ggml.c 699 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #include "ggml.h"
  3. #ifdef GGML_USE_K_QUANTS
  4. #include "k_quants.h"
  5. #endif
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // static_assert should be a #define, but if it's not,
  28. // fall back to the _Static_assert C11 keyword.
  29. // if C99 - static_assert is noop
  30. // ref: https://stackoverflow.com/a/53923785/4039976
  31. #ifndef static_assert
  32. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  33. #define static_assert(cond, msg) _Static_assert(cond, msg)
  34. #else
  35. #define static_assert(cond, msg) struct global_scope_noop_trick
  36. #endif
  37. #endif
  38. #if defined(_MSC_VER)
  39. // disable "possible loss of data" to avoid hundreds of casts
  40. // we should just be careful :)
  41. #pragma warning(disable: 4244 4267)
  42. // disable POSIX deprecation warnigns
  43. // these functions are never going away, anyway
  44. #pragma warning(disable: 4996)
  45. #endif
  46. #if defined(_WIN32)
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. int ret = (int) WaitForSingleObject(thread, INFINITE);
  77. CloseHandle(thread);
  78. return ret;
  79. }
  80. static int sched_yield (void) {
  81. Sleep (0);
  82. return 0;
  83. }
  84. #else
  85. #include <pthread.h>
  86. #include <stdatomic.h>
  87. typedef void * thread_ret_t;
  88. #include <sys/types.h>
  89. #include <sys/stat.h>
  90. #include <unistd.h>
  91. #endif
  92. #ifdef GGML_USE_CPU_HBM
  93. #include <hbwmalloc.h>
  94. #endif
  95. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  96. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  97. #ifndef __FMA__
  98. #define __FMA__
  99. #endif
  100. #ifndef __F16C__
  101. #define __F16C__
  102. #endif
  103. #ifndef __SSE3__
  104. #define __SSE3__
  105. #endif
  106. #endif
  107. /*#define GGML_PERF*/
  108. #define GGML_DEBUG 0
  109. #define GGML_GELU_FP16
  110. #define GGML_GELU_QUICK_FP16
  111. #define GGML_SILU_FP16
  112. // #define GGML_CROSS_ENTROPY_EXP_FP16
  113. // #define GGML_FLASH_ATTN_EXP_FP16
  114. #define GGML_SOFT_MAX_UNROLL 4
  115. #define GGML_VEC_DOT_UNROLL 2
  116. #define GGML_VEC_MAD_UNROLL 32
  117. //
  118. // logging
  119. //
  120. #if (GGML_DEBUG >= 1)
  121. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG(...)
  124. #endif
  125. #if (GGML_DEBUG >= 5)
  126. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  127. #else
  128. #define GGML_PRINT_DEBUG_5(...)
  129. #endif
  130. #if (GGML_DEBUG >= 10)
  131. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  132. #else
  133. #define GGML_PRINT_DEBUG_10(...)
  134. #endif
  135. #define GGML_PRINT(...) printf(__VA_ARGS__)
  136. #ifdef GGML_USE_ACCELERATE
  137. // uncomment to use vDSP for soft max computation
  138. // note: not sure if it is actually faster
  139. //#define GGML_SOFT_MAX_ACCELERATE
  140. #endif
  141. //
  142. // logging
  143. //
  144. #if (GGML_DEBUG >= 1)
  145. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG(...)
  148. #endif
  149. #if (GGML_DEBUG >= 5)
  150. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_5(...)
  153. #endif
  154. #if (GGML_DEBUG >= 10)
  155. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  156. #else
  157. #define GGML_PRINT_DEBUG_10(...)
  158. #endif
  159. #define GGML_PRINT(...) printf(__VA_ARGS__)
  160. //
  161. // end of logging block
  162. //
  163. #if defined(_MSC_VER) || defined(__MINGW32__)
  164. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  165. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  166. #else
  167. inline static void * ggml_aligned_malloc(size_t size) {
  168. if (size == 0) {
  169. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  170. return NULL;
  171. }
  172. void * aligned_memory = NULL;
  173. #ifdef GGML_USE_CPU_HBM
  174. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  175. #elif GGML_USE_METAL
  176. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  177. #else
  178. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  179. #endif
  180. if (result != 0) {
  181. // Handle allocation failure
  182. const char *error_desc = "unknown allocation error";
  183. switch (result) {
  184. case EINVAL:
  185. error_desc = "invalid alignment value";
  186. break;
  187. case ENOMEM:
  188. error_desc = "insufficient memory";
  189. break;
  190. }
  191. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  192. return NULL;
  193. }
  194. return aligned_memory;
  195. }
  196. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  197. #ifdef GGML_USE_CPU_HBM
  198. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  199. #else
  200. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  201. #endif
  202. #endif
  203. #define UNUSED GGML_UNUSED
  204. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  205. //
  206. // tensor access macros
  207. //
  208. #define GGML_TENSOR_UNARY_OP_LOCALS \
  209. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  210. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  211. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  212. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  213. #define GGML_TENSOR_BINARY_OP_LOCALS \
  214. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  215. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  216. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  217. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  218. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  219. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  220. #if defined(GGML_USE_ACCELERATE)
  221. #include <Accelerate/Accelerate.h>
  222. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  223. #include "ggml-opencl.h"
  224. #endif
  225. #elif defined(GGML_USE_OPENBLAS)
  226. #if defined(GGML_BLAS_USE_MKL)
  227. #include <mkl.h>
  228. #else
  229. #include <cblas.h>
  230. #endif
  231. #elif defined(GGML_USE_CUBLAS)
  232. #include "ggml-cuda.h"
  233. #elif defined(GGML_USE_CLBLAST)
  234. #include "ggml-opencl.h"
  235. #endif
  236. #undef MIN
  237. #undef MAX
  238. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  239. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  240. // floating point type used to accumulate sums
  241. typedef double ggml_float;
  242. // 16-bit float
  243. // on Arm, we use __fp16
  244. // on x86, we use uint16_t
  245. #if defined(__ARM_NEON) && !defined(_MSC_VER)
  246. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  247. //
  248. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  249. //
  250. #include <arm_neon.h>
  251. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  252. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  253. #define GGML_FP16_TO_FP32(x) ((float) (x))
  254. #define GGML_FP32_TO_FP16(x) (x)
  255. #else
  256. #ifdef __wasm_simd128__
  257. #include <wasm_simd128.h>
  258. #else
  259. #ifdef __POWER9_VECTOR__
  260. #include <altivec.h>
  261. #undef bool
  262. #define bool _Bool
  263. #else
  264. #if defined(_MSC_VER) || defined(__MINGW32__)
  265. #include <intrin.h>
  266. #else
  267. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  268. #if !defined(__riscv)
  269. #include <immintrin.h>
  270. #endif
  271. #endif
  272. #endif
  273. #endif
  274. #endif
  275. #ifdef __riscv_v_intrinsic
  276. #include <riscv_vector.h>
  277. #endif
  278. #ifdef __F16C__
  279. #ifdef _MSC_VER
  280. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  281. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  282. #else
  283. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  284. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  285. #endif
  286. #elif defined(__POWER9_VECTOR__)
  287. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  288. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  289. /* the inline asm below is about 12% faster than the lookup method */
  290. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  291. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  292. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  293. register float f;
  294. register double d;
  295. __asm__(
  296. "mtfprd %0,%2\n"
  297. "xscvhpdp %0,%0\n"
  298. "frsp %1,%0\n" :
  299. /* temp */ "=d"(d),
  300. /* out */ "=f"(f):
  301. /* in */ "r"(h));
  302. return f;
  303. }
  304. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  305. register double d;
  306. register ggml_fp16_t r;
  307. __asm__( /* xscvdphp can work on double or single precision */
  308. "xscvdphp %0,%2\n"
  309. "mffprd %1,%0\n" :
  310. /* temp */ "=d"(d),
  311. /* out */ "=r"(r):
  312. /* in */ "f"(f));
  313. return r;
  314. }
  315. #else
  316. // FP16 <-> FP32
  317. // ref: https://github.com/Maratyszcza/FP16
  318. static inline float fp32_from_bits(uint32_t w) {
  319. union {
  320. uint32_t as_bits;
  321. float as_value;
  322. } fp32;
  323. fp32.as_bits = w;
  324. return fp32.as_value;
  325. }
  326. static inline uint32_t fp32_to_bits(float f) {
  327. union {
  328. float as_value;
  329. uint32_t as_bits;
  330. } fp32;
  331. fp32.as_value = f;
  332. return fp32.as_bits;
  333. }
  334. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  335. const uint32_t w = (uint32_t) h << 16;
  336. const uint32_t sign = w & UINT32_C(0x80000000);
  337. const uint32_t two_w = w + w;
  338. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  339. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  340. const float exp_scale = 0x1.0p-112f;
  341. #else
  342. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  343. #endif
  344. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  345. const uint32_t magic_mask = UINT32_C(126) << 23;
  346. const float magic_bias = 0.5f;
  347. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  348. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  349. const uint32_t result = sign |
  350. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  351. return fp32_from_bits(result);
  352. }
  353. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  354. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  355. const float scale_to_inf = 0x1.0p+112f;
  356. const float scale_to_zero = 0x1.0p-110f;
  357. #else
  358. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  359. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  360. #endif
  361. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  362. const uint32_t w = fp32_to_bits(f);
  363. const uint32_t shl1_w = w + w;
  364. const uint32_t sign = w & UINT32_C(0x80000000);
  365. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  366. if (bias < UINT32_C(0x71000000)) {
  367. bias = UINT32_C(0x71000000);
  368. }
  369. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  370. const uint32_t bits = fp32_to_bits(base);
  371. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  372. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  373. const uint32_t nonsign = exp_bits + mantissa_bits;
  374. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  375. }
  376. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  377. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  378. #endif // __F16C__
  379. #endif // __ARM_NEON
  380. //
  381. // global data
  382. //
  383. // precomputed gelu table for f16 (128 KB)
  384. static ggml_fp16_t table_gelu_f16[1 << 16];
  385. // precomputed quick gelu table for f16 (128 KB)
  386. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  387. // precomputed silu table for f16 (128 KB)
  388. static ggml_fp16_t table_silu_f16[1 << 16];
  389. // precomputed exp table for f16 (128 KB)
  390. static ggml_fp16_t table_exp_f16[1 << 16];
  391. // precomputed f32 table for f16 (256 KB)
  392. static float table_f32_f16[1 << 16];
  393. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  394. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  395. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  396. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  397. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  398. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  399. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  400. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  401. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  402. // precomputed tables for expanding 8bits to 8 bytes:
  403. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  404. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  405. #endif
  406. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  407. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  408. // This is also true for POWER9.
  409. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  410. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  411. uint16_t s;
  412. memcpy(&s, &f, sizeof(uint16_t));
  413. return table_f32_f16[s];
  414. }
  415. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  416. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  417. #endif
  418. // note: do not use these inside ggml.c
  419. // these are meant to be used via the ggml.h API
  420. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  421. return (float) GGML_FP16_TO_FP32(x);
  422. }
  423. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  424. return GGML_FP32_TO_FP16(x);
  425. }
  426. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  427. for (int i = 0; i < n; i++) {
  428. y[i] = GGML_FP16_TO_FP32(x[i]);
  429. }
  430. }
  431. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  432. int i = 0;
  433. #if defined(__F16C__)
  434. for (; i + 7 < n; i += 8) {
  435. __m256 x_vec = _mm256_loadu_ps(x + i);
  436. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  437. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  438. }
  439. for(; i + 3 < n; i += 4) {
  440. __m128 x_vec = _mm_loadu_ps(x + i);
  441. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  442. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  443. }
  444. #endif
  445. for (; i < n; i++) {
  446. y[i] = GGML_FP32_TO_FP16(x[i]);
  447. }
  448. }
  449. //
  450. // timing
  451. //
  452. #if defined(_MSC_VER) || defined(__MINGW32__)
  453. static int64_t timer_freq, timer_start;
  454. void ggml_time_init(void) {
  455. LARGE_INTEGER t;
  456. QueryPerformanceFrequency(&t);
  457. timer_freq = t.QuadPart;
  458. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  459. // and the uptime is high enough.
  460. // We subtract the program start time to reduce the likelihood of that happening.
  461. QueryPerformanceCounter(&t);
  462. timer_start = t.QuadPart;
  463. }
  464. int64_t ggml_time_ms(void) {
  465. LARGE_INTEGER t;
  466. QueryPerformanceCounter(&t);
  467. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  468. }
  469. int64_t ggml_time_us(void) {
  470. LARGE_INTEGER t;
  471. QueryPerformanceCounter(&t);
  472. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  473. }
  474. #else
  475. void ggml_time_init(void) {}
  476. int64_t ggml_time_ms(void) {
  477. struct timespec ts;
  478. clock_gettime(CLOCK_MONOTONIC, &ts);
  479. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  480. }
  481. int64_t ggml_time_us(void) {
  482. struct timespec ts;
  483. clock_gettime(CLOCK_MONOTONIC, &ts);
  484. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  485. }
  486. #endif
  487. int64_t ggml_cycles(void) {
  488. return clock();
  489. }
  490. int64_t ggml_cycles_per_ms(void) {
  491. return CLOCKS_PER_SEC/1000;
  492. }
  493. #ifdef GGML_PERF
  494. #define ggml_perf_time_ms() ggml_time_ms()
  495. #define ggml_perf_time_us() ggml_time_us()
  496. #define ggml_perf_cycles() ggml_cycles()
  497. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  498. #else
  499. #define ggml_perf_time_ms() 0
  500. #define ggml_perf_time_us() 0
  501. #define ggml_perf_cycles() 0
  502. #define ggml_perf_cycles_per_ms() 0
  503. #endif
  504. //
  505. // cache line
  506. //
  507. #if defined(__cpp_lib_hardware_interference_size)
  508. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  509. #else
  510. #if defined(__POWER9_VECTOR__)
  511. #define CACHE_LINE_SIZE 128
  512. #else
  513. #define CACHE_LINE_SIZE 64
  514. #endif
  515. #endif
  516. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  517. //
  518. // quantization
  519. //
  520. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  521. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  522. // multiply int8_t, add results pairwise twice
  523. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  524. // Get absolute values of x vectors
  525. const __m128i ax = _mm_sign_epi8(x, x);
  526. // Sign the values of the y vectors
  527. const __m128i sy = _mm_sign_epi8(y, x);
  528. // Perform multiplication and create 16-bit values
  529. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  530. const __m128i ones = _mm_set1_epi16(1);
  531. return _mm_madd_epi16(ones, dot);
  532. }
  533. #if __AVX__ || __AVX2__ || __AVX512F__
  534. // horizontally add 8 floats
  535. static inline float hsum_float_8(const __m256 x) {
  536. __m128 res = _mm256_extractf128_ps(x, 1);
  537. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  538. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  539. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  540. return _mm_cvtss_f32(res);
  541. }
  542. // horizontally add 8 int32_t
  543. static inline int hsum_i32_8(const __m256i a) {
  544. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  545. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  546. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  547. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  548. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  549. }
  550. // horizontally add 4 int32_t
  551. static inline int hsum_i32_4(const __m128i a) {
  552. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  553. const __m128i sum64 = _mm_add_epi32(hi64, a);
  554. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  555. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  556. }
  557. #if defined(__AVX2__) || defined(__AVX512F__)
  558. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  559. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  560. uint32_t x32;
  561. memcpy(&x32, x, sizeof(uint32_t));
  562. const __m256i shuf_mask = _mm256_set_epi64x(
  563. 0x0303030303030303, 0x0202020202020202,
  564. 0x0101010101010101, 0x0000000000000000);
  565. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  566. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  567. bytes = _mm256_or_si256(bytes, bit_mask);
  568. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  569. }
  570. // Unpack 32 4-bit fields into 32 bytes
  571. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  572. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  573. {
  574. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  575. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  576. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  577. return _mm256_and_si256(lowMask, bytes);
  578. }
  579. // add int16_t pairwise and return as float vector
  580. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  581. const __m256i ones = _mm256_set1_epi16(1);
  582. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  583. return _mm256_cvtepi32_ps(summed_pairs);
  584. }
  585. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  586. #if __AVXVNNI__
  587. const __m256i zero = _mm256_setzero_si256();
  588. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  589. return _mm256_cvtepi32_ps(summed_pairs);
  590. #else
  591. // Perform multiplication and create 16-bit values
  592. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  593. return sum_i16_pairs_float(dot);
  594. #endif
  595. }
  596. // multiply int8_t, add results pairwise twice and return as float vector
  597. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  598. #if __AVXVNNIINT8__
  599. const __m256i zero = _mm256_setzero_si256();
  600. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  601. return _mm256_cvtepi32_ps(summed_pairs);
  602. #else
  603. // Get absolute values of x vectors
  604. const __m256i ax = _mm256_sign_epi8(x, x);
  605. // Sign the values of the y vectors
  606. const __m256i sy = _mm256_sign_epi8(y, x);
  607. return mul_sum_us8_pairs_float(ax, sy);
  608. #endif
  609. }
  610. static inline __m128i packNibbles( __m256i bytes )
  611. {
  612. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  613. #if __AVX512F__
  614. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  615. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  616. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  617. #else
  618. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  619. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  620. __m256i low = _mm256_and_si256( lowByte, bytes );
  621. high = _mm256_srli_epi16( high, 4 );
  622. bytes = _mm256_or_si256( low, high );
  623. // Compress uint16_t lanes into bytes
  624. __m128i r0 = _mm256_castsi256_si128( bytes );
  625. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  626. return _mm_packus_epi16( r0, r1 );
  627. #endif
  628. }
  629. #elif defined(__AVX__)
  630. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  631. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  632. uint32_t x32;
  633. memcpy(&x32, x, sizeof(uint32_t));
  634. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  635. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  636. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  637. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  638. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  639. bytesl = _mm_or_si128(bytesl, bit_mask);
  640. bytesh = _mm_or_si128(bytesh, bit_mask);
  641. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  642. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  643. return MM256_SET_M128I(bytesh, bytesl);
  644. }
  645. // Unpack 32 4-bit fields into 32 bytes
  646. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  647. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  648. {
  649. // Load 16 bytes from memory
  650. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  651. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  652. const __m128i lowMask = _mm_set1_epi8(0xF);
  653. tmpl = _mm_and_si128(lowMask, tmpl);
  654. tmph = _mm_and_si128(lowMask, tmph);
  655. return MM256_SET_M128I(tmph, tmpl);
  656. }
  657. // add int16_t pairwise and return as float vector
  658. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  659. const __m128i ones = _mm_set1_epi16(1);
  660. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  661. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  662. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  663. return _mm256_cvtepi32_ps(summed_pairs);
  664. }
  665. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  666. const __m128i axl = _mm256_castsi256_si128(ax);
  667. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  668. const __m128i syl = _mm256_castsi256_si128(sy);
  669. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  670. // Perform multiplication and create 16-bit values
  671. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  672. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  673. return sum_i16_pairs_float(doth, dotl);
  674. }
  675. // multiply int8_t, add results pairwise twice and return as float vector
  676. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  677. const __m128i xl = _mm256_castsi256_si128(x);
  678. const __m128i xh = _mm256_extractf128_si256(x, 1);
  679. const __m128i yl = _mm256_castsi256_si128(y);
  680. const __m128i yh = _mm256_extractf128_si256(y, 1);
  681. // Get absolute values of x vectors
  682. const __m128i axl = _mm_sign_epi8(xl, xl);
  683. const __m128i axh = _mm_sign_epi8(xh, xh);
  684. // Sign the values of the y vectors
  685. const __m128i syl = _mm_sign_epi8(yl, xl);
  686. const __m128i syh = _mm_sign_epi8(yh, xh);
  687. // Perform multiplication and create 16-bit values
  688. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  689. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  690. return sum_i16_pairs_float(doth, dotl);
  691. }
  692. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  693. {
  694. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  695. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  696. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  697. __m128i low = _mm_and_si128( lowByte, bytes1 );
  698. high = _mm_srli_epi16( high, 4 );
  699. bytes1 = _mm_or_si128( low, high );
  700. high = _mm_andnot_si128( lowByte, bytes2 );
  701. low = _mm_and_si128( lowByte, bytes2 );
  702. high = _mm_srli_epi16( high, 4 );
  703. bytes2 = _mm_or_si128( low, high );
  704. return _mm_packus_epi16( bytes1, bytes2);
  705. }
  706. #endif
  707. #elif defined(__SSSE3__)
  708. // horizontally add 4x4 floats
  709. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  710. __m128 res_0 =_mm_hadd_ps(a, b);
  711. __m128 res_1 =_mm_hadd_ps(c, d);
  712. __m128 res =_mm_hadd_ps(res_0, res_1);
  713. res =_mm_hadd_ps(res, res);
  714. res =_mm_hadd_ps(res, res);
  715. return _mm_cvtss_f32(res);
  716. }
  717. #endif // __AVX__ || __AVX2__ || __AVX512F__
  718. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  719. #if defined(__ARM_NEON)
  720. #if !defined(__aarch64__)
  721. inline static int32_t vaddvq_s32(int32x4_t v) {
  722. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  723. }
  724. inline static float vaddvq_f32(float32x4_t v) {
  725. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  726. }
  727. inline static float vmaxvq_f32(float32x4_t v) {
  728. return
  729. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  730. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  731. }
  732. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  733. int32x4_t res;
  734. res[0] = roundf(vgetq_lane_f32(v, 0));
  735. res[1] = roundf(vgetq_lane_f32(v, 1));
  736. res[2] = roundf(vgetq_lane_f32(v, 2));
  737. res[3] = roundf(vgetq_lane_f32(v, 3));
  738. return res;
  739. }
  740. #endif
  741. #endif
  742. #define QK4_0 32
  743. typedef struct {
  744. ggml_fp16_t d; // delta
  745. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  746. } block_q4_0;
  747. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  748. #define QK4_1 32
  749. typedef struct {
  750. ggml_fp16_t d; // delta
  751. ggml_fp16_t m; // min
  752. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  753. } block_q4_1;
  754. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  755. #define QK5_0 32
  756. typedef struct {
  757. ggml_fp16_t d; // delta
  758. uint8_t qh[4]; // 5-th bit of quants
  759. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  760. } block_q5_0;
  761. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  762. #define QK5_1 32
  763. typedef struct {
  764. ggml_fp16_t d; // delta
  765. ggml_fp16_t m; // min
  766. uint8_t qh[4]; // 5-th bit of quants
  767. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  768. } block_q5_1;
  769. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  770. #define QK8_0 32
  771. typedef struct {
  772. ggml_fp16_t d; // delta
  773. int8_t qs[QK8_0]; // quants
  774. } block_q8_0;
  775. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  776. #define QK8_1 32
  777. typedef struct {
  778. float d; // delta
  779. float s; // d * sum(qs[i])
  780. int8_t qs[QK8_1]; // quants
  781. } block_q8_1;
  782. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  783. // reference implementation for deterministic creation of model files
  784. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  785. static const int qk = QK4_0;
  786. assert(k % qk == 0);
  787. const int nb = k / qk;
  788. for (int i = 0; i < nb; i++) {
  789. float amax = 0.0f; // absolute max
  790. float max = 0.0f;
  791. for (int j = 0; j < qk; j++) {
  792. const float v = x[i*qk + j];
  793. if (amax < fabsf(v)) {
  794. amax = fabsf(v);
  795. max = v;
  796. }
  797. }
  798. const float d = max / -8;
  799. const float id = d ? 1.0f/d : 0.0f;
  800. y[i].d = GGML_FP32_TO_FP16(d);
  801. for (int j = 0; j < qk/2; ++j) {
  802. const float x0 = x[i*qk + 0 + j]*id;
  803. const float x1 = x[i*qk + qk/2 + j]*id;
  804. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  805. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  806. y[i].qs[j] = xi0;
  807. y[i].qs[j] |= xi1 << 4;
  808. }
  809. }
  810. }
  811. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  812. quantize_row_q4_0_reference(x, y, k);
  813. }
  814. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  815. const int qk = QK4_1;
  816. assert(k % qk == 0);
  817. const int nb = k / qk;
  818. for (int i = 0; i < nb; i++) {
  819. float min = FLT_MAX;
  820. float max = -FLT_MAX;
  821. for (int j = 0; j < qk; j++) {
  822. const float v = x[i*qk + j];
  823. if (v < min) min = v;
  824. if (v > max) max = v;
  825. }
  826. const float d = (max - min) / ((1 << 4) - 1);
  827. const float id = d ? 1.0f/d : 0.0f;
  828. y[i].d = GGML_FP32_TO_FP16(d);
  829. y[i].m = GGML_FP32_TO_FP16(min);
  830. for (int j = 0; j < qk/2; ++j) {
  831. const float x0 = (x[i*qk + 0 + j] - min)*id;
  832. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  833. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  834. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  835. y[i].qs[j] = xi0;
  836. y[i].qs[j] |= xi1 << 4;
  837. }
  838. }
  839. }
  840. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  841. quantize_row_q4_1_reference(x, y, k);
  842. }
  843. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  844. static const int qk = QK5_0;
  845. assert(k % qk == 0);
  846. const int nb = k / qk;
  847. for (int i = 0; i < nb; i++) {
  848. float amax = 0.0f; // absolute max
  849. float max = 0.0f;
  850. for (int j = 0; j < qk; j++) {
  851. const float v = x[i*qk + j];
  852. if (amax < fabsf(v)) {
  853. amax = fabsf(v);
  854. max = v;
  855. }
  856. }
  857. const float d = max / -16;
  858. const float id = d ? 1.0f/d : 0.0f;
  859. y[i].d = GGML_FP32_TO_FP16(d);
  860. uint32_t qh = 0;
  861. for (int j = 0; j < qk/2; ++j) {
  862. const float x0 = x[i*qk + 0 + j]*id;
  863. const float x1 = x[i*qk + qk/2 + j]*id;
  864. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  865. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  866. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  867. // get the 5-th bit and store it in qh at the right position
  868. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  869. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  870. }
  871. memcpy(&y[i].qh, &qh, sizeof(qh));
  872. }
  873. }
  874. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  875. quantize_row_q5_0_reference(x, y, k);
  876. }
  877. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  878. const int qk = QK5_1;
  879. assert(k % qk == 0);
  880. const int nb = k / qk;
  881. for (int i = 0; i < nb; i++) {
  882. float min = FLT_MAX;
  883. float max = -FLT_MAX;
  884. for (int j = 0; j < qk; j++) {
  885. const float v = x[i*qk + j];
  886. if (v < min) min = v;
  887. if (v > max) max = v;
  888. }
  889. const float d = (max - min) / ((1 << 5) - 1);
  890. const float id = d ? 1.0f/d : 0.0f;
  891. y[i].d = GGML_FP32_TO_FP16(d);
  892. y[i].m = GGML_FP32_TO_FP16(min);
  893. uint32_t qh = 0;
  894. for (int j = 0; j < qk/2; ++j) {
  895. const float x0 = (x[i*qk + 0 + j] - min)*id;
  896. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  897. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  898. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  899. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  900. // get the 5-th bit and store it in qh at the right position
  901. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  902. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  903. }
  904. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  905. }
  906. }
  907. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  908. quantize_row_q5_1_reference(x, y, k);
  909. }
