs;
  2254. size_t n_vocab = llama_vocab_n_tokens(vocab);
  2255. if (post_sampling) {
  2256. const auto * cur_p = common_sampler_get_candidates(slot.smpl, true);
  2257. const size_t max_probs = cur_p->size;
  2258. // set probability for sampled token
  2259. for (size_t i = 0; i < max_probs; i++) {
  2260. if (cur_p->data[i].id == result.tok) {
  2261. result.prob = cur_p->data[i].p;
  2262. break;
  2263. }
  2264. }
  2265. // set probability for top n_probs tokens
  2266. result.probs.reserve(max_probs);
  2267. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  2268. result.probs.push_back({
  2269. cur_p->data[i].id,
  2270. common_token_to_piece(ctx, cur_p->data[i].id, special),
  2271. cur_p->data[i].p
  2272. });
  2273. }
  2274. } else {
  2275. // TODO: optimize this with min-p optimization
  2276. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  2277. // set probability for sampled token
  2278. for (size_t i = 0; i < n_vocab; i++) {
  2279. // set probability for sampled token
  2280. if (cur[i].id == result.tok) {
  2281. result.prob = cur[i].p;
  2282. break;
  2283. }
  2284. }
  2285. // set probability for top n_probs tokens
  2286. result.probs.reserve(n_probs);
  2287. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  2288. result.probs.push_back({
  2289. cur[i].id,
  2290. common_token_to_piece(ctx, cur[i].id, special),
  2291. cur[i].p
  2292. });
  2293. }
  2294. }
  2295. }
  2296. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2297. send_error(task.id, error, type);
  2298. }
  2299. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2300. send_error(slot.id_task, error, type, slot.n_prompt_tokens, slot.n_ctx);
  2301. }
  2302. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER, const int32_t n_prompt_tokens = 0, const int32_t n_ctx = 0) {
  2303. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  2304. if (type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  2305. GGML_ASSERT(n_ctx > 0 && n_prompt_tokens > 0);
  2306. }
  2307. auto res = std::make_unique<server_task_result_error>();
  2308. res->id = id_task;
  2309. res->err_type = type;
  2310. res->err_msg = error;
  2311. res->n_prompt_tokens = n_prompt_tokens;
  2312. res->n_ctx = n_ctx;
  2313. queue_results.send(std::move(res));
  2314. }
  2315. // if multimodal is enabled, send an error and return false
  2316. bool ensure_no_mtmd(const int id_task) {
  2317. if (mctx) {
  2318. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  2319. return false;
  2320. }
  2321. return true;
  2322. }
  2323. void send_partial_response(server_slot & slot, const completion_token_output & tkn, bool is_progress) {
  2324. auto res = std::make_unique<server_task_result_cmpl_partial>();
  2325. res->id = slot.id_task;
  2326. res->index = slot.index;
  2327. if (is_progress) {
  2328. res->is_progress = true;
  2329. res->progress.total = slot.n_prompt_tokens;
  2330. res->progress.cache = slot.n_prompt_tokens_cache;
  2331. res->progress.processed = slot.cache_tokens.size();
  2332. res->progress.time_ms = (ggml_time_us() - slot.t_start_process_prompt / 1000);
  2333. } else {
  2334. res->content = tkn.text_to_send;
  2335. res->tokens = { tkn.tok };
  2336. slot.update_chat_msg(res->oaicompat_msg_diffs);
  2337. }
  2338. res->n_decoded = slot.n_decoded;
  2339. res->n_prompt_tokens = slot.n_prompt_tokens;
  2340. res->post_sampling_probs = slot.params.post_sampling_probs;
  2341. res->verbose = slot.params.verbose;
  2342. res->oaicompat = slot.params.oaicompat;
  2343. res->oaicompat_model = slot.params.oaicompat_model;
  2344. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2345. // populate res.probs_output
  2346. if (slot.params.sampling.n_probs > 0) {
  2347. res->prob_output = tkn; // copy the token probs
  2348. }
  2349. // populate timings if this is final response or timings_per_token is enabled
  2350. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  2351. res->timings = slot.get_timings();
  2352. }
  2353. queue_results.send(std::move(res));
  2354. }
  2355. void send_final_response(server_slot & slot) {
  2356. auto res = std::make_unique<server_task_result_cmpl_final>();
  2357. res->id = slot.id_task;
  2358. res->id_slot = slot.id;
  2359. res->index = slot.index;
  2360. res->content = slot.generated_text;
  2361. res->tokens = std::move(slot.generated_tokens);
  2362. res->timings = slot.get_timings();
  2363. res->prompt = slot.prompt_tokens.detokenize(ctx, true);
  2364. res->response_fields = std::move(slot.params.response_fields);
  2365. res->truncated = slot.truncated;
  2366. res->n_decoded = slot.n_decoded;
  2367. res->n_prompt_tokens = slot.n_prompt_tokens;
  2368. res->n_tokens_cached = slot.n_past;
  2369. res->has_new_line = slot.has_new_line;
  2370. res->stopping_word = slot.stopping_word;
  2371. res->stop = slot.stop;
  2372. res->post_sampling_probs = slot.params.post_sampling_probs;
  2373. res->verbose = slot.params.verbose;
  2374. res->stream = slot.params.stream;
  2375. res->include_usage = slot.params.include_usage;
  2376. res->oaicompat = slot.params.oaicompat;
  2377. res->oaicompat_model = slot.params.oaicompat_model;
  2378. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2379. res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
  2380. // populate res.probs_output
  2381. if (slot.params.sampling.n_probs > 0) {
  2382. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  2383. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2384. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2385. res->probs_output = std::vector<completion_token_output>(
  2386. slot.generated_token_probs.begin(),
  2387. slot.generated_token_probs.end() - safe_offset);
  2388. } else {
  2389. res->probs_output = std::vector<completion_token_output>(
  2390. slot.generated_token_probs.begin(),
  2391. slot.generated_token_probs.end());
  2392. }
  2393. }
  2394. res->generation_params = slot.params; // copy the parameters
  2395. queue_results.send(std::move(res));
  2396. }
  2397. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2398. auto res = std::make_unique<server_task_result_embd>();
  2399. res->id = slot.id_task;
  2400. res->index = slot.index;
  2401. res->n_tokens = slot.n_prompt_tokens;
  2402. res->oaicompat = slot.params.oaicompat;
  2403. const int n_embd = llama_model_n_embd(model);
  2404. std::vector<float> embd_res(n_embd, 0.0f);
  2405. for (int i = 0; i < batch.n_tokens; ++i) {
  2406. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2407. continue;
  2408. }
  2409. const float * embd = nullptr;
  2410. if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
  2411. embd = llama_get_embeddings_ith(ctx, i);
  2412. } else {
  2413. embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2414. }
  2415. if (embd == nullptr) {
  2416. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2417. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2418. continue;
  2419. }
  2420. // normalize only when there is pooling
  2421. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2422. common_embd_normalize(embd, embd_res.data(), n_embd, slot.params.embd_normalize);
  2423. res->embedding.push_back(embd_res);
  2424. break;
  2425. } else {
  2426. res->embedding.emplace_back(embd, embd + n_embd);
  2427. }
  2428. }
  2429. SLT_DBG(slot, "%s", "sending embeddings\n");
  2430. queue_results.send(std::move(res));
  2431. }
  2432. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2433. auto res = std::make_unique<server_task_result_rerank>();
  2434. res->id = slot.id_task;
  2435. res->index = slot.index;
  2436. res->n_tokens = slot.n_prompt_tokens;
  2437. for (int i = 0; i < batch.n_tokens; ++i) {
  2438. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2439. continue;
  2440. }
  2441. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2442. if (embd == NULL) {
  2443. embd = llama_get_embeddings_ith(ctx, i);
  2444. }
  2445. if (embd == NULL) {
  2446. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2447. res->score = -1e6;
  2448. continue;
  2449. }
  2450. res->score = embd[0];
  2451. }
  2452. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2453. queue_results.send(std::move(res));
  2454. }
  2455. //
  2456. // Functions to create new task(s) and receive result(s)
  2457. //
  2458. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2459. std::vector<server_task> cancel_tasks;
  2460. cancel_tasks.reserve(id_tasks.size());
  2461. for (const auto & id_task : id_tasks) {
  2462. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2463. server_task task(SERVER_TASK_TYPE_CANCEL);
  2464. task.id_target = id_task;
  2465. queue_results.remove_waiting_task_id(id_task);
  2466. cancel_tasks.push_back(std::move(task));
  2467. }
  2468. // push to beginning of the queue, so it has highest priority
  2469. queue_tasks.post(std::move(cancel_tasks), true);
  2470. }
  2471. // receive the results from task(s)
  2472. void receive_multi_results(
  2473. const std::unordered_set<int> & id_tasks,
  2474. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2475. const std::function<void(json)> & error_handler,
  2476. const std::function<bool()> & is_connection_closed) {
  2477. std::vector<server_task_result_ptr> results(id_tasks.size());
  2478. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2479. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2480. if (is_connection_closed()) {
  2481. cancel_tasks(id_tasks);
  2482. return;
  2483. }
  2484. if (result == nullptr) {
  2485. i--; // retry
  2486. continue;
  2487. }
  2488. if (result->is_error()) {
  2489. error_handler(result->to_json());
  2490. cancel_tasks(id_tasks);
  2491. return;
  2492. }
  2493. GGML_ASSERT(
  2494. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2495. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2496. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2497. );
  2498. const size_t idx = result->get_index();
  2499. GGML_ASSERT(idx < results.size() && "index out of range");
  2500. results[idx] = std::move(result);
  2501. }
  2502. result_handler(results);
  2503. }
  2504. // receive the results from task(s), in stream mode
  2505. void receive_cmpl_results_stream(
  2506. const std::unordered_set<int> & id_tasks,
  2507. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2508. const std::function<void(json)> & error_handler,
  2509. const std::function<bool()> & is_connection_closed) {
  2510. size_t n_finished = 0;
  2511. while (true) {
  2512. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2513. if (is_connection_closed()) {
  2514. cancel_tasks(id_tasks);
  2515. return;
  2516. }
  2517. if (result == nullptr) {
  2518. continue; // retry
  2519. }
  2520. if (result->is_error()) {
  2521. error_handler(result->to_json());
  2522. cancel_tasks(id_tasks);
  2523. return;
  2524. }
  2525. GGML_ASSERT(
  2526. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2527. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2528. );
  2529. if (!result_handler(result)) {
  2530. cancel_tasks(id_tasks);
