llama.cpp 775 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_VULKAN)
  13. # include "ggml-vulkan.h"
  14. #elif defined(GGML_USE_SYCL)
  15. # include "ggml-sycl.h"
  16. #elif defined(GGML_USE_KOMPUTE)
  17. # include "ggml-kompute.h"
  18. #endif
  19. #ifdef GGML_USE_BLAS
  20. # include "ggml-blas.h"
  21. #endif
  22. #ifdef GGML_USE_METAL
  23. # include "ggml-metal.h"
  24. #endif
  25. // TODO: replace with ggml API call
  26. #define QK_K 256
  27. #ifdef __has_include
  28. #if __has_include(<unistd.h>)
  29. #include <unistd.h>
  30. #if defined(_POSIX_MAPPED_FILES)
  31. #include <sys/mman.h>
  32. #include <fcntl.h>
  33. #endif
  34. #if defined(_POSIX_MEMLOCK_RANGE)
  35. #include <sys/resource.h>
  36. #endif
  37. #endif
  38. #endif
  39. #if defined(_WIN32)
  40. #define WIN32_LEAN_AND_MEAN
  41. #ifndef NOMINMAX
  42. #define NOMINMAX
  43. #endif
  44. #include <windows.h>
  45. #ifndef PATH_MAX
  46. #define PATH_MAX MAX_PATH
  47. #endif
  48. #include <io.h>
  49. #endif
  50. #include <algorithm>
  51. #include <array>
  52. #include <cassert>
  53. #include <cctype>
  54. #include <cfloat>
  55. #include <cinttypes>
  56. #include <climits>
  57. #include <cmath>
  58. #include <cstdarg>
  59. #include <cstddef>
  60. #include <cstdint>
  61. #include <cstdio>
  62. #include <cstring>
  63. #include <ctime>
  64. #include <forward_list>
  65. #include <fstream>
  66. #include <functional>
  67. #include <future>
  68. #include <initializer_list>
  69. #include <locale>
  70. #include <map>
  71. #include <memory>
  72. #include <mutex>
  73. #include <numeric>
  74. #include <queue>
  75. #include <random>
  76. #include <regex>
  77. #include <set>
  78. #include <sstream>
  79. #include <thread>
  80. #include <type_traits>
  81. #include <unordered_map>
  82. #if defined(_MSC_VER)
  83. #pragma warning(disable: 4244 4267) // possible loss of data
  84. #endif
  85. #ifdef __GNUC__
  86. #ifdef __MINGW32__
  87. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  88. #else
  89. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  90. #endif
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...)
  93. #endif
  94. #define LLAMA_MAX_NODES 8192
  95. #define LLAMA_MAX_EXPERTS 160
  96. //
  97. // logging
  98. //
  99. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  100. static void llama_log_internal (ggml_log_level level, const char * format, ...);
  101. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  102. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  103. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  104. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  105. //
  106. // helpers
  107. //
  108. static size_t utf8_len(char src) {
  109. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  110. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  111. return lookup[highbits];
  112. }
  113. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  114. std::string result;
  115. for (size_t pos = 0; ; pos += search.length()) {
  116. auto new_pos = s.find(search, pos);
  117. if (new_pos == std::string::npos) {
  118. result += s.substr(pos, s.size() - pos);
  119. break;
  120. }
  121. result += s.substr(pos, new_pos - pos) + replace;
  122. pos = new_pos;
  123. }
  124. s = std::move(result);
  125. }
  126. static bool is_float_close(float a, float b, float abs_tol) {
  127. // Check for non-negative tolerance
  128. if (abs_tol < 0.0) {
  129. throw std::invalid_argument("Tolerance must be non-negative");
  130. }
  131. // Exact equality check
  132. if (a == b) {
  133. return true;
  134. }
  135. // Check for infinities
  136. if (std::isinf(a) || std::isinf(b)) {
  137. return false;
  138. }
  139. // Regular comparison using the provided absolute tolerance
  140. return std::fabs(b - a) <= abs_tol;
  141. }
  142. static void zeros(std::ofstream & file, size_t n) {
  143. char zero = 0;
  144. for (size_t i = 0; i < n; ++i) {
  145. file.write(&zero, 1);
  146. }
  147. }
  148. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  149. static std::string format(const char * fmt, ...) {
  150. va_list ap;
  151. va_list ap2;
  152. va_start(ap, fmt);
  153. va_copy(ap2, ap);
  154. int size = vsnprintf(NULL, 0, fmt, ap);
  155. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  156. std::vector<char> buf(size + 1);
  157. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  158. GGML_ASSERT(size2 == size);
  159. va_end(ap2);
  160. va_end(ap);
  161. return std::string(buf.data(), size);
  162. }
  163. //
  164. // gguf constants (sync with gguf.py)
  165. //
  166. enum llm_arch {
  167. LLM_ARCH_LLAMA,
  168. LLM_ARCH_FALCON,
  169. LLM_ARCH_BAICHUAN,
  170. LLM_ARCH_GROK,
  171. LLM_ARCH_GPT2,
  172. LLM_ARCH_GPTJ,
  173. LLM_ARCH_GPTNEOX,
  174. LLM_ARCH_MPT,
  175. LLM_ARCH_STARCODER,
  176. LLM_ARCH_REFACT,
  177. LLM_ARCH_BERT,
  178. LLM_ARCH_NOMIC_BERT,
  179. LLM_ARCH_JINA_BERT_V2,
  180. LLM_ARCH_BLOOM,
  181. LLM_ARCH_STABLELM,
  182. LLM_ARCH_QWEN,
  183. LLM_ARCH_QWEN2,
  184. LLM_ARCH_QWEN2MOE,
  185. LLM_ARCH_PHI2,
  186. LLM_ARCH_PHI3,
  187. LLM_ARCH_PLAMO,
  188. LLM_ARCH_CODESHELL,
  189. LLM_ARCH_ORION,
  190. LLM_ARCH_INTERNLM2,
  191. LLM_ARCH_MINICPM,
  192. LLM_ARCH_GEMMA,
  193. LLM_ARCH_STARCODER2,
  194. LLM_ARCH_MAMBA,
  195. LLM_ARCH_XVERSE,
  196. LLM_ARCH_COMMAND_R,
  197. LLM_ARCH_DBRX,
  198. LLM_ARCH_OLMO,
  199. LLM_ARCH_ARCTIC,
  200. LLM_ARCH_DEEPSEEK2,
  201. LLM_ARCH_BITNET,
  202. LLM_ARCH_UNKNOWN,
  203. };
  204. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  205. { LLM_ARCH_LLAMA, "llama" },
  206. { LLM_ARCH_FALCON, "falcon" },
  207. { LLM_ARCH_GROK, "grok" },
  208. { LLM_ARCH_GPT2, "gpt2" },
  209. { LLM_ARCH_GPTJ, "gptj" },
  210. { LLM_ARCH_GPTNEOX, "gptneox" },
  211. { LLM_ARCH_MPT, "mpt" },
  212. { LLM_ARCH_BAICHUAN, "baichuan" },
  213. { LLM_ARCH_STARCODER, "starcoder" },
  214. { LLM_ARCH_REFACT, "refact" },
  215. { LLM_ARCH_BERT, "bert" },
  216. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  217. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  218. { LLM_ARCH_BLOOM, "bloom" },
  219. { LLM_ARCH_STABLELM, "stablelm" },
  220. { LLM_ARCH_QWEN, "qwen" },
  221. { LLM_ARCH_QWEN2, "qwen2" },
  222. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  223. { LLM_ARCH_PHI2, "phi2" },
  224. { LLM_ARCH_PHI3, "phi3" },
  225. { LLM_ARCH_PLAMO, "plamo" },
  226. { LLM_ARCH_CODESHELL, "codeshell" },
  227. { LLM_ARCH_ORION, "orion" },
  228. { LLM_ARCH_INTERNLM2, "internlm2" },
  229. { LLM_ARCH_MINICPM, "minicpm" },
  230. { LLM_ARCH_GEMMA, "gemma" },
  231. { LLM_ARCH_STARCODER2, "starcoder2" },
  232. { LLM_ARCH_MAMBA, "mamba" },
  233. { LLM_ARCH_XVERSE, "xverse" },
  234. { LLM_ARCH_COMMAND_R, "command-r" },
  235. { LLM_ARCH_DBRX, "dbrx" },
  236. { LLM_ARCH_OLMO, "olmo" },
  237. { LLM_ARCH_ARCTIC, "arctic" },
  238. { LLM_ARCH_DEEPSEEK2, "deepseek2" },
  239. { LLM_ARCH_BITNET, "bitnet" },
  240. { LLM_ARCH_UNKNOWN, "(unknown)" },
  241. };
  242. enum llm_kv {
  243. LLM_KV_GENERAL_ARCHITECTURE,
  244. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  245. LLM_KV_GENERAL_ALIGNMENT,
  246. LLM_KV_GENERAL_NAME,
  247. LLM_KV_GENERAL_AUTHOR,
  248. LLM_KV_GENERAL_VERSION,
  249. LLM_KV_GENERAL_URL,
  250. LLM_KV_GENERAL_DESCRIPTION,
  251. LLM_KV_GENERAL_LICENSE,
  252. LLM_KV_GENERAL_SOURCE_URL,
  253. LLM_KV_GENERAL_SOURCE_HF_REPO,
  254. LLM_KV_VOCAB_SIZE,
  255. LLM_KV_CONTEXT_LENGTH,
  256. LLM_KV_EMBEDDING_LENGTH,
  257. LLM_KV_BLOCK_COUNT,
  258. LLM_KV_LEADING_DENSE_BLOCK_COUNT,
  259. LLM_KV_FEED_FORWARD_LENGTH,
  260. LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
  261. LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
  262. LLM_KV_USE_PARALLEL_RESIDUAL,
  263. LLM_KV_TENSOR_DATA_LAYOUT,
  264. LLM_KV_EXPERT_COUNT,
  265. LLM_KV_EXPERT_USED_COUNT,
  266. LLM_KV_EXPERT_SHARED_COUNT,
  267. LLM_KV_EXPERT_WEIGHTS_SCALE,
  268. LLM_KV_POOLING_TYPE,
  269. LLM_KV_LOGIT_SCALE,
  270. LLM_KV_ATTENTION_HEAD_COUNT,
  271. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  272. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  273. LLM_KV_ATTENTION_CLAMP_KQV,
  274. LLM_KV_ATTENTION_KEY_LENGTH,
  275. LLM_KV_ATTENTION_VALUE_LENGTH,
  276. LLM_KV_ATTENTION_LAYERNORM_EPS,
  277. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  278. LLM_KV_ATTENTION_CAUSAL,
  279. LLM_KV_ATTENTION_Q_LORA_RANK,
  280. LLM_KV_ATTENTION_KV_LORA_RANK,
  281. LLM_KV_ROPE_DIMENSION_COUNT,
  282. LLM_KV_ROPE_FREQ_BASE,
  283. LLM_KV_ROPE_SCALE_LINEAR,
  284. LLM_KV_ROPE_SCALING_TYPE,
  285. LLM_KV_ROPE_SCALING_FACTOR,
  286. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  287. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  288. LLM_KV_ROPE_SCALING_FINETUNED,
  289. LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
  290. LLM_KV_SPLIT_NO,
  291. LLM_KV_SPLIT_COUNT,
  292. LLM_KV_SPLIT_TENSORS_COUNT,
  293. LLM_KV_SSM_INNER_SIZE,
  294. LLM_KV_SSM_CONV_KERNEL,
  295. LLM_KV_SSM_STATE_SIZE,
  296. LLM_KV_SSM_TIME_STEP_RANK,
  297. LLM_KV_TOKENIZER_MODEL,
  298. LLM_KV_TOKENIZER_PRE,
  299. LLM_KV_TOKENIZER_LIST,
  300. LLM_KV_TOKENIZER_TOKEN_TYPE,
  301. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  302. LLM_KV_TOKENIZER_SCORES,
  303. LLM_KV_TOKENIZER_MERGES,
  304. LLM_KV_TOKENIZER_BOS_ID,
  305. LLM_KV_TOKENIZER_EOS_ID,
  306. LLM_KV_TOKENIZER_UNK_ID,
  307. LLM_KV_TOKENIZER_SEP_ID,
  308. LLM_KV_TOKENIZER_PAD_ID,
  309. LLM_KV_TOKENIZER_CLS_ID,
  310. LLM_KV_TOKENIZER_MASK_ID,
  311. LLM_KV_TOKENIZER_ADD_BOS,
  312. LLM_KV_TOKENIZER_ADD_EOS,
  313. LLM_KV_TOKENIZER_ADD_PREFIX,
  314. LLM_KV_TOKENIZER_HF_JSON,
  315. LLM_KV_TOKENIZER_RWKV,
  316. LLM_KV_TOKENIZER_PREFIX_ID,
  317. LLM_KV_TOKENIZER_SUFFIX_ID,
  318. LLM_KV_TOKENIZER_MIDDLE_ID,
  319. LLM_KV_TOKENIZER_EOT_ID,
  320. };
  321. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  322. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  323. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  324. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  325. { LLM_KV_GENERAL_NAME, "general.name" },
  326. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  327. { LLM_KV_GENERAL_VERSION, "general.version" },
  328. { LLM_KV_GENERAL_URL, "general.url" },
  329. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  330. { LLM_KV_GENERAL_LICENSE, "general.license" },
  331. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  332. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  333. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  334. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  335. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  336. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  337. { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
  338. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  339. { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
  340. { LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
  341. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  342. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  343. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  344. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  345. { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
  346. { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
  347. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  348. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  349. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  350. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  351. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  352. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  353. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  354. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  355. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  356. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  357. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  358. { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
  359. { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
  360. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  361. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  362. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  363. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  364. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  365. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  366. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  367. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  368. { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
  369. { LLM_KV_SPLIT_NO, "split.no" },
  370. { LLM_KV_SPLIT_COUNT, "split.count" },
  371. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  372. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  373. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  374. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  375. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  376. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  377. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  378. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  379. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  380. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  381. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  382. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  383. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  384. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  385. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  386. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  387. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  388. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  389. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  390. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  391. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  392. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  393. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  394. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  395. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  396. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  397. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  398. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  399. };
  400. struct LLM_KV {
  401. LLM_KV(llm_arch arch) : arch(arch) {}
  402. llm_arch arch;
  403. std::string operator()(llm_kv kv) const {
  404. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  405. }
  406. };
  407. enum llm_tensor {
  408. LLM_TENSOR_TOKEN_EMBD,
  409. LLM_TENSOR_TOKEN_EMBD_NORM,
  410. LLM_TENSOR_TOKEN_TYPES,
  411. LLM_TENSOR_POS_EMBD,
  412. LLM_TENSOR_OUTPUT,
  413. LLM_TENSOR_OUTPUT_NORM,
  414. LLM_TENSOR_ROPE_FREQS,
  415. LLM_TENSOR_ROPE_FACTORS_LONG,
  416. LLM_TENSOR_ROPE_FACTORS_SHORT,
  417. LLM_TENSOR_ATTN_Q,
  418. LLM_TENSOR_ATTN_K,
  419. LLM_TENSOR_ATTN_V,
  420. LLM_TENSOR_ATTN_QKV,
  421. LLM_TENSOR_ATTN_OUT,
  422. LLM_TENSOR_ATTN_NORM,
  423. LLM_TENSOR_ATTN_NORM_2,
  424. LLM_TENSOR_ATTN_OUT_NORM,
  425. LLM_TENSOR_ATTN_ROT_EMBD,
  426. LLM_TENSOR_FFN_GATE_INP,
  427. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  428. LLM_TENSOR_FFN_NORM,
  429. LLM_TENSOR_FFN_GATE,
  430. LLM_TENSOR_FFN_DOWN,
  431. LLM_TENSOR_FFN_UP,
  432. LLM_TENSOR_FFN_ACT,
  433. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  434. LLM_TENSOR_FFN_GATE_EXP,
  435. LLM_TENSOR_FFN_UP_EXP,
  436. LLM_TENSOR_FFN_NORM_EXPS,
  437. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  438. LLM_TENSOR_FFN_GATE_EXPS,
  439. LLM_TENSOR_FFN_UP_EXPS,
  440. LLM_TENSOR_FFN_DOWN_SHEXP,
  441. LLM_TENSOR_FFN_GATE_SHEXP,
  442. LLM_TENSOR_FFN_UP_SHEXP,
  443. LLM_TENSOR_ATTN_Q_NORM,
  444. LLM_TENSOR_ATTN_K_NORM,
  445. LLM_TENSOR_LAYER_OUT_NORM,
  446. LLM_TENSOR_SSM_IN,
  447. LLM_TENSOR_SSM_CONV1D,
  448. LLM_TENSOR_SSM_X,
  449. LLM_TENSOR_SSM_DT,
  450. LLM_TENSOR_SSM_A,
  451. LLM_TENSOR_SSM_D,
  452. LLM_TENSOR_SSM_OUT,
  453. LLM_TENSOR_ATTN_Q_A,
  454. LLM_TENSOR_ATTN_Q_B,
  455. LLM_TENSOR_ATTN_KV_A_MQA,
  456. LLM_TENSOR_ATTN_KV_B,
  457. LLM_TENSOR_ATTN_Q_A_NORM,
  458. LLM_TENSOR_ATTN_KV_A_NORM,
  459. LLM_TENSOR_ATTN_SUB_NORM,
  460. LLM_TENSOR_FFN_SUB_NORM,
  461. };
  462. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  463. {
  464. LLM_ARCH_LLAMA,
  465. {
  466. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  467. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  468. { LLM_TENSOR_OUTPUT, "output" },
  469. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  470. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  471. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  472. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  473. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  474. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  475. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  476. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  477. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  478. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  479. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  480. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  481. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  482. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  483. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  484. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  485. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  486. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  487. },
  488. },
  489. {
  490. LLM_ARCH_BAICHUAN,
  491. {
  492. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  493. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  494. { LLM_TENSOR_OUTPUT, "output" },
  495. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  496. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  497. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  498. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  499. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  500. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  501. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  502. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  503. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  504. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  505. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  506. },
  507. },
  508. {
  509. LLM_ARCH_FALCON,
  510. {
  511. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  512. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  513. { LLM_TENSOR_OUTPUT, "output" },
  514. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  515. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  516. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  517. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  518. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  519. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  520. },
  521. },
  522. {
  523. LLM_ARCH_GROK,
  524. {
  525. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  526. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  527. { LLM_TENSOR_OUTPUT, "output" },
  528. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  529. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  530. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  531. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  532. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  533. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  534. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  535. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  536. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  537. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  538. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  539. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  540. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  541. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  542. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  543. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  544. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  545. },
  546. },
  547. {
  548. LLM_ARCH_GPT2,
  549. {
  550. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  551. { LLM_TENSOR_POS_EMBD, "position_embd" },
  552. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  553. { LLM_TENSOR_OUTPUT, "output" },
  554. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  555. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  556. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  557. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  558. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  559. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  560. },
  561. },
  562. {
  563. LLM_ARCH_GPTJ,
  564. {
  565. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  566. },
  567. },
  568. {
  569. LLM_ARCH_GPTNEOX,
  570. {
  571. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  572. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  573. { LLM_TENSOR_OUTPUT, "output" },
  574. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  575. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  576. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  577. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  578. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  579. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  580. },
  581. },
  582. {
  583. LLM_ARCH_MPT,
  584. {
  585. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  586. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  587. { LLM_TENSOR_OUTPUT, "output"},
  588. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  589. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  590. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  591. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  592. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  593. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  594. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  595. { LLM_TENSOR_POS_EMBD, "position_embd" },
  596. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  597. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  598. },
  599. },
  600. {
  601. LLM_ARCH_STARCODER,
  602. {
  603. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  604. { LLM_TENSOR_POS_EMBD, "position_embd" },
  605. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  606. { LLM_TENSOR_OUTPUT, "output" },
  607. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  608. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  609. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  610. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  611. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  612. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  613. },
  614. },
  615. {
  616. LLM_ARCH_REFACT,
  617. {
  618. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  619. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  620. { LLM_TENSOR_OUTPUT, "output" },
  621. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  622. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  623. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  624. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  625. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  626. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  627. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  628. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  629. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  630. },
  631. },
  632. {
  633. LLM_ARCH_BERT,
  634. {
  635. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  636. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  637. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  638. { LLM_TENSOR_POS_EMBD, "position_embd" },
  639. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  640. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  641. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  642. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  643. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  644. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  645. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  646. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  647. },
  648. },
  649. {
  650. LLM_ARCH_NOMIC_BERT,
  651. {
  652. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  653. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  654. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  655. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  656. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  657. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  658. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  659. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  660. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  661. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  662. },
  663. },
  664. {
  665. LLM_ARCH_JINA_BERT_V2,
  666. {
  667. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  668. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  669. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  670. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  671. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  672. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  673. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  674. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  675. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  676. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  677. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  678. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  679. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  680. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  681. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  682. },
  683. },
  684. {
  685. LLM_ARCH_BLOOM,
  686. {
  687. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  688. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  689. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  690. { LLM_TENSOR_OUTPUT, "output" },
  691. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  692. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  693. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  694. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  695. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  696. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  697. },
  698. },
  699. {
  700. LLM_ARCH_STABLELM,
  701. {
  702. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  703. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  704. { LLM_TENSOR_OUTPUT, "output" },
  705. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  706. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  707. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  708. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  709. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  710. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  711. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  712. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  713. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  714. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  715. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  716. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  717. },
  718. },
  719. {
  720. LLM_ARCH_QWEN,
  721. {
  722. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  723. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  724. { LLM_TENSOR_OUTPUT, "output" },
  725. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  726. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  727. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  728. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  729. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  730. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  731. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  732. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  733. },
  734. },
  735. {
  736. LLM_ARCH_QWEN2,
  737. {
  738. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  739. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  740. { LLM_TENSOR_OUTPUT, "output" },
  741. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  742. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  743. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  744. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  745. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  746. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  747. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  748. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  749. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  750. },
  751. },
  752. {
  753. LLM_ARCH_QWEN2MOE,
  754. {
  755. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  756. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  757. { LLM_TENSOR_OUTPUT, "output" },
  758. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  759. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  760. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  761. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  762. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  763. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  764. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  765. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  766. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  767. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  768. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  769. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  770. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  771. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  772. },
  773. },
  774. {
  775. LLM_ARCH_PHI2,
  776. {
  777. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  778. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  779. { LLM_TENSOR_OUTPUT, "output" },
  780. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  781. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  782. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  783. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  784. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  785. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  786. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  787. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  788. },
  789. },
  790. {
  791. LLM_ARCH_PHI3,
  792. {
  793. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  794. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  795. { LLM_TENSOR_OUTPUT, "output" },
  796. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  797. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  798. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  799. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  800. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  801. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  802. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  803. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  804. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  805. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  806. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  807. },
  808. },
  809. {
  810. LLM_ARCH_PLAMO,
  811. {
  812. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  813. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  814. { LLM_TENSOR_OUTPUT, "output" },
  815. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  816. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  817. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  818. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  819. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  820. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  821. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  822. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  823. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  824. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  825. },
  826. },
  827. {
  828. LLM_ARCH_CODESHELL,
  829. {
  830. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  831. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  832. { LLM_TENSOR_OUTPUT, "output" },
  833. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  834. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  835. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  836. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  837. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  838. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  839. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  840. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  841. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  842. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  843. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  844. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  845. },
  846. },
  847. {
  848. LLM_ARCH_ORION,
  849. {
  850. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  851. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  852. { LLM_TENSOR_OUTPUT, "output" },
  853. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  854. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  855. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  856. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  857. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  858. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  859. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  860. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  861. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  862. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  863. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  864. },
  865. },
  866. {
  867. LLM_ARCH_INTERNLM2,
  868. {
  869. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  870. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  871. { LLM_TENSOR_OUTPUT, "output" },
  872. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  873. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  874. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  875. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  876. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  877. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  878. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  879. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  880. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  881. },
  882. },
  883. {
  884. LLM_ARCH_MINICPM,
  885. {
  886. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  887. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  888. { LLM_TENSOR_OUTPUT, "output" },
  889. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  890. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  891. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  892. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  893. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  894. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  895. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  896. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  897. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  898. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  899. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  900. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  901. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  902. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  903. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  904. },
  905. },
  906. {
  907. LLM_ARCH_GEMMA,
  908. {
  909. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  910. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  911. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  912. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  913. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  914. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  915. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  916. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  917. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  918. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  919. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  920. },
  921. },
  922. {
  923. LLM_ARCH_STARCODER2,
  924. {
  925. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  926. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  927. { LLM_TENSOR_OUTPUT, "output" },
  928. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  929. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  930. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  931. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  932. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  933. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  934. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  935. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  936. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  937. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  938. },
  939. },
  940. {
  941. LLM_ARCH_MAMBA,
  942. {
  943. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  944. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  945. { LLM_TENSOR_OUTPUT, "output" },
  946. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  947. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  948. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  949. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  950. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  951. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  952. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  953. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  954. },
  955. },
  956. {
  957. LLM_ARCH_XVERSE,
  958. {
  959. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  960. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  961. { LLM_TENSOR_OUTPUT, "output" },
  962. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  963. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  964. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  965. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  966. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  967. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  968. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  969. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  970. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  971. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  972. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  973. },
  974. },
  975. {
  976. LLM_ARCH_COMMAND_R,
  977. {
  978. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  979. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  980. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  981. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  982. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  983. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  984. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  985. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  986. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  987. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  988. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  989. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  990. },
  991. },
  992. {
  993. LLM_ARCH_DBRX,
  994. {
  995. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  996. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  997. { LLM_TENSOR_OUTPUT, "output" },
  998. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  999. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1000. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1001. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  1002. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1003. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1004. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1005. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1006. },
  1007. },
  1008. {
  1009. LLM_ARCH_OLMO,
  1010. {
  1011. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1012. { LLM_TENSOR_OUTPUT, "output" },
  1013. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1014. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1015. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1016. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1017. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1018. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1019. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1020. },
  1021. },
  1022. {
  1023. LLM_ARCH_ARCTIC,
  1024. {
  1025. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1026. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1027. { LLM_TENSOR_OUTPUT, "output" },
  1028. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1029. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1030. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1031. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1032. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1033. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1034. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1035. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1036. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1037. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1038. { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
  1039. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1040. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1041. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1042. },
  1043. },
  1044. {
  1045. LLM_ARCH_DEEPSEEK2,
  1046. {
  1047. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1048. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1049. { LLM_TENSOR_OUTPUT, "output" },
  1050. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1051. { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
  1052. { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
  1053. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1054. { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
  1055. { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
  1056. { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
  1057. { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
  1058. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1059. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1060. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1061. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1062. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1063. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1064. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1065. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1066. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1067. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  1068. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  1069. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  1070. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  1071. },
  1072. },
  1073. {
  1074. LLM_ARCH_BITNET,
  1075. {
  1076. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1077. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1078. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1079. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1080. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1081. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1082. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1083. { LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" },
  1084. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1085. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1086. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1087. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1088. { LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" },
  1089. },
  1090. },
  1091. {
  1092. LLM_ARCH_UNKNOWN,
  1093. {
  1094. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1095. },
  1096. },
  1097. };
  1098. static llm_arch llm_arch_from_string(const std::string & name) {
  1099. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1100. if (kv.second == name) {
  1101. return kv.first;
  1102. }
  1103. }
  1104. return LLM_ARCH_UNKNOWN;
  1105. }
  1106. // helper to handle gguf constants
  1107. // usage:
  1108. //
  1109. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1110. //
  1111. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1112. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1113. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1114. //
  1115. struct LLM_TN {
  1116. LLM_TN(llm_arch arch) : arch(arch) {}
  1117. llm_arch arch;
  1118. std::string operator()(llm_tensor tensor) const {
  1119. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1120. return "__missing__";
  1121. }
  1122. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1123. }
  1124. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1125. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1126. return "__missing__";
  1127. }
  1128. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1129. }
  1130. std::string operator()(llm_tensor tensor, int bid) const {
  1131. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1132. return "__missing__";
  1133. }
  1134. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1135. }
  1136. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1137. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1138. return "__missing__";
  1139. }
  1140. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1141. }
  1142. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1143. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1144. return "__missing__";
  1145. }
  1146. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1147. }
  1148. };
  1149. //
  1150. // gguf helpers
  1151. //
  1152. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1153. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1154. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1155. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1156. };
  1157. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1158. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1159. if (kv.second == name) {
  1160. return (llama_rope_scaling_type) kv.first;
  1161. }
  1162. }
  1163. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1164. }
  1165. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1166. switch (type) {
  1167. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1168. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1169. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1170. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1171. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1172. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1173. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1174. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1175. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1176. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1177. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1178. default: return format("unknown type %d", type);
  1179. }
  1180. }
  1181. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1182. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1183. switch (type) {
  1184. case GGUF_TYPE_STRING:
  1185. return gguf_get_val_str(ctx_gguf, i);
  1186. case GGUF_TYPE_ARRAY:
  1187. {
  1188. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1189. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1190. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1191. std::stringstream ss;
  1192. ss << "[";
  1193. for (int j = 0; j < arr_n; j++) {
  1194. if (arr_type == GGUF_TYPE_STRING) {
  1195. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1196. // escape quotes
  1197. replace_all(val, "\\", "\\\\");
  1198. replace_all(val, "\"", "\\\"");
  1199. ss << '"' << val << '"';
  1200. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1201. ss << "???";
  1202. } else {
  1203. ss << gguf_data_to_str(arr_type, data, j);
  1204. }
  1205. if (j < arr_n - 1) {
  1206. ss << ", ";
  1207. }
  1208. }
  1209. ss << "]";
  1210. return ss.str();
  1211. }
  1212. default:
  1213. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1214. }
  1215. }
  1216. //
  1217. // llama helpers
  1218. //
  1219. #if defined(_WIN32)
  1220. static std::string llama_format_win_err(DWORD err) {
  1221. LPSTR buf;
  1222. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1223. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1224. if (!size) {
  1225. return "FormatMessageA failed";
  1226. }
  1227. std::string ret(buf, size);
  1228. LocalFree(buf);
  1229. return ret;
  1230. }
  1231. #endif
  1232. template <typename T>
  1233. struct no_init {
  1234. T value;
  1235. no_init() { /* do nothing */ }
  1236. };
  1237. struct llama_file {
  1238. #if defined(_WIN32)
  1239. // use FILE * so we don't have to re-open the file to mmap
  1240. FILE * fp;
  1241. HANDLE fp_win32;
  1242. size_t size;
  1243. private:
  1244. std::string GetErrorMessageWin32(DWORD error_code) const {
  1245. std::string ret;
  1246. LPSTR lpMsgBuf = NULL;
  1247. DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1248. NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
  1249. if (!bufLen) {
  1250. ret = format("Win32 error code: %s", error_code);
  1251. } else {
  1252. ret = lpMsgBuf;
  1253. LocalFree(lpMsgBuf);
  1254. }
  1255. return ret;
  1256. }
  1257. public:
  1258. llama_file(const char * fname, const char * mode) {
  1259. fp = ggml_fopen(fname, mode);
  1260. if (fp == NULL) {
  1261. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1262. }
  1263. fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
  1264. seek(0, SEEK_END);
  1265. size = tell();
  1266. seek(0, SEEK_SET);
  1267. }
  1268. size_t tell() const {
  1269. // SetFilePointerEx returns the current position when seeking relative 0 bytes
  1270. LARGE_INTEGER li;
  1271. li.QuadPart = 0;
  1272. BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
  1273. if (!ret) {
  1274. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1275. }
  1276. return li.QuadPart;
  1277. }
  1278. void seek(size_t offset, int whence) const {
  1279. // no need to convert SEEK_* to FILE_*. The enums are the same.
  1280. // Still, keep static asserts to avoid failures in the future.
  1281. static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
  1282. static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
  1283. static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
  1284. LARGE_INTEGER li;
  1285. li.QuadPart = offset;
  1286. BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
  1287. if (!ret) {
  1288. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1289. }
  1290. }
  1291. void read_raw(void * ptr, size_t len) const {
  1292. // On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
  1293. // use the Win32 API to do file io instead of the C/C++ library functions.
  1294. // There are conditions under which ReadFile cannot read chunks >64MB.
  1295. // Thus split the operation into smaller chunks if len exceeds this limit.
  1296. size_t bytes_read = 0;
  1297. while (bytes_read < len) {
  1298. size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
  1299. DWORD chunk_read = 0;
  1300. BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
  1301. if (!result) {
  1302. throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1303. }
  1304. if (chunk_read < chunk_size || chunk_read == 0) {
  1305. throw std::runtime_error("unexpectedly reached end of file");
  1306. }
  1307. bytes_read += chunk_read;
  1308. } ;
  1309. }
  1310. uint32_t read_u32() const {
  1311. uint32_t val;
  1312. read_raw(&val, sizeof(val));
  1313. return val;
  1314. }
  1315. void write_raw(const void * ptr, size_t len) const {
  1316. // There are conditions under which WriteFile cannot write chunks >64MB.
  1317. // Thus split the operation into smaller chunks if len exceeds this limit.
  1318. size_t bytes_written = 0;
  1319. while (bytes_written < len) {
  1320. size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
  1321. DWORD chunk_written = 0;
  1322. BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
  1323. if (!result) {
  1324. throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
  1325. }
  1326. if (chunk_written < chunk_size || chunk_written == 0) {
  1327. throw std::runtime_error("unexpectedly failed to write bytes");
  1328. }
  1329. bytes_written += chunk_written;
  1330. }
  1331. }
  1332. void write_u32(std::uint32_t val) const {
  1333. write_raw(&val, sizeof(val));
  1334. }
  1335. ~llama_file() {
  1336. if (fp) {
  1337. std::fclose(fp);
  1338. }
  1339. }
  1340. #else
  1341. // use FILE * so we don't have to re-open the file to mmap
  1342. FILE * fp;
  1343. size_t size;
  1344. llama_file(const char * fname, const char * mode) {
  1345. fp = ggml_fopen(fname, mode);
  1346. if (fp == NULL) {
  1347. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1348. }
  1349. seek(0, SEEK_END);
  1350. size = tell();
  1351. seek(0, SEEK_SET);
  1352. }
  1353. size_t tell() const {
  1354. #ifdef _WIN32
  1355. __int64 ret = _ftelli64(fp);
  1356. #else
  1357. long ret = std::ftell(fp);
  1358. #endif
  1359. if (ret == -1) {
  1360. throw std::runtime_error(format("ftell error: %s", strerror(errno)));
  1361. }
  1362. return (size_t) ret;
  1363. }
  1364. void seek(size_t offset, int whence) const {
  1365. #ifdef _WIN32
  1366. int ret = _fseeki64(fp, (__int64) offset, whence);
  1367. #else
  1368. int ret = std::fseek(fp, (long) offset, whence);
  1369. #endif
  1370. if (ret != 0) {
  1371. throw std::runtime_error(format("seek error: %s", strerror(errno)));
  1372. }
  1373. }
  1374. void read_raw(void * ptr, size_t len) const {
  1375. if (len == 0) {
  1376. return;
  1377. }
  1378. errno = 0;
  1379. std::size_t ret = std::fread(ptr, len, 1, fp);
  1380. if (ferror(fp)) {
  1381. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1382. }
  1383. if (ret != 1) {
  1384. throw std::runtime_error("unexpectedly reached end of file");
  1385. }
  1386. }
  1387. uint32_t read_u32() const {
  1388. uint32_t ret;
  1389. read_raw(&ret, sizeof(ret));
  1390. return ret;
  1391. }
  1392. void write_raw(const void * ptr, size_t len) const {
  1393. if (len == 0) {
  1394. return;
  1395. }
  1396. errno = 0;
  1397. size_t ret = std::fwrite(ptr, len, 1, fp);
  1398. if (ret != 1) {
  1399. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1400. }
  1401. }
  1402. void write_u32(std::uint32_t val) const {
  1403. write_raw(&val, sizeof(val));
  1404. }
  1405. ~llama_file() {
  1406. if (fp) {
  1407. std::fclose(fp);
  1408. }
  1409. }
  1410. #endif
  1411. };
  1412. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1413. struct llama_mmap {
  1414. void * addr;
  1415. size_t size;
  1416. llama_mmap(const llama_mmap &) = delete;
  1417. #ifdef _POSIX_MAPPED_FILES
  1418. static constexpr bool SUPPORTED = true;
  1419. // list of mapped fragments (first_offset, last_offset)
  1420. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1421. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1422. size = file->size;
  1423. int fd = fileno(file->fp);
  1424. int flags = MAP_SHARED;
  1425. // prefetch/readahead impairs performance on NUMA systems
  1426. if (numa) { prefetch = 0; }
  1427. #ifdef __linux__
  1428. // advise the kernel to read the file sequentially (increases readahead)
  1429. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1430. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1431. strerror(errno));
  1432. }
  1433. if (prefetch) { flags |= MAP_POPULATE; }
  1434. #endif
  1435. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1436. if (addr == MAP_FAILED) { // NOLINT
  1437. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1438. }
  1439. if (prefetch > 0) {
  1440. // advise the kernel to preload the mapped memory
  1441. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1442. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1443. strerror(errno));
  1444. }
  1445. }
  1446. if (numa) {
  1447. // advise the kernel not to use readahead
  1448. // (because the next page might not belong on the same node)
  1449. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1450. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1451. strerror(errno));
  1452. }
  1453. }
  1454. // initialize list of mapped_fragments
  1455. mapped_fragments.emplace_back(0, file->size);
  1456. }
  1457. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1458. // align first to the next page
  1459. size_t offset_in_page = *first & (page_size - 1);
  1460. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1461. *first += offset_to_page;
  1462. // align last to the previous page
  1463. *last = *last & ~(page_size - 1);
  1464. if (*last <= *first) {
  1465. *last = *first;
  1466. }
  1467. }
  1468. // partially unmap the file in the range [first, last)
  1469. void unmap_fragment(size_t first, size_t last) {
  1470. // note: this function must not be called multiple times with overlapping ranges
  1471. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1472. int page_size = sysconf(_SC_PAGESIZE);
  1473. align_range(&first, &last, page_size);
  1474. size_t len = last - first;
  1475. if (len == 0) {
  1476. return;
  1477. }
  1478. GGML_ASSERT(first % page_size == 0);
  1479. GGML_ASSERT(last % page_size == 0);
  1480. GGML_ASSERT(last > first);
  1481. void * next_page_start = (uint8_t *) addr + first;
  1482. // unmap the range
  1483. if (munmap(next_page_start, len)) {
  1484. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1485. }
  1486. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1487. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1488. for (const auto & frag : mapped_fragments) {
  1489. if (frag.first < first && frag.second > last) {
  1490. // the range is in the middle of the fragment, split it
  1491. new_mapped_fragments.emplace_back(frag.first, first);
  1492. new_mapped_fragments.emplace_back(last, frag.second);
  1493. } else if (frag.first < first && frag.second > first) {
  1494. // the range starts in the middle of the fragment
  1495. new_mapped_fragments.emplace_back(frag.first, first);
  1496. } else if (frag.first < last && frag.second > last) {
  1497. // the range ends in the middle of the fragment
  1498. new_mapped_fragments.emplace_back(last, frag.second);
  1499. } else if (frag.first >= first && frag.second <= last) {
  1500. // the range covers the entire fragment
  1501. } else {
  1502. // the range is outside the fragment
  1503. new_mapped_fragments.push_back(frag);
  1504. }
  1505. }
  1506. mapped_fragments = std::move(new_mapped_fragments);
  1507. }
  1508. ~llama_mmap() {
  1509. for (const auto & frag : mapped_fragments) {
  1510. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1511. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1512. }
  1513. }
  1514. }
  1515. #elif defined(_WIN32)
  1516. static constexpr bool SUPPORTED = true;
  1517. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1518. GGML_UNUSED(numa);
  1519. size = file->size;
  1520. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1521. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1522. if (hMapping == NULL) {
  1523. DWORD error = GetLastError();
  1524. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1525. }
  1526. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1527. DWORD error = GetLastError();
  1528. CloseHandle(hMapping);
  1529. if (addr == NULL) {
  1530. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1531. }
  1532. if (prefetch > 0) {
  1533. #if _WIN32_WINNT >= 0x602
  1534. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1535. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1536. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1537. // may fail on pre-Windows 8 systems
  1538. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1539. if (pPrefetchVirtualMemory) {
  1540. // advise the kernel to preload the mapped memory
  1541. WIN32_MEMORY_RANGE_ENTRY range;
  1542. range.VirtualAddress = addr;
  1543. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1544. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1545. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1546. llama_format_win_err(GetLastError()).c_str());
  1547. }
  1548. }
  1549. #else
  1550. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1551. #endif
  1552. }
  1553. }
  1554. void unmap_fragment(size_t first, size_t last) {
  1555. // not supported
  1556. GGML_UNUSED(first);
  1557. GGML_UNUSED(last);
  1558. }
  1559. ~llama_mmap() {
  1560. if (!UnmapViewOfFile(addr)) {
  1561. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1562. llama_format_win_err(GetLastError()).c_str());
  1563. }
  1564. }
  1565. #else
  1566. static constexpr bool SUPPORTED = false;
  1567. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1568. GGML_UNUSED(file);
  1569. GGML_UNUSED(prefetch);
  1570. GGML_UNUSED(numa);
  1571. throw std::runtime_error("mmap not supported");
  1572. }
  1573. void unmap_fragment(size_t first, size_t last) {
  1574. GGML_UNUSED(first);
  1575. GGML_UNUSED(last);
  1576. throw std::runtime_error("mmap not supported");
  1577. }
  1578. #endif
  1579. };
  1580. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1581. // Represents some region of memory being locked using mlock or VirtualLock;
  1582. // will automatically unlock on destruction.
  1583. struct llama_mlock {
  1584. void * addr = NULL;
  1585. size_t size = 0;
  1586. bool failed_already = false;
  1587. llama_mlock() {}
  1588. llama_mlock(const llama_mlock &) = delete;
  1589. ~llama_mlock() {
  1590. if (size) {
  1591. raw_unlock(addr, size);
  1592. }
  1593. }
  1594. void init(void * ptr) {
  1595. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1596. addr = ptr;
  1597. }
  1598. void grow_to(size_t target_size) {
  1599. GGML_ASSERT(addr);
  1600. if (failed_already) {
  1601. return;
  1602. }
  1603. size_t granularity = lock_granularity();
  1604. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1605. if (target_size > size) {
  1606. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1607. size = target_size;
  1608. } else {
  1609. failed_already = true;
  1610. }
  1611. }
  1612. }
  1613. #ifdef _POSIX_MEMLOCK_RANGE
  1614. static constexpr bool SUPPORTED = true;
  1615. static size_t lock_granularity() {
  1616. return (size_t) sysconf(_SC_PAGESIZE);
  1617. }
  1618. #ifdef __APPLE__
  1619. #define MLOCK_SUGGESTION \
  1620. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1621. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1622. #else
  1623. #define MLOCK_SUGGESTION \
  1624. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1625. #endif
  1626. bool raw_lock(const void * addr, size_t size) const {
  1627. if (!mlock(addr, size)) {
  1628. return true;
  1629. }
  1630. char* errmsg = std::strerror(errno);
  1631. bool suggest = (errno == ENOMEM);
  1632. // Check if the resource limit is fine after all
  1633. struct rlimit lock_limit;
  1634. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1635. suggest = false;
  1636. }
  1637. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1638. suggest = false;
  1639. }
  1640. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1641. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1642. return false;
  1643. }
  1644. #undef MLOCK_SUGGESTION
  1645. static void raw_unlock(void * addr, size_t size) {
  1646. if (munlock(addr, size)) {
  1647. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1648. }
  1649. }
  1650. #elif defined(_WIN32)
  1651. static constexpr bool SUPPORTED = true;
  1652. static size_t lock_granularity() {
  1653. SYSTEM_INFO si;
  1654. GetSystemInfo(&si);
  1655. return (size_t) si.dwPageSize;
  1656. }
  1657. bool raw_lock(void * ptr, size_t len) const {
  1658. for (int tries = 1; ; tries++) {
  1659. if (VirtualLock(ptr, len)) {
  1660. return true;
  1661. }
  1662. if (tries == 2) {
  1663. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1664. len, size, llama_format_win_err(GetLastError()).c_str());
  1665. return false;
  1666. }
  1667. // It failed but this was only the first try; increase the working
  1668. // set size and try again.
  1669. SIZE_T min_ws_size, max_ws_size;
  1670. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1671. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1672. llama_format_win_err(GetLastError()).c_str());
  1673. return false;
  1674. }
  1675. // Per MSDN: "The maximum number of pages that a process can lock
  1676. // is equal to the number of pages in its minimum working set minus
  1677. // a small overhead."
  1678. // Hopefully a megabyte is enough overhead:
  1679. size_t increment = len + 1048576;
  1680. // The minimum must be <= the maximum, so we need to increase both:
  1681. min_ws_size += increment;
  1682. max_ws_size += increment;
  1683. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1684. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1685. llama_format_win_err(GetLastError()).c_str());
  1686. return false;
  1687. }
  1688. }
  1689. }
  1690. static void raw_unlock(void * ptr, size_t len) {
  1691. if (!VirtualUnlock(ptr, len)) {
  1692. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1693. llama_format_win_err(GetLastError()).c_str());
  1694. }
  1695. }
  1696. #else
  1697. static constexpr bool SUPPORTED = false;
  1698. static size_t lock_granularity() {
  1699. return (size_t) 65536;
  1700. }
  1701. bool raw_lock(const void * addr, size_t len) const {
  1702. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1703. return false;
  1704. }
  1705. static void raw_unlock(const void * addr, size_t len) {}
  1706. #endif
  1707. };
  1708. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1709. // NOTE: avoid ever using this except for building the token_to_piece caches
  1710. static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
  1711. std::vector<char> result(8, 0);
  1712. const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1713. if (n_tokens < 0) {
  1714. result.resize(-n_tokens);
  1715. int check = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1716. GGML_ASSERT(check == -n_tokens);
  1717. }
  1718. else {
  1719. result.resize(n_tokens);
  1720. }
  1721. return std::string(result.data(), result.size());
  1722. }
  1723. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1724. ggml_backend_buffer_type_t buft = nullptr;
  1725. #if defined(GGML_USE_CUDA)
  1726. // host buffers should only be used when data is expected to be copied to/from the GPU
  1727. if (host_buffer) {
  1728. buft = ggml_backend_cuda_host_buffer_type();
  1729. }
  1730. #elif defined(GGML_USE_SYCL)
  1731. if (host_buffer) {
  1732. buft = ggml_backend_sycl_host_buffer_type();
  1733. }
  1734. #elif defined(GGML_USE_CPU_HBM)
  1735. buft = ggml_backend_cpu_hbm_buffer_type();
  1736. #elif defined(GGML_USE_VULKAN)
  1737. if (host_buffer) {
  1738. buft = ggml_backend_vk_host_buffer_type();
  1739. }
  1740. #endif
  1741. if (buft == nullptr) {
  1742. buft = ggml_backend_cpu_buffer_type();
  1743. }
  1744. return buft;
  1745. GGML_UNUSED(host_buffer);
  1746. }
  1747. //
  1748. // globals
  1749. //
  1750. struct llama_state {
  1751. llama_state() {
  1752. #ifdef GGML_USE_METAL
  1753. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1754. #elif defined(GGML_USE_CUDA)
  1755. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1756. #endif
  1757. }
  1758. // We save the log callback globally
  1759. ggml_log_callback log_callback = llama_log_callback_default;
  1760. void * log_callback_user_data = nullptr;
  1761. };
  1762. static llama_state g_state;
  1763. // available llama models
  1764. enum e_model {
  1765. MODEL_UNKNOWN,
  1766. MODEL_14M,
  1767. MODEL_17M,
  1768. MODEL_22M,
  1769. MODEL_33M,
  1770. MODEL_70M,
  1771. MODEL_109M,
  1772. MODEL_137M,
  1773. MODEL_160M,
  1774. MODEL_335M,
  1775. MODEL_410M,
  1776. MODEL_0_5B,
  1777. MODEL_1B,
  1778. MODEL_1_4B,
  1779. MODEL_2B,
  1780. MODEL_2_8B,
  1781. MODEL_3B,
  1782. MODEL_4B,
  1783. MODEL_6_9B,
  1784. MODEL_7B,
  1785. MODEL_8B,
  1786. MODEL_12B,
  1787. MODEL_13B,
  1788. MODEL_14B,
  1789. MODEL_15B,
  1790. MODEL_16B,
  1791. MODEL_20B,
  1792. MODEL_30B,
  1793. MODEL_34B,
  1794. MODEL_35B,
  1795. MODEL_40B,
  1796. MODEL_65B,
  1797. MODEL_70B,
  1798. MODEL_236B,
  1799. MODEL_314B,
  1800. MODEL_SMALL,
  1801. MODEL_MEDIUM,
  1802. MODEL_LARGE,
  1803. MODEL_XL,
  1804. MODEL_A2_7B,
  1805. MODEL_8x7B,
  1806. MODEL_8x22B,
  1807. MODEL_16x12B,
  1808. MODEL_10B_128x3_66B,
  1809. };
  1810. static const size_t kiB = 1024;
  1811. static const size_t MiB = 1024*kiB;
  1812. static const size_t GiB = 1024*MiB;
  1813. struct llama_hparams {
  1814. bool vocab_only;
  1815. bool rope_finetuned;
  1816. bool use_par_res;
  1817. uint32_t n_vocab;
  1818. uint32_t n_ctx_train; // context size the model was trained on
  1819. uint32_t n_embd;
  1820. uint32_t n_head;
  1821. uint32_t n_head_kv;
  1822. uint32_t n_layer;
  1823. uint32_t n_rot;
  1824. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1825. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1826. uint32_t n_ff;
  1827. uint32_t n_expert = 0;
  1828. uint32_t n_expert_used = 0;
  1829. uint32_t n_vocab_type = 0; // for BERT-style token types
  1830. uint32_t n_layer_dense_lead = 0;
  1831. uint32_t n_lora_q = 0;
  1832. uint32_t n_lora_kv = 0;
  1833. uint32_t n_ff_exp = 0;
  1834. uint32_t n_ff_shexp = 0;
  1835. uint32_t n_expert_shared = 0;
  1836. float expert_weights_scale = 0.0;
  1837. float f_norm_eps;
  1838. float f_norm_rms_eps;
  1839. float rope_attn_factor = 1.0f;
  1840. float rope_freq_base_train;
  1841. float rope_freq_scale_train;
  1842. uint32_t n_ctx_orig_yarn;
  1843. float rope_yarn_log_mul;
  1844. // for State Space Models
  1845. uint32_t ssm_d_conv = 0;
  1846. uint32_t ssm_d_inner = 0;
  1847. uint32_t ssm_d_state = 0;
  1848. uint32_t ssm_dt_rank = 0;
  1849. float f_clamp_kqv = 0.0f;
  1850. float f_max_alibi_bias = 0.0f;
  1851. float f_logit_scale = 0.0f;
  1852. bool causal_attn = true;
  1853. bool use_alibi = false;
  1854. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1855. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1856. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1857. bool operator!=(const llama_hparams & other) const {
  1858. if (this->vocab_only != other.vocab_only) return true;
  1859. if (this->n_vocab != other.n_vocab) return true;
  1860. if (this->n_ctx_train != other.n_ctx_train) return true;
  1861. if (this->n_embd != other.n_embd) return true;
  1862. if (this->n_head != other.n_head) return true;
  1863. if (this->n_head_kv != other.n_head_kv) return true;
  1864. if (this->n_layer != other.n_layer) return true;
  1865. if (this->n_rot != other.n_rot) return true;
  1866. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1867. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1868. if (this->n_ff != other.n_ff) return true;
  1869. if (this->n_expert != other.n_expert) return true;
  1870. if (this->n_expert_used != other.n_expert_used) return true;
  1871. if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
  1872. if (this->n_lora_q != other.n_lora_q) return true;
  1873. if (this->n_lora_kv != other.n_lora_kv) return true;
  1874. if (this->n_ff_exp != other.n_ff_exp) return true;
  1875. if (this->n_ff_shexp != other.n_ff_shexp) return true;
  1876. if (this->n_expert_shared != other.n_expert_shared) return true;
  1877. if (this->rope_finetuned != other.rope_finetuned) return true;
  1878. if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
  1879. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1880. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1881. if (this->ssm_d_state != other.ssm_d_state) return true;
  1882. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1883. const float EPSILON = 1e-9f;
  1884. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1885. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1886. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1887. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1888. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1889. if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
  1890. if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
  1891. return false;
  1892. }
  1893. uint32_t n_gqa() const {
  1894. if (n_head_kv == 0) {
  1895. return 0;
  1896. }
  1897. return n_head/n_head_kv;
  1898. }
  1899. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1900. return n_embd_head_k * n_head_kv;
  1901. }
  1902. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1903. return n_embd_head_v * n_head_kv;
  1904. }
  1905. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1906. // corresponds to Mamba's conv_states size
  1907. // TODO: maybe support other convolution strides than 1
  1908. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1909. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1910. }
  1911. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1912. // corresponds to Mamba's ssm_states size
  1913. return ssm_d_state * ssm_d_inner;
  1914. }
  1915. };
  1916. struct llama_cparams {
  1917. uint32_t n_ctx; // context size used during inference
  1918. uint32_t n_batch;
  1919. uint32_t n_ubatch;
  1920. uint32_t n_seq_max;
  1921. uint32_t n_threads; // number of threads to use for generation
  1922. uint32_t n_threads_batch; // number of threads to use for batch processing
  1923. float rope_freq_base;
  1924. float rope_freq_scale;
  1925. uint32_t n_ctx_orig_yarn;
  1926. // These hyperparameters are not exposed in GGUF, because all
  1927. // existing YaRN models use the same values for them.
  1928. float yarn_ext_factor;
  1929. float yarn_attn_factor;
  1930. float yarn_beta_fast;
  1931. float yarn_beta_slow;
  1932. float defrag_thold;
  1933. bool embeddings;
  1934. bool causal_attn;
  1935. bool offload_kqv;
  1936. bool flash_attn;
  1937. enum llama_pooling_type pooling_type;
  1938. ggml_backend_sched_eval_callback cb_eval;
  1939. void * cb_eval_user_data;
  1940. };
  1941. struct llama_layer {
  1942. // normalization
  1943. struct ggml_tensor * attn_norm;
  1944. struct ggml_tensor * attn_norm_b;
  1945. struct ggml_tensor * attn_norm_2;
  1946. struct ggml_tensor * attn_norm_2_b;
  1947. struct ggml_tensor * attn_q_norm;
  1948. struct ggml_tensor * attn_q_norm_b;
  1949. struct ggml_tensor * attn_k_norm;
  1950. struct ggml_tensor * attn_k_norm_b;
  1951. struct ggml_tensor * attn_out_norm;
  1952. struct ggml_tensor * attn_out_norm_b;
  1953. struct ggml_tensor * attn_q_a_norm;
  1954. struct ggml_tensor * attn_kv_a_norm;
  1955. struct ggml_tensor * attn_sub_norm;
  1956. struct ggml_tensor * ffn_sub_norm;
  1957. // attention
  1958. struct ggml_tensor * wq;
  1959. struct ggml_tensor * wk;
  1960. struct ggml_tensor * wv;
  1961. struct ggml_tensor * wo;
  1962. struct ggml_tensor * wqkv;
  1963. struct ggml_tensor * wq_a;
  1964. struct ggml_tensor * wq_b;
  1965. struct ggml_tensor * wkv_a_mqa;
  1966. struct ggml_tensor * wkv_b;
  1967. // attention bias
  1968. struct ggml_tensor * bq;
  1969. struct ggml_tensor * bk;
  1970. struct ggml_tensor * bv;
  1971. struct ggml_tensor * bo;
  1972. struct ggml_tensor * bqkv;
  1973. // normalization
  1974. struct ggml_tensor * ffn_norm;
  1975. struct ggml_tensor * ffn_norm_b;
  1976. struct ggml_tensor * layer_out_norm;
  1977. struct ggml_tensor * layer_out_norm_b;
  1978. struct ggml_tensor * ffn_norm_exps;
  1979. // ff
  1980. struct ggml_tensor * ffn_gate; // w1
  1981. struct ggml_tensor * ffn_down; // w2
  1982. struct ggml_tensor * ffn_up; // w3
  1983. // ff MoE
  1984. struct ggml_tensor * ffn_gate_inp;
  1985. struct ggml_tensor * ffn_gate_exps;
  1986. struct ggml_tensor * ffn_down_exps;
  1987. struct ggml_tensor * ffn_up_exps ;
  1988. // ff shared expert (shexp)
  1989. struct ggml_tensor * ffn_gate_inp_shexp;
  1990. struct ggml_tensor * ffn_gate_shexp;
  1991. struct ggml_tensor * ffn_down_shexp;
  1992. struct ggml_tensor * ffn_up_shexp;
  1993. // ff bias
  1994. struct ggml_tensor * ffn_gate_b = nullptr;
  1995. struct ggml_tensor * ffn_down_b = nullptr; // b2
  1996. struct ggml_tensor * ffn_up_b = nullptr; // b3
  1997. struct ggml_tensor * ffn_act;
  1998. // mamba proj
  1999. struct ggml_tensor * ssm_in;
  2000. struct ggml_tensor * ssm_x;
  2001. struct ggml_tensor * ssm_dt;
  2002. struct ggml_tensor * ssm_out;
  2003. // mamba
  2004. struct ggml_tensor * ssm_conv1d;
  2005. struct ggml_tensor * ssm_a;
  2006. struct ggml_tensor * ssm_d;
  2007. // mamba bias
  2008. struct ggml_tensor * ssm_conv1d_b;
  2009. struct ggml_tensor * ssm_dt_b;
  2010. // long rope factors
  2011. struct ggml_tensor * rope_long = nullptr;
  2012. struct ggml_tensor * rope_short = nullptr;
  2013. // bitnet scale
  2014. struct ggml_tensor * wq_scale;
  2015. struct ggml_tensor * wk_scale;
  2016. struct ggml_tensor * wv_scale;
  2017. struct ggml_tensor * wo_scale;
  2018. struct ggml_tensor * ffn_gate_scale;
  2019. struct ggml_tensor * ffn_up_scale;
  2020. struct ggml_tensor * ffn_down_scale;
  2021. };
  2022. struct llama_kv_cell {
  2023. llama_pos pos = -1;
  2024. llama_pos delta = 0;
  2025. int32_t src = 0; // used by recurrent state models to copy states
  2026. std::set<llama_seq_id> seq_id;
  2027. bool has_seq_id(const llama_seq_id & id) const {
  2028. return seq_id.find(id) != seq_id.end();
  2029. }
  2030. bool is_empty() const {
  2031. return seq_id.empty();
  2032. }
  2033. bool is_same_seq(const llama_kv_cell & other) const {
  2034. return seq_id == other.seq_id;
  2035. }
  2036. };
  2037. // ring-buffer of cached KV data
  2038. struct llama_kv_cache {
  2039. bool has_shift = false;
  2040. bool do_defrag = false;
  2041. bool do_copy = false;
  2042. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  2043. bool v_trans = true; // the value tensor is transposed
  2044. // Note: The value of head isn't only used to optimize searching
  2045. // for a free KV slot. llama_decode_internal also uses it, so it
  2046. // cannot be freely changed after a slot has been allocated.