  910. // reference implementation for deterministic creation of model files
  911. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  912. assert(k % QK8_0 == 0);
  913. const int nb = k / QK8_0;
  914. for (int i = 0; i < nb; i++) {
  915. float amax = 0.0f; // absolute max
  916. for (int j = 0; j < QK8_0; j++) {
  917. const float v = x[i*QK8_0 + j];
  918. amax = MAX(amax, fabsf(v));
  919. }
  920. const float d = amax / ((1 << 7) - 1);
  921. const float id = d ? 1.0f/d : 0.0f;
  922. y[i].d = GGML_FP32_TO_FP16(d);
  923. for (int j = 0; j < QK8_0; ++j) {
  924. const float x0 = x[i*QK8_0 + j]*id;
  925. y[i].qs[j] = roundf(x0);
  926. }
  927. }
  928. }
  929. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  930. assert(QK8_0 == 32);
  931. assert(k % QK8_0 == 0);
  932. const int nb = k / QK8_0;
  933. block_q8_0 * restrict y = vy;
  934. #if defined(__ARM_NEON)
  935. for (int i = 0; i < nb; i++) {
  936. float32x4_t srcv [8];
  937. float32x4_t asrcv[8];
  938. float32x4_t amaxv[8];
  939. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  940. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  941. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  942. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  943. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  944. const float amax = vmaxvq_f32(amaxv[0]);
  945. const float d = amax / ((1 << 7) - 1);
  946. const float id = d ? 1.0f/d : 0.0f;
  947. y[i].d = GGML_FP32_TO_FP16(d);
  948. for (int j = 0; j < 8; j++) {
  949. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  950. const int32x4_t vi = vcvtnq_s32_f32(v);
  951. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  952. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  953. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  954. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  955. }
  956. }
  957. #elif defined(__wasm_simd128__)
  958. for (int i = 0; i < nb; i++) {
  959. v128_t srcv [8];
  960. v128_t asrcv[8];
  961. v128_t amaxv[8];
  962. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  963. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  964. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  965. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  966. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  967. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  968. wasm_f32x4_extract_lane(amaxv[0], 1)),
  969. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  970. wasm_f32x4_extract_lane(amaxv[0], 3)));
  971. const float d = amax / ((1 << 7) - 1);
  972. const float id = d ? 1.0f/d : 0.0f;
  973. y[i].d = GGML_FP32_TO_FP16(d);
  974. for (int j = 0; j < 8; j++) {
  975. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  976. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  977. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  978. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  979. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  980. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  981. }
  982. }
  983. #elif defined(__AVX2__) || defined(__AVX__)
  984. for (int i = 0; i < nb; i++) {
  985. // Load elements into 4 AVX vectors
  986. __m256 v0 = _mm256_loadu_ps( x );
  987. __m256 v1 = _mm256_loadu_ps( x + 8 );
  988. __m256 v2 = _mm256_loadu_ps( x + 16 );
  989. __m256 v3 = _mm256_loadu_ps( x + 24 );
  990. x += 32;
  991. // Compute max(abs(e)) for the block
  992. const __m256 signBit = _mm256_set1_ps( -0.0f );
  993. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  994. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  995. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  996. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  997. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  998. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  999. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1000. const float maxScalar = _mm_cvtss_f32( max4 );
  1001. // Quantize these floats
  1002. const float d = maxScalar / 127.f;
  1003. y[i].d = GGML_FP32_TO_FP16(d);
  1004. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1005. const __m256 mul = _mm256_set1_ps( id );
  1006. // Apply the multiplier
  1007. v0 = _mm256_mul_ps( v0, mul );
  1008. v1 = _mm256_mul_ps( v1, mul );
  1009. v2 = _mm256_mul_ps( v2, mul );
  1010. v3 = _mm256_mul_ps( v3, mul );
  1011. // Round to nearest integer
  1012. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1013. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1014. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1015. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1016. // Convert floats to integers
  1017. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1018. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1019. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1020. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1021. #if defined(__AVX2__)
  1022. // Convert int32 to int16
  1023. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1024. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1025. // Convert int16 to int8
  1026. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1027. // We got our precious signed bytes, but the order is now wrong
  1028. // These AVX2 pack instructions process 16-byte pieces independently
  1029. // The following instruction is fixing the order
  1030. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1031. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1032. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1033. #else
  1034. // Since we don't have in AVX some necessary functions,
  1035. // we split the registers in half and call AVX2 analogs from SSE
  1036. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1037. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1038. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1039. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1040. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1041. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1042. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1043. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1044. // Convert int32 to int16
  1045. ni0 = _mm_packs_epi32( ni0, ni1 );
  1046. ni2 = _mm_packs_epi32( ni2, ni3 );
  1047. ni4 = _mm_packs_epi32( ni4, ni5 );
  1048. ni6 = _mm_packs_epi32( ni6, ni7 );
  1049. // Convert int16 to int8
  1050. ni0 = _mm_packs_epi16( ni0, ni2 );
  1051. ni4 = _mm_packs_epi16( ni4, ni6 );
  1052. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1053. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1054. #endif
  1055. }
  1056. #elif defined(__riscv_v_intrinsic)
  1057. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  1058. for (int i = 0; i < nb; i++) {
  1059. // load elements
  1060. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  1061. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1062. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  1063. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1064. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1065. const float d = amax / ((1 << 7) - 1);
  1066. const float id = d ? 1.0f/d : 0.0f;
  1067. y[i].d = GGML_FP32_TO_FP16(d);
  1068. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1069. // convert to integer
  1070. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1071. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1072. // store result
  1073. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1074. }
  1075. #else
  1076. // scalar
  1077. quantize_row_q8_0_reference(x, y, k);
  1078. #endif
  1079. }
  1080. // reference implementation for deterministic creation of model files
  1081. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1082. assert(QK8_1 == 32);
  1083. assert(k % QK8_1 == 0);
  1084. const int nb = k / QK8_1;
  1085. for (int i = 0; i < nb; i++) {
  1086. float amax = 0.0f; // absolute max
  1087. for (int j = 0; j < QK8_1; j++) {
  1088. const float v = x[i*QK8_1 + j];
  1089. amax = MAX(amax, fabsf(v));
  1090. }
  1091. const float d = amax / ((1 << 7) - 1);
  1092. const float id = d ? 1.0f/d : 0.0f;
  1093. y[i].d = d;
  1094. int sum = 0;
  1095. for (int j = 0; j < QK8_1/2; ++j) {
  1096. const float v0 = x[i*QK8_1 + j]*id;
  1097. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1098. y[i].qs[ j] = roundf(v0);
  1099. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1100. sum += y[i].qs[ j];
  1101. sum += y[i].qs[QK8_1/2 + j];
  1102. }
  1103. y[i].s = sum*d;
  1104. }
  1105. }
  1106. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1107. assert(k % QK8_1 == 0);
  1108. const int nb = k / QK8_1;
  1109. block_q8_1 * restrict y = vy;
  1110. #if defined(__ARM_NEON)
  1111. for (int i = 0; i < nb; i++) {
  1112. float32x4_t srcv [8];
  1113. float32x4_t asrcv[8];
  1114. float32x4_t amaxv[8];
  1115. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1116. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1117. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1118. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1119. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1120. const float amax = vmaxvq_f32(amaxv[0]);
  1121. const float d = amax / ((1 << 7) - 1);
  1122. const float id = d ? 1.0f/d : 0.0f;
  1123. y[i].d = d;
  1124. int32x4_t accv = vdupq_n_s32(0);
  1125. for (int j = 0; j < 8; j++) {
  1126. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1127. const int32x4_t vi = vcvtnq_s32_f32(v);
  1128. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1129. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1130. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1131. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1132. accv = vaddq_s32(accv, vi);
  1133. }
  1134. y[i].s = d * vaddvq_s32(accv);
  1135. }
  1136. #elif defined(__wasm_simd128__)
  1137. for (int i = 0; i < nb; i++) {
  1138. v128_t srcv [8];
  1139. v128_t asrcv[8];
  1140. v128_t amaxv[8];
  1141. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1142. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1143. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1144. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1145. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1146. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1147. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1148. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1149. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1150. const float d = amax / ((1 << 7) - 1);
  1151. const float id = d ? 1.0f/d : 0.0f;
  1152. y[i].d = d;
  1153. v128_t accv = wasm_i32x4_splat(0);
  1154. for (int j = 0; j < 8; j++) {
  1155. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1156. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1157. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1158. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1159. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1160. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1161. accv = wasm_i32x4_add(accv, vi);
  1162. }
  1163. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1164. wasm_i32x4_extract_lane(accv, 1) +
  1165. wasm_i32x4_extract_lane(accv, 2) +
  1166. wasm_i32x4_extract_lane(accv, 3));
  1167. }
  1168. #elif defined(__AVX2__) || defined(__AVX__)
  1169. for (int i = 0; i < nb; i++) {
  1170. // Load elements into 4 AVX vectors
  1171. __m256 v0 = _mm256_loadu_ps( x );
  1172. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1173. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1174. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1175. x += 32;
  1176. // Compute max(abs(e)) for the block
  1177. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1178. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1179. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1180. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1181. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1182. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1183. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1184. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1185. const float maxScalar = _mm_cvtss_f32( max4 );
  1186. // Quantize these floats
  1187. const float d = maxScalar / 127.f;
  1188. y[i].d = d;
  1189. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1190. const __m256 mul = _mm256_set1_ps( id );
  1191. // Apply the multiplier
  1192. v0 = _mm256_mul_ps( v0, mul );
  1193. v1 = _mm256_mul_ps( v1, mul );
  1194. v2 = _mm256_mul_ps( v2, mul );
  1195. v3 = _mm256_mul_ps( v3, mul );
  1196. // Round to nearest integer
  1197. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1198. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1199. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1200. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1201. // Convert floats to integers
  1202. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1203. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1204. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1205. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1206. #if defined(__AVX2__)
  1207. // Compute the sum of the quants and set y[i].s
  1208. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1209. // Convert int32 to int16
  1210. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1211. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1212. // Convert int16 to int8
  1213. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1214. // We got our precious signed bytes, but the order is now wrong
  1215. // These AVX2 pack instructions process 16-byte pieces independently
  1216. // The following instruction is fixing the order
  1217. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1218. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1219. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1220. #else
  1221. // Since we don't have in AVX some necessary functions,
  1222. // we split the registers in half and call AVX2 analogs from SSE
  1223. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1224. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1225. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1226. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1227. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1228. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1229. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1230. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1231. // Compute the sum of the quants and set y[i].s
  1232. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1233. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1234. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1235. // Convert int32 to int16
  1236. ni0 = _mm_packs_epi32( ni0, ni1 );
  1237. ni2 = _mm_packs_epi32( ni2, ni3 );
  1238. ni4 = _mm_packs_epi32( ni4, ni5 );
  1239. ni6 = _mm_packs_epi32( ni6, ni7 );
  1240. // Convert int16 to int8
  1241. ni0 = _mm_packs_epi16( ni0, ni2 );
  1242. ni4 = _mm_packs_epi16( ni4, ni6 );
  1243. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1244. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1245. #endif
  1246. }
  1247. #elif defined(__riscv_v_intrinsic)
  1248. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  1249. for (int i = 0; i < nb; i++) {
  1250. // load elements
  1251. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1252. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1253. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1254. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1255. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1256. const float d = amax / ((1 << 7) - 1);
  1257. const float id = d ? 1.0f/d : 0.0f;
  1258. y[i].d = d;
  1259. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1260. // convert to integer
  1261. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1262. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1263. // store result
  1264. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1265. // compute sum for y[i].s
  1266. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1267. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1268. // set y[i].s
  1269. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1270. y[i].s = sum*d;
  1271. }
  1272. #else
  1273. // scalar
  1274. quantize_row_q8_1_reference(x, y, k);
  1275. #endif
  1276. }
  1277. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1278. static const int qk = QK4_0;
  1279. assert(k % qk == 0);
  1280. const int nb = k / qk;
  1281. for (int i = 0; i < nb; i++) {
  1282. const float d = GGML_FP16_TO_FP32(x[i].d);
  1283. for (int j = 0; j < qk/2; ++j) {
  1284. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1285. const int x1 = (x[i].qs[j] >> 4) - 8;
  1286. y[i*qk + j + 0 ] = x0*d;
  1287. y[i*qk + j + qk/2] = x1*d;
  1288. }
  1289. }
  1290. }
  1291. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1292. static const int qk = QK4_1;
  1293. assert(k % qk == 0);
  1294. const int nb = k / qk;
  1295. for (int i = 0; i < nb; i++) {
  1296. const float d = GGML_FP16_TO_FP32(x[i].d);
  1297. const float m = GGML_FP16_TO_FP32(x[i].m);
  1298. for (int j = 0; j < qk/2; ++j) {
  1299. const int x0 = (x[i].qs[j] & 0x0F);
  1300. const int x1 = (x[i].qs[j] >> 4);
  1301. y[i*qk + j + 0 ] = x0*d + m;
  1302. y[i*qk + j + qk/2] = x1*d + m;
  1303. }
  1304. }
  1305. }
  1306. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1307. static const int qk = QK5_0;
  1308. assert(k % qk == 0);
  1309. const int nb = k / qk;
  1310. for (int i = 0; i < nb; i++) {
  1311. const float d = GGML_FP16_TO_FP32(x[i].d);
  1312. uint32_t qh;
  1313. memcpy(&qh, x[i].qh, sizeof(qh));
  1314. for (int j = 0; j < qk/2; ++j) {
  1315. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1316. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1317. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1318. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1319. y[i*qk + j + 0 ] = x0*d;
  1320. y[i*qk + j + qk/2] = x1*d;
  1321. }
  1322. }
  1323. }
  1324. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1325. static const int qk = QK5_1;
  1326. assert(k % qk == 0);
  1327. const int nb = k / qk;
  1328. for (int i = 0; i < nb; i++) {
  1329. const float d = GGML_FP16_TO_FP32(x[i].d);
  1330. const float m = GGML_FP16_TO_FP32(x[i].m);
  1331. uint32_t qh;
  1332. memcpy(&qh, x[i].qh, sizeof(qh));
  1333. for (int j = 0; j < qk/2; ++j) {
  1334. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1335. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1336. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1337. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1338. y[i*qk + j + 0 ] = x0*d + m;
  1339. y[i*qk + j + qk/2] = x1*d + m;
  1340. }
  1341. }
  1342. }
  1343. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1344. static const int qk = QK8_0;
  1345. assert(k % qk == 0);
  1346. const int nb = k / qk;
  1347. const block_q8_0 * restrict x = vx;
  1348. for (int i = 0; i < nb; i++) {
  1349. const float d = GGML_FP16_TO_FP32(x[i].d);
  1350. for (int j = 0; j < qk; ++j) {
  1351. y[i*qk + j] = x[i].qs[j]*d;
  1352. }
  1353. }
  1354. }
  1355. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1356. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1357. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1358. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1359. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1360. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1361. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1362. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1363. [GGML_TYPE_I8] = {
  1364. .type_name = "i8",
  1365. .blck_size = 1,
  1366. .type_size = sizeof(int8_t),
  1367. .is_quantized = false,
  1368. },
  1369. [GGML_TYPE_I16] = {
  1370. .type_name = "i16",
  1371. .blck_size = 1,
  1372. .type_size = sizeof(int16_t),
  1373. .is_quantized = false,
  1374. },
  1375. [GGML_TYPE_I32] = {
  1376. .type_name = "i32",
  1377. .blck_size = 1,
  1378. .type_size = sizeof(int32_t),
  1379. .is_quantized = false,
  1380. },
  1381. [GGML_TYPE_F32] = {
  1382. .type_name = "f32",
  1383. .blck_size = 1,
  1384. .type_size = sizeof(float),
  1385. .is_quantized = false,
  1386. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1387. .vec_dot_type = GGML_TYPE_F32,
  1388. },
  1389. [GGML_TYPE_F16] = {
  1390. .type_name = "f16",
  1391. .blck_size = 1,
  1392. .type_size = sizeof(ggml_fp16_t),
  1393. .is_quantized = false,
  1394. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1395. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1396. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1397. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1398. .vec_dot_type = GGML_TYPE_F16,
  1399. },
  1400. [GGML_TYPE_Q4_0] = {
  1401. .type_name = "q4_0",
  1402. .blck_size = QK4_0,
  1403. .type_size = sizeof(block_q4_0),
  1404. .is_quantized = true,
  1405. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1406. .from_float = quantize_row_q4_0,
  1407. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1408. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1409. .vec_dot_type = GGML_TYPE_Q8_0,
  1410. },
  1411. [GGML_TYPE_Q4_1] = {
  1412. .type_name = "q4_1",
  1413. .blck_size = QK4_1,
  1414. .type_size = sizeof(block_q4_1),
  1415. .is_quantized = true,
  1416. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1417. .from_float = quantize_row_q4_1,
  1418. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1419. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1420. .vec_dot_type = GGML_TYPE_Q8_1,
  1421. },
  1422. [GGML_TYPE_Q5_0] = {
  1423. .type_name = "q5_0",
  1424. .blck_size = QK5_0,
  1425. .type_size = sizeof(block_q5_0),
  1426. .is_quantized = true,
  1427. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1428. .from_float = quantize_row_q5_0,
  1429. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1430. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1431. .vec_dot_type = GGML_TYPE_Q8_0,
  1432. },
  1433. [GGML_TYPE_Q5_1] = {
  1434. .type_name = "q5_1",
  1435. .blck_size = QK5_1,
  1436. .type_size = sizeof(block_q5_1),
  1437. .is_quantized = true,
  1438. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1439. .from_float = quantize_row_q5_1,
  1440. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1441. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1442. .vec_dot_type = GGML_TYPE_Q8_1,
  1443. },
  1444. [GGML_TYPE_Q8_0] = {
  1445. .type_name = "q8_0",
  1446. .blck_size = QK8_0,
  1447. .type_size = sizeof(block_q8_0),
  1448. .is_quantized = true,
  1449. .to_float = dequantize_row_q8_0,
  1450. .from_float = quantize_row_q8_0,
  1451. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1452. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1453. .vec_dot_type = GGML_TYPE_Q8_0,
  1454. },
  1455. [GGML_TYPE_Q8_1] = {
  1456. .type_name = "q8_1",
  1457. .blck_size = QK8_1,
  1458. .type_size = sizeof(block_q8_1),
  1459. .is_quantized = true,
  1460. .from_float = quantize_row_q8_1,
  1461. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1462. .vec_dot_type = GGML_TYPE_Q8_1,
  1463. },
  1464. #ifdef GGML_USE_K_QUANTS
  1465. [GGML_TYPE_Q2_K] = {
  1466. .type_name = "q2_K",
  1467. .blck_size = QK_K,
  1468. .type_size = sizeof(block_q2_K),
  1469. .is_quantized = true,
  1470. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1471. .from_float = quantize_row_q2_K,
  1472. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1473. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1474. .vec_dot_type = GGML_TYPE_Q8_K,
  1475. },
  1476. [GGML_TYPE_Q3_K] = {
  1477. .type_name = "q3_K",
  1478. .blck_size = QK_K,
  1479. .type_size = sizeof(block_q3_K),
  1480. .is_quantized = true,
  1481. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1482. .from_float = quantize_row_q3_K,
  1483. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1484. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1485. .vec_dot_type = GGML_TYPE_Q8_K,
  1486. },
  1487. [GGML_TYPE_Q4_K] = {
  1488. .type_name = "q4_K",
  1489. .blck_size = QK_K,
  1490. .type_size = sizeof(block_q4_K),
  1491. .is_quantized = true,
  1492. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1493. .from_float = quantize_row_q4_K,
  1494. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1495. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1496. .vec_dot_type = GGML_TYPE_Q8_K,
  1497. },
  1498. [GGML_TYPE_Q5_K] = {
  1499. .type_name = "q5_K",
  1500. .blck_size = QK_K,
  1501. .type_size = sizeof(block_q5_K),
  1502. .is_quantized = true,
  1503. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1504. .from_float = quantize_row_q5_K,
  1505. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1506. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1507. .vec_dot_type = GGML_TYPE_Q8_K,
  1508. },
  1509. [GGML_TYPE_Q6_K] = {
  1510. .type_name = "q6_K",
  1511. .blck_size = QK_K,
  1512. .type_size = sizeof(block_q6_K),
  1513. .is_quantized = true,
  1514. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1515. .from_float = quantize_row_q6_K,
  1516. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1517. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1518. .vec_dot_type = GGML_TYPE_Q8_K,
  1519. },
  1520. [GGML_TYPE_Q8_K] = {
  1521. .type_name = "q8_K",
  1522. .blck_size = QK_K,
  1523. .type_size = sizeof(block_q8_K),
  1524. .is_quantized = true,
  1525. .from_float = quantize_row_q8_K,
  1526. }
  1527. #endif
  1528. };
  1529. // For internal test use
  1530. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1531. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1532. return type_traits[type];
  1533. }
  1534. //
  1535. // simd mappings
  1536. //
  1537. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1538. // we then implement the fundamental computation operations below using only these macros
  1539. // adding support for new architectures requires to define the corresponding SIMD macros
  1540. //
  1541. // GGML_F32_STEP / GGML_F16_STEP
  1542. // number of elements to process in a single step
  1543. //
  1544. // GGML_F32_EPR / GGML_F16_EPR
  1545. // number of elements to fit in a single register
  1546. //
  1547. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1548. #define GGML_SIMD
  1549. // F32 NEON
  1550. #define GGML_F32_STEP 16
  1551. #define GGML_F32_EPR 4
  1552. #define GGML_F32x4 float32x4_t
  1553. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1554. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1555. #define GGML_F32x4_LOAD vld1q_f32
  1556. #define GGML_F32x4_STORE vst1q_f32
  1557. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1558. #define GGML_F32x4_ADD vaddq_f32
  1559. #define GGML_F32x4_MUL vmulq_f32
  1560. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1561. #define GGML_F32x4_REDUCE(res, x) \
  1562. { \
  1563. int offset = GGML_F32_ARR >> 1; \
  1564. for (int i = 0; i < offset; ++i) { \
  1565. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1566. } \
  1567. offset >>= 1; \
  1568. for (int i = 0; i < offset; ++i) { \
  1569. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1570. } \
  1571. offset >>= 1; \
  1572. for (int i = 0; i < offset; ++i) { \
  1573. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1574. } \
  1575. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1576. }
  1577. #define GGML_F32_VEC GGML_F32x4
  1578. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1579. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1580. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1581. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1582. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1583. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1584. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1585. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1586. // F16 NEON
  1587. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1588. #define GGML_F16_STEP 32
  1589. #define GGML_F16_EPR 8
  1590. #define GGML_F16x8 float16x8_t
  1591. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1592. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1593. #define GGML_F16x8_LOAD vld1q_f16
  1594. #define GGML_F16x8_STORE vst1q_f16
  1595. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1596. #define GGML_F16x8_ADD vaddq_f16
  1597. #define GGML_F16x8_MUL vmulq_f16
  1598. #define GGML_F16x8_REDUCE(res, x) \
  1599. do { \
  1600. int offset = GGML_F16_ARR >> 1; \
  1601. for (int i = 0; i < offset; ++i) { \
  1602. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1603. } \
  1604. offset >>= 1; \
  1605. for (int i = 0; i < offset; ++i) { \
  1606. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1607. } \
  1608. offset >>= 1; \
  1609. for (int i = 0; i < offset; ++i) { \
  1610. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1611. } \
  1612. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1613. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1614. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1615. } while (0)
  1616. #define GGML_F16_VEC GGML_F16x8
  1617. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1618. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1619. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1620. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1621. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1622. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1623. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1624. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1625. #else
  1626. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1627. // and take advantage of the vcvt_ functions to convert to/from FP16
  1628. #define GGML_F16_STEP 16
  1629. #define GGML_F16_EPR 4
  1630. #define GGML_F32Cx4 float32x4_t
  1631. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1632. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1633. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1634. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1635. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1636. #define GGML_F32Cx4_ADD vaddq_f32
  1637. #define GGML_F32Cx4_MUL vmulq_f32
  1638. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1639. #define GGML_F16_VEC GGML_F32Cx4
  1640. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1641. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1642. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1643. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1644. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1645. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1646. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1647. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1648. #endif
  1649. #elif defined(__AVX__)
  1650. #define GGML_SIMD
  1651. // F32 AVX
  1652. #define GGML_F32_STEP 32
  1653. #define GGML_F32_EPR 8
  1654. #define GGML_F32x8 __m256
  1655. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1656. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1657. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1658. #define GGML_F32x8_STORE _mm256_storeu_ps
  1659. #if defined(__FMA__)
  1660. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1661. #else
  1662. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1663. #endif
  1664. #define GGML_F32x8_ADD _mm256_add_ps
  1665. #define GGML_F32x8_MUL _mm256_mul_ps
  1666. #define GGML_F32x8_REDUCE(res, x) \
  1667. do { \
  1668. int offset = GGML_F32_ARR >> 1; \
  1669. for (int i = 0; i < offset; ++i) { \
  1670. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1671. } \
  1672. offset >>= 1; \
  1673. for (int i = 0; i < offset; ++i) { \
  1674. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1675. } \
  1676. offset >>= 1; \
  1677. for (int i = 0; i < offset; ++i) { \
  1678. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1679. } \
  1680. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1681. _mm256_extractf128_ps(x[0], 1)); \
  1682. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1683. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1684. } while (0)
  1685. // TODO: is this optimal ?