  2531. break;
  2532. }
  2533. if (result->is_stop()) {
  2534. if (++n_finished == id_tasks.size()) {
  2535. break;
  2536. }
  2537. }
  2538. }
  2539. }
  2540. //
  2541. // Functions to process the task
  2542. //
  2543. void process_single_task(server_task && task) {
  2544. switch (task.type) {
  2545. case SERVER_TASK_TYPE_COMPLETION:
  2546. case SERVER_TASK_TYPE_INFILL:
  2547. case SERVER_TASK_TYPE_EMBEDDING:
  2548. case SERVER_TASK_TYPE_RERANK:
  2549. {
  2550. const int id_slot = task.id_selected_slot;
  2551. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2552. if (slot == nullptr) {
  2553. // if no slot is available, we defer this task for processing later
  2554. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2555. queue_tasks.defer(std::move(task));
  2556. break;
  2557. }
  2558. if (slot->is_processing()) {
  2559. // if requested slot is unavailable, we defer this task for processing later
  2560. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2561. queue_tasks.defer(std::move(task));
  2562. break;
  2563. }
  2564. if (!launch_slot_with_task(*slot, std::move(task))) {
  2565. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2566. break;
  2567. }
  2568. } break;
  2569. case SERVER_TASK_TYPE_CANCEL:
  2570. {
  2571. // release slot linked with the task id
  2572. for (auto & slot : slots) {
  2573. if (slot.id_task == task.id_target) {
  2574. slot.release();
  2575. break;
  2576. }
  2577. }
  2578. } break;
  2579. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2580. {
  2581. // do nothing
  2582. } break;
  2583. case SERVER_TASK_TYPE_METRICS:
  2584. {
  2585. json slots_data = json::array();
  2586. int n_idle_slots = 0;
  2587. int n_processing_slots = 0;
  2588. for (server_slot & slot : slots) {
  2589. json slot_data = slot.to_json(true);
  2590. if (slot.is_processing()) {
  2591. n_processing_slots++;
  2592. } else {
  2593. n_idle_slots++;
  2594. }
  2595. slots_data.push_back(slot_data);
  2596. }
  2597. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2598. auto res = std::make_unique<server_task_result_metrics>();
  2599. res->id = task.id;
  2600. res->slots_data = std::move(slots_data);
  2601. res->n_idle_slots = n_idle_slots;
  2602. res->n_processing_slots = n_processing_slots;
  2603. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2604. res->t_start = metrics.t_start;
  2605. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2606. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2607. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2608. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2609. res->n_past_max = metrics.n_past_max;
  2610. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2611. res->t_prompt_processing = metrics.t_prompt_processing;
  2612. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2613. res->t_tokens_generation = metrics.t_tokens_generation;
  2614. res->n_decode_total = metrics.n_decode_total;
  2615. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2616. if (task.metrics_reset_bucket) {
  2617. metrics.reset_bucket();
  2618. }
  2619. queue_results.send(std::move(res));
  2620. } break;
  2621. case SERVER_TASK_TYPE_SLOT_SAVE:
  2622. {
  2623. if (!ensure_no_mtmd(task.id)) {
  2624. break;
  2625. }
  2626. int id_slot = task.slot_action.slot_id;
  2627. server_slot * slot = get_slot_by_id(id_slot);
  2628. if (slot == nullptr) {
  2629. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2630. break;
  2631. }
  2632. if (slot->is_processing()) {
  2633. // if requested slot is unavailable, we defer this task for processing later
  2634. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2635. queue_tasks.defer(std::move(task));
  2636. break;
  2637. }
  2638. const size_t token_count = slot->cache_tokens.size();
  2639. const int64_t t_start = ggml_time_us();
  2640. std::string filename = task.slot_action.filename;
  2641. std::string filepath = task.slot_action.filepath;
  2642. const llama_tokens & tokens = slot->cache_tokens.get_text_tokens();
  2643. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  2644. const int64_t t_end = ggml_time_us();
  2645. const double t_save_ms = (t_end - t_start) / 1000.0;
  2646. auto res = std::make_unique<server_task_result_slot_save_load>();
  2647. res->id = task.id;
  2648. res->id_slot = id_slot;
  2649. res->filename = filename;
  2650. res->is_save = true;
  2651. res->n_tokens = token_count;
  2652. res->n_bytes = nwrite;
  2653. res->t_ms = t_save_ms;
  2654. queue_results.send(std::move(res));
  2655. } break;
  2656. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2657. {
  2658. if (!ensure_no_mtmd(task.id)) break;
  2659. int id_slot = task.slot_action.slot_id;
  2660. server_slot * slot = get_slot_by_id(id_slot);
  2661. if (slot == nullptr) {
  2662. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2663. break;
  2664. }
  2665. if (slot->is_processing()) {
  2666. // if requested slot is unavailable, we defer this task for processing later
  2667. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2668. queue_tasks.defer(std::move(task));
  2669. break;
  2670. }
  2671. const int64_t t_start = ggml_time_us();
  2672. std::string filename = task.slot_action.filename;
  2673. std::string filepath = task.slot_action.filepath;
  2674. llama_tokens tokens;
  2675. tokens.resize(slot->n_ctx);
  2676. size_t token_count = 0;
  2677. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  2678. if (nread == 0) {
  2679. slot->cache_tokens.clear(); // KV may already been invalidated?
  2680. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2681. break;
  2682. }
  2683. tokens.resize(token_count);
  2684. slot->cache_tokens.clear();
  2685. slot->cache_tokens.insert(tokens);
  2686. const int64_t t_end = ggml_time_us();
  2687. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2688. auto res = std::make_unique<server_task_result_slot_save_load>();
  2689. res->id = task.id;
  2690. res->id_slot = id_slot;
  2691. res->filename = filename;
  2692. res->is_save = false;
  2693. res->n_tokens = token_count;
  2694. res->n_bytes = nread;
  2695. res->t_ms = t_restore_ms;
  2696. queue_results.send(std::move(res));
  2697. } break;
  2698. case SERVER_TASK_TYPE_SLOT_ERASE:
  2699. {
  2700. if (!ensure_no_mtmd(task.id)) break;
  2701. int id_slot = task.slot_action.slot_id;
  2702. server_slot * slot = get_slot_by_id(id_slot);
  2703. if (slot == nullptr) {
  2704. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2705. break;
  2706. }
  2707. if (slot->is_processing()) {
  2708. // if requested slot is unavailable, we defer this task for processing later
  2709. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2710. queue_tasks.defer(std::move(task));
  2711. break;
  2712. }
  2713. // Erase token cache
  2714. const size_t n_erased = slot->cache_tokens.size();
  2715. llama_memory_seq_rm(llama_get_memory(ctx), slot->id, -1, -1);
  2716. slot->cache_tokens.clear();
  2717. auto res = std::make_unique<server_task_result_slot_erase>();
  2718. res->id = task.id;
  2719. res->id_slot = id_slot;
  2720. res->n_erased = n_erased;
  2721. queue_results.send(std::move(res));
  2722. } break;
  2723. case SERVER_TASK_TYPE_SET_LORA:
  2724. {
  2725. params_base.lora_adapters = std::move(task.set_lora);
  2726. auto res = std::make_unique<server_task_result_apply_lora>();
  2727. res->id = task.id;
  2728. queue_results.send(std::move(res));
  2729. } break;
  2730. }
  2731. }
  2732. void update_slots() {
  2733. // check if all slots are idle
  2734. {
  2735. bool all_idle = true;
  2736. for (auto & slot : slots) {
  2737. if (slot.is_processing()) {
  2738. all_idle = false;
  2739. break;
  2740. }
  2741. }
  2742. if (all_idle) {
  2743. SRV_INF("%s", "all slots are idle\n");
  2744. if (clean_kv_cache) {
  2745. kv_cache_clear();
  2746. }
  2747. return;
  2748. }
  2749. }
  2750. {
  2751. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2752. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2753. task.id = queue_tasks.get_new_id();
  2754. queue_tasks.post(std::move(task));
  2755. }
  2756. // apply context-shift if needed
  2757. // TODO: simplify and improve
  2758. for (server_slot & slot : slots) {
  2759. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2760. if (!params_base.ctx_shift) {
  2761. // this check is redundant (for good)
  2762. // we should never get here, because generation should already stopped in process_token()
  2763. slot.release();
  2764. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2765. continue;
  2766. }
  2767. if (mctx) {
  2768. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  2769. // we don't support ctx_shift because an image chunk may contains multiple tokens
  2770. GGML_ABORT("not supported by multimodal");
  2771. }
  2772. // Shift context
  2773. const int n_keep = slot.params.n_keep + add_bos_token;
  2774. const int n_left = slot.n_past - n_keep;
  2775. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2776. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2777. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
  2778. llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2779. // add generated tokens to cache
  2780. {
  2781. llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
  2782. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  2783. new_tokens[i - n_discard] = new_tokens[i];
  2784. }
  2785. new_tokens.resize(slot.cache_tokens.size() - n_discard);
  2786. slot.cache_tokens.clear();
  2787. slot.cache_tokens.insert(new_tokens);
  2788. }
  2789. slot.n_past -= n_discard;
  2790. slot.truncated = true;
  2791. }
  2792. }
  2793. // start populating the batch for this iteration
  2794. common_batch_clear(batch);
  2795. // track if given slot can be batched with slots already in the batch
  2796. server_slot * slot_batched = nullptr;
  2797. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2798. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2799. };
  2800. // frist, add sampled tokens from any ongoing sequences
  2801. for (auto & slot : slots) {
  2802. if (slot.state != SLOT_STATE_GENERATING) {
  2803. continue;
  2804. }
  2805. // check if we can batch this slot with the previous one
  2806. if (!slot_batched) {
  2807. slot_batched = &slot;
  2808. } else if (!slot_batched->can_batch_with(slot)) {
  2809. continue;
  2810. }
  2811. slot.i_batch = batch.n_tokens;
  2812. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2813. slot.n_past += 1;
  2814. slot.cache_tokens.push_back(slot.sampled);
  2815. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2816. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2817. }
  2818. // process in chunks of params.n_batch
  2819. int32_t n_batch = llama_n_batch(ctx);
  2820. int32_t n_ubatch = llama_n_ubatch(ctx);
  2821. // next, batch any pending prompts without exceeding n_batch
  2822. float alora_scale = -1.0f;
  2823. size_t alora_disabled_id = 0;
  2824. if (params_base.cont_batching || batch.n_tokens == 0) {
  2825. for (auto & slot : slots) {