  2047. uint32_t head = 0;
  2048. uint32_t size = 0;
  2049. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  2050. // computed before each graph build
  2051. uint32_t n = 0;
  2052. ggml_type type_k = GGML_TYPE_F16;
  2053. ggml_type type_v = GGML_TYPE_F16;
  2054. std::vector<llama_kv_cell> cells;
  2055. std::vector<struct ggml_tensor *> k_l; // per layer
  2056. std::vector<struct ggml_tensor *> v_l;
  2057. std::vector<struct ggml_context *> ctxs;
  2058. std::vector<ggml_backend_buffer_t> bufs;
  2059. size_t total_size() const {
  2060. size_t size = 0;
  2061. for (ggml_backend_buffer_t buf : bufs) {
  2062. size += ggml_backend_buffer_get_size(buf);
  2063. }
  2064. return size;
  2065. }
  2066. ~llama_kv_cache() {
  2067. for (struct ggml_context * ctx : ctxs) {
  2068. ggml_free(ctx);
  2069. }
  2070. for (ggml_backend_buffer_t buf : bufs) {
  2071. ggml_backend_buffer_free(buf);
  2072. }
  2073. }
  2074. };
  2075. struct llama_control_vector {
  2076. std::vector<struct ggml_tensor *> tensors; // per layer
  2077. std::vector<struct ggml_context *> ctxs;
  2078. std::vector<ggml_backend_buffer_t> bufs;
  2079. int32_t layer_start = -1;
  2080. int32_t layer_end = -1;
  2081. ggml_tensor * tensor_for(int il) const {
  2082. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  2083. return nullptr;
  2084. }
  2085. return tensors[il];
  2086. }
  2087. ~llama_control_vector() {
  2088. for (struct ggml_context * ctx : ctxs) {
  2089. ggml_free(ctx);
  2090. }
  2091. for (ggml_backend_buffer_t buf : bufs) {
  2092. ggml_backend_buffer_free(buf);
  2093. }
  2094. }
  2095. };
  2096. struct llama_vocab {
  2097. using id = int32_t;
  2098. using token = std::string;
  2099. using tattr = llama_token_attr;
  2100. struct token_data {
  2101. token text;
  2102. float score;
  2103. tattr attr;
  2104. };
  2105. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  2106. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  2107. int max_token_len = 0; // used for optimizing longest token search
  2108. std::unordered_map<token, id> token_to_id;
  2109. std::vector<token_data> id_to_token;
  2110. std::vector<id> cache_special_tokens;
  2111. std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
  2112. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  2113. // default LLaMA special tokens
  2114. id special_bos_id = 1;
  2115. id special_eos_id = 2;
  2116. id special_unk_id = 0;
  2117. id special_sep_id = -1;
  2118. id special_pad_id = -1;
  2119. id special_cls_id = -1;
  2120. id special_mask_id = -1;
  2121. id linefeed_id = 13;
  2122. id special_prefix_id = -1;
  2123. id special_suffix_id = -1;
  2124. id special_middle_id = -1;
  2125. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  2126. // tokenizer flags
  2127. bool tokenizer_add_space_prefix = true;
  2128. bool tokenizer_add_bos = false;
  2129. bool tokenizer_add_eos = false;
  2130. bool tokenizer_ignore_merges = false;
  2131. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  2132. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  2133. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  2134. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  2135. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  2136. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  2137. if (it == bpe_ranks.end()) {
  2138. return -1;
  2139. }
  2140. return it->second;
  2141. }
  2142. };
  2143. struct llama_model {
  2144. e_model type = MODEL_UNKNOWN;
  2145. llm_arch arch = LLM_ARCH_UNKNOWN;
  2146. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  2147. std::string name = "n/a";
  2148. llama_hparams hparams = {};
  2149. llama_vocab vocab;
  2150. struct ggml_tensor * tok_embd;
  2151. struct ggml_tensor * type_embd;
  2152. struct ggml_tensor * pos_embd;
  2153. struct ggml_tensor * tok_norm;
  2154. struct ggml_tensor * tok_norm_b;
  2155. struct ggml_tensor * output_norm;
  2156. struct ggml_tensor * output_norm_b;
  2157. struct ggml_tensor * output;
  2158. struct ggml_tensor * output_b;
  2159. std::vector<llama_layer> layers;
  2160. llama_split_mode split_mode;
  2161. int main_gpu;
  2162. int n_gpu_layers;
  2163. std::vector<std::string> rpc_servers;
  2164. // gguf metadata
  2165. std::unordered_map<std::string, std::string> gguf_kv;
  2166. // layer -> buffer type mapping
  2167. struct layer_buft {
  2168. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  2169. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  2170. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  2171. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  2172. ggml_backend_buffer_type_t buft; // everything else
  2173. };
  2174. layer_buft buft_input;
  2175. layer_buft buft_output;
  2176. std::vector<layer_buft> buft_layer;
  2177. // contexts where the model tensors metadata is stored
  2178. std::vector<struct ggml_context *> ctxs;
  2179. // the model memory buffers for the tensor data
  2180. std::vector<ggml_backend_buffer_t> bufs;
  2181. // model memory mapped files
  2182. llama_mmaps mappings;
  2183. // objects representing data potentially being locked in memory
  2184. llama_mlocks mlock_bufs;
  2185. llama_mlocks mlock_mmaps;
  2186. // for quantize-stats only
  2187. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  2188. int64_t t_load_us = 0;
  2189. int64_t t_start_us = 0;
  2190. ~llama_model() {
  2191. for (struct ggml_context * ctx : ctxs) {
  2192. ggml_free(ctx);
  2193. }
  2194. for (ggml_backend_buffer_t buf : bufs) {
  2195. #ifdef GGML_USE_CUDA
  2196. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  2197. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2198. }
  2199. #endif
  2200. ggml_backend_buffer_free(buf);
  2201. }
  2202. }
  2203. };
  2204. struct llama_context {
  2205. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2206. ~llama_context() {
  2207. ggml_backend_sched_free(sched);
  2208. for (ggml_backend_t backend : backends) {
  2209. ggml_backend_free(backend);
  2210. }
  2211. ggml_backend_buffer_free(buf_output);
  2212. }
  2213. llama_cparams cparams;
  2214. std::vector<ggml_backend_t> backends;
  2215. #ifdef GGML_USE_METAL
  2216. ggml_backend_t backend_metal = nullptr;
  2217. #endif
  2218. #ifdef GGML_USE_BLAS
  2219. ggml_backend_t backend_blas = nullptr;
  2220. #endif
  2221. ggml_backend_t backend_cpu = nullptr;
  2222. const llama_model & model;
  2223. // key + value cache for the self attention
  2224. struct llama_kv_cache kv_self;
  2225. std::mt19937 rng;
  2226. bool has_evaluated_once = false;
  2227. int64_t t_start_us;
  2228. int64_t t_load_us;
  2229. int64_t t_sample_us = 0;
  2230. int64_t t_p_eval_us = 0;
  2231. int64_t t_eval_us = 0;
  2232. int64_t t_compute_start_us = 0;
  2233. int64_t n_queued_tokens = 0;
  2234. int32_t n_sample = 0; // number of tokens sampled
  2235. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2236. int32_t n_eval = 0; // number of eval calls
  2237. // host buffer for the model output (logits and embeddings)
  2238. ggml_backend_buffer_t buf_output = nullptr;
  2239. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2240. size_t logits_size = 0; // capacity (of floats) for logits
  2241. float * logits = nullptr;
  2242. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2243. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2244. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2245. bool logits_all = false;
  2246. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2247. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2248. size_t embd_size = 0; // capacity (of floats) for embeddings
  2249. float * embd = nullptr;
  2250. // sequence embeddings output (map of [n_embd] vectors)
  2251. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2252. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2253. // memory buffers used to evaluate the model
  2254. std::vector<uint8_t> buf_compute_meta;
  2255. ggml_backend_sched_t sched = nullptr;
  2256. ggml_abort_callback abort_callback = nullptr;
  2257. void * abort_callback_data = nullptr;
  2258. // input tensors
  2259. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2260. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2261. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2262. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2263. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2264. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2265. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2266. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2267. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2268. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2269. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2270. // control vectors
  2271. struct llama_control_vector cvec;
  2272. };
  2273. static size_t llama_get_device_count(const llama_model & model) {
  2274. size_t count = 1;
  2275. #if defined(GGML_USE_CUDA)
  2276. count = ggml_backend_cuda_get_device_count();
  2277. #elif defined(GGML_USE_SYCL)
  2278. count = ggml_backend_sycl_get_device_count();
  2279. #elif defined(GGML_USE_VULKAN)
  2280. count = ggml_backend_vk_get_device_count();
  2281. #endif
  2282. #if defined(GGML_USE_RPC)
  2283. count += model.rpc_servers.size();
  2284. #endif
  2285. return count;
  2286. GGML_UNUSED(model);
  2287. }
  2288. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2289. ggml_backend_buffer_type_t buft = nullptr;
  2290. #if defined(GGML_USE_RPC)
  2291. int dev_count = (int)llama_get_device_count(model);
  2292. int rpc_count = (int)model.rpc_servers.size();
  2293. if (gpu >= dev_count - rpc_count) {
  2294. const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str();
  2295. return ggml_backend_rpc_buffer_type(endpoint);
  2296. }
  2297. #endif
  2298. #if defined(GGML_USE_METAL)
  2299. buft = ggml_backend_metal_buffer_type();
  2300. #elif defined(GGML_USE_CUDA)
  2301. buft = ggml_backend_cuda_buffer_type(gpu);
  2302. #elif defined(GGML_USE_VULKAN)
  2303. buft = ggml_backend_vk_buffer_type(gpu);
  2304. #elif defined(GGML_USE_SYCL)
  2305. buft = ggml_backend_sycl_buffer_type(gpu);
  2306. #elif defined(GGML_USE_KOMPUTE)
  2307. buft = ggml_backend_kompute_buffer_type(gpu);
  2308. if (buft == nullptr) {
  2309. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2310. }
  2311. #endif
  2312. if (buft == nullptr) {
  2313. buft = llama_default_buffer_type_cpu(true);
  2314. }
  2315. return buft;
  2316. GGML_UNUSED(model);
  2317. GGML_UNUSED(gpu);
  2318. }
  2319. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2320. ggml_backend_buffer_type_t buft = nullptr;
  2321. #ifdef GGML_USE_CUDA
  2322. if (ggml_backend_cuda_get_device_count() > 1) {
  2323. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2324. }
  2325. #endif
  2326. #ifdef GGML_USE_SYCL
  2327. if (ggml_backend_sycl_get_device_count() > 1) {
  2328. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2329. }
  2330. #endif
  2331. if (buft == nullptr) {
  2332. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2333. }
  2334. return buft;
  2335. GGML_UNUSED(tensor_split);
  2336. }
  2337. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2338. #if defined(GGML_USE_RPC)
  2339. int dev_count = (int)llama_get_device_count(model);
  2340. int rpc_count = (int)model.rpc_servers.size();
  2341. if (device >= dev_count - rpc_count) {
  2342. size_t total;
  2343. size_t free;
  2344. const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str();
  2345. ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
  2346. return free;
  2347. }
  2348. #endif
  2349. #if defined(GGML_USE_CUDA)
  2350. size_t total;
  2351. size_t free;
  2352. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2353. return free;
  2354. #elif defined(GGML_USE_SYCL)
  2355. size_t total;
  2356. size_t free;
  2357. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2358. return free;
  2359. #elif defined(GGML_USE_VULKAN)
  2360. size_t total;
  2361. size_t free;
  2362. ggml_backend_vk_get_device_memory(device, &free, &total);
  2363. return free;
  2364. #else
  2365. return 1;
  2366. #endif
  2367. GGML_UNUSED(model);
  2368. GGML_UNUSED(device);
  2369. }
  2370. //
  2371. // kv cache helpers
  2372. //
  2373. static bool llama_kv_cache_init(
  2374. struct llama_kv_cache & cache,
  2375. const llama_context * ctx,
  2376. ggml_type type_k,
  2377. ggml_type type_v,
  2378. uint32_t kv_size,
  2379. bool offload) {
  2380. const llama_model & model = ctx->model;
  2381. const llama_cparams & cparams = ctx->cparams;
  2382. const struct llama_hparams & hparams = model.hparams;
  2383. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2384. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2385. const int64_t n_layer = hparams.n_layer;
  2386. cache.has_shift = false;
  2387. // TODO: find a nicer way to add other recurrent model architectures
  2388. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2389. cache.v_trans = !cparams.flash_attn;
  2390. // TODO: support mixed recurrent Transformer architectures
  2391. // NOTE: (!a || b) is a logical implication (a -> b)
  2392. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2393. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2394. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2395. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2396. cache.head = 0;
  2397. cache.size = kv_size;
  2398. cache.used = 0;
  2399. cache.type_k = type_k;
  2400. cache.type_v = type_v;
  2401. cache.cells.clear();
  2402. cache.cells.resize(kv_size);
  2403. if (cache.recurrent) {
  2404. // init state copy sources
  2405. for (uint32_t i = 0; i < cache.size; ++i) {
  2406. cache.cells[i].src = i;
  2407. }
  2408. }
  2409. // count used buffer types
  2410. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2411. if (offload) {
  2412. for (int64_t i = 0; i < n_layer; ++i) {
  2413. buft_layer_count[model.buft_layer[i].buft]++;
  2414. }
  2415. } else {
  2416. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2417. }
  2418. // create a context for each buffer type
  2419. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2420. for (auto & it : buft_layer_count) {
  2421. int n_layers = it.second;
  2422. struct ggml_init_params params = {
  2423. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2424. /*.mem_buffer =*/ NULL,
  2425. /*.no_alloc =*/ true,
  2426. };
  2427. ggml_context * ctx = ggml_init(params);
  2428. if (!ctx) {
  2429. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2430. return false;
  2431. }
  2432. ctx_map[it.first] = ctx;
  2433. cache.ctxs.push_back(ctx);
  2434. }
  2435. cache.k_l.reserve(n_layer);
  2436. cache.v_l.reserve(n_layer);
  2437. for (int i = 0; i < (int) n_layer; i++) {
  2438. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2439. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2440. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2441. ggml_format_name(k, "cache_k_l%d", i);
  2442. ggml_format_name(v, "cache_v_l%d", i);
  2443. cache.k_l.push_back(k);
  2444. cache.v_l.push_back(v);
  2445. }
  2446. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2447. for (auto it : ctx_map) {
  2448. ggml_backend_buffer_type_t buft = it.first;
  2449. ggml_context * ctx = it.second;
  2450. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2451. if (!buf) {
  2452. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2453. return false;
  2454. }
  2455. ggml_backend_buffer_clear(buf, 0);
  2456. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2457. cache.bufs.push_back(buf);
  2458. }
  2459. return true;
  2460. }
  2461. // find an empty slot of size "n_tokens" in the cache
  2462. // updates the cache head
  2463. // Note: On success, it's important that cache.head points
  2464. // to the first cell of the slot.
  2465. static bool llama_kv_cache_find_slot(
  2466. struct llama_kv_cache & cache,
  2467. const struct llama_batch & batch) {
  2468. const uint32_t n_tokens = batch.n_tokens;
  2469. if (cache.recurrent) {
  2470. // For recurrent state architectures (like Mamba),
  2471. // each KV cache cell can store the state for a whole sequence.
  2472. llama_seq_id min = cache.size - 1;
  2473. llama_seq_id max = 0;
  2474. for (uint32_t i = 0; i < n_tokens; ++i) {
  2475. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2476. llama_seq_id seq_id = batch.seq_id[i][j];
  2477. // make sure it's a valid seq_id
  2478. if ((uint32_t) seq_id < cache.size) {
  2479. if (seq_id > max) {
  2480. max = seq_id;
  2481. }
  2482. if (seq_id < min) {
  2483. min = seq_id;
  2484. }
  2485. // Assuming the tokens are in-order
  2486. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2487. // What should happen when the pos backtracks or skips a value?
  2488. // Clearing the state mid-batch would require special-casing which isn't done.
  2489. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2490. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2491. }
  2492. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2493. cache.used += 1;
  2494. }
  2495. cache.cells[seq_id].pos = batch.pos[i];
  2496. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2497. } else {
  2498. // too big seq_id
  2499. // TODO: would it be possible to resize the KV cache size instead?
  2500. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2501. return false;
  2502. }
  2503. }
  2504. }
  2505. // allow getting the range of used cells, from head to head + n
  2506. cache.head = min;
  2507. cache.n = max - min + 1;
  2508. // sanity check
  2509. return max >= min;
  2510. }
  2511. // otherwise, one cell per token.
  2512. if (n_tokens > cache.size) {
  2513. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  2514. return false;
  2515. }
  2516. uint32_t n_tested = 0;
  2517. while (true) {
  2518. if (cache.head + n_tokens > cache.size) {
  2519. n_tested += cache.size - cache.head;
  2520. cache.head = 0;
  2521. continue;
  2522. }
  2523. bool found = true;
  2524. for (uint32_t i = 0; i < n_tokens; i++) {
  2525. if (cache.cells[cache.head + i].pos >= 0) {
  2526. found = false;
  2527. cache.head += i + 1;
  2528. n_tested += i + 1;
  2529. break;
  2530. }
  2531. }
  2532. if (found) {
  2533. break;
  2534. }
  2535. if (n_tested >= cache.size) {
  2536. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2537. return false;
  2538. }
  2539. }
  2540. for (uint32_t i = 0; i < n_tokens; i++) {
  2541. cache.cells[cache.head + i].pos = batch.pos[i];
  2542. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2543. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2544. }
  2545. }
  2546. cache.used += n_tokens;
  2547. return true;
  2548. }
  2549. // find how many cells are currently in use
  2550. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2551. for (uint32_t i = cache.size; i > 0; --i) {
  2552. const llama_kv_cell & cell = cache.cells[i - 1];
  2553. if (cell.pos >= 0 && !cell.is_empty()) {
  2554. return i;
  2555. }
  2556. }
  2557. return 0;
  2558. }
  2559. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2560. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2561. cache.cells[i].pos = -1;
  2562. cache.cells[i].seq_id.clear();
  2563. }
  2564. cache.head = 0;
  2565. cache.used = 0;
  2566. for (auto & buf : cache.bufs) {
  2567. ggml_backend_buffer_clear(buf, 0);
  2568. }
  2569. }
  2570. static bool llama_kv_cache_seq_rm(
  2571. struct llama_kv_cache & cache,
  2572. llama_seq_id seq_id,
  2573. llama_pos p0,
  2574. llama_pos p1) {
  2575. uint32_t new_head = cache.size;
  2576. if (p0 < 0) p0 = 0;
  2577. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2578. // models like Mamba can't have a state partially erased
  2579. if (cache.recurrent) {
  2580. if (seq_id >= (int64_t) cache.size) {
  2581. // could be fatal
  2582. return false;
  2583. }
  2584. if (0 <= seq_id) {
  2585. // partial intersection is invalid
  2586. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2587. return false;
  2588. }
  2589. } else {
  2590. // seq_id is negative, then the range should include everything or nothing
  2591. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2592. return false;
  2593. }
  2594. }
  2595. }
  2596. for (uint32_t i = 0; i < cache.size; ++i) {
  2597. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2598. if (seq_id < 0) {
  2599. cache.cells[i].seq_id.clear();
  2600. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2601. cache.cells[i].seq_id.erase(seq_id);
  2602. } else {
  2603. continue;
  2604. }
  2605. if (cache.cells[i].is_empty()) {
  2606. // keep count of the number of used cells
  2607. if (cache.cells[i].pos >= 0) cache.used--;
  2608. cache.cells[i].pos = -1;
  2609. if (new_head == cache.size) new_head = i;
  2610. }
  2611. }
  2612. }
  2613. // If we freed up a slot, set head to it so searching can start there.
  2614. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2615. return true;
  2616. }
  2617. static void llama_kv_cache_seq_cp(
  2618. struct llama_kv_cache & cache,
  2619. llama_seq_id seq_id_src,
  2620. llama_seq_id seq_id_dst,
  2621. llama_pos p0,
  2622. llama_pos p1) {
  2623. if (p0 < 0) p0 = 0;
  2624. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2625. if (cache.recurrent) {
  2626. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2627. seq_id_src = cache.cells[seq_id_src].src;
  2628. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2629. // intent to "copy from"
  2630. // supports copy chains thanks to taking the source of the source
  2631. cache.cells[seq_id_dst].src = seq_id_src;
  2632. // preserve the "keep or clear" status of the copied sequence
  2633. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2634. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2635. } else {
  2636. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2637. }
  2638. cache.do_copy = true;
  2639. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2640. }
  2641. return;
  2642. }
  2643. // otherwise, this is the KV cache of a Transformer-like model
  2644. cache.head = 0;
  2645. for (uint32_t i = 0; i < cache.size; ++i) {
  2646. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2647. cache.cells[i].seq_id.insert(seq_id_dst);
  2648. }
  2649. }
  2650. }
  2651. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2652. uint32_t new_head = cache.size;
  2653. for (uint32_t i = 0; i < cache.size; ++i) {
  2654. if (!cache.cells[i].has_seq_id(seq_id)) {
  2655. if (cache.cells[i].pos >= 0) cache.used--;
  2656. cache.cells[i].pos = -1;
  2657. cache.cells[i].seq_id.clear();
  2658. if (new_head == cache.size) new_head = i;
  2659. } else {
  2660. cache.cells[i].seq_id.clear();
  2661. cache.cells[i].seq_id.insert(seq_id);
  2662. }
  2663. }
  2664. // If we freed up a slot, set head to it so searching can start there.
  2665. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2666. }
  2667. static void llama_kv_cache_seq_add(
  2668. struct llama_kv_cache & cache,
  2669. llama_seq_id seq_id,
  2670. llama_pos p0,
  2671. llama_pos p1,
  2672. llama_pos delta) {
  2673. uint32_t new_head = cache.size;
  2674. if (p0 < 0) p0 = 0;
  2675. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2676. if (cache.recurrent) {
  2677. // for Mamba-like models, only the pos needs to be shifted
  2678. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2679. llama_kv_cell & cell = cache.cells[seq_id];
  2680. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2681. cell.pos += delta;
  2682. }
  2683. }
  2684. return;
  2685. }
  2686. for (uint32_t i = 0; i < cache.size; ++i) {
  2687. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2688. cache.has_shift = true;
  2689. cache.cells[i].pos += delta;
  2690. cache.cells[i].delta += delta;
  2691. if (cache.cells[i].pos < 0) {
  2692. if (!cache.cells[i].is_empty()) {
  2693. cache.used--;
  2694. }
  2695. cache.cells[i].pos = -1;
  2696. cache.cells[i].seq_id.clear();
  2697. if (new_head == cache.size) {
  2698. new_head = i;
  2699. }
  2700. }
  2701. }
  2702. }
  2703. // If we freed up a slot, set head to it so searching can start there.
  2704. // Otherwise we just start the next search from the beginning.
  2705. cache.head = new_head != cache.size ? new_head : 0;
  2706. }
  2707. static void llama_kv_cache_seq_div(
  2708. struct llama_kv_cache & cache,
  2709. llama_seq_id seq_id,
  2710. llama_pos p0,
  2711. llama_pos p1,
  2712. int d) {
  2713. if (p0 < 0) p0 = 0;
  2714. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2715. if (cache.recurrent) {
  2716. // for Mamba-like models, only the pos needs to be changed
  2717. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2718. llama_kv_cell & cell = cache.cells[seq_id];
  2719. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2720. cell.pos /= d;
  2721. }
  2722. }
  2723. return;
  2724. }
  2725. for (uint32_t i = 0; i < cache.size; ++i) {
  2726. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2727. cache.has_shift = true;
  2728. {
  2729. llama_pos p_old = cache.cells[i].pos;
  2730. cache.cells[i].pos /= d;
  2731. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2732. }
  2733. }
  2734. }
  2735. }
  2736. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2737. llama_pos result = 0;
  2738. for (uint32_t i = 0; i < cache.size; ++i) {
  2739. if (cache.cells[i].has_seq_id(seq_id)) {
  2740. result = std::max(result, cache.cells[i].pos);
  2741. }
  2742. }
  2743. return result;
  2744. }
  2745. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2746. cache.do_defrag = true;
  2747. }
  2748. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2749. // the FA kernels require padding to avoid extra runtime boundary checks
  2750. return cparams.flash_attn ? 256u : 32u;
  2751. }
  2752. //
  2753. // model loading and saving
  2754. //
  2755. enum llama_fver {
  2756. GGUF_FILE_VERSION_V1 = 1,
  2757. GGUF_FILE_VERSION_V2 = 2,
  2758. GGUF_FILE_VERSION_V3 = 3,
  2759. };
  2760. static const char * llama_file_version_name(llama_fver version) {
  2761. switch (version) {
  2762. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2763. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2764. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2765. }
  2766. return "unknown";
  2767. }
  2768. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2769. char buf[256];
  2770. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2771. for (size_t i = 1; i < ne.size(); i++) {
  2772. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2773. }
  2774. return buf;
  2775. }
  2776. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2777. char buf[256];
  2778. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2779. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2780. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2781. }
  2782. return buf;
  2783. }
  2784. namespace GGUFMeta {
  2785. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2786. struct GKV_Base_Type {
  2787. static constexpr gguf_type gt = gt_;
  2788. static T getter(const gguf_context * ctx, const int kid) {
  2789. return gfun(ctx, kid);
  2790. }
  2791. };
  2792. template<typename T> struct GKV_Base;
  2793. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2794. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2795. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2796. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2797. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2798. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2799. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2800. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2801. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2802. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2803. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2804. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2805. template<> struct GKV_Base<std::string> {
  2806. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2807. static std::string getter(const gguf_context * ctx, const int kid) {
  2808. return gguf_get_val_str(ctx, kid);
  2809. }
  2810. };
  2811. struct ArrayInfo {
  2812. const gguf_type gt;
  2813. const size_t length;
  2814. const void * data;
  2815. };
  2816. template<> struct GKV_Base<ArrayInfo> {
  2817. public:
  2818. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2819. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2820. return ArrayInfo {
  2821. gguf_get_arr_type(ctx, k),
  2822. size_t(gguf_get_arr_n(ctx, k)),
  2823. gguf_get_arr_data(ctx, k),
  2824. };
  2825. }
  2826. };
  2827. template<typename T>
  2828. class GKV : public GKV_Base<T> {
  2829. GKV() = delete;
  2830. public:
  2831. static T get_kv(const gguf_context * ctx, const int k) {
  2832. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2833. if (kt != GKV::gt) {
  2834. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2835. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2836. }
  2837. return GKV::getter(ctx, k);
  2838. }
  2839. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2840. switch (ty) {
  2841. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2842. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2843. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2844. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2845. }
  2846. return "unknown";
  2847. }
  2848. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2849. if (!ovrd) { return false; }
  2850. if (ovrd->tag == expected_type) {
  2851. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2852. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2853. switch (ovrd->tag) {
  2854. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2855. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2856. } break;
  2857. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2858. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2859. } break;
  2860. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2861. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2862. } break;
  2863. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2864. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2865. } break;
  2866. default:
  2867. // Shouldn't be possible to end up here, but just in case...
  2868. throw std::runtime_error(
  2869. format("Unsupported attempt to override %s type for metadata key %s\n",
  2870. override_type_to_str(ovrd->tag), ovrd->key));
  2871. }
  2872. return true;
  2873. }
  2874. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2875. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2876. return false;
  2877. }
  2878. template<typename OT>
  2879. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2880. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2881. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2882. target = ovrd->val_bool;
  2883. return true;
  2884. }
  2885. return false;
  2886. }
  2887. template<typename OT>
  2888. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2889. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2890. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2891. target = ovrd->val_i64;
  2892. return true;
  2893. }
  2894. return false;
  2895. }
  2896. template<typename OT>
  2897. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2898. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2899. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2900. target = ovrd->val_f64;
  2901. return true;
  2902. }
  2903. return false;
  2904. }
  2905. template<typename OT>
  2906. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2907. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2908. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2909. target = ovrd->val_str;
  2910. return true;
  2911. }
  2912. return false;
  2913. }
  2914. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2915. if (try_override<T>(target, ovrd)) {
  2916. return true;
  2917. }
  2918. if (k < 0) { return false; }
  2919. target = get_kv(ctx, k);
  2920. return true;
  2921. }
  2922. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2923. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2924. }
  2925. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2926. return set(ctx, key.c_str(), target, ovrd);
  2927. }
  2928. };
  2929. }
  2930. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2931. struct llama_model_loader {
  2932. int n_kv = 0;
  2933. int n_tensors = 0;
  2934. int n_created = 0;
  2935. int64_t n_elements = 0;
  2936. size_t n_bytes = 0;
  2937. bool use_mmap = false;
  2938. bool check_tensors;
  2939. llama_files files;
  2940. llama_ftype ftype;
  2941. llama_fver fver;
  2942. llama_mmaps mappings;
  2943. // Holds information on a model weight
  2944. struct llama_tensor_weight {
  2945. uint16_t idx; // source file index
  2946. size_t offs; // tensor data offset in the original file
  2947. ggml_tensor * tensor;
  2948. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2949. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2950. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2951. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2952. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2953. }
  2954. }
  2955. };
  2956. std::vector<llama_tensor_weight> weights;
  2957. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2958. struct gguf_context * meta = NULL;
  2959. std::vector<ggml_context *> contexts;
  2960. std::string arch_name;
  2961. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2962. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2963. int trace = 0;
  2964. if (getenv("LLAMA_TRACE")) {
  2965. trace = atoi(getenv("LLAMA_TRACE"));
  2966. }
  2967. if (param_overrides_p != nullptr) {
  2968. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2969. kv_overrides.insert({std::string(p->key), *p});
  2970. }
  2971. }
  2972. struct ggml_context * ctx = NULL;
  2973. struct gguf_init_params params = {
  2974. /*.no_alloc = */ true,
  2975. /*.ctx = */ &ctx,
  2976. };
  2977. meta = gguf_init_from_file(fname.c_str(), params);
  2978. if (!meta) {
  2979. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2980. }
  2981. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2982. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2983. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2984. contexts.emplace_back(ctx);
  2985. // Save tensors data offset of the main file.
  2986. // For subsidiary files, `meta` tensor data offset must not be used,
  2987. // so we build a unified tensors index for weights.
  2988. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2989. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2990. }
  2991. uint16_t n_split = 0;
  2992. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2993. // Load additional GGML contexts
  2994. if (n_split > 1) {
  2995. uint16_t idx = 0;
  2996. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2997. if (idx != 0) {
  2998. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2999. }
  3000. char split_prefix[PATH_MAX] = {0};
  3001. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  3002. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  3003. }
  3004. if (trace > 0) {
  3005. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  3006. }
  3007. char split_path[PATH_MAX] = {0};
  3008. for (idx = 1; idx < n_split; idx++) {
  3009. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  3010. struct gguf_init_params split_params = {
  3011. /*.no_alloc = */ true,
  3012. /*.ctx = */ &ctx,
  3013. };
  3014. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  3015. if (!ctx_gguf) {
  3016. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  3017. }
  3018. files.emplace_back(new llama_file(split_path, "rb"));
  3019. contexts.emplace_back(ctx);
  3020. // Save tensors data offset info of the shard.
  3021. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  3022. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  3023. }
  3024. gguf_free(ctx_gguf);
  3025. }
  3026. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  3027. // sanity check
  3028. {
  3029. const int n_tensors_loaded = (int) weights.size();
  3030. if (n_tensors != n_tensors_loaded) {
  3031. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  3032. }
  3033. }
  3034. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  3035. }
  3036. n_kv = gguf_get_n_kv(meta);
  3037. n_tensors = weights.size();
  3038. fver = (enum llama_fver) gguf_get_version(meta);
  3039. std::set<std::string> tensor_names;
  3040. for (auto & w : weights) {
  3041. n_elements += ggml_nelements(w.tensor);
  3042. n_bytes += ggml_nbytes(w.tensor);
  3043. // make sure there is no duplicated tensor names
  3044. const std::string name(w.tensor->name);
  3045. auto found = tensor_names.find(name);
  3046. if (found != tensor_names.end()) {
  3047. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  3048. }
  3049. tensor_names.insert(name);
  3050. }
  3051. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  3052. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  3053. // determine file type based on the number of tensors for each quantization and print meta data
  3054. // TODO: make optional
  3055. {
  3056. std::map<enum ggml_type, uint32_t> n_type;
  3057. uint32_t n_type_max = 0;
  3058. enum ggml_type type_max = GGML_TYPE_F32;
  3059. for (int i = 0; i < n_tensors; i++) {
  3060. const ggml_tensor * tensor = weights.at(i).tensor;
  3061. enum ggml_type type = tensor->type;
  3062. n_type[type]++;
  3063. if (n_type_max < n_type[type]) {
  3064. n_type_max = n_type[type];
  3065. type_max = type;
  3066. }
  3067. if (trace > 0) {
  3068. const uint16_t sid = weights.at(i).idx;
  3069. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  3070. }
  3071. }
  3072. switch (type_max) {
  3073. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  3074. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  3075. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  3076. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  3077. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  3078. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  3079. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  3080. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  3081. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  3082. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  3083. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  3084. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  3085. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  3086. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  3087. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  3088. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  3089. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  3090. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  3091. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  3092. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  3093. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  3094. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  3095. default:
  3096. {
  3097. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  3098. ftype = LLAMA_FTYPE_ALL_F32;
  3099. } break;
  3100. }
  3101. // this is a way to mark that we have "guessed" the file type
  3102. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  3103. {
  3104. const int kid = gguf_find_key(meta, "general.file_type");
  3105. if (kid >= 0) {
  3106. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  3107. }
  3108. }
  3109. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  3110. for (int i = 0; i < n_kv; i++) {
  3111. const char * name = gguf_get_key(meta, i);
  3112. const enum gguf_type type = gguf_get_kv_type(meta, i);
  3113. const std::string type_name =
  3114. type == GGUF_TYPE_ARRAY
  3115. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  3116. : gguf_type_name(type);
  3117. std::string value = gguf_kv_to_str(meta, i);
  3118. const size_t MAX_VALUE_LEN = 40;
  3119. if (value.size() > MAX_VALUE_LEN) {
  3120. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  3121. }
  3122. replace_all(value, "\n", "\\n");
  3123. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  3124. }
  3125. // print type counts
  3126. for (auto & kv : n_type) {
  3127. if (kv.second == 0) {
  3128. continue;
  3129. }
  3130. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  3131. }
  3132. }
  3133. if (!llama_mmap::SUPPORTED) {
  3134. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  3135. use_mmap = false;
  3136. }
  3137. this->use_mmap = use_mmap;
  3138. this->check_tensors = check_tensors;
  3139. }
  3140. ~llama_model_loader() {
  3141. if (meta) {
  3142. gguf_free(meta);
  3143. }
  3144. for (auto * ctx : contexts) {
  3145. ggml_free(ctx);
  3146. }
  3147. }
  3148. template<typename T>
  3149. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3150. get_arr_n(const std::string & key, T & result, const bool required = true) {
  3151. const int kid = gguf_find_key(meta, key.c_str());
  3152. if (kid < 0) {
  3153. if (required) {
  3154. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3155. }
  3156. return false;
  3157. }
  3158. struct GGUFMeta::ArrayInfo arr_info =
  3159. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3160. result = arr_info.length;
  3161. return true;
  3162. }
  3163. template<typename T>
  3164. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3165. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  3166. return get_arr_n(llm_kv(kid), result, required);
  3167. }
  3168. template<typename T>
  3169. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  3170. const int kid = gguf_find_key(meta, key.c_str());
  3171. if (kid < 0) {
  3172. if (required) {
  3173. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3174. }
  3175. return false;
  3176. }
  3177. struct GGUFMeta::ArrayInfo arr_info =
  3178. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3179. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  3180. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  3181. }
  3182. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  3183. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  3184. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  3185. result.resize(arr_info.length);
  3186. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  3187. return true;
  3188. }
  3189. template<typename T>
  3190. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  3191. return get_arr(llm_kv(kid), result, required);
  3192. }
  3193. template<typename T>
  3194. bool get_key(const std::string & key, T & result, const bool required = true) {
  3195. auto it = kv_overrides.find(key);
  3196. const struct llama_model_kv_override * override =
  3197. it != kv_overrides.end() ? &it->second : nullptr;
  3198. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  3199. if (required && !found) {
  3200. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3201. }
  3202. return found;
  3203. }
  3204. template<typename T>
  3205. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  3206. return get_key(llm_kv(kid), result, required);
  3207. }
  3208. std::string get_arch_name() const {
  3209. return arch_name;
  3210. }
  3211. enum llm_arch get_arch() const {
  3212. return llm_kv.arch;
  3213. }
  3214. const char * get_tensor_name(int i) const {
  3215. return weights.at(i).tensor->name;
  3216. }
  3217. const llama_tensor_weight * get_weight(const char * name) const {
  3218. for (const auto & weight : weights) {
  3219. if (strcmp(name, weight.tensor->name) == 0) {
  3220. return &weight;
  3221. }
  3222. }
  3223. return nullptr;
  3224. }
  3225. const llama_tensor_weight * get_weight(int i) const {
  3226. return get_weight(get_tensor_name(i));
  3227. }
  3228. const llama_tensor_weight & require_weight(const char * name) const {
  3229. const llama_tensor_weight * weight = get_weight(name);
  3230. if (!weight) {
  3231. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3232. }
  3233. return *weight;
  3234. }
  3235. struct ggml_tensor * get_tensor_meta(const char * name) const {
  3236. const auto * weight = get_weight(name);
  3237. if (!weight) {
  3238. return nullptr;
  3239. }
  3240. return weight->tensor;
  3241. }
  3242. struct ggml_tensor * require_tensor_meta(const char * name) const {
  3243. struct ggml_tensor * tensor = get_tensor_meta(name);
  3244. if (!tensor) {
  3245. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3246. }
  3247. return tensor;
  3248. }
  3249. struct ggml_tensor * get_tensor_meta(int i) const {
  3250. return get_tensor_meta(get_tensor_name(i));
  3251. }
  3252. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  3253. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  3254. ggml_set_name(tensor, ggml_get_name(cur));
  3255. if (duplicated) {
  3256. size_data += ggml_nbytes(cur);
  3257. } else {
  3258. n_created++;
  3259. }
  3260. return tensor;
  3261. }
  3262. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3263. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3264. if (cur == NULL) {
  3265. if (!required) {
  3266. return NULL;
  3267. }
  3268. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3269. }
  3270. {
  3271. bool is_ok = true;
  3272. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3273. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3274. is_ok = false;
  3275. break;
  3276. }
  3277. }
  3278. if (!is_ok) {
  3279. throw std::runtime_error(
  3280. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3281. __func__, name.c_str(),
  3282. llama_format_tensor_shape(ne).c_str(),
  3283. llama_format_tensor_shape(cur).c_str()));
  3284. }
  3285. }
  3286. return cur;
  3287. }
  3288. static const int TENSOR_NOT_REQUIRED = 1;
  3289. static const int TENSOR_DUPLICATED = 2;
  3290. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3291. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3292. if (cur == NULL) {
  3293. return NULL;
  3294. }
  3295. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3296. }
  3297. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3298. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3299. if (cur == NULL) {
  3300. return NULL;
  3301. }
  3302. if (cur->type != base->type) {
  3303. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3304. }
  3305. std::array<int64_t, GGML_MAX_DIMS> dims;
  3306. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3307. dims[i] = i < ne.size() ? ne[i] : 1;
  3308. }
  3309. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3310. dims[0], dims[1], dims[2], dims[3],
  3311. cur->nb[1], cur->nb[2], cur->nb[3],
  3312. offset);
  3313. ggml_set_name(tensor, name.c_str());
  3314. n_created++;
  3315. return tensor;
  3316. }
  3317. void done_getting_tensors() const {
  3318. if (n_created != n_tensors) {
  3319. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3320. }
  3321. }
  3322. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3323. if (use_mmap) {
  3324. mappings.reserve(files.size());
  3325. mmaps_used.reserve(files.size());
  3326. for (const auto & file : files) {
  3327. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3328. mmaps_used.emplace_back(mapping->size, 0);
  3329. if (mlock_mmaps) {
  3330. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3331. mlock_mmap->init(mapping->addr);
  3332. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3333. }
  3334. mappings.emplace_back(std::move(mapping));
  3335. }
  3336. }
  3337. // compute the total size of all tensors for progress reporting
  3338. for (auto & w : weights) {
  3339. size_data += ggml_nbytes(w.tensor);
  3340. }
  3341. }
  3342. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3343. GGML_ASSERT(!mappings.empty());
  3344. const auto & mapping = mappings.at(idx);
  3345. *first = mapping->size;
  3346. *last = 0;
  3347. *addr = mapping->addr;
  3348. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3349. try {
  3350. const auto * weight = get_weight(ggml_get_name(tensor));
  3351. if (!weight) {
  3352. continue;
  3353. }
  3354. if (weight->idx != idx) {
  3355. continue;
  3356. }
  3357. *first = std::min(*first, weight->offs);
  3358. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3359. } catch(...) {
  3360. // the tensor is not in the model
  3361. }
  3362. }
  3363. }
  3364. // for backwards compatibility, does not support ggml-backend
  3365. void load_data_for(struct ggml_tensor * cur) const {
  3366. const auto & w = require_weight(ggml_get_name(cur));
  3367. if (use_mmap) {
  3368. const auto & mapping = mappings.at(w.idx);
  3369. if (cur->data == nullptr) {
  3370. cur->data = (uint8_t *)mapping->addr + w.offs;
  3371. } else {
  3372. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3373. }
  3374. } else {
  3375. GGML_ASSERT(cur->data != nullptr);
  3376. GGML_ASSERT(w.idx < files.size());
  3377. const auto & file = files.at(w.idx);
  3378. file->seek(w.offs, SEEK_SET);
  3379. file->read_raw(cur->data, ggml_nbytes(cur));
  3380. }
  3381. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3382. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3383. }
  3384. }
  3385. size_t size_done = 0;
  3386. size_t size_data = 0;
  3387. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3388. // Returns false if cancelled by progress_callback
  3389. bool load_all_data(
  3390. struct ggml_context * ctx,
  3391. llama_buf_map & bufs_mmap,
  3392. llama_mlocks * lmlocks,
  3393. llama_progress_callback progress_callback,
  3394. void * progress_callback_user_data) {
  3395. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3396. std::vector<no_init<uint8_t>> read_buf;
  3397. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3398. #if defined(GGML_USE_CUDA)
  3399. // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
  3400. // NVMe raid configurations might require more / larger buffers.
  3401. constexpr size_t num_buffers = 4;
  3402. constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
  3403. std::vector<ggml_backend_buffer_t> host_buffers;
  3404. std::vector<void*> host_ptrs;
  3405. std::vector<ggml_backend_event_t> events;
  3406. size_t buffer_idx = 0; // buffer to use for async loads
  3407. ggml_backend_t cuda_backend = nullptr;
  3408. if (!use_mmap && !check_tensors) {
  3409. // When not using mmaped io use async uploads from pinned memory to GPU memory.
  3410. // First determine if the CUDA backend is active, and if so, determine the device ID.
  3411. ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
  3412. if (buf) {
  3413. ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
  3414. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  3415. auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
  3416. if (buffer_type == cuda_buffer_type) {
  3417. cuda_backend = ggml_backend_cuda_init(i);
  3418. break;
  3419. }
  3420. }
  3421. }
  3422. // If the cuda backend is active create pinned memory buffers and events for synchronisation.
  3423. if (cuda_backend) {
  3424. for (size_t idx = 0; idx < num_buffers; ++idx) {
  3425. host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
  3426. host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
  3427. events.emplace_back(ggml_backend_event_new(cuda_backend));
  3428. }
  3429. }
  3430. }
  3431. #endif
  3432. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3433. const auto * weight = get_weight(ggml_get_name(cur));
  3434. if (weight == nullptr) {
  3435. // this can happen with split experts models
  3436. continue;
  3437. }
  3438. if (progress_callback) {
  3439. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3440. return false;
  3441. }
  3442. }
  3443. size_t n_size = ggml_nbytes(cur);
  3444. if (use_mmap) {
  3445. const auto & mapping = mappings.at(weight->idx);
  3446. ggml_backend_buffer_t buf_mmap = nullptr;
  3447. if (bufs_mmap.count(weight->idx)) {
  3448. buf_mmap = bufs_mmap.at(weight->idx);
  3449. }
  3450. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3451. if (check_tensors) {
  3452. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3453. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3454. }));
  3455. }
  3456. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3457. if (buf_mmap && cur->data == nullptr) {
  3458. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3459. if (lmlocks) {
  3460. const auto & lmlock = lmlocks->at(weight->idx);
  3461. lmlock->grow_to(weight->offs + n_size);
  3462. }
  3463. auto & mmap_used = mmaps_used[weight->idx];
  3464. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3465. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3466. } else {
  3467. ggml_backend_tensor_set(cur, data, 0, n_size);
  3468. }
  3469. } else {
  3470. GGML_ASSERT(weight->idx < files.size());
  3471. const auto & file = files.at(weight->idx);
  3472. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3473. file->seek(weight->offs, SEEK_SET);
  3474. file->read_raw(cur->data, n_size);
  3475. if (check_tensors) {
  3476. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3477. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3478. }));
  3479. }
  3480. } else {
  3481. #if defined(GGML_USE_CUDA)
  3482. // If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
  3483. if (cuda_backend) {
  3484. file->seek(weight->offs, SEEK_SET);
  3485. size_t bytes_read = 0;
  3486. while (bytes_read < n_size) {
  3487. size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
  3488. ggml_backend_event_synchronize(events[buffer_idx]);
  3489. file->read_raw(host_ptrs[buffer_idx], read_iteration);
  3490. ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
  3491. ggml_backend_event_record(events[buffer_idx]);
  3492. bytes_read += read_iteration;
  3493. ++buffer_idx;
  3494. buffer_idx %= num_buffers;
  3495. }
  3496. }
  3497. else
  3498. #endif
  3499. {
  3500. read_buf.resize(n_size);
  3501. file->seek(weight->offs, SEEK_SET);
  3502. file->read_raw(read_buf.data(), n_size);
  3503. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3504. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3505. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3506. }
  3507. }
  3508. }
  3509. }
  3510. size_done += n_size;
  3511. }
  3512. #if defined(GGML_USE_CUDA)
  3513. // free temporary resources used for async cuda uploads
  3514. if (cuda_backend) {
  3515. for (size_t idx = 0; idx < num_buffers;++idx) {
  3516. ggml_backend_event_synchronize(events[idx]);
  3517. ggml_backend_event_free(events[idx]);
  3518. ggml_backend_buffer_free(host_buffers[idx]);
  3519. }
  3520. ggml_backend_free(cuda_backend);
  3521. }
  3522. #endif
  3523. // check validation results
  3524. bool validation_failed = false;
  3525. for (auto & future : validation_result) {
  3526. auto result = future.get();
  3527. if (!result.second) {
  3528. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3529. validation_failed = true;
  3530. }
  3531. }
  3532. if (validation_failed) {
  3533. throw std::runtime_error("found tensors with invalid data");
  3534. }
  3535. // check if this is the last call and do final cleanup
  3536. if (size_done >= size_data) {
  3537. // unmap offloaded tensors and metadata
  3538. if (use_mmap) {
  3539. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3540. const auto & mmap_used = mmaps_used.at(idx);
  3541. auto & mapping = mappings.at(idx);
  3542. mapping->unmap_fragment(0, mmap_used.first);
  3543. if (mmap_used.second != 0) {
  3544. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3545. }
  3546. }
  3547. }
  3548. if (progress_callback) {
  3549. // Even though the model is done loading, we still honor
  3550. // cancellation since we need to free allocations.
  3551. return progress_callback(1.0f, progress_callback_user_data);
  3552. }
  3553. }
  3554. return true;
  3555. }
  3556. };
  3557. template<>
  3558. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3559. uint32_t tmp;
  3560. const bool found = get_key(kid, tmp, required);
  3561. if (found) {
  3562. result = (enum llama_pooling_type) tmp;
  3563. } else {
  3564. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3565. }
  3566. return found;
  3567. }
  3568. //
  3569. // load LLaMA models
  3570. //
  3571. static const char * llama_model_arch_name(llm_arch arch) {
  3572. auto it = LLM_ARCH_NAMES.find(arch);
  3573. if (it == LLM_ARCH_NAMES.end()) {
  3574. return "unknown";
  3575. }
  3576. return it->second;
  3577. }
  3578. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3579. if (ftype & LLAMA_FTYPE_GUESSED) {
  3580. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3581. }
  3582. switch (ftype) {
  3583. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3584. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3585. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3586. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3587. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3588. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3589. return "Q4_1, some F16";
  3590. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3591. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3592. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3593. // K-quants
  3594. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3595. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3596. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3597. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3598. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3599. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3600. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3601. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3602. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3603. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3604. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3605. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3606. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3607. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3608. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3609. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3610. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3611. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3612. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3613. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3614. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3615. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3616. default: return "unknown, may not work";
  3617. }
  3618. }
  3619. static const char * llama_model_type_name(e_model type) {
  3620. switch (type) {
  3621. case MODEL_14M: return "14M";
  3622. case MODEL_17M: return "17M";
  3623. case MODEL_22M: return "22M";
  3624. case MODEL_33M: return "33M";
  3625. case MODEL_70M: return "70M";
  3626. case MODEL_109M: return "109M";
  3627. case MODEL_137M: return "137M";
  3628. case MODEL_160M: return "160M";
  3629. case MODEL_335M: return "335M";
  3630. case MODEL_410M: return "410M";
  3631. case MODEL_0_5B: return "0.5B";
  3632. case MODEL_1B: return "1B";
  3633. case MODEL_1_4B: return "1.4B";
  3634. case MODEL_2B: return "2B";
  3635. case MODEL_2_8B: return "2.8B";
  3636. case MODEL_3B: return "3B";
  3637. case MODEL_4B: return "4B";
  3638. case MODEL_6_9B: return "6.9B";
  3639. case MODEL_7B: return "7B";
  3640. case MODEL_8B: return "8B";
  3641. case MODEL_12B: return "12B";
  3642. case MODEL_13B: return "13B";
  3643. case MODEL_14B: return "14B";
  3644. case MODEL_15B: return "15B";
  3645. case MODEL_16B: return "16B";
  3646. case MODEL_20B: return "20B";
  3647. case MODEL_30B: return "30B";
  3648. case MODEL_34B: return "34B";
  3649. case MODEL_35B: return "35B";
  3650. case MODEL_40B: return "40B";
  3651. case MODEL_65B: return "65B";
  3652. case MODEL_70B: return "70B";
  3653. case MODEL_236B: return "236B";
  3654. case MODEL_314B: return "314B";
  3655. case MODEL_SMALL: return "0.1B";
  3656. case MODEL_MEDIUM: return "0.4B";
  3657. case MODEL_LARGE: return "0.8B";
  3658. case MODEL_XL: return "1.5B";
  3659. case MODEL_A2_7B: return "A2.7B";
  3660. case MODEL_8x7B: return "8x7B";
  3661. case MODEL_8x22B: return "8x22B";
  3662. case MODEL_16x12B: return "16x12B";
  3663. case MODEL_10B_128x3_66B: return "10B+128x3.66B";
  3664. default: return "?B";
  3665. }
  3666. }
  3667. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3668. switch (type) {
  3669. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3670. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3671. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3672. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3673. default: return "unknown";
  3674. }
  3675. }
  3676. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3677. model.arch = ml.get_arch();
  3678. if (model.arch == LLM_ARCH_UNKNOWN) {
  3679. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3680. }
  3681. }
  3682. static void llm_load_hparams(
  3683. llama_model_loader & ml,
  3684. llama_model & model) {
  3685. auto & hparams = model.hparams;
  3686. const gguf_context * ctx = ml.meta;
  3687. // get metadata as string
  3688. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3689. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3690. if (type == GGUF_TYPE_ARRAY) {
  3691. continue;
  3692. }
  3693. const char * name = gguf_get_key(ctx, i);
  3694. const std::string value = gguf_kv_to_str(ctx, i);
  3695. model.gguf_kv.emplace(name, value);
  3696. }
  3697. // get general kv
  3698. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3699. // get hparams kv
  3700. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3701. // everything past this point is not vocab-related
  3702. if (hparams.vocab_only) {
  3703. return;
  3704. }
  3705. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3706. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3707. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3708. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3709. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3710. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3711. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3712. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3713. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3714. if (hparams.n_expert > 0) {
  3715. GGML_ASSERT(hparams.n_expert_used > 0);
  3716. } else {
  3717. GGML_ASSERT(hparams.n_expert_used == 0);
  3718. }
  3719. // n_head_kv is optional, default to n_head
  3720. hparams.n_head_kv = hparams.n_head;
  3721. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3722. bool rope_finetuned = false;
  3723. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3724. hparams.rope_finetuned = rope_finetuned;
  3725. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  3726. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  3727. // rope_freq_base (optional)
  3728. hparams.rope_freq_base_train = 10000.0f;
  3729. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3730. std::string rope_scaling("linear");
  3731. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3732. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3733. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3734. // rope_freq_scale (inverse of the kv) is optional
  3735. float ropescale = 0.0f;
  3736. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3737. // try the old key name
  3738. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3739. }
  3740. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3741. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3742. // sanity check for n_rot (optional)
  3743. {
  3744. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3745. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3746. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3747. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3748. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3749. }
  3750. }
  3751. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3752. // gpt-j n_rot = rotary_dim
  3753. }
  3754. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3755. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3756. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3757. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3758. // arch-specific KVs
  3759. switch (model.arch) {
  3760. case LLM_ARCH_LLAMA:
  3761. {
  3762. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3763. if (hparams.n_expert == 8) {
  3764. switch (hparams.n_layer) {
  3765. case 32: model.type = e_model::MODEL_8x7B; break;
  3766. case 56: model.type = e_model::MODEL_8x22B; break;
  3767. default: model.type = e_model::MODEL_UNKNOWN;
  3768. }
  3769. } else {
  3770. switch (hparams.n_layer) {
  3771. case 22: model.type = e_model::MODEL_1B; break;
  3772. case 26: model.type = e_model::MODEL_3B; break;
  3773. // granite uses a vocab with len 49152
  3774. case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
  3775. case 36: model.type = e_model::MODEL_8B; break; // granite
  3776. case 40: model.type = e_model::MODEL_13B; break;
  3777. case 48: model.type = e_model::MODEL_34B; break;
  3778. case 60: model.type = e_model::MODEL_30B; break;
  3779. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3780. default: model.type = e_model::MODEL_UNKNOWN;
  3781. }
  3782. }
  3783. } break;
  3784. case LLM_ARCH_MINICPM:
  3785. {
  3786. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3787. switch (hparams.n_layer) {
  3788. case 40: model.type = e_model::MODEL_2B; break;
  3789. default: model.type = e_model::MODEL_UNKNOWN;
  3790. }
  3791. } break;
  3792. case LLM_ARCH_GROK:
  3793. {
  3794. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3795. switch (hparams.n_layer) {
  3796. case 64: model.type = e_model::MODEL_314B; break;
  3797. default: model.type = e_model::MODEL_UNKNOWN;
  3798. }
  3799. } break;
  3800. case LLM_ARCH_FALCON:
  3801. {
  3802. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3803. switch (hparams.n_layer) {
  3804. case 32: model.type = e_model::MODEL_7B; break;
  3805. case 60: model.type = e_model::MODEL_40B; break;
  3806. default: model.type = e_model::MODEL_UNKNOWN;
  3807. }
  3808. } break;
  3809. case LLM_ARCH_BAICHUAN:
  3810. {
  3811. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3812. switch (hparams.n_layer) {
  3813. case 32: model.type = e_model::MODEL_7B; break;
  3814. case 40: model.type = e_model::MODEL_13B; break;
  3815. default: model.type = e_model::MODEL_UNKNOWN;
  3816. }
  3817. if (model.type == e_model::MODEL_13B) {
  3818. // TODO: become GGUF KV parameter
  3819. hparams.f_max_alibi_bias = 8.0f;
  3820. }
  3821. } break;
  3822. case LLM_ARCH_STARCODER:
  3823. {
  3824. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3825. switch (hparams.n_layer) {
  3826. case 24: model.type = e_model::MODEL_1B; break;
  3827. case 36: model.type = e_model::MODEL_3B; break;
  3828. case 42: model.type = e_model::MODEL_7B; break;
  3829. case 40: model.type = e_model::MODEL_15B; break;
  3830. default: model.type = e_model::MODEL_UNKNOWN;
  3831. }
  3832. } break;
  3833. case LLM_ARCH_REFACT:
  3834. {
  3835. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3836. switch (hparams.n_layer) {
  3837. case 32: model.type = e_model::MODEL_1B; break;
  3838. default: model.type = e_model::MODEL_UNKNOWN;
  3839. }
  3840. // TODO: become GGUF KV parameter
  3841. hparams.f_max_alibi_bias = 8.0f;
  3842. } break;
  3843. case LLM_ARCH_BERT:
  3844. {
  3845. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3846. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3847. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3848. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3849. switch (hparams.n_layer) {
  3850. case 3:
  3851. model.type = e_model::MODEL_17M; break; // bge-micro
  3852. case 6:
  3853. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3854. case 12:
  3855. switch (hparams.n_embd) {
  3856. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3857. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3858. } break;
  3859. case 24:
  3860. model.type = e_model::MODEL_335M; break; // bge-large
  3861. }
  3862. } break;
  3863. case LLM_ARCH_JINA_BERT_V2:
  3864. {
  3865. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3866. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3867. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3868. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3869. hparams.f_max_alibi_bias = 8.0f;
  3870. switch (hparams.n_layer) {
  3871. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3872. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3873. }
  3874. } break;
  3875. case LLM_ARCH_NOMIC_BERT:
  3876. {
  3877. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3878. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3879. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3880. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3881. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3882. model.type = e_model::MODEL_137M;
  3883. }
  3884. } break;
  3885. case LLM_ARCH_BLOOM:
  3886. {
  3887. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3888. switch (hparams.n_layer) {
  3889. case 24: model.type = e_model::MODEL_1B; break;
  3890. case 30:
  3891. switch (hparams.n_embd) {
  3892. case 2560: model.type = e_model::MODEL_3B; break;
  3893. case 4096: model.type = e_model::MODEL_7B; break;
  3894. } break;
  3895. }
  3896. // TODO: become GGUF KV parameter
  3897. hparams.f_max_alibi_bias = 8.0f;
  3898. } break;
  3899. case LLM_ARCH_MPT:
  3900. {
  3901. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3902. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3903. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3904. switch (hparams.n_layer) {
  3905. case 32: model.type = e_model::MODEL_7B; break;
  3906. case 48: model.type = e_model::MODEL_30B; break;
  3907. default: model.type = e_model::MODEL_UNKNOWN;
  3908. }
  3909. } break;
  3910. case LLM_ARCH_STABLELM:
  3911. {
  3912. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3913. switch (hparams.n_layer) {
  3914. case 24: model.type = e_model::MODEL_1B; break;
  3915. case 32: model.type = e_model::MODEL_3B; break;
  3916. case 40: model.type = e_model::MODEL_12B; break;
  3917. default: model.type = e_model::MODEL_UNKNOWN;
  3918. }
  3919. } break;
  3920. case LLM_ARCH_QWEN:
  3921. {
  3922. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3923. switch (hparams.n_layer) {
  3924. case 32: model.type = e_model::MODEL_7B; break;
  3925. case 40: model.type = e_model::MODEL_13B; break;
  3926. default: model.type = e_model::MODEL_UNKNOWN;
  3927. }
  3928. } break;
  3929. case LLM_ARCH_QWEN2:
  3930. {
  3931. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3932. switch (hparams.n_layer) {
  3933. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3934. case 32: model.type = e_model::MODEL_7B; break;
  3935. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3936. case 80: model.type = e_model::MODEL_70B; break;
  3937. default: model.type = e_model::MODEL_UNKNOWN;
  3938. }
  3939. } break;
  3940. case LLM_ARCH_QWEN2MOE:
  3941. {
  3942. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  3943. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  3944. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3945. switch (hparams.n_layer) {
  3946. case 24: model.type = e_model::MODEL_A2_7B; break;
  3947. default: model.type = e_model::MODEL_UNKNOWN;
  3948. }
  3949. } break;
  3950. case LLM_ARCH_PHI2:
  3951. {
  3952. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3953. switch (hparams.n_layer) {
  3954. case 24: model.type = e_model::MODEL_1B; break;
  3955. case 32: model.type = e_model::MODEL_3B; break;
  3956. default: model.type = e_model::MODEL_UNKNOWN;
  3957. }
  3958. } break;
  3959. case LLM_ARCH_PHI3:
  3960. {
  3961. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3962. switch (hparams.n_layer) {
  3963. case 24: model.type = e_model::MODEL_1B; break;
  3964. case 32: model.type = e_model::MODEL_3B; break;
  3965. case 40: model.type = e_model::MODEL_14B; break;
  3966. default: model.type = e_model::MODEL_UNKNOWN;
  3967. }
  3968. } break;
  3969. case LLM_ARCH_PLAMO:
  3970. {
  3971. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3972. switch (hparams.n_layer) {
  3973. case 40: model.type = e_model::MODEL_13B; break;
  3974. default: model.type = e_model::MODEL_UNKNOWN;
  3975. }
  3976. } break;
  3977. case LLM_ARCH_GPT2:
  3978. {
  3979. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3980. switch (hparams.n_layer) {
  3981. case 12: model.type = e_model::MODEL_SMALL; break;
  3982. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3983. case 36: model.type = e_model::MODEL_LARGE; break;
  3984. case 48: model.type = e_model::MODEL_XL; break;
  3985. default: model.type = e_model::MODEL_UNKNOWN;
  3986. }
  3987. } break;
  3988. case LLM_ARCH_CODESHELL:
  3989. {
  3990. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3991. switch (hparams.n_layer) {
  3992. case 42: model.type = e_model::MODEL_SMALL; break;
  3993. default: model.type = e_model::MODEL_UNKNOWN;
  3994. }
  3995. } break;
  3996. case LLM_ARCH_ORION:
  3997. {
  3998. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3999. switch (hparams.n_layer) {
  4000. case 40: model.type = e_model::MODEL_14B; break;
  4001. default: model.type = e_model::MODEL_UNKNOWN;
  4002. }
  4003. } break;
  4004. case LLM_ARCH_INTERNLM2:
  4005. {
  4006. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4007. switch (hparams.n_layer) {
  4008. case 32: model.type = e_model::MODEL_7B; break;
  4009. case 48: model.type = e_model::MODEL_20B; break;
  4010. default: model.type = e_model::MODEL_UNKNOWN;
  4011. }
  4012. } break;
  4013. case LLM_ARCH_GEMMA:
  4014. {
  4015. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4016. switch (hparams.n_layer) {
  4017. case 18: model.type = e_model::MODEL_2B; break;
  4018. case 28: model.type = e_model::MODEL_7B; break;
  4019. default: model.type = e_model::MODEL_UNKNOWN;
  4020. }
  4021. } break;
  4022. case LLM_ARCH_STARCODER2:
  4023. {
  4024. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4025. switch (hparams.n_layer) {
  4026. case 30: model.type = e_model::MODEL_3B; break;
  4027. case 32: model.type = e_model::MODEL_7B; break;
  4028. case 40: model.type = e_model::MODEL_15B; break;
  4029. case 52: model.type = e_model::MODEL_20B; break; // granite
  4030. case 88: model.type = e_model::MODEL_34B; break; // granite
  4031. default: model.type = e_model::MODEL_UNKNOWN;
  4032. }
  4033. } break;
  4034. case LLM_ARCH_MAMBA:
  4035. {
  4036. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  4037. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  4038. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  4039. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  4040. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4041. switch (hparams.n_layer) {
  4042. case 24:
  4043. switch (hparams.n_embd) {
  4044. case 768: model.type = e_model::MODEL_SMALL; break;
  4045. default: model.type = e_model::MODEL_UNKNOWN;
  4046. } break;
  4047. case 48:
  4048. switch (hparams.n_embd) {
  4049. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  4050. case 1536: model.type = e_model::MODEL_LARGE; break;
  4051. case 2048: model.type = e_model::MODEL_XL; break;
  4052. default: model.type = e_model::MODEL_UNKNOWN;
  4053. } break;
  4054. case 64:
  4055. switch (hparams.n_embd) {
  4056. case 2560: model.type = e_model::MODEL_3B; break;
  4057. default: model.type = e_model::MODEL_UNKNOWN;
  4058. } break;
  4059. default: model.type = e_model::MODEL_UNKNOWN;
  4060. }
  4061. } break;
  4062. case LLM_ARCH_XVERSE:
  4063. {
  4064. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4065. switch (hparams.n_layer) {
  4066. case 32: model.type = e_model::MODEL_7B; break;
  4067. case 40: model.type = e_model::MODEL_13B; break;
  4068. case 80: model.type = e_model::MODEL_65B; break;
  4069. default: model.type = e_model::MODEL_UNKNOWN;
  4070. }
  4071. } break;
  4072. case LLM_ARCH_COMMAND_R:
  4073. {
  4074. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  4075. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4076. switch (hparams.n_layer) {
  4077. case 40: model.type = e_model::MODEL_35B; break;
  4078. default: model.type = e_model::MODEL_UNKNOWN;
  4079. }
  4080. } break;
  4081. case LLM_ARCH_DBRX:
  4082. {
  4083. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4084. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  4085. switch (hparams.n_layer) {
  4086. case 40: model.type = e_model::MODEL_16x12B; break;
  4087. default: model.type = e_model::MODEL_UNKNOWN;
  4088. }
  4089. } break;
  4090. case LLM_ARCH_OLMO:
  4091. {
  4092. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4093. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  4094. switch (hparams.n_layer) {
  4095. case 22: model.type = e_model::MODEL_1B; break;
  4096. case 32: model.type = e_model::MODEL_7B; break;
  4097. case 80: model.type = e_model::MODEL_70B; break;
  4098. default: model.type = e_model::MODEL_UNKNOWN;
  4099. }
  4100. } break;
  4101. case LLM_ARCH_GPTNEOX:
  4102. {
  4103. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  4104. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  4105. switch (hparams.n_layer) {
  4106. case 6:
  4107. switch (hparams.n_ff) {
  4108. case 512: model.type = e_model::MODEL_14M; break;
  4109. case 2048: model.type = e_model::MODEL_70M; break;
  4110. default: model.type = e_model::MODEL_UNKNOWN;
  4111. } break;
  4112. case 12:
  4113. switch (hparams.n_ff) {
  4114. case 3072: model.type = e_model::MODEL_160M; break;
  4115. default: model.type = e_model::MODEL_UNKNOWN;
  4116. } break;
  4117. case 16:
  4118. switch (hparams.n_ff) {
  4119. case 8192: model.type = e_model::MODEL_1B; break;
  4120. default: model.type = e_model::MODEL_UNKNOWN;
  4121. } break;
  4122. case 24:
  4123. switch (hparams.n_ff) {
  4124. case 4096: model.type = e_model::MODEL_410M; break;
  4125. case 8192: model.type = e_model::MODEL_1_4B; break;
  4126. default: model.type = e_model::MODEL_UNKNOWN;
  4127. } break;
  4128. case 32:
  4129. switch (hparams.n_ff) {
  4130. case 10240: model.type = e_model::MODEL_2_8B; break;
  4131. case 16384: model.type = e_model::MODEL_6_9B; break;
  4132. default: model.type = e_model::MODEL_UNKNOWN;
  4133. } break;
  4134. case 36:
  4135. switch (hparams.n_ff) {
  4136. case 20480: model.type = e_model::MODEL_12B; break;
  4137. default: model.type = e_model::MODEL_UNKNOWN;
  4138. } break;
  4139. case 44:
  4140. switch (hparams.n_ff) {
  4141. case 24576: model.type = e_model::MODEL_20B; break;
  4142. default: model.type = e_model::MODEL_UNKNOWN;
  4143. } break;
  4144. default: model.type = e_model::MODEL_UNKNOWN;
  4145. }
  4146. } break;
  4147. case LLM_ARCH_ARCTIC:
  4148. {
  4149. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4150. if (hparams.n_expert == 128) {
  4151. switch (hparams.n_layer) {
  4152. case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
  4153. default: model.type = e_model::MODEL_UNKNOWN;
  4154. }
  4155. } else {
  4156. model.type = e_model::MODEL_UNKNOWN;
  4157. }
  4158. } break;
  4159. case LLM_ARCH_DEEPSEEK2:
  4160. {
  4161. bool is_lite = (hparams.n_layer == 27);
  4162. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4163. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  4164. if (!is_lite) {
  4165. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  4166. }
  4167. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  4168. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  4169. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  4170. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  4171. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  4172. switch (hparams.n_layer) {
  4173. case 27: model.type = e_model::MODEL_16B; break;
  4174. case 60: model.type = e_model::MODEL_236B; break;
  4175. default: model.type = e_model::MODEL_UNKNOWN;
  4176. }
  4177. } break;
  4178. case LLM_ARCH_BITNET:
  4179. {
  4180. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  4181. switch (hparams.n_layer) {
  4182. case 26: model.type = e_model::MODEL_3B; break;
  4183. default: model.type = e_model::MODEL_UNKNOWN;
  4184. }
  4185. } break;
  4186. default: (void)0;
  4187. }
  4188. model.ftype = ml.ftype;
  4189. if (hparams.f_max_alibi_bias > 0.0f) {
  4190. hparams.use_alibi = true;
  4191. }
  4192. hparams.rope_type = llama_rope_type(&model);
  4193. }
  4194. // TODO: This should probably be in llama.h
  4195. static std::vector<llama_vocab::id> llama_tokenize_internal(
  4196. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  4197. );
  4198. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  4199. static void llm_load_vocab(
  4200. llama_model_loader & ml,
  4201. llama_model & model) {
  4202. auto & vocab = model.vocab;
  4203. struct gguf_context * ctx = ml.meta;
  4204. const auto kv = LLM_KV(model.arch);
  4205. // determine vocab type
  4206. {
  4207. std::string tokenizer_model;
  4208. std::string tokenizer_pre;
  4209. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  4210. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4211. if (tokenizer_model == "no_vocab") {
  4212. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  4213. // default special tokens
  4214. vocab.special_bos_id = -1;
  4215. vocab.special_eos_id = -1;
  4216. vocab.special_unk_id = -1;
  4217. vocab.special_sep_id = -1;
  4218. vocab.special_pad_id = -1;
  4219. vocab.special_cls_id = -1;
  4220. vocab.special_mask_id = -1;
  4221. vocab.linefeed_id = -1;
  4222. return;
  4223. } else if (tokenizer_model == "llama") {
  4224. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  4225. // default special tokens
  4226. vocab.special_bos_id = 1;
  4227. vocab.special_eos_id = 2;
  4228. vocab.special_unk_id = 0;
  4229. vocab.special_sep_id = -1;
  4230. vocab.special_pad_id = -1;
  4231. vocab.special_cls_id = -1;
  4232. vocab.special_mask_id = -1;
  4233. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4234. if (add_space_prefix_keyidx != -1) {
  4235. vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4236. } // The default value of add_space_prefix is true.