  1686. #define GGML_F32_VEC GGML_F32x8
  1687. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1688. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1689. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1690. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1691. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1692. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1693. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1694. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1695. // F16 AVX
  1696. #define GGML_F16_STEP 32
  1697. #define GGML_F16_EPR 8
  1698. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1699. #define GGML_F32Cx8 __m256
  1700. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1701. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1702. #if defined(__F16C__)
  1703. // the _mm256_cvt intrinsics require F16C
  1704. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1705. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1706. #else
  1707. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1708. float tmp[8];
  1709. for (int i = 0; i < 8; i++) {
  1710. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1711. }
  1712. return _mm256_loadu_ps(tmp);
  1713. }
  1714. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1715. float arr[8];
  1716. _mm256_storeu_ps(arr, y);
  1717. for (int i = 0; i < 8; i++)
  1718. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1719. }
  1720. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1721. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1722. #endif
  1723. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1724. #define GGML_F32Cx8_ADD _mm256_add_ps
  1725. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1726. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1727. #define GGML_F16_VEC GGML_F32Cx8
  1728. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1729. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1730. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1731. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1732. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1733. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1734. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1735. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1736. #elif defined(__POWER9_VECTOR__)
  1737. #define GGML_SIMD
  1738. // F32 POWER9
  1739. #define GGML_F32_STEP 32
  1740. #define GGML_F32_EPR 4
  1741. #define GGML_F32x4 vector float
  1742. #define GGML_F32x4_ZERO 0.0f
  1743. #define GGML_F32x4_SET1 vec_splats
  1744. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1745. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1746. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1747. #define GGML_F32x4_ADD vec_add
  1748. #define GGML_F32x4_MUL vec_mul
  1749. #define GGML_F32x4_REDUCE(res, x) \
  1750. { \
  1751. int offset = GGML_F32_ARR >> 1; \
  1752. for (int i = 0; i < offset; ++i) { \
  1753. x[i] = vec_add(x[i], x[offset+i]); \
  1754. } \
  1755. offset >>= 1; \
  1756. for (int i = 0; i < offset; ++i) { \
  1757. x[i] = vec_add(x[i], x[offset+i]); \
  1758. } \
  1759. offset >>= 1; \
  1760. for (int i = 0; i < offset; ++i) { \
  1761. x[i] = vec_add(x[i], x[offset+i]); \
  1762. } \
  1763. res = vec_extract(x[0], 0) + \
  1764. vec_extract(x[0], 1) + \
  1765. vec_extract(x[0], 2) + \
  1766. vec_extract(x[0], 3); \
  1767. }
  1768. #define GGML_F32_VEC GGML_F32x4
  1769. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1770. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1771. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1772. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1773. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1774. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1775. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1776. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1777. // F16 POWER9
  1778. #define GGML_F16_STEP GGML_F32_STEP
  1779. #define GGML_F16_EPR GGML_F32_EPR
  1780. #define GGML_F16_VEC GGML_F32x4
  1781. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1782. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1783. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1784. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1785. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1786. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1787. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1788. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1789. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1790. #define GGML_F16_VEC_STORE(p, r, i) \
  1791. if (i & 0x1) \
  1792. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1793. r[i - GGML_ENDIAN_BYTE(0)]), \
  1794. 0, p - GGML_F16_EPR)
  1795. #elif defined(__wasm_simd128__)
  1796. #define GGML_SIMD
  1797. // F32 WASM
  1798. #define GGML_F32_STEP 16
  1799. #define GGML_F32_EPR 4
  1800. #define GGML_F32x4 v128_t
  1801. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1802. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1803. #define GGML_F32x4_LOAD wasm_v128_load
  1804. #define GGML_F32x4_STORE wasm_v128_store
  1805. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1806. #define GGML_F32x4_ADD wasm_f32x4_add
  1807. #define GGML_F32x4_MUL wasm_f32x4_mul
  1808. #define GGML_F32x4_REDUCE(res, x) \
  1809. { \
  1810. int offset = GGML_F32_ARR >> 1; \
  1811. for (int i = 0; i < offset; ++i) { \
  1812. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1813. } \
  1814. offset >>= 1; \
  1815. for (int i = 0; i < offset; ++i) { \
  1816. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1817. } \
  1818. offset >>= 1; \
  1819. for (int i = 0; i < offset; ++i) { \
  1820. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1821. } \
  1822. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1823. wasm_f32x4_extract_lane(x[0], 1) + \
  1824. wasm_f32x4_extract_lane(x[0], 2) + \
  1825. wasm_f32x4_extract_lane(x[0], 3); \
  1826. }
  1827. #define GGML_F32_VEC GGML_F32x4
  1828. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1829. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1830. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1831. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1832. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1833. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1834. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1835. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1836. // F16 WASM
  1837. #define GGML_F16_STEP 16
  1838. #define GGML_F16_EPR 4
  1839. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1840. float tmp[4];
  1841. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1842. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1843. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1844. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1845. return wasm_v128_load(tmp);
  1846. }
  1847. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1848. float tmp[4];
  1849. wasm_v128_store(tmp, x);
  1850. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1851. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1852. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1853. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1854. }
  1855. #define GGML_F16x4 v128_t
  1856. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1857. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1858. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1859. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1860. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1861. #define GGML_F16x4_ADD wasm_f32x4_add
  1862. #define GGML_F16x4_MUL wasm_f32x4_mul
  1863. #define GGML_F16x4_REDUCE(res, x) \
  1864. { \
  1865. int offset = GGML_F16_ARR >> 1; \
  1866. for (int i = 0; i < offset; ++i) { \
  1867. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1868. } \
  1869. offset >>= 1; \
  1870. for (int i = 0; i < offset; ++i) { \
  1871. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1872. } \
  1873. offset >>= 1; \
  1874. for (int i = 0; i < offset; ++i) { \
  1875. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1876. } \
  1877. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1878. wasm_f32x4_extract_lane(x[0], 1) + \
  1879. wasm_f32x4_extract_lane(x[0], 2) + \
  1880. wasm_f32x4_extract_lane(x[0], 3); \
  1881. }
  1882. #define GGML_F16_VEC GGML_F16x4
  1883. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1884. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1885. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1886. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1887. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1888. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1889. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1890. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1891. #elif defined(__SSE3__)
  1892. #define GGML_SIMD
  1893. // F32 SSE
  1894. #define GGML_F32_STEP 32
  1895. #define GGML_F32_EPR 4
  1896. #define GGML_F32x4 __m128
  1897. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1898. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1899. #define GGML_F32x4_LOAD _mm_loadu_ps
  1900. #define GGML_F32x4_STORE _mm_storeu_ps
  1901. #if defined(__FMA__)
  1902. // TODO: Does this work?
  1903. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1904. #else
  1905. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1906. #endif
  1907. #define GGML_F32x4_ADD _mm_add_ps
  1908. #define GGML_F32x4_MUL _mm_mul_ps
  1909. #define GGML_F32x4_REDUCE(res, x) \
  1910. { \
  1911. int offset = GGML_F32_ARR >> 1; \
  1912. for (int i = 0; i < offset; ++i) { \
  1913. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1914. } \
  1915. offset >>= 1; \
  1916. for (int i = 0; i < offset; ++i) { \
  1917. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1918. } \
  1919. offset >>= 1; \
  1920. for (int i = 0; i < offset; ++i) { \
  1921. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1922. } \
  1923. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1924. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1925. }
  1926. // TODO: is this optimal ?
  1927. #define GGML_F32_VEC GGML_F32x4
  1928. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1929. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1930. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1931. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1932. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1933. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1934. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1935. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1936. // F16 SSE
  1937. #define GGML_F16_STEP 32
  1938. #define GGML_F16_EPR 4
  1939. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1940. float tmp[4];
  1941. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1942. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1943. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1944. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1945. return _mm_loadu_ps(tmp);
  1946. }
  1947. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1948. float arr[4];
  1949. _mm_storeu_ps(arr, y);
  1950. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1951. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1952. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1953. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1954. }
  1955. #define GGML_F32Cx4 __m128
  1956. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1957. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1958. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1959. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1960. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1961. #define GGML_F32Cx4_ADD _mm_add_ps
  1962. #define GGML_F32Cx4_MUL _mm_mul_ps
  1963. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1964. #define GGML_F16_VEC GGML_F32Cx4
  1965. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1966. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1967. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1968. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1969. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1970. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1971. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1972. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1973. #endif
  1974. // GGML_F32_ARR / GGML_F16_ARR
  1975. // number of registers to use per step
  1976. #ifdef GGML_SIMD
  1977. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1978. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1979. #endif
  1980. //
  1981. // fundamental operations
  1982. //
  1983. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1984. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1985. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1986. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1987. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1988. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1989. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1990. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1991. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1992. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1993. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1994. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1995. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1996. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1997. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1998. #ifdef GGML_SIMD
  1999. float sumf = 0.0f;
  2000. const int np = (n & ~(GGML_F32_STEP - 1));
  2001. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2002. GGML_F32_VEC ax[GGML_F32_ARR];
  2003. GGML_F32_VEC ay[GGML_F32_ARR];
  2004. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2005. for (int j = 0; j < GGML_F32_ARR; j++) {
  2006. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2007. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2008. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2009. }
  2010. }
  2011. // reduce sum0..sum3 to sum0
  2012. GGML_F32_VEC_REDUCE(sumf, sum);
  2013. // leftovers
  2014. for (int i = np; i < n; ++i) {
  2015. sumf += x[i]*y[i];
  2016. }
  2017. #else
  2018. // scalar
  2019. ggml_float sumf = 0.0;
  2020. for (int i = 0; i < n; ++i) {
  2021. sumf += (ggml_float)(x[i]*y[i]);
  2022. }
  2023. #endif
  2024. *s = sumf;
  2025. }
  2026. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2027. ggml_float sumf = 0.0;
  2028. #if defined(GGML_SIMD)
  2029. const int np = (n & ~(GGML_F16_STEP - 1));
  2030. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2031. GGML_F16_VEC ax[GGML_F16_ARR];
  2032. GGML_F16_VEC ay[GGML_F16_ARR];
  2033. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2034. for (int j = 0; j < GGML_F16_ARR; j++) {
  2035. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2036. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2037. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2038. }
  2039. }
  2040. // reduce sum0..sum3 to sum0
  2041. GGML_F16_VEC_REDUCE(sumf, sum);
  2042. // leftovers
  2043. for (int i = np; i < n; ++i) {
  2044. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2045. }
  2046. #else
  2047. for (int i = 0; i < n; ++i) {
  2048. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2049. }
  2050. #endif
  2051. *s = sumf;
  2052. }
  2053. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2054. const int qk = QK8_0;
  2055. const int nb = n / qk;
  2056. assert(n % qk == 0);
  2057. const block_q4_0 * restrict x = vx;
  2058. const block_q8_0 * restrict y = vy;
  2059. #if defined(__ARM_NEON)
  2060. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2061. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2062. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2063. for (int i = 0; i < nb; i += 2) {
  2064. const block_q4_0 * restrict x0 = &x[i + 0];
  2065. const block_q4_0 * restrict x1 = &x[i + 1];
  2066. const block_q8_0 * restrict y0 = &y[i + 0];
  2067. const block_q8_0 * restrict y1 = &y[i + 1];
  2068. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2069. const int8x16_t s8b = vdupq_n_s8(0x8);
  2070. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2071. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2072. // 4-bit -> 8-bit
  2073. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2074. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2075. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2076. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2077. // sub 8
  2078. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2079. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2080. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2081. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2082. // load y
  2083. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2084. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2085. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2086. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2087. #if defined(__ARM_FEATURE_DOTPROD)
  2088. // dot product into int32x4_t
  2089. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2090. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2091. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2092. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2093. #else
  2094. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2095. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2096. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2097. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2098. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2099. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2100. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2101. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2102. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2103. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2104. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2105. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2106. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2107. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2108. #endif
  2109. }
  2110. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2111. #elif defined(__AVX2__)
  2112. // Initialize accumulator with zeros
  2113. __m256 acc = _mm256_setzero_ps();
  2114. // Main loop
  2115. for (int i = 0; i < nb; ++i) {
  2116. /* Compute combined scale for the block */
  2117. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2118. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2119. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2120. const __m256i off = _mm256_set1_epi8( 8 );
  2121. bx = _mm256_sub_epi8( bx, off );
  2122. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2123. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2124. /* Multiply q with scale and accumulate */
  2125. acc = _mm256_fmadd_ps( d, q, acc );
  2126. }
  2127. *s = hsum_float_8(acc);
  2128. #elif defined(__AVX__)
  2129. // Initialize accumulator with zeros
  2130. __m256 acc = _mm256_setzero_ps();
  2131. // Main loop
  2132. for (int i = 0; i < nb; ++i) {
  2133. // Compute combined scale for the block
  2134. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2135. const __m128i lowMask = _mm_set1_epi8(0xF);
  2136. const __m128i off = _mm_set1_epi8(8);
  2137. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2138. __m128i bx = _mm_and_si128(lowMask, tmp);
  2139. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2140. bx = _mm_sub_epi8(bx, off);
  2141. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2142. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2143. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2144. bx = _mm_sub_epi8(bx, off);
  2145. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2146. // Convert int32_t to float
  2147. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2148. // Apply the scale, and accumulate
  2149. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2150. }
  2151. *s = hsum_float_8(acc);
  2152. #elif defined(__SSSE3__)
  2153. // set constants
  2154. const __m128i lowMask = _mm_set1_epi8(0xF);
  2155. const __m128i off = _mm_set1_epi8(8);
  2156. // Initialize accumulator with zeros
  2157. __m128 acc_0 = _mm_setzero_ps();
  2158. __m128 acc_1 = _mm_setzero_ps();
  2159. __m128 acc_2 = _mm_setzero_ps();
  2160. __m128 acc_3 = _mm_setzero_ps();
  2161. // First round without accumulation
  2162. {
  2163. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2164. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2165. // Compute combined scale for the block 0 and 1
  2166. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2167. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2168. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2169. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2170. bx_0 = _mm_sub_epi8(bx_0, off);
  2171. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2172. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2173. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2174. bx_1 = _mm_sub_epi8(bx_1, off);
  2175. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2176. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2177. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2178. // Compute combined scale for the block 2 and 3
  2179. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2180. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2181. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2182. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2183. bx_2 = _mm_sub_epi8(bx_2, off);
  2184. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2185. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2186. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2187. bx_3 = _mm_sub_epi8(bx_3, off);
  2188. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2189. // Convert int32_t to float
  2190. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2191. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2192. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2193. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2194. // Apply the scale
  2195. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2196. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2197. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2198. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2199. }
  2200. // Main loop
  2201. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2202. for (int i = 2; i < nb; i+=2) {
  2203. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2204. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2205. // Compute combined scale for the block 0 and 1
  2206. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2207. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2208. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2209. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2210. bx_0 = _mm_sub_epi8(bx_0, off);
  2211. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2212. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2213. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2214. bx_1 = _mm_sub_epi8(bx_1, off);
  2215. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2216. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2217. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2218. // Compute combined scale for the block 2 and 3
  2219. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2220. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2221. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2222. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2223. bx_2 = _mm_sub_epi8(bx_2, off);
  2224. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2225. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2226. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2227. bx_3 = _mm_sub_epi8(bx_3, off);
  2228. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2229. // Convert int32_t to float
  2230. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2231. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2232. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2233. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2234. // Apply the scale
  2235. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2236. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2237. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2238. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2239. // Acummulate
  2240. acc_0 = _mm_add_ps(p0_d, acc_0);
  2241. acc_1 = _mm_add_ps(p1_d, acc_1);
  2242. acc_2 = _mm_add_ps(p2_d, acc_2);
  2243. acc_3 = _mm_add_ps(p3_d, acc_3);
  2244. }
  2245. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2246. #elif defined(__riscv_v_intrinsic)
  2247. float sumf = 0.0;
  2248. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2249. for (int i = 0; i < nb; i++) {
  2250. // load elements
  2251. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  2252. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  2253. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  2254. // mask and store lower part of x, and then upper part
  2255. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2256. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2257. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2258. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2259. // subtract offset
  2260. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  2261. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  2262. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2263. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2264. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2265. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2266. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2267. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2268. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2269. }
  2270. *s = sumf;
  2271. #else
  2272. // scalar
  2273. float sumf = 0.0;
  2274. for (int i = 0; i < nb; i++) {
  2275. int sumi = 0;
  2276. for (int j = 0; j < qk/2; ++j) {
  2277. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2278. const int v1 = (x[i].qs[j] >> 4) - 8;
  2279. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2280. }
  2281. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2282. }
  2283. *s = sumf;
  2284. #endif
  2285. }
  2286. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2287. const int qk = QK8_1;
  2288. const int nb = n / qk;
  2289. assert(n % qk == 0);
  2290. const block_q4_1 * restrict x = vx;
  2291. const block_q8_1 * restrict y = vy;
  2292. // TODO: add WASM SIMD
  2293. #if defined(__ARM_NEON)
  2294. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2295. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2296. float summs = 0;
  2297. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2298. for (int i = 0; i < nb; i += 2) {
  2299. const block_q4_1 * restrict x0 = &x[i + 0];
  2300. const block_q4_1 * restrict x1 = &x[i + 1];
  2301. const block_q8_1 * restrict y0 = &y[i + 0];
  2302. const block_q8_1 * restrict y1 = &y[i + 1];
  2303. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2304. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2305. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2306. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2307. // 4-bit -> 8-bit
  2308. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2309. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2310. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2311. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2312. // load y
  2313. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2314. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2315. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2316. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2317. #if defined(__ARM_FEATURE_DOTPROD)
  2318. // dot product into int32x4_t
  2319. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2320. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2321. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2322. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2323. #else
  2324. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2325. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2326. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2327. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2328. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2329. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2330. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2331. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2332. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2333. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2334. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2335. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2336. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2337. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2338. #endif
  2339. }
  2340. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2341. #elif defined(__AVX2__) || defined(__AVX__)
  2342. // Initialize accumulator with zeros
  2343. __m256 acc = _mm256_setzero_ps();
  2344. float summs = 0;
  2345. // Main loop
  2346. for (int i = 0; i < nb; ++i) {
  2347. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2348. const float d1 = y[i].d;
  2349. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2350. const __m256 d0v = _mm256_set1_ps( d0 );
  2351. const __m256 d1v = _mm256_set1_ps( d1 );
  2352. // Compute combined scales
  2353. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2354. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2355. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2356. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2357. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2358. // Accumulate d0*d1*x*y
  2359. #if defined(__AVX2__)
  2360. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2361. #else
  2362. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2363. #endif
  2364. }
  2365. *s = hsum_float_8(acc) + summs;
  2366. #elif defined(__riscv_v_intrinsic)
  2367. float sumf = 0.0;
  2368. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2369. for (int i = 0; i < nb; i++) {
  2370. // load elements
  2371. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  2372. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  2373. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  2374. // mask and store lower part of x, and then upper part
  2375. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2376. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2377. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2378. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2379. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2380. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2381. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2382. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2383. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2384. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2385. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2386. }
  2387. *s = sumf;
  2388. #else
  2389. // scalar
  2390. float sumf = 0.0;
  2391. for (int i = 0; i < nb; i++) {
  2392. int sumi = 0;
  2393. for (int j = 0; j < qk/2; ++j) {
  2394. const int v0 = (x[i].qs[j] & 0x0F);
  2395. const int v1 = (x[i].qs[j] >> 4);
  2396. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2397. }
  2398. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2399. }
  2400. *s = sumf;
  2401. #endif
  2402. }
  2403. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2404. const int qk = QK8_0;
  2405. const int nb = n / qk;
  2406. assert(n % qk == 0);
  2407. assert(qk == QK5_0);
  2408. const block_q5_0 * restrict x = vx;
  2409. const block_q8_0 * restrict y = vy;
  2410. #if defined(__ARM_NEON)
  2411. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2412. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2413. uint32_t qh0;
  2414. uint32_t qh1;
  2415. uint64_t tmp0[4];
  2416. uint64_t tmp1[4];
  2417. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2418. for (int i = 0; i < nb; i += 2) {
  2419. const block_q5_0 * restrict x0 = &x[i];
  2420. const block_q5_0 * restrict x1 = &x[i + 1];
  2421. const block_q8_0 * restrict y0 = &y[i];
  2422. const block_q8_0 * restrict y1 = &y[i + 1];
  2423. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2424. // extract the 5th bit via lookup table ((!b) << 4)
  2425. memcpy(&qh0, x0->qh, sizeof(qh0));
  2426. memcpy(&qh1, x1->qh, sizeof(qh1));
  2427. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2428. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2429. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2430. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2431. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2432. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2433. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2434. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2435. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2436. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2437. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2438. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2439. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2440. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2441. // 4-bit -> 8-bit
  2442. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2443. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2444. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2445. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2446. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2447. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2448. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2449. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2450. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2451. // load y
  2452. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2453. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2454. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2455. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2456. #if defined(__ARM_FEATURE_DOTPROD)
  2457. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2458. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2459. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2460. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2461. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2462. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2463. #else
  2464. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2465. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2466. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2467. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2468. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2469. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2470. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2471. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2472. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2473. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2474. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2475. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2476. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2477. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2478. #endif
  2479. }
  2480. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2481. #elif defined(__wasm_simd128__)
  2482. v128_t sumv = wasm_f32x4_splat(0.0f);
  2483. uint32_t qh;
  2484. uint64_t tmp[4];
  2485. // TODO: check if unrolling this is better
  2486. for (int i = 0; i < nb; ++i) {