  2826. // check if we can batch this slot with the previous one
  2827. if (slot.is_processing()) {
  2828. if (!slot_batched) {
  2829. slot_batched = &slot;
  2830. } else if (!slot_batched->can_batch_with(slot)) {
  2831. continue;
  2832. }
  2833. }
  2834. // this slot still has a prompt to be processed
  2835. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2836. auto & prompt_tokens = slot.prompt_tokens;
  2837. // TODO: maybe move branch to outside of this loop in the future
  2838. if (slot.state == SLOT_STATE_STARTED) {
  2839. slot.t_start_process_prompt = ggml_time_us();
  2840. slot.t_start_generation = 0;
  2841. slot.n_past = 0;
  2842. slot.n_prompt_tokens = prompt_tokens.size();
  2843. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2844. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2845. // print prompt tokens (for debugging)
  2846. /*if (1) {
  2847. // first 16 tokens (avoid flooding logs)
  2848. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2849. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2850. }
  2851. } else {
  2852. // all
  2853. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2854. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2855. }
  2856. }*/
  2857. // empty prompt passed -> release the slot and send empty response
  2858. if (prompt_tokens.empty()) {
  2859. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2860. slot.release();
  2861. slot.print_timings();
  2862. send_final_response(slot);
  2863. continue;
  2864. }
  2865. // TODO: support memory-less logits computation
  2866. if (slot.need_logits() && !llama_get_memory(ctx)) {
  2867. slot.release();
  2868. send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
  2869. continue;
  2870. }
  2871. if (!slot.can_split()) {
  2872. if (slot.n_prompt_tokens > n_ubatch) {
  2873. slot.release();
  2874. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2875. continue;
  2876. }
  2877. if (slot.n_prompt_tokens > slot.n_ctx) {
  2878. slot.release();
  2879. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_EXCEED_CONTEXT_SIZE);
  2880. continue;
  2881. }
  2882. } else {
  2883. if (!params_base.ctx_shift) {
  2884. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2885. // TODO: there should be a separate parameter that control prompt truncation
  2886. // context shift should be applied only during the generation phase
  2887. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2888. slot.release();
  2889. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_EXCEED_CONTEXT_SIZE);
  2890. continue;
  2891. }
  2892. }
  2893. if (slot.params.n_keep < 0) {
  2894. slot.params.n_keep = slot.n_prompt_tokens;
  2895. }
  2896. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2897. // if input prompt is too big, truncate it
  2898. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2899. if (mctx) {
  2900. // we should never reach this
  2901. GGML_ABORT("not supported by multimodal");
  2902. }
  2903. const int n_left = slot.n_ctx - slot.params.n_keep;
  2904. const int n_block_size = n_left / 2;
  2905. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2906. const llama_tokens & curr_tokens = slot.prompt_tokens.get_text_tokens();
  2907. llama_tokens new_tokens(
  2908. curr_tokens.begin(),
  2909. curr_tokens.begin() + slot.params.n_keep);
  2910. new_tokens.insert(
  2911. new_tokens.end(),
  2912. curr_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2913. curr_tokens.end());
  2914. prompt_tokens.clear();
  2915. prompt_tokens.insert(new_tokens);
  2916. slot.truncated = true;
  2917. slot.n_prompt_tokens = prompt_tokens.size();
  2918. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2919. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2920. }
  2921. if (slot.params.cache_prompt) {
  2922. // reuse any previously computed tokens that are common with the new prompt
  2923. slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
  2924. // if there is an alora invoked, don't cache after the invocation start
  2925. if (slot.alora_invocation_start >= 0) {
  2926. SLT_DBG(slot, "only caching to alora invocation start (n_past=%d, alora_invocation_start=%d)\n", slot.n_past, slot.alora_invocation_start);
  2927. slot.n_past = std::min(slot.n_past, slot.alora_invocation_start - 1);
  2928. }
  2929. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2930. if (params_base.n_cache_reuse > 0) {
  2931. size_t head_c = slot.n_past; // cache
  2932. size_t head_p = slot.n_past; // current prompt
  2933. if (mctx) {
  2934. // we should never reach this
  2935. GGML_ABORT("not supported by multimodal");
  2936. }
  2937. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2938. while (head_c < slot.cache_tokens.size() &&
  2939. head_p < prompt_tokens.size()) {
  2940. size_t n_match = 0;
  2941. while (head_c + n_match < slot.cache_tokens.size() &&
  2942. head_p + n_match < prompt_tokens.size() &&
  2943. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2944. n_match++;
  2945. }
  2946. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2947. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2948. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2949. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2950. //}
  2951. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2952. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
  2953. llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
  2954. for (size_t i = 0; i < n_match; i++) {
  2955. slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
  2956. slot.n_past++;
  2957. }
  2958. head_c += n_match;
  2959. head_p += n_match;
  2960. } else {
  2961. head_c += 1;
  2962. }
  2963. }
  2964. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2965. }
  2966. } else {
  2967. // if we don't cache the prompt, we have to remove the entire KV cache
  2968. slot.n_past = 0;
  2969. }
  2970. // note: when n_swa == 0, the model does not use SWA, which is equivalent to a window of 1
  2971. const auto n_swa = std::max(1, llama_model_n_swa(model));
  2972. // the largest pos_min required for a checkpoint to be useful
  2973. const auto pos_min_thold = std::max(0, slot.n_past - n_swa);
  2974. if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
  2975. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  2976. if (pos_min == -1) {
  2977. SLT_ERR(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min);
  2978. GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
  2979. }
  2980. if (pos_min > pos_min_thold) {
  2981. SLT_WRN(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min, n_swa);
  2982. // search for a context checkpoint
  2983. const auto it = std::find_if(
  2984. slot.ctx_checkpoints.rbegin(),
  2985. slot.ctx_checkpoints.rend(),
  2986. [&](const auto & cur) {
  2987. // guarantee that a checkpoint will result in at least one token being processed [TAG_PROMPT_LOGITS]
  2988. return cur.pos_min < pos_min_thold;
  2989. }
  2990. );
  2991. bool do_reset = it == slot.ctx_checkpoints.rend();
  2992. //printf("[DEBUG] `do_reset` was set to `%s`\n", do_reset ? "true" : "false");
  2993. if (!do_reset) {
  2994. // restore the context checkpoint
  2995. const size_t ctx_checkpoint_size = it->data.size();
  2996. const size_t n = llama_state_seq_set_data_ext(ctx, it->data.data(), ctx_checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  2997. if (n != ctx_checkpoint_size) {
  2998. SLT_ERR(slot, "failed to restore context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) ctx_checkpoint_size / 1024 / 1024);
  2999. do_reset = true;
  3000. //printf("[DEBUG] `do_reset` was set to `true` after failing to restore a checkpoint");
  3001. } else {
  3002. slot.n_past = std::min(slot.n_past, std::max(it->pos_min + 1, it->pos_max));
  3003. SLT_WRN(slot, "restored context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) ctx_checkpoint_size / 1024 / 1024);
  3004. }
  3005. }
  3006. if (do_reset) {
  3007. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see %s)\n",
  3008. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  3009. slot.n_past = 0;
  3010. }
  3011. }
  3012. }
  3013. {
  3014. // erase any checkpoints with pos_min > pos_min_thold
  3015. for (int i = (int) slot.ctx_checkpoints.size() - 1; i >= 0; i--) {
  3016. const auto & cur = slot.ctx_checkpoints[i];
  3017. if (cur.pos_min > pos_min_thold) {
  3018. SLT_WRN(slot, "erased invalidated context checkpoint (pos_min = %d, pos_max = %d, n_swa = %d, size = %.3f MiB)\n", cur.pos_min, cur.pos_max, n_swa, (float) cur.data.size() / 1024 / 1024);
  3019. slot.ctx_checkpoints.erase(slot.ctx_checkpoints.begin() + i);
  3020. }
  3021. }
  3022. }
  3023. }
  3024. // [TAG_PROMPT_LOGITS]
  3025. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  3026. SLT_WRN(slot, "need to evaluate at least 1 token for each active slot (n_past = %d, n_prompt_tokens = %d)\n", slot.n_past, slot.n_prompt_tokens);
  3027. slot.n_past--;
  3028. SLT_WRN(slot, "n_past was set to %d\n", slot.n_past);
  3029. }
  3030. slot.n_prompt_tokens_cache = slot.n_past;
  3031. slot.n_prompt_tokens_processed = 0;
  3032. }
  3033. if (!slot.can_split()) {
  3034. // cannot fit the prompt in the current batch - will try next iter
  3035. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  3036. continue;
  3037. }
  3038. }
  3039. // truncate any tokens that are beyond n_past for this slot
  3040. if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1)) {
  3041. SLT_WRN(slot, "failed to truncate tokens beyond n_past = %d\n", slot.n_past);
  3042. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
  3043. // there is no common part left
  3044. slot.n_past = 0;
  3045. slot.n_prompt_tokens_cache = 0;
  3046. }
  3047. SLT_INF(slot, "n_past = %d, memory_seq_rm [%d, end)\n", slot.n_past, slot.n_past);
  3048. // remove the non-common part from the cache
  3049. slot.cache_tokens.keep_first(slot.n_past);
  3050. // check if we should process the image
  3051. if (slot.n_past < slot.n_prompt_tokens && slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
  3052. // process the image
  3053. int32_t new_n_past;
  3054. int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
  3055. int32_t n_pos = new_n_past - slot.n_past;
  3056. if (res != 0) {
  3057. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  3058. slot.release();
  3059. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  3060. continue;
  3061. }
  3062. // add the image chunk to cache
  3063. {
  3064. const auto & chunk = slot.prompt_tokens.find_chunk(slot.n_past);
  3065. slot.cache_tokens.push_back(chunk.get()); // copy
  3066. }
  3067. slot.n_past += n_pos;
  3068. slot.n_prompt_tokens_processed += n_pos;
  3069. }
  3070. // If using an alora, there may be uncached tokens that come
  3071. // before the invocation sequence. When this happens, the
  3072. // tokens before the invocation sequence need to be
  3073. // processed without the adpter in a separate batch, then
  3074. // the adapter needs to be enabled for the remaining tokens.