  4237. } else if (tokenizer_model == "bert") {
  4238. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  4239. // default special tokens
  4240. vocab.special_bos_id = -1;
  4241. vocab.special_eos_id = -1;
  4242. vocab.special_unk_id = 100;
  4243. vocab.special_sep_id = 102;
  4244. vocab.special_pad_id = 0;
  4245. vocab.special_cls_id = 101;
  4246. vocab.special_mask_id = 103;
  4247. vocab.tokenizer_add_space_prefix = false;
  4248. } else if (tokenizer_model == "gpt2") {
  4249. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  4250. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4251. if (add_space_prefix_keyidx != -1) {
  4252. vocab.tokenizer_add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4253. }
  4254. // read bpe merges and populate bpe ranks
  4255. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  4256. if (merges_keyidx == -1) {
  4257. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  4258. }
  4259. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  4260. for (int i = 0; i < n_merges; i++) {
  4261. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  4262. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4263. std::string first;
  4264. std::string second;
  4265. const size_t pos = word.find(' ', 1);
  4266. if (pos != std::string::npos) {
  4267. first = word.substr(0, pos);
  4268. second = word.substr(pos + 1);
  4269. }
  4270. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  4271. }
  4272. // default special tokens
  4273. vocab.special_bos_id = 11;
  4274. vocab.special_eos_id = 11;
  4275. vocab.special_unk_id = -1;
  4276. vocab.special_sep_id = -1;
  4277. vocab.special_pad_id = -1;
  4278. vocab.special_cls_id = -1;
  4279. vocab.special_mask_id = -1;
  4280. } else {
  4281. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  4282. }
  4283. // for now, only BPE models have pre-tokenizers
  4284. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  4285. if (tokenizer_pre.empty()) {
  4286. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  4287. LLAMA_LOG_WARN("%s: \n", __func__);
  4288. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4289. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  4290. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  4291. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4292. LLAMA_LOG_WARN("%s: \n", __func__);
  4293. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4294. } else if (tokenizer_pre == "default") {
  4295. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4296. } else if (
  4297. tokenizer_pre == "llama3" ||
  4298. tokenizer_pre == "llama-v3" ||
  4299. tokenizer_pre == "llama-bpe") {
  4300. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  4301. vocab.tokenizer_ignore_merges = true;
  4302. vocab.tokenizer_add_bos = true;
  4303. } else if (
  4304. tokenizer_pre == "deepseek-llm") {
  4305. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  4306. } else if (
  4307. tokenizer_pre == "deepseek-coder") {
  4308. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  4309. } else if (
  4310. tokenizer_pre == "falcon") {
  4311. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  4312. } else if (
  4313. tokenizer_pre == "mpt") {
  4314. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  4315. } else if (
  4316. tokenizer_pre == "starcoder") {
  4317. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  4318. } else if (
  4319. tokenizer_pre == "gpt-2" ||
  4320. tokenizer_pre == "jina-es" ||
  4321. tokenizer_pre == "jina-de" ||
  4322. tokenizer_pre == "jina-v2-es" ||
  4323. tokenizer_pre == "jina-v2-de" ||
  4324. tokenizer_pre == "jina-v2-code") {
  4325. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  4326. } else if (
  4327. tokenizer_pre == "refact") {
  4328. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  4329. } else if (
  4330. tokenizer_pre == "command-r") {
  4331. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  4332. } else if (
  4333. tokenizer_pre == "qwen2") {
  4334. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  4335. } else if (
  4336. tokenizer_pre == "stablelm2") {
  4337. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  4338. } else if (
  4339. tokenizer_pre == "olmo") {
  4340. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  4341. } else if (
  4342. tokenizer_pre == "dbrx") {
  4343. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  4344. } else if (
  4345. tokenizer_pre == "smaug-bpe") {
  4346. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  4347. } else if (
  4348. tokenizer_pre == "poro-chat") {
  4349. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
  4350. } else {
  4351. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  4352. }
  4353. } else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4354. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4355. vocab.tokenizer_add_bos = true;
  4356. vocab.tokenizer_add_eos = false;
  4357. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4358. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4359. vocab.tokenizer_add_bos = true;
  4360. vocab.tokenizer_add_eos = false;
  4361. } else {
  4362. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4363. }
  4364. }
  4365. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  4366. if (token_idx == -1) {
  4367. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  4368. }
  4369. const float * scores = nullptr;
  4370. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  4371. if (score_idx != -1) {
  4372. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  4373. }
  4374. const int * toktypes = nullptr;
  4375. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  4376. if (toktype_idx != -1) {
  4377. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  4378. }
  4379. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  4380. vocab.id_to_token.resize(n_vocab);
  4381. for (uint32_t i = 0; i < n_vocab; i++) {
  4382. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  4383. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4384. vocab.token_to_id[word] = i;
  4385. vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size());
  4386. auto & token_data = vocab.id_to_token[i];
  4387. token_data.text = std::move(word);
  4388. token_data.score = scores ? scores[i] : 0.0f;
  4389. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  4390. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  4391. switch(toktypes[i]) {
  4392. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  4393. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  4394. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  4395. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  4396. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  4397. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  4398. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4399. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4400. }
  4401. }
  4402. }
  4403. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  4404. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  4405. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4406. // For Fill-In-the-Middle (FIM)/infill models which where converted
  4407. // prior to support of FIM special tokens in GGUF, the following
  4408. // will allow those models to continue to work. The general names
  4409. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  4410. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  4411. // new versions of these models have been published.
  4412. std::string gen_name;
  4413. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  4414. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  4415. [](unsigned char c){ return std::tolower(c); });
  4416. if (gen_name.find("code") != std::string::npos) {
  4417. if (model.arch == LLM_ARCH_LLAMA
  4418. && 32010 < vocab.id_to_token.size()
  4419. && vocab.id_to_token[32007].text == "<PRE>"
  4420. && vocab.id_to_token[32008].text == "<SUF>"
  4421. && vocab.id_to_token[32009].text == "<MID>"
  4422. && vocab.id_to_token[32010].text == "<EOT>") {
  4423. vocab.special_prefix_id = 32007;
  4424. vocab.special_suffix_id = 32008;
  4425. vocab.special_middle_id = 32009;
  4426. vocab.special_eot_id = 32010;
  4427. } else if (model.arch == LLM_ARCH_GEMMA
  4428. && 107 < vocab.id_to_token.size()
  4429. && vocab.id_to_token[67].text == "<|fim_prefix|>"
  4430. && vocab.id_to_token[69].text == "<|fim_suffix|>"
  4431. && vocab.id_to_token[68].text == "<|fim_middle|>"
  4432. && vocab.id_to_token[107].text == "<end_of_turn>") {
  4433. vocab.special_prefix_id = 67;
  4434. vocab.special_suffix_id = 69;
  4435. vocab.special_middle_id = 68;
  4436. // TODO: this is not EOT, it is "file separator" token, needs fix
  4437. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  4438. //vocab.special_eot_id = 70;
  4439. vocab.special_eot_id = 107;
  4440. }
  4441. }
  4442. try {
  4443. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  4444. } catch (const std::exception & e) {
  4445. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  4446. vocab.linefeed_id = vocab.special_pad_id;
  4447. }
  4448. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4449. vocab.linefeed_id = vocab.special_pad_id;
  4450. } else {
  4451. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  4452. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  4453. vocab.linefeed_id = ids[0];
  4454. }
  4455. // special tokens
  4456. {
  4457. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  4458. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  4459. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  4460. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4461. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4462. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4463. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4464. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4465. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4466. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4467. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4468. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4469. };
  4470. for (const auto & it : special_token_types) {
  4471. const std::string & key = kv(std::get<0>(it));
  4472. int32_t & id = std::get<1>(it);
  4473. uint32_t new_id;
  4474. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4475. continue;
  4476. }
  4477. if (new_id >= vocab.id_to_token.size()) {
  4478. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4479. __func__, key.c_str(), new_id, id);
  4480. } else {
  4481. id = new_id;
  4482. }
  4483. }
  4484. // Handle add_bos_token and add_eos_token
  4485. {
  4486. bool temp = true;
  4487. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4488. vocab.tokenizer_add_bos = temp;
  4489. }
  4490. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4491. vocab.tokenizer_add_eos = temp;
  4492. }
  4493. }
  4494. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4495. //
  4496. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4497. // for now, we apply this workaround to find the EOT token based on its text
  4498. if (vocab.special_eot_id == -1) {
  4499. for (const auto & t : vocab.token_to_id) {
  4500. if (
  4501. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4502. // need to fix convert script
  4503. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4504. (t.first == "<|eot_id|>" ||
  4505. t.first == "<|im_end|>" ||
  4506. t.first == "<|end|>" ||
  4507. t.first == "<end_of_turn>" ||
  4508. t.first == "<|endoftext|>"
  4509. )
  4510. ) {
  4511. vocab.special_eot_id = t.second;
  4512. break;
  4513. }
  4514. }
  4515. }
  4516. }
  4517. // build special tokens cache
  4518. {
  4519. for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
  4520. if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
  4521. vocab.cache_special_tokens.push_back(id);
  4522. }
  4523. }
  4524. std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
  4525. [&] (const llama_vocab::id a, const llama_vocab::id b) {
  4526. return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
  4527. }
  4528. );
  4529. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
  4530. }
  4531. // build token to piece cache
  4532. {
  4533. size_t size_cache = 0;
  4534. std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
  4535. for (uint32_t id = 0; id < n_vocab; ++id) {
  4536. cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
  4537. size_cache += cache_token_to_piece[id].size();
  4538. }
  4539. std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
  4540. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  4541. }
  4542. // Handle per token attributes
  4543. //NOTE: Each model customizes per token attributes.
  4544. //NOTE: Per token attributes are missing from the GGUF file.
  4545. //TODO: Extract attributes from GGUF file.
  4546. {
  4547. auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
  4548. for (auto substr : substrs) {
  4549. if (str.find(substr) < std::string::npos) {
  4550. return true;
  4551. }
  4552. }
  4553. return false;
  4554. };
  4555. auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
  4556. uint32_t current = vocab.id_to_token.at(id).attr;
  4557. current = value ? (current | attr) : (current & ~attr);
  4558. vocab.id_to_token[id].attr = (llama_token_attr) current;
  4559. };
  4560. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  4561. _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
  4562. };
  4563. std::string model_name;
  4564. std::string tokenizer_pre;
  4565. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  4566. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4567. // model name to lowercase
  4568. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  4569. [] (const std::string::value_type x) {
  4570. return std::tolower(x);
  4571. }
  4572. );
  4573. // set attributes by model/tokenizer name
  4574. if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
  4575. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  4576. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  4577. for (auto id : vocab.cache_special_tokens) {
  4578. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4579. }
  4580. for (auto token : {"</s>"}) {
  4581. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4582. }
  4583. for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
  4584. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  4585. }
  4586. }
  4587. }
  4588. }
  4589. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4590. const auto & hparams = model.hparams;
  4591. const auto & vocab = model.vocab;
  4592. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4593. // hparams
  4594. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4595. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4596. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4597. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4598. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4599. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4600. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4601. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4602. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4603. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4604. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4605. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4606. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4607. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4608. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4609. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4610. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4611. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4612. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4613. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4614. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4615. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4616. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4617. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4618. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4619. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4620. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4621. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4622. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4623. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4624. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  4625. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4626. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4627. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4628. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4629. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4630. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4631. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4632. if (ml.n_elements >= 1e12) {
  4633. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4634. } else if (ml.n_elements >= 1e9) {
  4635. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4636. } else if (ml.n_elements >= 1e6) {
  4637. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4638. } else {
  4639. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4640. }
  4641. if (ml.n_bytes < GiB) {
  4642. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4643. } else {
  4644. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4645. }
  4646. // general kv
  4647. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4648. // special tokens
  4649. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4650. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4651. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4652. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4653. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4654. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4655. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4656. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4657. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4658. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4659. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4660. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4661. LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
  4662. if (model.arch == LLM_ARCH_DEEPSEEK2) {
  4663. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  4664. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  4665. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  4666. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4667. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  4668. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  4669. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  4670. }
  4671. if (model.arch == LLM_ARCH_QWEN2MOE) {
  4672. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4673. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  4674. }
  4675. }
  4676. // Returns false if cancelled by progress_callback
  4677. static bool llm_load_tensors(
  4678. llama_model_loader & ml,
  4679. llama_model & model,
  4680. int n_gpu_layers,
  4681. enum llama_split_mode split_mode,
  4682. int main_gpu,
  4683. const float * tensor_split,
  4684. bool use_mlock,
  4685. llama_progress_callback progress_callback,
  4686. void * progress_callback_user_data) {
  4687. model.t_start_us = ggml_time_us();
  4688. auto & hparams = model.hparams;
  4689. #ifdef GGML_USE_SYCL
  4690. // disable MoE with SYCL until mul_mat_id is updated
  4691. if (hparams.n_expert > 0) {
  4692. n_gpu_layers = 0;
  4693. }
  4694. #endif
  4695. model.split_mode = split_mode;
  4696. model.main_gpu = main_gpu;
  4697. model.n_gpu_layers = n_gpu_layers;
  4698. const int64_t n_layer = hparams.n_layer;
  4699. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4700. bool use_mmap_buffer = true;
  4701. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4702. model.buft_input = llama_default_buffer_type_cpu(true);
  4703. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4704. model.buft_layer.resize(n_layer);
  4705. // assign cpu layers
  4706. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4707. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4708. }
  4709. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4710. // calculate the split points
  4711. int device_count = llama_get_device_count(model);
  4712. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4713. std::vector<float> splits(device_count);
  4714. if (all_zero) {
  4715. // default split, by free memory
  4716. for (int i = 0; i < device_count; ++i) {
  4717. splits[i] = llama_get_device_memory(model, i);
  4718. }
  4719. } else {
  4720. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4721. }
  4722. // sum and normalize the splits to get the split points
  4723. float split_sum = 0.0f;
  4724. for (int i = 0; i < device_count; ++i) {
  4725. split_sum += splits[i];
  4726. splits[i] = split_sum;
  4727. }
  4728. for (int i = 0; i < device_count; ++i) {
  4729. splits[i] /= split_sum;
  4730. }
  4731. // assign the repeating layers to the devices according to the splits
  4732. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4733. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4734. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4735. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4736. }
  4737. // assign the output layer
  4738. if (n_gpu_layers > n_layer) {
  4739. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4740. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4741. } else {
  4742. model.buft_output = llama_default_buffer_type_cpu(true);
  4743. }
  4744. } else {
  4745. ggml_backend_buffer_type_t split_buft;
  4746. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4747. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4748. } else {
  4749. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4750. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4751. }
  4752. // assign the repeating layers
  4753. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4754. model.buft_layer[i] = {
  4755. split_buft,
  4756. llama_default_buffer_type_offload(model, main_gpu)
  4757. };
  4758. }
  4759. // assign the output layer
  4760. if (n_gpu_layers > n_layer) {
  4761. model.buft_output = {
  4762. split_buft,
  4763. llama_default_buffer_type_offload(model, main_gpu)
  4764. };
  4765. } else {
  4766. model.buft_output = llama_default_buffer_type_cpu(true);
  4767. }
  4768. }
  4769. // count used buffer types
  4770. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4771. buft_layer_count[model.buft_input.buft]++;
  4772. buft_layer_count[model.buft_input.buft_matrix]++;
  4773. buft_layer_count[model.buft_output.buft]++;
  4774. buft_layer_count[model.buft_output.buft_matrix]++;
  4775. for (int64_t i = 0; i < n_layer; ++i) {
  4776. buft_layer_count[model.buft_layer[i].buft]++;
  4777. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4778. }
  4779. // create one context per buffer type
  4780. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4781. // for moe merged tensors
  4782. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4783. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4784. for (auto & it : buft_layer_count) {
  4785. struct ggml_init_params params = {
  4786. /*.mem_size =*/ ctx_size,
  4787. /*.mem_buffer =*/ NULL,
  4788. /*.no_alloc =*/ true,
  4789. };
  4790. ggml_context * ctx = ggml_init(params);
  4791. if (!ctx) {
  4792. throw std::runtime_error(format("failed to create context"));
  4793. }
  4794. ctx_map[it.first] = ctx;
  4795. model.ctxs.push_back(ctx);
  4796. }
  4797. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4798. // create tensors for the weights
  4799. {
  4800. const int64_t n_embd = hparams.n_embd;
  4801. const int64_t n_embd_head = (hparams.n_head == 0) ? 0 : n_embd / hparams.n_head;
  4802. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4803. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4804. const int64_t n_embd_gqa = n_embd_v_gqa;
  4805. const int64_t n_vocab = hparams.n_vocab;
  4806. const int64_t n_vocab_type = hparams.n_vocab_type;
  4807. const int64_t n_ff = hparams.n_ff;
  4808. const int64_t n_expert = hparams.n_expert;
  4809. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4810. throw std::runtime_error("model has expert layers but no expert layers are used");
  4811. }
  4812. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4813. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4814. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4815. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4816. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4817. model.layers.resize(n_layer);
  4818. const auto tn = LLM_TN(model.arch);
  4819. switch (model.arch) {
  4820. case LLM_ARCH_LLAMA:
  4821. case LLM_ARCH_REFACT:
  4822. case LLM_ARCH_MINICPM:
  4823. {
  4824. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4825. // output
  4826. {
  4827. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4828. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4829. // if output is NULL, init from the input tok embed
  4830. if (model.output == NULL) {
  4831. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4832. }
  4833. }
  4834. for (int i = 0; i < n_layer; ++i) {
  4835. ggml_context * ctx_layer = ctx_for_layer(i);
  4836. ggml_context * ctx_split = ctx_for_layer_split(i);
  4837. auto & layer = model.layers[i];
  4838. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4839. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4840. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4841. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4842. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4843. // optional bias tensors
  4844. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4845. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4846. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4847. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4848. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4849. if (n_expert == 0) {
  4850. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4851. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4852. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4853. // optional MLP bias
  4854. layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4855. layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4856. layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4857. } else {
  4858. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4859. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4860. if (layer.ffn_gate_exps) {
  4861. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4862. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4863. } else {
  4864. // merge split expert into a single tensor for compatibility with older models
  4865. // requires disabling mmap
  4866. use_mmap_buffer = false;
  4867. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4868. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4869. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4870. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4871. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4872. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4873. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4874. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4875. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4876. for (uint32_t x = 0; x < n_expert; ++x) {
  4877. // the individual experts are loaded into a view of the merged tensor
  4878. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4879. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4880. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4881. }
  4882. }
  4883. }
  4884. }
  4885. } break;
  4886. case LLM_ARCH_GROK:
  4887. {
  4888. if (n_expert == 0) {
  4889. throw std::runtime_error("Grok model cannot have zero experts");
  4890. }
  4891. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4892. // output
  4893. {
  4894. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4895. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4896. // if output is NULL, init from the input tok embed
  4897. if (model.output == NULL) {
  4898. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4899. }
  4900. }
  4901. for (int i = 0; i < n_layer; ++i) {
  4902. ggml_context * ctx_layer = ctx_for_layer(i);
  4903. ggml_context * ctx_split = ctx_for_layer_split(i);
  4904. auto & layer = model.layers[i];
  4905. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4906. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4907. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4908. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4909. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4910. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4911. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4912. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4913. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4914. if (layer.ffn_gate_exps) {
  4915. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4916. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4917. } else {
  4918. // merge split expert into a single tensor for compatibility with older models
  4919. // requires disabling mmap
  4920. use_mmap_buffer = false;
  4921. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4922. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4923. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4924. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4925. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4926. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4927. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4928. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4929. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4930. for (uint32_t x = 0; x < n_expert; ++x) {
  4931. // the individual experts are loaded into a view of the merged tensor
  4932. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4933. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4934. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4935. }
  4936. }
  4937. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4938. }
  4939. } break;
  4940. case LLM_ARCH_DBRX:
  4941. {
  4942. if (n_expert == 0) {
  4943. throw std::runtime_error("DBRX model cannot have zero experts");
  4944. }
  4945. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4946. // output
  4947. {
  4948. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4949. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4950. }
  4951. for (int i = 0; i < n_layer; ++i) {
  4952. ggml_context * ctx_layer = ctx_for_layer(i);
  4953. ggml_context * ctx_split = ctx_for_layer_split(i);
  4954. auto & layer = model.layers[i];
  4955. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4956. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4957. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4958. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4959. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4960. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4961. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4962. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4963. }
  4964. } break;
  4965. case LLM_ARCH_BAICHUAN:
  4966. {
  4967. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4968. {
  4969. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4970. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4971. }
  4972. for (int i = 0; i < n_layer; ++i) {
  4973. ggml_context * ctx_layer = ctx_for_layer(i);
  4974. ggml_context * ctx_split = ctx_for_layer_split(i);
  4975. auto & layer = model.layers[i];
  4976. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4977. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4978. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4979. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4980. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4981. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4982. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4983. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4984. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4985. }
  4986. } break;
  4987. case LLM_ARCH_FALCON:
  4988. {
  4989. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4990. // output
  4991. {
  4992. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4993. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4994. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4995. if (!model.output) {
  4996. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4997. }
  4998. }
  4999. for (int i = 0; i < n_layer; ++i) {
  5000. ggml_context * ctx_layer = ctx_for_layer(i);
  5001. ggml_context * ctx_split = ctx_for_layer_split(i);
  5002. auto & layer = model.layers[i];
  5003. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5004. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5005. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5006. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5007. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5008. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5009. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5010. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5011. }
  5012. } break;
  5013. case LLM_ARCH_STARCODER:
  5014. {
  5015. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5016. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5017. // output
  5018. {
  5019. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5020. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5021. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5022. if (!model.output) {
  5023. // needs to be on GPU
  5024. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5025. }
  5026. }
  5027. for (int i = 0; i < n_layer; ++i) {
  5028. ggml_context * ctx_layer = ctx_for_layer(i);
  5029. ggml_context * ctx_split = ctx_for_layer_split(i);
  5030. auto & layer = model.layers[i];
  5031. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5032. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5033. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5034. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5035. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5036. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5037. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5038. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5039. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5040. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5041. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5042. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5043. }
  5044. } break;
  5045. case LLM_ARCH_BERT:
  5046. case LLM_ARCH_NOMIC_BERT:
  5047. {
  5048. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5049. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  5050. if (model.arch == LLM_ARCH_BERT) {
  5051. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5052. }
  5053. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  5054. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  5055. for (int i = 0; i < n_layer; ++i) {
  5056. ggml_context * ctx_layer = ctx_for_layer(i);
  5057. ggml_context * ctx_split = ctx_for_layer_split(i);
  5058. auto & layer = model.layers[i];
  5059. if (model.arch == LLM_ARCH_BERT) {
  5060. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5061. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5062. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5063. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5064. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5065. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5066. } else {
  5067. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5068. }
  5069. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5070. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  5071. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  5072. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5073. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5074. if (model.arch == LLM_ARCH_BERT) {
  5075. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5076. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5077. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5078. } else {
  5079. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5080. }
  5081. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  5082. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  5083. }
  5084. } break;
  5085. case LLM_ARCH_JINA_BERT_V2:
  5086. {
  5087. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  5088. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  5089. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  5090. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  5091. for (int i = 0; i < n_layer; ++i) {
  5092. ggml_context * ctx_layer = ctx_for_layer(i);
  5093. ggml_context * ctx_split = ctx_for_layer_split(i);
  5094. auto & layer = model.layers[i]; // JinaBertLayer
  5095. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5096. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5097. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5098. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5099. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5100. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5101. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5102. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5103. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5104. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5105. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  5106. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  5107. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  5108. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  5109. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5110. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5111. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5112. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5113. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5114. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5115. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  5116. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  5117. }
  5118. } break;
  5119. case LLM_ARCH_BLOOM:
  5120. {
  5121. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5122. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  5123. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  5124. // output
  5125. {
  5126. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5127. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5128. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5129. }
  5130. for (int i = 0; i < n_layer; ++i) {
  5131. ggml_context * ctx_layer = ctx_for_layer(i);
  5132. ggml_context * ctx_split = ctx_for_layer_split(i);
  5133. auto & layer = model.layers[i];
  5134. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5135. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5136. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5137. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5138. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5139. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5140. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5141. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5142. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5143. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5144. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5145. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5146. }
  5147. } break;
  5148. case LLM_ARCH_MPT:
  5149. {
  5150. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5151. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5152. // output
  5153. {
  5154. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5155. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5156. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5157. if (!model.output) {
  5158. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  5159. }
  5160. }
  5161. for (int i = 0; i < n_layer; ++i) {
  5162. ggml_context * ctx_layer = ctx_for_layer(i);
  5163. ggml_context * ctx_split = ctx_for_layer_split(i);
  5164. auto & layer = model.layers[i];
  5165. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5166. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5167. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5168. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5169. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5170. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5171. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5172. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5173. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5174. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5175. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5176. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5177. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5178. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5179. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5180. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5181. // AWQ ScaleActivation layer
  5182. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5183. }
  5184. } break;
  5185. case LLM_ARCH_STABLELM:
  5186. {
  5187. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5188. // output
  5189. {
  5190. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5191. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5192. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5193. }
  5194. for (int i = 0; i < n_layer; ++i) {
  5195. ggml_context * ctx_layer = ctx_for_layer(i);
  5196. ggml_context * ctx_split = ctx_for_layer_split(i);
  5197. auto & layer = model.layers[i];
  5198. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5199. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5200. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5201. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5202. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5203. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5204. // optional bias tensors, present in Stable LM 2 1.6B
  5205. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5206. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5207. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5208. // optional q and k layernorms, present in StableLM 2 12B
  5209. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5210. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5211. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  5212. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5213. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5214. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5215. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5216. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5217. }
  5218. } break;
  5219. case LLM_ARCH_QWEN:
  5220. {
  5221. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5222. // output
  5223. {
  5224. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5225. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5226. }
  5227. for (int i = 0; i < n_layer; ++i) {
  5228. ggml_context * ctx_layer = ctx_for_layer(i);
  5229. ggml_context * ctx_split = ctx_for_layer_split(i);
  5230. auto & layer = model.layers[i];
  5231. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5232. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  5233. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  5234. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5235. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5236. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  5237. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  5238. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  5239. }
  5240. } break;
  5241. case LLM_ARCH_QWEN2:
  5242. {
  5243. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5244. // output
  5245. {
  5246. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5247. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5248. // if output is NULL, init from the input tok embed
  5249. if (model.output == NULL) {
  5250. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5251. }
  5252. }
  5253. for (int i = 0; i < n_layer; ++i) {
  5254. ggml_context * ctx_layer = ctx_for_layer(i);
  5255. ggml_context * ctx_split = ctx_for_layer_split(i);
  5256. auto & layer = model.layers[i];
  5257. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5258. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5259. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5260. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5261. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5262. // optional bias tensors
  5263. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5264. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5265. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5266. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5267. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5268. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5269. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5270. }
  5271. } break;
  5272. case LLM_ARCH_QWEN2MOE:
  5273. {
  5274. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5275. // output
  5276. {
  5277. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5278. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5279. }
  5280. for (int i = 0; i < n_layer; ++i) {
  5281. ggml_context * ctx_layer = ctx_for_layer(i);
  5282. ggml_context * ctx_split = ctx_for_layer_split(i);
  5283. auto & layer = model.layers[i];
  5284. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5285. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5286. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5287. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5288. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5289. // optional bias tensors
  5290. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5291. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5292. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5293. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5294. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5295. GGML_ASSERT(hparams.n_expert > 0);
  5296. GGML_ASSERT(hparams.n_expert_used > 0);
  5297. // MoE branch
  5298. auto n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / hparams.n_expert_used;
  5299. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5300. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5301. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5302. // Shared expert branch
  5303. auto n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  5304. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  5305. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp});
  5306. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd});
  5307. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp});
  5308. }
  5309. } break;
  5310. case LLM_ARCH_PHI2:
  5311. {
  5312. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5313. // output
  5314. {
  5315. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5316. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5317. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5318. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  5319. }
  5320. for (int i = 0; i < n_layer; ++i) {
  5321. ggml_context * ctx_layer = ctx_for_layer(i);
  5322. ggml_context * ctx_split = ctx_for_layer_split(i);
  5323. auto & layer = model.layers[i];
  5324. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5325. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5326. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5327. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5328. if (layer.wqkv == nullptr) {
  5329. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5330. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5331. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5332. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5333. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5334. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5335. }
  5336. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5337. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5338. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5339. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5340. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5341. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5342. }
  5343. } break;
  5344. case LLM_ARCH_PHI3:
  5345. {
  5346. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  5347. // output
  5348. {
  5349. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  5350. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  5351. }
  5352. for (int i = 0; i < n_layer; ++i) {
  5353. ggml_context* ctx_layer = ctx_for_layer(i);
  5354. ggml_context* ctx_split = ctx_for_layer_split(i);
  5355. auto & layer = model.layers[i];
  5356. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  5357. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  5358. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  5359. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  5360. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  5361. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  5362. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5363. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5364. }
  5365. } break;
  5366. case LLM_ARCH_PLAMO:
  5367. {
  5368. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5369. // output
  5370. {
  5371. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5372. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5373. }
  5374. for (int i = 0; i < n_layer; ++i) {
  5375. ggml_context * ctx_layer = ctx_for_layer(i);
  5376. ggml_context * ctx_split = ctx_for_layer_split(i);
  5377. auto & layer = model.layers[i];
  5378. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5379. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5380. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5381. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5382. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5383. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5384. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5385. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5386. }
  5387. } break;
  5388. case LLM_ARCH_GPT2:
  5389. {
  5390. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5391. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5392. // output
  5393. {
  5394. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5395. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5396. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5397. }
  5398. for (int i = 0; i < n_layer; ++i) {
  5399. ggml_context * ctx_layer = ctx_for_layer(i);
  5400. ggml_context * ctx_split = ctx_for_layer_split(i);
  5401. auto & layer = model.layers[i];
  5402. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5403. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5404. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5405. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5406. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5407. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5408. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5409. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5410. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5411. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5412. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5413. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5414. }
  5415. } break;
  5416. case LLM_ARCH_CODESHELL:
  5417. {
  5418. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5419. // output
  5420. {
  5421. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5422. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5423. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5424. }
  5425. for (int i = 0; i < n_layer; ++i) {
  5426. ggml_context * ctx_layer = ctx_for_layer(i);
  5427. ggml_context * ctx_split = ctx_for_layer_split(i);
  5428. auto & layer = model.layers[i];
  5429. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5430. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5431. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5432. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5433. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5434. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5435. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5436. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5437. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5438. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5439. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5440. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5441. }
  5442. } break;
  5443. case LLM_ARCH_ORION:
  5444. {
  5445. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5446. {
  5447. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5448. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5449. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5450. }
  5451. for (int i = 0; i < n_layer; ++i) {
  5452. ggml_context * ctx_layer = ctx_for_layer(i);
  5453. ggml_context * ctx_split = ctx_for_layer_split(i);
  5454. auto & layer = model.layers[i];
  5455. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5456. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5457. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5458. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5459. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5460. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5461. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5462. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5463. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5464. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5465. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5466. }
  5467. } break;
  5468. case LLM_ARCH_INTERNLM2:
  5469. {
  5470. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5471. // output
  5472. {
  5473. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5474. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5475. }
  5476. for (int i = 0; i < n_layer; ++i) {
  5477. ggml_context * ctx_layer = ctx_for_layer(i);
  5478. ggml_context * ctx_split = ctx_for_layer_split(i);
  5479. auto & layer = model.layers[i];
  5480. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5481. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5482. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5483. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5484. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5485. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5486. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5487. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5488. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5489. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5490. }
  5491. } break;
  5492. case LLM_ARCH_GEMMA:
  5493. {
  5494. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5495. // output
  5496. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5497. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  5498. const int64_t n_ff = hparams.n_ff;
  5499. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5500. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5501. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5502. for (uint32_t i = 0; i < n_layer; ++i) {
  5503. ggml_context * ctx_layer = ctx_for_layer(i);
  5504. ggml_context * ctx_split = ctx_for_layer_split(i);
  5505. auto & layer = model.layers[i];
  5506. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5507. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5508. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5509. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5510. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5511. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5512. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5513. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5514. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5515. }
  5516. } break;
  5517. case LLM_ARCH_STARCODER2:
  5518. {
  5519. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5520. // output
  5521. {
  5522. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5523. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5524. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5525. // if output is NULL, init from the input tok embed
  5526. if (model.output == NULL) {
  5527. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5528. }
  5529. }
  5530. for (int i = 0; i < n_layer; ++i) {
  5531. ggml_context * ctx_layer = ctx_for_layer(i);
  5532. ggml_context * ctx_split = ctx_for_layer_split(i);
  5533. auto & layer = model.layers[i];
  5534. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5535. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5536. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5537. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5538. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5539. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5540. // optional bias tensors
  5541. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5542. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5543. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5544. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5545. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5546. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5547. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5548. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5549. // optional bias tensors
  5550. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5551. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5552. }
  5553. } break;
  5554. case LLM_ARCH_MAMBA:
  5555. {
  5556. const int64_t d_conv = hparams.ssm_d_conv;
  5557. const int64_t d_inner = hparams.ssm_d_inner;
  5558. const int64_t d_state = hparams.ssm_d_state;
  5559. const int64_t dt_rank = hparams.ssm_dt_rank;
  5560. // only an expansion factor of 2 is supported for now
  5561. GGML_ASSERT(2 * n_embd == d_inner);
  5562. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5563. // output
  5564. {
  5565. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5566. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5567. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5568. if (model.output == NULL) {
  5569. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5570. }
  5571. }
  5572. for (int i = 0; i < n_layer; ++i) {
  5573. ggml_context * ctx_layer = ctx_for_layer(i);
  5574. ggml_context * ctx_split = ctx_for_layer_split(i);
  5575. auto & layer = model.layers[i];
  5576. // norm
  5577. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5578. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5579. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5580. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5581. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5582. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5583. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5584. // no "weight" suffix for these
  5585. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5586. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5587. // out_proj
  5588. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5589. }
  5590. } break;
  5591. case LLM_ARCH_XVERSE:
  5592. {
  5593. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5594. {
  5595. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5596. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5597. }
  5598. for (int i = 0; i < n_layer; ++i) {
  5599. ggml_context * ctx_layer = ctx_for_layer(i);
  5600. ggml_context * ctx_split = ctx_for_layer_split(i);
  5601. auto & layer = model.layers[i];
  5602. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5603. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5604. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5605. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5606. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5607. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5608. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5609. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5610. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5611. }
  5612. } break;
  5613. case LLM_ARCH_COMMAND_R:
  5614. {
  5615. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5616. // output
  5617. {
  5618. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5619. // init output from the input tok embed
  5620. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5621. }
  5622. for (int i = 0; i < n_layer; ++i) {
  5623. ggml_context * ctx_layer = ctx_for_layer(i);
  5624. ggml_context * ctx_split = ctx_for_layer_split(i);
  5625. auto & layer = model.layers[i];
  5626. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5627. if (n_layer >= 64){
  5628. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5629. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5630. }
  5631. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5632. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5633. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5634. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5635. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5636. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5637. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5638. }
  5639. } break;
  5640. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5641. {
  5642. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5643. // output
  5644. {
  5645. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5646. // if output is NULL, init from the input tok embed
  5647. if (model.output == NULL) {
  5648. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5649. }
  5650. }
  5651. for (int i = 0; i < n_layer; ++i) {
  5652. ggml_context * ctx_split = ctx_for_layer_split(i);
  5653. auto & layer = model.layers[i];
  5654. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5655. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5656. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5657. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5658. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5659. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5660. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5661. }
  5662. } break;
  5663. case LLM_ARCH_GPTNEOX:
  5664. {
  5665. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5666. // output
  5667. {
  5668. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5669. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5670. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5671. }
  5672. for (int i = 0; i < n_layer; ++i) {
  5673. ggml_context * ctx_layer = ctx_for_layer(i);
  5674. ggml_context * ctx_split = ctx_for_layer_split(i);
  5675. auto & layer = model.layers[i];
  5676. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5677. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5678. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5679. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5680. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5681. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5682. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5683. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5684. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5685. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5686. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5687. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5688. }
  5689. } break;
  5690. case LLM_ARCH_ARCTIC:
  5691. {
  5692. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5693. // output
  5694. {
  5695. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5696. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5697. // if output is NULL, init from the input tok embed
  5698. if (model.output == NULL) {
  5699. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5700. }
  5701. }
  5702. for (int i = 0; i < n_layer; ++i) {
  5703. ggml_context * ctx_layer = ctx_for_layer(i);
  5704. ggml_context * ctx_split = ctx_for_layer_split(i);
  5705. auto & layer = model.layers[i];
  5706. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5707. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5708. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5709. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5710. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5711. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5712. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
  5713. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
  5714. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
  5715. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5716. layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
  5717. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  5718. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  5719. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5720. }
  5721. } break;
  5722. case LLM_ARCH_DEEPSEEK2:
  5723. {
  5724. bool is_lite = (hparams.n_layer == 27);
  5725. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  5726. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  5727. const uint32_t q_lora_rank = hparams.n_lora_q;
  5728. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  5729. const uint32_t n_ff_exp = hparams.n_ff_exp;
  5730. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5731. // output
  5732. {
  5733. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5734. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5735. }
  5736. for (int i = 0; i < n_layer; ++i) {
  5737. ggml_context * ctx_layer = ctx_for_layer(i);
  5738. ggml_context * ctx_split = ctx_for_layer_split(i);
  5739. auto & layer = model.layers[i];
  5740. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5741. if (!is_lite) {
  5742. layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
  5743. }
  5744. layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
  5745. if (!is_lite) {
  5746. layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
  5747. layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.n_head * hparams.n_embd_head_k});
  5748. } else {
  5749. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  5750. }
  5751. layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope});
  5752. layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, hparams.n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)});
  5753. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {hparams.n_head * hparams.n_embd_head_v, n_embd});
  5754. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5755. if ((uint32_t) i < hparams.n_layer_dense_lead) {
  5756. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5757. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5758. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5759. } else {
  5760. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5761. GGML_ASSERT(hparams.n_expert > 0);
  5762. GGML_ASSERT(hparams.n_expert_used > 0);
  5763. // MoE branch
  5764. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5765. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5766. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5767. // Shared expert branch
  5768. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5769. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * hparams.n_expert_shared, n_embd});
  5770. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5771. }
  5772. }
  5773. } break;
  5774. case LLM_ARCH_BITNET:
  5775. {
  5776. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5777. // output
  5778. {
  5779. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5780. }
  5781. for (int i = 0; i < n_layer; ++i) {
  5782. ggml_context * ctx_layer = ctx_for_layer(i);
  5783. ggml_context * ctx_split = ctx_for_layer_split(i);
  5784. auto & layer = model.layers[i];
  5785. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5786. layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
  5787. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5788. layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1});
  5789. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5790. layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1});
  5791. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5792. layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1});
  5793. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5794. layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1});
  5795. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5796. layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
  5797. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5798. layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1});
  5799. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5800. layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1});
  5801. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5802. layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1});
  5803. }
  5804. } break;
  5805. default:
  5806. throw std::runtime_error("unknown architecture");
  5807. }
  5808. }
  5809. ml.done_getting_tensors();
  5810. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5811. model.mappings.reserve(ml.mappings.size());
  5812. // create the backend buffers
  5813. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5814. ctx_bufs.reserve(ctx_map.size());
  5815. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5816. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5817. model.bufs.reserve(n_max_backend_buffer);
  5818. for (auto & it : ctx_map) {
  5819. ggml_backend_buffer_type_t buft = it.first;
  5820. ggml_context * ctx = it.second;
  5821. llama_buf_map bufs;
  5822. bufs.reserve(n_max_backend_buffer);
  5823. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5824. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5825. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5826. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5827. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5828. void * addr = nullptr;
  5829. size_t first, last;
  5830. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5831. if (first >= last) {
  5832. continue;
  5833. }
  5834. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5835. if (buf == nullptr) {
  5836. throw std::runtime_error("unable to allocate backend CPU buffer");
  5837. }
  5838. model.bufs.push_back(buf);
  5839. bufs.emplace(idx, buf);
  5840. #ifdef GGML_USE_CUDA
  5841. if (n_layer >= n_gpu_layers) {
  5842. ggml_backend_cuda_register_host_buffer(
  5843. ggml_backend_buffer_get_base(buf),
  5844. ggml_backend_buffer_get_size(buf));
  5845. }
  5846. #endif
  5847. }
  5848. }
  5849. #ifdef GGML_USE_METAL
  5850. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5851. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5852. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5853. void * addr = nullptr;
  5854. size_t first, last;
  5855. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5856. if (first >= last) {
  5857. continue;
  5858. }
  5859. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5860. if (buf == nullptr) {
  5861. throw std::runtime_error("unable to allocate backend metal buffer");
  5862. }
  5863. model.bufs.push_back(buf);
  5864. bufs.emplace(idx, buf);
  5865. }
  5866. }
  5867. #endif
  5868. else {
  5869. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5870. if (buf == nullptr) {
  5871. throw std::runtime_error("unable to allocate backend buffer");
  5872. }
  5873. model.bufs.push_back(buf);
  5874. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5875. model.mlock_bufs.emplace_back(new llama_mlock);
  5876. auto & mlock_buf = model.mlock_bufs.back();
  5877. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5878. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5879. }
  5880. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5881. bufs.emplace(idx, buf);
  5882. }
  5883. }
  5884. if (bufs.empty()) {
  5885. throw std::runtime_error("failed to allocate buffer");
  5886. }
  5887. for (auto & buf : bufs) {
  5888. // indicate that this buffer contains weights
  5889. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5890. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5891. }
  5892. ctx_bufs.emplace_back(ctx, bufs);
  5893. }
  5894. if (llama_supports_gpu_offload()) {
  5895. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5896. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5897. if (n_gpu_layers > (int) hparams.n_layer) {
  5898. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5899. }
  5900. const int max_backend_supported_layers = hparams.n_layer + 1;
  5901. const int max_offloadable_layers = hparams.n_layer + 1;
  5902. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5903. }
  5904. // print memory requirements
  5905. for (ggml_backend_buffer_t buf : model.bufs) {
  5906. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5907. }
  5908. // populate tensors_by_name
  5909. for (ggml_context * ctx : model.ctxs) {
  5910. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5911. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5912. }
  5913. }
  5914. // load tensor data
  5915. for (auto & it : ctx_bufs) {
  5916. ggml_context * ctx = it.first;
  5917. auto & bufs = it.second;
  5918. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5919. return false;
  5920. }
  5921. }
  5922. if (use_mmap_buffer) {
  5923. for (auto & mapping : ml.mappings) {
  5924. model.mappings.emplace_back(std::move(mapping));
  5925. }
  5926. }
  5927. // loading time will be recalculate after the first eval, so
  5928. // we take page faults deferred by mmap() into consideration
  5929. model.t_load_us = ggml_time_us() - model.t_start_us;
  5930. return true;
  5931. }
  5932. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5933. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5934. try {
  5935. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5936. model.hparams.vocab_only = params.vocab_only;
  5937. try {
  5938. llm_load_arch(ml, model);
  5939. } catch(const std::exception & e) {
  5940. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5941. }
  5942. try {
  5943. llm_load_hparams(ml, model);
  5944. } catch(const std::exception & e) {
  5945. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5946. }
  5947. try {
  5948. llm_load_vocab(ml, model);
  5949. } catch(const std::exception & e) {
  5950. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5951. }
  5952. llm_load_print_meta(ml, model);
  5953. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5954. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5955. throw std::runtime_error("vocab size mismatch");
  5956. }
  5957. if (params.vocab_only) {
  5958. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5959. return 0;
  5960. }
  5961. #ifdef GGML_USE_KOMPUTE
  5962. if (params.n_gpu_layers > 0 && (
  5963. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5964. || !(
  5965. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5966. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5967. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5968. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5969. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5970. )
  5971. )) {
  5972. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5973. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5974. params.n_gpu_layers = 0;
  5975. }
  5976. #endif
  5977. if (!llm_load_tensors(
  5978. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5979. params.progress_callback, params.progress_callback_user_data
  5980. )) {
  5981. return -2;
  5982. }
  5983. } catch (const std::exception & err) {
  5984. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5985. return -1;
  5986. }
  5987. return 0;
  5988. }
  5989. //
  5990. // llm_build
  5991. //
  5992. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5993. enum llm_ffn_op_type {
  5994. LLM_FFN_SILU,
  5995. LLM_FFN_GELU,
  5996. LLM_FFN_RELU,
  5997. LLM_FFN_RELU_SQR,
  5998. };
  5999. enum llm_ffn_gate_type {
  6000. LLM_FFN_SEQ,
  6001. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  6002. };
  6003. enum llm_norm_type {
  6004. LLM_NORM,
  6005. LLM_NORM_RMS,
  6006. };
  6007. static struct ggml_tensor * llm_build_inp_embd(
  6008. struct ggml_context * ctx,
  6009. struct llama_context & lctx,
  6010. const llama_hparams & hparams,
  6011. const llama_batch & batch,
  6012. struct ggml_tensor * tok_embd,
  6013. const llm_build_cb & cb) {
  6014. const int64_t n_embd = hparams.n_embd;
  6015. struct ggml_tensor * inpL;
  6016. if (batch.token) {
  6017. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  6018. cb(lctx.inp_tokens, "inp_tokens", -1);
  6019. ggml_set_input(lctx.inp_tokens);
  6020. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  6021. } else {
  6022. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  6023. inpL = lctx.inp_embd;
  6024. ggml_set_input(lctx.inp_embd);
  6025. }
  6026. cb(inpL, "inp_embd", -1);
  6027. return inpL;
  6028. }
  6029. static void llm_build_kv_store(
  6030. struct ggml_context * ctx,
  6031. const llama_hparams & hparams,
  6032. const llama_cparams & cparams,
  6033. const llama_kv_cache & kv,
  6034. struct ggml_cgraph * graph,
  6035. struct ggml_tensor * k_cur,
  6036. struct ggml_tensor * v_cur,
  6037. int32_t n_tokens,
  6038. int32_t kv_head,
  6039. const llm_build_cb & cb,
  6040. int64_t il) {
  6041. const int64_t n_ctx = cparams.n_ctx;
  6042. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  6043. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  6044. GGML_ASSERT(kv.size == n_ctx);
  6045. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  6046. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  6047. cb(k_cache_view, "k_cache_view", il);
  6048. // note: storing RoPE-ed version of K in the KV cache
  6049. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  6050. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  6051. struct ggml_tensor * v_cache_view = nullptr;
  6052. if (cparams.flash_attn) {
  6053. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  6054. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  6055. } else {
  6056. // note: the V cache is transposed when not using flash attention
  6057. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  6058. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  6059. (kv_head)*ggml_element_size(kv.v_l[il]));
  6060. v_cur = ggml_transpose(ctx, v_cur);
  6061. }
  6062. cb(v_cache_view, "v_cache_view", il);
  6063. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  6064. }
  6065. static struct ggml_tensor * llm_build_norm(
  6066. struct ggml_context * ctx,
  6067. struct ggml_tensor * cur,
  6068. const llama_hparams & hparams,
  6069. struct ggml_tensor * mw,
  6070. struct ggml_tensor * mb,
  6071. llm_norm_type type,
  6072. const llm_build_cb & cb,
  6073. int il) {
  6074. switch (type) {