  2487. const block_q5_0 * restrict x0 = &x[i];
  2488. const block_q8_0 * restrict y0 = &y[i];
  2489. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2490. // extract the 5th bit
  2491. memcpy(&qh, x0->qh, sizeof(qh));
  2492. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2493. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2494. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2495. tmp[3] = table_b2b_1[(qh >> 24) ];
  2496. const v128_t qhl = wasm_v128_load(tmp + 0);
  2497. const v128_t qhh = wasm_v128_load(tmp + 2);
  2498. const v128_t v0 = wasm_v128_load(x0->qs);
  2499. // 4-bit -> 8-bit
  2500. const v128_t v0l = wasm_v128_and (v0, m4b);
  2501. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2502. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2503. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2504. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2505. // load y
  2506. const v128_t v1l = wasm_v128_load(y0->qs);
  2507. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2508. // int8x16 -> int16x8
  2509. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2510. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2511. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2512. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2513. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2514. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2515. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2516. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2517. // dot product
  2518. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2519. wasm_i32x4_add(
  2520. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2521. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2522. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2523. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2524. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2525. }
  2526. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2527. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2528. #elif defined(__AVX2__)
  2529. // Initialize accumulator with zeros
  2530. __m256 acc = _mm256_setzero_ps();
  2531. // Main loop
  2532. for (int i = 0; i < nb; i++) {
  2533. /* Compute combined scale for the block */
  2534. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2535. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2536. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2537. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2538. bx = _mm256_or_si256(bx, bxhi);
  2539. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2540. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2541. /* Multiply q with scale and accumulate */
  2542. acc = _mm256_fmadd_ps(d, q, acc);
  2543. }
  2544. *s = hsum_float_8(acc);
  2545. #elif defined(__AVX__)
  2546. // Initialize accumulator with zeros
  2547. __m256 acc = _mm256_setzero_ps();
  2548. __m128i mask = _mm_set1_epi8((char)0xF0);
  2549. // Main loop
  2550. for (int i = 0; i < nb; i++) {
  2551. /* Compute combined scale for the block */
  2552. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2553. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2554. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2555. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2556. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2557. bxhil = _mm_andnot_si128(bxhil, mask);
  2558. bxhih = _mm_andnot_si128(bxhih, mask);
  2559. __m128i bxl = _mm256_castsi256_si128(bx);
  2560. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2561. bxl = _mm_or_si128(bxl, bxhil);
  2562. bxh = _mm_or_si128(bxh, bxhih);
  2563. bx = MM256_SET_M128I(bxh, bxl);
  2564. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2565. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2566. /* Multiply q with scale and accumulate */
  2567. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2568. }
  2569. *s = hsum_float_8(acc);
  2570. #elif defined(__riscv_v_intrinsic)
  2571. float sumf = 0.0;
  2572. uint32_t qh;
  2573. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2574. // These tempory registers are for masking and shift operations
  2575. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  2576. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  2577. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  2578. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  2579. for (int i = 0; i < nb; i++) {
  2580. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2581. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2582. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  2583. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  2584. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  2585. // ((qh & (1u << (j + 16))) >> (j + 12));
  2586. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  2587. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  2588. // narrowing
  2589. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  2590. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  2591. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  2592. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  2593. // load
  2594. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  2595. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  2596. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  2597. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2598. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2599. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  2600. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  2601. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2602. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2603. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  2604. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  2605. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2606. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2607. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2608. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2609. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2610. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2611. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2612. }
  2613. *s = sumf;
  2614. #else
  2615. // scalar
  2616. float sumf = 0.0;
  2617. for (int i = 0; i < nb; i++) {
  2618. uint32_t qh;
  2619. memcpy(&qh, x[i].qh, sizeof(qh));
  2620. int sumi = 0;
  2621. for (int j = 0; j < qk/2; ++j) {
  2622. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2623. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2624. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2625. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2626. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2627. }
  2628. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2629. }
  2630. *s = sumf;
  2631. #endif
  2632. }
  2633. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2634. const int qk = QK8_1;
  2635. const int nb = n / qk;
  2636. assert(n % qk == 0);
  2637. assert(qk == QK5_1);
  2638. const block_q5_1 * restrict x = vx;
  2639. const block_q8_1 * restrict y = vy;
  2640. #if defined(__ARM_NEON)
  2641. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2642. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2643. float summs0 = 0.0f;
  2644. float summs1 = 0.0f;
  2645. uint32_t qh0;
  2646. uint32_t qh1;
  2647. uint64_t tmp0[4];
  2648. uint64_t tmp1[4];
  2649. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2650. for (int i = 0; i < nb; i += 2) {
  2651. const block_q5_1 * restrict x0 = &x[i];
  2652. const block_q5_1 * restrict x1 = &x[i + 1];
  2653. const block_q8_1 * restrict y0 = &y[i];
  2654. const block_q8_1 * restrict y1 = &y[i + 1];
  2655. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2656. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2657. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2658. // extract the 5th bit via lookup table ((b) << 4)
  2659. memcpy(&qh0, x0->qh, sizeof(qh0));
  2660. memcpy(&qh1, x1->qh, sizeof(qh1));
  2661. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2662. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2663. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2664. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2665. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2666. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2667. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2668. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2669. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2670. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2671. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2672. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2673. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2674. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2675. // 4-bit -> 8-bit
  2676. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2677. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2678. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2679. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2680. // add high bit
  2681. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2682. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2683. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2684. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2685. // load y
  2686. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2687. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2688. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2689. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2690. #if defined(__ARM_FEATURE_DOTPROD)
  2691. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2692. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2693. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2694. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2695. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2696. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2697. #else
  2698. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2699. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2700. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2701. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2702. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2703. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2704. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2705. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2706. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2707. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2708. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2709. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2710. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2711. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2712. #endif
  2713. }
  2714. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2715. #elif defined(__wasm_simd128__)
  2716. v128_t sumv = wasm_f32x4_splat(0.0f);
  2717. float summs = 0.0f;
  2718. uint32_t qh;
  2719. uint64_t tmp[4];
  2720. // TODO: check if unrolling this is better
  2721. for (int i = 0; i < nb; ++i) {
  2722. const block_q5_1 * restrict x0 = &x[i];
  2723. const block_q8_1 * restrict y0 = &y[i];
  2724. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2725. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2726. // extract the 5th bit
  2727. memcpy(&qh, x0->qh, sizeof(qh));
  2728. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2729. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2730. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2731. tmp[3] = table_b2b_0[(qh >> 24) ];
  2732. const v128_t qhl = wasm_v128_load(tmp + 0);
  2733. const v128_t qhh = wasm_v128_load(tmp + 2);
  2734. const v128_t v0 = wasm_v128_load(x0->qs);
  2735. // 4-bit -> 8-bit
  2736. const v128_t v0l = wasm_v128_and (v0, m4b);
  2737. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2738. // add high bit
  2739. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2740. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2741. // load y
  2742. const v128_t v1l = wasm_v128_load(y0->qs);
  2743. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2744. // int8x16 -> int16x8
  2745. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2746. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2747. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2748. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2749. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2750. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2751. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2752. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2753. // dot product
  2754. sumv = wasm_f32x4_add(sumv,
  2755. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2756. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2757. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2758. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2759. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2760. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2761. }
  2762. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2763. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2764. #elif defined(__AVX2__)
  2765. // Initialize accumulator with zeros
  2766. __m256 acc = _mm256_setzero_ps();
  2767. float summs = 0.0f;
  2768. // Main loop
  2769. for (int i = 0; i < nb; i++) {
  2770. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2771. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2772. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2773. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2774. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2775. bx = _mm256_or_si256(bx, bxhi);
  2776. const __m256 dy = _mm256_set1_ps(y[i].d);
  2777. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2778. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2779. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2780. }
  2781. *s = hsum_float_8(acc) + summs;
  2782. #elif defined(__AVX__)
  2783. // Initialize accumulator with zeros
  2784. __m256 acc = _mm256_setzero_ps();
  2785. __m128i mask = _mm_set1_epi8(0x10);
  2786. float summs = 0.0f;
  2787. // Main loop
  2788. for (int i = 0; i < nb; i++) {
  2789. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2790. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2791. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2792. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2793. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2794. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2795. bxhil = _mm_and_si128(bxhil, mask);
  2796. bxhih = _mm_and_si128(bxhih, mask);
  2797. __m128i bxl = _mm256_castsi256_si128(bx);
  2798. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2799. bxl = _mm_or_si128(bxl, bxhil);
  2800. bxh = _mm_or_si128(bxh, bxhih);
  2801. bx = MM256_SET_M128I(bxh, bxl);
  2802. const __m256 dy = _mm256_set1_ps(y[i].d);
  2803. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2804. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2805. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2806. }
  2807. *s = hsum_float_8(acc) + summs;
  2808. #elif defined(__riscv_v_intrinsic)
  2809. float sumf = 0.0;
  2810. uint32_t qh;
  2811. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2812. // temporary registers for shift operations
  2813. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  2814. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  2815. for (int i = 0; i < nb; i++) {
  2816. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2817. // load qh
  2818. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  2819. // ((qh >> (j + 0)) << 4) & 0x10;
  2820. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  2821. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  2822. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  2823. // ((qh >> (j + 12)) ) & 0x10;
  2824. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  2825. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  2826. // narrowing
  2827. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  2828. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  2829. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  2830. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  2831. // load
  2832. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  2833. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  2834. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  2835. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2836. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2837. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  2838. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  2839. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2840. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2841. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2842. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2843. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2844. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2845. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2846. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2847. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2848. }
  2849. *s = sumf;
  2850. #else
  2851. // scalar
  2852. float sumf = 0.0;
  2853. for (int i = 0; i < nb; i++) {
  2854. uint32_t qh;
  2855. memcpy(&qh, x[i].qh, sizeof(qh));
  2856. int sumi = 0;
  2857. for (int j = 0; j < qk/2; ++j) {
  2858. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2859. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2860. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2861. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2862. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2863. }
  2864. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2865. }
  2866. *s = sumf;
  2867. #endif
  2868. }
  2869. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2870. const int qk = QK8_0;
  2871. const int nb = n / qk;
  2872. assert(n % qk == 0);
  2873. const block_q8_0 * restrict x = vx;
  2874. const block_q8_0 * restrict y = vy;
  2875. #if defined(__ARM_NEON)
  2876. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2877. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2878. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2879. for (int i = 0; i < nb; i += 2) {
  2880. const block_q8_0 * restrict x0 = &x[i + 0];
  2881. const block_q8_0 * restrict x1 = &x[i + 1];
  2882. const block_q8_0 * restrict y0 = &y[i + 0];
  2883. const block_q8_0 * restrict y1 = &y[i + 1];
  2884. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2885. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2886. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2887. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2888. // load y
  2889. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2890. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2891. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2892. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2893. #if defined(__ARM_FEATURE_DOTPROD)
  2894. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2895. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2896. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2897. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2898. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2899. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2900. #else
  2901. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2902. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2903. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2904. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2905. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2906. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2907. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2908. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2909. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2910. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2911. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2912. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2913. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2914. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2915. #endif
  2916. }
  2917. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2918. #elif defined(__AVX2__) || defined(__AVX__)
  2919. // Initialize accumulator with zeros
  2920. __m256 acc = _mm256_setzero_ps();
  2921. // Main loop
  2922. for (int i = 0; i < nb; ++i) {
  2923. // Compute combined scale for the block
  2924. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2925. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2926. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2927. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2928. // Multiply q with scale and accumulate
  2929. #if defined(__AVX2__)
  2930. acc = _mm256_fmadd_ps( d, q, acc );
  2931. #else
  2932. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2933. #endif
  2934. }
  2935. *s = hsum_float_8(acc);
  2936. #elif defined(__riscv_v_intrinsic)
  2937. float sumf = 0.0;
  2938. size_t vl = __riscv_vsetvl_e8m1(qk);
  2939. for (int i = 0; i < nb; i++) {
  2940. // load elements
  2941. vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
  2942. vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2943. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
  2944. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2945. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2946. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2947. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2948. }
  2949. *s = sumf;
  2950. #else
  2951. // scalar
  2952. float sumf = 0.0;
  2953. for (int i = 0; i < nb; i++) {
  2954. int sumi = 0;
  2955. for (int j = 0; j < qk; j++) {
  2956. sumi += x[i].qs[j]*y[i].qs[j];
  2957. }
  2958. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2959. }
  2960. *s = sumf;
  2961. #endif
  2962. }
  2963. // compute GGML_VEC_DOT_UNROLL dot products at once
  2964. // xs - x row stride in bytes
  2965. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2966. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2967. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2968. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2969. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2970. }
  2971. #if defined(GGML_SIMD)
  2972. const int np = (n & ~(GGML_F16_STEP - 1));
  2973. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2974. GGML_F16_VEC ax[GGML_F16_ARR];
  2975. GGML_F16_VEC ay[GGML_F16_ARR];
  2976. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2977. for (int j = 0; j < GGML_F16_ARR; j++) {
  2978. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2979. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2980. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2981. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2982. }
  2983. }
  2984. }
  2985. // reduce sum0..sum3 to sum0
  2986. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2987. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2988. }
  2989. // leftovers
  2990. for (int i = np; i < n; ++i) {
  2991. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2992. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2993. }
  2994. }
  2995. #else
  2996. for (int i = 0; i < n; ++i) {
  2997. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2998. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2999. }
  3000. }
  3001. #endif
  3002. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  3003. s[i] = sumf[i];
  3004. }
  3005. }
  3006. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  3007. #if defined(GGML_SIMD)
  3008. const int np = (n & ~(GGML_F32_STEP - 1));
  3009. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  3010. GGML_F32_VEC ax[GGML_F32_ARR];
  3011. GGML_F32_VEC ay[GGML_F32_ARR];
  3012. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3013. for (int j = 0; j < GGML_F32_ARR; j++) {
  3014. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  3015. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3016. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  3017. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3018. }
  3019. }
  3020. // leftovers
  3021. for (int i = np; i < n; ++i) {
  3022. y[i] += x[i]*v;
  3023. }
  3024. #else
  3025. // scalar
  3026. for (int i = 0; i < n; ++i) {
  3027. y[i] += x[i]*v;
  3028. }
  3029. #endif
  3030. }
  3031. // xs and vs are byte strides of x and v
  3032. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  3033. const float * restrict x[GGML_VEC_MAD_UNROLL];
  3034. const float * restrict v[GGML_VEC_MAD_UNROLL];
  3035. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  3036. x[i] = (const float *) ((const char *) xv + i*xs);
  3037. v[i] = (const float *) ((const char *) vv + i*vs);
  3038. }
  3039. #if defined(GGML_SIMD)
  3040. const int np = (n & ~(GGML_F32_STEP - 1));
  3041. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  3042. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3043. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  3044. }
  3045. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  3046. GGML_F32_VEC ay[GGML_F32_ARR];
  3047. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3048. for (int j = 0; j < GGML_F32_ARR; j++) {
  3049. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3050. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3051. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  3052. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  3053. }
  3054. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3055. }
  3056. }
  3057. // leftovers
  3058. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3059. for (int i = np; i < n; ++i) {
  3060. y[i] += x[k][i]*v[k][0];
  3061. }
  3062. }
  3063. #else
  3064. // scalar
  3065. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3066. for (int i = 0; i < n; ++i) {
  3067. y[i] += x[k][i]*v[k][0];
  3068. }
  3069. }
  3070. #endif
  3071. }
  3072. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  3073. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  3074. #if defined(GGML_USE_ACCELERATE)
  3075. vDSP_vsmul(y, 1, &v, y, 1, n);
  3076. #elif defined(GGML_SIMD)
  3077. const int np = (n & ~(GGML_F32_STEP - 1));
  3078. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  3079. GGML_F32_VEC ay[GGML_F32_ARR];
  3080. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3081. for (int j = 0; j < GGML_F32_ARR; j++) {
  3082. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3083. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  3084. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3085. }
  3086. }
  3087. // leftovers
  3088. for (int i = np; i < n; ++i) {
  3089. y[i] *= v;
  3090. }
  3091. #else
  3092. // scalar
  3093. for (int i = 0; i < n; ++i) {
  3094. y[i] *= v;
  3095. }
  3096. #endif
  3097. }
  3098. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3099. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3100. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3101. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  3102. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3103. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3104. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3105. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  3106. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  3107. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3108. static const float GELU_COEF_A = 0.044715f;
  3109. static const float GELU_QUICK_COEF = -1.702f;
  3110. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3111. inline static float ggml_gelu_f32(float x) {
  3112. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3113. }
  3114. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3115. const uint16_t * i16 = (const uint16_t *) x;
  3116. for (int i = 0; i < n; ++i) {
  3117. y[i] = table_gelu_f16[i16[i]];
  3118. }
  3119. }
  3120. #ifdef GGML_GELU_FP16
  3121. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3122. uint16_t t;
  3123. for (int i = 0; i < n; ++i) {
  3124. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3125. memcpy(&t, &fp16, sizeof(uint16_t));
  3126. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3127. }
  3128. }
  3129. #else
  3130. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3131. for (int i = 0; i < n; ++i) {
  3132. y[i] = ggml_gelu_f32(x[i]);
  3133. }
  3134. }
  3135. #endif
  3136. inline static float ggml_gelu_quick_f32(float x) {
  3137. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  3138. }
  3139. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3140. // const uint16_t * i16 = (const uint16_t *) x;
  3141. // for (int i = 0; i < n; ++i) {
  3142. // y[i] = table_gelu_quick_f16[i16[i]];
  3143. // }
  3144. //}
  3145. #ifdef GGML_GELU_QUICK_FP16
  3146. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3147. uint16_t t;
  3148. for (int i = 0; i < n; ++i) {
  3149. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3150. memcpy(&t, &fp16, sizeof(uint16_t));
  3151. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  3152. }
  3153. }
  3154. #else
  3155. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3156. for (int i = 0; i < n; ++i) {
  3157. y[i] = ggml_gelu_quick_f32(x[i]);
  3158. }
  3159. }
  3160. #endif
  3161. // Sigmoid Linear Unit (SiLU) function
  3162. inline static float ggml_silu_f32(float x) {
  3163. return x/(1.0f + expf(-x));
  3164. }
  3165. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3166. // const uint16_t * i16 = (const uint16_t *) x;
  3167. // for (int i = 0; i < n; ++i) {
  3168. // y[i] = table_silu_f16[i16[i]];
  3169. // }
  3170. //}
  3171. #ifdef GGML_SILU_FP16
  3172. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3173. uint16_t t;
  3174. for (int i = 0; i < n; ++i) {
  3175. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3176. memcpy(&t, &fp16, sizeof(uint16_t));
  3177. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3178. }
  3179. }
  3180. #else
  3181. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3182. for (int i = 0; i < n; ++i) {
  3183. y[i] = ggml_silu_f32(x[i]);
  3184. }
  3185. }
  3186. #endif
  3187. inline static float ggml_silu_backward_f32(float x, float dy) {
  3188. const float s = 1.0f/(1.0f + expf(-x));
  3189. return dy*s*(1.0f + x*(1.0f - s));
  3190. }
  3191. #ifdef GGML_SILU_FP16
  3192. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3193. for (int i = 0; i < n; ++i) {
  3194. // we did not use x[i] to compute forward silu but its f16 equivalent
  3195. // take derivative at f16 of x[i]:
  3196. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3197. float usedx = GGML_FP16_TO_FP32(fp16);
  3198. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  3199. }
  3200. }
  3201. #else
  3202. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3203. for (int i = 0; i < n; ++i) {
  3204. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  3205. }
  3206. }
  3207. #endif
  3208. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3209. #ifndef GGML_USE_ACCELERATE
  3210. ggml_float sum = 0.0;
  3211. for (int i = 0; i < n; ++i) {
  3212. sum += (ggml_float)x[i];
  3213. }
  3214. *s = sum;
  3215. #else
  3216. vDSP_sve(x, 1, s, n);
  3217. #endif
  3218. }
  3219. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3220. ggml_float sum = 0.0;
  3221. for (int i = 0; i < n; ++i) {
  3222. sum += (ggml_float)x[i];
  3223. }
  3224. *s = sum;
  3225. }
  3226. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3227. float sum = 0.0f;
  3228. for (int i = 0; i < n; ++i) {
  3229. sum += GGML_FP16_TO_FP32(x[i]);
  3230. }
  3231. *s = sum;
  3232. }
  3233. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3234. #ifndef GGML_USE_ACCELERATE
  3235. float max = -INFINITY;
  3236. for (int i = 0; i < n; ++i) {
  3237. max = MAX(max, x[i]);
  3238. }
  3239. *s = max;
  3240. #else
  3241. vDSP_maxv(x, 1, s, n);
  3242. #endif
  3243. }
  3244. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3245. ggml_vec_norm_f32(n, s, x);
  3246. *s = 1.f/(*s);
  3247. }
  3248. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3249. float max = -INFINITY;
  3250. int idx = 0;
  3251. for (int i = 0; i < n; ++i) {
  3252. max = MAX(max, x[i]);
  3253. if (max == x[i]) { idx = i; }
  3254. }
  3255. *s = idx;
  3256. }
  3257. //
  3258. // data types
  3259. //
  3260. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3261. "NONE",
  3262. "DUP",
  3263. "ADD",
  3264. "ADD1",
  3265. "ACC",
  3266. "SUB",
  3267. "MUL",
  3268. "DIV",
  3269. "SQR",
  3270. "SQRT",
  3271. "LOG",
  3272. "SUM",
  3273. "SUM_ROWS",
  3274. "MEAN",
  3275. "ARGMAX",
  3276. "REPEAT",
  3277. "REPEAT_BACK",
  3278. "CONCAT",
  3279. "SILU_BACK",
  3280. "NORM",
  3281. "RMS_NORM",
  3282. "RMS_NORM_BACK",
  3283. "GROUP_NORM",
  3284. "MUL_MAT",
  3285. "OUT_PROD",
  3286. "SCALE",
  3287. "SET",
  3288. "CPY",
  3289. "CONT",
  3290. "RESHAPE",
  3291. "VIEW",
  3292. "PERMUTE",
  3293. "TRANSPOSE",
  3294. "GET_ROWS",
  3295. "GET_ROWS_BACK",
  3296. "DIAG",
  3297. "DIAG_MASK_INF",
  3298. "DIAG_MASK_ZERO",
  3299. "SOFT_MAX",
  3300. "SOFT_MAX_BACK",
  3301. "ROPE",
  3302. "ROPE_BACK",
  3303. "ALIBI",
  3304. "CLAMP",
  3305. "CONV_1D",
  3306. "CONV_2D",
  3307. "CONV_TRANSPOSE_2D",
  3308. "POOL_1D",
  3309. "POOL_2D",
  3310. "UPSCALE",
  3311. "FLASH_ATTN",
  3312. "FLASH_FF",
  3313. "FLASH_ATTN_BACK",
  3314. "WIN_PART",
  3315. "WIN_UNPART",
  3316. "GET_REL_POS",
  3317. "ADD_REL_POS",
  3318. "UNARY",
  3319. "MAP_UNARY",
  3320. "MAP_BINARY",
  3321. "MAP_CUSTOM1_F32",
  3322. "MAP_CUSTOM2_F32",
  3323. "MAP_CUSTOM3_F32",
  3324. "MAP_CUSTOM1",
  3325. "MAP_CUSTOM2",
  3326. "MAP_CUSTOM3",
  3327. "CROSS_ENTROPY_LOSS",
  3328. "CROSS_ENTROPY_LOSS_BACK",
  3329. };
  3330. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3331. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3332. "none",
  3333. "x",
  3334. "x+y",
  3335. "x+y",
  3336. "view(x,nb,offset)+=y->x",
  3337. "x-y",
  3338. "x*y",
  3339. "x/y",
  3340. "x^2",
  3341. "√x",
  3342. "log(x)",
  3343. "Σx",
  3344. "Σx_k",
  3345. "Σx/n",
  3346. "argmax(x)",
  3347. "repeat(x)",
  3348. "repeat_back(x)",
  3349. "concat(x, y)",
  3350. "silu_back(x)",
  3351. "norm(x)",
  3352. "rms_norm(x)",
  3353. "rms_norm_back(x)",
  3354. "group_norm(x)",
  3355. "X*Y",
  3356. "X*Y",
  3357. "x*v",
  3358. "y-\\>view(x)",
  3359. "x-\\>y",
  3360. "cont(x)",
  3361. "reshape(x)",
  3362. "view(x)",
  3363. "permute(x)",
  3364. "transpose(x)",
  3365. "get_rows(x)",
  3366. "get_rows_back(x)",
  3367. "diag(x)",
  3368. "diag_mask_inf(x)",
  3369. "diag_mask_zero(x)",
  3370. "soft_max(x)",
  3371. "soft_max_back(x)",
  3372. "rope(x)",
  3373. "rope_back(x)",
  3374. "alibi(x)",
  3375. "clamp(x)",
  3376. "conv_1d(x)",
  3377. "conv_2d(x)",
  3378. "conv_transpose_2d(x)",
  3379. "pool_1d(x)",
  3380. "pool_2d(x)",
  3381. "upscale(x)",
  3382. "flash_attn(x)",
  3383. "flash_ff(x)",
  3384. "flash_attn_back(x)",
  3385. "win_part(x)",
  3386. "win_unpart(x)",
  3387. "get_rel_pos(x)",
  3388. "add_rel_pos(x)",
  3389. "unary(x)",
  3390. "f(x)",
  3391. "f(x,y)",
  3392. "custom_f32(x)",
  3393. "custom_f32(x,y)",
  3394. "custom_f32(x,y,z)",
  3395. "custom(x)",
  3396. "custom(x,y)",
  3397. "custom(x,y,z)",
  3398. "cross_entropy_loss(x,y)",
  3399. "cross_entropy_loss_back(x,y)",
  3400. };
  3401. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3402. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3403. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3404. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3405. // WARN:
  3406. // Mis-confguration can lead to problem that's hard to reason about:
  3407. // * At best it crash or talks nosense.