  3075. if (lora_all_alora(slot.lora) && slot.alora_invocation_start - 1 > slot.n_past) {
  3076. SLT_DBG(slot, "processing pre-alora tokens without the adapter (n_past = %d, alora_invocation_start = %d)\n", slot.n_past, slot.alora_invocation_start);
  3077. const auto & enabled_loras = lora_get_enabled_ids(slot.lora);
  3078. GGML_ASSERT(enabled_loras.size() == 1);
  3079. alora_scale = slot.lora[enabled_loras[0]].scale;
  3080. slot.lora[enabled_loras[0]].scale = 0.0f;
  3081. alora_disabled_id = enabled_loras[0];
  3082. }
  3083. // add prompt tokens for processing in the current batch
  3084. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  3085. // get next token to process
  3086. llama_token cur_tok = slot.prompt_tokens[slot.n_past];
  3087. if (cur_tok == LLAMA_TOKEN_NULL) {
  3088. break; // end of text chunk
  3089. }
  3090. // if this is an alora request with pre-invocation
  3091. // tokens that are not cached, we need to stop filling
  3092. // this batch at those pre-invocation tokens.
  3093. if (alora_scale > 0 && slot.n_past == slot.alora_invocation_start - 1) {
  3094. SLT_DBG(slot, "stop prompt batch filling at (n_past = %d, alora_invocation_start = %d)\n", slot.n_past, slot.alora_invocation_start);
  3095. break;
  3096. }
  3097. // embedding requires all tokens in the batch to be output
  3098. const bool need_embd = server_task_type_need_embd(slot.task_type);
  3099. common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
  3100. slot.cache_tokens.push_back(cur_tok);
  3101. slot.n_prompt_tokens_processed++;
  3102. slot.n_past++;
  3103. }
  3104. // SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
  3105. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  3106. // entire prompt has been processed
  3107. if (slot.n_past == slot.n_prompt_tokens) {
  3108. slot.state = SLOT_STATE_DONE_PROMPT;
  3109. GGML_ASSERT(batch.n_tokens > 0);
  3110. GGML_ASSERT((size_t) slot.n_prompt_tokens == slot.prompt_tokens.size());
  3111. common_sampler_reset(slot.smpl);
  3112. // Process all prompt tokens through sampler system
  3113. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  3114. llama_token id = slot.prompt_tokens[i];
  3115. if (id != LLAMA_TOKEN_NULL) {
  3116. common_sampler_accept(slot.smpl, id, false);
  3117. }
  3118. }
  3119. // extract the logits only for the last token
  3120. batch.logits[batch.n_tokens - 1] = true;
  3121. slot.n_decoded = 0;
  3122. slot.i_batch = batch.n_tokens - 1;
  3123. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  3124. }
  3125. }
  3126. if (batch.n_tokens >= n_batch) {
  3127. break;
  3128. }
  3129. }
  3130. }
  3131. if (batch.n_tokens == 0) {
  3132. SRV_WRN("%s", "no tokens to decode\n");
  3133. return;
  3134. }
  3135. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  3136. if (slot_batched) {
  3137. // apply lora, only need to do it once per batch
  3138. common_set_adapter_lora(ctx, slot_batched->lora);
  3139. // if the lora is temporarily disabled for an alora, re-enable it
  3140. // for next time
  3141. if (alora_scale > 0.0f) {
  3142. SRV_DBG("re-enabling alora with scale %f\n", alora_scale);
  3143. slot_batched->lora[alora_disabled_id].scale = alora_scale;
  3144. }
  3145. llama_set_embeddings(ctx, slot_batched->need_embd());
  3146. }
  3147. int32_t i_next = 0;
  3148. // process the created batch of tokens
  3149. for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
  3150. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  3151. llama_batch batch_view = {
  3152. n_tokens,
  3153. batch.token + i,
  3154. nullptr,
  3155. batch.pos + i,
  3156. batch.n_seq_id + i,
  3157. batch.seq_id + i,
  3158. batch.logits + i,
  3159. };
  3160. const int ret = llama_decode(ctx, batch_view);
  3161. metrics.on_decoded(slots);
  3162. if (ret != 0) {
  3163. {
  3164. std::string err;
  3165. if (n_batch == 1 && ret == 1) {
  3166. err = "Context size has been exceeded.";
  3167. }
  3168. if (ret == -1) {
  3169. err = "Invalid input batch.";
  3170. }
  3171. if (ret < -1) {
  3172. // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
  3173. err = "Compute error.";
  3174. }
  3175. // TODO: handle ret == 2 (abort) when we start aborting
  3176. if (!err.empty()) {
  3177. SRV_ERR("%s, i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  3178. for (auto & slot : slots) {
  3179. slot.release();
  3180. send_error(slot, err);
  3181. }
  3182. break;
  3183. }
  3184. }
  3185. // retry with half the batch size to try to find a free slot in the KV cache
  3186. n_batch /= 2;
  3187. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  3188. continue; // continue loop of n_batch
  3189. }
  3190. // move the head of the batch forward with the number of tokens we just processed
  3191. i_next = i + n_tokens;
  3192. // on successful decode, restore the original batch size
  3193. n_batch = llama_n_batch(ctx);
  3194. for (auto & slot : slots) {
  3195. // optionally send prompt processing progress
  3196. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) {
  3197. if (slot.params.stream && slot.params.return_progress) {
  3198. send_partial_response(slot, {}, true);
  3199. }
  3200. }
  3201. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  3202. continue; // continue loop of slots
  3203. }
  3204. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  3205. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  3206. // prompt evaluated for embedding
  3207. send_embedding(slot, batch_view);
  3208. slot.release();
  3209. slot.i_batch = -1;
  3210. continue; // continue loop of slots
  3211. }
  3212. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  3213. send_rerank(slot, batch_view);
  3214. slot.release();
  3215. slot.i_batch = -1;
  3216. continue; // continue loop of slots
  3217. }
  3218. // prompt evaluated for next-token prediction
  3219. slot.state = SLOT_STATE_GENERATING;
  3220. // make a checkpoint of the parts of the memory that cannot be rolled back.
  3221. // checkpoints are created only if:
  3222. // - the model uses SWA and we are not using `swa_full`
  3223. // - the model architecture is marked as recurrent or hybrid
  3224. //
  3225. // TODO: try to make this conditional on the context or the memory module, instead of the model type
  3226. const bool do_checkpoint =
  3227. (llama_model_is_recurrent(model) || llama_model_is_hybrid(model)) ||
  3228. (llama_model_n_swa(model) > 0 && !params_base.swa_full);
  3229. if (do_checkpoint && params_base.n_ctx_checkpoints > 0) {
  3230. while (slot.ctx_checkpoints.size() >= (size_t) params_base.n_ctx_checkpoints) {
  3231. // make room for the new checkpoint, if needed
  3232. const auto & cur = slot.ctx_checkpoints.front();
  3233. SLT_WRN(slot, "erasing old context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
  3234. cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  3235. slot.ctx_checkpoints.erase(slot.ctx_checkpoints.begin());
  3236. }
  3237. const size_t checkpoint_size = llama_state_seq_get_size_ext(ctx, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  3238. auto & cur = slot.ctx_checkpoints.emplace_back(ctx_checkpoint{
  3239. /*.pos_min = */ llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id),
  3240. /*.pos_max = */ llama_memory_seq_pos_max(llama_get_memory(ctx), slot.id),
  3241. /*.data = */ std::vector<uint8_t>(checkpoint_size),
  3242. });
  3243. llama_state_seq_get_data_ext(ctx, cur.data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  3244. SLT_WRN(slot, "saved context checkpoint %d of %d (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
  3245. (int) slot.ctx_checkpoints.size(), params_base.n_ctx_checkpoints, cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  3246. }
  3247. } else if (slot.state != SLOT_STATE_GENERATING) {
  3248. continue; // continue loop of slots
  3249. }
  3250. const int tok_idx = slot.i_batch - i;
  3251. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  3252. slot.i_batch = -1;
  3253. common_sampler_accept(slot.smpl, id, true);
  3254. slot.n_decoded += 1;
  3255. const int64_t t_current = ggml_time_us();
  3256. if (slot.n_decoded == 1) {
  3257. slot.t_start_generation = t_current;
  3258. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  3259. metrics.on_prompt_eval(slot);
  3260. }
  3261. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  3262. completion_token_output result;
  3263. result.tok = id;
  3264. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3265. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  3266. if (slot.params.sampling.n_probs > 0) {
  3267. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  3268. }
  3269. if (!process_token(result, slot)) {
  3270. // release slot because of stop condition
  3271. slot.release();
  3272. slot.print_timings();
  3273. send_final_response(slot);
  3274. metrics.on_prediction(slot);
  3275. continue;
  3276. }
  3277. }
  3278. // do speculative decoding
  3279. for (auto & slot : slots) {
  3280. if (!slot.is_processing() || !slot.can_speculate()) {
  3281. continue;
  3282. }
  3283. if (slot.state != SLOT_STATE_GENERATING) {
  3284. continue;
  3285. }
  3286. if (mctx) {
  3287. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  3288. GGML_ABORT("not supported by multimodal");
  3289. }
  3290. // determine the max draft that fits the current slot state
  3291. int n_draft_max = slot.params.speculative.n_max;
  3292. // note: n_past is not yet increased for the `id` token sampled above
  3293. // also, need to leave space for 1 extra token to allow context shifts
  3294. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  3295. if (slot.n_remaining > 0) {
  3296. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  3297. }
  3298. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  3299. if (n_draft_max < slot.params.speculative.n_min) {
  3300. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  3301. continue;
  3302. }
  3303. llama_token id = slot.sampled;
  3304. struct common_speculative_params params_spec;
  3305. params_spec.n_draft = n_draft_max;
  3306. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  3307. params_spec.p_min = slot.params.speculative.p_min;
  3308. const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
  3309. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
  3310. // ignore small drafts
  3311. if (slot.params.speculative.n_min > (int) draft.size()) {
  3312. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  3313. continue;
  3314. }
  3315. // keep track of total number of drafted tokens tested
  3316. slot.n_draft_total += draft.size();
  3317. // construct the speculation batch
  3318. common_batch_clear(slot.batch_spec);
  3319. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  3320. for (size_t i = 0; i < draft.size(); ++i) {
  3321. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  3322. }
  3323. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  3324. llama_decode(ctx, slot.batch_spec);
  3325. // the accepted tokens from the speculation
  3326. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  3327. slot.n_past += ids.size();
  3328. slot.n_decoded += ids.size();
  3329. // update how many tokens out of those tested were accepted
  3330. slot.n_draft_accepted += ids.size() - 1;
  3331. slot.cache_tokens.push_back(id);
  3332. slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
  3333. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1);
  3334. for (size_t i = 0; i < ids.size(); ++i) {
  3335. completion_token_output result;
  3336. result.tok = ids[i];
  3337. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3338. result.prob = 1.0f; // set later
  3339. // TODO: set result.probs
  3340. if (!process_token(result, slot)) {
  3341. // release slot because of stop condition
  3342. slot.release();
  3343. slot.print_timings();
  3344. send_final_response(slot);
  3345. metrics.on_prediction(slot);
  3346. break;
  3347. }
  3348. }
  3349. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  3350. }
  3351. }
  3352. SRV_DBG("%s", "run slots completed\n");
  3353. }
  3354. json model_meta() const {
  3355. return json {
  3356. {"vocab_type", llama_vocab_type (vocab)},
  3357. {"n_vocab", llama_vocab_n_tokens (vocab)},
  3358. {"n_ctx_train", llama_model_n_ctx_train(model)},
  3359. {"n_embd", llama_model_n_embd (model)},
  3360. {"n_params", llama_model_n_params (model)},
  3361. {"size", llama_model_size (model)},
  3362. };
  3363. }
  3364. };
  3365. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  3366. // skip GH copilot requests when using default port