  6075. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  6076. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  6077. }
  6078. if (mw || mb) {
  6079. cb(cur, "norm", il);
  6080. }
  6081. if (mw) {
  6082. cur = ggml_mul(ctx, cur, mw);
  6083. if (mb) {
  6084. cb(cur, "norm_w", il);
  6085. }
  6086. }
  6087. if (mb) {
  6088. cur = ggml_add(ctx, cur, mb);
  6089. }
  6090. return cur;
  6091. }
  6092. static struct ggml_tensor * llm_build_ffn(
  6093. struct ggml_context * ctx,
  6094. struct ggml_tensor * cur,
  6095. struct ggml_tensor * up,
  6096. struct ggml_tensor * up_b,
  6097. struct ggml_tensor * gate,
  6098. struct ggml_tensor * gate_b,
  6099. struct ggml_tensor * down,
  6100. struct ggml_tensor * down_b,
  6101. struct ggml_tensor * act_scales,
  6102. llm_ffn_op_type type_op,
  6103. llm_ffn_gate_type type_gate,
  6104. const llm_build_cb & cb,
  6105. int il) {
  6106. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  6107. cb(tmp, "ffn_up", il);
  6108. if (up_b) {
  6109. tmp = ggml_add(ctx, tmp, up_b);
  6110. cb(tmp, "ffn_up_b", il);
  6111. }
  6112. if (gate) {
  6113. switch (type_gate) {
  6114. case LLM_FFN_SEQ:
  6115. {
  6116. cur = ggml_mul_mat(ctx, gate, tmp);
  6117. cb(cur, "ffn_gate", il);
  6118. } break;
  6119. case LLM_FFN_PAR:
  6120. {
  6121. cur = ggml_mul_mat(ctx, gate, cur);
  6122. cb(cur, "ffn_gate", il);
  6123. } break;
  6124. }
  6125. if (gate_b) {
  6126. cur = ggml_add(ctx, cur, gate_b);
  6127. cb(cur, "ffn_gate_b", il);
  6128. }
  6129. } else {
  6130. cur = tmp;
  6131. }
  6132. switch (type_op) {
  6133. case LLM_FFN_SILU:
  6134. {
  6135. cur = ggml_silu(ctx, cur);
  6136. cb(cur, "ffn_silu", il);
  6137. } break;
  6138. case LLM_FFN_GELU:
  6139. {
  6140. cur = ggml_gelu(ctx, cur);
  6141. cb(cur, "ffn_gelu", il);
  6142. if (act_scales != NULL) {
  6143. cur = ggml_div(ctx, cur, act_scales);
  6144. cb(cur, "ffn_act", il);
  6145. }
  6146. } break;
  6147. case LLM_FFN_RELU:
  6148. {
  6149. cur = ggml_relu(ctx, cur);
  6150. cb(cur, "ffn_relu", il);
  6151. } break;
  6152. case LLM_FFN_RELU_SQR:
  6153. {
  6154. cur = ggml_relu(ctx, cur);
  6155. cb(cur, "ffn_relu", il);
  6156. cur = ggml_sqr(ctx, cur);
  6157. cb(cur, "ffn_sqr(relu)", il);
  6158. } break;
  6159. }
  6160. if (type_gate == LLM_FFN_PAR) {
  6161. cur = ggml_mul(ctx, cur, tmp);
  6162. cb(cur, "ffn_gate_par", il);
  6163. }
  6164. cur = ggml_mul_mat(ctx, down, cur);
  6165. if (down_b) {
  6166. cb(cur, "ffn_down", il);
  6167. }
  6168. if (down_b) {
  6169. cur = ggml_add(ctx, cur, down_b);
  6170. }
  6171. return cur;
  6172. }
  6173. static struct ggml_tensor * llm_build_moe_ffn(
  6174. struct ggml_context * ctx,
  6175. struct ggml_tensor * cur,
  6176. struct ggml_tensor * gate_inp,
  6177. struct ggml_tensor * up_exps,
  6178. struct ggml_tensor * gate_exps,
  6179. struct ggml_tensor * down_exps,
  6180. int64_t n_expert,
  6181. int64_t n_expert_used,
  6182. llm_ffn_op_type type_op,
  6183. bool norm_w,
  6184. bool scale_w,
  6185. float w_scale,
  6186. const llm_build_cb & cb,
  6187. int il) {
  6188. int64_t n_embd = cur->ne[0];
  6189. int64_t n_tokens = cur->ne[1];
  6190. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  6191. cb(logits, "ffn_moe_logits", il);
  6192. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  6193. cb(probs, "ffn_moe_probs", il);
  6194. // select experts
  6195. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  6196. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  6197. cb(selected_experts, "ffn_moe_topk", il);
  6198. ggml_tensor * weights = ggml_get_rows(ctx,
  6199. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  6200. cb(weights, "ffn_moe_weights", il);
  6201. if (norm_w) {
  6202. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  6203. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  6204. cb(weights_sum, "ffn_moe_weights_sum", il);
  6205. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  6206. cb(weights, "ffn_moe_weights_norm", il);
  6207. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  6208. }
  6209. if (scale_w) {
  6210. weights = ggml_scale(ctx, weights, w_scale);
  6211. cb(weights, "ffn_moe_weights_scaled", il);
  6212. }
  6213. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  6214. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  6215. cb(up, "ffn_moe_up", il);
  6216. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  6217. cb(gate, "ffn_moe_gate", il);
  6218. switch (type_op) {
  6219. case LLM_FFN_SILU:
  6220. {
  6221. gate = ggml_silu(ctx, gate);
  6222. cb(gate, "ffn_moe_silu", il);
  6223. } break;
  6224. case LLM_FFN_GELU:
  6225. {
  6226. gate = ggml_gelu(ctx, gate);
  6227. cb(gate, "ffn_moe_gelu", il);
  6228. } break;
  6229. default:
  6230. GGML_ASSERT(false);
  6231. }
  6232. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  6233. cb(par, "ffn_moe_gate_par", il);
  6234. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  6235. cb(experts, "ffn_moe_down", il);
  6236. experts = ggml_mul(ctx, experts, weights);
  6237. // aggregate experts
  6238. ggml_tensor * moe_out = nullptr;
  6239. for (int i = 0; i < n_expert_used; ++i) {
  6240. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  6241. experts->nb[2], i*experts->nb[1]);
  6242. if (i == 0) {
  6243. moe_out = cur_expert;
  6244. } else {
  6245. moe_out = ggml_add(ctx, moe_out, cur_expert);
  6246. }
  6247. }
  6248. if (n_expert_used == 1) {
  6249. // avoid returning a non-contiguous tensor
  6250. moe_out = ggml_cont(ctx, moe_out);
  6251. }
  6252. return moe_out;
  6253. }
  6254. static struct ggml_tensor * llm_build_kqv(
  6255. struct ggml_context * ctx,
  6256. const llama_model & model,
  6257. const llama_hparams & hparams,
  6258. const llama_cparams & cparams,
  6259. const llama_kv_cache & kv,
  6260. struct ggml_cgraph * graph,
  6261. struct ggml_tensor * wo,
  6262. struct ggml_tensor * wo_b,
  6263. struct ggml_tensor * q_cur,
  6264. struct ggml_tensor * kq_mask,
  6265. int32_t n_tokens,
  6266. int32_t n_kv,
  6267. float kq_scale,
  6268. const llm_build_cb & cb,
  6269. int il) {
  6270. const int64_t n_ctx = cparams.n_ctx;
  6271. const int64_t n_head = hparams.n_head;
  6272. const int64_t n_head_kv = hparams.n_head_kv;
  6273. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  6274. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  6275. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  6276. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  6277. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  6278. cb(q, "q", il);
  6279. struct ggml_tensor * k =
  6280. ggml_view_3d(ctx, kv.k_l[il],
  6281. n_embd_head_k, n_kv, n_head_kv,
  6282. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  6283. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  6284. 0);
  6285. cb(k, "k", il);
  6286. struct ggml_tensor * cur;
  6287. if (cparams.flash_attn) {
  6288. GGML_UNUSED(model);
  6289. GGML_UNUSED(n_ctx);
  6290. // split cached v into n_head heads (not transposed)
  6291. struct ggml_tensor * v =
  6292. ggml_view_3d(ctx, kv.v_l[il],
  6293. n_embd_head_v, n_kv, n_head_kv,
  6294. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  6295. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  6296. 0);
  6297. cb(v, "v", il);
  6298. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6299. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6300. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  6301. }
  6302. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  6303. } else {
  6304. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  6305. cb(kq, "kq", il);
  6306. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6307. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  6308. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  6309. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6310. }
  6311. if (model.arch == LLM_ARCH_GROK) {
  6312. // need to do the following:
  6313. // multiply by attn_output_multiplyer of 0.08838834764831845
  6314. // and then :
  6315. // kq = 30 * tanh(kq / 30)
  6316. // before the softmax below
  6317. //try from phi2
  6318. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6319. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  6320. kq = ggml_scale(ctx, kq, 30);
  6321. }
  6322. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6323. cb(kq, "kq_soft_max_ext", il);
  6324. GGML_ASSERT(kv.size == n_ctx);
  6325. // split cached v into n_head heads
  6326. struct ggml_tensor * v =
  6327. ggml_view_3d(ctx, kv.v_l[il],
  6328. n_kv, n_embd_head_v, n_head_kv,
  6329. ggml_element_size(kv.v_l[il])*n_ctx,
  6330. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  6331. 0);
  6332. cb(v, "v", il);
  6333. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  6334. cb(kqv, "kqv", il);
  6335. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  6336. cb(kqv_merged, "kqv_merged", il);
  6337. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  6338. cb(cur, "kqv_merged_cont", il);
  6339. }
  6340. ggml_build_forward_expand(graph, cur);
  6341. if (wo) {
  6342. cur = ggml_mul_mat(ctx, wo, cur);
  6343. }
  6344. if (wo_b) {
  6345. cb(cur, "kqv_wo", il);
  6346. }
  6347. if (wo_b) {
  6348. cur = ggml_add(ctx, cur, wo_b);
  6349. }
  6350. return cur;
  6351. }
  6352. static struct ggml_tensor * llm_build_kv(
  6353. struct ggml_context * ctx,
  6354. const llama_model & model,
  6355. const llama_hparams & hparams,
  6356. const llama_cparams & cparams,
  6357. const llama_kv_cache & kv,
  6358. struct ggml_cgraph * graph,
  6359. struct ggml_tensor * wo,
  6360. struct ggml_tensor * wo_b,
  6361. struct ggml_tensor * k_cur,
  6362. struct ggml_tensor * v_cur,
  6363. struct ggml_tensor * q_cur,
  6364. struct ggml_tensor * kq_mask,
  6365. int32_t n_tokens,
  6366. int32_t kv_head,
  6367. int32_t n_kv,
  6368. float kq_scale,
  6369. const llm_build_cb & cb,
  6370. int il) {
  6371. // these nodes are added to the graph together so that they are not reordered
  6372. // by doing so, the number of splits in the graph is reduced
  6373. ggml_build_forward_expand(graph, q_cur);
  6374. ggml_build_forward_expand(graph, k_cur);
  6375. ggml_build_forward_expand(graph, v_cur);
  6376. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  6377. struct ggml_tensor * cur;
  6378. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  6379. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  6380. cb(cur, "kqv_out", il);
  6381. return cur;
  6382. }
  6383. struct llm_build_context {
  6384. const llama_model & model;
  6385. llama_context & lctx;
  6386. const llama_hparams & hparams;
  6387. const llama_cparams & cparams;
  6388. const llama_batch & batch;
  6389. const llama_kv_cache & kv_self;
  6390. const int64_t n_embd;
  6391. const int64_t n_layer;
  6392. const int64_t n_rot;
  6393. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  6394. const int64_t n_head;
  6395. const int64_t n_head_kv;
  6396. const int64_t n_embd_head_k;
  6397. const int64_t n_embd_k_gqa;
  6398. const int64_t n_embd_head_v;
  6399. const int64_t n_embd_v_gqa;
  6400. const int64_t n_expert;
  6401. const int64_t n_expert_used;
  6402. const float freq_base;
  6403. const float freq_scale;
  6404. const float ext_factor;
  6405. const float attn_factor;
  6406. const float beta_fast;
  6407. const float beta_slow;
  6408. const float norm_eps;
  6409. const float norm_rms_eps;
  6410. const int32_t n_tokens;
  6411. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  6412. const int32_t n_outputs;
  6413. const int32_t kv_head; // index of where we store new KV data in the cache
  6414. const int32_t n_ctx_orig;
  6415. const bool flash_attn;
  6416. const enum llama_pooling_type pooling_type;
  6417. const enum llama_rope_type rope_type;
  6418. const llm_build_cb & cb;
  6419. std::vector<uint8_t> & buf_compute_meta;
  6420. struct ggml_context * ctx0 = nullptr;
  6421. // TODO: consider making the entire interface noexcept
  6422. llm_build_context(
  6423. llama_context & lctx,
  6424. const llama_batch & batch,
  6425. const llm_build_cb & cb,
  6426. bool worst_case) :
  6427. model (lctx.model),
  6428. lctx (lctx),
  6429. hparams (model.hparams),
  6430. cparams (lctx.cparams),
  6431. batch (batch),
  6432. kv_self (lctx.kv_self),
  6433. n_embd (hparams.n_embd),
  6434. n_layer (hparams.n_layer),
  6435. n_rot (hparams.n_rot),
  6436. n_ctx (cparams.n_ctx),
  6437. n_head (hparams.n_head),
  6438. n_head_kv (hparams.n_head_kv),
  6439. n_embd_head_k (hparams.n_embd_head_k),
  6440. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  6441. n_embd_head_v (hparams.n_embd_head_v),
  6442. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  6443. n_expert (hparams.n_expert),
  6444. n_expert_used (hparams.n_expert_used),
  6445. freq_base (cparams.rope_freq_base),
  6446. freq_scale (cparams.rope_freq_scale),
  6447. ext_factor (cparams.yarn_ext_factor),
  6448. attn_factor (cparams.yarn_attn_factor),
  6449. beta_fast (cparams.yarn_beta_fast),
  6450. beta_slow (cparams.yarn_beta_slow),
  6451. norm_eps (hparams.f_norm_eps),
  6452. norm_rms_eps (hparams.f_norm_rms_eps),
  6453. n_tokens (batch.n_tokens),
  6454. n_kv (worst_case ? kv_self.size : kv_self.n),
  6455. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  6456. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  6457. n_ctx_orig (cparams.n_ctx_orig_yarn),
  6458. flash_attn (cparams.flash_attn),
  6459. pooling_type (cparams.pooling_type),
  6460. rope_type (hparams.rope_type),
  6461. cb (cb),
  6462. buf_compute_meta (lctx.buf_compute_meta) {
  6463. // all initializations should be done in init()
  6464. }
  6465. void init() {
  6466. struct ggml_init_params params = {
  6467. /*.mem_size =*/ buf_compute_meta.size(),
  6468. /*.mem_buffer =*/ buf_compute_meta.data(),
  6469. /*.no_alloc =*/ true,
  6470. };
  6471. ctx0 = ggml_init(params);
  6472. lctx.inp_tokens = nullptr;
  6473. lctx.inp_embd = nullptr;
  6474. lctx.inp_pos = nullptr;
  6475. lctx.inp_out_ids = nullptr;
  6476. lctx.inp_KQ_mask = nullptr;
  6477. lctx.inp_K_shift = nullptr;
  6478. lctx.inp_mean = nullptr;
  6479. lctx.inp_cls = nullptr;
  6480. lctx.inp_s_copy = nullptr;
  6481. lctx.inp_s_mask = nullptr;
  6482. lctx.inp_s_seq = nullptr;
  6483. }
  6484. void free() {
  6485. if (ctx0) {
  6486. ggml_free(ctx0);
  6487. ctx0 = nullptr;
  6488. }
  6489. }
  6490. struct ggml_cgraph * build_k_shift() {
  6491. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6492. GGML_ASSERT(kv_self.size == n_ctx);
  6493. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  6494. cb(lctx.inp_K_shift, "K_shift", -1);
  6495. ggml_set_input(lctx.inp_K_shift);
  6496. for (int il = 0; il < n_layer; ++il) {
  6497. struct ggml_tensor * rope_factors = build_rope_factors(il);
  6498. struct ggml_tensor * tmp =
  6499. // we rotate only the first n_rot dimensions
  6500. ggml_rope_ext_inplace(ctx0,
  6501. ggml_view_3d(ctx0, kv_self.k_l[il],
  6502. n_embd_head_k, n_head_kv, n_ctx,
  6503. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  6504. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6505. 0),
  6506. lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6507. ext_factor, attn_factor, beta_fast, beta_slow);
  6508. cb(tmp, "K_shifted", il);
  6509. ggml_build_forward_expand(gf, tmp);
  6510. }
  6511. return gf;
  6512. }
  6513. struct ggml_cgraph * build_s_copy() {
  6514. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6515. GGML_ASSERT(kv_self.recurrent);
  6516. struct ggml_tensor * state_copy = build_inp_s_copy();
  6517. for (int il = 0; il < n_layer; ++il) {
  6518. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  6519. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  6520. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  6521. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  6522. // TODO: name the intermediate tensors with cb()
  6523. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  6524. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  6525. }
  6526. return gf;
  6527. }
  6528. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  6529. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6530. for (uint32_t i = 0; i < ids.size(); ++i) {
  6531. const uint32_t id = ids[i];
  6532. if (i == id || id == ids.size()) {
  6533. continue;
  6534. }
  6535. uint32_t nm = 1;
  6536. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  6537. nm++;
  6538. }
  6539. for (int il = 0; il < n_layer; ++il) {
  6540. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  6541. n_embd_k_gqa, nm,
  6542. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6543. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  6544. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  6545. n_embd_k_gqa, nm,
  6546. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6547. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  6548. ggml_tensor * view_v_src;
  6549. ggml_tensor * view_v_dst;
  6550. if (flash_attn) {
  6551. // NOTE: the V cache is not transposed when using flash attention
  6552. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6553. n_embd_v_gqa, nm,
  6554. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6555. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  6556. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6557. n_embd_v_gqa, nm,
  6558. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6559. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  6560. } else {
  6561. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6562. nm, n_embd_v_gqa,
  6563. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6564. ggml_row_size(kv_self.v_l[il]->type, i));
  6565. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6566. nm, n_embd_v_gqa,
  6567. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6568. ggml_row_size(kv_self.v_l[il]->type, id));
  6569. }
  6570. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  6571. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  6572. }
  6573. i += nm - 1;
  6574. }
  6575. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  6576. return gf;
  6577. }
  6578. struct ggml_tensor * build_inp_pos() {
  6579. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6580. cb(lctx.inp_pos, "inp_pos", -1);
  6581. ggml_set_input(lctx.inp_pos);
  6582. return lctx.inp_pos;
  6583. }
  6584. struct ggml_tensor * build_rope_factors(int il) {
  6585. // choose long/short freq factors based on the context size
  6586. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  6587. if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
  6588. return model.layers[il].rope_long;
  6589. }
  6590. return model.layers[il].rope_short;
  6591. }
  6592. struct ggml_tensor * build_inp_out_ids() {
  6593. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6594. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6595. ggml_set_input(lctx.inp_out_ids);
  6596. return lctx.inp_out_ids;
  6597. }
  6598. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6599. if (causal) {
  6600. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6601. } else {
  6602. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6603. }
  6604. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6605. ggml_set_input(lctx.inp_KQ_mask);
  6606. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6607. }
  6608. struct ggml_tensor * build_inp_mean() {
  6609. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6610. cb(lctx.inp_mean, "inp_mean", -1);
  6611. ggml_set_input(lctx.inp_mean);
  6612. return lctx.inp_mean;
  6613. }
  6614. struct ggml_tensor * build_inp_cls() {
  6615. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6616. cb(lctx.inp_cls, "inp_cls", -1);
  6617. ggml_set_input(lctx.inp_cls);
  6618. return lctx.inp_cls;
  6619. }
  6620. struct ggml_tensor * build_inp_s_copy() {
  6621. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6622. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6623. ggml_set_input(lctx.inp_s_copy);
  6624. return lctx.inp_s_copy;
  6625. }
  6626. struct ggml_tensor * build_inp_s_mask() {
  6627. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6628. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6629. ggml_set_input(lctx.inp_s_mask);
  6630. return lctx.inp_s_mask;
  6631. }
  6632. struct ggml_tensor * build_inp_s_seq() {
  6633. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6634. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6635. ggml_set_input(lctx.inp_s_seq);
  6636. return lctx.inp_s_seq;
  6637. }
  6638. struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
  6639. // find result_norm tensor for input
  6640. struct ggml_tensor * inp = nullptr;
  6641. for (int i = gf->n_nodes - 1; i >= 0; --i) {
  6642. inp = gf->nodes[i];
  6643. if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
  6644. break;
  6645. } else {
  6646. inp = nullptr;
  6647. }
  6648. }
  6649. GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
  6650. struct ggml_tensor * cur;
  6651. switch (pooling_type) {
  6652. case LLAMA_POOLING_TYPE_MEAN:
  6653. {
  6654. struct ggml_tensor * inp_mean = build_inp_mean();
  6655. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
  6656. } break;
  6657. case LLAMA_POOLING_TYPE_CLS:
  6658. case LLAMA_POOLING_TYPE_LAST:
  6659. {
  6660. struct ggml_tensor * inp_cls = build_inp_cls();
  6661. cur = ggml_get_rows(ctx0, inp, inp_cls);
  6662. } break;
  6663. case LLAMA_POOLING_TYPE_NONE:
  6664. {
  6665. cur = inp;
  6666. } break;
  6667. default:
  6668. {
  6669. GGML_ASSERT(false && "unknown pooling type");
  6670. } break;
  6671. }
  6672. cb(cur, "result_embd_pooled", -1);
  6673. ggml_build_forward_expand(gf, cur);
  6674. return gf;
  6675. }
  6676. struct ggml_cgraph * build_llama() {
  6677. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6678. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6679. int32_t n_tokens = this->n_tokens;
  6680. const int64_t n_embd_head = hparams.n_embd_head_v;
  6681. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6682. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6683. struct ggml_tensor * cur;
  6684. struct ggml_tensor * inpL;
  6685. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6686. // inp_pos - contains the positions
  6687. struct ggml_tensor * inp_pos = build_inp_pos();
  6688. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6689. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6690. for (int il = 0; il < n_layer; ++il) {
  6691. struct ggml_tensor * inpSA = inpL;
  6692. // norm
  6693. cur = llm_build_norm(ctx0, inpL, hparams,
  6694. model.layers[il].attn_norm, NULL,
  6695. LLM_NORM_RMS, cb, il);
  6696. cb(cur, "attn_norm", il);
  6697. // self-attention
  6698. {
  6699. // compute Q and K and RoPE them
  6700. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6701. cb(Qcur, "Qcur", il);
  6702. if (model.layers[il].bq) {
  6703. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6704. cb(Qcur, "Qcur", il);
  6705. }
  6706. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6707. cb(Kcur, "Kcur", il);
  6708. if (model.layers[il].bk) {
  6709. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6710. cb(Kcur, "Kcur", il);
  6711. }
  6712. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6713. cb(Vcur, "Vcur", il);
  6714. if (model.layers[il].bv) {
  6715. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6716. cb(Vcur, "Vcur", il);
  6717. }
  6718. Qcur = ggml_rope_ext(
  6719. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6720. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6721. ext_factor, attn_factor, beta_fast, beta_slow
  6722. );
  6723. cb(Qcur, "Qcur", il);
  6724. Kcur = ggml_rope_ext(
  6725. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6726. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6727. ext_factor, attn_factor, beta_fast, beta_slow
  6728. );
  6729. cb(Kcur, "Kcur", il);
  6730. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6731. model.layers[il].wo, model.layers[il].bo,
  6732. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6733. }
  6734. if (il == n_layer - 1) {
  6735. // skip computing output for unused tokens
  6736. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6737. n_tokens = n_outputs;
  6738. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6739. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6740. }
  6741. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6742. cb(ffn_inp, "ffn_inp", il);
  6743. // feed-forward network
  6744. if (model.layers[il].ffn_gate_inp == nullptr) {
  6745. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6746. model.layers[il].ffn_norm, NULL,
  6747. LLM_NORM_RMS, cb, il);
  6748. cb(cur, "ffn_norm", il);
  6749. cur = llm_build_ffn(ctx0, cur,
  6750. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6751. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b,
  6752. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6753. NULL,
  6754. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6755. cb(cur, "ffn_out", il);
  6756. } else {
  6757. // MoE branch
  6758. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6759. model.layers[il].ffn_norm, NULL,
  6760. LLM_NORM_RMS, cb, il);
  6761. cb(cur, "ffn_norm", il);
  6762. cur = llm_build_moe_ffn(ctx0, cur,
  6763. model.layers[il].ffn_gate_inp,
  6764. model.layers[il].ffn_up_exps,
  6765. model.layers[il].ffn_gate_exps,
  6766. model.layers[il].ffn_down_exps,
  6767. n_expert, n_expert_used,
  6768. LLM_FFN_SILU, true,
  6769. false, 0.0,
  6770. cb, il);
  6771. cb(cur, "ffn_moe_out", il);
  6772. }
  6773. cur = ggml_add(ctx0, cur, ffn_inp);
  6774. cb(cur, "ffn_out", il);
  6775. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6776. if (layer_dir != nullptr) {
  6777. cur = ggml_add(ctx0, cur, layer_dir);
  6778. }
  6779. cb(cur, "l_out", il);
  6780. // input for next layer
  6781. inpL = cur;
  6782. }
  6783. cur = inpL;
  6784. cur = llm_build_norm(ctx0, cur, hparams,
  6785. model.output_norm, NULL,
  6786. LLM_NORM_RMS, cb, -1);
  6787. cb(cur, "result_norm", -1);
  6788. // lm_head
  6789. cur = ggml_mul_mat(ctx0, model.output, cur);
  6790. cb(cur, "result_output", -1);
  6791. ggml_build_forward_expand(gf, cur);
  6792. return gf;
  6793. }
  6794. struct ggml_cgraph * build_baichuan() {
  6795. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6796. const int64_t n_embd_head = hparams.n_embd_head_v;
  6797. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6798. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6799. struct ggml_tensor * cur;
  6800. struct ggml_tensor * inpL;
  6801. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6802. // inp_pos - contains the positions
  6803. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6804. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6805. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6806. for (int il = 0; il < n_layer; ++il) {
  6807. struct ggml_tensor * inpSA = inpL;
  6808. cur = llm_build_norm(ctx0, inpL, hparams,
  6809. model.layers[il].attn_norm, NULL,
  6810. LLM_NORM_RMS, cb, il);
  6811. cb(cur, "attn_norm", il);
  6812. // self-attention
  6813. {
  6814. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6815. cb(Qcur, "Qcur", il);
  6816. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6817. cb(Kcur, "Kcur", il);
  6818. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6819. cb(Vcur, "Vcur", il);
  6820. switch (model.type) {
  6821. case MODEL_7B:
  6822. Qcur = ggml_rope_ext(
  6823. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6824. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6825. ext_factor, attn_factor, beta_fast, beta_slow
  6826. );
  6827. Kcur = ggml_rope_ext(
  6828. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6829. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6830. ext_factor, attn_factor, beta_fast, beta_slow
  6831. );
  6832. break;
  6833. case MODEL_13B:
  6834. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6835. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6836. break;
  6837. default:
  6838. GGML_ASSERT(false);
  6839. }
  6840. cb(Qcur, "Qcur", il);
  6841. cb(Kcur, "Kcur", il);
  6842. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6843. model.layers[il].wo, NULL,
  6844. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6845. }
  6846. if (il == n_layer - 1) {
  6847. // skip computing output for unused tokens
  6848. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6849. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6850. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6851. }
  6852. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6853. cb(ffn_inp, "ffn_inp", il);
  6854. // feed-forward network
  6855. {
  6856. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6857. model.layers[il].ffn_norm, NULL,
  6858. LLM_NORM_RMS, cb, il);
  6859. cb(cur, "ffn_norm", il);
  6860. cur = llm_build_ffn(ctx0, cur,
  6861. model.layers[il].ffn_up, NULL,
  6862. model.layers[il].ffn_gate, NULL,
  6863. model.layers[il].ffn_down, NULL,
  6864. NULL,
  6865. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6866. cb(cur, "ffn_out", il);
  6867. }
  6868. cur = ggml_add(ctx0, cur, ffn_inp);
  6869. cb(cur, "l_out", il);
  6870. // input for next layer
  6871. inpL = cur;
  6872. }
  6873. cur = inpL;
  6874. cur = llm_build_norm(ctx0, cur, hparams,
  6875. model.output_norm, NULL,
  6876. LLM_NORM_RMS, cb, -1);
  6877. cb(cur, "result_norm", -1);
  6878. // lm_head
  6879. cur = ggml_mul_mat(ctx0, model.output, cur);
  6880. cb(cur, "result_output", -1);
  6881. ggml_build_forward_expand(gf, cur);
  6882. return gf;
  6883. }
  6884. struct ggml_cgraph * build_xverse() {
  6885. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6886. const int64_t n_embd_head = hparams.n_embd_head_v;
  6887. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6888. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6889. struct ggml_tensor * cur;
  6890. struct ggml_tensor * inpL;
  6891. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6892. // inp_pos - contains the positions
  6893. struct ggml_tensor * inp_pos = build_inp_pos();
  6894. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6895. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6896. for (int il = 0; il < n_layer; ++il) {
  6897. struct ggml_tensor * inpSA = inpL;
  6898. cur = llm_build_norm(ctx0, inpL, hparams,
  6899. model.layers[il].attn_norm, NULL,
  6900. LLM_NORM_RMS, cb, il);
  6901. cb(cur, "attn_norm", il);
  6902. // self-attention
  6903. {
  6904. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6905. cb(Qcur, "Qcur", il);
  6906. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6907. cb(Kcur, "Kcur", il);
  6908. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6909. cb(Vcur, "Vcur", il);
  6910. Qcur = ggml_rope_ext(
  6911. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6912. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6913. ext_factor, attn_factor, beta_fast, beta_slow
  6914. );
  6915. cb(Qcur, "Qcur", il);
  6916. Kcur = ggml_rope_ext(
  6917. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6918. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6919. ext_factor, attn_factor, beta_fast, beta_slow
  6920. );
  6921. cb(Kcur, "Kcur", il);
  6922. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6923. model.layers[il].wo, NULL,
  6924. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6925. }
  6926. if (il == n_layer - 1) {
  6927. // skip computing output for unused tokens
  6928. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6929. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6930. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6931. }
  6932. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6933. cb(ffn_inp, "ffn_inp", il);
  6934. // feed-forward network
  6935. {
  6936. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6937. model.layers[il].ffn_norm, NULL,
  6938. LLM_NORM_RMS, cb, il);
  6939. cb(cur, "ffn_norm", il);
  6940. cur = llm_build_ffn(ctx0, cur,
  6941. model.layers[il].ffn_up, NULL,
  6942. model.layers[il].ffn_gate, NULL,
  6943. model.layers[il].ffn_down, NULL,
  6944. NULL,
  6945. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6946. cb(cur, "ffn_out", il);
  6947. }
  6948. cur = ggml_add(ctx0, cur, ffn_inp);
  6949. cb(cur, "l_out", il);
  6950. // input for next layer
  6951. inpL = cur;
  6952. }
  6953. cur = inpL;
  6954. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6955. cb(cur, "result_norm", -1);
  6956. // lm_head
  6957. cur = ggml_mul_mat(ctx0, model.output, cur);
  6958. cb(cur, "result_output", -1);
  6959. ggml_build_forward_expand(gf, cur);
  6960. return gf;
  6961. }
  6962. struct ggml_cgraph * build_falcon() {
  6963. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6964. const int64_t n_embd_head = hparams.n_embd_head_v;
  6965. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6966. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6967. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6968. struct ggml_tensor * cur;
  6969. struct ggml_tensor * inpL;
  6970. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6971. // inp_pos - contains the positions
  6972. struct ggml_tensor * inp_pos = build_inp_pos();
  6973. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6974. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6975. for (int il = 0; il < n_layer; ++il) {
  6976. struct ggml_tensor * attn_norm;
  6977. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6978. model.layers[il].attn_norm,
  6979. model.layers[il].attn_norm_b,
  6980. LLM_NORM, cb, il);
  6981. cb(attn_norm, "attn_norm", il);
  6982. // self-attention
  6983. {
  6984. if (model.layers[il].attn_norm_2) {
  6985. // Falcon-40B
  6986. cur = llm_build_norm(ctx0, inpL, hparams,
  6987. model.layers[il].attn_norm_2,
  6988. model.layers[il].attn_norm_2_b,
  6989. LLM_NORM, cb, il);
  6990. cb(cur, "attn_norm_2", il);
  6991. } else {
  6992. cur = attn_norm;
  6993. }
  6994. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6995. cb(cur, "wqkv", il);
  6996. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6997. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6998. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6999. cb(Qcur, "Qcur", il);
  7000. cb(Kcur, "Kcur", il);
  7001. cb(Vcur, "Vcur", il);
  7002. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7003. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7004. // using mode = 2 for neox mode
  7005. Qcur = ggml_rope_ext(
  7006. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7007. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7008. );
  7009. cb(Qcur, "Qcur", il);
  7010. Kcur = ggml_rope_ext(
  7011. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7012. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7013. );
  7014. cb(Kcur, "Kcur", il);
  7015. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7016. model.layers[il].wo, NULL,
  7017. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7018. }
  7019. if (il == n_layer - 1) {
  7020. // skip computing output for unused tokens
  7021. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7022. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7023. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7024. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  7025. }
  7026. struct ggml_tensor * ffn_inp = cur;
  7027. // feed forward
  7028. {
  7029. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  7030. model.layers[il].ffn_up, NULL,
  7031. NULL, NULL,
  7032. model.layers[il].ffn_down, NULL,
  7033. NULL,
  7034. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7035. cb(cur, "ffn_out", il);
  7036. }
  7037. cur = ggml_add(ctx0, cur, ffn_inp);
  7038. cb(cur, "l_out", il);
  7039. cur = ggml_add(ctx0, cur, inpL);
  7040. cb(cur, "l_out", il);
  7041. // input for next layer
  7042. inpL = cur;
  7043. }
  7044. cur = inpL;
  7045. // norm
  7046. cur = llm_build_norm(ctx0, cur, hparams,
  7047. model.output_norm,
  7048. model.output_norm_b,
  7049. LLM_NORM, cb, -1);
  7050. cb(cur, "result_norm", -1);
  7051. cur = ggml_mul_mat(ctx0, model.output, cur);
  7052. cb(cur, "result_output", -1);
  7053. ggml_build_forward_expand(gf, cur);
  7054. return gf;
  7055. }
  7056. struct ggml_cgraph * build_grok() {
  7057. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7058. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7059. int32_t n_tokens = this->n_tokens;
  7060. const int64_t n_embd_head = hparams.n_embd_head_v;
  7061. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7062. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7063. struct ggml_tensor * cur;
  7064. struct ggml_tensor * inpL;
  7065. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7066. // multiply by embedding_multiplier_scale of 78.38367176906169
  7067. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  7068. // inp_pos - contains the positions
  7069. struct ggml_tensor * inp_pos = build_inp_pos();
  7070. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7071. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7072. for (int il = 0; il < n_layer; ++il) {
  7073. struct ggml_tensor * inpSA = inpL;
  7074. // norm
  7075. cur = llm_build_norm(ctx0, inpL, hparams,
  7076. model.layers[il].attn_norm, NULL,
  7077. LLM_NORM_RMS, cb, il);
  7078. cb(cur, "attn_norm", il);
  7079. // self-attention
  7080. {
  7081. // compute Q and K and RoPE them
  7082. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7083. cb(Qcur, "Qcur", il);
  7084. if (model.layers[il].bq) {
  7085. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7086. cb(Qcur, "Qcur", il);
  7087. }
  7088. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7089. cb(Kcur, "Kcur", il);
  7090. if (model.layers[il].bk) {
  7091. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7092. cb(Kcur, "Kcur", il);
  7093. }
  7094. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7095. cb(Vcur, "Vcur", il);
  7096. if (model.layers[il].bv) {
  7097. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7098. cb(Vcur, "Vcur", il);
  7099. }
  7100. Qcur = ggml_rope_ext(
  7101. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7102. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7103. ext_factor, attn_factor, beta_fast, beta_slow
  7104. );
  7105. cb(Qcur, "Qcur", il);
  7106. Kcur = ggml_rope_ext(
  7107. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7108. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7109. ext_factor, attn_factor, beta_fast, beta_slow
  7110. );
  7111. cb(Kcur, "Kcur", il);
  7112. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7113. model.layers[il].wo, model.layers[il].bo,
  7114. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7115. }
  7116. if (il == n_layer - 1) {
  7117. // skip computing output for unused tokens
  7118. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7119. n_tokens = n_outputs;
  7120. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7121. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7122. }
  7123. // Grok
  7124. // if attn_out_norm is present then apply it before adding the input
  7125. if (model.layers[il].attn_out_norm) {
  7126. cur = llm_build_norm(ctx0, cur, hparams,
  7127. model.layers[il].attn_out_norm, NULL,
  7128. LLM_NORM_RMS, cb, il);
  7129. cb(cur, "attn_out_norm", il);
  7130. }
  7131. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7132. cb(ffn_inp, "ffn_inp", il);
  7133. // feed-forward network
  7134. // MoE branch
  7135. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7136. model.layers[il].ffn_norm, NULL,
  7137. LLM_NORM_RMS, cb, il);
  7138. cb(cur, "ffn_norm", il);
  7139. cur = llm_build_moe_ffn(ctx0, cur,
  7140. model.layers[il].ffn_gate_inp,
  7141. model.layers[il].ffn_up_exps,
  7142. model.layers[il].ffn_gate_exps,
  7143. model.layers[il].ffn_down_exps,
  7144. n_expert, n_expert_used,
  7145. LLM_FFN_GELU, true,
  7146. false, 0.0,
  7147. cb, il);
  7148. cb(cur, "ffn_moe_out", il);
  7149. // Grok
  7150. // if layer_out_norm is present then apply it before adding the input
  7151. // Idea: maybe ffn_out_norm is a better name
  7152. if (model.layers[il].layer_out_norm) {
  7153. cur = llm_build_norm(ctx0, cur, hparams,
  7154. model.layers[il].layer_out_norm, NULL,
  7155. LLM_NORM_RMS, cb, il);
  7156. cb(cur, "layer_out_norm", il);
  7157. }
  7158. cur = ggml_add(ctx0, cur, ffn_inp);
  7159. cb(cur, "ffn_out", il);
  7160. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  7161. if (layer_dir != nullptr) {
  7162. cur = ggml_add(ctx0, cur, layer_dir);
  7163. }
  7164. cb(cur, "l_out", il);
  7165. // input for next layer
  7166. inpL = cur;
  7167. }
  7168. cur = inpL;
  7169. cur = llm_build_norm(ctx0, cur, hparams,
  7170. model.output_norm, NULL,
  7171. LLM_NORM_RMS, cb, -1);
  7172. cb(cur, "result_norm", -1);
  7173. // lm_head
  7174. cur = ggml_mul_mat(ctx0, model.output, cur);
  7175. // Grok
  7176. // multiply logits by output_multiplier_scale of 0.5773502691896257
  7177. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  7178. cb(cur, "result_output", -1);
  7179. ggml_build_forward_expand(gf, cur);
  7180. return gf;
  7181. }
  7182. struct ggml_cgraph * build_dbrx() {
  7183. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7184. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7185. int32_t n_tokens = this->n_tokens;
  7186. const int64_t n_embd_head = hparams.n_embd_head_v;
  7187. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7188. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7189. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7190. struct ggml_tensor * cur;
  7191. struct ggml_tensor * inpL;
  7192. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7193. // inp_pos - contains the positions
  7194. struct ggml_tensor * inp_pos = build_inp_pos();
  7195. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7196. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7197. for (int il = 0; il < n_layer; ++il) {
  7198. struct ggml_tensor * inpSA = inpL;
  7199. // norm
  7200. cur = llm_build_norm(ctx0, inpL, hparams,
  7201. model.layers[il].attn_norm, NULL,
  7202. LLM_NORM, cb, il);
  7203. cb(cur, "attn_norm", il);
  7204. // self-attention
  7205. {
  7206. struct ggml_tensor * Qcur = nullptr;
  7207. struct ggml_tensor * Kcur = nullptr;
  7208. struct ggml_tensor * Vcur = nullptr;
  7209. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7210. cb(cur, "wqkv", il);
  7211. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7212. cb(cur, "wqkv_clamped", il);
  7213. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7214. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7215. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7216. cb(Qcur, "Qcur", il);
  7217. cb(Kcur, "Kcur", il);
  7218. cb(Vcur, "Vcur", il);
  7219. Qcur = ggml_rope_ext(
  7220. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7221. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7222. ext_factor, attn_factor, beta_fast, beta_slow
  7223. );
  7224. cb(Qcur, "Qcur", il);
  7225. Kcur = ggml_rope_ext(
  7226. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7227. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7228. ext_factor, attn_factor, beta_fast, beta_slow
  7229. );
  7230. cb(Kcur, "Kcur", il);
  7231. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7232. model.layers[il].wo, NULL,
  7233. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7234. }
  7235. if (il == n_layer - 1) {
  7236. // skip computing output for unused tokens
  7237. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7238. n_tokens = n_outputs;
  7239. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7240. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7241. }
  7242. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7243. cb(ffn_inp, "ffn_inp", il);
  7244. // feed-forward network
  7245. // MoE branch
  7246. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7247. model.layers[il].attn_out_norm, NULL,
  7248. LLM_NORM, cb, il);
  7249. cb(cur, "attn_out_norm", il);
  7250. cur = llm_build_moe_ffn(ctx0, cur,
  7251. model.layers[il].ffn_gate_inp,
  7252. model.layers[il].ffn_up_exps,
  7253. model.layers[il].ffn_gate_exps,
  7254. model.layers[il].ffn_down_exps,
  7255. n_expert, n_expert_used,
  7256. LLM_FFN_SILU, true,
  7257. false, 0.0,
  7258. cb, il);
  7259. cb(cur, "ffn_moe_out", il);
  7260. cur = ggml_add(ctx0, cur, ffn_inp);
  7261. cb(cur, "ffn_out", il);
  7262. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  7263. if (layer_dir != nullptr) {
  7264. cur = ggml_add(ctx0, cur, layer_dir);
  7265. }
  7266. cb(cur, "l_out", il);
  7267. // input for next layer
  7268. inpL = cur;
  7269. }
  7270. cur = inpL;
  7271. cur = llm_build_norm(ctx0, cur, hparams,
  7272. model.output_norm, NULL,
  7273. LLM_NORM, cb, -1);
  7274. cb(cur, "result_norm", -1);
  7275. // lm_head
  7276. cur = ggml_mul_mat(ctx0, model.output, cur);
  7277. cb(cur, "result_output", -1);
  7278. ggml_build_forward_expand(gf, cur);
  7279. return gf;
  7280. }
  7281. struct ggml_cgraph * build_starcoder() {
  7282. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7283. const int64_t n_embd_head = hparams.n_embd_head_v;
  7284. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7285. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7286. struct ggml_tensor * cur;
  7287. struct ggml_tensor * inpL;
  7288. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7289. // inp_pos - contains the positions
  7290. struct ggml_tensor * inp_pos = build_inp_pos();
  7291. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7292. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7293. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7294. cb(pos, "pos_embd", -1);
  7295. inpL = ggml_add(ctx0, inpL, pos);
  7296. cb(inpL, "inpL", -1);
  7297. for (int il = 0; il < n_layer; ++il) {
  7298. cur = llm_build_norm(ctx0, inpL, hparams,
  7299. model.layers[il].attn_norm,
  7300. model.layers[il].attn_norm_b,
  7301. LLM_NORM, cb, il);
  7302. cb(cur, "attn_norm", il);
  7303. // self-attention
  7304. {
  7305. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7306. cb(cur, "wqkv", il);
  7307. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7308. cb(cur, "bqkv", il);
  7309. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7310. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7311. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7312. cb(Qcur, "Qcur", il);
  7313. cb(Kcur, "Kcur", il);
  7314. cb(Vcur, "Vcur", il);
  7315. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7316. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7317. model.layers[il].wo, model.layers[il].bo,
  7318. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7319. }
  7320. if (il == n_layer - 1) {
  7321. // skip computing output for unused tokens
  7322. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7323. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7324. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7325. }
  7326. // add the input
  7327. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7328. cb(ffn_inp, "ffn_inp", il);
  7329. // FF
  7330. {
  7331. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7332. model.layers[il].ffn_norm,
  7333. model.layers[il].ffn_norm_b,
  7334. LLM_NORM, cb, il);
  7335. cb(cur, "ffn_norm", il);
  7336. cur = llm_build_ffn(ctx0, cur,
  7337. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7338. NULL, NULL,
  7339. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7340. NULL,
  7341. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7342. cb(cur, "ffn_out", il);
  7343. }
  7344. inpL = ggml_add(ctx0, cur, ffn_inp);
  7345. cb(inpL, "l_out", il);
  7346. }
  7347. cur = llm_build_norm(ctx0, inpL, hparams,
  7348. model.output_norm,
  7349. model.output_norm_b,
  7350. LLM_NORM, cb, -1);
  7351. cb(cur, "result_norm", -1);
  7352. cur = ggml_mul_mat(ctx0, model.output, cur);
  7353. cb(cur, "result_output", -1);
  7354. ggml_build_forward_expand(gf, cur);
  7355. return gf;
  7356. }
  7357. struct ggml_cgraph * build_refact() {
  7358. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7359. const int64_t n_embd_head = hparams.n_embd_head_v;
  7360. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7361. struct ggml_tensor * cur;
  7362. struct ggml_tensor * inpL;
  7363. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7364. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7365. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7366. for (int il = 0; il < n_layer; ++il) {
  7367. struct ggml_tensor * inpSA = inpL;
  7368. cur = llm_build_norm(ctx0, inpL, hparams,
  7369. model.layers[il].attn_norm, NULL,
  7370. LLM_NORM_RMS, cb, il);
  7371. cb(cur, "attn_norm", il);
  7372. // self-attention
  7373. {
  7374. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7375. cb(Qcur, "Qcur", il);
  7376. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7377. cb(Kcur, "Kcur", il);
  7378. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7379. cb(Vcur, "Vcur", il);
  7380. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7381. cb(Kcur, "Kcur", il);
  7382. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7383. cb(Qcur, "Qcur", il);
  7384. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7385. model.layers[il].wo, NULL,
  7386. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7387. }
  7388. if (il == n_layer - 1) {
  7389. // skip computing output for unused tokens
  7390. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7391. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7392. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7393. }
  7394. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7395. cb(ffn_inp, "ffn_inp", il);
  7396. // feed-forward network
  7397. {
  7398. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7399. model.layers[il].ffn_norm, NULL,
  7400. LLM_NORM_RMS, cb, il);
  7401. cb(cur, "ffn_norm", il);
  7402. cur = llm_build_ffn(ctx0, cur,
  7403. model.layers[il].ffn_up, NULL,
  7404. model.layers[il].ffn_gate, NULL,
  7405. model.layers[il].ffn_down, NULL,
  7406. NULL,
  7407. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7408. cb(cur, "ffn_out", il);
  7409. }
  7410. cur = ggml_add(ctx0, cur, ffn_inp);
  7411. cb(cur, "l_out", il);
  7412. // input for next layer
  7413. inpL = cur;
  7414. }
  7415. cur = inpL;
  7416. cur = llm_build_norm(ctx0, cur, hparams,
  7417. model.output_norm, NULL,
  7418. LLM_NORM_RMS, cb, -1);
  7419. cb(cur, "result_norm", -1);
  7420. // lm_head
  7421. cur = ggml_mul_mat(ctx0, model.output, cur);
  7422. cb(cur, "result_output", -1);
  7423. ggml_build_forward_expand(gf, cur);
  7424. return gf;
  7425. }
  7426. struct ggml_cgraph * build_bert() {
  7427. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7428. const int64_t n_embd_head = hparams.n_embd_head_v;
  7429. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7430. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7431. struct ggml_tensor * cur;
  7432. struct ggml_tensor * inpL;
  7433. struct ggml_tensor * inp_pos = nullptr;
  7434. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  7435. inp_pos = build_inp_pos();
  7436. }
  7437. // construct input embeddings (token, type, position)
  7438. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7439. // token types are hardcoded to zero ("Sentence A")
  7440. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  7441. inpL = ggml_add(ctx0, inpL, type_row0);
  7442. if (model.arch == LLM_ARCH_BERT) {
  7443. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  7444. }
  7445. cb(inpL, "inp_embd", -1);
  7446. // embed layer norm
  7447. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  7448. cb(inpL, "inp_norm", -1);
  7449. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7450. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  7451. // iterate layers
  7452. for (int il = 0; il < n_layer; ++il) {
  7453. struct ggml_tensor * cur = inpL;
  7454. struct ggml_tensor * Qcur;
  7455. struct ggml_tensor * Kcur;
  7456. struct ggml_tensor * Vcur;
  7457. // self-attention
  7458. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  7459. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  7460. cb(Qcur, "Qcur", il);
  7461. if (model.layers[il].attn_q_norm) {
  7462. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7463. model.layers[il].attn_q_norm,
  7464. model.layers[il].attn_q_norm_b,
  7465. LLM_NORM, cb, il);
  7466. }
  7467. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  7468. cb(Kcur, "Kcur", il);
  7469. if (model.layers[il].attn_k_norm) {
  7470. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7471. model.layers[il].attn_k_norm,
  7472. model.layers[il].attn_k_norm_b,
  7473. LLM_NORM, cb, il);
  7474. }
  7475. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  7476. cb(Vcur, "Vcur", il);
  7477. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7478. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7479. } else {
  7480. // compute Q and K and RoPE them
  7481. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7482. cb(cur, "wqkv", il);
  7483. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7484. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7485. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7486. cb(Qcur, "Qcur", il);
  7487. cb(Kcur, "Kcur", il);
  7488. cb(Vcur, "Vcur", il);
  7489. Qcur = ggml_rope_ext(
  7490. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7491. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7492. ext_factor, attn_factor, beta_fast, beta_slow
  7493. );
  7494. cb(Qcur, "Qcur", il);
  7495. Kcur = ggml_rope_ext(
  7496. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7497. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7498. ext_factor, attn_factor, beta_fast, beta_slow
  7499. );
  7500. cb(Kcur, "Kcur", il);
  7501. }
  7502. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7503. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7504. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7505. cb(kq, "kq", il);
  7506. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7507. cb(kq, "kq_soft_max_ext", il);
  7508. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7509. cb(v, "v", il);
  7510. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7511. cb(kqv, "kqv", il);
  7512. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7513. cb(kqv_merged, "kqv_merged", il);
  7514. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7515. cb(cur, "kqv_merged_cont", il);
  7516. ggml_build_forward_expand(gf, cur);
  7517. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7518. if (model.layers[il].bo) {
  7519. cb(cur, "kqv_wo", il);
  7520. }
  7521. if (model.layers[il].bo) {
  7522. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7523. }
  7524. cb(cur, "kqv_out", il);
  7525. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7526. // skip computing output for unused tokens
  7527. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7528. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7529. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7530. }
  7531. // re-add the layer input
  7532. cur = ggml_add(ctx0, cur, inpL);
  7533. // attention layer norm
  7534. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7535. if (model.layers[il].attn_norm_2 != nullptr) {
  7536. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  7537. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
  7538. }
  7539. struct ggml_tensor * ffn_inp = cur;
  7540. cb(ffn_inp, "ffn_inp", il);
  7541. // feed-forward network
  7542. if (model.arch == LLM_ARCH_BERT) {
  7543. cur = llm_build_ffn(ctx0, cur,
  7544. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7545. NULL, NULL,
  7546. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7547. NULL,
  7548. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7549. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7550. cur = llm_build_ffn(ctx0, cur,
  7551. model.layers[il].ffn_up, NULL,
  7552. model.layers[il].ffn_gate, NULL,
  7553. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7554. NULL,
  7555. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7556. } else {
  7557. cur = llm_build_ffn(ctx0, cur,
  7558. model.layers[il].ffn_up, NULL,
  7559. model.layers[il].ffn_gate, NULL,
  7560. model.layers[il].ffn_down, NULL,
  7561. NULL,
  7562. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7563. }
  7564. cb(cur, "ffn_out", il);
  7565. // attentions bypass the intermediate layer
  7566. cur = ggml_add(ctx0, cur, ffn_inp);
  7567. // output layer norm
  7568. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7569. // input for next layer
  7570. inpL = cur;
  7571. }
  7572. // final output
  7573. cur = inpL;
  7574. cb(cur, "result_embd", -1);
  7575. ggml_build_forward_expand(gf, cur);
  7576. return gf;
  7577. }
  7578. struct ggml_cgraph * build_bloom() {
  7579. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7580. const int64_t n_embd_head = hparams.n_embd_head_v;
  7581. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7582. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7583. struct ggml_tensor * cur;
  7584. struct ggml_tensor * inpL;
  7585. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7586. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7587. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7588. inpL = llm_build_norm(ctx0, inpL, hparams,
  7589. model.tok_norm,
  7590. model.tok_norm_b,
  7591. LLM_NORM, cb, -1);
  7592. cb(inpL, "inp_norm", -1);
  7593. for (int il = 0; il < n_layer; ++il) {
  7594. cur = llm_build_norm(ctx0, inpL, hparams,
  7595. model.layers[il].attn_norm,
  7596. model.layers[il].attn_norm_b,
  7597. LLM_NORM, cb, il);
  7598. cb(cur, "attn_norm", il);
  7599. // self-attention
  7600. {
  7601. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7602. cb(cur, "wqkv", il);
  7603. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7604. cb(cur, "bqkv", il);
  7605. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7606. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7607. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7608. cb(Qcur, "Qcur", il);
  7609. cb(Kcur, "Kcur", il);
  7610. cb(Vcur, "Vcur", il);
  7611. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7612. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7613. model.layers[il].wo, model.layers[il].bo,
  7614. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7615. }
  7616. if (il == n_layer - 1) {
  7617. // skip computing output for unused tokens
  7618. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7619. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7620. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7621. }
  7622. // Add the input
  7623. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7624. cb(ffn_inp, "ffn_inp", il);
  7625. // FF
  7626. {
  7627. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7628. model.layers[il].ffn_norm,
  7629. model.layers[il].ffn_norm_b,
  7630. LLM_NORM, cb, il);
  7631. cb(cur, "ffn_norm", il);
  7632. cur = llm_build_ffn(ctx0, cur,
  7633. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7634. NULL, NULL,
  7635. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7636. NULL,
  7637. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7638. cb(cur, "ffn_out", il);
  7639. }
  7640. inpL = ggml_add(ctx0, cur, ffn_inp);
  7641. cb(inpL, "l_out", il);
  7642. }
  7643. cur = llm_build_norm(ctx0, inpL, hparams,
  7644. model.output_norm,
  7645. model.output_norm_b,
  7646. LLM_NORM, cb, -1);
  7647. cb(cur, "result_norm", -1);
  7648. cur = ggml_mul_mat(ctx0, model.output, cur);
  7649. cb(cur, "result_output", -1);
  7650. ggml_build_forward_expand(gf, cur);
  7651. return gf;
  7652. }
  7653. struct ggml_cgraph * build_mpt() {
  7654. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7655. const int64_t n_embd_head = hparams.n_embd_head_v;
  7656. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7657. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7658. struct ggml_tensor * cur;
  7659. struct ggml_tensor * pos;
  7660. struct ggml_tensor * inpL;
  7661. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7662. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7663. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7664. if (model.pos_embd) {
  7665. // inp_pos - contains the positions
  7666. struct ggml_tensor * inp_pos = build_inp_pos();
  7667. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7668. cb(pos, "pos_embd", -1);
  7669. inpL = ggml_add(ctx0, inpL, pos);
  7670. cb(inpL, "inpL", -1);
  7671. }
  7672. for (int il = 0; il < n_layer; ++il) {
  7673. struct ggml_tensor * attn_norm;
  7674. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7675. model.layers[il].attn_norm,
  7676. model.layers[il].attn_norm_b,
  7677. LLM_NORM, cb, il);
  7678. cb(attn_norm, "attn_norm", il);
  7679. // self-attention
  7680. {
  7681. cur = attn_norm;
  7682. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7683. cb(cur, "wqkv", il);
  7684. if (model.layers[il].bqkv){
  7685. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7686. cb(cur, "bqkv", il);
  7687. }
  7688. if (hparams.f_clamp_kqv > 0.0f) {
  7689. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7690. cb(cur, "wqkv_clamped", il);
  7691. }
  7692. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7693. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7694. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7695. cb(Qcur, "Qcur", il);
  7696. cb(Kcur, "Kcur", il);
  7697. cb(Vcur, "Vcur", il);
  7698. // Q/K Layernorm
  7699. if (model.layers[il].attn_q_norm) {
  7700. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7701. model.layers[il].attn_q_norm,
  7702. model.layers[il].attn_q_norm_b,
  7703. LLM_NORM, cb, il);
  7704. cb(Qcur, "Qcur", il);
  7705. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7706. model.layers[il].attn_k_norm,
  7707. model.layers[il].attn_k_norm_b,
  7708. LLM_NORM, cb, il);
  7709. cb(Kcur, "Kcur", il);
  7710. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7711. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7712. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7713. model.layers[il].wo, model.layers[il].bo,
  7714. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7715. } else {
  7716. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7717. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7718. model.layers[il].wo, model.layers[il].bo,
  7719. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7720. }
  7721. }
  7722. if (il == n_layer - 1) {
  7723. // skip computing output for unused tokens
  7724. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7725. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7726. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7727. }
  7728. // Add the input
  7729. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7730. cb(ffn_inp, "ffn_inp", il);
  7731. // feed forward
  7732. {
  7733. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7734. model.layers[il].ffn_norm,
  7735. model.layers[il].ffn_norm_b,
  7736. LLM_NORM, cb, il);
  7737. cb(cur, "ffn_norm", il);
  7738. cur = llm_build_ffn(ctx0, cur,
  7739. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7740. NULL, NULL,
  7741. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7742. model.layers[il].ffn_act,
  7743. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7744. cb(cur, "ffn_out", il);
  7745. }
  7746. cur = ggml_add(ctx0, cur, ffn_inp);
  7747. cb(cur, "l_out", il);
  7748. // input for next layer
  7749. inpL = cur;
  7750. }
  7751. cur = inpL;
  7752. cur = llm_build_norm(ctx0, cur, hparams,
  7753. model.output_norm,
  7754. model.output_norm_b,
  7755. LLM_NORM, cb, -1);
  7756. cb(cur, "result_norm", -1);
  7757. cur = ggml_mul_mat(ctx0, model.output, cur);
  7758. cb(cur, "result_output", -1);
  7759. ggml_build_forward_expand(gf, cur);
  7760. return gf;
  7761. }
  7762. struct ggml_cgraph * build_stablelm() {
  7763. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7764. const int64_t n_embd_head = hparams.n_embd_head_v;
  7765. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7766. struct ggml_tensor * cur;
  7767. struct ggml_tensor * inpL;
  7768. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7769. // inp_pos - contains the positions
  7770. struct ggml_tensor * inp_pos = build_inp_pos();
  7771. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7772. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7773. for (int il = 0; il < n_layer; ++il) {
  7774. // norm
  7775. cur = llm_build_norm(ctx0, inpL, hparams,
  7776. model.layers[il].attn_norm,
  7777. model.layers[il].attn_norm_b,
  7778. LLM_NORM, cb, il);
  7779. cb(cur, "attn_norm", il);
  7780. struct ggml_tensor * inpSA = cur;
  7781. // self-attention
  7782. {
  7783. // compute Q and K and RoPE them
  7784. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7785. cb(Qcur, "Qcur", il);
  7786. if (model.layers[il].bq) {
  7787. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7788. cb(Qcur, "Qcur", il);
  7789. }
  7790. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7791. cb(Kcur, "Kcur", il);
  7792. if (model.layers[il].bk) {
  7793. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7794. cb(Kcur, "Kcur", il);
  7795. }
  7796. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7797. cb(Vcur, "Vcur", il);
  7798. if (model.layers[il].bv) {
  7799. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7800. cb(Vcur, "Vcur", il);
  7801. }
  7802. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7803. cb(Qcur, "Qcur", il);
  7804. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7805. cb(Kcur, "Kcur", il);
  7806. if (model.layers[il].attn_q_norm) {
  7807. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7808. model.layers[il].attn_q_norm,
  7809. NULL,
  7810. LLM_NORM, cb, il);
  7811. cb(Qcur, "Qcur", il);
  7812. }
  7813. if (model.layers[il].attn_k_norm) {
  7814. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7815. model.layers[il].attn_k_norm,
  7816. NULL,
  7817. LLM_NORM, cb, il);
  7818. cb(Kcur, "Kcur", il);
  7819. }
  7820. Qcur = ggml_rope_ext(
  7821. ctx0, Qcur, inp_pos, nullptr,
  7822. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7823. ext_factor, attn_factor, beta_fast, beta_slow
  7824. );
  7825. cb(Qcur, "Qcur", il);
  7826. Kcur = ggml_rope_ext(
  7827. ctx0, Kcur, inp_pos, nullptr,
  7828. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7829. ext_factor, attn_factor, beta_fast, beta_slow
  7830. );
  7831. cb(Kcur, "Kcur", il);
  7832. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7833. model.layers[il].wo, NULL,
  7834. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7835. }
  7836. if (il == n_layer - 1) {
  7837. // skip computing output for unused tokens
  7838. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7839. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7840. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7841. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7842. }
  7843. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7844. cb(ffn_inp, "ffn_inp", il);
  7845. // feed-forward network
  7846. {
  7847. if (model.layers[il].ffn_norm) {
  7848. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7849. model.layers[il].ffn_norm,
  7850. model.layers[il].ffn_norm_b,
  7851. LLM_NORM, cb, il);
  7852. cb(cur, "ffn_norm", il);
  7853. } else {
  7854. // parallel residual
  7855. cur = inpSA;
  7856. }
  7857. cur = llm_build_ffn(ctx0, cur,
  7858. model.layers[il].ffn_up, NULL,
  7859. model.layers[il].ffn_gate, NULL,
  7860. model.layers[il].ffn_down, NULL,
  7861. NULL,
  7862. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7863. cb(cur, "ffn_out", il);
  7864. }
  7865. cur = ggml_add(ctx0, cur, ffn_inp);
  7866. cb(cur, "l_out", il);
  7867. // input for next layer
  7868. inpL = cur;
  7869. }
  7870. cur = inpL;
  7871. cur = llm_build_norm(ctx0, cur, hparams,
  7872. model.output_norm,
  7873. model.output_norm_b,
  7874. LLM_NORM, cb, -1);
  7875. cb(cur, "result_norm", -1);
  7876. // lm_head
  7877. cur = ggml_mul_mat(ctx0, model.output, cur);
  7878. cb(cur, "result_output", -1);
  7879. ggml_build_forward_expand(gf, cur);
  7880. return gf;
  7881. }
  7882. struct ggml_cgraph * build_qwen() {
  7883. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7884. const int64_t n_embd_head = hparams.n_embd_head_v;
  7885. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7886. struct ggml_tensor * cur;
  7887. struct ggml_tensor * inpL;
  7888. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7889. // inp_pos - contains the positions
  7890. struct ggml_tensor * inp_pos = build_inp_pos();
  7891. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7892. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7893. for (int il = 0; il < n_layer; ++il) {
  7894. struct ggml_tensor * inpSA = inpL;
  7895. cur = llm_build_norm(ctx0, inpL, hparams,
  7896. model.layers[il].attn_norm, NULL,
  7897. LLM_NORM_RMS, cb, il);
  7898. cb(cur, "attn_norm", il);
  7899. // self-attention
  7900. {
  7901. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7902. cb(cur, "wqkv", il);
  7903. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7904. cb(cur, "bqkv", il);
  7905. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7906. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7907. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7908. cb(Qcur, "Qcur", il);
  7909. cb(Kcur, "Kcur", il);
  7910. cb(Vcur, "Vcur", il);
  7911. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7912. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7913. // using mode = 2 for neox mode
  7914. Qcur = ggml_rope_ext(
  7915. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7916. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7917. );
  7918. cb(Qcur, "Qcur", il);
  7919. Kcur = ggml_rope_ext(
  7920. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7921. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7922. );
  7923. cb(Kcur, "Kcur", il);
  7924. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7925. model.layers[il].wo, NULL,
  7926. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7927. }
  7928. if (il == n_layer - 1) {
  7929. // skip computing output for unused tokens
  7930. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7931. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7932. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7933. }
  7934. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7935. cb(ffn_inp, "ffn_inp", il);
  7936. // feed-forward forward
  7937. {
  7938. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7939. model.layers[il].ffn_norm, NULL,
  7940. LLM_NORM_RMS, cb, il);
  7941. cb(cur, "ffn_norm", il);
  7942. cur = llm_build_ffn(ctx0, cur,
  7943. model.layers[il].ffn_up, NULL,
  7944. model.layers[il].ffn_gate, NULL,
  7945. model.layers[il].ffn_down, NULL,
  7946. NULL,
  7947. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7948. cb(cur, "ffn_out", il);
  7949. }
  7950. cur = ggml_add(ctx0, cur, ffn_inp);
  7951. cb(cur, "l_out", il);
  7952. // input for next layer
  7953. inpL = cur;
  7954. }
  7955. cur = inpL;
  7956. cur = llm_build_norm(ctx0, cur, hparams,
  7957. model.output_norm, NULL,
  7958. LLM_NORM_RMS, cb, -1);
  7959. cb(cur, "result_norm", -1);
  7960. // lm_head
  7961. cur = ggml_mul_mat(ctx0, model.output, cur);
  7962. cb(cur, "result_output", -1);
  7963. ggml_build_forward_expand(gf, cur);
  7964. return gf;
  7965. }
  7966. struct ggml_cgraph * build_qwen2() {
  7967. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7968. const int64_t n_embd_head = hparams.n_embd_head_v;
  7969. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7970. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7971. struct ggml_tensor * cur;
  7972. struct ggml_tensor * inpL;
  7973. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7974. // inp_pos - contains the positions
  7975. struct ggml_tensor * inp_pos = build_inp_pos();
  7976. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7977. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7978. for (int il = 0; il < n_layer; ++il) {
  7979. struct ggml_tensor * inpSA = inpL;
  7980. // norm
  7981. cur = llm_build_norm(ctx0, inpL, hparams,
  7982. model.layers[il].attn_norm, NULL,
  7983. LLM_NORM_RMS, cb, il);
  7984. cb(cur, "attn_norm", il);
  7985. // self-attention
  7986. {
  7987. // compute Q and K and RoPE them
  7988. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7989. cb(Qcur, "Qcur", il);
  7990. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7991. cb(Qcur, "Qcur", il);
  7992. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7993. cb(Kcur, "Kcur", il);
  7994. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7995. cb(Kcur, "Kcur", il);
  7996. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7997. cb(Vcur, "Vcur", il);
  7998. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7999. cb(Vcur, "Vcur", il);
  8000. Qcur = ggml_rope_ext(
  8001. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8002. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8003. ext_factor, attn_factor, beta_fast, beta_slow
  8004. );
  8005. cb(Qcur, "Qcur", il);
  8006. Kcur = ggml_rope_ext(
  8007. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8008. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8009. ext_factor, attn_factor, beta_fast, beta_slow
  8010. );
  8011. cb(Kcur, "Kcur", il);
  8012. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8013. model.layers[il].wo, model.layers[il].bo,
  8014. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8015. }
  8016. if (il == n_layer - 1) {
  8017. // skip computing output for unused tokens
  8018. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8019. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8020. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8021. }
  8022. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8023. cb(ffn_inp, "ffn_inp", il);
  8024. // feed-forward network
  8025. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8026. model.layers[il].ffn_norm, NULL,
  8027. LLM_NORM_RMS, cb, il);
  8028. cb(cur, "ffn_norm", il);
  8029. cur = llm_build_ffn(ctx0, cur,
  8030. model.layers[il].ffn_up, NULL,
  8031. model.layers[il].ffn_gate, NULL,
  8032. model.layers[il].ffn_down, NULL,
  8033. NULL,
  8034. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8035. cb(cur, "ffn_out", il);
  8036. cur = ggml_add(ctx0, cur, ffn_inp);
  8037. cb(cur, "l_out", il);
  8038. // input for next layer
  8039. inpL = cur;
  8040. }
  8041. cur = inpL;
  8042. cur = llm_build_norm(ctx0, cur, hparams,
  8043. model.output_norm, NULL,
  8044. LLM_NORM_RMS, cb, -1);
  8045. cb(cur, "result_norm", -1);
  8046. // lm_head
  8047. cur = ggml_mul_mat(ctx0, model.output, cur);
  8048. cb(cur, "result_output", -1);
  8049. ggml_build_forward_expand(gf, cur);
  8050. return gf;
  8051. }
  8052. struct ggml_cgraph * build_qwen2moe() {
  8053. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8054. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8055. int32_t n_tokens = this->n_tokens;
  8056. const int64_t n_embd_head = hparams.n_embd_head_v;
  8057. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8058. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8059. struct ggml_tensor * cur;
  8060. struct ggml_tensor * inpL;
  8061. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8062. // inp_pos - contains the positions
  8063. struct ggml_tensor * inp_pos = build_inp_pos();
  8064. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8065. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8066. for (int il = 0; il < n_layer; ++il) {
  8067. struct ggml_tensor * inpSA = inpL;
  8068. // norm
  8069. cur = llm_build_norm(ctx0, inpL, hparams,
  8070. model.layers[il].attn_norm, NULL,
  8071. LLM_NORM_RMS, cb, il);
  8072. cb(cur, "attn_norm", il);
  8073. // self_attention
  8074. {
  8075. // compute Q and K and RoPE them
  8076. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8077. cb(Qcur, "Qcur", il);
  8078. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8079. cb(Qcur, "Qcur", il);
  8080. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8081. cb(Kcur, "Kcur", il);
  8082. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8083. cb(Kcur, "Kcur", il);
  8084. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8085. cb(Vcur, "Vcur", il);
  8086. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8087. cb(Vcur, "Vcur", il);
  8088. Qcur = ggml_rope_ext(
  8089. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8090. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8091. ext_factor, attn_factor, beta_fast, beta_slow
  8092. );
  8093. cb(Qcur, "Qcur", il);
  8094. Kcur = ggml_rope_ext(
  8095. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8096. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8097. ext_factor, attn_factor, beta_fast, beta_slow
  8098. );
  8099. cb(Kcur, "Kcur", il);
  8100. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8101. model.layers[il].wo, model.layers[il].bo,
  8102. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8103. }
  8104. if (il == n_layer - 1) {
  8105. // skip computing output for unused tokens
  8106. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8107. n_tokens = n_outputs;
  8108. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8109. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8110. }
  8111. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8112. cb(ffn_inp, "ffn_inp", il);
  8113. // MoE branch
  8114. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8115. model.layers[il].ffn_norm, NULL,
  8116. LLM_NORM_RMS, cb, il);
  8117. cb(cur, "ffn_norm", il);
  8118. ggml_tensor * moe_out =
  8119. llm_build_moe_ffn(ctx0, cur,
  8120. model.layers[il].ffn_gate_inp,
  8121. model.layers[il].ffn_up_exps,
  8122. model.layers[il].ffn_gate_exps,
  8123. model.layers[il].ffn_down_exps,
  8124. n_expert, n_expert_used,
  8125. LLM_FFN_SILU, false,
  8126. false, 0.0,
  8127. cb, il);
  8128. cb(cur, "ffn_moe_out", il);
  8129. // FFN shared expert
  8130. {
  8131. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  8132. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  8133. // sigmoid
  8134. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  8135. cb(cur_gate, "ffn_shexp_gate", il);
  8136. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  8137. model.layers[il].ffn_up_shexp, NULL,
  8138. model.layers[il].ffn_gate_shexp, NULL,
  8139. model.layers[il].ffn_down_shexp, NULL,
  8140. NULL,
  8141. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8142. cb(cur_ffn, "ffn_shexp", il);
  8143. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  8144. cb(ffn_shexp_out, "ffn_shexp_out", il);
  8145. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  8146. cb(moe_out, "ffn_out", il);
  8147. cur = moe_out;
  8148. }
  8149. cur = ggml_add(ctx0, cur, ffn_inp);
  8150. cb(cur, "l_out", il);
  8151. // input for next layer
  8152. inpL = cur;
  8153. }
  8154. cur = inpL;
  8155. cur = llm_build_norm(ctx0, cur, hparams,
  8156. model.output_norm, NULL,
  8157. LLM_NORM_RMS, cb, -1);
  8158. cb(cur, "result_norm", -1);
  8159. // lm_head
  8160. cur = ggml_mul_mat(ctx0, model.output, cur);
  8161. cb(cur, "result_output", -1);
  8162. ggml_build_forward_expand(gf, cur);
  8163. return gf;
  8164. }
  8165. struct ggml_cgraph * build_phi2() {
  8166. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8167. const int64_t n_embd_head = hparams.n_embd_head_v;