  3408. // * At worst it talks slightly difference but hard to perceive.
  3409. //
  3410. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3411. // Take care about compile options (e.g., GGML_USE_xxx).
  3412. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3413. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3414. static void ggml_setup_op_has_task_pass(void) {
  3415. { // INIT
  3416. bool * p = GGML_OP_HAS_INIT;
  3417. p[GGML_OP_ACC ] = true;
  3418. p[GGML_OP_MUL_MAT ] = true;
  3419. p[GGML_OP_OUT_PROD ] = true;
  3420. p[GGML_OP_SET ] = true;
  3421. p[GGML_OP_GET_ROWS_BACK ] = true;
  3422. p[GGML_OP_DIAG_MASK_INF ] = true;
  3423. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3424. p[GGML_OP_CONV_1D ] = true;
  3425. p[GGML_OP_CONV_2D ] = true;
  3426. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3427. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3428. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3429. p[GGML_OP_ADD_REL_POS ] = true;
  3430. }
  3431. { // FINALIZE
  3432. bool * p = GGML_OP_HAS_FINALIZE;
  3433. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3434. }
  3435. }
  3436. //
  3437. // ggml context
  3438. //
  3439. struct ggml_context {
  3440. size_t mem_size;
  3441. void * mem_buffer;
  3442. bool mem_buffer_owned;
  3443. bool no_alloc;
  3444. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3445. int n_objects;
  3446. struct ggml_object * objects_begin;
  3447. struct ggml_object * objects_end;
  3448. struct ggml_scratch scratch;
  3449. struct ggml_scratch scratch_save;
  3450. };
  3451. struct ggml_context_container {
  3452. bool used;
  3453. struct ggml_context context;
  3454. };
  3455. //
  3456. // NUMA support
  3457. //
  3458. #define GGML_NUMA_MAX_NODES 8
  3459. #define GGML_NUMA_MAX_CPUS 512
  3460. struct ggml_numa_node {
  3461. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3462. uint32_t n_cpus;
  3463. };
  3464. struct ggml_numa_nodes {
  3465. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3466. uint32_t n_nodes;
  3467. uint32_t total_cpus; // hardware threads on system
  3468. };
  3469. //
  3470. // ggml state
  3471. //
  3472. struct ggml_state {
  3473. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3474. struct ggml_numa_nodes numa;
  3475. };
  3476. // global state
  3477. static struct ggml_state g_state;
  3478. static atomic_int g_state_barrier = 0;
  3479. // barrier via spin lock
  3480. inline static void ggml_critical_section_start(void) {
  3481. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3482. while (processing > 0) {
  3483. // wait for other threads to finish
  3484. atomic_fetch_sub(&g_state_barrier, 1);
  3485. sched_yield(); // TODO: reconsider this
  3486. processing = atomic_fetch_add(&g_state_barrier, 1);
  3487. }
  3488. }
  3489. // TODO: make this somehow automatically executed
  3490. // some sort of "sentry" mechanism
  3491. inline static void ggml_critical_section_end(void) {
  3492. atomic_fetch_sub(&g_state_barrier, 1);
  3493. }
  3494. void ggml_numa_init(void) {
  3495. if (g_state.numa.n_nodes > 0) {
  3496. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3497. return;
  3498. }
  3499. #ifdef __linux__
  3500. struct stat st;
  3501. char path[256];
  3502. int rv;
  3503. // enumerate nodes
  3504. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3505. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3506. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3507. if (stat(path, &st) != 0) { break; }
  3508. ++g_state.numa.n_nodes;
  3509. }
  3510. // enumerate CPUs
  3511. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3512. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3513. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3514. if (stat(path, &st) != 0) { break; }
  3515. ++g_state.numa.total_cpus;
  3516. }
  3517. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3518. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3519. g_state.numa.n_nodes = 0;
  3520. return;
  3521. }
  3522. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3523. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3524. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3525. node->n_cpus = 0;
  3526. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3527. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3528. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3529. if (stat(path, &st) == 0) {
  3530. node->cpus[node->n_cpus++] = c;
  3531. GGML_PRINT_DEBUG(" %u", c);
  3532. }
  3533. }
  3534. GGML_PRINT_DEBUG("\n");
  3535. }
  3536. if (ggml_is_numa()) {
  3537. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3538. if (fptr != NULL) {
  3539. char buf[42];
  3540. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3541. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3542. }
  3543. fclose(fptr);
  3544. }
  3545. }
  3546. #else
  3547. // TODO
  3548. #endif
  3549. }
  3550. bool ggml_is_numa(void) {
  3551. return g_state.numa.n_nodes > 1;
  3552. }
  3553. ////////////////////////////////////////////////////////////////////////////////
  3554. void ggml_print_object(const struct ggml_object * obj) {
  3555. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3556. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3557. }
  3558. void ggml_print_objects(const struct ggml_context * ctx) {
  3559. struct ggml_object * obj = ctx->objects_begin;
  3560. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3561. while (obj != NULL) {
  3562. ggml_print_object(obj);
  3563. obj = obj->next;
  3564. }
  3565. GGML_PRINT("%s: --- end ---\n", __func__);
  3566. }
  3567. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3568. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3569. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3570. }
  3571. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3572. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3573. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3574. }
  3575. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3576. size_t nbytes;
  3577. size_t blck_size = ggml_blck_size(tensor->type);
  3578. if (blck_size == 1) {
  3579. nbytes = ggml_type_size(tensor->type);
  3580. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3581. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3582. }
  3583. }
  3584. else {
  3585. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  3586. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3587. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3588. }
  3589. }
  3590. return nbytes;
  3591. }
  3592. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3593. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3594. }
  3595. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3596. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3597. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3598. }
  3599. int ggml_blck_size(enum ggml_type type) {
  3600. return type_traits[type].blck_size;
  3601. }
  3602. size_t ggml_type_size(enum ggml_type type) {
  3603. return type_traits[type].type_size;
  3604. }
  3605. float ggml_type_sizef(enum ggml_type type) {
  3606. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3607. }
  3608. const char * ggml_type_name(enum ggml_type type) {
  3609. return type_traits[type].type_name;
  3610. }
  3611. bool ggml_is_quantized(enum ggml_type type) {
  3612. return type_traits[type].is_quantized;
  3613. }
  3614. const char * ggml_op_name(enum ggml_op op) {
  3615. return GGML_OP_NAME[op];
  3616. }
  3617. const char * ggml_op_symbol(enum ggml_op op) {
  3618. return GGML_OP_SYMBOL[op];
  3619. }
  3620. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3621. return ggml_type_size(tensor->type);
  3622. }
  3623. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3624. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3625. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3626. }
  3627. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3628. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3629. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3630. }
  3631. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3632. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3633. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3634. }
  3635. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3636. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3637. return (t0->ne[0] == t1->ne[0]) &&
  3638. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3639. (t1->ne[3]%t0->ne[3] == 0);
  3640. }
  3641. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3642. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3643. return (t0->ne[1] == t1->ne[1]) &&
  3644. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3645. (t1->ne[3]%t0->ne[3] == 0);
  3646. }
  3647. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3648. enum ggml_type wtype = GGML_TYPE_COUNT;
  3649. switch (ftype) {
  3650. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3651. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3652. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3653. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3654. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3655. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3656. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3657. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3658. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3659. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3660. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3661. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3662. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3663. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3664. }
  3665. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3666. return wtype;
  3667. }
  3668. size_t ggml_tensor_overhead(void) {
  3669. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3670. }
  3671. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3672. return tensor->nb[0] > tensor->nb[1];
  3673. }
  3674. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3675. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3676. return
  3677. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3678. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3679. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3680. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3681. }
  3682. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3683. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3684. return
  3685. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3686. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3687. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3688. }
  3689. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3690. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3691. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3692. }
  3693. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3694. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3695. return
  3696. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3697. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3698. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3699. }
  3700. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3701. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3702. return
  3703. (t0->ne[0] == t1->ne[0] ) &&
  3704. (t0->ne[1] == t1->ne[1] ) &&
  3705. (t0->ne[2] == t1->ne[2] ) &&
  3706. (t0->ne[3] == t1->ne[3] );
  3707. }
  3708. // check if t1 can be represented as a repeatition of t0
  3709. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3710. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3711. return
  3712. (t1->ne[0]%t0->ne[0] == 0) &&
  3713. (t1->ne[1]%t0->ne[1] == 0) &&
  3714. (t1->ne[2]%t0->ne[2] == 0) &&
  3715. (t1->ne[3]%t0->ne[3] == 0);
  3716. }
  3717. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3718. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3719. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3720. }
  3721. static inline int ggml_up32(int n) {
  3722. return (n + 31) & ~31;
  3723. }
  3724. //static inline int ggml_up64(int n) {
  3725. // return (n + 63) & ~63;
  3726. //}
  3727. static inline int ggml_up(int n, int m) {
  3728. // assert m is a power of 2
  3729. GGML_ASSERT((m & (m - 1)) == 0);
  3730. return (n + m - 1) & ~(m - 1);
  3731. }
  3732. // assert that pointer is aligned to GGML_MEM_ALIGN
  3733. #define ggml_assert_aligned(ptr) \
  3734. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3735. ////////////////////////////////////////////////////////////////////////////////
  3736. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3737. // make this function thread safe
  3738. ggml_critical_section_start();
  3739. static bool is_first_call = true;
  3740. if (is_first_call) {
  3741. // initialize time system (required on Windows)
  3742. ggml_time_init();
  3743. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3744. {
  3745. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3746. ggml_fp16_t ii;
  3747. for (int i = 0; i < (1 << 16); ++i) {
  3748. uint16_t ui = i;
  3749. memcpy(&ii, &ui, sizeof(ii));
  3750. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3751. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3752. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3753. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3754. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3755. }
  3756. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3757. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3758. }
  3759. // initialize g_state
  3760. {
  3761. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3762. g_state = (struct ggml_state) {
  3763. /*.contexts =*/ { { 0 } },
  3764. /*.numa =*/ {
  3765. .n_nodes = 0,
  3766. .total_cpus = 0,
  3767. },
  3768. };
  3769. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3770. g_state.contexts[i].used = false;
  3771. }
  3772. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3773. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3774. }
  3775. #if defined(GGML_USE_CUBLAS)
  3776. ggml_init_cublas();
  3777. #elif defined(GGML_USE_CLBLAST)
  3778. ggml_cl_init();
  3779. #endif
  3780. ggml_setup_op_has_task_pass();
  3781. is_first_call = false;
  3782. }
  3783. // find non-used context in g_state
  3784. struct ggml_context * ctx = NULL;
  3785. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3786. if (!g_state.contexts[i].used) {
  3787. g_state.contexts[i].used = true;
  3788. ctx = &g_state.contexts[i].context;
  3789. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3790. break;
  3791. }
  3792. }
  3793. if (ctx == NULL) {
  3794. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3795. ggml_critical_section_end();
  3796. return NULL;
  3797. }
  3798. // allow to call ggml_init with 0 size
  3799. if (params.mem_size == 0) {
  3800. params.mem_size = GGML_MEM_ALIGN;
  3801. }
  3802. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3803. *ctx = (struct ggml_context) {
  3804. /*.mem_size =*/ mem_size,
  3805. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3806. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3807. /*.no_alloc =*/ params.no_alloc,
  3808. /*.no_alloc_save =*/ params.no_alloc,
  3809. /*.n_objects =*/ 0,
  3810. /*.objects_begin =*/ NULL,
  3811. /*.objects_end =*/ NULL,
  3812. /*.scratch =*/ { 0, 0, NULL, },
  3813. /*.scratch_save =*/ { 0, 0, NULL, },
  3814. };
  3815. GGML_ASSERT(ctx->mem_buffer != NULL);
  3816. ggml_assert_aligned(ctx->mem_buffer);
  3817. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3818. ggml_critical_section_end();
  3819. return ctx;
  3820. }
  3821. void ggml_free(struct ggml_context * ctx) {
  3822. // make this function thread safe
  3823. ggml_critical_section_start();
  3824. bool found = false;
  3825. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3826. if (&g_state.contexts[i].context == ctx) {
  3827. g_state.contexts[i].used = false;
  3828. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3829. __func__, i, ggml_used_mem(ctx));
  3830. if (ctx->mem_buffer_owned) {
  3831. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3832. }
  3833. found = true;
  3834. break;
  3835. }
  3836. }
  3837. if (!found) {
  3838. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3839. }
  3840. ggml_critical_section_end();
  3841. }
  3842. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3843. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3844. }
  3845. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3846. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3847. ctx->scratch = scratch;
  3848. return result;
  3849. }
  3850. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3851. return ctx->no_alloc;
  3852. }
  3853. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3854. ctx->no_alloc = no_alloc;
  3855. }
  3856. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3857. return ctx->mem_buffer;
  3858. }
  3859. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3860. return ctx->mem_size;
  3861. }
  3862. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3863. size_t max_size = 0;
  3864. struct ggml_object * obj = ctx->objects_begin;
  3865. while (obj != NULL) {
  3866. if (obj->type == GGML_OBJECT_TENSOR) {
  3867. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3868. const size_t size = ggml_nbytes(tensor);
  3869. if (max_size < size) {
  3870. max_size = size;
  3871. }
  3872. }
  3873. obj = obj->next;
  3874. }
  3875. return max_size;
  3876. }
  3877. // IMPORTANT:
  3878. // when creating "opt" tensors, always save and load the scratch buffer
  3879. // this is an error prone process, but it is necessary to support inplace
  3880. // operators when using scratch buffers
  3881. // TODO: implement a better way
  3882. static void ggml_scratch_save(struct ggml_context * ctx) {
  3883. // this is needed to allow opt tensors to store their data
  3884. // TODO: again, need to find a better way
  3885. ctx->no_alloc_save = ctx->no_alloc;
  3886. ctx->no_alloc = false;
  3887. ctx->scratch_save = ctx->scratch;
  3888. ctx->scratch.data = NULL;
  3889. }
  3890. static void ggml_scratch_load(struct ggml_context * ctx) {
  3891. ctx->no_alloc = ctx->no_alloc_save;
  3892. ctx->scratch = ctx->scratch_save;
  3893. }
  3894. ////////////////////////////////////////////////////////////////////////////////
  3895. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3896. // always insert objects at the end of the context's memory pool
  3897. struct ggml_object * obj_cur = ctx->objects_end;
  3898. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3899. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3900. const size_t cur_end = cur_offs + cur_size;
  3901. // align to GGML_MEM_ALIGN
  3902. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3903. char * const mem_buffer = ctx->mem_buffer;
  3904. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3905. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3906. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3907. __func__, cur_end + size_needed, ctx->mem_size);
  3908. assert(false);
  3909. return NULL;
  3910. }
  3911. *obj_new = (struct ggml_object) {
  3912. .offs = cur_end + GGML_OBJECT_SIZE,
  3913. .size = size_needed,
  3914. .next = NULL,
  3915. .type = type,
  3916. };
  3917. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3918. if (obj_cur != NULL) {
  3919. obj_cur->next = obj_new;
  3920. } else {
  3921. // this is the first object in this context
  3922. ctx->objects_begin = obj_new;
  3923. }
  3924. ctx->objects_end = obj_new;
  3925. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3926. return obj_new;
  3927. }
  3928. static struct ggml_tensor * ggml_new_tensor_impl(
  3929. struct ggml_context * ctx,
  3930. enum ggml_type type,
  3931. int n_dims,
  3932. const int64_t * ne,
  3933. struct ggml_tensor * view_src,
  3934. size_t view_offs) {
  3935. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3936. // find the base tensor and absolute offset
  3937. if (view_src != NULL && view_src->view_src != NULL) {
  3938. view_offs += view_src->view_offs;
  3939. view_src = view_src->view_src;
  3940. }
  3941. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3942. for (int i = 1; i < n_dims; i++) {
  3943. data_size *= ne[i];
  3944. }
  3945. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  3946. void * data = view_src != NULL ? view_src->data : NULL;
  3947. if (data != NULL) {
  3948. data = (char *) data + view_offs;
  3949. }
  3950. size_t obj_alloc_size = 0;
  3951. if (view_src == NULL && !ctx->no_alloc) {
  3952. if (ctx->scratch.data != NULL) {
  3953. // allocate tensor data in the scratch buffer
  3954. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3955. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3956. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3957. assert(false);
  3958. return NULL;
  3959. }
  3960. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3961. ctx->scratch.offs += data_size;
  3962. } else {
  3963. // allocate tensor data in the context's memory pool
  3964. obj_alloc_size = data_size;
  3965. }
  3966. }
  3967. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3968. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3969. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3970. *result = (struct ggml_tensor) {
  3971. /*.type =*/ type,
  3972. /*.backend =*/ GGML_BACKEND_CPU,
  3973. /*.n_dims =*/ n_dims,
  3974. /*.ne =*/ { 1, 1, 1, 1 },
  3975. /*.nb =*/ { 0, 0, 0, 0 },
  3976. /*.op =*/ GGML_OP_NONE,
  3977. /*.op_params =*/ { 0 },
  3978. /*.is_param =*/ false,
  3979. /*.grad =*/ NULL,
  3980. /*.src =*/ { NULL },
  3981. /*.perf_runs =*/ 0,
  3982. /*.perf_cycles =*/ 0,
  3983. /*.perf_time_us =*/ 0,
  3984. /*.view_src =*/ view_src,
  3985. /*.view_offs =*/ view_offs,
  3986. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3987. /*.name =*/ { 0 },
  3988. /*.extra =*/ NULL,
  3989. /*.padding =*/ { 0 },
  3990. };
  3991. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3992. //ggml_assert_aligned(result->data);
  3993. for (int i = 0; i < n_dims; i++) {
  3994. result->ne[i] = ne[i];
  3995. }
  3996. result->nb[0] = ggml_type_size(type);
  3997. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3998. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3999. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  4000. }
  4001. ctx->n_objects++;
  4002. return result;
  4003. }
  4004. struct ggml_tensor * ggml_new_tensor(
  4005. struct ggml_context * ctx,
  4006. enum ggml_type type,
  4007. int n_dims,
  4008. const int64_t * ne) {
  4009. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  4010. }
  4011. struct ggml_tensor * ggml_new_tensor_1d(
  4012. struct ggml_context * ctx,
  4013. enum ggml_type type,
  4014. int64_t ne0) {
  4015. return ggml_new_tensor(ctx, type, 1, &ne0);
  4016. }
  4017. struct ggml_tensor * ggml_new_tensor_2d(
  4018. struct ggml_context * ctx,
  4019. enum ggml_type type,
  4020. int64_t ne0,
  4021. int64_t ne1) {
  4022. const int64_t ne[2] = { ne0, ne1 };
  4023. return ggml_new_tensor(ctx, type, 2, ne);
  4024. }
  4025. struct ggml_tensor * ggml_new_tensor_3d(
  4026. struct ggml_context * ctx,
  4027. enum ggml_type type,
  4028. int64_t ne0,
  4029. int64_t ne1,
  4030. int64_t ne2) {
  4031. const int64_t ne[3] = { ne0, ne1, ne2 };
  4032. return ggml_new_tensor(ctx, type, 3, ne);
  4033. }
  4034. struct ggml_tensor * ggml_new_tensor_4d(
  4035. struct ggml_context * ctx,
  4036. enum ggml_type type,
  4037. int64_t ne0,
  4038. int64_t ne1,
  4039. int64_t ne2,
  4040. int64_t ne3) {
  4041. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4042. return ggml_new_tensor(ctx, type, 4, ne);
  4043. }
  4044. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  4045. ggml_scratch_save(ctx);
  4046. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  4047. ggml_scratch_load(ctx);
  4048. ggml_set_i32(result, value);
  4049. return result;
  4050. }
  4051. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  4052. ggml_scratch_save(ctx);
  4053. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4054. ggml_scratch_load(ctx);
  4055. ggml_set_f32(result, value);
  4056. return result;
  4057. }
  4058. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  4059. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  4060. }
  4061. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  4062. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  4063. assert(params_size <= GGML_MAX_OP_PARAMS);
  4064. memcpy(tensor->op_params, params, params_size);
  4065. }
  4066. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  4067. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  4068. return ((const int32_t *)(tensor->op_params))[i];
  4069. }
  4070. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  4071. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  4072. ((int32_t *)(tensor->op_params))[i] = value;
  4073. }
  4074. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  4075. memset(tensor->data, 0, ggml_nbytes(tensor));
  4076. return tensor;
  4077. }
  4078. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  4079. const int n = ggml_nrows(tensor);
  4080. const int nc = tensor->ne[0];
  4081. const size_t n1 = tensor->nb[1];
  4082. char * const data = tensor->data;
  4083. switch (tensor->type) {
  4084. case GGML_TYPE_I8:
  4085. {
  4086. assert(tensor->nb[0] == sizeof(int8_t));
  4087. for (int i = 0; i < n; i++) {
  4088. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4089. }
  4090. } break;
  4091. case GGML_TYPE_I16:
  4092. {
  4093. assert(tensor->nb[0] == sizeof(int16_t));
  4094. for (int i = 0; i < n; i++) {
  4095. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4096. }
  4097. } break;
  4098. case GGML_TYPE_I32:
  4099. {
  4100. assert(tensor->nb[0] == sizeof(int32_t));
  4101. for (int i = 0; i < n; i++) {
  4102. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4103. }
  4104. } break;
  4105. case GGML_TYPE_F16:
  4106. {
  4107. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4108. for (int i = 0; i < n; i++) {
  4109. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4110. }
  4111. } break;
  4112. case GGML_TYPE_F32:
  4113. {
  4114. assert(tensor->nb[0] == sizeof(float));
  4115. for (int i = 0; i < n; i++) {
  4116. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4117. }
  4118. } break;
  4119. default:
  4120. {
  4121. GGML_ASSERT(false);
  4122. } break;
  4123. }
  4124. return tensor;
  4125. }
  4126. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  4127. const int n = ggml_nrows(tensor);
  4128. const int nc = tensor->ne[0];
  4129. const size_t n1 = tensor->nb[1];
  4130. char * const data = tensor->data;
  4131. switch (tensor->type) {
  4132. case GGML_TYPE_I8:
  4133. {
  4134. assert(tensor->nb[0] == sizeof(int8_t));
  4135. for (int i = 0; i < n; i++) {
  4136. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4137. }
  4138. } break;
  4139. case GGML_TYPE_I16:
  4140. {
  4141. assert(tensor->nb[0] == sizeof(int16_t));
  4142. for (int i = 0; i < n; i++) {
  4143. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4144. }
  4145. } break;
  4146. case GGML_TYPE_I32:
  4147. {
  4148. assert(tensor->nb[0] == sizeof(int32_t));
  4149. for (int i = 0; i < n; i++) {
  4150. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4151. }
  4152. } break;
  4153. case GGML_TYPE_F16:
  4154. {
  4155. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4156. for (int i = 0; i < n; i++) {
  4157. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4158. }
  4159. } break;
  4160. case GGML_TYPE_F32:
  4161. {
  4162. assert(tensor->nb[0] == sizeof(float));
  4163. for (int i = 0; i < n; i++) {
  4164. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4165. }
  4166. } break;
  4167. default:
  4168. {
  4169. GGML_ASSERT(false);
  4170. } break;
  4171. }
  4172. return tensor;
  4173. }
  4174. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  4175. const int64_t ne2 = tensor->ne[2];
  4176. const int64_t ne1 = tensor->ne[1];
  4177. const int64_t ne0 = tensor->ne[0];
  4178. const int64_t i3_ = (i/(ne2*ne1*ne0));
  4179. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  4180. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  4181. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  4182. if (i0) {
  4183. * i0 = i0_;
  4184. }
  4185. if (i1) {
  4186. * i1 = i1_;
  4187. }
  4188. if (i2) {
  4189. * i2 = i2_;
  4190. }
  4191. if (i3) {
  4192. * i3 = i3_;
  4193. }
  4194. }
  4195. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  4196. if (!ggml_is_contiguous(tensor)) {
  4197. int64_t id[4] = { 0, 0, 0, 0 };
  4198. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4199. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  4200. }
  4201. switch (tensor->type) {
  4202. case GGML_TYPE_I8:
  4203. {
  4204. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4205. return ((int8_t *)(tensor->data))[i];
  4206. }
  4207. case GGML_TYPE_I16:
  4208. {
  4209. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4210. return ((int16_t *)(tensor->data))[i];
  4211. }
  4212. case GGML_TYPE_I32:
  4213. {
  4214. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4215. return ((int32_t *)(tensor->data))[i];
  4216. }
  4217. case GGML_TYPE_F16:
  4218. {
  4219. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4220. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4221. }
  4222. case GGML_TYPE_F32:
  4223. {
  4224. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4225. return ((float *)(tensor->data))[i];
  4226. }
  4227. default:
  4228. {
  4229. GGML_ASSERT(false);
  4230. }
  4231. }
  4232. return 0.0f;
  4233. }
  4234. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  4235. if (!ggml_is_contiguous(tensor)) {
  4236. int64_t id[4] = { 0, 0, 0, 0 };
  4237. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4238. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  4239. return;