  3367. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  3368. return;
  3369. }
  3370. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  3371. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  3372. SRV_DBG("request: %s\n", req.body.c_str());
  3373. SRV_DBG("response: %s\n", res.body.c_str());
  3374. }
  3375. std::function<void(int)> shutdown_handler;
  3376. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  3377. inline void signal_handler(int signal) {
  3378. if (is_terminating.test_and_set()) {
  3379. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  3380. // this is for better developer experience, we can remove when the server is stable enough
  3381. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  3382. exit(1);
  3383. }
  3384. shutdown_handler(signal);
  3385. }
  3386. int main(int argc, char ** argv) {
  3387. // own arguments required by this example
  3388. common_params params;
  3389. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  3390. return 1;
  3391. }
  3392. common_init();
  3393. // struct that contains llama context and inference
  3394. server_context ctx_server;
  3395. llama_backend_init();
  3396. llama_numa_init(params.numa);
  3397. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  3398. LOG_INF("\n");
  3399. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  3400. LOG_INF("\n");
  3401. std::unique_ptr<httplib::Server> svr;
  3402. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  3403. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3404. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  3405. svr.reset(
  3406. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  3407. );
  3408. } else {
  3409. LOG_INF("Running without SSL\n");
  3410. svr.reset(new httplib::Server());
  3411. }
  3412. #else
  3413. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3414. LOG_ERR("Server is built without SSL support\n");
  3415. return 1;
  3416. }
  3417. svr.reset(new httplib::Server());
  3418. #endif
  3419. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  3420. svr->set_default_headers({{"Server", "llama.cpp"}});
  3421. svr->set_logger(log_server_request);
  3422. auto res_error = [](httplib::Response & res, const json & error_data) {
  3423. json final_response {{"error", error_data}};
  3424. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  3425. res.status = json_value(error_data, "code", 500);
  3426. };
  3427. auto res_ok = [](httplib::Response & res, const json & data) {
  3428. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  3429. res.status = 200;
  3430. };
  3431. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  3432. std::string message;
  3433. try {
  3434. std::rethrow_exception(ep);
  3435. } catch (const std::exception & e) {
  3436. message = e.what();
  3437. } catch (...) {
  3438. message = "Unknown Exception";
  3439. }
  3440. try {
  3441. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  3442. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  3443. res_error(res, formatted_error);
  3444. } catch (const std::exception & e) {
  3445. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  3446. }
  3447. });
  3448. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  3449. if (res.status == 404) {
  3450. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  3451. }
  3452. // for other error codes, we skip processing here because it's already done by res_error()
  3453. });
  3454. // set timeouts and change hostname and port
  3455. svr->set_read_timeout (params.timeout_read);
  3456. svr->set_write_timeout(params.timeout_write);
  3457. std::unordered_map<std::string, std::string> log_data;
  3458. log_data["hostname"] = params.hostname;
  3459. log_data["port"] = std::to_string(params.port);
  3460. if (params.api_keys.size() == 1) {
  3461. auto key = params.api_keys[0];
  3462. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  3463. } else if (params.api_keys.size() > 1) {
  3464. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  3465. }
  3466. // Necessary similarity of prompt for slot selection
  3467. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  3468. //
  3469. // Middlewares
  3470. //
  3471. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  3472. static const std::unordered_set<std::string> public_endpoints = {
  3473. "/health",
  3474. "/models",
  3475. "/v1/models",
  3476. "/api/tags"
  3477. };
  3478. // If API key is not set, skip validation
  3479. if (params.api_keys.empty()) {
  3480. return true;
  3481. }
  3482. // If path is public or is static file, skip validation
  3483. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  3484. return true;
  3485. }
  3486. // Check for API key in the header
  3487. auto auth_header = req.get_header_value("Authorization");
  3488. std::string prefix = "Bearer ";
  3489. if (auth_header.substr(0, prefix.size()) == prefix) {
  3490. std::string received_api_key = auth_header.substr(prefix.size());
  3491. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  3492. return true; // API key is valid
  3493. }
  3494. }
  3495. // API key is invalid or not provided
  3496. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  3497. LOG_WRN("Unauthorized: Invalid API Key\n");
  3498. return false;
  3499. };
  3500. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  3501. server_state current_state = state.load();
  3502. if (current_state == SERVER_STATE_LOADING_MODEL) {
  3503. auto tmp = string_split<std::string>(req.path, '.');
  3504. if (req.path == "/" || tmp.back() == "html") {
  3505. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  3506. res.status = 503;
  3507. } else if (req.path == "/models" || req.path == "/v1/models" || req.path == "/api/tags") {
  3508. // allow the models endpoint to be accessed during loading
  3509. return true;
  3510. } else {
  3511. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  3512. }
  3513. return false;
  3514. }
  3515. return true;
  3516. };
  3517. // register server middlewares
  3518. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  3519. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  3520. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  3521. if (req.method == "OPTIONS") {
  3522. res.set_header("Access-Control-Allow-Credentials", "true");
  3523. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  3524. res.set_header("Access-Control-Allow-Headers", "*");
  3525. res.set_content("", "text/html"); // blank response, no data
  3526. return httplib::Server::HandlerResponse::Handled; // skip further processing
  3527. }
  3528. if (!middleware_server_state(req, res)) {
  3529. return httplib::Server::HandlerResponse::Handled;
  3530. }
  3531. if (!middleware_validate_api_key(req, res)) {
  3532. return httplib::Server::HandlerResponse::Handled;
  3533. }
  3534. return httplib::Server::HandlerResponse::Unhandled;
  3535. });
  3536. //
  3537. // Route handlers (or controllers)
  3538. //
  3539. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  3540. // error and loading states are handled by middleware
  3541. json health = {{"status", "ok"}};
  3542. res_ok(res, health);
  3543. };
  3544. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  3545. if (!params.endpoint_slots) {
  3546. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  3547. return;
  3548. }
  3549. // request slots data using task queue
  3550. int task_id = ctx_server.queue_tasks.get_new_id();
  3551. {
  3552. server_task task(SERVER_TASK_TYPE_METRICS);
  3553. task.id = task_id;
  3554. ctx_server.queue_results.add_waiting_task_id(task_id);
  3555. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3556. }
  3557. // get the result
  3558. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3559. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3560. if (result->is_error()) {
  3561. res_error(res, result->to_json());
  3562. return;
  3563. }
  3564. // TODO: get rid of this dynamic_cast
  3565. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3566. GGML_ASSERT(res_metrics != nullptr);
  3567. // optionally return "fail_on_no_slot" error
  3568. if (req.has_param("fail_on_no_slot")) {
  3569. if (res_metrics->n_idle_slots == 0) {
  3570. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3571. return;
  3572. }
  3573. }
  3574. res_ok(res, res_metrics->slots_data);
  3575. };
  3576. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3577. if (!params.endpoint_metrics) {
  3578. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3579. return;
  3580. }
  3581. // request slots data using task queue
  3582. int task_id = ctx_server.queue_tasks.get_new_id();
  3583. {
  3584. server_task task(SERVER_TASK_TYPE_METRICS);
  3585. task.id = task_id;
  3586. ctx_server.queue_results.add_waiting_task_id(task_id);
  3587. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3588. }
  3589. // get the result
  3590. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3591. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3592. if (result->is_error()) {
  3593. res_error(res, result->to_json());
  3594. return;
  3595. }
  3596. // TODO: get rid of this dynamic_cast
  3597. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3598. GGML_ASSERT(res_metrics != nullptr);
  3599. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3600. json all_metrics_def = json {
  3601. {"counter", {{
  3602. {"name", "prompt_tokens_total"},
  3603. {"help", "Number of prompt tokens processed."},
  3604. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3605. }, {
  3606. {"name", "prompt_seconds_total"},
  3607. {"help", "Prompt process time"},
  3608. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3609. }, {
  3610. {"name", "tokens_predicted_total"},
  3611. {"help", "Number of generation tokens processed."},
  3612. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3613. }, {
  3614. {"name", "tokens_predicted_seconds_total"},
  3615. {"help", "Predict process time"},
  3616. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3617. }, {
  3618. {"name", "n_decode_total"},
  3619. {"help", "Total number of llama_decode() calls"},
  3620. {"value", res_metrics->n_decode_total}
  3621. }, {
  3622. {"name", "n_past_max"},
  3623. {"help", "Largest observed n_past."},
  3624. {"value", res_metrics->n_past_max}
  3625. }, {
  3626. {"name", "n_busy_slots_per_decode"},
  3627. {"help", "Average number of busy slots per llama_decode() call"},
  3628. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3629. }}},
  3630. {"gauge", {{
  3631. {"name", "prompt_tokens_seconds"},
  3632. {"help", "Average prompt throughput in tokens/s."},
  3633. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3634. },{
  3635. {"name", "predicted_tokens_seconds"},
  3636. {"help", "Average generation throughput in tokens/s."},
  3637. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3638. },{
  3639. {"name", "requests_processing"},
  3640. {"help", "Number of requests processing."},
  3641. {"value", (uint64_t) res_metrics->n_processing_slots}
  3642. },{
  3643. {"name", "requests_deferred"},
  3644. {"help", "Number of requests deferred."},
  3645. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3646. }}}
  3647. };
  3648. std::stringstream prometheus;
  3649. for (const auto & el : all_metrics_def.items()) {
  3650. const auto & type = el.key();
  3651. const auto & metrics_def = el.value();
  3652. for (const auto & metric_def : metrics_def) {
  3653. const std::string name = metric_def.at("name");
  3654. const std::string help = metric_def.at("help");
  3655. auto value = json_value(metric_def, "value", 0.);
  3656. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3657. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3658. << "llamacpp:" << name << " " << value << "\n";
  3659. }
  3660. }
  3661. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3662. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3663. res.status = 200; // HTTP OK
  3664. };
  3665. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3666. json request_data = json::parse(req.body);
  3667. std::string filename = request_data.at("filename");
  3668. if (!fs_validate_filename(filename)) {
  3669. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3670. return;
  3671. }
  3672. std::string filepath = params.slot_save_path + filename;
  3673. int task_id = ctx_server.queue_tasks.get_new_id();
  3674. {
  3675. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3676. task.id = task_id;
  3677. task.slot_action.slot_id = id_slot;
  3678. task.slot_action.filename = filename;