  8168. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8169. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8170. struct ggml_tensor * cur;
  8171. struct ggml_tensor * attn_norm_output;
  8172. struct ggml_tensor * ffn_output;
  8173. struct ggml_tensor * inpL;
  8174. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8175. // inp_pos - contains the positions
  8176. struct ggml_tensor * inp_pos = build_inp_pos();
  8177. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8178. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8179. for (int il = 0; il < n_layer; ++il) {
  8180. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  8181. model.layers[il].attn_norm,
  8182. model.layers[il].attn_norm_b,
  8183. LLM_NORM, cb, il);
  8184. cb(attn_norm_output, "attn_norm", il);
  8185. // self-attention
  8186. {
  8187. struct ggml_tensor * Qcur = nullptr;
  8188. struct ggml_tensor * Kcur = nullptr;
  8189. struct ggml_tensor * Vcur = nullptr;
  8190. if (model.layers[il].wqkv) {
  8191. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  8192. cb(cur, "wqkv", il);
  8193. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8194. cb(cur, "bqkv", il);
  8195. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8196. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8197. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8198. } else {
  8199. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  8200. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  8201. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  8202. }
  8203. cb(Qcur, "Qcur", il);
  8204. cb(Kcur, "Kcur", il);
  8205. cb(Vcur, "Vcur", il);
  8206. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8207. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8208. Qcur = ggml_rope_ext(
  8209. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8210. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8211. );
  8212. cb(Qcur, "Qcur", il);
  8213. // with phi2, we scale the Q to avoid precision issues
  8214. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  8215. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  8216. cb(Qcur, "Qcur", il);
  8217. Kcur = ggml_rope_ext(
  8218. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  8219. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8220. );
  8221. cb(Kcur, "Kcur", il);
  8222. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8223. model.layers[il].wo, model.layers[il].bo,
  8224. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8225. }
  8226. if (il == n_layer - 1) {
  8227. // skip computing output for unused tokens
  8228. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8229. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8230. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8231. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  8232. }
  8233. // FF
  8234. {
  8235. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  8236. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8237. NULL, NULL,
  8238. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8239. NULL,
  8240. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8241. cb(ffn_output, "ffn_out", il);
  8242. }
  8243. cur = ggml_add(ctx0, cur, ffn_output);
  8244. cb(cur, "l_out", il);
  8245. cur = ggml_add(ctx0, cur, inpL);
  8246. cb(cur, "l_out", il);
  8247. inpL = cur;
  8248. }
  8249. cur = llm_build_norm(ctx0, inpL, hparams,
  8250. model.output_norm,
  8251. model.output_norm_b,
  8252. LLM_NORM, cb, -1);
  8253. cb(cur, "result_norm", -1);
  8254. cur = ggml_mul_mat(ctx0, model.output, cur);
  8255. cb(cur, "result_output_no_bias", -1);
  8256. cur = ggml_add(ctx0, cur, model.output_b);
  8257. cb(cur, "result_output", -1);
  8258. ggml_build_forward_expand(gf, cur);
  8259. return gf;
  8260. }
  8261. struct ggml_cgraph * build_phi3() {
  8262. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8263. const int64_t n_embd_head = hparams.n_embd_head_v;
  8264. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8265. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8266. struct ggml_tensor * cur;
  8267. struct ggml_tensor * inpL;
  8268. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8269. // inp_pos - contains the positions
  8270. struct ggml_tensor * inp_pos = build_inp_pos();
  8271. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8272. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8273. for (int il = 0; il < n_layer; ++il) {
  8274. auto residual = inpL;
  8275. // self-attention
  8276. {
  8277. // rope freq factors for 128k context
  8278. struct ggml_tensor * rope_factors = build_rope_factors(il);
  8279. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  8280. model.layers[il].attn_norm,
  8281. NULL,
  8282. LLM_NORM_RMS, cb, il);
  8283. cb(attn_norm_output, "attn_norm", il);
  8284. struct ggml_tensor * Qcur = nullptr;
  8285. struct ggml_tensor * Kcur = nullptr;
  8286. struct ggml_tensor * Vcur = nullptr;
  8287. if (model.layers[il].wqkv) {
  8288. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  8289. cb(cur, "wqkv", il);
  8290. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  8291. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  8292. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  8293. }
  8294. else {
  8295. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  8296. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  8297. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  8298. }
  8299. cb(Qcur, "Qcur", il);
  8300. cb(Kcur, "Kcur", il);
  8301. cb(Vcur, "Vcur", il);
  8302. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8303. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8304. Qcur = ggml_rope_ext(
  8305. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8306. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8307. );
  8308. cb(Qcur, "Qcur", il);
  8309. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  8310. cb(Qcur, "Qcur", il);
  8311. Kcur = ggml_rope_ext(
  8312. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8313. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8314. );
  8315. cb(Kcur, "Kcur", il);
  8316. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8317. model.layers[il].wo, model.layers[il].bo,
  8318. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8319. }
  8320. if (il == n_layer - 1) {
  8321. // skip computing output for unused tokens
  8322. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  8323. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8324. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  8325. }
  8326. cur = ggml_add(ctx0, cur, residual);
  8327. residual = cur;
  8328. cur = llm_build_norm(ctx0, cur, hparams,
  8329. model.layers[il].ffn_norm, NULL,
  8330. LLM_NORM_RMS, cb, il);
  8331. cb(cur, "ffn_norm", il);
  8332. // FF
  8333. // special-case: the up and gate tensors are merged into a single tensor
  8334. // TOOD: support into llm_build_ffn
  8335. {
  8336. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  8337. cb(up, "ffn_up", il);
  8338. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  8339. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  8340. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  8341. cb(y, "ffn_gate", il);
  8342. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  8343. cb(down, "ffn_down", il);
  8344. cur = down;
  8345. cb(cur, "ffn_out", il);
  8346. }
  8347. cur = ggml_add(ctx0, residual, cur);
  8348. cb(cur, "l_out", il);
  8349. inpL = cur;
  8350. }
  8351. cur = llm_build_norm(ctx0, inpL, hparams,
  8352. model.output_norm,
  8353. NULL,
  8354. LLM_NORM_RMS, cb, -1);
  8355. cb(cur, "result_norm", -1);
  8356. cur = ggml_mul_mat(ctx0, model.output, cur);
  8357. cb(cur, "result_output", -1);
  8358. ggml_build_forward_expand(gf, cur);
  8359. return gf;
  8360. }
  8361. struct ggml_cgraph * build_plamo() {
  8362. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  8363. const int64_t n_embd_head = hparams.n_embd_head_v;
  8364. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8365. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8366. struct ggml_tensor * cur;
  8367. struct ggml_tensor * inpL;
  8368. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8369. // inp_pos - contains the positions
  8370. struct ggml_tensor * inp_pos = build_inp_pos();
  8371. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8372. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8373. for (int il = 0; il < n_layer; ++il) {
  8374. // norm
  8375. cur = llm_build_norm(ctx0, inpL, hparams,
  8376. model.layers[il].attn_norm, NULL,
  8377. LLM_NORM_RMS, cb, il);
  8378. cb(cur, "attn_norm", il);
  8379. struct ggml_tensor * attention_norm = cur;
  8380. // self-attention
  8381. {
  8382. // compute Q and K and RoPE them
  8383. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8384. cb(Qcur, "Qcur", il);
  8385. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8386. cb(Kcur, "Kcur", il);
  8387. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8388. cb(Vcur, "Vcur", il);
  8389. Qcur = ggml_rope_ext(
  8390. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  8391. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8392. ext_factor, attn_factor, beta_fast, beta_slow);
  8393. cb(Qcur, "Qcur", il);
  8394. Kcur = ggml_rope_ext(
  8395. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  8396. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8397. ext_factor, attn_factor, beta_fast, beta_slow);
  8398. cb(Kcur, "Kcur", il);
  8399. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8400. model.layers[il].wo, NULL,
  8401. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8402. }
  8403. struct ggml_tensor * sa_out = cur;
  8404. cur = attention_norm;
  8405. if (il == n_layer - 1) {
  8406. // skip computing output for unused tokens
  8407. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8408. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8409. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  8410. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8411. }
  8412. // feed-forward network
  8413. {
  8414. cur = llm_build_ffn(ctx0, cur,
  8415. model.layers[il].ffn_up, NULL,
  8416. model.layers[il].ffn_gate, NULL,
  8417. model.layers[il].ffn_down, NULL,
  8418. NULL,
  8419. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8420. cb(cur, "ffn_out", il);
  8421. }
  8422. cur = ggml_add(ctx0, cur, sa_out);
  8423. cb(cur, "l_out", il);
  8424. cur = ggml_add(ctx0, cur, inpL);
  8425. cb(cur, "l_out", il);
  8426. // input for next layer
  8427. inpL = cur;
  8428. }
  8429. cur = inpL;
  8430. cur = llm_build_norm(ctx0, cur, hparams,
  8431. model.output_norm, NULL,
  8432. LLM_NORM_RMS, cb, -1);
  8433. cb(cur, "result_norm", -1);
  8434. // lm_head
  8435. cur = ggml_mul_mat(ctx0, model.output, cur);
  8436. cb(cur, "result_output", -1);
  8437. ggml_build_forward_expand(gf, cur);
  8438. return gf;
  8439. }
  8440. struct ggml_cgraph * build_gpt2() {
  8441. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8442. const int64_t n_embd_head = hparams.n_embd_head_v;
  8443. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8444. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8445. struct ggml_tensor * cur;
  8446. struct ggml_tensor * pos;
  8447. struct ggml_tensor * inpL;
  8448. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8449. // inp_pos - contains the positions
  8450. struct ggml_tensor * inp_pos = build_inp_pos();
  8451. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8452. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8453. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8454. cb(pos, "pos_embd", -1);
  8455. inpL = ggml_add(ctx0, inpL, pos);
  8456. cb(inpL, "inpL", -1);
  8457. for (int il = 0; il < n_layer; ++il) {
  8458. cur = llm_build_norm(ctx0, inpL, hparams,
  8459. model.layers[il].attn_norm,
  8460. model.layers[il].attn_norm_b,
  8461. LLM_NORM, cb, il);
  8462. cb(cur, "attn_norm", il);
  8463. // self-attention
  8464. {
  8465. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8466. cb(cur, "wqkv", il);
  8467. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8468. cb(cur, "bqkv", il);
  8469. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8470. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8471. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8472. cb(Qcur, "Qcur", il);
  8473. cb(Kcur, "Kcur", il);
  8474. cb(Vcur, "Vcur", il);
  8475. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8476. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8477. model.layers[il].wo, model.layers[il].bo,
  8478. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8479. }
  8480. if (il == n_layer - 1) {
  8481. // skip computing output for unused tokens
  8482. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8483. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8484. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8485. }
  8486. // add the input
  8487. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8488. cb(ffn_inp, "ffn_inp", il);
  8489. // FF
  8490. {
  8491. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8492. model.layers[il].ffn_norm,
  8493. model.layers[il].ffn_norm_b,
  8494. LLM_NORM, cb, il);
  8495. cb(cur, "ffn_norm", il);
  8496. cur = llm_build_ffn(ctx0, cur,
  8497. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8498. NULL, NULL,
  8499. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8500. NULL,
  8501. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8502. cb(cur, "ffn_out", il);
  8503. }
  8504. inpL = ggml_add(ctx0, cur, ffn_inp);
  8505. cb(inpL, "l_out", il);
  8506. }
  8507. cur = llm_build_norm(ctx0, inpL, hparams,
  8508. model.output_norm,
  8509. model.output_norm_b,
  8510. LLM_NORM, cb, -1);
  8511. cb(cur, "result_norm", -1);
  8512. cur = ggml_mul_mat(ctx0, model.output, cur);
  8513. cb(cur, "result_output", -1);
  8514. ggml_build_forward_expand(gf, cur);
  8515. return gf;
  8516. }
  8517. struct ggml_cgraph * build_codeshell() {
  8518. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8519. const int64_t n_embd_head = hparams.n_embd_head_v;
  8520. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8521. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8522. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8523. struct ggml_tensor * cur;
  8524. struct ggml_tensor * inpL;
  8525. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8526. // inp_pos - contains the positions
  8527. struct ggml_tensor * inp_pos = build_inp_pos();
  8528. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8529. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8530. for (int il = 0; il < n_layer; ++il) {
  8531. cur = llm_build_norm(ctx0, inpL, hparams,
  8532. model.layers[il].attn_norm,
  8533. model.layers[il].attn_norm_b,
  8534. LLM_NORM, cb, il);
  8535. cb(cur, "attn_norm", il);
  8536. // self-attention
  8537. {
  8538. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8539. cb(cur, "wqkv", il);
  8540. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8541. cb(cur, "bqkv", il);
  8542. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8543. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8544. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8545. cb(tmpq, "tmpq", il);
  8546. cb(tmpk, "tmpk", il);
  8547. cb(Vcur, "Vcur", il);
  8548. struct ggml_tensor * Qcur = ggml_rope_ext(
  8549. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8550. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8551. ext_factor, attn_factor, beta_fast, beta_slow
  8552. );
  8553. cb(Qcur, "Qcur", il);
  8554. struct ggml_tensor * Kcur = ggml_rope_ext(
  8555. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8556. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8557. ext_factor, attn_factor, beta_fast, beta_slow
  8558. );
  8559. cb(Kcur, "Kcur", il);
  8560. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8561. model.layers[il].wo, model.layers[il].bo,
  8562. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8563. }
  8564. if (il == n_layer - 1) {
  8565. // skip computing output for unused tokens
  8566. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8567. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8568. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8569. }
  8570. // add the input
  8571. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8572. cb(ffn_inp, "ffn_inp", il);
  8573. // FF
  8574. {
  8575. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8576. model.layers[il].ffn_norm,
  8577. model.layers[il].ffn_norm_b,
  8578. LLM_NORM, cb, il);
  8579. cb(cur, "ffn_norm", il);
  8580. cur = llm_build_ffn(ctx0, cur,
  8581. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8582. NULL, NULL,
  8583. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8584. NULL,
  8585. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8586. cb(cur, "ffn_out", il);
  8587. }
  8588. inpL = ggml_add(ctx0, cur, ffn_inp);
  8589. cb(inpL, "l_out", il);
  8590. }
  8591. cur = llm_build_norm(ctx0, inpL, hparams,
  8592. model.output_norm,
  8593. model.output_norm_b,
  8594. LLM_NORM, cb, -1);
  8595. cb(cur, "result_norm", -1);
  8596. cur = ggml_mul_mat(ctx0, model.output, cur);
  8597. cb(cur, "result_output", -1);
  8598. ggml_build_forward_expand(gf, cur);
  8599. return gf;
  8600. }
  8601. struct ggml_cgraph * build_orion() {
  8602. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8603. const int64_t n_embd_head = hparams.n_embd_head_v;
  8604. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8605. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8606. struct ggml_tensor * cur;
  8607. struct ggml_tensor * inpL;
  8608. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8609. // inp_pos - contains the positions
  8610. struct ggml_tensor * inp_pos = build_inp_pos();
  8611. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8612. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8613. for (int il = 0; il < n_layer; ++il) {
  8614. struct ggml_tensor * inpSA = inpL;
  8615. // norm
  8616. cur = llm_build_norm(ctx0, inpL, hparams,
  8617. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8618. LLM_NORM, cb, il);
  8619. cb(cur, "attn_norm", il);
  8620. // self-attention
  8621. {
  8622. // compute Q and K and RoPE them
  8623. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8624. cb(Qcur, "Qcur", il);
  8625. // if (model.layers[il].bq) {
  8626. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8627. // cb(Qcur, "Qcur", il);
  8628. // }
  8629. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8630. cb(Kcur, "Kcur", il);
  8631. // if (model.layers[il].bk) {
  8632. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8633. // cb(Kcur, "Kcur", il);
  8634. // }
  8635. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8636. cb(Vcur, "Vcur", il);
  8637. // if (model.layers[il].bv) {
  8638. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8639. // cb(Vcur, "Vcur", il);
  8640. // }
  8641. Qcur = ggml_rope_ext(
  8642. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8643. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8644. ext_factor, attn_factor, beta_fast, beta_slow
  8645. );
  8646. cb(Qcur, "Qcur", il);
  8647. Kcur = ggml_rope_ext(
  8648. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8649. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8650. ext_factor, attn_factor, beta_fast, beta_slow
  8651. );
  8652. cb(Kcur, "Kcur", il);
  8653. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8654. model.layers[il].wo, NULL,
  8655. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8656. }
  8657. if (il == n_layer - 1) {
  8658. // skip computing output for unused tokens
  8659. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8660. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8661. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8662. }
  8663. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8664. cb(ffn_inp, "ffn_inp", il);
  8665. // feed-forward network
  8666. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8667. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8668. LLM_NORM, cb, il);
  8669. cb(cur, "ffn_norm", il);
  8670. cur = llm_build_ffn(ctx0, cur,
  8671. model.layers[il].ffn_up, NULL,
  8672. model.layers[il].ffn_gate, NULL,
  8673. model.layers[il].ffn_down, NULL,
  8674. NULL,
  8675. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8676. cb(cur, "ffn_out", il);
  8677. cur = ggml_add(ctx0, cur, ffn_inp);
  8678. cb(cur, "l_out", il);
  8679. // input for next layer
  8680. inpL = cur;
  8681. }
  8682. cur = inpL;
  8683. cur = llm_build_norm(ctx0, cur, hparams,
  8684. model.output_norm, model.output_norm_b,
  8685. LLM_NORM, cb, -1);
  8686. cb(cur, "result_norm", -1);
  8687. // lm_head
  8688. cur = ggml_mul_mat(ctx0, model.output, cur);
  8689. cb(cur, "result_output", -1);
  8690. ggml_build_forward_expand(gf, cur);
  8691. return gf;
  8692. }
  8693. struct ggml_cgraph * build_internlm2() {
  8694. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8695. const int64_t n_embd_head = hparams.n_embd_head_v;
  8696. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8697. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8698. struct ggml_tensor * cur;
  8699. struct ggml_tensor * inpL;
  8700. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8701. // inp_pos - contains the positions
  8702. struct ggml_tensor * inp_pos = build_inp_pos();
  8703. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8704. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8705. for (int il = 0; il < n_layer; ++il) {
  8706. struct ggml_tensor * inpSA = inpL;
  8707. // norm
  8708. cur = llm_build_norm(ctx0, inpL, hparams,
  8709. model.layers[il].attn_norm, NULL,
  8710. LLM_NORM_RMS, cb, il);
  8711. cb(cur, "attn_norm", il);
  8712. // self-attention
  8713. {
  8714. // compute Q and K and RoPE them
  8715. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8716. cb(Qcur, "Qcur", il);
  8717. if (model.layers[il].bq) {
  8718. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8719. cb(Qcur, "Qcur", il);
  8720. }
  8721. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8722. cb(Kcur, "Kcur", il);
  8723. if (model.layers[il].bk) {
  8724. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8725. cb(Kcur, "Kcur", il);
  8726. }
  8727. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8728. cb(Vcur, "Vcur", il);
  8729. if (model.layers[il].bv) {
  8730. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8731. cb(Vcur, "Vcur", il);
  8732. }
  8733. Qcur = ggml_rope_ext(
  8734. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8735. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8736. ext_factor, attn_factor, beta_fast, beta_slow
  8737. );
  8738. cb(Qcur, "Qcur", il);
  8739. Kcur = ggml_rope_ext(
  8740. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8741. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8742. ext_factor, attn_factor, beta_fast, beta_slow
  8743. );
  8744. cb(Kcur, "Kcur", il);
  8745. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8746. model.layers[il].wo, model.layers[il].bo,
  8747. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8748. }
  8749. if (il == n_layer - 1) {
  8750. // skip computing output for unused tokens
  8751. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8752. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8753. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8754. }
  8755. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8756. cb(ffn_inp, "ffn_inp", il);
  8757. // feed-forward network
  8758. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8759. model.layers[il].ffn_norm, NULL,
  8760. LLM_NORM_RMS, cb, il);
  8761. cb(cur, "ffn_norm", il);
  8762. cur = llm_build_ffn(ctx0, cur,
  8763. model.layers[il].ffn_up, NULL,
  8764. model.layers[il].ffn_gate, NULL,
  8765. model.layers[il].ffn_down, NULL,
  8766. NULL,
  8767. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8768. cb(cur, "ffn_out", il);
  8769. cur = ggml_add(ctx0, cur, ffn_inp);
  8770. cb(cur, "l_out", il);
  8771. // input for next layer
  8772. inpL = cur;
  8773. }
  8774. cur = inpL;
  8775. cur = llm_build_norm(ctx0, cur, hparams,
  8776. model.output_norm, NULL,
  8777. LLM_NORM_RMS, cb, -1);
  8778. cb(cur, "result_norm", -1);
  8779. // lm_head
  8780. cur = ggml_mul_mat(ctx0, model.output, cur);
  8781. cb(cur, "result_output", -1);
  8782. ggml_build_forward_expand(gf, cur);
  8783. return gf;
  8784. }
  8785. // ref: https://arxiv.org/abs/2203.03466
  8786. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8787. // based on the original build_llama() function
  8788. struct ggml_cgraph * build_minicpm() {
  8789. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8790. const int64_t n_embd_head = hparams.n_embd_head_v;
  8791. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8792. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8793. const int64_t n_embd = hparams.n_embd;
  8794. //TODO: if the model varies, these parameters need to be read from the model
  8795. const int64_t n_embd_base = 256;
  8796. const float scale_embd = 12.0f;
  8797. const float scale_depth = 1.4f;
  8798. struct ggml_tensor * cur;
  8799. struct ggml_tensor * inpL;
  8800. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8801. // scale the input embeddings
  8802. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8803. cb(inpL, "inp_scaled", -1);
  8804. // inp_pos - contains the positions
  8805. struct ggml_tensor * inp_pos = build_inp_pos();
  8806. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8807. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8808. for (int il = 0; il < n_layer; ++il) {
  8809. struct ggml_tensor * inpSA = inpL;
  8810. // norm
  8811. cur = llm_build_norm(ctx0, inpL, hparams,
  8812. model.layers[il].attn_norm, NULL,
  8813. LLM_NORM_RMS, cb, il);
  8814. cb(cur, "attn_norm", il);
  8815. // self-attention
  8816. {
  8817. // compute Q and K and RoPE them
  8818. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8819. cb(Qcur, "Qcur", il);
  8820. if (model.layers[il].bq) {
  8821. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8822. cb(Qcur, "Qcur", il);
  8823. }
  8824. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8825. cb(Kcur, "Kcur", il);
  8826. if (model.layers[il].bk) {
  8827. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8828. cb(Kcur, "Kcur", il);
  8829. }
  8830. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8831. cb(Vcur, "Vcur", il);
  8832. if (model.layers[il].bv) {
  8833. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8834. cb(Vcur, "Vcur", il);
  8835. }
  8836. Qcur = ggml_rope_ext(
  8837. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8838. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8839. ext_factor, attn_factor, beta_fast, beta_slow
  8840. );
  8841. cb(Qcur, "Qcur", il);
  8842. Kcur = ggml_rope_ext(
  8843. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8844. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8845. ext_factor, attn_factor, beta_fast, beta_slow
  8846. );
  8847. cb(Kcur, "Kcur", il);
  8848. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8849. model.layers[il].wo, model.layers[il].bo,
  8850. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8851. }
  8852. if (il == n_layer - 1) {
  8853. // skip computing output for unused tokens
  8854. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8855. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8856. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8857. }
  8858. // scale_res - scale the hidden states for residual connection
  8859. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8860. cur = ggml_scale(ctx0, cur, scale_res);
  8861. cb(cur, "hidden_scaled", -1);
  8862. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8863. cb(ffn_inp, "ffn_inp", il);
  8864. // feed-forward network
  8865. {
  8866. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8867. model.layers[il].ffn_norm, NULL,
  8868. LLM_NORM_RMS, cb, il);
  8869. cb(cur, "ffn_norm", il);
  8870. cur = llm_build_ffn(ctx0, cur,
  8871. model.layers[il].ffn_up, NULL,
  8872. model.layers[il].ffn_gate, NULL,
  8873. model.layers[il].ffn_down, NULL,
  8874. NULL,
  8875. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8876. cb(cur, "ffn_out", il);
  8877. }
  8878. // scale the hidden states for residual connection
  8879. cur = ggml_scale(ctx0, cur, scale_res);
  8880. cb(cur, "hidden_scaled_ffn", -1);
  8881. cur = ggml_add(ctx0, cur, ffn_inp);
  8882. cb(cur, "l_out", il);
  8883. // input for next layer
  8884. inpL = cur;
  8885. }
  8886. cur = inpL;
  8887. cur = llm_build_norm(ctx0, cur, hparams,
  8888. model.output_norm, NULL,
  8889. LLM_NORM_RMS, cb, -1);
  8890. cb(cur, "result_norm", -1);
  8891. // lm_head scaling
  8892. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8893. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8894. cb(cur, "lmhead_scaling", -1);
  8895. // lm_head
  8896. cur = ggml_mul_mat(ctx0, model.output, cur);
  8897. cb(cur, "result_output", -1);
  8898. ggml_build_forward_expand(gf, cur);
  8899. return gf;
  8900. }
  8901. struct ggml_cgraph * build_gemma() {
  8902. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8903. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8904. struct ggml_tensor * cur;
  8905. struct ggml_tensor * inpL;
  8906. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8907. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8908. cb(inpL, "inp_scaled", -1);
  8909. // inp_pos - contains the positions
  8910. struct ggml_tensor * inp_pos = build_inp_pos();
  8911. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8912. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8913. for (int il = 0; il < n_layer; ++il) {
  8914. // norm
  8915. cur = llm_build_norm(ctx0, inpL, hparams,
  8916. model.layers[il].attn_norm, NULL,
  8917. LLM_NORM_RMS, cb, il);
  8918. cb(cur, "attn_norm", il);
  8919. // self-attention
  8920. {
  8921. // compute Q and K and RoPE them
  8922. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8923. cb(Qcur, "Qcur", il);
  8924. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8925. cb(Kcur, "Kcur", il);
  8926. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8927. cb(Vcur, "Vcur", il);
  8928. Qcur = ggml_rope_ext(
  8929. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8930. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8931. ext_factor, attn_factor, beta_fast, beta_slow);
  8932. cb(Qcur, "Qcur", il);
  8933. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8934. cb(Qcur, "Qcur_scaled", il);
  8935. Kcur = ggml_rope_ext(
  8936. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8937. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8938. ext_factor, attn_factor, beta_fast, beta_slow);
  8939. cb(Kcur, "Kcur", il);
  8940. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8941. model.layers[il].wo, NULL,
  8942. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8943. }
  8944. if (il == n_layer - 1) {
  8945. // skip computing output for unused tokens
  8946. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8947. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8948. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8949. }
  8950. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8951. cb(sa_out, "sa_out", il);
  8952. cur = llm_build_norm(ctx0, sa_out, hparams,
  8953. model.layers[il].ffn_norm, NULL,
  8954. LLM_NORM_RMS, cb, il);
  8955. cb(cur, "ffn_norm", il);
  8956. // feed-forward network
  8957. {
  8958. cur = llm_build_ffn(ctx0, cur,
  8959. model.layers[il].ffn_up, NULL,
  8960. model.layers[il].ffn_gate, NULL,
  8961. model.layers[il].ffn_down, NULL,
  8962. NULL,
  8963. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8964. cb(cur, "ffn_out", il);
  8965. }
  8966. cur = ggml_add(ctx0, cur, sa_out);
  8967. cb(cur, "l_out", il);
  8968. // input for next layer
  8969. inpL = cur;
  8970. }
  8971. cur = inpL;
  8972. cur = llm_build_norm(ctx0, cur, hparams,
  8973. model.output_norm, NULL,
  8974. LLM_NORM_RMS, cb, -1);
  8975. cb(cur, "result_norm", -1);
  8976. // lm_head
  8977. cur = ggml_mul_mat(ctx0, model.output, cur);
  8978. cb(cur, "result_output", -1);
  8979. ggml_build_forward_expand(gf, cur);
  8980. return gf;
  8981. }
  8982. struct ggml_cgraph * build_starcoder2() {
  8983. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8984. const int64_t n_embd_head = hparams.n_embd_head_v;
  8985. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8986. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8987. struct ggml_tensor * cur;
  8988. struct ggml_tensor * inpL;
  8989. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8990. // inp_pos - contains the positions
  8991. struct ggml_tensor * inp_pos = build_inp_pos();
  8992. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8993. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8994. for (int il = 0; il < n_layer; ++il) {
  8995. struct ggml_tensor * inpSA = inpL;
  8996. // norm
  8997. cur = llm_build_norm(ctx0, inpL, hparams,
  8998. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8999. LLM_NORM, cb, il);
  9000. cb(cur, "attn_norm", il);
  9001. // self-attention
  9002. {
  9003. // compute Q and K and RoPE them
  9004. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9005. cb(Qcur, "Qcur", il);
  9006. if (model.layers[il].bq) {
  9007. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9008. cb(Qcur, "Qcur", il);
  9009. }
  9010. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9011. cb(Kcur, "Kcur", il);
  9012. if (model.layers[il].bk) {
  9013. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9014. cb(Kcur, "Kcur", il);
  9015. }
  9016. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9017. cb(Vcur, "Vcur", il);
  9018. if (model.layers[il].bv) {
  9019. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9020. cb(Vcur, "Vcur", il);
  9021. }
  9022. Qcur = ggml_rope_ext(
  9023. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9024. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9025. ext_factor, attn_factor, beta_fast, beta_slow
  9026. );
  9027. cb(Qcur, "Qcur", il);
  9028. Kcur = ggml_rope_ext(
  9029. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9030. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9031. ext_factor, attn_factor, beta_fast, beta_slow
  9032. );
  9033. cb(Kcur, "Kcur", il);
  9034. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9035. model.layers[il].wo, model.layers[il].bo,
  9036. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9037. }
  9038. if (il == n_layer - 1) {
  9039. // skip computing output for unused tokens
  9040. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9041. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9042. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9043. }
  9044. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9045. cb(ffn_inp, "ffn_inp", il);
  9046. // feed-forward network
  9047. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9048. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  9049. LLM_NORM, cb, il);
  9050. cb(cur, "ffn_norm", il);
  9051. cur = llm_build_ffn(ctx0, cur,
  9052. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9053. NULL, NULL,
  9054. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9055. NULL,
  9056. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9057. cb(cur, "ffn_out", il);
  9058. cur = ggml_add(ctx0, cur, ffn_inp);
  9059. cb(cur, "l_out", il);
  9060. // input for next layer
  9061. inpL = cur;
  9062. }
  9063. cur = inpL;
  9064. cur = llm_build_norm(ctx0, cur, hparams,
  9065. model.output_norm, model.output_norm_b,
  9066. LLM_NORM, cb, -1);
  9067. cb(cur, "result_norm", -1);
  9068. // lm_head
  9069. cur = ggml_mul_mat(ctx0, model.output, cur);
  9070. cb(cur, "result_output", -1);
  9071. ggml_build_forward_expand(gf, cur);
  9072. return gf;
  9073. }
  9074. struct ggml_cgraph * build_mamba() {
  9075. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9076. const int64_t d_model = n_embd;
  9077. const int64_t d_conv = hparams.ssm_d_conv;
  9078. const int64_t d_inner = hparams.ssm_d_inner;
  9079. GGML_ASSERT(2 * d_model == d_inner);
  9080. const int64_t d_state = hparams.ssm_d_state;
  9081. const int64_t dt_rank = hparams.ssm_dt_rank;
  9082. struct ggml_tensor * cur;
  9083. struct ggml_tensor * inpL;
  9084. // {n_embd, n_tokens}
  9085. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9086. struct ggml_tensor * state_mask = build_inp_s_mask();
  9087. struct ggml_tensor * state_seq = build_inp_s_seq();
  9088. for (int il = 0; il < n_layer; ++il) {
  9089. // (ab)using the KV cache to store the states
  9090. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  9091. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  9092. // clear states of sequences which are starting at the beginning of this batch
  9093. {
  9094. conv_states = ggml_mul(ctx0,
  9095. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  9096. state_mask);
  9097. ssm_states = ggml_mul(ctx0,
  9098. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  9099. state_mask);
  9100. }
  9101. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  9102. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  9103. // norm
  9104. cur = llm_build_norm(ctx0, inpL, hparams,
  9105. model.layers[il].attn_norm, NULL,
  9106. LLM_NORM_RMS, cb, il);
  9107. cb(cur, "attn_norm", il);
  9108. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  9109. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  9110. // split the above in two
  9111. // => {d_inner, n_tokens}
  9112. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  9113. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  9114. // conv
  9115. {
  9116. // Custom operator which is needed only to ease simultaneous sequence processing.
  9117. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  9118. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  9119. // then element-wise multiply that with the conv1d weigth,
  9120. // then sum the elements of each row,
  9121. // (the last two steps are a dot product over rows (also doable with mul_mat))
  9122. // then permute away the ne[0] dimension,
  9123. // and then you're left with the resulting x tensor.
  9124. // The new conv_states is the last (d_conv - 1) columns
  9125. // of the last 3rd dimensional "layer" of the self-overlapping view.
  9126. // For simultaneous sequences, it's more complicated.
  9127. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  9128. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  9129. ggml_build_forward_expand(gf,
  9130. ggml_cpy(ctx0,
  9131. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  9132. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  9133. // extract x from x_conv
  9134. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  9135. // bias
  9136. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  9137. x = ggml_silu(ctx0, x);
  9138. }
  9139. // ssm
  9140. {
  9141. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  9142. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  9143. // split
  9144. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  9145. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  9146. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  9147. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  9148. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  9149. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  9150. // Custom operator to optimize the parallel associative scan
  9151. // as described in the Annex D of the Mamba paper.
  9152. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  9153. // because only a single tensor can be returned.
  9154. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  9155. // store last states (the second part of y_ssm_states)
  9156. ggml_build_forward_expand(gf,
  9157. ggml_cpy(ctx0,
  9158. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  9159. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  9160. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  9161. if (il == n_layer - 1) {
  9162. // skip computing output for unused tokens
  9163. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9164. x = ggml_get_rows(ctx0, x, inp_out_ids);
  9165. y = ggml_get_rows(ctx0, y, inp_out_ids);
  9166. z = ggml_get_rows(ctx0, z, inp_out_ids);
  9167. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9168. }
  9169. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  9170. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  9171. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  9172. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  9173. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  9174. }
  9175. // residual
  9176. cur = ggml_add(ctx0, cur, inpL);
  9177. cb(cur, "l_out", il);
  9178. // input for next layer
  9179. inpL = cur;
  9180. }
  9181. // final rmsnorm
  9182. cur = llm_build_norm(ctx0, inpL, hparams,
  9183. model.output_norm, NULL,
  9184. LLM_NORM_RMS, cb, -1);
  9185. cb(cur, "result_norm", -1);
  9186. // lm_head
  9187. cur = ggml_mul_mat(ctx0, model.output, cur);
  9188. cb(cur, "result_output", -1);
  9189. ggml_build_forward_expand(gf, cur);
  9190. return gf;
  9191. }
  9192. struct ggml_cgraph * build_command_r() {
  9193. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9194. const int64_t n_embd_head = hparams.n_embd_head_v;
  9195. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9196. const float f_logit_scale = hparams.f_logit_scale;
  9197. struct ggml_tensor * cur;
  9198. struct ggml_tensor * inpL;
  9199. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9200. // inp_pos - contains the positions
  9201. struct ggml_tensor * inp_pos = build_inp_pos();
  9202. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9203. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9204. for (int il = 0; il < n_layer; ++il) {
  9205. // norm
  9206. cur = llm_build_norm(ctx0, inpL, hparams,
  9207. model.layers[il].attn_norm, NULL,
  9208. LLM_NORM, cb, il);
  9209. cb(cur, "attn_norm", il);
  9210. struct ggml_tensor * ffn_inp = cur;
  9211. // self-attention
  9212. {
  9213. // compute Q and K and RoPE them
  9214. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9215. cb(Qcur, "Qcur", il);
  9216. if (model.layers[il].bq) {
  9217. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9218. cb(Qcur, "Qcur", il);
  9219. }
  9220. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9221. cb(Kcur, "Kcur", il);
  9222. if (model.layers[il].bk) {
  9223. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9224. cb(Kcur, "Kcur", il);
  9225. }
  9226. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9227. cb(Vcur, "Vcur", il);
  9228. if (model.layers[il].bv) {
  9229. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9230. cb(Vcur, "Vcur", il);
  9231. }
  9232. if (model.layers[il].attn_q_norm) {
  9233. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  9234. ggml_element_size(Qcur) * n_embd_head,
  9235. ggml_element_size(Qcur) * n_embd_head * n_head,
  9236. 0);
  9237. cb(Qcur, "Qcur", il);
  9238. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  9239. ggml_element_size(Kcur) * n_embd_head,
  9240. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  9241. 0);
  9242. cb(Kcur, "Kcur", il);
  9243. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  9244. model.layers[il].attn_q_norm,
  9245. NULL,
  9246. LLM_NORM, cb, il);
  9247. cb(Qcur, "Qcur", il);
  9248. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  9249. model.layers[il].attn_k_norm,
  9250. NULL,
  9251. LLM_NORM, cb, il);
  9252. cb(Kcur, "Kcur", il);
  9253. }
  9254. Qcur = ggml_rope_ext(
  9255. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9256. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9257. ext_factor, attn_factor, beta_fast, beta_slow
  9258. );
  9259. cb(Qcur, "Qcur", il);
  9260. Kcur = ggml_rope_ext(
  9261. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9262. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9263. ext_factor, attn_factor, beta_fast, beta_slow
  9264. );
  9265. cb(Kcur, "Kcur", il);
  9266. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9267. model.layers[il].wo, model.layers[il].bo,
  9268. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9269. }
  9270. if (il == n_layer - 1) {
  9271. // skip computing output for unused tokens
  9272. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9273. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9274. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9275. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  9276. }
  9277. struct ggml_tensor * attn_out = cur;
  9278. // feed-forward network
  9279. {
  9280. cur = llm_build_ffn(ctx0, ffn_inp,
  9281. model.layers[il].ffn_up, NULL,
  9282. model.layers[il].ffn_gate, NULL,
  9283. model.layers[il].ffn_down, NULL,
  9284. NULL,
  9285. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9286. cb(cur, "ffn_out", il);
  9287. }
  9288. // add together residual + FFN + self-attention
  9289. cur = ggml_add(ctx0, cur, inpL);
  9290. cur = ggml_add(ctx0, cur, attn_out);
  9291. cb(cur, "l_out", il);
  9292. // input for next layer
  9293. inpL = cur;
  9294. }
  9295. cur = inpL;
  9296. cur = llm_build_norm(ctx0, cur, hparams,
  9297. model.output_norm, NULL,
  9298. LLM_NORM, cb, -1);
  9299. cb(cur, "result_norm", -1);
  9300. // lm_head
  9301. cur = ggml_mul_mat(ctx0, model.output, cur);
  9302. if (f_logit_scale) {
  9303. cur = ggml_scale(ctx0, cur, f_logit_scale);
  9304. }
  9305. cb(cur, "result_output", -1);
  9306. ggml_build_forward_expand(gf, cur);
  9307. return gf;
  9308. }
  9309. // ref: https://allenai.org/olmo
  9310. // based on the original build_llama() function, changes:
  9311. // * non-parametric layer norm
  9312. // * clamp qkv
  9313. // * removed bias
  9314. // * removed MoE
  9315. struct ggml_cgraph * build_olmo() {
  9316. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9317. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9318. int32_t n_tokens = this->n_tokens;
  9319. const int64_t n_embd_head = hparams.n_embd_head_v;
  9320. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9321. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9322. struct ggml_tensor * cur;
  9323. struct ggml_tensor * inpL;
  9324. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9325. // inp_pos - contains the positions
  9326. struct ggml_tensor * inp_pos = build_inp_pos();
  9327. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9328. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9329. for (int il = 0; il < n_layer; ++il) {
  9330. struct ggml_tensor * inpSA = inpL;
  9331. // norm
  9332. cur = llm_build_norm(ctx0, inpL, hparams,
  9333. NULL, NULL,
  9334. LLM_NORM, cb, il);
  9335. cb(cur, "attn_norm", il);
  9336. // self-attention
  9337. {
  9338. // compute Q and K and RoPE them
  9339. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9340. cb(Qcur, "Qcur", il);
  9341. if (hparams.f_clamp_kqv > 0.0f) {
  9342. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9343. cb(Qcur, "Qcur", il);
  9344. }
  9345. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9346. cb(Kcur, "Kcur", il);
  9347. if (hparams.f_clamp_kqv > 0.0f) {
  9348. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9349. cb(Kcur, "Kcur", il);
  9350. }
  9351. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9352. cb(Vcur, "Vcur", il);
  9353. if (hparams.f_clamp_kqv > 0.0f) {
  9354. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9355. cb(Vcur, "Vcur", il);
  9356. }
  9357. Qcur = ggml_rope_ext(
  9358. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9359. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9360. ext_factor, attn_factor, beta_fast, beta_slow
  9361. );
  9362. cb(Qcur, "Qcur", il);
  9363. Kcur = ggml_rope_ext(
  9364. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9365. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9366. ext_factor, attn_factor, beta_fast, beta_slow
  9367. );
  9368. cb(Kcur, "Kcur", il);
  9369. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9370. model.layers[il].wo, nullptr,
  9371. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9372. }
  9373. if (il == n_layer - 1) {
  9374. // skip computing output for unused tokens
  9375. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9376. n_tokens = n_outputs;
  9377. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9378. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9379. }
  9380. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9381. cb(ffn_inp, "ffn_inp", il);
  9382. // feed-forward network
  9383. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9384. NULL, NULL,
  9385. LLM_NORM, cb, il);
  9386. cb(cur, "ffn_norm", il);
  9387. cur = llm_build_ffn(ctx0, cur,
  9388. model.layers[il].ffn_up, NULL,
  9389. model.layers[il].ffn_gate, NULL,
  9390. model.layers[il].ffn_down, NULL,
  9391. NULL,
  9392. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9393. cb(cur, "ffn_out", il);
  9394. cur = ggml_add(ctx0, cur, ffn_inp);
  9395. cb(cur, "ffn_out", il);
  9396. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9397. if (layer_dir != nullptr) {
  9398. cur = ggml_add(ctx0, cur, layer_dir);
  9399. }
  9400. cb(cur, "l_out", il);
  9401. // input for next layer
  9402. inpL = cur;
  9403. }
  9404. cur = inpL;
  9405. cur = llm_build_norm(ctx0, cur, hparams,
  9406. NULL, NULL,
  9407. LLM_NORM, cb, -1);
  9408. cb(cur, "result_norm", -1);
  9409. // lm_head
  9410. cur = ggml_mul_mat(ctx0, model.output, cur);
  9411. cb(cur, "result_output", -1);
  9412. ggml_build_forward_expand(gf, cur);
  9413. return gf;
  9414. }
  9415. struct ggml_cgraph * build_gptneox() {
  9416. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9417. const int64_t n_embd_head = hparams.n_embd_head_v;
  9418. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9419. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9420. struct ggml_tensor * cur;
  9421. struct ggml_tensor * inpL;
  9422. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9423. // inp_pos - contains the positions
  9424. struct ggml_tensor * inp_pos = build_inp_pos();
  9425. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9426. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9427. for (int il = 0; il < n_layer; ++il) {
  9428. cur = llm_build_norm(ctx0, inpL, hparams,
  9429. model.layers[il].attn_norm,
  9430. model.layers[il].attn_norm_b,
  9431. LLM_NORM, cb, il);
  9432. cb(cur, "attn_norm", il);
  9433. // self-attention
  9434. {
  9435. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  9436. cb(cur, "wqkv", il);
  9437. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9438. cb(cur, "bqkv", il);
  9439. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9440. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9441. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9442. cb(Qcur, "Qcur", il);
  9443. cb(Kcur, "Kcur", il);
  9444. cb(Vcur, "Vcur", il);
  9445. Qcur = ggml_rope_ext(
  9446. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9447. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9448. ext_factor, attn_factor, beta_fast, beta_slow
  9449. );
  9450. cb(Qcur, "Qcur", il);
  9451. Kcur = ggml_rope_ext(
  9452. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9453. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9454. ext_factor, attn_factor, beta_fast, beta_slow
  9455. );
  9456. cb(Kcur, "Kcur", il);
  9457. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9458. model.layers[il].wo, model.layers[il].bo,
  9459. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9460. }
  9461. if (il == n_layer - 1) {
  9462. // skip computing output for unused tokens
  9463. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9464. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9465. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9466. }
  9467. // ffn
  9468. if (hparams.use_par_res) {
  9469. // attention and ffn are computed in parallel
  9470. // x = x + attn(ln1(x)) + ffn(ln2(x))
  9471. struct ggml_tensor * attn_out = cur;
  9472. cur = llm_build_norm(ctx0, inpL, hparams,
  9473. model.layers[il].ffn_norm,
  9474. model.layers[il].ffn_norm_b,
  9475. LLM_NORM, cb, il);
  9476. cb(cur, "ffn_norm", il);
  9477. cur = llm_build_ffn(ctx0, cur,
  9478. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9479. NULL, NULL,
  9480. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9481. NULL,
  9482. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9483. cb(cur, "ffn_out", il);
  9484. cur = ggml_add(ctx0, cur, inpL);
  9485. cb(cur, "ffn_out", il);
  9486. inpL = ggml_add(ctx0, cur, attn_out);
  9487. cb(inpL, "l_out", il);
  9488. } else {
  9489. // attention and ffn are computed sequentially
  9490. // x = x + attn(ln1(x))
  9491. // x = x + ffn(ln2(x))
  9492. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9493. cb(ffn_inp, "ffn_inp", il);
  9494. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9495. model.layers[il].ffn_norm,
  9496. model.layers[il].ffn_norm_b,
  9497. LLM_NORM, cb, il);
  9498. cb(cur, "ffn_norm", il);
  9499. cur = llm_build_ffn(ctx0, cur,
  9500. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9501. NULL, NULL,
  9502. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9503. NULL,
  9504. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9505. cb(cur, "ffn_out", il);
  9506. inpL = ggml_add(ctx0, cur, ffn_inp);
  9507. cb(inpL, "l_out", il);
  9508. }
  9509. }
  9510. cur = llm_build_norm(ctx0, inpL, hparams,
  9511. model.output_norm,
  9512. model.output_norm_b,
  9513. LLM_NORM, cb, -1);
  9514. cb(cur, "result_norm", -1);
  9515. cur = ggml_mul_mat(ctx0, model.output, cur);
  9516. cb(cur, "result_output", -1);
  9517. ggml_build_forward_expand(gf, cur);
  9518. return gf;
  9519. }
  9520. struct ggml_cgraph * build_arctic() {
  9521. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9522. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9523. int32_t n_tokens = this->n_tokens;
  9524. const int64_t n_embd_head = hparams.n_embd_head_v;
  9525. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9526. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9527. struct ggml_tensor * cur;
  9528. struct ggml_tensor * inpL;
  9529. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9530. // inp_pos - contains the positions
  9531. struct ggml_tensor * inp_pos = build_inp_pos();
  9532. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9533. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9534. for (int il = 0; il < n_layer; ++il) {
  9535. struct ggml_tensor * inpSA = inpL;
  9536. // norm
  9537. cur = llm_build_norm(ctx0, inpL, hparams,
  9538. model.layers[il].attn_norm, NULL,
  9539. LLM_NORM_RMS, cb, il);
  9540. cb(cur, "attn_norm", il);
  9541. // self-attention
  9542. {
  9543. // compute Q and K and RoPE them
  9544. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9545. cb(Qcur, "Qcur", il);
  9546. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9547. cb(Kcur, "Kcur", il);
  9548. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9549. cb(Vcur, "Vcur", il);
  9550. Qcur = ggml_rope_ext(
  9551. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9552. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9553. ext_factor, attn_factor, beta_fast, beta_slow
  9554. );
  9555. cb(Qcur, "Qcur", il);
  9556. Kcur = ggml_rope_ext(
  9557. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9558. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9559. ext_factor, attn_factor, beta_fast, beta_slow
  9560. );
  9561. cb(Kcur, "Kcur", il);
  9562. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9563. model.layers[il].wo, NULL,
  9564. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9565. }
  9566. if (il == n_layer - 1) {
  9567. // skip computing output for unused tokens
  9568. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9569. n_tokens = n_outputs;
  9570. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9571. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9572. }
  9573. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9574. cb(ffn_inp, "ffn_inp", il);
  9575. // feed-forward network
  9576. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9577. model.layers[il].ffn_norm, NULL,
  9578. LLM_NORM_RMS, cb, il);
  9579. cb(cur, "ffn_norm", il);
  9580. cur = llm_build_ffn(ctx0, cur,
  9581. model.layers[il].ffn_up, NULL,
  9582. model.layers[il].ffn_gate, NULL,
  9583. model.layers[il].ffn_down, NULL,
  9584. NULL,
  9585. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9586. cb(cur, "ffn_out", il);
  9587. struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  9588. cb(ffn_out, "ffn_out", il);
  9589. // MoE
  9590. cur = llm_build_norm(ctx0, inpSA, hparams,
  9591. model.layers[il].ffn_norm_exps, NULL,
  9592. LLM_NORM_RMS, cb, il);
  9593. cb(cur, "ffn_norm_exps", il);
  9594. cur = llm_build_moe_ffn(ctx0, cur,
  9595. model.layers[il].ffn_gate_inp,
  9596. model.layers[il].ffn_up_exps,
  9597. model.layers[il].ffn_gate_exps,
  9598. model.layers[il].ffn_down_exps,
  9599. n_expert, n_expert_used,
  9600. LLM_FFN_SILU, true,
  9601. false, 0.0,
  9602. cb, il);
  9603. cb(cur, "ffn_moe_out", il);
  9604. cur = ggml_add(ctx0, cur, ffn_out);
  9605. cb(cur, "ffn_out", il);
  9606. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9607. if (layer_dir != nullptr) {
  9608. cur = ggml_add(ctx0, cur, layer_dir);
  9609. }
  9610. cb(cur, "l_out", il);
  9611. // input for next layer
  9612. inpL = cur;
  9613. }
  9614. cur = inpL;
  9615. cur = llm_build_norm(ctx0, cur, hparams,
  9616. model.output_norm, NULL,
  9617. LLM_NORM_RMS, cb, -1);
  9618. cb(cur, "result_norm", -1);
  9619. // lm_head
  9620. cur = ggml_mul_mat(ctx0, model.output, cur);
  9621. cb(cur, "result_output", -1);
  9622. ggml_build_forward_expand(gf, cur);
  9623. return gf;
  9624. }
  9625. struct ggml_cgraph * build_deepseek2() {
  9626. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9627. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9628. int32_t n_tokens = this->n_tokens;
  9629. bool is_lite = (hparams.n_layer == 27);
  9630. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  9631. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  9632. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  9633. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  9634. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  9635. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9636. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9637. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9638. struct ggml_tensor * cur;
  9639. struct ggml_tensor * inpL;
  9640. // {n_embd, n_tokens}
  9641. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9642. // inp_pos - contains the positions
  9643. struct ggml_tensor * inp_pos = build_inp_pos();
  9644. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9645. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9646. for (int il = 0; il < n_layer; ++il) {
  9647. struct ggml_tensor * inpSA = inpL;
  9648. // norm
  9649. cur = llm_build_norm(ctx0, inpL, hparams,
  9650. model.layers[il].attn_norm, NULL,
  9651. LLM_NORM_RMS, cb, il);
  9652. cb(cur, "attn_norm", il);
  9653. // self_attention
  9654. {
  9655. struct ggml_tensor * q = NULL;
  9656. if (!is_lite) {
  9657. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  9658. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  9659. cb(q, "q", il);
  9660. q = llm_build_norm(ctx0, q, hparams,
  9661. model.layers[il].attn_q_a_norm, NULL,
  9662. LLM_NORM_RMS, cb, il);
  9663. cb(q, "q", il);
  9664. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  9665. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  9666. cb(q, "q", il);
  9667. } else {
  9668. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9669. cb(q, "q", il);
  9670. }
  9671. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9672. struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9673. ggml_row_size(q->type, hparams.n_embd_head_k),
  9674. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9675. 0);
  9676. cb(q_nope, "q_nope", il);
  9677. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9678. struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9679. ggml_row_size(q->type, hparams.n_embd_head_k),
  9680. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9681. ggml_row_size(q->type, n_embd_head_qk_nope));
  9682. cb(q_pe, "q_pe", il);
  9683. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  9684. struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  9685. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  9686. // split into {kv_lora_rank, n_tokens}
  9687. struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  9688. kv_pe_compresseed->nb[1],
  9689. 0);
  9690. cb(kv_compressed, "kv_compressed", il);
  9691. // and {n_embd_head_qk_rope, n_tokens}
  9692. struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  9693. kv_pe_compresseed->nb[1],
  9694. kv_pe_compresseed->nb[1],
  9695. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  9696. cb(k_pe, "k_pe", il);
  9697. kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
  9698. kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
  9699. model.layers[il].attn_kv_a_norm, NULL,
  9700. LLM_NORM_RMS, cb, il);
  9701. cb(kv_compressed, "kv_compressed", il);
  9702. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  9703. struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  9704. cb(kv, "kv", il);
  9705. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9706. struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  9707. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  9708. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9709. 0);
  9710. cb(k_nope, "k_nope", il);
  9711. // and {n_head * n_embd_head_v, n_tokens}
  9712. struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  9713. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9714. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  9715. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  9716. cb(v_states, "v_states", il);
  9717. v_states = ggml_cont(ctx0, v_states);
  9718. cb(v_states, "v_states", il);
  9719. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  9720. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  9721. 0);
  9722. cb(v_states, "v_states", il);
  9723. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9724. q_pe = ggml_rope_ext(
  9725. ctx0, q_pe, inp_pos, nullptr,
  9726. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9727. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9728. );
  9729. cb(q_pe, "q_pe", il);
  9730. // shared RoPE key
  9731. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9732. k_pe = ggml_rope_ext(
  9733. ctx0, k_pe, inp_pos, nullptr,
  9734. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9735. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9736. );
  9737. cb(k_pe, "k_pe", il);
  9738. struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  9739. cb(q_states, "q_states", il);
  9740. struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  9741. cb(k_states, "k_states", il);
  9742. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9743. model.layers[il].wo, NULL,
  9744. k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
  9745. }
  9746. if (il == n_layer - 1) {
  9747. // skip computing output for unused tokens
  9748. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9749. n_tokens = n_outputs;
  9750. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9751. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9752. }
  9753. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9754. cb(ffn_inp, "ffn_inp", il);
  9755. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  9756. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9757. model.layers[il].ffn_norm, NULL,
  9758. LLM_NORM_RMS, cb, il);
  9759. cb(cur, "ffn_norm", il);
  9760. cur = llm_build_ffn(ctx0, cur,
  9761. model.layers[il].ffn_up, NULL,
  9762. model.layers[il].ffn_gate, NULL,
  9763. model.layers[il].ffn_down, NULL,
  9764. NULL,
  9765. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9766. cb(cur, "ffn_out", il);
  9767. } else {
  9768. // MoE branch
  9769. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9770. model.layers[il].ffn_norm, NULL,
  9771. LLM_NORM_RMS, cb, il);
  9772. cb(cur, "ffn_norm", il);
  9773. ggml_tensor * moe_out =
  9774. llm_build_moe_ffn(ctx0, cur,
  9775. model.layers[il].ffn_gate_inp,
  9776. model.layers[il].ffn_up_exps,
  9777. model.layers[il].ffn_gate_exps,
  9778. model.layers[il].ffn_down_exps,
  9779. n_expert, n_expert_used,
  9780. LLM_FFN_SILU, false,
  9781. true, hparams.expert_weights_scale,
  9782. cb, il);
  9783. cb(moe_out, "ffn_moe_out", il);
  9784. // FFN shared expert
  9785. {
  9786. ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur,
  9787. model.layers[il].ffn_up_shexp, NULL,
  9788. model.layers[il].ffn_gate_shexp, NULL,
  9789. model.layers[il].ffn_down_shexp, NULL,
  9790. NULL,
  9791. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9792. cb(ffn_shexp, "ffn_shexp", il);
  9793. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9794. cb(cur, "ffn_out", il);
  9795. }
  9796. }
  9797. cur = ggml_add(ctx0, cur, ffn_inp);
  9798. cb(cur, "l_out", il);
  9799. // input for next layer
  9800. inpL = cur;
  9801. }
  9802. cur = inpL;
  9803. cur = llm_build_norm(ctx0, cur, hparams,
  9804. model.output_norm, NULL,
  9805. LLM_NORM_RMS, cb, -1);
  9806. cb(cur, "result_norm", -1);
  9807. // lm_head
  9808. cur = ggml_mul_mat(ctx0, model.output, cur);
  9809. cb(cur, "result_output", -1);
  9810. ggml_build_forward_expand(gf, cur);
  9811. return gf;
  9812. }
  9813. struct ggml_cgraph * build_bitnet() {
  9814. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9815. const int64_t n_embd_head = hparams.n_embd_head_v;
  9816. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9817. struct ggml_tensor * cur;
  9818. struct ggml_tensor * inpL;
  9819. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9820. // inp_pos - contains the positions
  9821. struct ggml_tensor * inp_pos = build_inp_pos();
  9822. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9823. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9824. for (int il = 0; il < n_layer; ++il) {
  9825. struct ggml_tensor * inpSA = inpL;
  9826. cur = llm_build_norm(ctx0, inpL, hparams,
  9827. model.layers[il].attn_norm, NULL,
  9828. LLM_NORM_RMS, cb, il);
  9829. cb(cur, "attn_norm", il);
  9830. // self-attention
  9831. {
  9832. // compute Q and K and RoPE them
  9833. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9834. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  9835. cb(Qcur, "Qcur", il);
  9836. if (model.layers[il].bq) {
  9837. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9838. cb(Qcur, "Qcur", il);
  9839. }
  9840. // B1.K
  9841. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9842. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  9843. cb(Kcur, "Kcur", il);
  9844. if (model.layers[il].bk) {
  9845. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9846. cb(Kcur, "Kcur", il);
  9847. }
  9848. // B1.V
  9849. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9850. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  9851. cb(Vcur, "Vcur", il);
  9852. if (model.layers[il].bv) {
  9853. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9854. cb(Vcur, "Vcur", il);
  9855. }
  9856. Qcur = ggml_rope_ext(
  9857. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9858. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9859. ext_factor, attn_factor, beta_fast, beta_slow
  9860. );
  9861. cb(Qcur, "Qcur", il);
  9862. Kcur = ggml_rope_ext(
  9863. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9864. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9865. ext_factor, attn_factor, beta_fast, beta_slow
  9866. );
  9867. cb(Kcur, "Kcur", il);
  9868. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9869. nullptr, nullptr,
  9870. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9871. cur = llm_build_norm(ctx0, cur, hparams,
  9872. model.layers[il].attn_sub_norm, NULL,
  9873. LLM_NORM_RMS, cb, il);
  9874. cb(cur, "attn_sub_norm", il);
  9875. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  9876. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  9877. if (model.layers[il].bo) {
  9878. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  9879. }
  9880. cb(cur, "attn_o_out", il);
  9881. }
  9882. if (il == n_layer - 1) {
  9883. // skip computing output for unused tokens
  9884. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9885. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9886. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9887. }
  9888. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9889. cb(ffn_inp, "ffn_inp", il);
  9890. // feed-forward forward
  9891. if (model.layers[il].ffn_gate_inp == nullptr) {
  9892. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9893. model.layers[il].ffn_norm, NULL,
  9894. LLM_NORM_RMS, cb, il);
  9895. cb(cur, "ffn_norm", il);
  9896. struct ggml_tensor *tmp = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  9897. tmp = ggml_mul(ctx0, tmp, model.layers[il].ffn_up_scale);
  9898. cb(tmp, "ffn_up", il);
  9899. cur = ggml_mul_mat(ctx0, model.layers[il].ffn_gate, cur);
  9900. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_gate_scale);
  9901. cb(cur, "ffn_gate", il);
  9902. cur = ggml_silu(ctx0, cur);
  9903. cb(cur, "ffn_silu", il);
  9904. cur = ggml_mul(ctx0, cur, tmp);
  9905. cb(cur, "ffn_gate_par", il);
  9906. cur = llm_build_norm(ctx0, cur, hparams,
  9907. model.layers[il].ffn_sub_norm, NULL,
  9908. LLM_NORM_RMS, cb, il);
  9909. cb(cur, "ffn_sub_norm", il);
  9910. cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur);
  9911. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  9912. cb(cur, "ffn_down", il);
  9913. }
  9914. cur = ggml_add(ctx0, cur, ffn_inp);
  9915. cb(cur, "l_out", il);
  9916. // input for next layer
  9917. inpL = cur;
  9918. }
  9919. cur = inpL;
  9920. cur = llm_build_norm(ctx0, cur, hparams,
  9921. model.output_norm, NULL,
  9922. LLM_NORM_RMS, cb, -1);
  9923. cb(cur, "result_norm", -1);
  9924. // lm_head
  9925. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  9926. cb(cur, "result_output", -1);
  9927. ggml_build_forward_expand(gf, cur);
  9928. return gf;
  9929. }
  9930. };
  9931. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  9932. llama_batch dummy;
  9933. dummy.n_tokens = 0;
  9934. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9935. struct llm_build_context llm(lctx, dummy, cb, false);
  9936. llm.init();
  9937. struct ggml_cgraph * result = llm.build_defrag(ids);
  9938. llm.free();
  9939. return result;
  9940. }
  9941. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  9942. llama_batch dummy;
  9943. dummy.n_tokens = 0;
  9944. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9945. struct llm_build_context llm(lctx, dummy, cb, false);
  9946. llm.init();
  9947. struct ggml_cgraph * result = llm.build_k_shift();
  9948. llm.free();
  9949. return result;
  9950. }
  9951. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  9952. llama_batch dummy;
  9953. dummy.n_tokens = 0;
  9954. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9955. struct llm_build_context llm(lctx, dummy, cb, false);
  9956. llm.init();
  9957. struct ggml_cgraph * result = llm.build_s_copy();
  9958. llm.free();
  9959. return result;
  9960. }
  9961. static struct ggml_cgraph * llama_build_graph(
  9962. llama_context & lctx,
  9963. const llama_batch & batch,
  9964. bool worst_case) {
  9965. const auto & model = lctx.model;
  9966. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  9967. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9968. if (il >= 0) {
  9969. ggml_format_name(cur, "%s-%d", name, il);
  9970. } else {
  9971. ggml_set_name(cur, name);
  9972. }
  9973. if (!lctx.cparams.offload_kqv) {
  9974. if (strcmp(name, "kqv_merged_cont") == 0) {
  9975. // all nodes between the KV store and the attention output are run on the CPU
  9976. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9977. }
  9978. }
  9979. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9980. // FIXME: fix in ggml_backend_sched
  9981. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9982. if (batch.n_tokens < 32 || full_offload) {
  9983. if (il != -1 && strcmp(name, "norm") == 0) {
  9984. for (auto * backend : lctx.backends) {
  9985. if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
  9986. (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
  9987. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9988. break;
  9989. }
  9990. }
  9991. }
  9992. }
  9993. };
  9994. struct ggml_cgraph * result = NULL;
  9995. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9996. llm.init();
  9997. switch (model.arch) {
  9998. case LLM_ARCH_LLAMA:
  9999. {
  10000. result = llm.build_llama();
  10001. } break;
  10002. case LLM_ARCH_BAICHUAN:
  10003. {
  10004. result = llm.build_baichuan();
  10005. } break;
  10006. case LLM_ARCH_FALCON:
  10007. {
  10008. result = llm.build_falcon();
  10009. } break;
  10010. case LLM_ARCH_GROK:
  10011. {
  10012. result = llm.build_grok();
  10013. } break;
  10014. case LLM_ARCH_STARCODER:
  10015. {
  10016. result = llm.build_starcoder();
  10017. } break;
  10018. case LLM_ARCH_REFACT:
  10019. {
  10020. result = llm.build_refact();
  10021. } break;
  10022. case LLM_ARCH_BERT:
  10023. case LLM_ARCH_JINA_BERT_V2:
  10024. case LLM_ARCH_NOMIC_BERT:
  10025. {
  10026. result = llm.build_bert();
  10027. } break;
  10028. case LLM_ARCH_BLOOM:
  10029. {
  10030. result = llm.build_bloom();
  10031. } break;
  10032. case LLM_ARCH_MPT:
  10033. {
  10034. result = llm.build_mpt();
  10035. } break;
  10036. case LLM_ARCH_STABLELM:
  10037. {
  10038. result = llm.build_stablelm();
  10039. } break;
  10040. case LLM_ARCH_QWEN:
  10041. {
  10042. result = llm.build_qwen();
  10043. } break;
  10044. case LLM_ARCH_QWEN2:
  10045. {
  10046. result = llm.build_qwen2();
  10047. } break;
  10048. case LLM_ARCH_QWEN2MOE:
  10049. {
  10050. result = llm.build_qwen2moe();
  10051. } break;
  10052. case LLM_ARCH_PHI2:
  10053. {
  10054. result = llm.build_phi2();
  10055. } break;
  10056. case LLM_ARCH_PHI3:
  10057. {
  10058. result = llm.build_phi3();
  10059. } break;
  10060. case LLM_ARCH_PLAMO:
  10061. {
  10062. result = llm.build_plamo();
  10063. } break;
  10064. case LLM_ARCH_GPT2:
  10065. {
  10066. result = llm.build_gpt2();
  10067. } break;
  10068. case LLM_ARCH_CODESHELL:
  10069. {
  10070. result = llm.build_codeshell();
  10071. } break;
  10072. case LLM_ARCH_ORION:
  10073. {
  10074. result = llm.build_orion();
  10075. } break;
  10076. case LLM_ARCH_INTERNLM2:
  10077. {
  10078. result = llm.build_internlm2();
  10079. } break;
  10080. case LLM_ARCH_MINICPM:
  10081. {
  10082. result = llm.build_minicpm();
  10083. } break;
  10084. case LLM_ARCH_GEMMA:
  10085. {
  10086. result = llm.build_gemma();
  10087. } break;
  10088. case LLM_ARCH_STARCODER2:
  10089. {
  10090. result = llm.build_starcoder2();
  10091. } break;
  10092. case LLM_ARCH_MAMBA:
  10093. {
  10094. result = llm.build_mamba();
  10095. } break;
  10096. case LLM_ARCH_XVERSE:
  10097. {
  10098. result = llm.build_xverse();
  10099. } break;
  10100. case LLM_ARCH_COMMAND_R:
  10101. {
  10102. result = llm.build_command_r();
  10103. } break;
  10104. case LLM_ARCH_DBRX:
  10105. {
  10106. result = llm.build_dbrx();
  10107. } break;
  10108. case LLM_ARCH_OLMO:
  10109. {
  10110. result = llm.build_olmo();
  10111. } break;
  10112. case LLM_ARCH_GPTNEOX:
  10113. {
  10114. result = llm.build_gptneox();
  10115. } break;
  10116. case LLM_ARCH_ARCTIC:
  10117. {
  10118. result = llm.build_arctic();
  10119. } break;
  10120. case LLM_ARCH_DEEPSEEK2:
  10121. {
  10122. result = llm.build_deepseek2();
  10123. } break;
  10124. case LLM_ARCH_BITNET:
  10125. {
  10126. result = llm.build_bitnet();
  10127. } break;
  10128. default:
  10129. GGML_ASSERT(false);
  10130. }
  10131. // add on pooling layer
  10132. if (lctx.cparams.embeddings) {
  10133. result = llm.append_pooling(result);
  10134. }
  10135. llm.free();
  10136. return result;
  10137. }
  10138. static void llama_set_k_shift(llama_context & lctx) {
  10139. const int64_t kv_size = lctx.kv_self.size;
  10140. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  10141. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  10142. for (int i = 0; i < kv_size; ++i) {
  10143. data[i] = lctx.kv_self.cells[i].delta;
  10144. }
  10145. }
  10146. static void llama_set_s_copy(llama_context & lctx) {
  10147. const int64_t kv_size = lctx.kv_self.size;
  10148. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  10149. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  10150. for (int i = 0; i < kv_size; ++i) {
  10151. data[i] = lctx.kv_self.cells[i].src;
  10152. }
  10153. }
  10154. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  10155. //
  10156. // set input data
  10157. //
  10158. const auto & hparams = lctx.model.hparams;
  10159. const auto & cparams = lctx.cparams;
  10160. const auto & kv_self = lctx.kv_self;
  10161. if (batch.token) {
  10162. const int64_t n_tokens = batch.n_tokens;
  10163. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  10164. }
  10165. if (batch.embd) {
  10166. const int64_t n_embd = hparams.n_embd;
  10167. const int64_t n_tokens = batch.n_tokens;
  10168. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  10169. }
  10170. if (batch.pos && lctx.inp_pos) {
  10171. const int64_t n_tokens = batch.n_tokens;
  10172. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  10173. }
  10174. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  10175. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  10176. const int64_t n_tokens = batch.n_tokens;
  10177. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  10178. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  10179. if (lctx.n_outputs == n_tokens) {
  10180. for (int i = 0; i < n_tokens; ++i) {
  10181. data[i] = i;
  10182. }
  10183. } else if (batch.logits) {
  10184. int32_t n_outputs = 0;
  10185. for (int i = 0; i < n_tokens; ++i) {
  10186. if (batch.logits[i]) {
  10187. data[n_outputs++] = i;
  10188. }
  10189. }
  10190. // the graph needs to have been passed the correct number of outputs
  10191. GGML_ASSERT(lctx.n_outputs == n_outputs);
  10192. } else if (lctx.n_outputs == 1) {
  10193. // only keep last output
  10194. data[0] = n_tokens - 1;
  10195. } else {
  10196. GGML_ASSERT(lctx.n_outputs == 0);
  10197. }
  10198. }
  10199. GGML_ASSERT(
  10200. // (!a || b) is a logical implication (a -> b)
  10201. // !hparams.causal_attn -> !cparams.causal_attn
  10202. (hparams.causal_attn || !cparams.causal_attn) &&
  10203. "causal attention is not supported by this model"
  10204. );
  10205. if (lctx.inp_KQ_mask) {
  10206. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  10207. if (cparams.causal_attn) {
  10208. const int64_t n_kv = kv_self.n;
  10209. const int64_t n_tokens = batch.n_tokens;
  10210. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  10211. float * data = (float *) lctx.inp_KQ_mask->data;
  10212. // For causal attention, use only the previous KV cells
  10213. // of the correct sequence for each token of the batch.