  4240. }
  4241. switch (tensor->type) {
  4242. case GGML_TYPE_I8:
  4243. {
  4244. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4245. ((int8_t *)(tensor->data))[i] = value;
  4246. } break;
  4247. case GGML_TYPE_I16:
  4248. {
  4249. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4250. ((int16_t *)(tensor->data))[i] = value;
  4251. } break;
  4252. case GGML_TYPE_I32:
  4253. {
  4254. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4255. ((int32_t *)(tensor->data))[i] = value;
  4256. } break;
  4257. case GGML_TYPE_F16:
  4258. {
  4259. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4260. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4261. } break;
  4262. case GGML_TYPE_F32:
  4263. {
  4264. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4265. ((float *)(tensor->data))[i] = value;
  4266. } break;
  4267. default:
  4268. {
  4269. GGML_ASSERT(false);
  4270. } break;
  4271. }
  4272. }
  4273. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  4274. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4275. switch (tensor->type) {
  4276. case GGML_TYPE_I8:
  4277. return ((int8_t *) data)[0];
  4278. case GGML_TYPE_I16:
  4279. return ((int16_t *) data)[0];
  4280. case GGML_TYPE_I32:
  4281. return ((int32_t *) data)[0];
  4282. case GGML_TYPE_F16:
  4283. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  4284. case GGML_TYPE_F32:
  4285. return ((float *) data)[0];
  4286. default:
  4287. GGML_ASSERT(false);
  4288. }
  4289. return 0.0f;
  4290. }
  4291. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  4292. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4293. switch (tensor->type) {
  4294. case GGML_TYPE_I8:
  4295. {
  4296. ((int8_t *)(data))[0] = value;
  4297. } break;
  4298. case GGML_TYPE_I16:
  4299. {
  4300. ((int16_t *)(data))[0] = value;
  4301. } break;
  4302. case GGML_TYPE_I32:
  4303. {
  4304. ((int32_t *)(data))[0] = value;
  4305. } break;
  4306. case GGML_TYPE_F16:
  4307. {
  4308. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  4309. } break;
  4310. case GGML_TYPE_F32:
  4311. {
  4312. ((float *)(data))[0] = value;
  4313. } break;
  4314. default:
  4315. {
  4316. GGML_ASSERT(false);
  4317. } break;
  4318. }
  4319. }
  4320. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4321. if (!ggml_is_contiguous(tensor)) {
  4322. int64_t id[4] = { 0, 0, 0, 0 };
  4323. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4324. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  4325. }
  4326. switch (tensor->type) {
  4327. case GGML_TYPE_I8:
  4328. {
  4329. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4330. return ((int8_t *)(tensor->data))[i];
  4331. }
  4332. case GGML_TYPE_I16:
  4333. {
  4334. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4335. return ((int16_t *)(tensor->data))[i];
  4336. }
  4337. case GGML_TYPE_I32:
  4338. {
  4339. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4340. return ((int32_t *)(tensor->data))[i];
  4341. }
  4342. case GGML_TYPE_F16:
  4343. {
  4344. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4345. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4346. }
  4347. case GGML_TYPE_F32:
  4348. {
  4349. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4350. return ((float *)(tensor->data))[i];
  4351. }
  4352. default:
  4353. {
  4354. GGML_ASSERT(false);
  4355. }
  4356. }
  4357. return 0.0f;
  4358. }
  4359. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4360. if (!ggml_is_contiguous(tensor)) {
  4361. int64_t id[4] = { 0, 0, 0, 0 };
  4362. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4363. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  4364. return;
  4365. }
  4366. switch (tensor->type) {
  4367. case GGML_TYPE_I8:
  4368. {
  4369. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4370. ((int8_t *)(tensor->data))[i] = value;
  4371. } break;
  4372. case GGML_TYPE_I16:
  4373. {
  4374. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4375. ((int16_t *)(tensor->data))[i] = value;
  4376. } break;
  4377. case GGML_TYPE_I32:
  4378. {
  4379. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4380. ((int32_t *)(tensor->data))[i] = value;
  4381. } break;
  4382. case GGML_TYPE_F16:
  4383. {
  4384. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4385. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4386. } break;
  4387. case GGML_TYPE_F32:
  4388. {
  4389. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4390. ((float *)(tensor->data))[i] = value;
  4391. } break;
  4392. default:
  4393. {
  4394. GGML_ASSERT(false);
  4395. } break;
  4396. }
  4397. }
  4398. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  4399. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4400. switch (tensor->type) {
  4401. case GGML_TYPE_I8:
  4402. return ((int8_t *) data)[0];
  4403. case GGML_TYPE_I16:
  4404. return ((int16_t *) data)[0];
  4405. case GGML_TYPE_I32:
  4406. return ((int32_t *) data)[0];
  4407. case GGML_TYPE_F16:
  4408. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  4409. case GGML_TYPE_F32:
  4410. return ((float *) data)[0];
  4411. default:
  4412. GGML_ASSERT(false);
  4413. }
  4414. return 0.0f;
  4415. }
  4416. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  4417. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4418. switch (tensor->type) {
  4419. case GGML_TYPE_I8:
  4420. {
  4421. ((int8_t *)(data))[0] = value;
  4422. } break;
  4423. case GGML_TYPE_I16:
  4424. {
  4425. ((int16_t *)(data))[0] = value;
  4426. } break;
  4427. case GGML_TYPE_I32:
  4428. {
  4429. ((int32_t *)(data))[0] = value;
  4430. } break;
  4431. case GGML_TYPE_F16:
  4432. {
  4433. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  4434. } break;
  4435. case GGML_TYPE_F32:
  4436. {
  4437. ((float *)(data))[0] = value;
  4438. } break;
  4439. default:
  4440. {
  4441. GGML_ASSERT(false);
  4442. } break;
  4443. }
  4444. }
  4445. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4446. return tensor->data;
  4447. }
  4448. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4449. assert(tensor->type == GGML_TYPE_F32);
  4450. return (float *)(tensor->data);
  4451. }
  4452. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4453. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4454. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4455. }
  4456. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4457. return tensor->name;
  4458. }
  4459. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4460. strncpy(tensor->name, name, sizeof(tensor->name));
  4461. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4462. return tensor;
  4463. }
  4464. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4465. va_list args;
  4466. va_start(args, fmt);
  4467. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4468. va_end(args);
  4469. return tensor;
  4470. }
  4471. struct ggml_tensor * ggml_view_tensor(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * src) {
  4474. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  4475. ggml_format_name(result, "%s (view)", src->name);
  4476. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4477. result->nb[i] = src->nb[i];
  4478. }
  4479. return result;
  4480. }
  4481. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4482. struct ggml_object * obj = ctx->objects_begin;
  4483. char * const mem_buffer = ctx->mem_buffer;
  4484. while (obj != NULL) {
  4485. if (obj->type == GGML_OBJECT_TENSOR) {
  4486. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4487. if (strcmp(cur->name, name) == 0) {
  4488. return cur;
  4489. }
  4490. }
  4491. obj = obj->next;
  4492. }
  4493. return NULL;
  4494. }
  4495. ////////////////////////////////////////////////////////////////////////////////
  4496. // ggml_dup
  4497. static struct ggml_tensor * ggml_dup_impl(
  4498. struct ggml_context * ctx,
  4499. struct ggml_tensor * a,
  4500. bool inplace) {
  4501. bool is_node = false;
  4502. if (!inplace && (a->grad)) {
  4503. is_node = true;
  4504. }
  4505. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4506. result->op = GGML_OP_DUP;
  4507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4508. result->src[0] = a;
  4509. return result;
  4510. }
  4511. struct ggml_tensor * ggml_dup(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a) {
  4514. return ggml_dup_impl(ctx, a, false);
  4515. }
  4516. struct ggml_tensor * ggml_dup_inplace(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a) {
  4519. return ggml_dup_impl(ctx, a, true);
  4520. }
  4521. // ggml_add
  4522. static struct ggml_tensor * ggml_add_impl(
  4523. struct ggml_context * ctx,
  4524. struct ggml_tensor * a,
  4525. struct ggml_tensor * b,
  4526. bool inplace) {
  4527. // TODO: support less-strict constraint
  4528. // GGML_ASSERT(ggml_can_repeat(b, a));
  4529. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4530. bool is_node = false;
  4531. if (!inplace && (a->grad || b->grad)) {
  4532. // TODO: support backward pass for broadcasting
  4533. GGML_ASSERT(ggml_are_same_shape(a, b));
  4534. is_node = true;
  4535. }
  4536. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4537. result->op = GGML_OP_ADD;
  4538. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4539. result->src[0] = a;
  4540. result->src[1] = b;
  4541. return result;
  4542. }
  4543. struct ggml_tensor * ggml_add(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a,
  4546. struct ggml_tensor * b) {
  4547. return ggml_add_impl(ctx, a, b, false);
  4548. }
  4549. struct ggml_tensor * ggml_add_inplace(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a,
  4552. struct ggml_tensor * b) {
  4553. return ggml_add_impl(ctx, a, b, true);
  4554. }
  4555. // ggml_add_cast
  4556. static struct ggml_tensor * ggml_add_cast_impl(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a,
  4559. struct ggml_tensor * b,
  4560. enum ggml_type type) {
  4561. // TODO: support less-strict constraint
  4562. // GGML_ASSERT(ggml_can_repeat(b, a));
  4563. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4564. GGML_ASSERT(ggml_is_quantized(a->type)); // currently only supported for quantized input
  4565. bool is_node = false;
  4566. if (a->grad || b->grad) {
  4567. // TODO: support backward pass for broadcasting
  4568. GGML_ASSERT(ggml_are_same_shape(a, b));
  4569. is_node = true;
  4570. }
  4571. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  4572. result->op = GGML_OP_ADD;
  4573. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  4574. result->src[0] = a;
  4575. result->src[1] = b;
  4576. return result;
  4577. }
  4578. struct ggml_tensor * ggml_add_cast(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. struct ggml_tensor * b,
  4582. enum ggml_type type) {
  4583. return ggml_add_cast_impl(ctx, a, b, type);
  4584. }
  4585. // ggml_add1
  4586. static struct ggml_tensor * ggml_add1_impl(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a,
  4589. struct ggml_tensor * b,
  4590. bool inplace) {
  4591. GGML_ASSERT(ggml_is_scalar(b));
  4592. GGML_ASSERT(ggml_is_padded_1d(a));
  4593. bool is_node = false;
  4594. if (a->grad || b->grad) {
  4595. is_node = true;
  4596. }
  4597. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4598. result->op = GGML_OP_ADD1;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src[0] = a;
  4601. result->src[1] = b;
  4602. return result;
  4603. }
  4604. struct ggml_tensor * ggml_add1(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a,
  4607. struct ggml_tensor * b) {
  4608. return ggml_add1_impl(ctx, a, b, false);
  4609. }
  4610. struct ggml_tensor * ggml_add1_inplace(
  4611. struct ggml_context * ctx,
  4612. struct ggml_tensor * a,
  4613. struct ggml_tensor * b) {
  4614. return ggml_add1_impl(ctx, a, b, true);
  4615. }
  4616. // ggml_acc
  4617. static struct ggml_tensor * ggml_acc_impl(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a,
  4620. struct ggml_tensor * b,
  4621. size_t nb1,
  4622. size_t nb2,
  4623. size_t nb3,
  4624. size_t offset,
  4625. bool inplace) {
  4626. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4627. GGML_ASSERT(ggml_is_contiguous(a));
  4628. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4629. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4630. bool is_node = false;
  4631. if (!inplace && (a->grad || b->grad)) {
  4632. is_node = true;
  4633. }
  4634. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4635. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4636. ggml_set_op_params(result, params, sizeof(params));
  4637. result->op = GGML_OP_ACC;
  4638. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4639. result->src[0] = a;
  4640. result->src[1] = b;
  4641. return result;
  4642. }
  4643. struct ggml_tensor * ggml_acc(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. struct ggml_tensor * b,
  4647. size_t nb1,
  4648. size_t nb2,
  4649. size_t nb3,
  4650. size_t offset) {
  4651. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4652. }
  4653. struct ggml_tensor * ggml_acc_inplace(
  4654. struct ggml_context * ctx,
  4655. struct ggml_tensor * a,
  4656. struct ggml_tensor * b,
  4657. size_t nb1,
  4658. size_t nb2,
  4659. size_t nb3,
  4660. size_t offset) {
  4661. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4662. }
  4663. // ggml_sub
  4664. static struct ggml_tensor * ggml_sub_impl(
  4665. struct ggml_context * ctx,
  4666. struct ggml_tensor * a,
  4667. struct ggml_tensor * b,
  4668. bool inplace) {
  4669. GGML_ASSERT(ggml_are_same_shape(a, b));
  4670. bool is_node = false;
  4671. if (!inplace && (a->grad || b->grad)) {
  4672. is_node = true;
  4673. }
  4674. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4675. result->op = GGML_OP_SUB;
  4676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4677. result->src[0] = a;
  4678. result->src[1] = b;
  4679. return result;
  4680. }
  4681. struct ggml_tensor * ggml_sub(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. struct ggml_tensor * b) {
  4685. return ggml_sub_impl(ctx, a, b, false);
  4686. }
  4687. struct ggml_tensor * ggml_sub_inplace(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a,
  4690. struct ggml_tensor * b) {
  4691. return ggml_sub_impl(ctx, a, b, true);
  4692. }
  4693. // ggml_mul
  4694. static struct ggml_tensor * ggml_mul_impl(
  4695. struct ggml_context * ctx,
  4696. struct ggml_tensor * a,
  4697. struct ggml_tensor * b,
  4698. bool inplace) {
  4699. // TODO: support less-strict constraint
  4700. // GGML_ASSERT(ggml_can_repeat(b, a));
  4701. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4702. bool is_node = false;
  4703. if (!inplace && (a->grad || b->grad)) {
  4704. // TODO: support backward pass for broadcasting
  4705. GGML_ASSERT(ggml_are_same_shape(a, b));
  4706. is_node = true;
  4707. }
  4708. if (inplace) {
  4709. GGML_ASSERT(!is_node);
  4710. }
  4711. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4712. result->op = GGML_OP_MUL;
  4713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4714. result->src[0] = a;
  4715. result->src[1] = b;
  4716. return result;
  4717. }
  4718. struct ggml_tensor * ggml_mul(
  4719. struct ggml_context * ctx,
  4720. struct ggml_tensor * a,
  4721. struct ggml_tensor * b) {
  4722. return ggml_mul_impl(ctx, a, b, false);
  4723. }
  4724. struct ggml_tensor * ggml_mul_inplace(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a,
  4727. struct ggml_tensor * b) {
  4728. return ggml_mul_impl(ctx, a, b, true);
  4729. }
  4730. // ggml_div
  4731. static struct ggml_tensor * ggml_div_impl(
  4732. struct ggml_context * ctx,
  4733. struct ggml_tensor * a,
  4734. struct ggml_tensor * b,
  4735. bool inplace) {
  4736. GGML_ASSERT(ggml_are_same_shape(a, b));
  4737. bool is_node = false;
  4738. if (!inplace && (a->grad || b->grad)) {
  4739. is_node = true;
  4740. }
  4741. if (inplace) {
  4742. GGML_ASSERT(!is_node);
  4743. }
  4744. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4745. result->op = GGML_OP_DIV;
  4746. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4747. result->src[0] = a;
  4748. result->src[1] = b;
  4749. return result;
  4750. }
  4751. struct ggml_tensor * ggml_div(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. struct ggml_tensor * b) {
  4755. return ggml_div_impl(ctx, a, b, false);
  4756. }
  4757. struct ggml_tensor * ggml_div_inplace(
  4758. struct ggml_context * ctx,
  4759. struct ggml_tensor * a,
  4760. struct ggml_tensor * b) {
  4761. return ggml_div_impl(ctx, a, b, true);
  4762. }
  4763. // ggml_sqr
  4764. static struct ggml_tensor * ggml_sqr_impl(
  4765. struct ggml_context * ctx,
  4766. struct ggml_tensor * a,
  4767. bool inplace) {
  4768. bool is_node = false;
  4769. if (!inplace && (a->grad)) {
  4770. is_node = true;
  4771. }
  4772. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4773. result->op = GGML_OP_SQR;
  4774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4775. result->src[0] = a;
  4776. return result;
  4777. }
  4778. struct ggml_tensor * ggml_sqr(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a) {
  4781. return ggml_sqr_impl(ctx, a, false);
  4782. }
  4783. struct ggml_tensor * ggml_sqr_inplace(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a) {
  4786. return ggml_sqr_impl(ctx, a, true);
  4787. }
  4788. // ggml_sqrt
  4789. static struct ggml_tensor * ggml_sqrt_impl(
  4790. struct ggml_context * ctx,
  4791. struct ggml_tensor * a,
  4792. bool inplace) {
  4793. bool is_node = false;
  4794. if (!inplace && (a->grad)) {
  4795. is_node = true;
  4796. }
  4797. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4798. result->op = GGML_OP_SQRT;
  4799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4800. result->src[0] = a;
  4801. return result;
  4802. }
  4803. struct ggml_tensor * ggml_sqrt(
  4804. struct ggml_context * ctx,
  4805. struct ggml_tensor * a) {
  4806. return ggml_sqrt_impl(ctx, a, false);
  4807. }
  4808. struct ggml_tensor * ggml_sqrt_inplace(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a) {
  4811. return ggml_sqrt_impl(ctx, a, true);
  4812. }
  4813. // ggml_log
  4814. static struct ggml_tensor * ggml_log_impl(
  4815. struct ggml_context * ctx,
  4816. struct ggml_tensor * a,
  4817. bool inplace) {
  4818. bool is_node = false;
  4819. if (!inplace && (a->grad)) {
  4820. is_node = true;
  4821. }
  4822. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4823. result->op = GGML_OP_LOG;
  4824. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4825. result->src[0] = a;
  4826. return result;
  4827. }
  4828. struct ggml_tensor * ggml_log(
  4829. struct ggml_context * ctx,
  4830. struct ggml_tensor * a) {
  4831. return ggml_log_impl(ctx, a, false);
  4832. }
  4833. struct ggml_tensor * ggml_log_inplace(
  4834. struct ggml_context * ctx,
  4835. struct ggml_tensor * a) {
  4836. return ggml_log_impl(ctx, a, true);
  4837. }
  4838. // ggml_sum
  4839. struct ggml_tensor * ggml_sum(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a) {
  4842. bool is_node = false;
  4843. if (a->grad) {
  4844. is_node = true;
  4845. }
  4846. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4847. result->op = GGML_OP_SUM;
  4848. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4849. result->src[0] = a;
  4850. return result;
  4851. }
  4852. // ggml_sum_rows
  4853. struct ggml_tensor * ggml_sum_rows(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a) {
  4856. bool is_node = false;
  4857. if (a->grad) {
  4858. is_node = true;
  4859. }
  4860. int64_t ne[4] = {1,1,1,1};
  4861. for (int i=1; i<a->n_dims; ++i) {
  4862. ne[i] = a->ne[i];
  4863. }
  4864. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4865. result->op = GGML_OP_SUM_ROWS;
  4866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4867. result->src[0] = a;
  4868. return result;
  4869. }
  4870. // ggml_mean
  4871. struct ggml_tensor * ggml_mean(
  4872. struct ggml_context * ctx,
  4873. struct ggml_tensor * a) {
  4874. bool is_node = false;
  4875. if (a->grad) {
  4876. GGML_ASSERT(false); // TODO: implement
  4877. is_node = true;
  4878. }
  4879. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4880. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4881. result->op = GGML_OP_MEAN;
  4882. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4883. result->src[0] = a;
  4884. return result;
  4885. }
  4886. // ggml_argmax
  4887. struct ggml_tensor * ggml_argmax(
  4888. struct ggml_context * ctx,
  4889. struct ggml_tensor * a) {
  4890. GGML_ASSERT(ggml_is_matrix(a));
  4891. bool is_node = false;
  4892. if (a->grad) {
  4893. GGML_ASSERT(false);
  4894. is_node = true;
  4895. }
  4896. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4897. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4898. result->op = GGML_OP_ARGMAX;
  4899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4900. result->src[0] = a;
  4901. return result;
  4902. }
  4903. // ggml_repeat
  4904. struct ggml_tensor * ggml_repeat(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. struct ggml_tensor * b) {
  4908. GGML_ASSERT(ggml_can_repeat(a, b));
  4909. bool is_node = false;
  4910. if (a->grad) {
  4911. is_node = true;
  4912. }
  4913. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4914. result->op = GGML_OP_REPEAT;
  4915. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4916. result->src[0] = a;
  4917. return result;
  4918. }
  4919. // ggml_repeat_back
  4920. struct ggml_tensor * ggml_repeat_back(
  4921. struct ggml_context * ctx,
  4922. struct ggml_tensor * a,
  4923. struct ggml_tensor * b) {
  4924. GGML_ASSERT(ggml_can_repeat(b, a));
  4925. bool is_node = false;
  4926. if (a->grad) {
  4927. is_node = true;
  4928. }
  4929. if (ggml_are_same_shape(a, b) && !is_node) {
  4930. return a;
  4931. }
  4932. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4933. result->op = GGML_OP_REPEAT_BACK;
  4934. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4935. result->src[0] = a;
  4936. return result;
  4937. }
  4938. // ggml_concat
  4939. struct ggml_tensor * ggml_concat(
  4940. struct ggml_context* ctx,
  4941. struct ggml_tensor* a,
  4942. struct ggml_tensor* b) {
  4943. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4944. bool is_node = false;
  4945. if (a->grad || b->grad) {
  4946. is_node = true;
  4947. }
  4948. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4949. result->op = GGML_OP_CONCAT;
  4950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4951. result->src[0] = a;
  4952. result->src[1] = b;
  4953. return result;
  4954. }
  4955. // ggml_abs
  4956. struct ggml_tensor * ggml_abs(
  4957. struct ggml_context * ctx,
  4958. struct ggml_tensor * a) {
  4959. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4960. }
  4961. struct ggml_tensor * ggml_abs_inplace(
  4962. struct ggml_context * ctx,
  4963. struct ggml_tensor * a) {
  4964. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4965. }
  4966. // ggml_sgn
  4967. struct ggml_tensor * ggml_sgn(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a) {
  4970. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4971. }
  4972. struct ggml_tensor * ggml_sgn_inplace(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a) {
  4975. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4976. }
  4977. // ggml_neg
  4978. struct ggml_tensor * ggml_neg(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a) {
  4981. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4982. }
  4983. struct ggml_tensor * ggml_neg_inplace(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a) {
  4986. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4987. }
  4988. // ggml_step
  4989. struct ggml_tensor * ggml_step(
  4990. struct ggml_context * ctx,
  4991. struct ggml_tensor * a) {
  4992. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4993. }
  4994. struct ggml_tensor * ggml_step_inplace(
  4995. struct ggml_context * ctx,
  4996. struct ggml_tensor * a) {
  4997. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4998. }
  4999. // ggml_tanh
  5000. struct ggml_tensor * ggml_tanh(
  5001. struct ggml_context * ctx,
  5002. struct ggml_tensor * a) {
  5003. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  5004. }
  5005. struct ggml_tensor * ggml_tanh_inplace(
  5006. struct ggml_context * ctx,
  5007. struct ggml_tensor * a) {
  5008. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  5009. }
  5010. // ggml_elu
  5011. struct ggml_tensor * ggml_elu(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a) {
  5014. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  5015. }
  5016. struct ggml_tensor * ggml_elu_inplace(
  5017. struct ggml_context * ctx,
  5018. struct ggml_tensor * a) {
  5019. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  5020. }
  5021. // ggml_relu
  5022. struct ggml_tensor * ggml_relu(
  5023. struct ggml_context * ctx,
  5024. struct ggml_tensor * a) {
  5025. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  5026. }
  5027. struct ggml_tensor * ggml_relu_inplace(
  5028. struct ggml_context * ctx,
  5029. struct ggml_tensor * a) {
  5030. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  5031. }
  5032. // ggml_gelu
  5033. struct ggml_tensor * ggml_gelu(
  5034. struct ggml_context * ctx,
  5035. struct ggml_tensor * a) {
  5036. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  5037. }
  5038. struct ggml_tensor * ggml_gelu_inplace(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a) {
  5041. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  5042. }
  5043. // ggml_gelu_quick
  5044. struct ggml_tensor * ggml_gelu_quick(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a) {
  5047. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  5048. }
  5049. struct ggml_tensor * ggml_gelu_quick_inplace(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a) {
  5052. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  5053. }
  5054. // ggml_silu
  5055. struct ggml_tensor * ggml_silu(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a) {
  5058. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  5059. }
  5060. struct ggml_tensor * ggml_silu_inplace(
  5061. struct ggml_context * ctx,
  5062. struct ggml_tensor * a) {
  5063. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  5064. }
  5065. // ggml_silu_back
  5066. struct ggml_tensor * ggml_silu_back(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a,
  5069. struct ggml_tensor * b) {
  5070. bool is_node = false;
  5071. if (a->grad || b->grad) {
  5072. // TODO: implement backward
  5073. is_node = true;
  5074. }
  5075. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5076. result->op = GGML_OP_SILU_BACK;
  5077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5078. result->src[0] = a;
  5079. result->src[1] = b;
  5080. return result;
  5081. }
  5082. // ggml_norm
  5083. static struct ggml_tensor * ggml_norm_impl(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * a,
  5086. float eps,
  5087. bool inplace) {
  5088. bool is_node = false;
  5089. if (!inplace && (a->grad)) {
  5090. GGML_ASSERT(false); // TODO: implement backward
  5091. is_node = true;
  5092. }
  5093. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5094. ggml_set_op_params(result, &eps, sizeof(eps));
  5095. result->op = GGML_OP_NORM;
  5096. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5097. result->src[0] = a;
  5098. return result;
  5099. }
  5100. struct ggml_tensor * ggml_norm(
  5101. struct ggml_context * ctx,
  5102. struct ggml_tensor * a,
  5103. float eps) {
  5104. return ggml_norm_impl(ctx, a, eps, false);
  5105. }
  5106. struct ggml_tensor * ggml_norm_inplace(
  5107. struct ggml_context * ctx,
  5108. struct ggml_tensor * a,
  5109. float eps) {
  5110. return ggml_norm_impl(ctx, a, eps, true);
  5111. }
  5112. // ggml_rms_norm
  5113. static struct ggml_tensor * ggml_rms_norm_impl(
  5114. struct ggml_context * ctx,
  5115. struct ggml_tensor * a,
  5116. float eps,
  5117. bool inplace) {
  5118. bool is_node = false;
  5119. if (!inplace && (a->grad)) {
  5120. is_node = true;
  5121. }
  5122. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5123. ggml_set_op_params(result, &eps, sizeof(eps));
  5124. result->op = GGML_OP_RMS_NORM;
  5125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5126. result->src[0] = a;
  5127. return result;
  5128. }
  5129. struct ggml_tensor * ggml_rms_norm(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a,
  5132. float eps) {
  5133. return ggml_rms_norm_impl(ctx, a, eps, false);
  5134. }
  5135. struct ggml_tensor * ggml_rms_norm_inplace(
  5136. struct ggml_context * ctx,
  5137. struct ggml_tensor * a,
  5138. float eps) {
  5139. return ggml_rms_norm_impl(ctx, a, eps, true);
  5140. }
  5141. // ggml_rms_norm_back
  5142. struct ggml_tensor * ggml_rms_norm_back(
  5143. struct ggml_context * ctx,
  5144. struct ggml_tensor * a,
  5145. struct ggml_tensor * b,
  5146. float eps) {
  5147. bool is_node = false;
  5148. if (a->grad) {
  5149. // TODO: implement backward
  5150. is_node = true;
  5151. }
  5152. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5153. ggml_set_op_params(result, &eps, sizeof(eps));
  5154. result->op = GGML_OP_RMS_NORM_BACK;
  5155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5156. result->src[0] = a;
  5157. result->src[1] = b;
  5158. return result;
  5159. }
  5160. // ggml_group_norm
  5161. static struct ggml_tensor * ggml_group_norm_impl(
  5162. struct ggml_context * ctx,
  5163. struct ggml_tensor * a,
  5164. int n_groups,
  5165. bool inplace) {
  5166. bool is_node = false;
  5167. if (!inplace && (a->grad)) {
  5168. GGML_ASSERT(false); // TODO: implement backward
  5169. is_node = true;
  5170. }
  5171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5172. result->op = GGML_OP_GROUP_NORM;
  5173. result->op_params[0] = n_groups;
  5174. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5175. result->src[0] = a;
  5176. result->src[1] = NULL; // TODO: maybe store epsilon here?