  3679. task.slot_action.filepath = filepath;
  3680. ctx_server.queue_results.add_waiting_task_id(task_id);
  3681. ctx_server.queue_tasks.post(std::move(task));
  3682. }
  3683. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3684. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3685. if (result->is_error()) {
  3686. res_error(res, result->to_json());
  3687. return;
  3688. }
  3689. res_ok(res, result->to_json());
  3690. };
  3691. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3692. json request_data = json::parse(req.body);
  3693. std::string filename = request_data.at("filename");
  3694. if (!fs_validate_filename(filename)) {
  3695. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3696. return;
  3697. }
  3698. std::string filepath = params.slot_save_path + filename;
  3699. int task_id = ctx_server.queue_tasks.get_new_id();
  3700. {
  3701. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3702. task.id = task_id;
  3703. task.slot_action.slot_id = id_slot;
  3704. task.slot_action.filename = filename;
  3705. task.slot_action.filepath = filepath;
  3706. ctx_server.queue_results.add_waiting_task_id(task_id);
  3707. ctx_server.queue_tasks.post(std::move(task));
  3708. }
  3709. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3710. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3711. if (result->is_error()) {
  3712. res_error(res, result->to_json());
  3713. return;
  3714. }
  3715. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3716. res_ok(res, result->to_json());
  3717. };
  3718. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3719. int task_id = ctx_server.queue_tasks.get_new_id();
  3720. {
  3721. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3722. task.id = task_id;
  3723. task.slot_action.slot_id = id_slot;
  3724. ctx_server.queue_results.add_waiting_task_id(task_id);
  3725. ctx_server.queue_tasks.post(std::move(task));
  3726. }
  3727. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3728. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3729. if (result->is_error()) {
  3730. res_error(res, result->to_json());
  3731. return;
  3732. }
  3733. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3734. res_ok(res, result->to_json());
  3735. };
  3736. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3737. if (params.slot_save_path.empty()) {
  3738. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3739. return;
  3740. }
  3741. std::string id_slot_str = req.path_params.at("id_slot");
  3742. int id_slot;
  3743. try {
  3744. id_slot = std::stoi(id_slot_str);
  3745. } catch (const std::exception &) {
  3746. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3747. return;
  3748. }
  3749. std::string action = req.get_param_value("action");
  3750. if (action == "save") {
  3751. handle_slots_save(req, res, id_slot);
  3752. } else if (action == "restore") {
  3753. handle_slots_restore(req, res, id_slot);
  3754. } else if (action == "erase") {
  3755. handle_slots_erase(req, res, id_slot);
  3756. } else {
  3757. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3758. }
  3759. };
  3760. const auto handle_props = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3761. // this endpoint is publicly available, please only return what is safe to be exposed
  3762. json data = {
  3763. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3764. { "total_slots", ctx_server.params_base.n_parallel },
  3765. { "model_path", ctx_server.params_base.model.path },
  3766. { "modalities", json {
  3767. {"vision", ctx_server.oai_parser_opt.allow_image},
  3768. {"audio", ctx_server.oai_parser_opt.allow_audio},
  3769. } },
  3770. { "endpoint_slots", params.endpoint_slots },
  3771. { "endpoint_props", params.endpoint_props },
  3772. { "endpoint_metrics", params.endpoint_metrics },
  3773. { "webui", params.webui },
  3774. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3775. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3776. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3777. { "build_info", build_info },
  3778. };
  3779. if (ctx_server.params_base.use_jinja) {
  3780. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3781. data["chat_template_tool_use"] = tool_use_src;
  3782. }
  3783. }
  3784. res_ok(res, data);
  3785. };
  3786. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3787. if (!ctx_server.params_base.endpoint_props) {
  3788. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3789. return;
  3790. }
  3791. json data = json::parse(req.body);
  3792. // update any props here
  3793. res_ok(res, {{ "success", true }});
  3794. };
  3795. const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3796. bool has_mtmd = ctx_server.mctx != nullptr;
  3797. json data = {
  3798. {
  3799. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  3800. },
  3801. {
  3802. "model_info", {
  3803. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  3804. }
  3805. },
  3806. {"modelfile", ""},
  3807. {"parameters", ""},
  3808. {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
  3809. {"details", {
  3810. {"parent_model", ""},
  3811. {"format", "gguf"},
  3812. {"family", ""},
  3813. {"families", {""}},
  3814. {"parameter_size", ""},
  3815. {"quantization_level", ""}
  3816. }},
  3817. {"model_info", ""},
  3818. {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}
  3819. };
  3820. res_ok(res, data);
  3821. };
  3822. // handle completion-like requests (completion, chat, infill)
  3823. // we can optionally provide a custom format for partial results and final results
  3824. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3825. server_task_type type,
  3826. json & data,
  3827. const std::vector<raw_buffer> & files,
  3828. const std::function<bool()> & is_connection_closed,
  3829. httplib::Response & res,
  3830. oaicompat_type oaicompat) -> void {
  3831. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3832. auto completion_id = gen_chatcmplid();
  3833. std::unordered_set<int> task_ids;
  3834. try {
  3835. std::vector<server_task> tasks;
  3836. const auto & prompt = data.at("prompt");
  3837. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3838. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3839. // process prompt
  3840. std::vector<server_tokens> inputs;
  3841. if (oaicompat && ctx_server.mctx != nullptr) {
  3842. // This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below.
  3843. inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get<std::string>(), files));
  3844. } else {
  3845. // Everything else, including multimodal completions.
  3846. inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
  3847. }
  3848. tasks.reserve(inputs.size());
  3849. for (size_t i = 0; i < inputs.size(); i++) {
  3850. server_task task = server_task(type);
  3851. task.id = ctx_server.queue_tasks.get_new_id();
  3852. task.index = i;
  3853. task.prompt_tokens = std::move(inputs[i]);
  3854. task.params = server_task::params_from_json_cmpl(
  3855. ctx_server.ctx,
  3856. ctx_server.params_base,
  3857. data);
  3858. task.id_selected_slot = json_value(data, "id_slot", -1);
  3859. // OAI-compat
  3860. task.params.oaicompat = oaicompat;
  3861. task.params.oaicompat_cmpl_id = completion_id;
  3862. // oaicompat_model is already populated by params_from_json_cmpl
  3863. tasks.push_back(std::move(task));
  3864. }
  3865. task_ids = server_task::get_list_id(tasks);
  3866. ctx_server.queue_results.add_waiting_tasks(tasks);
  3867. ctx_server.queue_tasks.post(std::move(tasks));
  3868. } catch (const std::exception & e) {
  3869. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3870. return;
  3871. }
  3872. bool stream = json_value(data, "stream", false);
  3873. if (!stream) {
  3874. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3875. if (results.size() == 1) {
  3876. // single result
  3877. res_ok(res, results[0]->to_json());
  3878. } else {
  3879. // multiple results (multitask)
  3880. json arr = json::array();
  3881. for (auto & res : results) {
  3882. arr.push_back(res->to_json());
  3883. }
  3884. res_ok(res, arr);
  3885. }
  3886. }, [&](const json & error_data) {
  3887. res_error(res, error_data);
  3888. }, is_connection_closed);
  3889. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3890. } else {
  3891. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3892. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3893. json res_json = result->to_json();
  3894. if (res_json.is_array()) {
  3895. for (const auto & res : res_json) {
  3896. if (!server_sent_event(sink, res)) {
  3897. // sending failed (HTTP connection closed), cancel the generation
  3898. return false;
  3899. }
  3900. }
  3901. return true;
  3902. } else {
  3903. return server_sent_event(sink, res_json);
  3904. }
  3905. }, [&](const json & error_data) {
  3906. server_sent_event(sink, json{{"error", error_data}});
  3907. }, [&sink]() {
  3908. // note: do not use req.is_connection_closed here because req is already destroyed
  3909. return !sink.is_writable();
  3910. });
  3911. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3912. static const std::string ev_done = "data: [DONE]\n\n";
  3913. sink.write(ev_done.data(), ev_done.size());
  3914. }
  3915. sink.done();
  3916. return false;
  3917. };
  3918. auto on_complete = [task_ids, &ctx_server] (bool) {
  3919. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3920. };
  3921. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3922. }
  3923. };
  3924. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3925. json data = json::parse(req.body);
  3926. std::vector<raw_buffer> files; // dummy
  3927. handle_completions_impl(
  3928. SERVER_TASK_TYPE_COMPLETION,
  3929. data,
  3930. files,
  3931. req.is_connection_closed,
  3932. res,
  3933. OAICOMPAT_TYPE_NONE);
  3934. };
  3935. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3936. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3937. std::vector<raw_buffer> files; // dummy
  3938. handle_completions_impl(
  3939. SERVER_TASK_TYPE_COMPLETION,
  3940. data,
  3941. files,
  3942. req.is_connection_closed,
  3943. res,
  3944. OAICOMPAT_TYPE_COMPLETION);
  3945. };
  3946. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3947. // check model compatibility
  3948. std::string err;
  3949. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3950. err += "prefix token is missing. ";
  3951. }
  3952. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3953. err += "suffix token is missing. ";
  3954. }
  3955. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3956. err += "middle token is missing. ";
  3957. }
  3958. if (!err.empty()) {
  3959. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3960. return;
  3961. }
  3962. json data = json::parse(req.body);
  3963. // validate input
  3964. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3965. // prompt is optional
  3966. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3967. }
  3968. if (!data.contains("input_prefix")) {
  3969. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3970. }
  3971. if (!data.contains("input_suffix")) {
  3972. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3973. }
  3974. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3975. // input_extra is optional
  3976. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3977. return;
  3978. }
  3979. json input_extra = json_value(data, "input_extra", json::array());
  3980. for (const auto & chunk : input_extra) {
  3981. // { "text": string, "filename": string }
  3982. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3983. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3984. return;
  3985. }
  3986. // filename is optional
  3987. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3988. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3989. return;
  3990. }
  3991. }
  3992. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3993. std::string prompt = json_value(data, "prompt", std::string());
  3994. std::vector<server_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true);
  3995. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3996. data["prompt"] = format_infill(
  3997. ctx_server.vocab,
  3998. data.at("input_prefix"),
  3999. data.at("input_suffix"),
  4000. data.at("input_extra"),
  4001. ctx_server.params_base.n_batch,
  4002. ctx_server.params_base.n_predict,
  4003. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  4004. ctx_server.params_base.spm_infill,
  4005. tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal.