  10214. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  10215. for (int h = 0; h < 1; ++h) {
  10216. for (int j = 0; j < n_tokens; ++j) {
  10217. const llama_pos pos = batch.pos[j];
  10218. const llama_seq_id seq_id = batch.seq_id[j][0];
  10219. for (int i = 0; i < n_kv; ++i) {
  10220. float f;
  10221. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  10222. f = -INFINITY;
  10223. } else {
  10224. if (hparams.use_alibi) {
  10225. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  10226. } else {
  10227. f = 0.0f;
  10228. }
  10229. }
  10230. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  10231. }
  10232. }
  10233. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  10234. for (int j = 0; j < n_kv; ++j) {
  10235. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  10236. }
  10237. }
  10238. }
  10239. } else {
  10240. // when using kv cache, the mask needs to match the kv cache size
  10241. const int64_t n_tokens = batch.n_tokens;
  10242. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  10243. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  10244. float * data = (float *) lctx.inp_KQ_mask->data;
  10245. for (int h = 0; h < 1; ++h) {
  10246. for (int j = 0; j < n_tokens; ++j) {
  10247. const llama_seq_id seq_id = batch.seq_id[j][0];
  10248. for (int i = 0; i < n_tokens; ++i) {
  10249. float f = -INFINITY;
  10250. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  10251. if (batch.seq_id[i][s] == seq_id) {
  10252. if (hparams.use_alibi) {
  10253. f = -fabs(batch.pos[i] - batch.pos[j]);
  10254. } else {
  10255. f = 0.0f;
  10256. }
  10257. break;
  10258. }
  10259. }
  10260. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  10261. }
  10262. for (int i = n_tokens; i < n_stride; ++i) {
  10263. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  10264. }
  10265. }
  10266. }
  10267. }
  10268. }
  10269. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  10270. const int64_t n_tokens = batch.n_tokens;
  10271. GGML_ASSERT(lctx.inp_mean);
  10272. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  10273. float * data = (float *) lctx.inp_mean->data;
  10274. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  10275. std::vector<uint64_t> sum(n_tokens, 0);
  10276. for (int i = 0; i < n_tokens; ++i) {
  10277. const llama_seq_id seq_id = batch.seq_id[i][0];
  10278. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  10279. sum[seq_id] += 1;
  10280. }
  10281. std::vector<float> div(n_tokens, 0.0f);
  10282. for (int i = 0; i < n_tokens; ++i) {
  10283. const uint64_t s = sum[i];
  10284. if (s > 0) {
  10285. div[i] = 1.0f/float(s);
  10286. }
  10287. }
  10288. for (int i = 0; i < n_tokens; ++i) {
  10289. const llama_seq_id seq_id = batch.seq_id[i][0];
  10290. data[seq_id*n_tokens + i] = div[seq_id];
  10291. }
  10292. }
  10293. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  10294. const int64_t n_tokens = batch.n_tokens;
  10295. GGML_ASSERT(lctx.inp_cls);
  10296. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  10297. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  10298. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  10299. for (int i = 0; i < n_tokens; ++i) {
  10300. const llama_seq_id seq_id = batch.seq_id[i][0];
  10301. const llama_pos pos = batch.pos[i];
  10302. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  10303. if (pos == 0) {
  10304. data[seq_id] = i;
  10305. }
  10306. }
  10307. }
  10308. if (cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
  10309. const int64_t n_tokens = batch.n_tokens;
  10310. GGML_ASSERT(lctx.inp_cls);
  10311. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  10312. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  10313. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  10314. std::vector<int> last_pos(n_tokens, -1);
  10315. std::vector<int> last_row(n_tokens, -1);
  10316. for (int i = 0; i < n_tokens; ++i) {
  10317. const llama_seq_id seq_id = batch.seq_id[i][0];
  10318. const llama_pos pos = batch.pos[i];
  10319. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
  10320. if (pos >= last_pos[seq_id]) {
  10321. last_pos[seq_id] = pos;
  10322. last_row[seq_id] = i;
  10323. }
  10324. }
  10325. for (int i = 0; i < n_tokens; ++i) {
  10326. if (last_row[i] >= 0) {
  10327. data[i] = last_row[i];
  10328. }
  10329. }
  10330. }
  10331. if (kv_self.recurrent) {
  10332. const int64_t n_kv = kv_self.n;
  10333. if (lctx.inp_s_mask) {
  10334. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  10335. float * data = (float *) lctx.inp_s_mask->data;
  10336. // states which are not affected by the current batch are left untouched
  10337. for (int i = 0; i < n_kv; ++i) {
  10338. llama_seq_id seq_id = i + lctx.kv_self.head;
  10339. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  10340. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  10341. data[i] = (float) has_self_seq;
  10342. // ensure current sequences will be kept
  10343. if (!has_self_seq && kv_cell.pos >= 0) {
  10344. kv_cell.seq_id.insert(seq_id);
  10345. }
  10346. }
  10347. }
  10348. // For Mamba (and other recurrent architectures),
  10349. // update the correct state(s)/sequence(s) for each token of the batch.
  10350. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  10351. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  10352. if (lctx.inp_s_seq) {
  10353. const int64_t n_tokens = batch.n_tokens;
  10354. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  10355. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  10356. for (int j = 0; j < n_tokens; ++j) {
  10357. const int32_t n_seq = batch.n_seq_id[j];
  10358. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  10359. for (int i = 0; i < n_kv; ++i) {
  10360. if (i < n_seq) {
  10361. // for this type of model, the head is the minimum seq_id of the batch
  10362. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  10363. } else {
  10364. data[j*n_kv + i] = -1;
  10365. }
  10366. }
  10367. }
  10368. }
  10369. }
  10370. }
  10371. // Make sure enough space is available for outputs.
  10372. // Returns max number of outputs for which space was reserved.
  10373. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  10374. const auto & cparams = lctx.cparams;
  10375. const auto & hparams = lctx.model.hparams;
  10376. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  10377. const auto n_batch = cparams.n_batch;
  10378. const auto n_vocab = hparams.n_vocab;
  10379. const auto n_embd = hparams.n_embd;
  10380. // TODO: use a per-batch flag for logits presence instead
  10381. const bool has_logits = !cparams.embeddings;
  10382. const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  10383. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  10384. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  10385. if (lctx.output_ids.empty()) {
  10386. // init, never resized afterwards
  10387. lctx.output_ids.resize(n_batch);
  10388. }
  10389. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  10390. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  10391. // alloc only when more than the current capacity is required
  10392. // TODO: also consider shrinking the buffer
  10393. if (!lctx.buf_output || prev_size < new_size) {
  10394. if (lctx.buf_output) {
  10395. #ifndef NDEBUG
  10396. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  10397. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  10398. #endif
  10399. ggml_backend_buffer_free(lctx.buf_output);
  10400. lctx.buf_output = nullptr;
  10401. lctx.logits = nullptr;
  10402. lctx.embd = nullptr;
  10403. }
  10404. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  10405. if (lctx.buf_output == nullptr) {
  10406. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  10407. return 0;
  10408. }
  10409. }
  10410. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  10411. lctx.logits = has_logits ? output_base : nullptr;
  10412. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  10413. lctx.output_size = n_outputs_max;
  10414. lctx.logits_size = logits_size;
  10415. lctx.embd_size = embd_size;
  10416. // set all ids as invalid (negative)
  10417. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  10418. ggml_backend_buffer_clear(lctx.buf_output, 0);
  10419. lctx.n_outputs = 0;
  10420. return n_outputs_max;
  10421. }
  10422. static void llama_graph_compute(
  10423. llama_context & lctx,
  10424. ggml_cgraph * gf,
  10425. int n_threads) {
  10426. #ifdef GGML_USE_METAL
  10427. if (ggml_backend_is_metal(lctx.backend_metal)) {
  10428. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  10429. }
  10430. #endif
  10431. if (lctx.backend_cpu != nullptr) {
  10432. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  10433. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  10434. }
  10435. #ifdef GGML_USE_BLAS
  10436. if (lctx.backend_blas != nullptr) {
  10437. ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
  10438. }
  10439. #endif
  10440. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  10441. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  10442. }
  10443. // decode a batch of tokens by evaluating the transformer
  10444. //
  10445. // - lctx: llama context
  10446. // - batch: batch to evaluate
  10447. //
  10448. // return 0 on success
  10449. // return positive int on warning
  10450. // return negative int on error
  10451. //
  10452. static int llama_decode_internal(
  10453. llama_context & lctx,
  10454. llama_batch batch_all) { // TODO: rename back to batch
  10455. const uint32_t n_tokens_all = batch_all.n_tokens;
  10456. if (n_tokens_all == 0) {
  10457. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  10458. return -1;
  10459. }
  10460. const auto & model = lctx.model;
  10461. const auto & hparams = model.hparams;
  10462. const auto & cparams = lctx.cparams;
  10463. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  10464. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  10465. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  10466. if (lctx.t_compute_start_us == 0) {
  10467. lctx.t_compute_start_us = ggml_time_us();
  10468. }
  10469. lctx.n_queued_tokens += n_tokens_all;
  10470. auto & kv_self = lctx.kv_self;
  10471. const int64_t n_embd = hparams.n_embd;
  10472. const int64_t n_vocab = hparams.n_vocab;
  10473. uint32_t n_outputs = 0;
  10474. uint32_t n_outputs_prev = 0;
  10475. const auto n_ubatch = cparams.n_ubatch;
  10476. std::vector<llama_pos> pos;
  10477. std::vector<int32_t> n_seq_id;
  10478. std::vector<llama_seq_id *> seq_id_arr;
  10479. std::vector<std::vector<llama_seq_id>> seq_id;
  10480. // count outputs
  10481. if (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE) {
  10482. n_outputs = n_tokens_all;
  10483. } else if (batch_all.logits) {
  10484. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10485. n_outputs += batch_all.logits[i] != 0;
  10486. }
  10487. } else if (lctx.logits_all) {
  10488. n_outputs = n_tokens_all;
  10489. } else {
  10490. // keep last output only
  10491. n_outputs = 1;
  10492. }
  10493. // reserve output buffer
  10494. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  10495. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  10496. return -2;
  10497. };
  10498. // set output mappings
  10499. if (batch_all.logits) {
  10500. int32_t i_logits = 0;
  10501. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10502. if (batch_all.logits[i]) {
  10503. lctx.output_ids[i] = i_logits++;
  10504. }
  10505. }
  10506. } else {
  10507. for (uint32_t i = 0; i < n_outputs; ++i) {
  10508. lctx.output_ids[i] = i;
  10509. }
  10510. }
  10511. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  10512. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  10513. llama_batch u_batch = {
  10514. /* .n_tokens = */ (int32_t) n_tokens,
  10515. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  10516. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  10517. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  10518. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  10519. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  10520. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  10521. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  10522. /* .all_pos_1 = */ batch_all.all_pos_1,
  10523. /* .all_seq_id = */ batch_all.all_seq_id,
  10524. };
  10525. // count the outputs in this u_batch
  10526. {
  10527. int32_t n_outputs_new = 0;
  10528. if (u_batch.logits) {
  10529. for (uint32_t i = 0; i < n_tokens; i++) {
  10530. n_outputs_new += u_batch.logits[i] != 0;
  10531. }
  10532. } else if (n_outputs == n_tokens_all) {
  10533. n_outputs_new = n_tokens;
  10534. } else {
  10535. // keep last output only
  10536. if (cur_token + n_tokens >= n_tokens_all) {
  10537. n_outputs_new = 1;
  10538. }
  10539. }
  10540. // needs to happen before the graph is built
  10541. lctx.n_outputs = n_outputs_new;
  10542. }
  10543. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  10544. GGML_ASSERT(n_threads > 0);
  10545. // helpers for smoother batch API transition
  10546. // after deprecating the llama_eval calls, these will be removed
  10547. if (u_batch.pos == nullptr) {
  10548. pos.resize(n_tokens);
  10549. for (uint32_t i = 0; i < n_tokens; i++) {
  10550. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  10551. }
  10552. u_batch.pos = pos.data();
  10553. }
  10554. if (u_batch.seq_id == nullptr) {
  10555. n_seq_id.resize(n_tokens);
  10556. seq_id.resize(n_tokens);
  10557. seq_id_arr.resize(n_tokens);
  10558. for (uint32_t i = 0; i < n_tokens; i++) {
  10559. n_seq_id[i] = 1;
  10560. seq_id[i].resize(1);
  10561. seq_id[i][0] = u_batch.all_seq_id;
  10562. seq_id_arr[i] = seq_id[i].data();
  10563. }
  10564. u_batch.n_seq_id = n_seq_id.data();
  10565. u_batch.seq_id = seq_id_arr.data();
  10566. }
  10567. // non-causal masks do not use the KV cache
  10568. if (hparams.causal_attn) {
  10569. llama_kv_cache_update(&lctx);
  10570. // if we have enough unused cells before the current head ->
  10571. // better to start searching from the beginning of the cache, hoping to fill it
  10572. if (kv_self.head > kv_self.used + 2*n_tokens) {
  10573. kv_self.head = 0;
  10574. }
  10575. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  10576. return 1;
  10577. }
  10578. if (!kv_self.recurrent) {
  10579. // a heuristic, to avoid attending the full cache if it is not yet utilized
  10580. // after enough generations, the benefit from this heuristic disappears
  10581. // if we start defragmenting the cache, the benefit from this will be more important
  10582. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  10583. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  10584. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  10585. }
  10586. }
  10587. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  10588. ggml_backend_sched_reset(lctx.sched);
  10589. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  10590. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  10591. // the output is always the last tensor in the graph
  10592. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  10593. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  10594. if (lctx.n_outputs == 0) {
  10595. // no output
  10596. res = nullptr;
  10597. embd = nullptr;
  10598. } else if (cparams.embeddings) {
  10599. res = nullptr; // do not extract logits for embedding case
  10600. embd = gf->nodes[gf->n_nodes - 1];
  10601. if (strcmp(embd->name, "result_embd_pooled") != 0) {
  10602. embd = gf->nodes[gf->n_nodes - 2];
  10603. }
  10604. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
  10605. } else {
  10606. embd = nullptr; // do not extract embeddings when not needed
  10607. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  10608. }
  10609. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  10610. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10611. llama_set_inputs(lctx, u_batch);
  10612. llama_graph_compute(lctx, gf, n_threads);
  10613. // update the kv ring buffer
  10614. {
  10615. kv_self.head += n_tokens;
  10616. // Ensure kv cache head points to a valid index.
  10617. if (kv_self.head >= kv_self.size) {
  10618. kv_self.head = 0;
  10619. }
  10620. }
  10621. // plot the computation graph in dot format (for debugging purposes)
  10622. //if (n_past%100 == 0) {
  10623. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  10624. //}
  10625. // extract logits
  10626. if (res) {
  10627. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  10628. GGML_ASSERT(backend_res != nullptr);
  10629. GGML_ASSERT(lctx.logits != nullptr);
  10630. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  10631. const int32_t n_outputs_new = lctx.n_outputs;
  10632. if (n_outputs_new) {
  10633. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10634. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  10635. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  10636. }
  10637. }
  10638. // extract embeddings
  10639. if (embd) {
  10640. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  10641. GGML_ASSERT(backend_embd != nullptr);
  10642. switch (cparams.pooling_type) {
  10643. case LLAMA_POOLING_TYPE_NONE:
  10644. {
  10645. // extract token embeddings
  10646. GGML_ASSERT(lctx.embd != nullptr);
  10647. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  10648. const int32_t n_outputs_new = lctx.n_outputs;
  10649. if (n_outputs_new) {
  10650. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10651. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  10652. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  10653. }
  10654. } break;
  10655. case LLAMA_POOLING_TYPE_MEAN:
  10656. case LLAMA_POOLING_TYPE_CLS:
  10657. case LLAMA_POOLING_TYPE_LAST:
  10658. {
  10659. // extract sequence embeddings
  10660. auto & embd_seq_out = lctx.embd_seq;
  10661. embd_seq_out.clear();
  10662. for (uint32_t i = 0; i < n_tokens; i++) {
  10663. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  10664. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  10665. continue;
  10666. }
  10667. embd_seq_out[seq_id].resize(n_embd);
  10668. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  10669. }
  10670. } break;
  10671. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  10672. {
  10673. GGML_ASSERT(false && "unknown pooling type");
  10674. } break;
  10675. }
  10676. }
  10677. n_outputs_prev += lctx.n_outputs;
  10678. }
  10679. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  10680. lctx.n_outputs = n_outputs;
  10681. // wait for the computation to finish (automatically done when obtaining the model output)
  10682. //llama_synchronize(&lctx);
  10683. // decide if we need to defrag the kv cache
  10684. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  10685. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  10686. // queue defragmentation for next llama_kv_cache_update
  10687. if (fragmentation > cparams.defrag_thold) {
  10688. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  10689. llama_kv_cache_defrag(kv_self);
  10690. }
  10691. }
  10692. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  10693. // overlap with device computation.
  10694. ggml_backend_sched_reset(lctx.sched);
  10695. return 0;
  10696. }
  10697. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  10698. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  10699. auto & kv_self = lctx.kv_self;
  10700. const auto & hparams = lctx.model.hparams;
  10701. const uint32_t n_layer = hparams.n_layer;
  10702. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  10703. const uint32_t n_used = kv_self.used;
  10704. assert(n_used <= n_kv);
  10705. //const int64_t t_start = ggml_time_us();
  10706. // number of cells moved
  10707. uint32_t n_moves = 0;
  10708. // each move requires 6*n_layer tensors (see build_defrag)
  10709. // - source view, destination view, copy operation
  10710. // - x2 for keys and values
  10711. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  10712. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  10713. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  10714. // determine which KV cells to move where
  10715. //
  10716. // cell i moves to ids[i]
  10717. //
  10718. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  10719. //
  10720. std::vector<uint32_t> ids(n_kv, n_kv);
  10721. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  10722. const auto & cell0 = kv_self.cells[i0];
  10723. if (!cell0.is_empty()) {
  10724. ids[i0] = i0;
  10725. continue;
  10726. }
  10727. // found a hole - fill it with data from the end of the cache
  10728. uint32_t nh = 1;
  10729. // determine the size of the hole
  10730. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  10731. nh++;
  10732. }
  10733. uint32_t nf = 0;
  10734. uint32_t is = n_kv - 1;
  10735. // starting from the end, find nh non-empty cells
  10736. for (; is > i0; --is) {
  10737. const auto & cell1 = kv_self.cells[is];
  10738. if (cell1.is_empty() || ids[is] != n_kv) {
  10739. continue;
  10740. }
  10741. // non-empty cell which is not yet moved
  10742. nf++;
  10743. if (nf == nh) {
  10744. break;
  10745. }
  10746. }
  10747. // this can only happen if `n_used` is not accurate, which would be a bug
  10748. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  10749. nf = 0;
  10750. uint32_t i1 = is;
  10751. // are we moving a continuous block of memory?
  10752. bool cont = false;
  10753. // should we stop searching for the next move?
  10754. bool stop = false;
  10755. // go back and move the nf cells to the hole
  10756. for (; i1 < n_kv; ++i1) {
  10757. auto & cell1 = kv_self.cells[i1];
  10758. if (cell1.is_empty() || ids[i1] != n_kv) {
  10759. if (n_moves == max_moves) {
  10760. stop = true;
  10761. break;
  10762. }
  10763. cont = false;
  10764. continue;
  10765. }
  10766. // this cell goes to (i0 + nf)
  10767. ids[i1] = i0 + nf;
  10768. // move the cell meta data
  10769. kv_self.cells[i0 + nf] = cell1;
  10770. // clear the old cell and move the head there
  10771. cell1 = llama_kv_cell();
  10772. kv_self.head = n_used;
  10773. if (!cont) {
  10774. n_moves++;
  10775. cont = true;
  10776. }
  10777. nf++;
  10778. if (nf == nh) {
  10779. break;
  10780. }
  10781. }
  10782. if (stop || n_moves == max_moves) {
  10783. break;
  10784. }
  10785. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  10786. i0 += nh - 1;
  10787. }
  10788. if (n_moves == 0) {
  10789. return;
  10790. }
  10791. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  10792. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  10793. #if 0
  10794. // CPU defrag
  10795. //
  10796. // TODO: optimizations are possible:
  10797. // - multiple threads
  10798. // - avoid copying to the host memory when already there
  10799. //
  10800. // likely not worth the effort, as we have ggml_graph based defrag
  10801. //
  10802. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  10803. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  10804. const uint32_t kv_size = kv_self.size;
  10805. std::vector<uint8_t> buf_k;
  10806. std::vector<uint8_t> buf_v;
  10807. for (uint32_t il = 0; il < n_layer; ++il) {
  10808. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  10809. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  10810. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  10811. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  10812. buf_k.resize(k_size);
  10813. buf_v.resize(v_size);
  10814. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10815. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10816. // batch move [i, i+nm) to [id, id+nm)
  10817. // note: cells can move only to a lower index
  10818. for (uint32_t i = 0; i < n_kv; ++i) {
  10819. const uint32_t id = ids[i];
  10820. if (i == id || id == n_kv) {
  10821. continue;
  10822. }
  10823. uint32_t nm = 1;
  10824. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  10825. nm++;
  10826. }
  10827. // move keys
  10828. {
  10829. const int64_t os = i*k_size_row;
  10830. const int64_t od = id*k_size_row;
  10831. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  10832. }
  10833. // move values (note: they are transposed)
  10834. {
  10835. const int64_t os = i;
  10836. const int64_t od = id;
  10837. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  10838. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  10839. }
  10840. }
  10841. i += nm - 1;
  10842. }
  10843. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10844. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10845. }
  10846. #else
  10847. // ggml_graph defrag
  10848. ggml_backend_sched_reset(lctx.sched);
  10849. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  10850. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10851. #endif
  10852. //const int64_t t_end = ggml_time_us();
  10853. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  10854. }
  10855. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  10856. bool need_reserve = false;
  10857. // apply K-shift if needed
  10858. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  10859. {
  10860. ggml_backend_sched_reset(lctx.sched);
  10861. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  10862. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10863. llama_set_k_shift(lctx);
  10864. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10865. need_reserve = true;
  10866. }
  10867. {
  10868. auto & kv_self = lctx.kv_self;
  10869. kv_self.has_shift = false;
  10870. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10871. kv_self.cells[i].delta = 0;
  10872. }
  10873. }
  10874. }
  10875. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  10876. {
  10877. ggml_backend_sched_reset(lctx.sched);
  10878. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  10879. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10880. llama_set_s_copy(lctx);
  10881. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10882. need_reserve = true;
  10883. }
  10884. {
  10885. auto & kv_self = lctx.kv_self;
  10886. kv_self.do_copy = false;
  10887. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10888. kv_self.cells[i].src = i;
  10889. }
  10890. }
  10891. }
  10892. // defragment the KV cache if needed
  10893. if (lctx.kv_self.do_defrag) {
  10894. llama_kv_cache_defrag_internal(lctx);
  10895. need_reserve = true;
  10896. lctx.kv_self.do_defrag = false;
  10897. }
  10898. // reserve a worst case graph again
  10899. if (need_reserve) {
  10900. // TODO: extract to a function
  10901. // build worst-case graph
  10902. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  10903. int n_past = lctx.cparams.n_ctx - n_tokens;
  10904. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  10905. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  10906. // initialize scheduler with the worst-case graph
  10907. ggml_backend_sched_reset(lctx.sched);
  10908. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  10909. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  10910. }
  10911. }
  10912. }
  10913. //
  10914. // tokenizer
  10915. //
  10916. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  10917. return vocab.type;
  10918. }
  10919. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  10920. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10921. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  10922. }
  10923. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  10924. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10925. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  10926. }
  10927. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  10928. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10929. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  10930. }
  10931. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  10932. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10933. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  10934. }
  10935. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  10936. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10937. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  10938. }
  10939. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  10940. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10941. GGML_ASSERT(llama_is_byte_token(vocab, id));
  10942. const auto & token_data = vocab.id_to_token.at(id);
  10943. switch (llama_vocab_get_type(vocab)) {
  10944. case LLAMA_VOCAB_TYPE_SPM: {
  10945. auto buf = token_data.text.substr(3, 2);
  10946. return strtol(buf.c_str(), NULL, 16);
  10947. }
  10948. case LLAMA_VOCAB_TYPE_BPE: {
  10949. GGML_ASSERT(false);
  10950. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  10951. }
  10952. case LLAMA_VOCAB_TYPE_WPM: {
  10953. GGML_ASSERT(false);
  10954. }
  10955. default:
  10956. GGML_ASSERT(false);
  10957. }
  10958. }
  10959. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  10960. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10961. static const char * hex = "0123456789ABCDEF";
  10962. switch (llama_vocab_get_type(vocab)) {
  10963. case LLAMA_VOCAB_TYPE_SPM: {
  10964. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  10965. auto token = vocab.token_to_id.find(buf);
  10966. if (token != vocab.token_to_id.end()) {
  10967. return (*token).second;
  10968. }
  10969. // Try to fall back to just the byte as a string
  10970. const char buf2[2] = { (char)ch, 0 };
  10971. return vocab.token_to_id.at(buf2);
  10972. }
  10973. case LLAMA_VOCAB_TYPE_WPM:
  10974. case LLAMA_VOCAB_TYPE_BPE: {
  10975. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  10976. }
  10977. default:
  10978. GGML_ASSERT(false);
  10979. }
  10980. }
  10981. static void llama_escape_whitespace(std::string & text) {
  10982. replace_all(text, " ", "\xe2\x96\x81");
  10983. }
  10984. static void llama_unescape_whitespace(std::string & word) {
  10985. replace_all(word, "\xe2\x96\x81", " ");
  10986. }
  10987. struct llm_symbol {
  10988. using index = int;
  10989. index prev;
  10990. index next;
  10991. const char * text;
  10992. size_t n;
  10993. };
  10994. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10995. // SPM tokenizer
  10996. // original implementation:
  10997. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10998. struct llm_bigram_spm {
  10999. struct comparator {
  11000. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  11001. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  11002. }
  11003. };
  11004. using queue_storage = std::vector<llm_bigram_spm>;
  11005. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  11006. llm_symbol::index left;
  11007. llm_symbol::index right;
  11008. float score;
  11009. size_t size;
  11010. };
  11011. struct llm_tokenizer_spm {
  11012. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  11013. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  11014. // split string into utf8 chars
  11015. int index = 0;
  11016. size_t offs = 0;
  11017. while (offs < text.size()) {
  11018. llm_symbol sym;
  11019. size_t len = utf8_len(text[offs]);
  11020. sym.text = text.c_str() + offs;
  11021. sym.n = std::min(len, text.size() - offs);
  11022. offs += sym.n;
  11023. sym.prev = index - 1;
  11024. sym.next = offs == text.size() ? -1 : index + 1;
  11025. index++;
  11026. symbols.emplace_back(sym);
  11027. }
  11028. // seed the work queue with all possible 2-character tokens.
  11029. for (size_t i = 1; i < symbols.size(); ++i) {
  11030. try_add_bigram(i - 1, i);
  11031. }
  11032. // keep substituting the highest frequency pairs for as long as we can.
  11033. while (!work_queue.empty()) {
  11034. auto bigram = work_queue.top();
  11035. work_queue.pop();
  11036. auto & left_sym = symbols[bigram.left];
  11037. auto & right_sym = symbols[bigram.right];
  11038. // if one of the symbols already got merged, skip it.
  11039. if (left_sym.n == 0 || right_sym.n == 0 ||
  11040. left_sym.n + right_sym.n != bigram.size) {
  11041. continue;
  11042. }
  11043. // merge the right sym into the left one
  11044. left_sym.n += right_sym.n;
  11045. right_sym.n = 0;
  11046. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  11047. // remove the right sym from the chain
  11048. left_sym.next = right_sym.next;
  11049. if (right_sym.next >= 0) {
  11050. symbols[right_sym.next].prev = bigram.left;
  11051. }
  11052. // find more substitutions
  11053. try_add_bigram(left_sym.prev, bigram.left);
  11054. try_add_bigram(bigram.left, left_sym.next);
  11055. }
  11056. for (int i = 0; i != -1; i = symbols[i].next) {
  11057. auto & symbol = symbols[i];
  11058. resegment(symbol, output);
  11059. }
  11060. }
  11061. private:
  11062. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  11063. auto text = std::string(symbol.text, symbol.n);
  11064. auto token = vocab.token_to_id.find(text);
  11065. // Do we need to support is_unused?
  11066. if (token != vocab.token_to_id.end()) {
  11067. output.push_back((*token).second);
  11068. return;
  11069. }
  11070. const auto p = rev_merge.find(text);
  11071. if (p == rev_merge.end()) {
  11072. // output any symbols that did not form tokens as bytes.
  11073. output.reserve(output.size() + symbol.n);
  11074. for (int j = 0; j < (int)symbol.n; ++j) {
  11075. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  11076. output.push_back(token_id);
  11077. }
  11078. return;
  11079. }
  11080. resegment(symbols[p->second.first], output);
  11081. resegment(symbols[p->second.second], output);
  11082. }
  11083. void try_add_bigram(int left, int right) {
  11084. if (left == -1 || right == -1) {
  11085. return;
  11086. }
  11087. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  11088. auto token = vocab.token_to_id.find(text);
  11089. if (token == vocab.token_to_id.end()) {
  11090. return;
  11091. }
  11092. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  11093. return;
  11094. }
  11095. const auto & tok_data = vocab.id_to_token[(*token).second];
  11096. llm_bigram_spm bigram;
  11097. bigram.left = left;
  11098. bigram.right = right;
  11099. bigram.score = tok_data.score;
  11100. bigram.size = text.size();
  11101. work_queue.push(bigram);
  11102. // Do we need to support is_unused?
  11103. rev_merge[text] = std::make_pair(left, right);
  11104. }
  11105. const llama_vocab & vocab;
  11106. std::vector<llm_symbol> symbols;
  11107. llm_bigram_spm::queue work_queue;
  11108. std::map<std::string, std::pair<int, int>> rev_merge;
  11109. };
  11110. // BPE tokenizer
  11111. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  11112. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  11113. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  11114. struct llm_bigram_bpe {
  11115. struct comparator {
  11116. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  11117. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  11118. }
  11119. };
  11120. using queue_storage = std::vector<llm_bigram_bpe>;
  11121. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  11122. llm_symbol::index left;
  11123. llm_symbol::index right;
  11124. std::string text;
  11125. int rank;
  11126. size_t size;
  11127. };
  11128. struct llm_tokenizer_bpe {
  11129. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {
  11130. GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
  11131. switch (vocab.type_pre) {
  11132. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  11133. regex_exprs = {
  11134. // original regex from tokenizer.json
  11135. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  11136. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  11137. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  11138. };
  11139. break;
  11140. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  11141. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  11142. regex_exprs = {
  11143. // same as llama3
  11144. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  11145. };
  11146. break;
  11147. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  11148. regex_exprs = {
  11149. "[\r\n]",
  11150. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  11151. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  11152. "\\s+$",
  11153. "[一-龥ࠀ-一가-퟿]+",
  11154. "\\p{N}+",
  11155. };
  11156. break;
  11157. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  11158. regex_exprs = {
  11159. "[\r\n]",
  11160. "\\s?\\p{L}+",
  11161. "\\s?\\p{P}+",
  11162. "[一-龥ࠀ-一가-퟿]+",
  11163. "\\p{N}",
  11164. };
  11165. break;
  11166. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  11167. regex_exprs = {
  11168. "[\\p{P}\\$\\+<=>\\^~\\|`]+",
  11169. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  11170. "[0-9][0-9][0-9]",
  11171. };
  11172. break;
  11173. case LLAMA_VOCAB_PRE_TYPE_MPT:
  11174. // TODO: MPT pre-tokenization regexes are unknown
  11175. // the following are close, but not exact. run the following:
  11176. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  11177. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  11178. regex_exprs = {
  11179. "\\s?\\p{L}+",
  11180. "\\s?\\p{P}+",
  11181. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  11182. };
  11183. break;
  11184. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  11185. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  11186. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  11187. regex_exprs = {
  11188. "\\p{N}",
  11189. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  11190. };
  11191. break;
  11192. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  11193. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  11194. regex_exprs = {
  11195. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  11196. };
  11197. break;
  11198. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  11199. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  11200. regex_exprs = {
  11201. // original regex from tokenizer.json
  11202. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  11203. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  11204. };
  11205. break;
  11206. case LLAMA_VOCAB_PRE_TYPE_PORO:
  11207. regex_exprs = {
  11208. " ?[^(\\s|.,!?…。,、।۔،)]+",
  11209. };
  11210. break;
  11211. default:
  11212. // default regex for BPE tokenization pre-processing
  11213. regex_exprs = {
  11214. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  11215. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  11216. "\\p{N}+",
  11217. "[0-9][0-9][0-9]",
  11218. };
  11219. break;
  11220. }
  11221. }
  11222. void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) const {
  11223. output.push_back(token_id);
  11224. }
  11225. bool append_bos(std::vector<llama_vocab::id> & output) const {
  11226. if (vocab.tokenizer_add_bos) {
  11227. GGML_ASSERT(vocab.special_bos_id != -1);
  11228. output.push_back(vocab.special_bos_id);
  11229. return true;
  11230. }
  11231. return false;
  11232. }
  11233. bool append_eos(std::vector<llama_vocab::id> & output) const {
  11234. if (vocab.tokenizer_add_eos) {
  11235. GGML_ASSERT(vocab.special_eos_id != -1);
  11236. output.push_back(vocab.special_eos_id);
  11237. return true;
  11238. }
  11239. return false;
  11240. }
  11241. void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
  11242. if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11243. LLAMA_LOG_WARN(
  11244. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11245. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11246. "Are you sure this is what you want?\n", __FUNCTION__);
  11247. }
  11248. if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
  11249. LLAMA_LOG_WARN(
  11250. "%s: Added a EOS token to the prompt as specified by the model but the prompt "
  11251. "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
  11252. "Are you sure this is what you want?\n", __FUNCTION__);
  11253. }
  11254. }
  11255. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  11256. int final_prev_index = -1;
  11257. const auto word_collection = unicode_regex_split(text, regex_exprs);
  11258. symbols_final.clear();
  11259. for (auto & word : word_collection) {
  11260. work_queue = llm_bigram_bpe::queue();
  11261. symbols.clear();
  11262. int index = 0;
  11263. size_t offset = 0;
  11264. if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  11265. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  11266. offset = word.size();
  11267. }
  11268. while (offset < word.size()) {
  11269. llm_symbol sym;
  11270. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  11271. sym.text = word.c_str() + offset;
  11272. sym.n = char_len;
  11273. offset += sym.n;
  11274. sym.prev = index - 1;
  11275. sym.next = offset == word.size() ? -1 : index + 1;
  11276. index++;
  11277. symbols.emplace_back(sym);
  11278. }
  11279. for (size_t i = 1; i < symbols.size(); ++i) {
  11280. add_new_bigram(i - 1, i);
  11281. }
  11282. // build token(s)
  11283. while (!work_queue.empty()) {
  11284. auto bigram = work_queue.top();
  11285. work_queue.pop();
  11286. auto & left_symbol = symbols[bigram.left];
  11287. auto & right_symbol = symbols[bigram.right];
  11288. if (left_symbol.n == 0 || right_symbol.n == 0) {
  11289. continue;
  11290. }
  11291. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  11292. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  11293. if (left_token + right_token != bigram.text) {
  11294. continue; // Skip this bigram if it's outdated
  11295. }
  11296. // merge the right sym into the left one
  11297. left_symbol.n += right_symbol.n;
  11298. right_symbol.n = 0;
  11299. // remove the right sym from the chain
  11300. left_symbol.next = right_symbol.next;
  11301. if (right_symbol.next >= 0) {
  11302. symbols[right_symbol.next].prev = bigram.left;
  11303. }
  11304. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  11305. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  11306. }
  11307. // add the finished tokens to the final list keeping correct order for next and prev
  11308. for (auto & sym : symbols) {
  11309. if (sym.n > 0) {
  11310. sym.prev = final_prev_index;
  11311. sym.next = -1;
  11312. if (final_prev_index != -1) {
  11313. symbols_final[final_prev_index].next = symbols_final.size();
  11314. }
  11315. symbols_final.emplace_back(sym);
  11316. final_prev_index = symbols_final.size() - 1;
  11317. }
  11318. }
  11319. }
  11320. symbols = symbols_final;
  11321. if (!symbols.empty()) {
  11322. for (int i = 0; i != -1; i = symbols[i].next) {
  11323. auto & symbol = symbols[i];
  11324. if (symbol.n == 0) {
  11325. continue;
  11326. }
  11327. const std::string str = std::string(symbol.text, symbol.n);
  11328. const auto token = vocab.token_to_id.find(str);
  11329. if (token == vocab.token_to_id.end()) {
  11330. for (auto j = str.begin(); j != str.end(); ++j) {
  11331. std::string byte_str(1, *j);
  11332. auto token_multibyte = vocab.token_to_id.find(byte_str);
  11333. if (token_multibyte != vocab.token_to_id.end()) {
  11334. output.push_back(token_multibyte->second);
  11335. }
  11336. }
  11337. } else {
  11338. output.push_back((*token).second);
  11339. }
  11340. }
  11341. }
  11342. }
  11343. private:
  11344. void add_new_bigram(int left, int right) {
  11345. if (left == -1 || right == -1) {
  11346. return;
  11347. }
  11348. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  11349. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  11350. int rank_found = -1;
  11351. rank_found = vocab.find_bpe_rank(left_token, right_token);
  11352. if (rank_found < 0) {
  11353. return;
  11354. }
  11355. llm_bigram_bpe bigram;
  11356. bigram.left = left;
  11357. bigram.right = right;
  11358. bigram.text = left_token + right_token;
  11359. bigram.size = left_token.size() + right_token.size();
  11360. bigram.rank = rank_found;
  11361. work_queue.push(bigram);
  11362. }
  11363. const llama_vocab & vocab;
  11364. std::vector<std::string> regex_exprs;
  11365. std::vector<llm_symbol> symbols;
  11366. std::vector<llm_symbol> symbols_final;
  11367. llm_bigram_bpe::queue work_queue;
  11368. };
  11369. struct llm_tokenizer_wpm {
  11370. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  11371. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) const {
  11372. const auto & token_map = vocab.token_to_id;
  11373. // normalize and split by whitespace
  11374. std::vector<std::string> words = preprocess(text);
  11375. // bos token prepended already
  11376. // find the longest tokens that form the words
  11377. for (const std::string & word : words) {
  11378. // skip empty words
  11379. if (word.size() == 0) {
  11380. continue;
  11381. }
  11382. // prepend phantom space
  11383. const std::string word1 = "\xe2\x96\x81" + word;
  11384. const int n = word1.size();
  11385. const size_t current_tokens = output.size();
  11386. // we're at the start of a new word
  11387. // move through character position in word
  11388. for (int i = 0; i < n; ++i) {
  11389. // loop through possible match length
  11390. bool match = false;
  11391. for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
  11392. auto it = token_map.find(word1.substr(i, j - i));
  11393. if (it != token_map.end()) {
  11394. output.push_back(it->second);
  11395. match = true;
  11396. i = j - 1;
  11397. break;
  11398. }
  11399. }
  11400. if (!match) { // discard all
  11401. output.resize(current_tokens);
  11402. break; // and discard next tokens
  11403. }
  11404. }
  11405. // we didn't find any matches for this word
  11406. if (current_tokens == output.size()) {
  11407. output.push_back(vocab.special_unk_id);
  11408. }
  11409. }
  11410. }
  11411. // TODO: reduce string copies by using cpts_offs array
  11412. std::vector<std::string> preprocess(const std::string & text) const {
  11413. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  11414. std::vector<std::string> words(1, "");
  11415. for (const uint32_t cpt : cpts_nfd) {
  11416. const auto flags = unicode_cpt_flags(cpt);
  11417. if (flags.is_whitespace) {
  11418. if (words.back().size()) { // finish previous word if any
  11419. words.emplace_back();
  11420. }
  11421. continue;
  11422. }
  11423. assert (!flags.is_separator);
  11424. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  11425. continue;
  11426. }
  11427. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  11428. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  11429. if (words.back().size()) { // finish previous word if any
  11430. words.emplace_back();
  11431. }
  11432. words.back() = s; // single char word
  11433. words.emplace_back(); // start a new word
  11434. } else {
  11435. words.back() += s; // append char to word
  11436. }
  11437. }
  11438. if (!words.back().size()) {
  11439. words.pop_back();
  11440. }
  11441. return words;
  11442. }
  11443. static bool is_chinese_char(uint32_t cpt) {
  11444. return
  11445. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  11446. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  11447. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  11448. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  11449. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  11450. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  11451. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  11452. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  11453. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  11454. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  11455. }
  11456. const llama_vocab & vocab;
  11457. };
  11458. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  11459. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  11460. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  11461. } FRAGMENT_BUFFER_VARIANT_TYPE;
  11462. struct fragment_buffer_variant {
  11463. fragment_buffer_variant(llama_vocab::id _token)
  11464. :
  11465. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  11466. token(_token),
  11467. raw_text(_dummy),
  11468. offset(0),
  11469. length(0) {}
  11470. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  11471. :
  11472. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  11473. token((llama_vocab::id) - 1),
  11474. raw_text(_raw_text),
  11475. offset(_offset),
  11476. length(_length){
  11477. GGML_ASSERT(_offset >= 0);
  11478. GGML_ASSERT(_length >= 1);
  11479. GGML_ASSERT(offset + length <= raw_text.length());
  11480. }
  11481. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  11482. const llama_vocab::id token;
  11483. const std::string _dummy;
  11484. const std::string & raw_text;
  11485. const uint64_t offset;
  11486. const uint64_t length;
  11487. };
  11488. // #define PRETOKENIZERDEBUG
  11489. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  11490. // for each special token
  11491. for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
  11492. const auto & data = vocab.id_to_token[special_id];
  11493. const auto & special_token = data.text;
  11494. // for each text fragment
  11495. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  11496. while (it != buffer.end()) {
  11497. auto & fragment = (*it);
  11498. // if a fragment is text ( not yet processed )
  11499. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11500. auto & raw_text = fragment.raw_text;
  11501. auto raw_text_base_offset = fragment.offset;
  11502. auto raw_text_base_length = fragment.length;
  11503. // loop over the text
  11504. while (true) {
  11505. // find the first occurrence of a given special token in this fragment
  11506. // passing offset argument only limit the "search area" but match coordinates
  11507. // are still relative to the source full raw_text
  11508. auto match = raw_text.find(special_token, raw_text_base_offset);
  11509. // no occurrences found, stop processing this fragment for a given special token
  11510. if (match == std::string::npos) break;
  11511. // check if match is within bounds of offset <-> length
  11512. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  11513. #ifdef PRETOKENIZERDEBUG
  11514. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11515. #endif
  11516. auto source = std::distance(buffer.begin(), it);
  11517. // if match is further than base offset
  11518. // then we have some text to the left of it
  11519. if (match > raw_text_base_offset) {
  11520. // left
  11521. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  11522. int64_t left_reminder_length = match - raw_text_base_offset;
  11523. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  11524. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  11525. left_reminder_length--;
  11526. }
  11527. }
  11528. if (left_reminder_length > 0) {
  11529. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  11530. it++;
  11531. }
  11532. #ifdef PRETOKENIZERDEBUG
  11533. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  11534. #endif
  11535. }
  11536. // special token
  11537. buffer.emplace_after(it, special_id);
  11538. it++;
  11539. // right
  11540. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  11541. int64_t right_reminder_offset = match + special_token.length();
  11542. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  11543. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  11544. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  11545. right_reminder_offset++;
  11546. right_reminder_length--;
  11547. }
  11548. }
  11549. if (right_reminder_length > 0) {
  11550. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  11551. it++;
  11552. }
  11553. #ifdef PRETOKENIZERDEBUG
  11554. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  11555. #endif
  11556. if (source == 0) {
  11557. buffer.erase_after(buffer.before_begin());
  11558. } else {
  11559. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11560. }
  11561. // repeat for the right side
  11562. raw_text_base_offset = right_reminder_offset;
  11563. raw_text_base_length = right_reminder_length;
  11564. #ifdef PRETOKENIZERDEBUG
  11565. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11566. #endif
  11567. } else {
  11568. if (source == 0) {
  11569. buffer.erase_after(buffer.before_begin());
  11570. } else {
  11571. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11572. }
  11573. break;
  11574. }
  11575. }
  11576. }
  11577. it++;
  11578. }
  11579. }
  11580. }
  11581. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  11582. std::vector<llama_vocab::id> output;
  11583. std::forward_list<fragment_buffer_variant> fragment_buffer;
  11584. if (!raw_text.empty()) {
  11585. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  11586. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  11587. }
  11588. switch (vocab.type) {
  11589. case LLAMA_VOCAB_TYPE_SPM:
  11590. {
  11591. // OG tokenizer behavior:
  11592. //
  11593. // tokenizer.encode('', add_special_tokens=True) returns [1]
  11594. // tokenizer.encode('', add_special_tokens=False) returns []
  11595. bool is_prev_special = false;
  11596. if (add_special && vocab.tokenizer_add_bos) {
  11597. GGML_ASSERT(vocab.special_bos_id != -1);
  11598. output.push_back(vocab.special_bos_id);
  11599. is_prev_special = true;
  11600. }
  11601. for (const auto & fragment : fragment_buffer) {
  11602. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11603. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11604. if (vocab.tokenizer_add_space_prefix) {
  11605. if (!output.size() || is_prev_special) { // prefix with space if first token
  11606. raw_text = " " + raw_text;
  11607. }
  11608. }
  11609. #ifdef PRETOKENIZERDEBUG
  11610. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11611. #endif
  11612. llm_tokenizer_spm tokenizer(vocab);
  11613. llama_escape_whitespace(raw_text);
  11614. tokenizer.tokenize(raw_text, output);
  11615. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11616. output.push_back(fragment.token);
  11617. is_prev_special = true;
  11618. }
  11619. }
  11620. if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11621. LLAMA_LOG_WARN(
  11622. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11623. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11624. "Are you sure this is what you want?\n", __FUNCTION__);
  11625. }
  11626. if (add_special && vocab.tokenizer_add_eos) {
  11627. GGML_ASSERT(vocab.special_eos_id != -1);
  11628. output.push_back(vocab.special_eos_id);
  11629. }
  11630. } break;
  11631. case LLAMA_VOCAB_TYPE_BPE:
  11632. {
  11633. llm_tokenizer_bpe tokenizer(vocab);
  11634. if (add_special) {
  11635. tokenizer.append_bos(output);
  11636. }
  11637. for (const auto & fragment : fragment_buffer) {
  11638. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11639. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11640. #ifdef PRETOKENIZERDEBUG
  11641. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11642. #endif
  11643. tokenizer.tokenize(raw_text, output);
  11644. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11645. tokenizer.append(fragment.token, output);
  11646. }
  11647. }
  11648. if (add_special) {
  11649. tokenizer.append_eos(output);
  11650. tokenizer.check_double_bos_eos(output);
  11651. }
  11652. } break;
  11653. case LLAMA_VOCAB_TYPE_WPM:
  11654. {
  11655. if (add_special) {
  11656. GGML_ASSERT(vocab.special_cls_id != -1);
  11657. output.push_back(vocab.special_cls_id);
  11658. }
  11659. llm_tokenizer_wpm tokenizer(vocab);
  11660. for (const auto & fragment : fragment_buffer) {
  11661. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11662. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11663. #ifdef PRETOKENIZERDEBUG
  11664. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11665. #endif
  11666. tokenizer.tokenize(raw_text, output);
  11667. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11668. output.push_back(fragment.token);
  11669. }
  11670. }
  11671. if (add_special) {
  11672. GGML_ASSERT(vocab.special_sep_id != -1);
  11673. output.push_back(vocab.special_sep_id);
  11674. }
  11675. } break;
  11676. case LLAMA_VOCAB_TYPE_NONE:
  11677. GGML_ASSERT(false);
  11678. }
  11679. return output;
  11680. }
  11681. //
  11682. // grammar - internal
  11683. //
  11684. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  11685. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  11686. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  11687. const std::string & src,
  11688. llama_partial_utf8 partial_start) {
  11689. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  11690. const char * pos = src.c_str();
  11691. std::vector<uint32_t> code_points;
  11692. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  11693. code_points.reserve(src.size() + 1);
  11694. uint32_t value = partial_start.value;
  11695. int n_remain = partial_start.n_remain;
  11696. // continue previous decode, if applicable
  11697. while (*pos != 0 && n_remain > 0) {
  11698. uint8_t next_byte = static_cast<uint8_t>(*pos);
  11699. if ((next_byte >> 6) != 2) {
  11700. // invalid sequence, abort
  11701. code_points.push_back(0);
  11702. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  11703. }
  11704. value = (value << 6) + (next_byte & 0x3F);
  11705. ++pos;
  11706. --n_remain;
  11707. }
  11708. if (partial_start.n_remain > 0 && n_remain == 0) {
  11709. code_points.push_back(value);
  11710. }
  11711. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  11712. while (*pos != 0) {
  11713. uint8_t first_byte = static_cast<uint8_t>(*pos);
  11714. uint8_t highbits = first_byte >> 4;
  11715. n_remain = lookup[highbits] - 1;
  11716. if (n_remain < 0) {
  11717. // invalid sequence, abort
  11718. code_points.clear();
  11719. code_points.push_back(0);
  11720. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  11721. }
  11722. uint8_t mask = (1 << (7 - n_remain)) - 1;
  11723. value = first_byte & mask;
  11724. ++pos;
  11725. while (*pos != 0 && n_remain > 0) {
  11726. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  11727. ++pos;
  11728. --n_remain;
  11729. }
  11730. if (n_remain == 0) {
  11731. code_points.push_back(value);
  11732. }
  11733. }
  11734. code_points.push_back(0);
  11735. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  11736. }
  11737. // returns true iff pos points to the end of one of the definitions of a rule
  11738. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  11739. switch (pos->type) {
  11740. case LLAMA_GRETYPE_END: return true; // NOLINT
  11741. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  11742. default: return false;
  11743. }
  11744. }
  11745. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  11746. // asserts that pos is pointing to a char range element
  11747. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  11748. const llama_grammar_element * pos,
  11749. const uint32_t chr) {
  11750. bool found = false;
  11751. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  11752. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  11753. do {
  11754. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11755. // inclusive range, e.g. [a-z]
  11756. found = found || (pos->value <= chr && chr <= pos[1].value);
  11757. pos += 2;
  11758. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  11759. // Any character matches "."
  11760. found = true;
  11761. pos += 1;
  11762. } else {
  11763. // exact char match, e.g. [a] or "a"
  11764. found = found || pos->value == chr;
  11765. pos += 1;
  11766. }
  11767. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11768. return std::make_pair(found == is_positive_char, pos);
  11769. }
  11770. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  11771. // range at pos (regular or inverse range)
  11772. // asserts that pos is pointing to a char range element
  11773. static bool llama_grammar_match_partial_char(
  11774. const llama_grammar_element * pos,
  11775. const llama_partial_utf8 partial_utf8) {
  11776. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR || pos->type == LLAMA_GRETYPE_CHAR_ANY;
  11777. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  11778. uint32_t partial_value = partial_utf8.value;
  11779. int n_remain = partial_utf8.n_remain;
  11780. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  11781. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  11782. return false;
  11783. }
  11784. // range of possible code points this partial UTF-8 sequence could complete to
  11785. uint32_t low = partial_value << (n_remain * 6);
  11786. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  11787. if (low == 0) {
  11788. if (n_remain == 2) {
  11789. low = 1 << 11;
  11790. } else if (n_remain == 3) {
  11791. low = 1 << 16;
  11792. }
  11793. }
  11794. do {
  11795. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11796. // inclusive range, e.g. [a-z]
  11797. if (pos->value <= high && low <= pos[1].value) {
  11798. return is_positive_char;
  11799. }
  11800. pos += 2;
  11801. } else if (pos->type == LLAMA_GRETYPE_CHAR_ANY) {
  11802. // Any character matches "."
  11803. return true;
  11804. } else {
  11805. // exact char match, e.g. [a] or "a"
  11806. if (low <= pos->value && pos->value <= high) {
  11807. return is_positive_char;
  11808. }
  11809. pos += 1;
  11810. }
  11811. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11812. return !is_positive_char;
  11813. }
  11814. // transforms a grammar pushdown stack into N possible stacks, all ending
  11815. // at a character range (terminal element)
  11816. static void llama_grammar_advance_stack(
  11817. const std::vector<std::vector<llama_grammar_element>> & rules,
  11818. const std::vector<const llama_grammar_element *> & stack,
  11819. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11820. if (stack.empty()) {
  11821. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11822. new_stacks.emplace_back(stack);
  11823. }
  11824. return;
  11825. }
  11826. const llama_grammar_element * pos = stack.back();
  11827. switch (pos->type) {
  11828. case LLAMA_GRETYPE_RULE_REF: {
  11829. const size_t rule_id = static_cast<size_t>(pos->value);
  11830. const llama_grammar_element * subpos = rules[rule_id].data();
  11831. do {
  11832. // init new stack without the top (pos)
  11833. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11834. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  11835. // if this rule ref is followed by another element, add that to stack
  11836. new_stack.push_back(pos + 1);
  11837. }
  11838. if (!llama_grammar_is_end_of_sequence(subpos)) {
  11839. // if alternate is nonempty, add to stack
  11840. new_stack.push_back(subpos);
  11841. }
  11842. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11843. while (!llama_grammar_is_end_of_sequence(subpos)) {
  11844. // scan to end of alternate def
  11845. subpos++;
  11846. }
  11847. if (subpos->type == LLAMA_GRETYPE_ALT) {
  11848. // there's another alternate def of this rule to process
  11849. subpos++;
  11850. } else {
  11851. break;
  11852. }
  11853. } while (true);
  11854. break;
  11855. }
  11856. case LLAMA_GRETYPE_CHAR:
  11857. case LLAMA_GRETYPE_CHAR_NOT:
  11858. case LLAMA_GRETYPE_CHAR_ANY:
  11859. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11860. // only add the stack if it's not a duplicate of one we already have
  11861. new_stacks.emplace_back(stack);
  11862. }
  11863. break;
  11864. default:
  11865. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  11866. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  11867. // those
  11868. GGML_ASSERT(false);
  11869. }
  11870. }
  11871. // takes a set of possible pushdown stacks on a grammar, which are required to
  11872. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  11873. // produces the N possible stacks if the given char is accepted at those
  11874. // positions
  11875. void llama_grammar_accept(
  11876. const std::vector<std::vector<llama_grammar_element>> & rules,
  11877. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11878. const uint32_t chr,
  11879. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11880. new_stacks.clear();
  11881. for (const auto & stack : stacks) {
  11882. if (stack.empty()) {
  11883. continue;
  11884. }
  11885. auto match = llama_grammar_match_char(stack.back(), chr);
  11886. if (match.first) {
  11887. const llama_grammar_element * pos = match.second;
  11888. // update top of stack to next element, if any
  11889. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11890. if (!llama_grammar_is_end_of_sequence(pos)) {
  11891. new_stack.push_back(pos);
  11892. }
  11893. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11894. }
  11895. }
  11896. }
  11897. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11898. const std::vector<std::vector<llama_grammar_element>> & rules,
  11899. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11900. const std::vector<llama_grammar_candidate> & candidates);
  11901. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  11902. const std::vector<std::vector<llama_grammar_element>> & rules,
  11903. const std::vector<const llama_grammar_element *> & stack,
  11904. const std::vector<llama_grammar_candidate> & candidates) {
  11905. std::vector<llama_grammar_candidate> rejects;
  11906. rejects.reserve(candidates.size());
  11907. if (stack.empty()) {
  11908. for (const auto & tok : candidates) {
  11909. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  11910. rejects.push_back(tok);
  11911. }
  11912. }
  11913. return rejects;
  11914. }
  11915. const llama_grammar_element * stack_pos = stack.back();
  11916. std::vector<llama_grammar_candidate> next_candidates;
  11917. next_candidates.reserve(candidates.size());
  11918. for (const auto & tok : candidates) {
  11919. if (*tok.code_points == 0) {
  11920. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  11921. // that cannot satisfy this position in grammar
  11922. if (tok.partial_utf8.n_remain != 0 &&
  11923. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  11924. rejects.push_back(tok);
  11925. }
  11926. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  11927. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  11928. } else {
  11929. rejects.push_back(tok);
  11930. }
  11931. }
  11932. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  11933. // update top of stack to next element, if any
  11934. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  11935. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  11936. stack_after.push_back(stack_pos_after);
  11937. }
  11938. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  11939. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  11940. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  11941. for (const auto & tok : next_rejects) {
  11942. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  11943. }
  11944. return rejects;
  11945. }
  11946. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11947. const std::vector<std::vector<llama_grammar_element>> & rules,
  11948. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11949. const std::vector<llama_grammar_candidate> & candidates) {
  11950. GGML_ASSERT(!stacks.empty()); // REVIEW
  11951. if (candidates.empty()) {
  11952. return std::vector<llama_grammar_candidate>();
  11953. }
  11954. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  11955. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  11956. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  11957. }
  11958. return rejects;
  11959. }
  11960. static bool llama_grammar_detect_left_recursion(
  11961. const std::vector<std::vector<llama_grammar_element>> & rules,
  11962. size_t rule_index,
  11963. std::vector<bool> * rules_visited,
  11964. std::vector<bool> * rules_in_progress,
  11965. std::vector<bool> * rules_may_be_empty) {
  11966. if ((*rules_in_progress)[rule_index]) {
  11967. return true;
  11968. }
  11969. (*rules_in_progress)[rule_index] = true;
  11970. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  11971. // First check if the rule might produce the empty string. This could be done combined with the second
  11972. // step but it's more readable as two steps.