  5177. return result;
  5178. }
  5179. struct ggml_tensor * ggml_group_norm(
  5180. struct ggml_context * ctx,
  5181. struct ggml_tensor * a,
  5182. int n_groups) {
  5183. return ggml_group_norm_impl(ctx, a, n_groups, false);
  5184. }
  5185. struct ggml_tensor * ggml_group_norm_inplace(
  5186. struct ggml_context * ctx,
  5187. struct ggml_tensor * a,
  5188. int n_groups) {
  5189. return ggml_group_norm_impl(ctx, a, n_groups, true);
  5190. }
  5191. // ggml_mul_mat
  5192. struct ggml_tensor * ggml_mul_mat(
  5193. struct ggml_context * ctx,
  5194. struct ggml_tensor * a,
  5195. struct ggml_tensor * b) {
  5196. GGML_ASSERT(ggml_can_mul_mat(a, b));
  5197. GGML_ASSERT(!ggml_is_transposed(a));
  5198. bool is_node = false;
  5199. if (a->grad || b->grad) {
  5200. is_node = true;
  5201. }
  5202. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  5203. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  5204. result->op = GGML_OP_MUL_MAT;
  5205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5206. result->src[0] = a;
  5207. result->src[1] = b;
  5208. return result;
  5209. }
  5210. // ggml_out_prod
  5211. struct ggml_tensor * ggml_out_prod(
  5212. struct ggml_context * ctx,
  5213. struct ggml_tensor * a,
  5214. struct ggml_tensor * b) {
  5215. GGML_ASSERT(ggml_can_out_prod(a, b));
  5216. GGML_ASSERT(!ggml_is_transposed(a));
  5217. bool is_node = false;
  5218. if (a->grad || b->grad) {
  5219. is_node = true;
  5220. }
  5221. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  5222. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  5223. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  5224. result->op = GGML_OP_OUT_PROD;
  5225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5226. result->src[0] = a;
  5227. result->src[1] = b;
  5228. return result;
  5229. }
  5230. // ggml_scale
  5231. static struct ggml_tensor * ggml_scale_impl(
  5232. struct ggml_context * ctx,
  5233. struct ggml_tensor * a,
  5234. struct ggml_tensor * b,
  5235. bool inplace) {
  5236. GGML_ASSERT(ggml_is_scalar(b));
  5237. GGML_ASSERT(ggml_is_padded_1d(a));
  5238. bool is_node = false;
  5239. if (a->grad || b->grad) {
  5240. is_node = true;
  5241. }
  5242. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5243. result->op = GGML_OP_SCALE;
  5244. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5245. result->src[0] = a;
  5246. result->src[1] = b;
  5247. return result;
  5248. }
  5249. struct ggml_tensor * ggml_scale(
  5250. struct ggml_context * ctx,
  5251. struct ggml_tensor * a,
  5252. struct ggml_tensor * b) {
  5253. return ggml_scale_impl(ctx, a, b, false);
  5254. }
  5255. struct ggml_tensor * ggml_scale_inplace(
  5256. struct ggml_context * ctx,
  5257. struct ggml_tensor * a,
  5258. struct ggml_tensor * b) {
  5259. return ggml_scale_impl(ctx, a, b, true);
  5260. }
  5261. // ggml_set
  5262. static struct ggml_tensor * ggml_set_impl(
  5263. struct ggml_context * ctx,
  5264. struct ggml_tensor * a,
  5265. struct ggml_tensor * b,
  5266. size_t nb1,
  5267. size_t nb2,
  5268. size_t nb3,
  5269. size_t offset,
  5270. bool inplace) {
  5271. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  5272. bool is_node = false;
  5273. if (a->grad || b->grad) {
  5274. is_node = true;
  5275. }
  5276. // make a view of the destination
  5277. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5278. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  5279. ggml_set_op_params(result, params, sizeof(params));
  5280. result->op = GGML_OP_SET;
  5281. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5282. result->src[0] = a;
  5283. result->src[1] = b;
  5284. return result;
  5285. }
  5286. struct ggml_tensor * ggml_set(
  5287. struct ggml_context * ctx,
  5288. struct ggml_tensor * a,
  5289. struct ggml_tensor * b,
  5290. size_t nb1,
  5291. size_t nb2,
  5292. size_t nb3,
  5293. size_t offset) {
  5294. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  5295. }
  5296. struct ggml_tensor * ggml_set_inplace(
  5297. struct ggml_context * ctx,
  5298. struct ggml_tensor * a,
  5299. struct ggml_tensor * b,
  5300. size_t nb1,
  5301. size_t nb2,
  5302. size_t nb3,
  5303. size_t offset) {
  5304. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  5305. }
  5306. struct ggml_tensor * ggml_set_1d(
  5307. struct ggml_context * ctx,
  5308. struct ggml_tensor * a,
  5309. struct ggml_tensor * b,
  5310. size_t offset) {
  5311. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  5312. }
  5313. struct ggml_tensor * ggml_set_1d_inplace(
  5314. struct ggml_context * ctx,
  5315. struct ggml_tensor * a,
  5316. struct ggml_tensor * b,
  5317. size_t offset) {
  5318. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5319. }
  5320. struct ggml_tensor * ggml_set_2d(
  5321. struct ggml_context * ctx,
  5322. struct ggml_tensor * a,
  5323. struct ggml_tensor * b,
  5324. size_t nb1,
  5325. size_t offset) {
  5326. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5327. }
  5328. struct ggml_tensor * ggml_set_2d_inplace(
  5329. struct ggml_context * ctx,
  5330. struct ggml_tensor * a,
  5331. struct ggml_tensor * b,
  5332. size_t nb1,
  5333. size_t offset) {
  5334. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5335. }
  5336. // ggml_cpy
  5337. static struct ggml_tensor * ggml_cpy_impl(
  5338. struct ggml_context * ctx,
  5339. struct ggml_tensor * a,
  5340. struct ggml_tensor * b,
  5341. bool inplace) {
  5342. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5343. bool is_node = false;
  5344. if (!inplace && (a->grad || b->grad)) {
  5345. is_node = true;
  5346. }
  5347. // make a view of the destination
  5348. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5349. if (strlen(b->name) > 0) {
  5350. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5351. } else {
  5352. ggml_format_name(result, "%s (copy)", a->name);
  5353. }
  5354. result->op = GGML_OP_CPY;
  5355. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5356. result->src[0] = a;
  5357. result->src[1] = b;
  5358. return result;
  5359. }
  5360. struct ggml_tensor * ggml_cpy(
  5361. struct ggml_context * ctx,
  5362. struct ggml_tensor * a,
  5363. struct ggml_tensor * b) {
  5364. return ggml_cpy_impl(ctx, a, b, false);
  5365. }
  5366. struct ggml_tensor * ggml_cpy_inplace(
  5367. struct ggml_context * ctx,
  5368. struct ggml_tensor * a,
  5369. struct ggml_tensor * b) {
  5370. return ggml_cpy_impl(ctx, a, b, true);
  5371. }
  5372. // ggml_cont
  5373. static struct ggml_tensor * ggml_cont_impl(
  5374. struct ggml_context * ctx,
  5375. struct ggml_tensor * a,
  5376. bool inplace) {
  5377. bool is_node = false;
  5378. if (!inplace && a->grad) {
  5379. is_node = true;
  5380. }
  5381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5382. ggml_format_name(result, "%s (cont)", a->name);
  5383. result->op = GGML_OP_CONT;
  5384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5385. result->src[0] = a;
  5386. return result;
  5387. }
  5388. struct ggml_tensor * ggml_cont(
  5389. struct ggml_context * ctx,
  5390. struct ggml_tensor * a) {
  5391. return ggml_cont_impl(ctx, a, false);
  5392. }
  5393. struct ggml_tensor * ggml_cont_inplace(
  5394. struct ggml_context * ctx,
  5395. struct ggml_tensor * a) {
  5396. return ggml_cont_impl(ctx, a, true);
  5397. }
  5398. // make contiguous, with new shape
  5399. GGML_API struct ggml_tensor * ggml_cont_1d(
  5400. struct ggml_context * ctx,
  5401. struct ggml_tensor * a,
  5402. int64_t ne0) {
  5403. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  5404. }
  5405. GGML_API struct ggml_tensor * ggml_cont_2d(
  5406. struct ggml_context * ctx,
  5407. struct ggml_tensor * a,
  5408. int64_t ne0,
  5409. int64_t ne1) {
  5410. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  5411. }
  5412. GGML_API struct ggml_tensor * ggml_cont_3d(
  5413. struct ggml_context * ctx,
  5414. struct ggml_tensor * a,
  5415. int64_t ne0,
  5416. int64_t ne1,
  5417. int64_t ne2) {
  5418. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  5419. }
  5420. struct ggml_tensor * ggml_cont_4d(
  5421. struct ggml_context * ctx,
  5422. struct ggml_tensor * a,
  5423. int64_t ne0,
  5424. int64_t ne1,
  5425. int64_t ne2,
  5426. int64_t ne3) {
  5427. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  5428. bool is_node = false;
  5429. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5430. ggml_format_name(result, "%s (cont)", a->name);
  5431. result->op = GGML_OP_CONT;
  5432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5433. result->src[0] = a;
  5434. return result;
  5435. }
  5436. // ggml_reshape
  5437. struct ggml_tensor * ggml_reshape(
  5438. struct ggml_context * ctx,
  5439. struct ggml_tensor * a,
  5440. struct ggml_tensor * b) {
  5441. GGML_ASSERT(ggml_is_contiguous(a));
  5442. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  5443. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5444. bool is_node = false;
  5445. if (a->grad) {
  5446. is_node = true;
  5447. }
  5448. if (b->grad) {
  5449. // gradient propagation is not supported
  5450. //GGML_ASSERT(false);
  5451. }
  5452. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  5453. ggml_format_name(result, "%s (reshaped)", a->name);
  5454. result->op = GGML_OP_RESHAPE;
  5455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5456. result->src[0] = a;
  5457. return result;
  5458. }
  5459. struct ggml_tensor * ggml_reshape_1d(
  5460. struct ggml_context * ctx,
  5461. struct ggml_tensor * a,
  5462. int64_t ne0) {
  5463. GGML_ASSERT(ggml_is_contiguous(a));
  5464. GGML_ASSERT(ggml_nelements(a) == ne0);
  5465. bool is_node = false;
  5466. if (a->grad) {
  5467. is_node = true;
  5468. }
  5469. const int64_t ne[1] = { ne0 };
  5470. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5471. ggml_format_name(result, "%s (reshaped)", a->name);
  5472. result->op = GGML_OP_RESHAPE;
  5473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5474. result->src[0] = a;
  5475. return result;
  5476. }
  5477. struct ggml_tensor * ggml_reshape_2d(
  5478. struct ggml_context * ctx,
  5479. struct ggml_tensor * a,
  5480. int64_t ne0,
  5481. int64_t ne1) {
  5482. GGML_ASSERT(ggml_is_contiguous(a));
  5483. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5484. bool is_node = false;
  5485. if (a->grad) {
  5486. is_node = true;
  5487. }
  5488. const int64_t ne[2] = { ne0, ne1 };
  5489. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5490. ggml_format_name(result, "%s (reshaped)", a->name);
  5491. result->op = GGML_OP_RESHAPE;
  5492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5493. result->src[0] = a;
  5494. return result;
  5495. }
  5496. struct ggml_tensor * ggml_reshape_3d(
  5497. struct ggml_context * ctx,
  5498. struct ggml_tensor * a,
  5499. int64_t ne0,
  5500. int64_t ne1,
  5501. int64_t ne2) {
  5502. GGML_ASSERT(ggml_is_contiguous(a));
  5503. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5504. bool is_node = false;
  5505. if (a->grad) {
  5506. is_node = true;
  5507. }
  5508. const int64_t ne[3] = { ne0, ne1, ne2 };
  5509. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5510. ggml_format_name(result, "%s (reshaped)", a->name);
  5511. result->op = GGML_OP_RESHAPE;
  5512. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5513. result->src[0] = a;
  5514. return result;
  5515. }
  5516. struct ggml_tensor * ggml_reshape_4d(
  5517. struct ggml_context * ctx,
  5518. struct ggml_tensor * a,
  5519. int64_t ne0,
  5520. int64_t ne1,
  5521. int64_t ne2,
  5522. int64_t ne3) {
  5523. GGML_ASSERT(ggml_is_contiguous(a));
  5524. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5525. bool is_node = false;
  5526. if (a->grad) {
  5527. is_node = true;
  5528. }
  5529. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5530. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5531. ggml_format_name(result, "%s (reshaped)", a->name);
  5532. result->op = GGML_OP_RESHAPE;
  5533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5534. result->src[0] = a;
  5535. return result;
  5536. }
  5537. static struct ggml_tensor * ggml_view_impl(
  5538. struct ggml_context * ctx,
  5539. struct ggml_tensor * a,
  5540. int n_dims,
  5541. const int64_t * ne,
  5542. size_t offset) {
  5543. bool is_node = false;
  5544. if (a->grad) {
  5545. is_node = true;
  5546. }
  5547. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5548. ggml_format_name(result, "%s (view)", a->name);
  5549. ggml_set_op_params(result, &offset, sizeof(offset));
  5550. result->op = GGML_OP_VIEW;
  5551. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5552. result->src[0] = a;
  5553. return result;
  5554. }
  5555. // ggml_view_1d
  5556. struct ggml_tensor * ggml_view_1d(
  5557. struct ggml_context * ctx,
  5558. struct ggml_tensor * a,
  5559. int64_t ne0,
  5560. size_t offset) {
  5561. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5562. return result;
  5563. }
  5564. // ggml_view_2d
  5565. struct ggml_tensor * ggml_view_2d(
  5566. struct ggml_context * ctx,
  5567. struct ggml_tensor * a,
  5568. int64_t ne0,
  5569. int64_t ne1,
  5570. size_t nb1,
  5571. size_t offset) {
  5572. const int64_t ne[2] = { ne0, ne1 };
  5573. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5574. result->nb[1] = nb1;
  5575. result->nb[2] = result->nb[1]*ne1;
  5576. result->nb[3] = result->nb[2];
  5577. return result;
  5578. }
  5579. // ggml_view_3d
  5580. struct ggml_tensor * ggml_view_3d(
  5581. struct ggml_context * ctx,
  5582. struct ggml_tensor * a,
  5583. int64_t ne0,
  5584. int64_t ne1,
  5585. int64_t ne2,
  5586. size_t nb1,
  5587. size_t nb2,
  5588. size_t offset) {
  5589. const int64_t ne[3] = { ne0, ne1, ne2 };
  5590. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5591. result->nb[1] = nb1;
  5592. result->nb[2] = nb2;
  5593. result->nb[3] = result->nb[2]*ne2;
  5594. return result;
  5595. }
  5596. // ggml_view_4d
  5597. struct ggml_tensor * ggml_view_4d(
  5598. struct ggml_context * ctx,
  5599. struct ggml_tensor * a,
  5600. int64_t ne0,
  5601. int64_t ne1,
  5602. int64_t ne2,
  5603. int64_t ne3,
  5604. size_t nb1,
  5605. size_t nb2,
  5606. size_t nb3,
  5607. size_t offset) {
  5608. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5609. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5610. result->nb[1] = nb1;
  5611. result->nb[2] = nb2;
  5612. result->nb[3] = nb3;
  5613. return result;
  5614. }
  5615. // ggml_permute
  5616. struct ggml_tensor * ggml_permute(
  5617. struct ggml_context * ctx,
  5618. struct ggml_tensor * a,
  5619. int axis0,
  5620. int axis1,
  5621. int axis2,
  5622. int axis3) {
  5623. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5624. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5625. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5626. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5627. GGML_ASSERT(axis0 != axis1);
  5628. GGML_ASSERT(axis0 != axis2);
  5629. GGML_ASSERT(axis0 != axis3);
  5630. GGML_ASSERT(axis1 != axis2);
  5631. GGML_ASSERT(axis1 != axis3);
  5632. GGML_ASSERT(axis2 != axis3);
  5633. bool is_node = false;
  5634. if (a->grad) {
  5635. is_node = true;
  5636. }
  5637. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5638. ggml_format_name(result, "%s (permuted)", a->name);
  5639. int ne[GGML_MAX_DIMS];
  5640. int nb[GGML_MAX_DIMS];
  5641. ne[axis0] = a->ne[0];
  5642. ne[axis1] = a->ne[1];
  5643. ne[axis2] = a->ne[2];
  5644. ne[axis3] = a->ne[3];
  5645. nb[axis0] = a->nb[0];
  5646. nb[axis1] = a->nb[1];
  5647. nb[axis2] = a->nb[2];
  5648. nb[axis3] = a->nb[3];
  5649. result->ne[0] = ne[0];
  5650. result->ne[1] = ne[1];
  5651. result->ne[2] = ne[2];
  5652. result->ne[3] = ne[3];
  5653. result->nb[0] = nb[0];
  5654. result->nb[1] = nb[1];
  5655. result->nb[2] = nb[2];
  5656. result->nb[3] = nb[3];
  5657. result->op = GGML_OP_PERMUTE;
  5658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5659. result->src[0] = a;
  5660. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5661. ggml_set_op_params(result, params, sizeof(params));
  5662. return result;
  5663. }
  5664. // ggml_transpose
  5665. struct ggml_tensor * ggml_transpose(
  5666. struct ggml_context * ctx,
  5667. struct ggml_tensor * a) {
  5668. bool is_node = false;
  5669. if (a->grad) {
  5670. is_node = true;
  5671. }
  5672. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5673. ggml_format_name(result, "%s (transposed)", a->name);
  5674. result->ne[0] = a->ne[1];
  5675. result->ne[1] = a->ne[0];
  5676. result->nb[0] = a->nb[1];
  5677. result->nb[1] = a->nb[0];
  5678. result->op = GGML_OP_TRANSPOSE;
  5679. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5680. result->src[0] = a;
  5681. return result;
  5682. }
  5683. // ggml_get_rows
  5684. struct ggml_tensor * ggml_get_rows(
  5685. struct ggml_context * ctx,
  5686. struct ggml_tensor * a,
  5687. struct ggml_tensor * b) {
  5688. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5689. bool is_node = false;
  5690. if (a->grad || b->grad) {
  5691. is_node = true;
  5692. }
  5693. // TODO: implement non F32 return
  5694. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5695. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5696. result->op = GGML_OP_GET_ROWS;
  5697. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5698. result->src[0] = a;
  5699. result->src[1] = b;
  5700. return result;
  5701. }
  5702. // ggml_get_rows_back
  5703. struct ggml_tensor * ggml_get_rows_back(
  5704. struct ggml_context * ctx,
  5705. struct ggml_tensor * a,
  5706. struct ggml_tensor * b,
  5707. struct ggml_tensor * c) {
  5708. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5709. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5710. bool is_node = false;
  5711. if (a->grad || b->grad) {
  5712. is_node = true;
  5713. }
  5714. // TODO: implement non F32 return
  5715. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5716. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5717. result->op = GGML_OP_GET_ROWS_BACK;
  5718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5719. result->src[0] = a;
  5720. result->src[1] = b;
  5721. return result;
  5722. }
  5723. // ggml_diag
  5724. struct ggml_tensor * ggml_diag(
  5725. struct ggml_context * ctx,
  5726. struct ggml_tensor * a) {
  5727. GGML_ASSERT(a->ne[1] == 1);
  5728. bool is_node = false;
  5729. if (a->grad) {
  5730. is_node = true;
  5731. }
  5732. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5733. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5734. result->op = GGML_OP_DIAG;
  5735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5736. result->src[0] = a;
  5737. return result;
  5738. }
  5739. // ggml_diag_mask_inf
  5740. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5741. struct ggml_context * ctx,
  5742. struct ggml_tensor * a,
  5743. int n_past,
  5744. bool inplace) {
  5745. bool is_node = false;
  5746. if (a->grad) {
  5747. is_node = true;
  5748. }
  5749. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5750. int32_t params[] = { n_past };
  5751. ggml_set_op_params(result, params, sizeof(params));
  5752. result->op = GGML_OP_DIAG_MASK_INF;
  5753. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5754. result->src[0] = a;
  5755. return result;
  5756. }
  5757. struct ggml_tensor * ggml_diag_mask_inf(
  5758. struct ggml_context * ctx,
  5759. struct ggml_tensor * a,
  5760. int n_past) {
  5761. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5762. }
  5763. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5764. struct ggml_context * ctx,
  5765. struct ggml_tensor * a,
  5766. int n_past) {
  5767. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5768. }
  5769. // ggml_diag_mask_zero
  5770. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5771. struct ggml_context * ctx,
  5772. struct ggml_tensor * a,
  5773. int n_past,
  5774. bool inplace) {
  5775. bool is_node = false;
  5776. if (a->grad) {
  5777. is_node = true;
  5778. }
  5779. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5780. int32_t params[] = { n_past };
  5781. ggml_set_op_params(result, params, sizeof(params));
  5782. result->op = GGML_OP_DIAG_MASK_ZERO;
  5783. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5784. result->src[0] = a;
  5785. return result;