  4006. );
  4007. std::vector<raw_buffer> files; // dummy
  4008. handle_completions_impl(
  4009. SERVER_TASK_TYPE_INFILL,
  4010. data,
  4011. files,
  4012. req.is_connection_closed,
  4013. res,
  4014. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  4015. };
  4016. const auto handle_chat_completions = [&ctx_server, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  4017. LOG_DBG("request: %s\n", req.body.c_str());
  4018. auto body = json::parse(req.body);
  4019. std::vector<raw_buffer> files;
  4020. json data = oaicompat_chat_params_parse(
  4021. body,
  4022. ctx_server.oai_parser_opt,
  4023. files);
  4024. handle_completions_impl(
  4025. SERVER_TASK_TYPE_COMPLETION,
  4026. data,
  4027. files,
  4028. req.is_connection_closed,
  4029. res,
  4030. OAICOMPAT_TYPE_CHAT);
  4031. };
  4032. // same with handle_chat_completions, but without inference part
  4033. const auto handle_apply_template = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  4034. auto body = json::parse(req.body);
  4035. std::vector<raw_buffer> files; // dummy, unused
  4036. json data = oaicompat_chat_params_parse(
  4037. body,
  4038. ctx_server.oai_parser_opt,
  4039. files);
  4040. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  4041. };
  4042. const auto handle_models = [&params, &ctx_server, &state, &res_ok](const httplib::Request &, httplib::Response & res) {
  4043. server_state current_state = state.load();
  4044. json model_meta = nullptr;
  4045. if (current_state == SERVER_STATE_READY) {
  4046. model_meta = ctx_server.model_meta();
  4047. }
  4048. bool has_mtmd = ctx_server.mctx != nullptr;
  4049. json models = {
  4050. {"models", {
  4051. {
  4052. {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
  4053. {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
  4054. {"modified_at", ""},
  4055. {"size", ""},
  4056. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  4057. {"type", "model"},
  4058. {"description", ""},
  4059. {"tags", {""}},
  4060. {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})},
  4061. {"parameters", ""},
  4062. {"details", {
  4063. {"parent_model", ""},
  4064. {"format", "gguf"},
  4065. {"family", ""},
  4066. {"families", {""}},
  4067. {"parameter_size", ""},
  4068. {"quantization_level", ""}
  4069. }}
  4070. }
  4071. }},
  4072. {"object", "list"},
  4073. {"data", {
  4074. {
  4075. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  4076. {"object", "model"},
  4077. {"created", std::time(0)},
  4078. {"owned_by", "llamacpp"},
  4079. {"meta", model_meta},
  4080. },
  4081. }}
  4082. };
  4083. res_ok(res, models);
  4084. };
  4085. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  4086. const json body = json::parse(req.body);
  4087. json tokens_response = json::array();
  4088. if (body.count("content") != 0) {
  4089. const bool add_special = json_value(body, "add_special", false);
  4090. const bool parse_special = json_value(body, "parse_special", true);
  4091. const bool with_pieces = json_value(body, "with_pieces", false);
  4092. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
  4093. if (with_pieces) {
  4094. for (const auto& token : tokens) {
  4095. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  4096. json piece_json;
  4097. // Check if the piece is valid UTF-8
  4098. if (is_valid_utf8(piece)) {
  4099. piece_json = piece;
  4100. } else {
  4101. // If not valid UTF-8, store as array of byte values
  4102. piece_json = json::array();
  4103. for (unsigned char c : piece) {
  4104. piece_json.push_back(static_cast<int>(c));
  4105. }
  4106. }
  4107. tokens_response.push_back({
  4108. {"id", token},
  4109. {"piece", piece_json}
  4110. });
  4111. }
  4112. } else {
  4113. tokens_response = tokens;
  4114. }
  4115. }
  4116. const json data = format_tokenizer_response(tokens_response);
  4117. res_ok(res, data);
  4118. };
  4119. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  4120. const json body = json::parse(req.body);
  4121. std::string content;
  4122. if (body.count("tokens") != 0) {
  4123. const llama_tokens tokens = body.at("tokens");
  4124. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  4125. }
  4126. const json data = format_detokenized_response(content);
  4127. res_ok(res, data);
  4128. };
  4129. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  4130. if (!ctx_server.params_base.embedding) {
  4131. res_error(res, format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  4132. return;
  4133. }
  4134. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  4135. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  4136. return;
  4137. }
  4138. const json body = json::parse(req.body);
  4139. // for the shape of input/content, see tokenize_input_prompts()
  4140. json prompt;
  4141. if (body.count("input") != 0) {
  4142. prompt = body.at("input");
  4143. } else if (body.contains("content")) {
  4144. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  4145. prompt = body.at("content");
  4146. } else {
  4147. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  4148. return;
  4149. }
  4150. bool use_base64 = false;
  4151. if (body.count("encoding_format") != 0) {
  4152. const std::string& format = body.at("encoding_format");
  4153. if (format == "base64") {
  4154. use_base64 = true;
  4155. } else if (format != "float") {
  4156. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  4157. return;
  4158. }
  4159. }
  4160. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
  4161. for (const auto & tokens : tokenized_prompts) {
  4162. // this check is necessary for models that do not add BOS token to the input
  4163. if (tokens.empty()) {
  4164. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  4165. return;
  4166. }
  4167. }
  4168. int embd_normalize = 2; // default to Euclidean/L2 norm
  4169. if (body.count("embd_normalize") != 0) {
  4170. embd_normalize = body.at("embd_normalize");
  4171. if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  4172. SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
  4173. }
  4174. }
  4175. // create and queue the task
  4176. json responses = json::array();
  4177. bool error = false;
  4178. std::unordered_set<int> task_ids;
  4179. {
  4180. std::vector<server_task> tasks;
  4181. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  4182. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  4183. task.id = ctx_server.queue_tasks.get_new_id();
  4184. task.index = i;
  4185. task.prompt_tokens = std::move(tokenized_prompts[i]);
  4186. // OAI-compat
  4187. task.params.oaicompat = oaicompat;
  4188. task.params.embd_normalize = embd_normalize;
  4189. tasks.push_back(std::move(task));
  4190. }
  4191. task_ids = server_task::get_list_id(tasks);
  4192. ctx_server.queue_results.add_waiting_tasks(tasks);
  4193. ctx_server.queue_tasks.post(std::move(tasks));
  4194. }
  4195. // get the result
  4196. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  4197. for (auto & res : results) {
  4198. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  4199. responses.push_back(res->to_json());
  4200. }
  4201. }, [&](const json & error_data) {
  4202. res_error(res, error_data);
  4203. error = true;
  4204. }, req.is_connection_closed);
  4205. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  4206. if (error) {
  4207. return;
  4208. }
  4209. // write JSON response
  4210. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  4211. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  4212. : json(responses);
  4213. res_ok(res, root);
  4214. };
  4215. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  4216. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  4217. };
  4218. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  4219. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  4220. };
  4221. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  4222. if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
  4223. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  4224. return;
  4225. }
  4226. const json body = json::parse(req.body);
  4227. // TODO: implement
  4228. //int top_n = 1;
  4229. //if (body.count("top_n") != 1) {
  4230. // top_n = body.at("top_n");
  4231. //} else {
  4232. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  4233. // return;
  4234. //}
  4235. // if true, use TEI API format, otherwise use Jina API format
  4236. // Jina: https://jina.ai/reranker/
  4237. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  4238. bool is_tei_format = body.contains("texts");
  4239. json query;
  4240. if (body.count("query") == 1) {
  4241. query = body.at("query");
  4242. if (!query.is_string()) {
  4243. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  4244. return;
  4245. }
  4246. } else {
  4247. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  4248. return;
  4249. }
  4250. std::vector<std::string> documents = json_value(body, "documents",
  4251. json_value(body, "texts", std::vector<std::string>()));
  4252. if (documents.empty()) {
  4253. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  4254. return;
  4255. }
  4256. // create and queue the task
  4257. json responses = json::array();
  4258. bool error = false;
  4259. std::unordered_set<int> task_ids;
  4260. {
  4261. std::vector<server_task> tasks;
  4262. tasks.reserve(documents.size());
  4263. for (size_t i = 0; i < documents.size(); i++) {
  4264. auto tmp = format_rerank(ctx_server.model, ctx_server.vocab, ctx_server.mctx, query, documents[i]);
  4265. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  4266. task.id = ctx_server.queue_tasks.get_new_id();
  4267. task.index = i;
  4268. task.prompt_tokens = std::move(tmp);
  4269. tasks.push_back(std::move(task));
  4270. }
  4271. task_ids = server_task::get_list_id(tasks);
  4272. ctx_server.queue_results.add_waiting_tasks(tasks);
  4273. ctx_server.queue_tasks.post(std::move(tasks));
  4274. }
  4275. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  4276. for (auto & res : results) {