  11973. bool at_rule_start = true;
  11974. for (size_t i = 0; i < rule.size(); i++) {
  11975. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11976. if (at_rule_start) {
  11977. (*rules_may_be_empty)[rule_index] = true;
  11978. break;
  11979. }
  11980. at_rule_start = true;
  11981. } else {
  11982. at_rule_start = false;
  11983. }
  11984. }
  11985. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  11986. // be empty)
  11987. bool recurse_into_nonterminal = true;
  11988. for (size_t i = 0; i < rule.size(); i++) {
  11989. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  11990. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  11991. return true;
  11992. }
  11993. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  11994. recurse_into_nonterminal = false;
  11995. }
  11996. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11997. recurse_into_nonterminal = true;
  11998. } else {
  11999. recurse_into_nonterminal = false;
  12000. }
  12001. }
  12002. (*rules_in_progress)[rule_index] = false;
  12003. (*rules_visited)[rule_index] = true;
  12004. return false;
  12005. }
  12006. //
  12007. // grammar - external
  12008. //
  12009. struct llama_grammar * llama_grammar_init(
  12010. const llama_grammar_element ** rules,
  12011. size_t n_rules,
  12012. size_t start_rule_index) {
  12013. const llama_grammar_element * pos;
  12014. // copy rule definitions into vectors
  12015. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  12016. for (size_t i = 0; i < n_rules; i++) {
  12017. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  12018. vec_rules[i].push_back(*pos);
  12019. }
  12020. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  12021. }
  12022. // Check for left recursion
  12023. std::vector<bool> rules_visited(n_rules);
  12024. std::vector<bool> rules_in_progress(n_rules);
  12025. std::vector<bool> rules_may_be_empty(n_rules);
  12026. for (size_t i = 0; i < n_rules; i++) {
  12027. if (rules_visited[i]) {
  12028. continue;
  12029. }
  12030. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  12031. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  12032. }
  12033. }
  12034. // loop over alternates of start rule to build initial stacks
  12035. std::vector<std::vector<const llama_grammar_element *>> stacks;
  12036. pos = vec_rules[start_rule_index].data();
  12037. do {
  12038. std::vector<const llama_grammar_element *> stack;
  12039. if (!llama_grammar_is_end_of_sequence(pos)) {
  12040. // if alternate is nonempty, add to stack
  12041. stack.push_back(pos);
  12042. }
  12043. llama_grammar_advance_stack(vec_rules, stack, stacks);
  12044. while (!llama_grammar_is_end_of_sequence(pos)) {
  12045. // scan to end of alternate def
  12046. pos++;
  12047. }
  12048. if (pos->type == LLAMA_GRETYPE_ALT) {
  12049. // there's another alternate def of this rule to process
  12050. pos++;
  12051. } else {
  12052. break;
  12053. }
  12054. } while (true);
  12055. // Important: vec_rules has to be moved here, not copied, because stacks contains
  12056. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  12057. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  12058. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  12059. }
  12060. void llama_grammar_free(struct llama_grammar * grammar) {
  12061. delete grammar;
  12062. }
  12063. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  12064. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  12065. // redirect elements in stacks to point to new rules
  12066. for (size_t is = 0; is < result->stacks.size(); is++) {
  12067. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  12068. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  12069. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  12070. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  12071. result->stacks[is][ie] = &result->rules[ir0][ir1];
  12072. }
  12073. }
  12074. }
  12075. }
  12076. }
  12077. return result;
  12078. }
  12079. //
  12080. // sampling
  12081. //
  12082. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  12083. if (seed == LLAMA_DEFAULT_SEED) {
  12084. seed = time(NULL);
  12085. }
  12086. ctx->rng.seed(seed);
  12087. }
  12088. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  12089. GGML_ASSERT(candidates->size > 0);
  12090. const int64_t t_start_sample_us = ggml_time_us();
  12091. // Sort the logits in descending order
  12092. if (!candidates->sorted) {
  12093. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12094. return a.logit > b.logit;
  12095. });
  12096. candidates->sorted = true;
  12097. }
  12098. float max_l = candidates->data[0].logit;
  12099. float cum_sum = 0.0f;
  12100. for (size_t i = 0; i < candidates->size; ++i) {
  12101. float p = expf(candidates->data[i].logit - max_l);
  12102. candidates->data[i].p = p;
  12103. cum_sum += p;
  12104. }
  12105. for (size_t i = 0; i < candidates->size; ++i) {
  12106. candidates->data[i].p /= cum_sum;
  12107. }
  12108. if (ctx) {
  12109. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12110. }
  12111. }
  12112. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  12113. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  12114. // if (k >= (int32_t)candidates->size) {
  12115. // return;
  12116. // }
  12117. const int64_t t_start_sample_us = ggml_time_us();
  12118. if (k <= 0) {
  12119. k = candidates->size;
  12120. }
  12121. k = std::max(k, (int) min_keep);
  12122. k = std::min(k, (int) candidates->size);
  12123. // Sort scores in descending order
  12124. if (!candidates->sorted) {
  12125. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  12126. return a.logit > b.logit;
  12127. };
  12128. if (k <= 128) {
  12129. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  12130. } else {
  12131. constexpr int nbuckets = 128;
  12132. constexpr float bucket_low = -10.0f;
  12133. constexpr float bucket_high = 10.0f;
  12134. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  12135. constexpr float bucker_inter = -bucket_low * bucket_scale;
  12136. std::vector<int> bucket_idx(candidates->size);
  12137. std::vector<int> histo(nbuckets, 0);
  12138. for (int i = 0; i < (int)candidates->size; ++i) {
  12139. const float val = candidates->data[i].logit;
  12140. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  12141. ib = std::max(0, std::min(nbuckets-1, ib));
  12142. bucket_idx[i] = ib;
  12143. ++histo[ib];
  12144. }
  12145. int nhave = 0;
  12146. int ib = nbuckets - 1;
  12147. for ( ; ib >= 0; --ib) {
  12148. nhave += histo[ib];
  12149. if (nhave >= k) break;
  12150. }
  12151. std::vector<llama_token_data> tmp_tokens(nhave);
  12152. auto ptr = tmp_tokens.data();
  12153. std::vector<llama_token_data*> bucket_ptrs;
  12154. bucket_ptrs.reserve(nbuckets - ib);
  12155. for (int j = nbuckets - 1; j >= ib; --j) {
  12156. bucket_ptrs.push_back(ptr);
  12157. ptr += histo[j];
  12158. }
  12159. for (int i = 0; i < (int)candidates->size; ++i) {
  12160. int j = bucket_idx[i];
  12161. if (j >= ib) {
  12162. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  12163. }
  12164. }
  12165. ptr = tmp_tokens.data();
  12166. int ndone = 0;
  12167. for (int j = nbuckets-1; j > ib; --j) {
  12168. std::sort(ptr, ptr + histo[j], comp);
  12169. ptr += histo[j];
  12170. ndone += histo[j];
  12171. }
  12172. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  12173. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  12174. }
  12175. candidates->sorted = true;
  12176. }
  12177. candidates->size = k;
  12178. if (ctx) {
  12179. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12180. }
  12181. }
  12182. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  12183. if (p >= 1.0f) {
  12184. return;
  12185. }
  12186. llama_sample_softmax(ctx, candidates);
  12187. const int64_t t_start_sample_us = ggml_time_us();
  12188. // Compute the cumulative probabilities
  12189. float cum_sum = 0.0f;
  12190. size_t last_idx = candidates->size;
  12191. for (size_t i = 0; i < candidates->size; ++i) {
  12192. cum_sum += candidates->data[i].p;
  12193. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  12194. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  12195. if (cum_sum >= p && i + 1 >= min_keep) {
  12196. last_idx = i + 1;
  12197. break;
  12198. }
  12199. }
  12200. // Resize the output vector to keep only the top-p tokens
  12201. candidates->size = last_idx;
  12202. if (ctx) {
  12203. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12204. }
  12205. }
  12206. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  12207. if (p <= 0.0f || !candidates->size) {
  12208. return;
  12209. }
  12210. const int64_t t_start_sample_us = ggml_time_us();
  12211. bool min_p_applied = false;
  12212. // if the candidates aren't sorted, try the unsorted implementation first
  12213. if (!candidates->sorted) {
  12214. std::vector<llama_token_data> filtered_tokens;
  12215. float max_logit = -FLT_MAX;
  12216. for (size_t i = 0; i < candidates->size; ++i) {
  12217. max_logit = std::max(max_logit, candidates->data[i].logit);
  12218. }
  12219. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  12220. for (size_t i = 0; i < candidates->size; ++i) {
  12221. if (candidates->data[i].logit >= min_logit) {
  12222. filtered_tokens.push_back(candidates->data[i]);
  12223. }
  12224. }
  12225. // if we have enough values the operation was a success
  12226. if (filtered_tokens.size() >= min_keep) {
  12227. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  12228. candidates->size = filtered_tokens.size();
  12229. min_p_applied = true;
  12230. }
  12231. }
  12232. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  12233. if (!min_p_applied) {
  12234. // Sort the logits in descending order
  12235. if (!candidates->sorted) {
  12236. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12237. return a.logit > b.logit;
  12238. });
  12239. candidates->sorted = true;
  12240. }
  12241. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  12242. size_t i = 1; // first token always matches
  12243. for (; i < candidates->size; ++i) {
  12244. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  12245. break; // prob too small
  12246. }
  12247. }
  12248. // Resize the output vector to keep only the matching tokens
  12249. candidates->size = i;
  12250. }
  12251. if (ctx) {
  12252. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12253. }
  12254. }
  12255. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  12256. if (z >= 1.0f || candidates->size <= 2) {
  12257. return;
  12258. }
  12259. llama_sample_softmax(nullptr, candidates);
  12260. const int64_t t_start_sample_us = ggml_time_us();
  12261. // Compute the first and second derivatives
  12262. std::vector<float> first_derivatives(candidates->size - 1);
  12263. std::vector<float> second_derivatives(candidates->size - 2);
  12264. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  12265. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  12266. }
  12267. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12268. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  12269. }
  12270. // Calculate absolute value of second derivatives
  12271. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12272. second_derivatives[i] = std::abs(second_derivatives[i]);
  12273. }
  12274. // Normalize the second derivatives
  12275. {
  12276. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  12277. if (second_derivatives_sum > 1e-6f) {
  12278. for (float & value : second_derivatives) {
  12279. value /= second_derivatives_sum;
  12280. }
  12281. } else {
  12282. for (float & value : second_derivatives) {
  12283. value = 1.0f / second_derivatives.size();
  12284. }
  12285. }
  12286. }
  12287. float cum_sum = 0.0f;
  12288. size_t last_idx = candidates->size;
  12289. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  12290. cum_sum += second_derivatives[i];
  12291. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  12292. if (cum_sum > z && i >= min_keep) {
  12293. last_idx = i;
  12294. break;
  12295. }
  12296. }
  12297. // Resize the output vector to keep only the tokens above the tail location
  12298. candidates->size = last_idx;
  12299. if (ctx) {
  12300. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12301. }
  12302. }
  12303. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  12304. // Reference implementation:
  12305. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  12306. if (p >= 1.0f) {
  12307. return;
  12308. }
  12309. // Compute the softmax of logits and calculate entropy
  12310. llama_sample_softmax(nullptr, candidates);
  12311. const int64_t t_start_sample_us = ggml_time_us();
  12312. float entropy = 0.0f;
  12313. for (size_t i = 0; i < candidates->size; ++i) {
  12314. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  12315. }
  12316. // Compute the absolute difference between negative log probability and entropy for each candidate
  12317. std::vector<float> shifted_scores;
  12318. for (size_t i = 0; i < candidates->size; ++i) {
  12319. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  12320. shifted_scores.push_back(shifted_score);
  12321. }
  12322. // Sort tokens based on the shifted_scores and their corresponding indices
  12323. std::vector<size_t> indices(candidates->size);
  12324. std::iota(indices.begin(), indices.end(), 0);
  12325. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  12326. return shifted_scores[a] < shifted_scores[b];
  12327. });
  12328. // Compute the cumulative probabilities
  12329. float cum_sum = 0.0f;
  12330. size_t last_idx = indices.size();
  12331. for (size_t i = 0; i < indices.size(); ++i) {
  12332. size_t idx = indices[i];
  12333. cum_sum += candidates->data[idx].p;
  12334. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  12335. if (cum_sum > p && i >= min_keep - 1) {
  12336. last_idx = i + 1;
  12337. break;
  12338. }
  12339. }
  12340. // Resize the output vector to keep only the locally typical tokens
  12341. std::vector<llama_token_data> new_candidates;
  12342. for (size_t i = 0; i < last_idx; ++i) {
  12343. size_t idx = indices[i];
  12344. new_candidates.push_back(candidates->data[idx]);
  12345. }
  12346. // Replace the data in candidates with the new_candidates data
  12347. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  12348. candidates->size = new_candidates.size();
  12349. candidates->sorted = false;
  12350. if (ctx) {
  12351. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12352. }
  12353. }
  12354. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  12355. const int64_t t_start_sample_us = ggml_time_us();
  12356. // no need to do anything if there is only one (or zero) candidates
  12357. if(candidates_p->size <= 1) {
  12358. return;
  12359. }
  12360. // Calculate maximum possible entropy
  12361. float max_entropy = -logf(1.0f / candidates_p->size);
  12362. llama_sample_softmax(nullptr, candidates_p);
  12363. // Calculate entropy of the softmax probabilities
  12364. float entropy = 0.0f;
  12365. for (size_t i = 0; i < candidates_p->size; ++i) {
  12366. float prob = candidates_p->data[i].p;
  12367. if (prob > 0.0f) { // Ensure no log(0)
  12368. entropy -= prob * logf(prob);
  12369. }
  12370. }
  12371. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  12372. float normalized_entropy = entropy / max_entropy;
  12373. // Map the normalized entropy to the desired temperature range using the power function
  12374. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  12375. #ifdef DEBUG
  12376. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  12377. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  12378. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  12379. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  12380. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  12381. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  12382. #endif
  12383. // Apply the dynamically calculated temperature scaling
  12384. for (size_t i = 0; i < candidates_p->size; ++i) {
  12385. candidates_p->data[i].logit /= dyn_temp;
  12386. }
  12387. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  12388. double max_l_double = candidates_p->data[0].logit;
  12389. double cum_sum_double = 0.0;
  12390. for (size_t i = 0; i < candidates_p->size; ++i) {
  12391. double p = exp(candidates_p->data[i].logit - max_l_double);
  12392. candidates_p->data[i].p = p; // Store the scaled probability
  12393. cum_sum_double += p;
  12394. }
  12395. for (size_t i = 0; i < candidates_p->size; ++i) {
  12396. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  12397. }
  12398. #ifdef DEBUG
  12399. // Print the updated top 25 probabilities after temperature scaling
  12400. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  12401. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  12402. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  12403. }
  12404. #endif
  12405. if (ctx) {
  12406. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12407. }
  12408. }
  12409. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  12410. const int64_t t_start_sample_us = ggml_time_us();
  12411. for (size_t i = 0; i < candidates_p->size; ++i) {
  12412. candidates_p->data[i].logit /= temp;
  12413. }
  12414. if (ctx) {
  12415. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12416. }
  12417. }
  12418. void llama_sample_repetition_penalties(
  12419. struct llama_context * ctx,
  12420. llama_token_data_array * candidates,
  12421. const llama_token * last_tokens,
  12422. size_t penalty_last_n,
  12423. float penalty_repeat,
  12424. float penalty_freq,
  12425. float penalty_present) {
  12426. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  12427. return;
  12428. }
  12429. const int64_t t_start_sample_us = ggml_time_us();
  12430. // Create a frequency map to count occurrences of each token in last_tokens
  12431. std::unordered_map<llama_token, int> token_count;
  12432. for (size_t i = 0; i < penalty_last_n; ++i) {
  12433. token_count[last_tokens[i]]++;
  12434. }
  12435. // Apply frequency and presence penalties to the candidates
  12436. for (size_t i = 0; i < candidates->size; ++i) {
  12437. const auto token_iter = token_count.find(candidates->data[i].id);
  12438. if (token_iter == token_count.end()) {
  12439. continue;
  12440. }
  12441. const int count = token_iter->second;
  12442. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  12443. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  12444. if (candidates->data[i].logit <= 0) {
  12445. candidates->data[i].logit *= penalty_repeat;
  12446. } else {
  12447. candidates->data[i].logit /= penalty_repeat;
  12448. }
  12449. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  12450. }
  12451. candidates->sorted = false;
  12452. if (ctx) {
  12453. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12454. }
  12455. }
  12456. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  12457. GGML_ASSERT(ctx);
  12458. int64_t t_start_sample_us = ggml_time_us();
  12459. bool allow_eog = false;
  12460. for (const auto & stack : grammar->stacks) {
  12461. if (stack.empty()) {
  12462. allow_eog = true;
  12463. break;
  12464. }
  12465. }
  12466. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  12467. candidates_decoded.reserve(candidates->size);
  12468. std::vector<llama_grammar_candidate> candidates_grammar;
  12469. candidates_grammar.reserve(candidates->size);
  12470. for (size_t i = 0; i < candidates->size; ++i) {
  12471. const llama_token id = candidates->data[i].id;
  12472. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);
  12473. if (llama_token_is_eog(&ctx->model, id)) {
  12474. if (!allow_eog) {
  12475. candidates->data[i].logit = -INFINITY;
  12476. }
  12477. } else if (piece.empty() || piece[0] == 0) {
  12478. candidates->data[i].logit = -INFINITY;
  12479. } else {
  12480. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  12481. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  12482. }
  12483. }
  12484. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  12485. for (const auto & reject : rejects) {
  12486. candidates->data[reject.index].logit = -INFINITY;
  12487. }
  12488. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12489. }
  12490. static void llama_log_softmax(float * array, size_t size) {
  12491. float max_l = *std::max_element(array, array + size);
  12492. float sum = 0.f;
  12493. for (size_t i = 0; i < size; ++i) {
  12494. float p = expf(array[i] - max_l);
  12495. sum += p;
  12496. array[i] = p;
  12497. }
  12498. for (size_t i = 0; i < size; ++i) {
  12499. array[i] = logf(array[i] / sum);
  12500. }
  12501. }
  12502. void llama_sample_apply_guidance(
  12503. struct llama_context * ctx,
  12504. float * logits,
  12505. float * logits_guidance,
  12506. float scale) {
  12507. GGML_ASSERT(ctx);
  12508. const auto t_start_sample_us = ggml_time_us();
  12509. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  12510. llama_log_softmax(logits, n_vocab);
  12511. llama_log_softmax(logits_guidance, n_vocab);
  12512. for (int i = 0; i < n_vocab; ++i) {
  12513. auto & l = logits[i];
  12514. const auto & g = logits_guidance[i];
  12515. l = scale * (l - g) + g;
  12516. }
  12517. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12518. }
  12519. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  12520. GGML_ASSERT(ctx);
  12521. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  12522. int64_t t_start_sample_us;
  12523. t_start_sample_us = ggml_time_us();
  12524. llama_sample_softmax(nullptr, candidates);
  12525. // Estimate s_hat using the most probable m tokens
  12526. float s_hat = 0.0;
  12527. float sum_ti_bi = 0.0;
  12528. float sum_ti_sq = 0.0;
  12529. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  12530. float t_i = logf(float(i + 2) / float(i + 1));
  12531. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  12532. sum_ti_bi += t_i * b_i;
  12533. sum_ti_sq += t_i * t_i;
  12534. }
  12535. s_hat = sum_ti_bi / sum_ti_sq;
  12536. // Compute k from the estimated s_hat and target surprise value
  12537. float epsilon_hat = s_hat - 1;
  12538. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  12539. // Sample the next word X using top-k sampling
  12540. llama_sample_top_k(nullptr, candidates, int(k), 1);
  12541. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12542. llama_token X = llama_sample_token(ctx, candidates);
  12543. t_start_sample_us = ggml_time_us();
  12544. // Compute error as the difference between observed surprise and target surprise value
  12545. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12546. return candidate.id == X;
  12547. }));
  12548. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12549. float e = observed_surprise - tau;
  12550. // Update mu using the learning rate and error
  12551. *mu = *mu - eta * e;
  12552. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12553. return X;
  12554. }
  12555. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  12556. int64_t t_start_sample_us;
  12557. t_start_sample_us = ggml_time_us();
  12558. llama_sample_softmax(ctx, candidates);
  12559. // Truncate the words with surprise values greater than mu
  12560. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12561. return -log2f(candidate.p) > *mu;
  12562. }));
  12563. if (candidates->size == 0) {
  12564. candidates->size = 1;
  12565. }
  12566. if (ctx) {
  12567. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12568. }
  12569. // Normalize the probabilities of the remaining words
  12570. llama_sample_softmax(ctx, candidates);
  12571. // Sample the next word X from the remaining words
  12572. llama_token X = llama_sample_token(ctx, candidates);
  12573. t_start_sample_us = ggml_time_us();
  12574. // Compute error as the difference between observed surprise and target surprise value
  12575. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12576. return candidate.id == X;
  12577. }));
  12578. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12579. float e = observed_surprise - tau;
  12580. // Update mu using the learning rate and error
  12581. *mu = *mu - eta * e;
  12582. if (ctx) {
  12583. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12584. }
  12585. return X;
  12586. }
  12587. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  12588. const int64_t t_start_sample_us = ggml_time_us();
  12589. // Find max element
  12590. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12591. return a.logit < b.logit;
  12592. });
  12593. llama_token result = max_iter->id;
  12594. if (ctx) {
  12595. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12596. ctx->n_sample++;
  12597. }
  12598. return result;
  12599. }
  12600. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  12601. GGML_ASSERT(ctx);
  12602. const int64_t t_start_sample_us = ggml_time_us();
  12603. llama_sample_softmax(nullptr, candidates);
  12604. std::vector<float> probs;
  12605. probs.reserve(candidates->size);
  12606. for (size_t i = 0; i < candidates->size; ++i) {
  12607. probs.push_back(candidates->data[i].p);
  12608. }
  12609. std::discrete_distribution<> dist(probs.begin(), probs.end());
  12610. int idx = dist(rng);
  12611. llama_token result = candidates->data[idx].id;
  12612. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12613. ctx->n_sample++;
  12614. return result;
  12615. }
  12616. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  12617. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  12618. }
  12619. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  12620. const int64_t t_start_sample_us = ggml_time_us();
  12621. if (llama_token_is_eog(&ctx->model, token)) {
  12622. for (const auto & stack : grammar->stacks) {
  12623. if (stack.empty()) {
  12624. return;
  12625. }
  12626. }
  12627. GGML_ASSERT(false);
  12628. }
  12629. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);
  12630. // Note terminating 0 in decoded string
  12631. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  12632. const auto & code_points = decoded.first;
  12633. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  12634. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  12635. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  12636. grammar->stacks = tmp_new_stacks;
  12637. }
  12638. grammar->partial_utf8 = decoded.second;
  12639. GGML_ASSERT(!grammar->stacks.empty());
  12640. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12641. }
  12642. //
  12643. // quantization
  12644. //
  12645. struct quantize_state_internal {
  12646. const llama_model & model;
  12647. const llama_model_quantize_params * params;
  12648. int n_attention_wv = 0;
  12649. int n_ffn_down = 0;
  12650. int n_ffn_gate = 0;
  12651. int n_ffn_up = 0;
  12652. int i_attention_wv = 0;
  12653. int i_ffn_down = 0;
  12654. int i_ffn_gate = 0;
  12655. int i_ffn_up = 0;
  12656. int n_k_quantized = 0;
  12657. int n_fallback = 0;
  12658. bool has_imatrix = false;
  12659. // used to figure out if a model shares tok_embd with the output weight
  12660. bool has_output = false;
  12661. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  12662. : model(model)
  12663. , params(params)
  12664. {}
  12665. };
  12666. static void llama_tensor_dequantize_internal(
  12667. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  12668. const size_t nelements, const int nthread
  12669. ) {
  12670. if (output.size() < nelements) {
  12671. output.resize(nelements);
  12672. }
  12673. float * f32_output = (float *) output.data();
  12674. ggml_type_traits_t qtype;
  12675. if (ggml_is_quantized(tensor->type)) {
  12676. qtype = ggml_internal_get_type_traits(tensor->type);
  12677. if (qtype.to_float == NULL) {
  12678. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  12679. }
  12680. } else if (tensor->type != GGML_TYPE_F16 &&
  12681. tensor->type != GGML_TYPE_BF16) {
  12682. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  12683. }
  12684. if (nthread < 2) {
  12685. if (tensor->type == GGML_TYPE_F16) {
  12686. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  12687. } else if (tensor->type == GGML_TYPE_BF16) {
  12688. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  12689. } else if (ggml_is_quantized(tensor->type)) {
  12690. qtype.to_float(tensor->data, f32_output, nelements);
  12691. } else {
  12692. GGML_ASSERT(false); // unreachable
  12693. }
  12694. return;
  12695. }
  12696. size_t block_size;
  12697. if (tensor->type == GGML_TYPE_F16 ||
  12698. tensor->type == GGML_TYPE_BF16) {
  12699. block_size = 1;
  12700. } else {
  12701. block_size = (size_t)ggml_blck_size(tensor->type);
  12702. }
  12703. size_t block_size_bytes = ggml_type_size(tensor->type);
  12704. GGML_ASSERT(nelements % block_size == 0);
  12705. size_t nblocks = nelements / block_size;
  12706. size_t blocks_per_thread = nblocks / nthread;
  12707. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  12708. size_t in_buff_offs = 0;
  12709. size_t out_buff_offs = 0;
  12710. for (int tnum = 0; tnum < nthread; tnum++) {
  12711. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  12712. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  12713. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  12714. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  12715. if (typ == GGML_TYPE_F16) {
  12716. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  12717. } else if (typ == GGML_TYPE_BF16) {
  12718. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  12719. } else {
  12720. qtype.to_float(inbuf, outbuf, nels);
  12721. }
  12722. };
  12723. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  12724. in_buff_offs += thr_block_bytes;
  12725. out_buff_offs += thr_elems;
  12726. }
  12727. for (auto & w : workers) { w.join(); }
  12728. workers.clear();
  12729. }
  12730. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  12731. const std::string name = ggml_get_name(tensor);
  12732. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12733. const llm_arch arch = qs.model.arch;
  12734. const auto tn = LLM_TN(arch);
  12735. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  12736. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  12737. };
  12738. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  12739. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  12740. if (n_expert > 1) {
  12741. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  12742. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  12743. // for getting the current layer as I initially thought, and we need to resort to parsing the
  12744. // tensor name.
  12745. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  12746. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  12747. }
  12748. if (i_layer < 0 || i_layer >= n_layer) {
  12749. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  12750. }
  12751. }
  12752. return std::make_pair(i_layer, n_layer);
  12753. };
  12754. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  12755. // with the quantization of the output tensor
  12756. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  12757. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  12758. new_type = qs.params->output_tensor_type;
  12759. } else {
  12760. int nx = tensor->ne[0];
  12761. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  12762. new_type = GGML_TYPE_Q8_0;
  12763. }
  12764. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12765. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12766. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12767. new_type = GGML_TYPE_Q5_K;
  12768. }
  12769. else if (new_type != GGML_TYPE_Q8_0) {
  12770. new_type = GGML_TYPE_Q6_K;
  12771. }
  12772. }
  12773. } else if (name == "token_embd.weight") {
  12774. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12775. new_type = qs.params->token_embedding_type;
  12776. } else {
  12777. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12778. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12779. new_type = GGML_TYPE_Q2_K;
  12780. }
  12781. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12782. new_type = GGML_TYPE_IQ3_S;
  12783. }
  12784. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12785. new_type = GGML_TYPE_IQ3_S;
  12786. }
  12787. }
  12788. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12789. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12790. if (name.find("attn_v.weight") != std::string::npos) {
  12791. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12792. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12793. ++qs.i_attention_wv;
  12794. }
  12795. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12796. new_type = GGML_TYPE_Q4_K;
  12797. }
  12798. else if (name.find("ffn_down") != std::string::npos) {
  12799. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12800. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12801. }
  12802. ++qs.i_ffn_down;
  12803. }
  12804. else if (name.find("attn_output.weight") != std::string::npos) {
  12805. if (qs.model.hparams.n_expert == 8) {
  12806. new_type = GGML_TYPE_Q5_K;
  12807. } else {
  12808. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12809. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12810. }
  12811. }
  12812. } else if (name.find("attn_v.weight") != std::string::npos) {
  12813. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12814. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12815. }
  12816. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12817. new_type = GGML_TYPE_Q4_K;
  12818. }
  12819. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12820. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12821. }
  12822. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12823. new_type = GGML_TYPE_Q4_K;
  12824. }
  12825. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12826. new_type = GGML_TYPE_Q4_K;
  12827. }
  12828. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12829. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12830. }
  12831. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12832. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12833. new_type = GGML_TYPE_Q5_K;
  12834. }
  12835. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12836. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12837. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12838. if (qs.model.type == MODEL_70B) {
  12839. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12840. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12841. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12842. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12843. }
  12844. if (qs.model.hparams.n_expert == 8) {
  12845. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12846. // TODO: explore better strategies
  12847. new_type = GGML_TYPE_Q8_0;
  12848. }
  12849. ++qs.i_attention_wv;
  12850. } else if (name.find("attn_k.weight") != std::string::npos) {
  12851. if (qs.model.hparams.n_expert == 8) {
  12852. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12853. // TODO: explore better strategies
  12854. new_type = GGML_TYPE_Q8_0;
  12855. }
  12856. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12857. new_type = GGML_TYPE_IQ3_XXS;
  12858. }
  12859. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12860. new_type = GGML_TYPE_IQ2_S;
  12861. }
  12862. } else if (name.find("attn_q.weight") != std::string::npos) {
  12863. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12864. new_type = GGML_TYPE_IQ3_XXS;
  12865. }
  12866. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12867. new_type = GGML_TYPE_IQ2_S;
  12868. }
  12869. } else if (name.find("ffn_down") != std::string::npos) {
  12870. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12871. int i_layer = info.first, n_layer = info.second;
  12872. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12873. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12874. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12875. }
  12876. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12877. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12878. }
  12879. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12880. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12881. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12882. : GGML_TYPE_Q3_K;
  12883. }
  12884. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12885. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12886. new_type = GGML_TYPE_Q4_K;
  12887. }
  12888. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12889. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12890. }
  12891. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12892. if (arch == LLM_ARCH_FALCON) {
  12893. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12894. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12895. } else {
  12896. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12897. }
  12898. }
  12899. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12900. new_type = GGML_TYPE_Q5_K;
  12901. }
  12902. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12903. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12904. new_type = GGML_TYPE_Q5_K;
  12905. }
  12906. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12907. && qs.has_imatrix && i_layer < n_layer/8) {
  12908. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12909. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12910. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12911. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12912. }
  12913. ++qs.i_ffn_down;
  12914. } else if (name.find("attn_output.weight") != std::string::npos) {
  12915. if (arch != LLM_ARCH_FALCON) {
  12916. if (qs.model.hparams.n_expert == 8) {
  12917. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12918. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12919. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12920. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12921. new_type = GGML_TYPE_Q5_K;
  12922. }
  12923. } else {
  12924. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12925. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12926. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12927. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12928. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12929. }
  12930. } else {
  12931. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12932. }
  12933. }
  12934. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12935. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12936. new_type = GGML_TYPE_Q4_K;
  12937. }
  12938. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12939. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12940. }
  12941. else if (name.find("ffn_gate") != std::string::npos) {
  12942. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12943. int i_layer = info.first, n_layer = info.second;
  12944. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12945. new_type = GGML_TYPE_IQ3_XXS;
  12946. }
  12947. ++qs.i_ffn_gate;
  12948. }
  12949. else if (name.find("ffn_up") != std::string::npos) {
  12950. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12951. int i_layer = info.first, n_layer = info.second;
  12952. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12953. new_type = GGML_TYPE_IQ3_XXS;
  12954. }
  12955. ++qs.i_ffn_up;
  12956. }
  12957. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12958. //}
  12959. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12960. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12961. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12962. //}
  12963. // This can be used to reduce the size of the Q5_K_S model.
  12964. // The associated PPL increase is fully in line with the size reduction
  12965. //else {
  12966. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12967. //}
  12968. bool convert_incompatible_tensor = false;
  12969. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12970. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12971. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12972. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12973. new_type == GGML_TYPE_IQ1_M) {
  12974. int nx = tensor->ne[0];
  12975. int ny = tensor->ne[1];
  12976. if (nx % QK_K != 0) {
  12977. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12978. convert_incompatible_tensor = true;
  12979. } else {
  12980. ++qs.n_k_quantized;
  12981. }
  12982. }
  12983. if (convert_incompatible_tensor) {
  12984. switch (new_type) {
  12985. case GGML_TYPE_IQ2_XXS:
  12986. case GGML_TYPE_IQ2_XS:
  12987. case GGML_TYPE_IQ2_S:
  12988. case GGML_TYPE_IQ3_XXS:
  12989. case GGML_TYPE_IQ3_S:
  12990. case GGML_TYPE_IQ1_S:
  12991. case GGML_TYPE_IQ1_M:
  12992. case GGML_TYPE_Q2_K:
  12993. case GGML_TYPE_Q3_K:
  12994. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12995. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12996. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12997. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12998. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12999. }
  13000. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  13001. ++qs.n_fallback;
  13002. }
  13003. return new_type;
  13004. }
  13005. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  13006. if (nthread < 2) {
  13007. // single-thread
  13008. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  13009. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  13010. throw std::runtime_error("quantized data validation failed");
  13011. }
  13012. return new_size;
  13013. }
  13014. std::mutex mutex;
  13015. int64_t counter = 0;
  13016. size_t new_size = 0;
  13017. bool valid = true;
  13018. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  13019. nrows, n_per_row, imatrix]() {
  13020. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  13021. size_t local_size = 0;
  13022. while (true) {
  13023. std::unique_lock<std::mutex> lock(mutex);
  13024. int64_t first_row = counter; counter += nrows_per_chunk;
  13025. if (first_row >= nrows) {
  13026. if (local_size > 0) {
  13027. new_size += local_size;
  13028. }
  13029. break;
  13030. }
  13031. lock.unlock();
  13032. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  13033. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  13034. local_size += this_size;
  13035. // validate the quantized data
  13036. const size_t row_size = ggml_row_size(new_type, n_per_row);
  13037. void * this_data = (char *) new_data + first_row * row_size;
  13038. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  13039. std::unique_lock<std::mutex> lock(mutex);
  13040. valid = false;
  13041. break;
  13042. }
  13043. }
  13044. };
  13045. for (int it = 0; it < nthread - 1; ++it) {
  13046. workers.emplace_back(compute);
  13047. }
  13048. compute();
  13049. for (auto & w : workers) { w.join(); }
  13050. workers.clear();
  13051. if (!valid) {
  13052. throw std::runtime_error("quantized data validation failed");
  13053. }
  13054. return new_size;
  13055. }
  13056. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  13057. ggml_type default_type;
  13058. llama_ftype ftype = params->ftype;
  13059. switch (params->ftype) {
  13060. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  13061. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  13062. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  13063. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  13064. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  13065. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  13066. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  13067. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  13068. // K-quants
  13069. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  13070. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  13071. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  13072. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  13073. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  13074. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  13075. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  13076. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  13077. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  13078. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  13079. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  13080. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  13081. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  13082. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  13083. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  13084. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  13085. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  13086. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  13087. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  13088. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  13089. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  13090. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  13091. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  13092. }
  13093. int nthread = params->nthread;
  13094. if (nthread <= 0) {
  13095. nthread = std::thread::hardware_concurrency();
  13096. }
  13097. // mmap consistently increases speed Linux, and also increases speed on Windows with
  13098. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  13099. #if defined(__linux__) || defined(_WIN32)
  13100. constexpr bool use_mmap = true;
  13101. #else
  13102. constexpr bool use_mmap = false;
  13103. #endif
  13104. llama_model_kv_override * kv_overrides = nullptr;
  13105. if (params->kv_overrides) {
  13106. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  13107. kv_overrides = v->data();
  13108. }
  13109. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  13110. ml.init_mappings(false); // no prefetching
  13111. llama_model model;
  13112. llm_load_arch(ml, model);
  13113. llm_load_hparams(ml, model);
  13114. struct quantize_state_internal qs(model, params);
  13115. if (params->only_copy) {
  13116. ftype = model.ftype;
  13117. }
  13118. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  13119. if (params->imatrix) {
  13120. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  13121. if (imatrix_data) {
  13122. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  13123. qs.has_imatrix = true;
  13124. // check imatrix for nans or infs
  13125. for (const auto & kv : *imatrix_data) {
  13126. for (float f : kv.second) {
  13127. if (!std::isfinite(f)) {
  13128. throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
  13129. }
  13130. }
  13131. }
  13132. }
  13133. }
  13134. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  13135. struct gguf_context * ctx_out = gguf_init_empty();
  13136. // copy the KV pairs from the input file
  13137. gguf_set_kv (ctx_out, ml.meta);
  13138. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  13139. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  13140. // Remove split metadata
  13141. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  13142. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  13143. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  13144. if (params->kv_overrides) {
  13145. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  13146. for (auto & o : overrides) {
  13147. if (o.key[0] == 0) break;
  13148. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  13149. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  13150. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  13151. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  13152. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  13153. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  13154. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  13155. gguf_set_val_str(ctx_out, o.key, o.val_str);
  13156. } else {
  13157. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  13158. }
  13159. }
  13160. }
  13161. for (int i = 0; i < ml.n_tensors; ++i) {
  13162. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  13163. const std::string name = ggml_get_name(meta);
  13164. // TODO: avoid hardcoded tensor names - use the TN_* constants
  13165. if (name.find("attn_v.weight") != std::string::npos ||
  13166. name.find("attn_qkv.weight") != std::string::npos) {
  13167. ++qs.n_attention_wv;
  13168. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  13169. qs.has_output = true;
  13170. }
  13171. }
  13172. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  13173. // sanity checks
  13174. //
  13175. // - qs.n_attention_wv == 0 for Mamba models
  13176. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  13177. //
  13178. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  13179. size_t total_size_org = 0;
  13180. size_t total_size_new = 0;
  13181. std::vector<std::thread> workers;
  13182. workers.reserve(nthread);
  13183. int idx = 0;
  13184. std::vector<no_init<uint8_t>> read_data;
  13185. std::vector<no_init<uint8_t>> work;
  13186. std::vector<no_init<float>> f32_conv_buf;
  13187. uint16_t n_split = 1;
  13188. // Assume split index is continuous
  13189. if (params->keep_split) {
  13190. for (int i = 0; i < ml.n_tensors; ++i) {
  13191. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  13192. }
  13193. }
  13194. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  13195. ctx_outs[0] = ctx_out;
  13196. // populate the original tensors so we get an initial meta data
  13197. for (int i = 0; i < ml.n_tensors; ++i) {
  13198. auto weight = ml.get_weight(i);
  13199. uint16_t i_split = params->keep_split ? weight->idx : 0;
  13200. struct ggml_tensor * tensor = weight->tensor;
  13201. if (ctx_outs[i_split] == NULL) {
  13202. ctx_outs[i_split] = gguf_init_empty();
  13203. }
  13204. gguf_add_tensor(ctx_outs[i_split], tensor);
  13205. }
  13206. // Set split info if needed
  13207. if (n_split > 1) {
  13208. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  13209. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  13210. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  13211. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  13212. }
  13213. }
  13214. int cur_split = -1;
  13215. std::ofstream fout;
  13216. auto close_ofstream = [&]() {
  13217. // Write metadata and close file handler
  13218. if (fout.is_open()) {
  13219. fout.seekp(0);
  13220. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  13221. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  13222. fout.write((const char *) data.data(), data.size());
  13223. fout.close();
  13224. }
  13225. };
  13226. auto new_ofstream = [&](int index) {
  13227. cur_split = index;
  13228. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  13229. std::string fname = fname_out;
  13230. if (params->keep_split) {
  13231. char split_path[PATH_MAX] = {0};
  13232. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  13233. fname = std::string(split_path);
  13234. }
  13235. fout = std::ofstream(fname, std::ios::binary);
  13236. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  13237. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  13238. // placeholder for the meta data
  13239. ::zeros(fout, meta_size);
  13240. };
  13241. const auto tn = LLM_TN(model.arch);
  13242. new_ofstream(0);
  13243. for (int i = 0; i < ml.n_tensors; ++i) {
  13244. auto weight = ml.get_weight(i);
  13245. struct ggml_tensor * tensor = weight->tensor;
  13246. if (weight->idx != cur_split && params->keep_split) {
  13247. close_ofstream();
  13248. new_ofstream(weight->idx);
  13249. }
  13250. const std::string name = ggml_get_name(tensor);
  13251. if (!ml.use_mmap) {
  13252. if (read_data.size() < ggml_nbytes(tensor)) {
  13253. read_data.resize(ggml_nbytes(tensor));
  13254. }
  13255. tensor->data = read_data.data();
  13256. }
  13257. ml.load_data_for(tensor);
  13258. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  13259. ++idx, ml.n_tensors,
  13260. ggml_get_name(tensor),
  13261. llama_format_tensor_shape(tensor).c_str(),
  13262. ggml_type_name(tensor->type));
  13263. // This used to be a regex, but <regex> has an extreme cost to compile times.
  13264. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  13265. // quantize only 2D and 3D tensors (experts)
  13266. quantize &= (ggml_n_dims(tensor) >= 2);
  13267. // do not quantize norm tensors
  13268. quantize &= name.find("_norm.weight") == std::string::npos;
  13269. quantize &= params->quantize_output_tensor || name != "output.weight";
  13270. quantize &= !params->only_copy;
  13271. // do not quantize expert gating tensors
  13272. // NOTE: can't use LLM_TN here because the layer number is not known
  13273. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  13274. // do not quantize positional embeddings and token types (BERT)
  13275. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  13276. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  13277. // do not quantize Mamba's small yet 2D weights
  13278. // NOTE: can't use LLM_TN here because the layer number is not known
  13279. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  13280. quantize &= name.find("ssm_x.weight") == std::string::npos;
  13281. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  13282. enum ggml_type new_type;
  13283. void * new_data;
  13284. size_t new_size;
  13285. if (quantize) {
  13286. new_type = default_type;
  13287. // get more optimal quantization type based on the tensor shape, layer, etc.
  13288. if (!params->pure && ggml_is_quantized(default_type)) {
  13289. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  13290. }
  13291. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  13292. new_type = params->token_embedding_type;
  13293. }
  13294. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  13295. new_type = params->output_tensor_type;
  13296. }
  13297. // If we've decided to quantize to the same type the tensor is already
  13298. // in then there's nothing to do.
  13299. quantize = tensor->type != new_type;
  13300. }
  13301. if (!quantize) {
  13302. new_type = tensor->type;
  13303. new_data = tensor->data;
  13304. new_size = ggml_nbytes(tensor);
  13305. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  13306. } else {
  13307. const int64_t nelements = ggml_nelements(tensor);
  13308. const float * imatrix = nullptr;
  13309. if (imatrix_data) {
  13310. auto it = imatrix_data->find(tensor->name);
  13311. if (it == imatrix_data->end()) {
  13312. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  13313. } else {
  13314. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  13315. imatrix = it->second.data();
  13316. } else {
  13317. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  13318. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  13319. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  13320. // this is a significant error and it may be good idea to abort the process if this happens,
  13321. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  13322. // tok_embd should be ignored in this case, since it always causes this warning
  13323. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  13324. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  13325. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  13326. }
  13327. }
  13328. }
  13329. }
  13330. if ((new_type == GGML_TYPE_IQ2_XXS ||
  13331. new_type == GGML_TYPE_IQ2_XS ||
  13332. new_type == GGML_TYPE_IQ2_S ||
  13333. new_type == GGML_TYPE_IQ1_S ||
  13334. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  13335. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  13336. LLAMA_LOG_ERROR("\n\n============================================================\n");
  13337. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  13338. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  13339. LLAMA_LOG_ERROR("============================================================\n\n");
  13340. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  13341. }
  13342. float * f32_data;
  13343. if (tensor->type == GGML_TYPE_F32) {
  13344. f32_data = (float *) tensor->data;
  13345. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  13346. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  13347. } else {
  13348. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  13349. f32_data = (float *) f32_conv_buf.data();
  13350. }
  13351. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  13352. fflush(stdout);
  13353. if (work.size() < (size_t)nelements * 4) {
  13354. work.resize(nelements * 4); // upper bound on size
  13355. }
  13356. new_data = work.data();
  13357. const int64_t n_per_row = tensor->ne[0];
  13358. const int64_t nrows = tensor->ne[1];
  13359. static const int64_t min_chunk_size = 32 * 512;
  13360. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  13361. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  13362. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  13363. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  13364. // quantize each expert separately since they have different importance matrices
  13365. new_size = 0;
  13366. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  13367. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  13368. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  13369. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  13370. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  13371. }
  13372. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  13373. }
  13374. total_size_org += ggml_nbytes(tensor);
  13375. total_size_new += new_size;
  13376. // update the gguf meta data as we go
  13377. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  13378. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  13379. // write tensor data + padding
  13380. fout.write((const char *) new_data, new_size);
  13381. zeros(fout, GGML_PAD(new_size, align) - new_size);
  13382. }
  13383. close_ofstream();
  13384. for (auto & c:ctx_outs) {
  13385. gguf_free(c);
  13386. }
  13387. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  13388. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  13389. if (qs.n_fallback > 0) {
  13390. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  13391. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  13392. }
  13393. }
  13394. static int llama_apply_lora_from_file_internal(
  13395. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  13396. ) {
  13397. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  13398. const int64_t t_start_lora_us = ggml_time_us();
  13399. llama_file fin(path_lora, "rb");
  13400. // verify magic and version
  13401. {
  13402. uint32_t magic = fin.read_u32();
  13403. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  13404. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  13405. return 1;
  13406. }
  13407. uint32_t format_version = fin.read_u32();
  13408. if (format_version != 1) {
  13409. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  13410. return 1;
  13411. }
  13412. }
  13413. int32_t lora_r = fin.read_u32();
  13414. int32_t lora_alpha = fin.read_u32();
  13415. float scaling = scale * (float)lora_alpha / (float)lora_r;
  13416. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  13417. // load base model
  13418. std::unique_ptr<llama_model_loader> ml;
  13419. if (path_base_model) {
  13420. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  13421. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  13422. ml->init_mappings(/*prefetch*/ false); // no prefetching
  13423. }
  13424. struct tensor_meta {
  13425. std::string name;
  13426. ggml_type type;
  13427. int32_t ne[2];
  13428. size_t offset;
  13429. };
  13430. std::map<std::string, tensor_meta> tensor_meta_map;
  13431. // load all tensor meta
  13432. while (true) {
  13433. if (fin.tell() == fin.size) {
  13434. // eof
  13435. break;
  13436. }
  13437. int32_t n_dims;
  13438. int32_t name_len;
  13439. int32_t ftype;
  13440. fin.read_raw(&n_dims, sizeof(n_dims));
  13441. fin.read_raw(&name_len, sizeof(name_len));
  13442. fin.read_raw(&ftype, sizeof(ftype));
  13443. if (n_dims != 1 && n_dims != 2) {
  13444. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  13445. return 1;
  13446. }
  13447. int32_t ne[2] = { 1, 1 };
  13448. for (int i = 0; i < n_dims; ++i) {
  13449. fin.read_raw(&ne[i], sizeof(ne[i]));
  13450. }
  13451. std::string name;
  13452. {
  13453. GGML_ASSERT(name_len < GGML_MAX_NAME);
  13454. char buf[GGML_MAX_NAME];
  13455. fin.read_raw(buf, name_len);
  13456. name = std::string(buf, name_len);
  13457. }
  13458. // check for lora suffix
  13459. std::string lora_suffix;
  13460. if (name.length() > 6) {
  13461. lora_suffix = name.substr(name.length() - 6);
  13462. }
  13463. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  13464. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  13465. return 1;
  13466. }
  13467. // tensor type
  13468. ggml_type wtype;
  13469. switch (ftype) {
  13470. case 0: wtype = GGML_TYPE_F32; break;
  13471. case 1: wtype = GGML_TYPE_F16; break;
  13472. default:
  13473. {
  13474. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  13475. __func__, ftype);
  13476. return 1;
  13477. }
  13478. }
  13479. // data offset
  13480. size_t offset = fin.tell();
  13481. offset = (offset + 31) & -32;
  13482. // skip tensor data
  13483. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  13484. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  13485. }
  13486. bool warned = false;
  13487. int n_tensors = 0;
  13488. // apply
  13489. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  13490. if (backend_cpu == nullptr) {
  13491. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  13492. return 1;
  13493. }
  13494. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  13495. std::vector<no_init<uint8_t>> read_buf;
  13496. for (const auto & it : model.tensors_by_name) {
  13497. const std::string & base_name = it.first;
  13498. ggml_tensor * model_t = it.second;
  13499. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  13500. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  13501. continue;
  13502. }
  13503. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  13504. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  13505. ggml_init_params lora_init_params = {
  13506. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  13507. /* .mem_buffer */ nullptr,
  13508. /* .no_alloc */ true,
  13509. };
  13510. ggml_context * lora_ctx = ggml_init(lora_init_params);
  13511. if (lora_ctx == nullptr) {
  13512. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  13513. ggml_backend_free(backend_cpu);
  13514. return 1;
  13515. }
  13516. // create tensors
  13517. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  13518. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  13519. ggml_set_name(loraA, metaA.name.c_str());
  13520. ggml_set_name(loraB, metaB.name.c_str());
  13521. ggml_tensor * base_t;
  13522. if (ml) {
  13523. if (!ml->get_tensor_meta(base_name.c_str())) {
  13524. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  13525. return 1;
  13526. }
  13527. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  13528. } else {
  13529. base_t = ggml_dup_tensor(lora_ctx, model_t);
  13530. }
  13531. ggml_set_name(base_t, base_name.c_str());
  13532. // allocate in backend buffer
  13533. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13534. if (lora_buf == nullptr) {
  13535. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  13536. return 1;
  13537. }
  13538. // load tensor data
  13539. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  13540. read_buf.resize(ggml_nbytes(tensor));
  13541. fin.seek(tensor_meta.offset, SEEK_SET);
  13542. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  13543. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  13544. };
  13545. load_tensor(metaA, loraA);
  13546. load_tensor(metaB, loraB);
  13547. // load base model tensor data
  13548. if (ml) {
  13549. ml->load_data_for(base_t);
  13550. } else {
  13551. ggml_backend_tensor_copy(model_t, base_t);
  13552. }
  13553. if (ggml_is_quantized(base_t->type) && !warned) {
  13554. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  13555. "use a f16 or f32 base model with --lora-base\n", __func__);
  13556. warned = true;
  13557. }
  13558. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  13559. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  13560. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  13561. ggml_free(lora_ctx);
  13562. ggml_backend_buffer_free(lora_buf);
  13563. ggml_backend_free(backend_cpu);
  13564. return 1;
  13565. }
  13566. auto build_lora_graph = [&]() {
  13567. // w = w + BA*s
  13568. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  13569. ggml_set_name(BA, "BA");
  13570. if (scaling != 1.0f) {
  13571. BA = ggml_scale(lora_ctx, BA, scaling);
  13572. ggml_set_name(BA, "BA_scaled");
  13573. }
  13574. ggml_tensor * r;
  13575. r = ggml_add_inplace(lora_ctx, base_t, BA);
  13576. ggml_set_name(r, "r_add");
  13577. if (base_t->type != model_t->type) {
  13578. // convert the result to the model type
  13579. r = ggml_cast(lora_ctx, r, model_t->type);
  13580. ggml_set_name(r, "r_cast");
  13581. }
  13582. return r;
  13583. };
  13584. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  13585. ggml_tensor * r = build_lora_graph();
  13586. ggml_build_forward_expand(gf, r);
  13587. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13588. if (graph_buf == nullptr) {
  13589. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  13590. ggml_free(lora_ctx);
  13591. ggml_backend_buffer_free(lora_buf);
  13592. ggml_backend_free(backend_cpu);
  13593. return 1;
  13594. }
  13595. ggml_backend_graph_compute(backend_cpu, gf);
  13596. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  13597. #if 0
  13598. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  13599. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  13600. // sched compute
  13601. ggml_build_forward_expand(gf, build_graph());
  13602. ggml_backend_sched_init_measure(sched, gf);
  13603. // create the graph again, since the previous one was destroyed by the measure
  13604. ggml_graph_clear(gf);
  13605. ggml_build_forward_expand(gf, build_graph());
  13606. ggml_backend_sched_graph_compute(sched, gf);
  13607. ggml_backend_sched_free(sched);
  13608. #endif
  13609. ggml_backend_buffer_free(lora_buf);
  13610. ggml_backend_buffer_free(graph_buf);
  13611. ggml_free(lora_ctx);
  13612. n_tensors++;
  13613. if (n_tensors % 4 == 0) {
  13614. LLAMA_LOG_INFO(".");
  13615. }
  13616. }
  13617. ggml_backend_free(backend_cpu);
  13618. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  13619. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  13620. return 0;
  13621. }
  13622. //
  13623. // interface implementation
  13624. //
  13625. struct llama_model_params llama_model_default_params() {
  13626. struct llama_model_params result = {
  13627. /*.n_gpu_layers =*/ 0,
  13628. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  13629. /*.main_gpu =*/ 0,
  13630. /*.tensor_split =*/ nullptr,
  13631. /*.rpc_servers =*/ nullptr,
  13632. /*.progress_callback =*/ nullptr,
  13633. /*.progress_callback_user_data =*/ nullptr,
  13634. /*.kv_overrides =*/ nullptr,
  13635. /*.vocab_only =*/ false,
  13636. /*.use_mmap =*/ true,
  13637. /*.use_mlock =*/ false,
  13638. /*.check_tensors =*/ false,
  13639. };
  13640. #ifdef GGML_USE_METAL
  13641. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  13642. result.n_gpu_layers = 999;
  13643. #endif
  13644. return result;
  13645. }
  13646. struct llama_context_params llama_context_default_params() {
  13647. struct llama_context_params result = {
  13648. /*.seed =*/ LLAMA_DEFAULT_SEED,
  13649. /*.n_ctx =*/ 512,
  13650. /*.n_batch =*/ 2048,
  13651. /*.n_ubatch =*/ 512,
  13652. /*.n_seq_max =*/ 1,
  13653. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  13654. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  13655. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  13656. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  13657. /*.rope_freq_base =*/ 0.0f,
  13658. /*.rope_freq_scale =*/ 0.0f,
  13659. /*.yarn_ext_factor =*/ -1.0f,
  13660. /*.yarn_attn_factor =*/ 1.0f,
  13661. /*.yarn_beta_fast =*/ 32.0f,
  13662. /*.yarn_beta_slow =*/ 1.0f,
  13663. /*.yarn_orig_ctx =*/ 0,
  13664. /*.defrag_thold =*/ -1.0f,
  13665. /*.cb_eval =*/ nullptr,
  13666. /*.cb_eval_user_data =*/ nullptr,
  13667. /*.type_k =*/ GGML_TYPE_F16,
  13668. /*.type_v =*/ GGML_TYPE_F16,
  13669. /*.logits_all =*/ false,
  13670. /*.embeddings =*/ false,
  13671. /*.offload_kqv =*/ true,
  13672. /*.flash_attn =*/ false,
  13673. /*.abort_callback =*/ nullptr,
  13674. /*.abort_callback_data =*/ nullptr,
  13675. };
  13676. return result;
  13677. }
  13678. struct llama_model_quantize_params llama_model_quantize_default_params() {
  13679. struct llama_model_quantize_params result = {
  13680. /*.nthread =*/ 0,
  13681. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  13682. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  13683. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  13684. /*.allow_requantize =*/ false,
  13685. /*.quantize_output_tensor =*/ true,
  13686. /*.only_copy =*/ false,
  13687. /*.pure =*/ false,
  13688. /*.keep_split =*/ false,
  13689. /*.imatrix =*/ nullptr,
  13690. /*.kv_overrides =*/ nullptr,
  13691. };
  13692. return result;
  13693. }
  13694. size_t llama_max_devices(void) {
  13695. #if defined(GGML_USE_RPC)
  13696. return GGML_RPC_MAX_SERVERS;
  13697. #elif defined(GGML_USE_METAL)
  13698. return 1;
  13699. #elif defined(GGML_USE_CUDA)
  13700. return GGML_CUDA_MAX_DEVICES;
  13701. #elif defined(GGML_USE_SYCL)
  13702. return GGML_SYCL_MAX_DEVICES;
  13703. #elif defined(GGML_USE_VULKAN)
  13704. return GGML_VK_MAX_DEVICES;
  13705. #else
  13706. return 1;
  13707. #endif
  13708. }
  13709. bool llama_supports_mmap(void) {
  13710. return llama_mmap::SUPPORTED;
  13711. }
  13712. bool llama_supports_mlock(void) {
  13713. return llama_mlock::SUPPORTED;
  13714. }
  13715. bool llama_supports_gpu_offload(void) {
  13716. #if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  13717. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  13718. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  13719. return true;
  13720. #else
  13721. return false;
  13722. #endif
  13723. }
  13724. void llama_backend_init(void) {
  13725. ggml_time_init();
  13726. // needed to initialize f16 tables
  13727. {
  13728. struct ggml_init_params params = { 0, NULL, false };
  13729. struct ggml_context * ctx = ggml_init(params);
  13730. ggml_free(ctx);
  13731. }
  13732. }
  13733. void llama_numa_init(enum ggml_numa_strategy numa) {
  13734. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  13735. ggml_numa_init(numa);
  13736. }
  13737. }
  13738. void llama_backend_free(void) {
  13739. ggml_quantize_free();
  13740. }
  13741. int64_t llama_time_us(void) {
  13742. return ggml_time_us();
  13743. }
  13744. struct llama_model * llama_load_model_from_file(
  13745. const char * path_model,
  13746. struct llama_model_params params) {
  13747. ggml_time_init();
  13748. llama_model * model = new llama_model;
  13749. unsigned cur_percentage = 0;
  13750. if (params.progress_callback == NULL) {
  13751. params.progress_callback_user_data = &cur_percentage;
  13752. params.progress_callback = [](float progress, void * ctx) {
  13753. unsigned * cur_percentage_p = (unsigned *) ctx;
  13754. unsigned percentage = (unsigned) (100 * progress);
  13755. while (percentage > *cur_percentage_p) {
  13756. *cur_percentage_p = percentage;
  13757. LLAMA_LOG_INFO(".");
  13758. if (percentage >= 100) {
  13759. LLAMA_LOG_INFO("\n");
  13760. }
  13761. }
  13762. return true;
  13763. };
  13764. }
  13765. if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
  13766. // split the servers set them into model->rpc_servers
  13767. std::string servers(params.rpc_servers);
  13768. size_t pos = 0;
  13769. while ((pos = servers.find(",")) != std::string::npos) {
  13770. std::string server = servers.substr(0, pos);
  13771. model->rpc_servers.push_back(server);
  13772. servers.erase(0, pos + 1);
  13773. }
  13774. model->rpc_servers.push_back(servers);
  13775. }
  13776. int status = llama_model_load(path_model, *model, params);
  13777. GGML_ASSERT(status <= 0);
  13778. if (status < 0) {
  13779. if (status == -1) {
  13780. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13781. } else if (status == -2) {
  13782. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13783. }
  13784. delete model;
  13785. return nullptr;
  13786. }
  13787. return model;
  13788. }
  13789. void llama_free_model(struct llama_model * model) {
  13790. delete model;
  13791. }
  13792. struct llama_context * llama_new_context_with_model(
  13793. struct llama_model * model,
  13794. struct llama_context_params params) {
  13795. if (!model) {
  13796. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13797. return nullptr;
  13798. }
  13799. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13800. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13801. return nullptr;
  13802. }
  13803. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13804. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13805. return nullptr;
  13806. }
  13807. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13808. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13809. params.flash_attn = false;
  13810. }
  13811. if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
  13812. LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
  13813. params.flash_attn = false;
  13814. }
  13815. if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
  13816. LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
  13817. return nullptr;
  13818. }
  13819. llama_context * ctx = new llama_context(*model);
  13820. const auto & hparams = model->hparams;
  13821. auto & cparams = ctx->cparams;
  13822. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13823. cparams.n_threads = params.n_threads;
  13824. cparams.n_threads_batch = params.n_threads_batch;
  13825. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13826. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13827. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13828. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13829. cparams.defrag_thold = params.defrag_thold;
  13830. cparams.embeddings = params.embeddings;
  13831. cparams.offload_kqv = params.offload_kqv;
  13832. cparams.flash_attn = params.flash_attn;
  13833. cparams.pooling_type = params.pooling_type;
  13834. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13835. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13836. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13837. // this is necessary due to kv_self.n being padded later during inference
  13838. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13839. // with causal attention, the batch size is limited by the context size
  13840. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13841. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13842. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13843. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13844. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13845. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13846. cparams.n_batch = GGML_KQ_MASK_PAD;
  13847. }
  13848. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13849. cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13850. hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
  13851. hparams.n_ctx_train;
  13852. cparams.cb_eval = params.cb_eval;
  13853. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13854. auto rope_scaling_type = params.rope_scaling_type;
  13855. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13856. rope_scaling_type = hparams.rope_scaling_type_train;
  13857. }
  13858. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13859. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13860. }
  13861. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13862. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13863. }
  13864. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  13865. cparams.causal_attn = hparams.causal_attn;
  13866. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13867. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13868. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13869. } else {
  13870. cparams.pooling_type = hparams.pooling_type;
  13871. }
  13872. }
  13873. if (params.seed == LLAMA_DEFAULT_SEED) {
  13874. params.seed = time(NULL);
  13875. }
  13876. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13877. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13878. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13879. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13880. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13881. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13882. ctx->abort_callback = params.abort_callback;
  13883. ctx->abort_callback_data = params.abort_callback_data;
  13884. ctx->rng = std::mt19937(params.seed);
  13885. ctx->logits_all = params.logits_all;
  13886. uint32_t kv_size = cparams.n_ctx;
  13887. ggml_type type_k = params.type_k;
  13888. ggml_type type_v = params.type_v;
  13889. // Mamba only needs a constant number of KV cache cells per sequence
  13890. if (model->arch == LLM_ARCH_MAMBA) {
  13891. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13892. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13893. // it's probably best to keep as much precision as possible for the states
  13894. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13895. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13896. }
  13897. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13898. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13899. if (!hparams.vocab_only) {
  13900. // initialize backends
  13901. #if defined(GGML_USE_METAL)
  13902. if (model->n_gpu_layers > 0) {
  13903. ctx->backend_metal = ggml_backend_metal_init();
  13904. if (ctx->backend_metal == nullptr) {
  13905. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13906. llama_free(ctx);
  13907. return nullptr;
  13908. }
  13909. ctx->backends.push_back(ctx->backend_metal);
  13910. }
  13911. #elif defined(GGML_USE_CUDA)
  13912. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13913. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13914. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13915. if (backend == nullptr) {
  13916. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13917. llama_free(ctx);
  13918. return nullptr;
  13919. }
  13920. ctx->backends.push_back(backend);
  13921. } else {
  13922. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13923. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13924. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13925. if (backend == nullptr) {
  13926. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13927. llama_free(ctx);
  13928. return nullptr;
  13929. }
  13930. ctx->backends.push_back(backend);
  13931. }
  13932. }
  13933. #elif defined(GGML_USE_VULKAN)
  13934. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13935. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13936. llama_free(ctx);
  13937. return nullptr;
  13938. }
  13939. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13940. ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
  13941. if (backend == nullptr) {
  13942. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13943. llama_free(ctx);
  13944. return nullptr;
  13945. }
  13946. ctx->backends.push_back(backend);
  13947. } else {
  13948. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13949. ggml_backend_t backend = ggml_backend_vk_init(device);
  13950. if (backend == nullptr) {
  13951. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13952. llama_free(ctx);
  13953. return nullptr;
  13954. }
  13955. ctx->backends.push_back(backend);
  13956. }
  13957. }
  13958. #elif defined(GGML_USE_SYCL)
  13959. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13960. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13961. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13962. if (backend == nullptr) {
  13963. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
  13964. llama_free(ctx);
  13965. return nullptr;
  13966. }
  13967. ctx->backends.push_back(backend);
  13968. } else {
  13969. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13970. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13971. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13972. if (backend == nullptr) {
  13973. int id_list[GGML_SYCL_MAX_DEVICES];
  13974. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13975. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13976. llama_free(ctx);