  4277. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  4278. responses.push_back(res->to_json());
  4279. }
  4280. }, [&](const json & error_data) {
  4281. res_error(res, error_data);
  4282. error = true;
  4283. }, req.is_connection_closed);
  4284. if (error) {
  4285. return;
  4286. }
  4287. // write JSON response
  4288. json root = format_response_rerank(
  4289. body,
  4290. responses,
  4291. is_tei_format,
  4292. documents);
  4293. res_ok(res, root);
  4294. };
  4295. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  4296. json result = json::array();
  4297. const auto & loras = ctx_server.params_base.lora_adapters;
  4298. for (size_t i = 0; i < loras.size(); ++i) {
  4299. auto & lora = loras[i];
  4300. json entry = {
  4301. {"id", i},
  4302. {"path", lora.path},
  4303. {"scale", lora.scale},
  4304. {"task_name", lora.task_name},
  4305. {"prompt_prefix", lora.prompt_prefix},
  4306. };
  4307. std::string alora_invocation_string = "";
  4308. const uint64_t n_alora_tokens = llama_adapter_get_alora_n_invocation_tokens(lora.ptr);
  4309. std::vector<llama_token> alora_invocation_tokens;
  4310. if (n_alora_tokens) {
  4311. const llama_token * alora_tokens = llama_adapter_get_alora_invocation_tokens(lora.ptr);
  4312. for (uint64_t i = 0; i < n_alora_tokens; ++i) {
  4313. alora_invocation_string += common_token_to_piece(ctx_server.ctx, alora_tokens[i]);
  4314. alora_invocation_tokens.push_back(alora_tokens[i]);
  4315. }
  4316. entry["alora_invocation_string"] = alora_invocation_string;
  4317. entry["alora_invocation_tokens"] = alora_invocation_tokens;
  4318. }
  4319. result.push_back(std::move(entry));
  4320. }
  4321. res_ok(res, result);
  4322. res.status = 200; // HTTP OK
  4323. };
  4324. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  4325. const json body = json::parse(req.body);
  4326. if (!body.is_array()) {
  4327. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  4328. return;
  4329. }
  4330. int task_id = ctx_server.queue_tasks.get_new_id();
  4331. {
  4332. server_task task(SERVER_TASK_TYPE_SET_LORA);
  4333. task.id = task_id;
  4334. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  4335. ctx_server.queue_results.add_waiting_task_id(task_id);
  4336. ctx_server.queue_tasks.post(std::move(task));
  4337. }
  4338. // get the result
  4339. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4340. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4341. if (result->is_error()) {
  4342. res_error(res, result->to_json());
  4343. return;
  4344. }
  4345. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  4346. res_ok(res, result->to_json());
  4347. };
  4348. //
  4349. // Router
  4350. //
  4351. if (!params.webui) {
  4352. LOG_INF("Web UI is disabled\n");
  4353. } else {
  4354. // register static assets routes
  4355. if (!params.public_path.empty()) {
  4356. // Set the base directory for serving static files
  4357. bool is_found = svr->set_mount_point(params.api_prefix + "/", params.public_path);
  4358. if (!is_found) {
  4359. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  4360. return 1;
  4361. }
  4362. } else {
  4363. // using embedded static index.html
  4364. svr->Get(params.api_prefix + "/", [](const httplib::Request & req, httplib::Response & res) {
  4365. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  4366. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  4367. } else {
  4368. res.set_header("Content-Encoding", "gzip");
  4369. // COEP and COOP headers, required by pyodide (python interpreter)
  4370. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  4371. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  4372. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  4373. }
  4374. return false;
  4375. });
  4376. }
  4377. }
  4378. // register API routes
  4379. svr->Get (params.api_prefix + "/health", handle_health); // public endpoint (no API key check)
  4380. svr->Get (params.api_prefix + "/metrics", handle_metrics);
  4381. svr->Get (params.api_prefix + "/props", handle_props);
  4382. svr->Post(params.api_prefix + "/props", handle_props_change);
  4383. svr->Post(params.api_prefix + "/api/show", handle_api_show);
  4384. svr->Get (params.api_prefix + "/models", handle_models); // public endpoint (no API key check)
  4385. svr->Get (params.api_prefix + "/v1/models", handle_models); // public endpoint (no API key check)
  4386. svr->Get (params.api_prefix + "/api/tags", handle_models); // ollama specific endpoint. public endpoint (no API key check)
  4387. svr->Post(params.api_prefix + "/completion", handle_completions); // legacy
  4388. svr->Post(params.api_prefix + "/completions", handle_completions);
  4389. svr->Post(params.api_prefix + "/v1/completions", handle_completions_oai);
  4390. svr->Post(params.api_prefix + "/chat/completions", handle_chat_completions);
  4391. svr->Post(params.api_prefix + "/v1/chat/completions", handle_chat_completions);
  4392. svr->Post(params.api_prefix + "/api/chat", handle_chat_completions); // ollama specific endpoint
  4393. svr->Post(params.api_prefix + "/infill", handle_infill);
  4394. svr->Post(params.api_prefix + "/embedding", handle_embeddings); // legacy
  4395. svr->Post(params.api_prefix + "/embeddings", handle_embeddings);
  4396. svr->Post(params.api_prefix + "/v1/embeddings", handle_embeddings_oai);
  4397. svr->Post(params.api_prefix + "/rerank", handle_rerank);
  4398. svr->Post(params.api_prefix + "/reranking", handle_rerank);
  4399. svr->Post(params.api_prefix + "/v1/rerank", handle_rerank);
  4400. svr->Post(params.api_prefix + "/v1/reranking", handle_rerank);
  4401. svr->Post(params.api_prefix + "/tokenize", handle_tokenize);
  4402. svr->Post(params.api_prefix + "/detokenize", handle_detokenize);
  4403. svr->Post(params.api_prefix + "/apply-template", handle_apply_template);
  4404. // LoRA adapters hotswap
  4405. svr->Get (params.api_prefix + "/lora-adapters", handle_lora_adapters_list);
  4406. svr->Post(params.api_prefix + "/lora-adapters", handle_lora_adapters_apply);
  4407. // Save & load slots
  4408. svr->Get (params.api_prefix + "/slots", handle_slots);
  4409. svr->Post(params.api_prefix + "/slots/:id_slot", handle_slots_action);
  4410. //
  4411. // Start the server
  4412. //
  4413. if (params.n_threads_http < 1) {
  4414. // +2 threads for monitoring endpoints
  4415. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  4416. }
  4417. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  4418. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  4419. // clean up function, to be called before exit
  4420. auto clean_up = [&svr, &ctx_server]() {
  4421. SRV_INF("%s: cleaning up before exit...\n", __func__);
  4422. svr->stop();
  4423. ctx_server.queue_results.terminate();
  4424. llama_backend_free();
  4425. };
  4426. bool was_bound = false;
  4427. bool is_sock = false;
  4428. if (string_ends_with(std::string(params.hostname), ".sock")) {
  4429. is_sock = true;
  4430. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  4431. svr->set_address_family(AF_UNIX);
  4432. // bind_to_port requires a second arg, any value other than 0 should
  4433. // simply get ignored
  4434. was_bound = svr->bind_to_port(params.hostname, 8080);
  4435. } else {
  4436. LOG_INF("%s: binding port with default address family\n", __func__);
  4437. // bind HTTP listen port
  4438. if (params.port == 0) {
  4439. int bound_port = svr->bind_to_any_port(params.hostname);
  4440. if ((was_bound = (bound_port >= 0))) {
  4441. params.port = bound_port;
  4442. }
  4443. } else {
  4444. was_bound = svr->bind_to_port(params.hostname, params.port);
  4445. }
  4446. }
  4447. if (!was_bound) {
  4448. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  4449. clean_up();
  4450. return 1;
  4451. }
  4452. // run the HTTP server in a thread
  4453. std::thread t([&]() { svr->listen_after_bind(); });
  4454. svr->wait_until_ready();
  4455. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  4456. // load the model
  4457. LOG_INF("%s: loading model\n", __func__);
  4458. if (!ctx_server.load_model(params)) {
  4459. clean_up();
  4460. t.join();
  4461. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  4462. return 1;
  4463. }
  4464. ctx_server.init();
  4465. state.store(SERVER_STATE_READY);
  4466. LOG_INF("%s: model loaded\n", __func__);
  4467. // print sample chat example to make it clear which template is used
  4468. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  4469. common_chat_templates_source(ctx_server.chat_templates.get()),
  4470. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja, ctx_server.params_base.default_template_kwargs).c_str());
  4471. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  4472. ctx_server.process_single_task(std::move(task));
  4473. });
  4474. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  4475. ctx_server.update_slots();
  4476. });
  4477. shutdown_handler = [&](int) {
  4478. // this will unblock start_loop()
  4479. ctx_server.queue_tasks.terminate();
  4480. };
  4481. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  4482. struct sigaction sigint_action;
  4483. sigint_action.sa_handler = signal_handler;
  4484. sigemptyset (&sigint_action.sa_mask);
  4485. sigint_action.sa_flags = 0;
  4486. sigaction(SIGINT, &sigint_action, NULL);
  4487. sigaction(SIGTERM, &sigint_action, NULL);
  4488. #elif defined (_WIN32)
  4489. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  4490. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  4491. };
  4492. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  4493. #endif
  4494. LOG_INF("%s: server is listening on %s - starting the main loop\n", __func__,
  4495. is_sock ? string_format("unix://%s", params.hostname.c_str()).c_str() :
  4496. string_format("http://%s:%d", params.hostname.c_str(), params.port).c_str());
  4497. // this call blocks the main thread until queue_tasks.terminate() is called
  4498. ctx_server.queue_tasks.start_loop();
  4499. clean_up();
  4500. t.join();
  4501. return 0;
  4502. }