  13977. return nullptr;
  13978. }
  13979. ctx->backends.push_back(backend);
  13980. }
  13981. }
  13982. #elif defined(GGML_USE_KOMPUTE)
  13983. if (model->n_gpu_layers > 0) {
  13984. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13985. if (backend == nullptr) {
  13986. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13987. llama_free(ctx);
  13988. return nullptr;
  13989. }
  13990. ctx->backends.push_back(backend);
  13991. }
  13992. #endif
  13993. #ifdef GGML_USE_BLAS
  13994. ctx->backend_blas = ggml_backend_blas_init();
  13995. if (ctx->backend_blas == nullptr) {
  13996. LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
  13997. } else {
  13998. ctx->backends.push_back(ctx->backend_blas);
  13999. }
  14000. #endif
  14001. #if defined(GGML_USE_RPC)
  14002. if (model->n_gpu_layers > 0) {
  14003. for (const auto & endpoint : model->rpc_servers) {
  14004. ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
  14005. if (backend == nullptr) {
  14006. LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
  14007. llama_free(ctx);
  14008. return nullptr;
  14009. }
  14010. ctx->backends.push_back(backend);
  14011. }
  14012. }
  14013. #endif
  14014. ctx->backend_cpu = ggml_backend_cpu_init();
  14015. if (ctx->backend_cpu == nullptr) {
  14016. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  14017. llama_free(ctx);
  14018. return nullptr;
  14019. }
  14020. ctx->backends.push_back(ctx->backend_cpu);
  14021. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  14022. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  14023. llama_free(ctx);
  14024. return nullptr;
  14025. }
  14026. {
  14027. size_t memory_size_k = 0;
  14028. size_t memory_size_v = 0;
  14029. for (auto & k : ctx->kv_self.k_l) {
  14030. memory_size_k += ggml_nbytes(k);
  14031. }
  14032. for (auto & v : ctx->kv_self.v_l) {
  14033. memory_size_v += ggml_nbytes(v);
  14034. }
  14035. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  14036. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  14037. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  14038. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  14039. }
  14040. // graph outputs buffer
  14041. {
  14042. // resized during inference when a batch uses more outputs
  14043. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  14044. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  14045. llama_free(ctx);
  14046. return nullptr;
  14047. }
  14048. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  14049. ggml_backend_buffer_name(ctx->buf_output),
  14050. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  14051. }
  14052. // scheduler and compute buffers
  14053. {
  14054. // buffer types used for the compute buffer of each backend
  14055. std::vector<ggml_backend_buffer_type_t> backend_buft;
  14056. for (auto * backend : ctx->backends) {
  14057. if (ggml_backend_is_cpu(backend)) {
  14058. // use host buffers for the CPU backend compute buffer
  14059. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  14060. } else {
  14061. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  14062. }
  14063. }
  14064. // buffer used to store the computation graph and the tensor meta data
  14065. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  14066. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  14067. bool pipeline_parallel =
  14068. llama_get_device_count(*model) > 1 &&
  14069. model->n_gpu_layers > (int)model->hparams.n_layer &&
  14070. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  14071. params.offload_kqv;
  14072. #ifndef GGML_USE_CUDA
  14073. // pipeline parallelism requires support for async compute and events
  14074. // currently this is only implemented in the CUDA backend
  14075. pipeline_parallel = false;
  14076. #endif
  14077. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  14078. if (pipeline_parallel) {
  14079. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  14080. }
  14081. // build worst-case graph
  14082. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  14083. int n_past = cparams.n_ctx - n_tokens;
  14084. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  14085. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  14086. // initialize scheduler with the worst-case graph
  14087. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  14088. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  14089. llama_free(ctx);
  14090. return nullptr;
  14091. }
  14092. for (size_t i = 0; i < ctx->backends.size(); i++) {
  14093. ggml_backend_t backend = ctx->backends[i];
  14094. ggml_backend_buffer_type_t buft = backend_buft[i];
  14095. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  14096. if (size > 1) {
  14097. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  14098. ggml_backend_buft_name(buft),
  14099. size / 1024.0 / 1024.0);
  14100. }
  14101. }
  14102. // note: the number of splits during measure is higher than during inference due to the kv shift
  14103. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  14104. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  14105. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  14106. }
  14107. }
  14108. return ctx;
  14109. }
  14110. void llama_free(struct llama_context * ctx) {
  14111. delete ctx;
  14112. }
  14113. const llama_model * llama_get_model(const struct llama_context * ctx) {
  14114. return &ctx->model;
  14115. }
  14116. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  14117. return ctx->cparams.n_ctx;
  14118. }
  14119. uint32_t llama_n_batch(const struct llama_context * ctx) {
  14120. return ctx->cparams.n_batch;
  14121. }
  14122. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  14123. return ctx->cparams.n_ubatch;
  14124. }
  14125. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  14126. return ctx->kv_self.size;
  14127. }
  14128. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  14129. return model->vocab.type;
  14130. }
  14131. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  14132. switch (model->arch) {
  14133. // these models do not use RoPE
  14134. case LLM_ARCH_GPT2:
  14135. case LLM_ARCH_GPTJ:
  14136. case LLM_ARCH_MPT:
  14137. case LLM_ARCH_REFACT:
  14138. case LLM_ARCH_BLOOM:
  14139. case LLM_ARCH_MAMBA:
  14140. case LLM_ARCH_JINA_BERT_V2:
  14141. return LLAMA_ROPE_TYPE_NONE;
  14142. // use what we call a normal RoPE, operating on pairs of consecutive head values
  14143. case LLM_ARCH_LLAMA:
  14144. case LLM_ARCH_BAICHUAN:
  14145. case LLM_ARCH_STARCODER:
  14146. case LLM_ARCH_PLAMO:
  14147. case LLM_ARCH_CODESHELL:
  14148. case LLM_ARCH_ORION:
  14149. case LLM_ARCH_INTERNLM2:
  14150. case LLM_ARCH_MINICPM:
  14151. case LLM_ARCH_XVERSE:
  14152. case LLM_ARCH_COMMAND_R:
  14153. case LLM_ARCH_OLMO:
  14154. case LLM_ARCH_ARCTIC:
  14155. case LLM_ARCH_DEEPSEEK2:
  14156. return LLAMA_ROPE_TYPE_NORM;
  14157. // the pairs of head values are offset by n_rot/2
  14158. case LLM_ARCH_FALCON:
  14159. case LLM_ARCH_GROK:
  14160. case LLM_ARCH_DBRX:
  14161. case LLM_ARCH_BERT:
  14162. case LLM_ARCH_NOMIC_BERT:
  14163. case LLM_ARCH_STABLELM:
  14164. case LLM_ARCH_BITNET:
  14165. case LLM_ARCH_QWEN:
  14166. case LLM_ARCH_QWEN2:
  14167. case LLM_ARCH_QWEN2MOE:
  14168. case LLM_ARCH_PHI2:
  14169. case LLM_ARCH_PHI3:
  14170. case LLM_ARCH_GEMMA:
  14171. case LLM_ARCH_STARCODER2:
  14172. case LLM_ARCH_GPTNEOX:
  14173. return LLAMA_ROPE_TYPE_NEOX;
  14174. // all model arches should be listed explicitly here
  14175. case LLM_ARCH_UNKNOWN:
  14176. GGML_ASSERT(false && "unknown architecture");
  14177. break;
  14178. }
  14179. return LLAMA_ROPE_TYPE_NONE;
  14180. }
  14181. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  14182. return ctx->cparams.pooling_type;
  14183. }
  14184. int32_t llama_n_vocab(const struct llama_model * model) {
  14185. return model->hparams.n_vocab;
  14186. }
  14187. int32_t llama_n_ctx_train(const struct llama_model * model) {
  14188. return model->hparams.n_ctx_train;
  14189. }
  14190. int32_t llama_n_embd(const struct llama_model * model) {
  14191. return model->hparams.n_embd;
  14192. }
  14193. int32_t llama_n_layer(const struct llama_model * model) {
  14194. return model->hparams.n_layer;
  14195. }
  14196. float llama_rope_freq_scale_train(const struct llama_model * model) {
  14197. return model->hparams.rope_freq_scale_train;
  14198. }
  14199. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  14200. const auto & it = model->gguf_kv.find(key);
  14201. if (it == model->gguf_kv.end()) {
  14202. if (buf_size > 0) {
  14203. buf[0] = '\0';
  14204. }
  14205. return -1;
  14206. }
  14207. return snprintf(buf, buf_size, "%s", it->second.c_str());
  14208. }
  14209. int32_t llama_model_meta_count(const struct llama_model * model) {
  14210. return (int)model->gguf_kv.size();
  14211. }
  14212. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  14213. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  14214. if (buf_size > 0) {
  14215. buf[0] = '\0';
  14216. }
  14217. return -1;
  14218. }
  14219. auto it = model->gguf_kv.begin();
  14220. std::advance(it, i);
  14221. return snprintf(buf, buf_size, "%s", it->first.c_str());
  14222. }
  14223. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  14224. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  14225. if (buf_size > 0) {
  14226. buf[0] = '\0';
  14227. }
  14228. return -1;
  14229. }
  14230. auto it = model->gguf_kv.begin();
  14231. std::advance(it, i);
  14232. return snprintf(buf, buf_size, "%s", it->second.c_str());
  14233. }
  14234. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  14235. return snprintf(buf, buf_size, "%s %s %s",
  14236. llama_model_arch_name(model->arch),
  14237. llama_model_type_name(model->type),
  14238. llama_model_ftype_name(model->ftype).c_str());
  14239. }
  14240. uint64_t llama_model_size(const struct llama_model * model) {
  14241. uint64_t size = 0;
  14242. for (const auto & it : model->tensors_by_name) {
  14243. size += ggml_nbytes(it.second);
  14244. }
  14245. return size;
  14246. }
  14247. uint64_t llama_model_n_params(const struct llama_model * model) {
  14248. uint64_t nparams = 0;
  14249. for (const auto & it : model->tensors_by_name) {
  14250. nparams += ggml_nelements(it.second);
  14251. }
  14252. return nparams;
  14253. }
  14254. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  14255. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  14256. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  14257. return it.first == name;
  14258. });
  14259. if (it == model->tensors_by_name.end()) {
  14260. return nullptr;
  14261. }
  14262. return it->second;
  14263. }
  14264. uint32_t llama_model_quantize(
  14265. const char * fname_inp,
  14266. const char * fname_out,
  14267. const llama_model_quantize_params * params) {
  14268. try {
  14269. llama_model_quantize_internal(fname_inp, fname_out, params);
  14270. return 0;
  14271. } catch (const std::exception & err) {
  14272. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  14273. return 1;
  14274. }
  14275. }
  14276. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  14277. try {
  14278. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  14279. } catch (const std::exception & err) {
  14280. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  14281. return 1;
  14282. }
  14283. }
  14284. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  14285. GGML_ASSERT(cvec.tensors.empty());
  14286. GGML_ASSERT(cvec.ctxs.empty());
  14287. GGML_ASSERT(cvec.bufs.empty());
  14288. // count layer buffer types
  14289. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  14290. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  14291. buft_layer_count[model.buft_layer[i].buft]++;
  14292. }
  14293. // allocate contexts
  14294. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  14295. for (auto & it : buft_layer_count) {
  14296. int n_layers = it.second;
  14297. struct ggml_init_params params = {
  14298. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  14299. /*.mem_buffer =*/ NULL,
  14300. /*.no_alloc =*/ true,
  14301. };
  14302. ggml_context * ctx = ggml_init(params);
  14303. if (!ctx) {
  14304. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  14305. return 1;
  14306. }
  14307. ctx_map[it.first] = ctx;
  14308. }
  14309. // make tensors
  14310. cvec.tensors.reserve(model.hparams.n_layer);
  14311. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  14312. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  14313. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  14314. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  14315. cvec.tensors.push_back(tensor);
  14316. }
  14317. // allocate tensors / buffers and zero
  14318. cvec.ctxs.reserve(ctx_map.size());
  14319. cvec.bufs.reserve(ctx_map.size());
  14320. for (auto it : ctx_map) {
  14321. ggml_backend_buffer_type_t buft = it.first;
  14322. ggml_context * ctx = it.second;
  14323. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  14324. if (!buf) {
  14325. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  14326. return false;
  14327. }
  14328. ggml_backend_buffer_clear(buf, 0);
  14329. cvec.ctxs.push_back(ctx);
  14330. cvec.bufs.push_back(buf);
  14331. }
  14332. return true;
  14333. }
  14334. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  14335. const llama_model & model = lctx->model;
  14336. llama_control_vector & cvec = lctx->cvec;
  14337. if (data == nullptr) {
  14338. // disable the current control vector (but leave allocated for later)
  14339. cvec.layer_start = -1;
  14340. cvec.layer_end = -1;
  14341. return 0;
  14342. }
  14343. if (n_embd != (int) model.hparams.n_embd) {
  14344. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  14345. return 1;
  14346. }
  14347. if (cvec.tensors.empty()) {
  14348. if (!llama_control_vector_init(cvec, model)) {
  14349. return 1;
  14350. }
  14351. }
  14352. cvec.layer_start = il_start;
  14353. cvec.layer_end = il_end;
  14354. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  14355. assert(cvec.tensors[il] != nullptr);
  14356. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  14357. if (off + n_embd <= len) {
  14358. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  14359. }
  14360. }
  14361. return 0;
  14362. }
  14363. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  14364. struct llama_kv_cache_view result = {
  14365. /*.n_cells = */ 0,
  14366. /*.n_seq_max = */ n_seq_max,
  14367. /*.token_count = */ 0,
  14368. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  14369. /*.max_contiguous = */ 0,
  14370. /*.max_contiguous_idx = */ -1,
  14371. /*.cells = */ nullptr,
  14372. /*.cells_sequences = */ nullptr,
  14373. };
  14374. return result;
  14375. }
  14376. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  14377. if (view->cells != nullptr) {
  14378. free(view->cells);
  14379. view->cells = nullptr;
  14380. }
  14381. if (view->cells_sequences != nullptr) {
  14382. free(view->cells_sequences);
  14383. view->cells_sequences = nullptr;
  14384. }
  14385. }
  14386. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  14387. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  14388. view->n_cells = int32_t(ctx->kv_self.size);
  14389. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  14390. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  14391. view->cells = (struct llama_kv_cache_view_cell *)p;
  14392. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  14393. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  14394. view->cells_sequences = (llama_seq_id *)p;
  14395. }
  14396. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  14397. llama_kv_cache_view_cell * c_curr = view->cells;
  14398. llama_seq_id * cs_curr = view->cells_sequences;
  14399. int32_t used_cells = 0;
  14400. int32_t token_count = 0;
  14401. int32_t curr_contig_idx = -1;
  14402. uint32_t max_contig = 0;
  14403. int32_t max_contig_idx = -1;
  14404. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  14405. const size_t curr_size = kv_cells[i].seq_id.size();
  14406. token_count += curr_size;
  14407. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  14408. if (curr_size > 0) {
  14409. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  14410. max_contig = i - curr_contig_idx;
  14411. max_contig_idx = curr_contig_idx;
  14412. }
  14413. curr_contig_idx = -1;
  14414. } else if (curr_contig_idx < 0) {
  14415. curr_contig_idx = i;
  14416. }
  14417. int seq_idx = 0;
  14418. for (const llama_seq_id it : kv_cells[i].seq_id) {
  14419. if (seq_idx >= view->n_seq_max) {
  14420. break;
  14421. }
  14422. cs_curr[seq_idx] = it;
  14423. seq_idx++;
  14424. }
  14425. if (seq_idx != 0) {
  14426. used_cells++;
  14427. }
  14428. for (; seq_idx < view->n_seq_max; seq_idx++) {
  14429. cs_curr[seq_idx] = -1;
  14430. }
  14431. }
  14432. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  14433. max_contig_idx = curr_contig_idx;
  14434. max_contig = kv_cells.size() - curr_contig_idx;
  14435. }
  14436. view->max_contiguous = max_contig;
  14437. view->max_contiguous_idx = max_contig_idx;
  14438. view->token_count = token_count;
  14439. view->used_cells = used_cells;
  14440. if (uint32_t(used_cells) != ctx->kv_self.used) {
  14441. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  14442. __func__, ctx->kv_self.used, used_cells);
  14443. }
  14444. }
  14445. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  14446. int result = 0;
  14447. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  14448. result += ctx->kv_self.cells[i].seq_id.size();
  14449. }
  14450. return result;
  14451. }
  14452. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  14453. return ctx->kv_self.used;
  14454. }
  14455. void llama_kv_cache_clear(struct llama_context * ctx) {
  14456. llama_kv_cache_clear(ctx->kv_self);
  14457. }
  14458. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  14459. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  14460. }
  14461. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  14462. if (seq_id_src == seq_id_dst) {
  14463. return;
  14464. }
  14465. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  14466. }
  14467. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  14468. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  14469. }
  14470. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  14471. if (delta == 0) {
  14472. return;
  14473. }
  14474. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  14475. }
  14476. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  14477. if (d == 1) {
  14478. return;
  14479. }
  14480. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  14481. }
  14482. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  14483. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  14484. }
  14485. void llama_kv_cache_defrag(struct llama_context * ctx) {
  14486. llama_kv_cache_defrag(ctx->kv_self);
  14487. }
  14488. void llama_kv_cache_update(struct llama_context * ctx) {
  14489. llama_kv_cache_update_internal(*ctx);
  14490. }
  14491. // deprecated
  14492. size_t llama_get_state_size(const struct llama_context * ctx) {
  14493. return llama_state_get_size(ctx);
  14494. }
  14495. // deprecated
  14496. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  14497. return llama_state_get_data(ctx, dst);
  14498. }
  14499. // deprecated
  14500. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  14501. return llama_state_set_data(ctx, src);
  14502. }
  14503. // deprecated
  14504. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14505. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14506. }
  14507. // deprecated
  14508. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14509. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  14510. }
  14511. // Returns the *maximum* size of the state
  14512. size_t llama_state_get_size(const struct llama_context * ctx) {
  14513. const auto & cparams = ctx->cparams;
  14514. const auto & hparams = ctx->model.hparams;
  14515. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  14516. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  14517. const size_t s_rng_size = sizeof(size_t);
  14518. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  14519. const size_t s_n_outputs = sizeof(size_t);
  14520. // assume worst case for outputs although only currently set ones are serialized
  14521. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  14522. const size_t s_logits_size = sizeof(size_t);
  14523. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  14524. const size_t s_embedding_size = sizeof(size_t);
  14525. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  14526. const size_t s_kv_buf_size = sizeof(size_t);
  14527. const size_t s_kv_head = sizeof(uint32_t);
  14528. const size_t s_kv_size = sizeof(uint32_t);
  14529. const size_t s_kv_used = sizeof(uint32_t);
  14530. const size_t s_v_trans = sizeof(uint32_t);
  14531. const size_t s_kv = ctx->kv_self.total_size();
  14532. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  14533. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  14534. const size_t s_total = (
  14535. + s_rng_size
  14536. + s_rng
  14537. + s_n_outputs
  14538. + s_output_pos
  14539. + s_logits_size
  14540. + s_logits
  14541. + s_embedding_size
  14542. + s_embedding
  14543. + s_kv_buf_size
  14544. + s_kv_head
  14545. + s_kv_size
  14546. + s_kv_used
  14547. + s_v_trans
  14548. + s_kv
  14549. + s_kv_cells
  14550. );
  14551. // on session change it is very likely that the state size has changed - so we need to update this function
  14552. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  14553. return s_total;
  14554. }
  14555. // llama_context_data
  14556. struct llama_data_context {
  14557. virtual void write(const void * src, size_t size) = 0;
  14558. virtual size_t get_size_written() = 0;
  14559. virtual ~llama_data_context() = default;
  14560. };
  14561. struct llama_data_buffer_context : llama_data_context {
  14562. uint8_t * ptr;
  14563. size_t size_written = 0;
  14564. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  14565. void write(const void * src, size_t size) override {
  14566. memcpy(ptr, src, size);
  14567. ptr += size;
  14568. size_written += size;
  14569. }
  14570. size_t get_size_written() override {
  14571. return size_written;
  14572. }
  14573. };
  14574. struct llama_data_file_context : llama_data_context {
  14575. llama_file * file;
  14576. size_t size_written = 0;
  14577. llama_data_file_context(llama_file * f) : file(f) {}
  14578. void write(const void * src, size_t size) override {
  14579. file->write_raw(src, size);
  14580. size_written += size;
  14581. }
  14582. size_t get_size_written() override {
  14583. return size_written;
  14584. }
  14585. };
  14586. /** copy state data into either a buffer or file depending on the passed in context
  14587. *
  14588. * file context:
  14589. * llama_file file("/path", "wb");
  14590. * llama_data_file_context data_ctx(&file);
  14591. * llama_state_get_data(ctx, &data_ctx);
  14592. *
  14593. * buffer context:
  14594. * std::vector<uint8_t> buf(max_size, 0);
  14595. * llama_data_buffer_context data_ctx(&buf.data());
  14596. * llama_state_get_data(ctx, &data_ctx);
  14597. *
  14598. */
  14599. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  14600. llama_synchronize(ctx);
  14601. // copy rng
  14602. {
  14603. std::ostringstream rng_ss;
  14604. rng_ss << ctx->rng;
  14605. const std::string & rng_str = rng_ss.str();
  14606. const size_t rng_size = rng_str.size();
  14607. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14608. data_ctx->write(&rng_size, sizeof(rng_size));
  14609. data_ctx->write(rng_str.data(), rng_size);
  14610. }
  14611. // copy outputs
  14612. {
  14613. // Can't use ctx->n_outputs because it's not for the
  14614. // entire last batch when n_ubatch is smaller than n_batch
  14615. size_t n_outputs = 0;
  14616. // copy output ids
  14617. {
  14618. std::vector<int32_t> output_pos;
  14619. const size_t n_batch = ctx->cparams.n_batch;
  14620. const auto & output_ids = ctx->output_ids;
  14621. output_pos.resize(ctx->output_size);
  14622. // build a more compact representation of the output ids
  14623. for (size_t i = 0; i < n_batch; ++i) {
  14624. // map an output id to a position in the batch
  14625. int32_t pos = output_ids[i];
  14626. if (pos >= 0) {
  14627. if ((size_t) pos >= n_outputs) {
  14628. n_outputs = pos + 1;
  14629. }
  14630. GGML_ASSERT((size_t) pos < ctx->output_size);
  14631. output_pos[pos] = i;
  14632. }
  14633. }
  14634. data_ctx->write(&n_outputs, sizeof(n_outputs));
  14635. if (n_outputs) {
  14636. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  14637. }
  14638. }
  14639. // copy logits
  14640. {
  14641. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  14642. data_ctx->write(&logits_size, sizeof(logits_size));
  14643. if (logits_size) {
  14644. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  14645. }
  14646. }
  14647. // copy embeddings
  14648. {
  14649. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  14650. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  14651. if (embeddings_size) {
  14652. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  14653. }
  14654. }
  14655. }
  14656. // copy kv cache
  14657. {
  14658. const auto & kv_self = ctx->kv_self;
  14659. const auto & hparams = ctx->model.hparams;
  14660. const uint32_t n_layer = hparams.n_layer;
  14661. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14662. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14663. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  14664. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  14665. const uint32_t kv_size = kv_self.size;
  14666. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  14667. const uint32_t kv_used = kv_self.used;
  14668. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  14669. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  14670. data_ctx->write(&kv_head, sizeof(kv_head));
  14671. data_ctx->write(&kv_size, sizeof(kv_size));
  14672. data_ctx->write(&kv_used, sizeof(kv_used));
  14673. data_ctx->write(&v_trans, sizeof(v_trans));
  14674. if (kv_buf_size) {
  14675. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  14676. std::vector<uint8_t> tmp_buf;
  14677. for (int il = 0; il < (int) n_layer; ++il) {
  14678. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14679. tmp_buf.resize(k_size);
  14680. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14681. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14682. if (kv_self.recurrent || !kv_self.v_trans) {
  14683. // v is contiguous for recurrent models
  14684. // TODO: use other tensors for state models than k and v
  14685. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14686. tmp_buf.resize(v_size);
  14687. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14688. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14689. continue;
  14690. }
  14691. // v is not contiguous, copy row by row
  14692. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14693. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  14694. tmp_buf.resize(v_row_size);
  14695. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14696. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  14697. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14698. }
  14699. }
  14700. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  14701. }
  14702. for (uint32_t i = 0; i < kv_head; ++i) {
  14703. const auto & cell = kv_self.cells[i];
  14704. const llama_pos pos = cell.pos;
  14705. const size_t seq_id_size = cell.seq_id.size();
  14706. data_ctx->write(&pos, sizeof(pos));
  14707. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  14708. for (auto seq_id : cell.seq_id) {
  14709. data_ctx->write(&seq_id, sizeof(seq_id));
  14710. }
  14711. }
  14712. }
  14713. }
  14714. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  14715. llama_data_buffer_context data_ctx(dst);
  14716. llama_state_get_data_internal(ctx, &data_ctx);
  14717. return data_ctx.get_size_written();
  14718. }
  14719. // Sets the state reading from the specified source address
  14720. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  14721. llama_synchronize(ctx);
  14722. const uint8_t * inp = src;
  14723. // set rng
  14724. {
  14725. size_t rng_size;
  14726. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  14727. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14728. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  14729. std::istringstream rng_ss(rng_str);
  14730. rng_ss >> ctx->rng;
  14731. GGML_ASSERT(!rng_ss.fail());
  14732. }
  14733. // set output ids
  14734. {
  14735. size_t n_outputs;
  14736. std::vector<int32_t> output_pos;
  14737. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  14738. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  14739. if (n_outputs) {
  14740. output_pos.resize(n_outputs);
  14741. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  14742. inp += n_outputs * sizeof(int32_t);
  14743. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  14744. int32_t id = output_pos[i];
  14745. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  14746. ctx->output_ids[id] = i;
  14747. }
  14748. ctx->n_outputs = n_outputs;
  14749. }
  14750. }
  14751. // set logits
  14752. {
  14753. size_t logits_size;
  14754. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  14755. GGML_ASSERT(ctx->logits_size >= logits_size);
  14756. if (logits_size) {
  14757. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  14758. inp += logits_size * sizeof(float);
  14759. }
  14760. }
  14761. // set embeddings
  14762. {
  14763. size_t embeddings_size;
  14764. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  14765. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  14766. if (embeddings_size) {
  14767. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  14768. inp += embeddings_size * sizeof(float);
  14769. }
  14770. }
  14771. // set kv cache
  14772. {
  14773. const auto & kv_self = ctx->kv_self;
  14774. const auto & hparams = ctx->model.hparams;
  14775. const uint32_t n_layer = hparams.n_layer;
  14776. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14777. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14778. size_t kv_buf_size;
  14779. uint32_t kv_head;
  14780. uint32_t kv_size;
  14781. uint32_t kv_used;
  14782. uint32_t v_trans;
  14783. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  14784. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  14785. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  14786. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14787. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14788. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14789. if (kv_self.size != kv_size) {
  14790. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14791. GGML_ASSERT(kv_self.size >= kv_head);
  14792. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14793. __func__, kv_head, kv_size, kv_self.size);
  14794. }
  14795. llama_kv_cache_clear(ctx);
  14796. if (kv_buf_size) {
  14797. const size_t pre_kv_buf_size = inp - src;
  14798. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14799. for (int il = 0; il < (int) n_layer; ++il) {
  14800. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14801. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14802. inp += k_size;
  14803. if (kv_self.recurrent || !kv_self.v_trans) {
  14804. // v is contiguous for recurrent models
  14805. // TODO: use other tensors for state models than k and v
  14806. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14807. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14808. inp += v_size;
  14809. continue;
  14810. }
  14811. // v is not contiguous, copy row by row
  14812. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14813. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14814. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14815. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14816. inp += v_row_size;
  14817. }
  14818. }
  14819. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14820. }
  14821. ctx->kv_self.head = kv_head;
  14822. ctx->kv_self.used = kv_used;
  14823. for (uint32_t i = 0; i < kv_head; ++i) {
  14824. llama_pos pos;
  14825. size_t seq_id_size;
  14826. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14827. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14828. ctx->kv_self.cells[i].pos = pos;
  14829. llama_seq_id seq_id;
  14830. for (size_t j = 0; j < seq_id_size; ++j) {
  14831. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14832. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14833. }
  14834. }
  14835. }
  14836. const size_t nread = inp - src;
  14837. const size_t max_size = llama_state_get_size(ctx);
  14838. GGML_ASSERT(nread <= max_size);
  14839. return nread;
  14840. }
  14841. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14842. llama_file file(path_session, "rb");
  14843. // sanity checks
  14844. {
  14845. const uint32_t magic = file.read_u32();
  14846. const uint32_t version = file.read_u32();
  14847. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14848. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14849. return false;
  14850. }
  14851. llama_hparams session_hparams;
  14852. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14853. if (session_hparams != ctx->model.hparams) {
  14854. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14855. return false;
  14856. }
  14857. }
  14858. // load the prompt
  14859. {
  14860. const uint32_t n_token_count = file.read_u32();
  14861. if (n_token_count > n_token_capacity) {
  14862. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14863. return false;
  14864. }
  14865. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14866. *n_token_count_out = n_token_count;
  14867. }
  14868. // restore the context state
  14869. {
  14870. const size_t n_state_size_cur = file.size - file.tell();
  14871. const size_t n_state_size_max = llama_state_get_size(ctx);
  14872. if (n_state_size_cur > n_state_size_max) {
  14873. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14874. return false;
  14875. }
  14876. std::vector<uint8_t> state_data(n_state_size_max);
  14877. file.read_raw(state_data.data(), n_state_size_cur);
  14878. llama_state_set_data(ctx, state_data.data());
  14879. }
  14880. return true;
  14881. }
  14882. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14883. try {
  14884. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14885. } catch (const std::exception & err) {
  14886. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14887. return false;
  14888. }
  14889. }
  14890. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14891. llama_file file(path_session, "wb");
  14892. file.write_u32(LLAMA_SESSION_MAGIC);
  14893. file.write_u32(LLAMA_SESSION_VERSION);
  14894. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14895. // save the prompt
  14896. file.write_u32((uint32_t) n_token_count);
  14897. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14898. // save the context state using stream saving
  14899. llama_data_file_context data_ctx(&file);
  14900. llama_state_get_data_internal(ctx, &data_ctx);
  14901. return true;
  14902. }
  14903. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14904. try {
  14905. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14906. } catch (const std::exception & err) {
  14907. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14908. return false;
  14909. }
  14910. }
  14911. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14912. // save the size of size_t as a uint32_t for safety check
  14913. const size_t size_t_size_size = sizeof(uint32_t);
  14914. // other values
  14915. const size_t s_cell_count_size = sizeof(uint32_t);
  14916. const size_t s_layer_count_size = sizeof(uint32_t);
  14917. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14918. size_t s_cell_count = 0;
  14919. size_t s_cell_data_size = 0;
  14920. const auto & kv_self = ctx->kv_self;
  14921. const auto & hparams = ctx->model.hparams;
  14922. const uint32_t n_layer = hparams.n_layer;
  14923. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14924. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14925. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14926. const auto & cell = kv_self.cells[i];
  14927. if (cell.seq_id.count(seq_id) > 0) {
  14928. ++s_cell_count;
  14929. s_cell_data_size += sizeof(llama_pos);
  14930. }
  14931. }
  14932. for (int il = 0; il < (int)n_layer; ++il) {
  14933. // types of keys and values
  14934. s_cell_data_size += sizeof(int32_t) * 2;
  14935. // k_size_row and v_size_el values of layer
  14936. s_cell_data_size += sizeof(size_t) * 2;
  14937. // keys
  14938. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14939. s_cell_data_size += k_size_row * s_cell_count;
  14940. // values (transposed)
  14941. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14942. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14943. }
  14944. const size_t s_total = (
  14945. size_t_size_size +
  14946. s_cell_count_size +
  14947. s_layer_count_size +
  14948. n_embd_v_gqa_size +
  14949. s_cell_data_size
  14950. );
  14951. return s_total;
  14952. }
  14953. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14954. llama_synchronize(ctx);
  14955. const auto & kv_self = ctx->kv_self;
  14956. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14957. // Save the size of size_t as a uint32_t for safety check
  14958. const uint32_t size_t_size = sizeof(size_t);
  14959. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14960. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14961. uint32_t cell_count = 0;
  14962. // Count the number of cells with the specified seq_id
  14963. // Find all the ranges of cells with this seq id
  14964. {
  14965. uint32_t cell_range_begin = kv_self.size;
  14966. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14967. const auto & cell = kv_self.cells[i];
  14968. if (cell.has_seq_id(seq_id)) {
  14969. ++cell_count;
  14970. if (cell_range_begin == kv_self.size) {
  14971. cell_range_begin = i;
  14972. }
  14973. }
  14974. else {
  14975. if (cell_range_begin != kv_self.size) {
  14976. cell_ranges.emplace_back(cell_range_begin, i);
  14977. cell_range_begin = kv_self.size;
  14978. }
  14979. }
  14980. }
  14981. if (cell_range_begin != kv_self.size) {
  14982. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14983. }
  14984. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14985. uint32_t cell_count_check = 0;
  14986. for (const auto & range : cell_ranges) {
  14987. cell_count_check += range.second - range.first;
  14988. }
  14989. GGML_ASSERT(cell_count == cell_count_check);
  14990. }
  14991. // Write the cell count
  14992. data_ctx.write(&cell_count, sizeof(cell_count));
  14993. const auto & hparams = ctx->model.hparams;
  14994. const uint32_t n_layer = hparams.n_layer;
  14995. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14996. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14997. // Write the layer count
  14998. data_ctx.write(&n_layer, sizeof(n_layer));
  14999. // Write n_embd_v_gqa
  15000. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  15001. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  15002. for (const auto & range : cell_ranges) {
  15003. for (uint32_t i = range.first; i < range.second; ++i) {
  15004. const auto & cell = kv_self.cells[i];
  15005. data_ctx.write(&cell.pos, sizeof(cell.pos));
  15006. }
  15007. }
  15008. // Iterate and write all the keys first, each row is a cell
  15009. // Get whole range at a time
  15010. std::vector<uint8_t> tmp_buf;
  15011. for (int il = 0; il < (int)n_layer; ++il) {
  15012. // Write key type
  15013. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  15014. data_ctx.write(&k_type_i, sizeof(k_type_i));
  15015. // Write row size of key
  15016. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  15017. data_ctx.write(&k_size_row, sizeof(k_size_row));
  15018. // Read each range of cells of k_size length each into tmp_buf and write out
  15019. for (const auto & range : cell_ranges) {
  15020. const size_t range_size = range.second - range.first;
  15021. tmp_buf.resize(range_size * k_size_row);
  15022. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  15023. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  15024. }
  15025. }
  15026. // TODO: simplify, reduce copy-paste
  15027. if (!kv_self.v_trans) {
  15028. for (int il = 0; il < (int)n_layer; ++il) {
  15029. // Write value type
  15030. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  15031. data_ctx.write(&v_type_i, sizeof(v_type_i));
  15032. // Write row size of value
  15033. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  15034. data_ctx.write(&v_size_row, sizeof(v_size_row));
  15035. // Read each range of cells of v_size length each into tmp_buf and write out
  15036. for (const auto & range : cell_ranges) {
  15037. const size_t range_size = range.second - range.first;
  15038. tmp_buf.resize(range_size * v_size_row);
  15039. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  15040. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  15041. }
  15042. }
  15043. } else {
  15044. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  15045. const uint32_t kv_size = kv_self.size;
  15046. for (int il = 0; il < (int)n_layer; ++il) {
  15047. // Write value type
  15048. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  15049. data_ctx.write(&v_type_i, sizeof(v_type_i));
  15050. // Write element size
  15051. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  15052. data_ctx.write(&v_size_el, sizeof(v_size_el));
  15053. // For each row, we get the element values of each cell
  15054. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  15055. // Read each range of cells of v_size_el length each into tmp_buf and write out
  15056. for (const auto & range : cell_ranges) {
  15057. const size_t range_size = range.second - range.first;
  15058. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  15059. tmp_buf.resize(range_size * v_size_el);
  15060. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  15061. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  15062. }
  15063. }
  15064. }
  15065. }
  15066. return data_ctx.get_size_written();
  15067. }
  15068. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  15069. llama_data_buffer_context data_ctx(dst);
  15070. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  15071. }
  15072. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  15073. llama_synchronize(ctx);
  15074. auto & kv_self = ctx->kv_self;
  15075. GGML_ASSERT(!kv_self.recurrent); // not implemented
  15076. // Wipe the slot
  15077. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  15078. const uint8_t * inp = src;
  15079. // Read size of size_t
  15080. uint32_t size_t_size;
  15081. memcpy(&size_t_size, inp, sizeof(size_t_size));
  15082. inp += sizeof(size_t_size);
  15083. if (size_t_size != sizeof(size_t)) {
  15084. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  15085. return 0;
  15086. }
  15087. // Read the cell count
  15088. uint32_t cell_count;
  15089. memcpy(&cell_count, inp, sizeof(cell_count));
  15090. inp += sizeof(cell_count);
  15091. // Read the layer count
  15092. uint32_t n_layer_ref;
  15093. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  15094. inp += sizeof(n_layer_ref);
  15095. // Read n_embd_v_gqa
  15096. uint32_t n_embd_v_gqa_ref;
  15097. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  15098. inp += sizeof(n_embd_v_gqa_ref);
  15099. // Sanity check model compatibility
  15100. const auto & hparams = ctx->model.hparams;
  15101. const uint32_t n_layer = hparams.n_layer;
  15102. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  15103. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  15104. if (n_layer != n_layer_ref) {
  15105. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  15106. return 0;
  15107. }
  15108. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  15109. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  15110. return 0;
  15111. }
  15112. // Allocate the new cells for the slot
  15113. if (cell_count) {
  15114. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  15115. batch.n_tokens = cell_count;
  15116. for (uint32_t i = 0; i < cell_count; ++i) {
  15117. llama_pos pos;
  15118. memcpy(&pos, inp, sizeof(pos));
  15119. inp += sizeof(pos);
  15120. batch.pos[i] = pos;
  15121. batch.n_seq_id[i] = 1;
  15122. batch.seq_id[i][0] = dest_seq_id;
  15123. }
  15124. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  15125. llama_batch_free(batch);
  15126. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  15127. return 0;
  15128. }
  15129. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  15130. // Assume that this is one contiguous block of cells
  15131. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  15132. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  15133. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  15134. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  15135. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  15136. // Cleanup
  15137. llama_batch_free(batch);
  15138. }
  15139. const uint32_t kv_size = kv_self.size;
  15140. const uint32_t kv_head = kv_self.head;
  15141. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  15142. for (int il = 0; il < (int)n_layer; ++il) {
  15143. // Read type of key
  15144. int32_t k_type_i_ref;
  15145. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  15146. inp += sizeof(k_type_i_ref);
  15147. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  15148. if (k_type_i != k_type_i_ref) {
  15149. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  15150. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  15151. return 0;
  15152. }
  15153. // Read row size of key
  15154. size_t k_size_row_ref;
  15155. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  15156. inp += sizeof(k_size_row_ref);
  15157. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  15158. if (k_size_row != k_size_row_ref) {
  15159. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  15160. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  15161. return 0;
  15162. }
  15163. if (cell_count) {
  15164. // Read and set the keys for the whole cell range
  15165. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  15166. inp += cell_count * k_size_row;
  15167. }
  15168. }
  15169. // TODO: simplify, reduce copy-paste
  15170. if (!kv_self.v_trans) {
  15171. for (int il = 0; il < (int)n_layer; ++il) {
  15172. // Read type of value
  15173. int32_t v_type_i_ref;
  15174. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  15175. inp += sizeof(v_type_i_ref);
  15176. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  15177. if (v_type_i != v_type_i_ref) {
  15178. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  15179. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  15180. return 0;
  15181. }
  15182. // Read row size of value
  15183. size_t v_size_row_ref;
  15184. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  15185. inp += sizeof(v_size_row_ref);
  15186. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  15187. if (v_size_row != v_size_row_ref) {
  15188. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  15189. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  15190. return 0;
  15191. }
  15192. if (cell_count) {
  15193. // Read and set the values for the whole cell range
  15194. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  15195. inp += cell_count * v_size_row;
  15196. }
  15197. }
  15198. } else {
  15199. // For each layer, read the values for each cell (transposed)
  15200. for (int il = 0; il < (int)n_layer; ++il) {
  15201. // Read type of value
  15202. int32_t v_type_i_ref;
  15203. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  15204. inp += sizeof(v_type_i_ref);
  15205. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  15206. if (v_type_i != v_type_i_ref) {
  15207. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  15208. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  15209. return 0;
  15210. }
  15211. // Read element size of value
  15212. size_t v_size_el_ref;
  15213. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  15214. inp += sizeof(v_size_el_ref);
  15215. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  15216. if (v_size_el != v_size_el_ref) {
  15217. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  15218. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  15219. return 0;
  15220. }
  15221. if (cell_count) {
  15222. // For each row in the transposed matrix, read the values for the whole cell range
  15223. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  15224. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  15225. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  15226. inp += cell_count * v_size_el;
  15227. }
  15228. }
  15229. }
  15230. }
  15231. const size_t nread = inp - src;
  15232. return nread;
  15233. }
  15234. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  15235. llama_file file(filepath, "wb");
  15236. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  15237. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  15238. // save the prompt
  15239. file.write_u32((uint32_t)n_token_count);
  15240. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  15241. // save the context state using stream saving
  15242. llama_data_file_context data_ctx(&file);
  15243. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  15244. const size_t res = file.tell();
  15245. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  15246. return res;
  15247. }
  15248. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  15249. llama_file file(filepath, "rb");
  15250. // version checks
  15251. {
  15252. const uint32_t magic = file.read_u32();
  15253. const uint32_t version = file.read_u32();
  15254. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  15255. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  15256. return 0;
  15257. }
  15258. }
  15259. // load the prompt
  15260. {
  15261. const uint32_t n_token_count = file.read_u32();
  15262. if (n_token_count > n_token_capacity) {
  15263. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  15264. return 0;
  15265. }
  15266. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  15267. *n_token_count_out = n_token_count;
  15268. }
  15269. // restore the context state
  15270. {
  15271. const size_t state_size = file.size - file.tell();
  15272. std::vector<uint8_t> state_data(state_size);
  15273. file.read_raw(state_data.data(), state_size);
  15274. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  15275. if (!nread) {
  15276. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  15277. return 0;
  15278. }
  15279. GGML_ASSERT(nread <= state_size);
  15280. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  15281. }
  15282. return file.tell();
  15283. }
  15284. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  15285. try {
  15286. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  15287. } catch (const std::exception & err) {
  15288. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  15289. return 0;
  15290. }
  15291. }
  15292. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  15293. try {
  15294. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  15295. } catch (const std::exception & err) {
  15296. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  15297. return 0;
  15298. }
  15299. }
  15300. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  15301. ctx->cparams.n_threads = n_threads;
  15302. ctx->cparams.n_threads_batch = n_threads_batch;
  15303. }
  15304. uint32_t llama_n_threads(struct llama_context * ctx) {
  15305. return ctx->cparams.n_threads;
  15306. }
  15307. uint32_t llama_n_threads_batch(struct llama_context * ctx) {
  15308. return ctx->cparams.n_threads_batch;
  15309. }
  15310. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  15311. ctx->abort_callback = abort_callback;
  15312. ctx->abort_callback_data = abort_callback_data;
  15313. }
  15314. void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
  15315. ctx->cparams.embeddings = embeddings;
  15316. }
  15317. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  15318. ctx->cparams.causal_attn = causal_attn;
  15319. }
  15320. struct llama_batch llama_batch_get_one(
  15321. llama_token * tokens,
  15322. int32_t n_tokens,
  15323. llama_pos pos_0,
  15324. llama_seq_id seq_id) {
  15325. return {
  15326. /*n_tokens =*/ n_tokens,
  15327. /*tokens =*/ tokens,
  15328. /*embd =*/ nullptr,
  15329. /*pos =*/ nullptr,
  15330. /*n_seq_id =*/ nullptr,
  15331. /*seq_id =*/ nullptr,
  15332. /*logits =*/ nullptr,
  15333. /*all_pos_0 =*/ pos_0,
  15334. /*all_pos_1 =*/ 1,
  15335. /*all_seq_id =*/ seq_id,
  15336. };
  15337. }
  15338. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  15339. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  15340. if (embd) {
  15341. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  15342. } else {
  15343. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  15344. }
  15345. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  15346. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  15347. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  15348. for (int i = 0; i < n_tokens_alloc; ++i) {
  15349. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  15350. }
  15351. batch.seq_id[n_tokens_alloc] = nullptr;
  15352. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  15353. return batch;
  15354. }
  15355. void llama_batch_free(struct llama_batch batch) {
  15356. if (batch.token) free(batch.token);
  15357. if (batch.embd) free(batch.embd);
  15358. if (batch.pos) free(batch.pos);
  15359. if (batch.n_seq_id) free(batch.n_seq_id);
  15360. if (batch.seq_id) {
  15361. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  15362. free(batch.seq_id[i]);
  15363. }
  15364. free(batch.seq_id);
  15365. }
  15366. if (batch.logits) free(batch.logits);
  15367. }
  15368. int32_t llama_decode(
  15369. struct llama_context * ctx,
  15370. struct llama_batch batch) {
  15371. const int ret = llama_decode_internal(*ctx, batch);
  15372. if (ret < 0) {
  15373. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  15374. }
  15375. return ret;
  15376. }
  15377. void llama_synchronize(struct llama_context * ctx) {
  15378. ggml_backend_sched_synchronize(ctx->sched);
  15379. // FIXME: if multiple single tokens are evaluated without a synchronization,
  15380. // the stats will be added to the prompt evaluation stats
  15381. // this should only happen when using batch size 1 to evaluate a batch
  15382. // add the evaluation to the stats
  15383. if (ctx->n_queued_tokens == 1) {
  15384. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15385. ctx->n_eval++;
  15386. } else if (ctx->n_queued_tokens > 1) {
  15387. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15388. ctx->n_p_eval += ctx->n_queued_tokens;
  15389. }
  15390. // get a more accurate load time, upon first eval
  15391. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  15392. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  15393. ctx->has_evaluated_once = true;
  15394. }
  15395. ctx->n_queued_tokens = 0;
  15396. ctx->t_compute_start_us = 0;
  15397. }
  15398. float * llama_get_logits(struct llama_context * ctx) {
  15399. llama_synchronize(ctx);
  15400. return ctx->logits;
  15401. }
  15402. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  15403. int32_t j = -1;
  15404. llama_synchronize(ctx);
  15405. try {
  15406. if (ctx->logits == nullptr) {
  15407. throw std::runtime_error("no logits");
  15408. }
  15409. if (i < 0) {
  15410. j = ctx->n_outputs + i;
  15411. if (j < 0) {
  15412. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15413. }
  15414. } else if ((size_t) i >= ctx->output_ids.size()) {
  15415. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15416. } else {
  15417. j = ctx->output_ids[i];
  15418. }
  15419. if (j < 0) {
  15420. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15421. }
  15422. if (j >= ctx->n_outputs) {
  15423. // This should not happen
  15424. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15425. }
  15426. return ctx->logits + j*ctx->model.hparams.n_vocab;
  15427. } catch (const std::exception & err) {
  15428. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  15429. #ifndef NDEBUG
  15430. GGML_ASSERT(false);
  15431. #endif
  15432. return nullptr;
  15433. }
  15434. }
  15435. float * llama_get_embeddings(struct llama_context * ctx) {
  15436. llama_synchronize(ctx);
  15437. return ctx->embd;
  15438. }
  15439. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  15440. int32_t j = -1;
  15441. llama_synchronize(ctx);
  15442. try {
  15443. if (ctx->embd == nullptr) {
  15444. throw std::runtime_error("no embeddings");
  15445. }
  15446. if (i < 0) {
  15447. j = ctx->n_outputs + i;
  15448. if (j < 0) {
  15449. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15450. }
  15451. } else if ((size_t) i >= ctx->output_ids.size()) {
  15452. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15453. } else {
  15454. j = ctx->output_ids[i];
  15455. }
  15456. if (j < 0) {
  15457. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15458. }
  15459. if (j >= ctx->n_outputs) {
  15460. // This should not happen
  15461. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15462. }
  15463. return ctx->embd + j*ctx->model.hparams.n_embd;
  15464. } catch (const std::exception & err) {
  15465. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  15466. #ifndef NDEBUG
  15467. GGML_ASSERT(false);
  15468. #endif
  15469. return nullptr;
  15470. }
  15471. }
  15472. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  15473. llama_synchronize(ctx);
  15474. auto it = ctx->embd_seq.find(seq_id);
  15475. if (it == ctx->embd_seq.end()) {
  15476. return nullptr;
  15477. }
  15478. return it->second.data();
  15479. }
  15480. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  15481. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15482. return model->vocab.id_to_token[token].text.c_str();
  15483. }
  15484. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  15485. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15486. return model->vocab.id_to_token[token].score;
  15487. }
  15488. llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
  15489. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15490. return model->vocab.id_to_token[token].attr;
  15491. }
  15492. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  15493. return token != -1 && (
  15494. token == llama_token_eos(model) ||
  15495. token == llama_token_eot(model)
  15496. );
  15497. }
  15498. bool llama_token_is_control(const struct llama_model * model, llama_token token) {
  15499. return llama_is_control_token(model->vocab, token);
  15500. }
  15501. llama_token llama_token_bos(const struct llama_model * model) {
  15502. return model->vocab.special_bos_id;
  15503. }
  15504. llama_token llama_token_eos(const struct llama_model * model) {
  15505. return model->vocab.special_eos_id;
  15506. }
  15507. llama_token llama_token_cls(const struct llama_model * model) {
  15508. return model->vocab.special_cls_id;
  15509. }
  15510. llama_token llama_token_sep(const struct llama_model * model) {
  15511. return model->vocab.special_sep_id;
  15512. }
  15513. llama_token llama_token_nl(const struct llama_model * model) {
  15514. return model->vocab.linefeed_id;
  15515. }
  15516. int32_t llama_add_bos_token(const struct llama_model * model) {
  15517. return model->vocab.tokenizer_add_bos;
  15518. }
  15519. int32_t llama_add_eos_token(const struct llama_model * model) {
  15520. return model->vocab.tokenizer_add_eos;
  15521. }
  15522. llama_token llama_token_prefix(const struct llama_model * model) {
  15523. return model->vocab.special_prefix_id;
  15524. }
  15525. llama_token llama_token_middle(const struct llama_model * model) {
  15526. return model->vocab.special_middle_id;
  15527. }
  15528. llama_token llama_token_suffix(const struct llama_model * model) {
  15529. return model->vocab.special_suffix_id;
  15530. }
  15531. llama_token llama_token_eot(const struct llama_model * model) {
  15532. return model->vocab.special_eot_id;
  15533. }
  15534. int32_t llama_tokenize(
  15535. const struct llama_model * model,
  15536. const char * text,
  15537. int32_t text_len,
  15538. llama_token * tokens,
  15539. int32_t n_tokens_max,
  15540. bool add_special,
  15541. bool parse_special) {
  15542. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  15543. if (n_tokens_max < (int) res.size()) {
  15544. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  15545. return -((int) res.size());
  15546. }
  15547. for (size_t i = 0; i < res.size(); i++) {
  15548. tokens[i] = res[i];
  15549. }
  15550. return res.size();
  15551. }
  15552. static std::string llama_decode_text(const std::string & text) {
  15553. std::string decoded_text;
  15554. const auto cpts = unicode_cpts_from_utf8(text);
  15555. for (const auto cpt : cpts) {
  15556. const auto utf8 = unicode_cpt_to_utf8(cpt);
  15557. try {
  15558. decoded_text += unicode_utf8_to_byte(utf8);
  15559. } catch (const std::out_of_range & e) {
  15560. decoded_text += "[UNK_BYTE_0x";
  15561. for (const auto c : utf8) {
  15562. decoded_text += format("%02x", (uint8_t) c);
  15563. }
  15564. decoded_text += text + "]";
  15565. }
  15566. }
  15567. return decoded_text;
  15568. }
  15569. // does not write null-terminator to buf
  15570. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  15571. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  15572. if (!special && llama_is_control_token(model->vocab, token)) {
  15573. return 0;
  15574. }
  15575. // if we have a cache - use it
  15576. {
  15577. const auto & cache = model->vocab.cache_token_to_piece;
  15578. if (!cache.empty()) {
  15579. const auto & res = cache.at(token);
  15580. if (length < (int) res.size()) {
  15581. return -(int) res.size();
  15582. }
  15583. memcpy(buf, res.c_str(), res.size());
  15584. return res.size();
  15585. }
  15586. }
  15587. if (0 <= token && token < llama_n_vocab(model)) {
  15588. switch (llama_vocab_get_type(model->vocab)) {
  15589. case LLAMA_VOCAB_TYPE_WPM:
  15590. case LLAMA_VOCAB_TYPE_SPM: {
  15591. // NOTE: we accept all unsupported token types,
  15592. // suppressing them like CONTROL tokens.
  15593. if (llama_is_normal_token(model->vocab, token)) {
  15594. std::string result = model->vocab.id_to_token[token].text;
  15595. llama_unescape_whitespace(result);
  15596. if (length < (int) result.length()) {
  15597. return -(int) result.length();
  15598. }
  15599. memcpy(buf, result.c_str(), result.length());
  15600. return result.length();
  15601. } else if (
  15602. (llama_is_user_defined_token(model->vocab, token)) ||
  15603. (llama_is_control_token (model->vocab, token) && special)) {
  15604. std::string result = model->vocab.id_to_token[token].text;
  15605. if (length < (int) result.length()) {
  15606. return -(int) result.length();
  15607. }
  15608. memcpy(buf, result.c_str(), result.length());
  15609. return result.length();
  15610. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  15611. if (length < 3) {
  15612. return -3;
  15613. }
  15614. memcpy(buf, "\xe2\x96\x85", 3);
  15615. return 3;
  15616. } else if (llama_is_byte_token(model->vocab, token)) {
  15617. if (length < 1) {
  15618. return -1;
  15619. }
  15620. buf[0] = llama_token_to_byte(model->vocab, token);
  15621. return 1;
  15622. }
  15623. break;
  15624. }
  15625. case LLAMA_VOCAB_TYPE_BPE: {
  15626. // NOTE: we accept all unsupported token types,
  15627. // suppressing them like CONTROL tokens.
  15628. if (llama_is_normal_token(model->vocab, token)) {
  15629. std::string result = model->vocab.id_to_token[token].text;
  15630. result = llama_decode_text(result);
  15631. if (length < (int) result.length()) {
  15632. return -(int) result.length();
  15633. }
  15634. memcpy(buf, result.c_str(), result.length());
  15635. return result.length();
  15636. } else if (
  15637. (llama_is_user_defined_token(model->vocab, token)) ||
  15638. (llama_is_control_token (model->vocab, token) && special)) {
  15639. std::string result = model->vocab.id_to_token[token].text;
  15640. if (length < (int) result.length()) {
  15641. return -(int) result.length();
  15642. }
  15643. memcpy(buf, result.c_str(), result.length());
  15644. return result.length();
  15645. }
  15646. break;
  15647. }
  15648. default:
  15649. GGML_ASSERT(false);
  15650. }
  15651. }
  15652. return 0;
  15653. }
  15654. // trim whitespace from the beginning and end of a string
  15655. static std::string trim(const std::string & str) {
  15656. size_t start = 0;
  15657. size_t end = str.size();
  15658. while (start < end && isspace(str[start])) {
  15659. start += 1;
  15660. }
  15661. while (end > start && isspace(str[end - 1])) {
  15662. end -= 1;
  15663. }
  15664. return str.substr(start, end - start);
  15665. }
  15666. // Simple version of "llama_apply_chat_template" that only works with strings
  15667. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  15668. static int32_t llama_chat_apply_template_internal(
  15669. const std::string & tmpl,
  15670. const std::vector<const llama_chat_message *> & chat,
  15671. std::string & dest, bool add_ass) {
  15672. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  15673. std::stringstream ss;
  15674. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  15675. // chatml template
  15676. for (auto message : chat) {
  15677. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  15678. }
  15679. if (add_ass) {
  15680. ss << "<|im_start|>assistant\n";
  15681. }
  15682. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  15683. // llama2 template and its variants
  15684. // [variant] support system message
  15685. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  15686. // [variant] space before + after response
  15687. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  15688. // [variant] add BOS inside history
  15689. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  15690. // [variant] trim spaces from the input message
  15691. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  15692. // construct the prompt
  15693. bool is_inside_turn = true; // skip BOS at the beginning
  15694. ss << "[INST] ";
  15695. for (auto message : chat) {
  15696. std::string content = strip_message ? trim(message->content) : message->content;
  15697. std::string role(message->role);
  15698. if (!is_inside_turn) {
  15699. is_inside_turn = true;
  15700. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  15701. }
  15702. if (role == "system") {
  15703. if (support_system_message) {
  15704. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  15705. } else {
  15706. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  15707. ss << content << "\n";
  15708. }
  15709. } else if (role == "user") {
  15710. ss << content << " [/INST]";
  15711. } else {
  15712. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  15713. is_inside_turn = false;
  15714. }
  15715. }
  15716. // llama2 templates seem to not care about "add_generation_prompt"
  15717. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) {
  15718. // Phi 3
  15719. for (auto message : chat) {
  15720. std::string role(message->role);
  15721. ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
  15722. }
  15723. if (add_ass) {
  15724. ss << "<|assistant|>\n";
  15725. }
  15726. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  15727. // zephyr template
  15728. for (auto message : chat) {
  15729. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  15730. }
  15731. if (add_ass) {
  15732. ss << "<|assistant|>\n";
  15733. }
  15734. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  15735. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  15736. for (auto message : chat) {
  15737. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  15738. ss << bos << message->role << "\n" << message->content << "</s>\n";
  15739. }
  15740. if (add_ass) {
  15741. ss << "<s>assistant\n";
  15742. }
  15743. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  15744. // google/gemma-7b-it
  15745. std::string system_prompt = "";
  15746. for (auto message : chat) {
  15747. std::string role(message->role);
  15748. if (role == "system") {
  15749. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  15750. system_prompt = trim(message->content);
  15751. continue;
  15752. }
  15753. // in gemma, "assistant" is "model"
  15754. role = role == "assistant" ? "model" : message->role;
  15755. ss << "<start_of_turn>" << role << "\n";
  15756. if (!system_prompt.empty() && role != "model") {
  15757. ss << system_prompt << "\n\n";
  15758. system_prompt = "";
  15759. }
  15760. ss << trim(message->content) << "<end_of_turn>\n";
  15761. }
  15762. if (add_ass) {
  15763. ss << "<start_of_turn>model\n";
  15764. }
  15765. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  15766. // OrionStarAI/Orion-14B-Chat
  15767. std::string system_prompt = "";
  15768. for (auto message : chat) {
  15769. std::string role(message->role);
  15770. if (role == "system") {
  15771. // there is no system message support, we will merge it with user prompt
  15772. system_prompt = message->content;
  15773. continue;
  15774. } else if (role == "user") {
  15775. ss << "Human: ";
  15776. if (!system_prompt.empty()) {
  15777. ss << system_prompt << "\n\n";
  15778. system_prompt = "";
  15779. }
  15780. ss << message->content << "\n\nAssistant: </s>";
  15781. } else {
  15782. ss << message->content << "</s>";
  15783. }
  15784. }
  15785. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  15786. // openchat/openchat-3.5-0106,
  15787. for (auto message : chat) {
  15788. std::string role(message->role);
  15789. if (role == "system") {
  15790. ss << message->content << "<|end_of_turn|>";
  15791. } else {
  15792. role[0] = toupper(role[0]);
  15793. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  15794. }
  15795. }
  15796. if (add_ass) {
  15797. ss << "GPT4 Correct Assistant:";
  15798. }
  15799. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  15800. // eachadea/vicuna-13b-1.1 (and Orca variant)
  15801. for (auto message : chat) {
  15802. std::string role(message->role);
  15803. if (role == "system") {
  15804. // Orca-Vicuna variant uses a system prefix
  15805. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  15806. ss << "SYSTEM: " << message->content << "\n";
  15807. } else {
  15808. ss << message->content << "\n\n";
  15809. }
  15810. } else if (role == "user") {
  15811. ss << "USER: " << message->content << "\n";
  15812. } else if (role == "assistant") {
  15813. ss << "ASSISTANT: " << message->content << "</s>\n";
  15814. }
  15815. }
  15816. if (add_ass) {
  15817. ss << "ASSISTANT:";
  15818. }
  15819. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  15820. // deepseek-ai/deepseek-coder-33b-instruct
  15821. for (auto message : chat) {
  15822. std::string role(message->role);
  15823. if (role == "system") {
  15824. ss << message->content;
  15825. } else if (role == "user") {
  15826. ss << "### Instruction:\n" << message->content << "\n";
  15827. } else if (role == "assistant") {
  15828. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15829. }
  15830. }
  15831. if (add_ass) {
  15832. ss << "### Response:\n";
  15833. }
  15834. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15835. // CohereForAI/c4ai-command-r-plus
  15836. for (auto message : chat) {
  15837. std::string role(message->role);
  15838. if (role == "system") {
  15839. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15840. } else if (role == "user") {
  15841. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15842. } else if (role == "assistant") {
  15843. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15844. }
  15845. }
  15846. if (add_ass) {
  15847. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15848. }
  15849. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15850. // Llama 3
  15851. for (auto message : chat) {
  15852. std::string role(message->role);
  15853. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15854. }
  15855. if (add_ass) {
  15856. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15857. }
  15858. } else {
  15859. // template not supported
  15860. return -1;
  15861. }
  15862. dest = ss.str();
  15863. return dest.size();
  15864. }
  15865. LLAMA_API int32_t llama_chat_apply_template(
  15866. const struct llama_model * model,
  15867. const char * tmpl,
  15868. const struct llama_chat_message * chat,
  15869. size_t n_msg,
  15870. bool add_ass,
  15871. char * buf,
  15872. int32_t length) {
  15873. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15874. if (tmpl == nullptr) {
  15875. GGML_ASSERT(model != nullptr);
  15876. // load template from model
  15877. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15878. std::string template_key = "tokenizer.chat_template";
  15879. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15880. if (res < 0) {
  15881. // worst case: there is no information about template, we will use chatml by default
  15882. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15883. } else {
  15884. curr_tmpl = std::string(model_template.data(), model_template.size());
  15885. }
  15886. }
  15887. // format the chat to string
  15888. std::vector<const llama_chat_message *> chat_vec;
  15889. chat_vec.resize(n_msg);
  15890. for (size_t i = 0; i < n_msg; i++) {
  15891. chat_vec[i] = &chat[i];
  15892. }
  15893. std::string formatted_chat;
  15894. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15895. if (res < 0) {
  15896. return res;
  15897. }
  15898. if (buf && length > 0) {
  15899. strncpy(buf, formatted_chat.c_str(), length);
  15900. }
  15901. return res;
  15902. }
  15903. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15904. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15905. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15906. return strlen(split_path);
  15907. }
  15908. return 0;
  15909. }
  15910. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15911. std::string str_split_path(split_path);
  15912. char postfix[32];
  15913. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15914. std::string str_postfix(postfix);
  15915. // check if dest ends with postfix
  15916. int size_prefix = str_split_path.size() - str_postfix.size();
  15917. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15918. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15919. return size_prefix;
  15920. }
  15921. return 0;
  15922. }
  15923. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15924. struct llama_timings result = {
  15925. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15926. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15927. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15928. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15929. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15930. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15931. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15932. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15933. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15934. };
  15935. return result;
  15936. }
  15937. void llama_print_timings(struct llama_context * ctx) {
  15938. const llama_timings timings = llama_get_timings(ctx);
  15939. LLAMA_LOG_INFO("\n");
  15940. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15941. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15942. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15943. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15944. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15945. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15946. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15947. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15948. }
  15949. void llama_reset_timings(struct llama_context * ctx) {
  15950. ctx->t_start_us = ggml_time_us();
  15951. ctx->t_sample_us = ctx->n_sample = 0;
  15952. ctx->t_eval_us = ctx->n_eval = 0;
  15953. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15954. }
  15955. const char * llama_print_system_info(void) {
  15956. static std::string s;
  15957. s = "";
  15958. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15959. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15960. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15961. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15962. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15963. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15964. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  15965. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15966. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15967. s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
  15968. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15969. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15970. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15971. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15972. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15973. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15974. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15975. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15976. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15977. #ifdef GGML_USE_LLAMAFILE
  15978. s += "LLAMAFILE = 1 | ";
  15979. #else
  15980. s += "LLAMAFILE = 0 | ";
  15981. #endif
  15982. return s.c_str();
  15983. }
  15984. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15985. fprintf(stream, "\n");
  15986. fprintf(stream, "###########\n");
  15987. fprintf(stream, "# Timings #\n");
  15988. fprintf(stream, "###########\n");
  15989. fprintf(stream, "\n");
  15990. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15991. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15992. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15993. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15994. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15995. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15996. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15997. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15998. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15999. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  16000. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  16001. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  16002. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  16003. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  16004. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  16005. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  16006. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  16007. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  16008. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  16009. }
  16010. // For internal test use
  16011. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  16012. struct llama_context * ctx
  16013. ) {
  16014. return ctx->model.tensors_by_name;
  16015. }
  16016. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  16017. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  16018. g_state.log_callback_user_data = user_data;
  16019. #ifdef GGML_USE_METAL
  16020. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  16021. #elif defined(GGML_USE_CUDA)
  16022. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  16023. #endif
  16024. }
  16025. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  16026. va_list args_copy;
  16027. va_copy(args_copy, args);
  16028. char buffer[128];
  16029. int len = vsnprintf(buffer, 128, format, args);
  16030. if (len < 128) {
  16031. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  16032. } else {
  16033. char* buffer2 = new char[len+1];
  16034. vsnprintf(buffer2, len+1, format, args_copy);
  16035. buffer2[len] = 0;
  16036. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  16037. delete[] buffer2;
  16038. }
  16039. va_end(args_copy);
  16040. }
  16041. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  16042. va_list args;
  16043. va_start(args, format);
  16044. llama_log_internal_v(level, format, args);
  16045. va_end(args);
  16046. }
  16047. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  16048. (void) level;
  16049. (void) user_data;
  16050. fputs(text, stderr);
  16051. fflush(stderr);
  16052. }