  5786. }
  5787. struct ggml_tensor * ggml_diag_mask_zero(
  5788. struct ggml_context * ctx,
  5789. struct ggml_tensor * a,
  5790. int n_past) {
  5791. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5792. }
  5793. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5794. struct ggml_context * ctx,
  5795. struct ggml_tensor * a,
  5796. int n_past) {
  5797. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5798. }
  5799. // ggml_soft_max
  5800. static struct ggml_tensor * ggml_soft_max_impl(
  5801. struct ggml_context * ctx,
  5802. struct ggml_tensor * a,
  5803. bool inplace) {
  5804. bool is_node = false;
  5805. if (a->grad) {
  5806. is_node = true;
  5807. }
  5808. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5809. result->op = GGML_OP_SOFT_MAX;
  5810. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5811. result->src[0] = a;
  5812. return result;
  5813. }
  5814. struct ggml_tensor * ggml_soft_max(
  5815. struct ggml_context * ctx,
  5816. struct ggml_tensor * a) {
  5817. return ggml_soft_max_impl(ctx, a, false);
  5818. }
  5819. struct ggml_tensor * ggml_soft_max_inplace(
  5820. struct ggml_context * ctx,
  5821. struct ggml_tensor * a) {
  5822. return ggml_soft_max_impl(ctx, a, true);
  5823. }
  5824. // ggml_soft_max_back
  5825. static struct ggml_tensor * ggml_soft_max_back_impl(
  5826. struct ggml_context * ctx,
  5827. struct ggml_tensor * a,
  5828. struct ggml_tensor * b,
  5829. bool inplace) {
  5830. bool is_node = false;
  5831. if (a->grad || b->grad) {
  5832. is_node = true; // TODO : implement backward pass
  5833. }
  5834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5835. result->op = GGML_OP_SOFT_MAX_BACK;
  5836. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5837. result->src[0] = a;
  5838. result->src[1] = b;
  5839. return result;
  5840. }
  5841. struct ggml_tensor * ggml_soft_max_back(
  5842. struct ggml_context * ctx,
  5843. struct ggml_tensor * a,
  5844. struct ggml_tensor * b) {
  5845. return ggml_soft_max_back_impl(ctx, a, b, false);
  5846. }
  5847. struct ggml_tensor * ggml_soft_max_back_inplace(
  5848. struct ggml_context * ctx,
  5849. struct ggml_tensor * a,
  5850. struct ggml_tensor * b) {
  5851. return ggml_soft_max_back_impl(ctx, a, b, true);
  5852. }
  5853. // ggml_rope
  5854. static struct ggml_tensor * ggml_rope_impl(
  5855. struct ggml_context * ctx,
  5856. struct ggml_tensor * a,
  5857. struct ggml_tensor * b,
  5858. int n_dims,
  5859. int mode,
  5860. int n_ctx,
  5861. float freq_base,
  5862. float freq_scale,
  5863. float xpos_base,
  5864. bool xpos_down,
  5865. bool inplace) {
  5866. GGML_ASSERT(ggml_is_vector(b));
  5867. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5868. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5869. bool is_node = false;
  5870. if (a->grad) {
  5871. is_node = true;
  5872. }
  5873. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5874. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  5875. memcpy(params + 4, &freq_base, sizeof(float));
  5876. memcpy(params + 5, &freq_scale, sizeof(float));
  5877. memcpy(params + 6, &xpos_base, sizeof(float));
  5878. memcpy(params + 7, &xpos_down, sizeof(bool));
  5879. ggml_set_op_params(result, params, sizeof(params));
  5880. result->op = GGML_OP_ROPE;
  5881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5882. result->src[0] = a;
  5883. result->src[1] = b;
  5884. return result;
  5885. }
  5886. struct ggml_tensor * ggml_rope(
  5887. struct ggml_context * ctx,
  5888. struct ggml_tensor * a,
  5889. struct ggml_tensor * b,
  5890. int n_dims,
  5891. int mode,
  5892. int n_ctx) {
  5893. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5894. }
  5895. struct ggml_tensor * ggml_rope_inplace(
  5896. struct ggml_context * ctx,
  5897. struct ggml_tensor * a,
  5898. struct ggml_tensor * b,
  5899. int n_dims,
  5900. int mode,
  5901. int n_ctx) {
  5902. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5903. }
  5904. struct ggml_tensor * ggml_rope_custom(
  5905. struct ggml_context * ctx,
  5906. struct ggml_tensor * a,
  5907. struct ggml_tensor * b,
  5908. int n_dims,
  5909. int mode,
  5910. int n_ctx,
  5911. float freq_base,
  5912. float freq_scale) {
  5913. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5914. }
  5915. struct ggml_tensor * ggml_rope_custom_inplace(
  5916. struct ggml_context * ctx,
  5917. struct ggml_tensor * a,
  5918. struct ggml_tensor * b,
  5919. int n_dims,
  5920. int mode,
  5921. int n_ctx,
  5922. float freq_base,
  5923. float freq_scale) {
  5924. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5925. }
  5926. struct ggml_tensor * ggml_rope_xpos_inplace(
  5927. struct ggml_context * ctx,
  5928. struct ggml_tensor * a,
  5929. struct ggml_tensor * b,
  5930. int n_dims,
  5931. float base,
  5932. bool down) {
  5933. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5934. }
  5935. // ggml_rope_back
  5936. struct ggml_tensor * ggml_rope_back(
  5937. struct ggml_context * ctx,
  5938. struct ggml_tensor * a,
  5939. struct ggml_tensor * b,
  5940. int n_dims,
  5941. int mode,
  5942. int n_ctx,
  5943. float freq_base,
  5944. float freq_scale,
  5945. float xpos_base,
  5946. bool xpos_down) {
  5947. GGML_ASSERT(ggml_is_vector(b));
  5948. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5949. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5950. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5951. bool is_node = false;
  5952. if (a->grad) {
  5953. is_node = false; // TODO: implement backward
  5954. }
  5955. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5956. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  5957. memcpy(params + 4, &freq_base, sizeof(float));
  5958. memcpy(params + 5, &freq_scale, sizeof(float));
  5959. memcpy(params + 6, &xpos_base, sizeof(float));
  5960. memcpy(params + 7, &xpos_down, sizeof(bool));
  5961. ggml_set_op_params(result, params, sizeof(params));
  5962. result->op = GGML_OP_ROPE_BACK;
  5963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5964. result->src[0] = a;
  5965. result->src[1] = b;
  5966. return result;
  5967. }
  5968. // ggml_alibi
  5969. struct ggml_tensor * ggml_alibi(
  5970. struct ggml_context * ctx,
  5971. struct ggml_tensor * a,
  5972. int n_past,
  5973. int n_head,
  5974. float bias_max) {
  5975. GGML_ASSERT(n_past >= 0);
  5976. bool is_node = false;
  5977. if (a->grad) {
  5978. GGML_ASSERT(false); // TODO: implement backward
  5979. is_node = true;
  5980. }
  5981. // TODO: when implement backward, fix this:
  5982. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5983. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5984. int32_t op_params[3] = { n_past, n_head };
  5985. memcpy(op_params + 2, &bias_max, sizeof(float));
  5986. ggml_set_op_params(result, op_params, sizeof(op_params));
  5987. result->op = GGML_OP_ALIBI;
  5988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5989. result->src[0] = a;
  5990. return result;
  5991. }
  5992. // ggml_clamp
  5993. struct ggml_tensor * ggml_clamp(
  5994. struct ggml_context * ctx,
  5995. struct ggml_tensor * a,
  5996. float min,
  5997. float max) {
  5998. bool is_node = false;
  5999. if (a->grad) {
  6000. GGML_ASSERT(false); // TODO: implement backward
  6001. is_node = true;
  6002. }
  6003. // TODO: when implement backward, fix this:
  6004. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  6005. float params[] = { min, max };
  6006. ggml_set_op_params(result, params, sizeof(params));
  6007. result->op = GGML_OP_CLAMP;
  6008. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6009. result->src[0] = a;
  6010. return result;
  6011. }
  6012. // ggml_conv_1d
  6013. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  6014. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  6015. }
  6016. GGML_API struct ggml_tensor * ggml_conv_1d(
  6017. struct ggml_context * ctx,
  6018. struct ggml_tensor * a,
  6019. struct ggml_tensor * b,
  6020. int s0,
  6021. int p0,
  6022. int d0) {
  6023. GGML_ASSERT(ggml_is_matrix(b));
  6024. GGML_ASSERT(a->ne[1] == b->ne[1]);
  6025. bool is_node = false;
  6026. if (a->grad || b->grad) {
  6027. GGML_ASSERT(false); // TODO: implement backward
  6028. is_node = true;
  6029. }
  6030. const int64_t ne[4] = {
  6031. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  6032. a->ne[2], 1, 1,
  6033. };
  6034. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  6035. int32_t params[] = { s0, p0, d0 };
  6036. ggml_set_op_params(result, params, sizeof(params));
  6037. result->op = GGML_OP_CONV_1D;
  6038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6039. result->src[0] = a;
  6040. result->src[1] = b;
  6041. return result;
  6042. }
  6043. // ggml_conv_1d_ph
  6044. struct ggml_tensor* ggml_conv_1d_ph(
  6045. struct ggml_context * ctx,
  6046. struct ggml_tensor * a,
  6047. struct ggml_tensor * b,
  6048. int s,
  6049. int d) {
  6050. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  6051. }
  6052. // ggml_conv_2d
  6053. struct ggml_tensor * ggml_conv_2d(
  6054. struct ggml_context * ctx,
  6055. struct ggml_tensor * a,
  6056. struct ggml_tensor * b,
  6057. int s0,
  6058. int s1,
  6059. int p0,
  6060. int p1,
  6061. int d0,
  6062. int d1) {
  6063. GGML_ASSERT(a->ne[2] == b->ne[2]);
  6064. bool is_node = false;
  6065. if (a->grad || b->grad) {
  6066. GGML_ASSERT(false); // TODO: implement backward
  6067. is_node = true;
  6068. }
  6069. const int64_t ne[4] = {
  6070. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  6071. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  6072. a->ne[3], b->ne[3],
  6073. };
  6074. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6075. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  6076. ggml_set_op_params(result, params, sizeof(params));
  6077. result->op = GGML_OP_CONV_2D;
  6078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6079. result->src[0] = a;
  6080. result->src[1] = b;
  6081. return result;
  6082. }
  6083. // ggml_conv_2d_sk_p0
  6084. struct ggml_tensor * ggml_conv_2d_sk_p0(
  6085. struct ggml_context * ctx,
  6086. struct ggml_tensor * a,
  6087. struct ggml_tensor * b) {
  6088. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  6089. }
  6090. // ggml_conv_2d_s1_ph
  6091. struct ggml_tensor * ggml_conv_2d_s1_ph(
  6092. struct ggml_context * ctx,
  6093. struct ggml_tensor * a,
  6094. struct ggml_tensor * b) {
  6095. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  6096. }
  6097. // ggml_conv_transpose_2d_p0
  6098. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  6099. return (ins - 1) * s - 2 * p + ks;
  6100. }
  6101. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  6102. struct ggml_context * ctx,
  6103. struct ggml_tensor * a,
  6104. struct ggml_tensor * b,
  6105. int stride) {
  6106. GGML_ASSERT(a->ne[3] == b->ne[2]);
  6107. bool is_node = false;
  6108. if (a->grad || b->grad) {
  6109. GGML_ASSERT(false); // TODO: implement backward
  6110. is_node = true;
  6111. }
  6112. const int64_t ne[4] = {
  6113. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  6114. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  6115. a->ne[2], b->ne[3],
  6116. };
  6117. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6118. ggml_set_op_params_i32(result, 0, stride);
  6119. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  6120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6121. result->src[0] = a;
  6122. result->src[1] = b;
  6123. return result;
  6124. }
  6125. // ggml_pool_*
  6126. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  6127. return (ins + 2 * p - ks) / s + 1;
  6128. }
  6129. // ggml_pool_1d
  6130. struct ggml_tensor * ggml_pool_1d(
  6131. struct ggml_context * ctx,
  6132. struct ggml_tensor * a,
  6133. enum ggml_op_pool op,
  6134. int k0,
  6135. int s0,
  6136. int p0) {
  6137. bool is_node = false;
  6138. if (a->grad) {
  6139. GGML_ASSERT(false); // TODO: implement backward
  6140. is_node = true;
  6141. }
  6142. const int64_t ne[3] = {
  6143. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  6144. a->ne[1],
  6145. };
  6146. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  6147. int32_t params[] = { op, k0, s0, p0 };
  6148. ggml_set_op_params(result, params, sizeof(params));
  6149. result->op = GGML_OP_POOL_1D;
  6150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6151. result->src[0] = a;
  6152. return result;
  6153. }
  6154. // ggml_pool_2d
  6155. struct ggml_tensor * ggml_pool_2d(
  6156. struct ggml_context * ctx,
  6157. struct ggml_tensor * a,
  6158. enum ggml_op_pool op,
  6159. int k0,
  6160. int k1,
  6161. int s0,
  6162. int s1,
  6163. int p0,
  6164. int p1) {
  6165. bool is_node = false;
  6166. if (a->grad) {
  6167. GGML_ASSERT(false); // TODO: implement backward
  6168. is_node = true;
  6169. }
  6170. const int64_t ne[3] = {
  6171. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  6172. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  6173. a->ne[2],
  6174. };
  6175. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6176. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  6177. ggml_set_op_params(result, params, sizeof(params));
  6178. result->op = GGML_OP_POOL_2D;
  6179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6180. result->src[0] = a;
  6181. return result;
  6182. }
  6183. // ggml_upscale
  6184. static struct ggml_tensor * ggml_upscale_impl(
  6185. struct ggml_context * ctx,
  6186. struct ggml_tensor * a,
  6187. int scale_factor) {
  6188. bool is_node = false;
  6189. if (a->grad) {
  6190. GGML_ASSERT(false); // TODO: implement backward
  6191. is_node = true;
  6192. }
  6193. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  6194. a->ne[0] * scale_factor,
  6195. a->ne[1] * scale_factor,
  6196. a->ne[2], a->ne[3]);
  6197. result->op = GGML_OP_UPSCALE;
  6198. result->op_params[0] = scale_factor;
  6199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6200. result->src[0] = a;
  6201. result->src[1] = NULL;
  6202. return result;
  6203. }
  6204. struct ggml_tensor * ggml_upscale(
  6205. struct ggml_context * ctx,
  6206. struct ggml_tensor * a,
  6207. int scale_factor) {
  6208. return ggml_upscale_impl(ctx, a, scale_factor);
  6209. }
  6210. // ggml_flash_attn
  6211. struct ggml_tensor * ggml_flash_attn(
  6212. struct ggml_context * ctx,
  6213. struct ggml_tensor * q,
  6214. struct ggml_tensor * k,
  6215. struct ggml_tensor * v,
  6216. bool masked) {
  6217. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6218. // TODO: check if vT can be multiplied by (k*qT)
  6219. bool is_node = false;
  6220. if (q->grad || k->grad || v->grad) {
  6221. is_node = true;
  6222. }
  6223. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  6224. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  6225. int32_t t = masked ? 1 : 0;
  6226. ggml_set_op_params(result, &t, sizeof(t));
  6227. result->op = GGML_OP_FLASH_ATTN;
  6228. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6229. result->src[0] = q;
  6230. result->src[1] = k;
  6231. result->src[2] = v;
  6232. return result;
  6233. }
  6234. // ggml_flash_ff
  6235. struct ggml_tensor * ggml_flash_ff(
  6236. struct ggml_context * ctx,
  6237. struct ggml_tensor * a,
  6238. struct ggml_tensor * b0,
  6239. struct ggml_tensor * b1,
  6240. struct ggml_tensor * c0,
  6241. struct ggml_tensor * c1) {
  6242. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  6243. // TODO: more checks
  6244. bool is_node = false;
  6245. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  6246. is_node = true;
  6247. }
  6248. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6249. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  6250. result->op = GGML_OP_FLASH_FF;
  6251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6252. result->src[0] = a;
  6253. result->src[1] = b0;
  6254. result->src[2] = b1;
  6255. result->src[3] = c0;
  6256. result->src[4] = c1;
  6257. return result;
  6258. }
  6259. // ggml_flash_attn_back
  6260. struct ggml_tensor * ggml_flash_attn_back(
  6261. struct ggml_context * ctx,
  6262. struct ggml_tensor * q,
  6263. struct ggml_tensor * k,
  6264. struct ggml_tensor * v,
  6265. struct ggml_tensor * d,
  6266. bool masked) {
  6267. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6268. // TODO: check if vT can be multiplied by (k*qT)
  6269. // d shape [D,N,ne2,ne3]
  6270. // q shape [D,N,ne2,ne3]
  6271. // k shape [D,M,kvne2,ne3]
  6272. // v shape [M,D,kvne2,ne3]
  6273. const int64_t D = q->ne[0];
  6274. const int64_t N = q->ne[1];
  6275. const int64_t M = k->ne[1];
  6276. const int64_t ne2 = q->ne[2];
  6277. const int64_t ne3 = q->ne[3];
  6278. const int64_t kvne2 = k->ne[2];
  6279. GGML_ASSERT(k->ne[0] == D);
  6280. GGML_ASSERT(v->ne[0] == M);
  6281. GGML_ASSERT(v->ne[1] == D);
  6282. GGML_ASSERT(d->ne[0] == D);
  6283. GGML_ASSERT(d->ne[1] == N);
  6284. GGML_ASSERT(k->ne[2] == kvne2);
  6285. GGML_ASSERT(k->ne[3] == ne3);
  6286. GGML_ASSERT(v->ne[2] == kvne2);
  6287. GGML_ASSERT(v->ne[3] == ne3);
  6288. GGML_ASSERT(d->ne[2] == ne2);
  6289. GGML_ASSERT(d->ne[3] == ne3);
  6290. GGML_ASSERT(ne2 % kvne2 == 0);
  6291. bool is_node = false;
  6292. if (q->grad || k->grad || v->grad) {
  6293. // when using this operation (in backwards pass) these grads are set.
  6294. // we don't want to create (big) grad of our result, so is_node is false.
  6295. is_node = false;
  6296. }
  6297. // store gradients of q, k and v as continuous tensors concatenated in result.
  6298. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6299. const int64_t elem_q = ggml_nelements(q);
  6300. const int64_t elem_k = ggml_nelements(k);
  6301. const int64_t elem_v = ggml_nelements(v);
  6302. enum ggml_type result_type = GGML_TYPE_F32;
  6303. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  6304. const size_t tsize = ggml_type_size(result_type);
  6305. const size_t offs_q = 0;
  6306. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  6307. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  6308. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  6309. const size_t nelements = (end + tsize - 1)/tsize;
  6310. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  6311. int32_t masked_i = masked ? 1 : 0;
  6312. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6313. result->op = GGML_OP_FLASH_ATTN_BACK;
  6314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6315. result->src[0] = q;
  6316. result->src[1] = k;
  6317. result->src[2] = v;
  6318. result->src[3] = d;
  6319. return result;
  6320. }
  6321. // ggml_win_part
  6322. struct ggml_tensor * ggml_win_part(
  6323. struct ggml_context * ctx,
  6324. struct ggml_tensor * a,
  6325. int w) {
  6326. GGML_ASSERT(a->ne[3] == 1);
  6327. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6328. bool is_node = false;
  6329. if (a->grad) {
  6330. GGML_ASSERT(false); // TODO: implement backward
  6331. is_node = true;
  6332. }
  6333. // padding
  6334. const int px = (w - a->ne[1]%w)%w;
  6335. const int py = (w - a->ne[2]%w)%w;
  6336. const int npx = (px + a->ne[1])/w;
  6337. const int npy = (py + a->ne[2])/w;
  6338. const int np = npx*npy;
  6339. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6340. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6341. int32_t params[] = { npx, npy, w };
  6342. ggml_set_op_params(result, params, sizeof(params));
  6343. result->op = GGML_OP_WIN_PART;
  6344. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6345. result->src[0] = a;
  6346. return result;
  6347. }
  6348. // ggml_win_unpart
  6349. struct ggml_tensor * ggml_win_unpart(
  6350. struct ggml_context * ctx,
  6351. struct ggml_tensor * a,
  6352. int w0,
  6353. int h0,
  6354. int w) {
  6355. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6356. bool is_node = false;
  6357. if (a->grad) {
  6358. GGML_ASSERT(false); // TODO: implement backward
  6359. is_node = true;
  6360. }
  6361. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6362. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6363. int32_t params[] = { w };
  6364. ggml_set_op_params(result, params, sizeof(params));
  6365. result->op = GGML_OP_WIN_UNPART;
  6366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6367. result->src[0] = a;
  6368. return result;
  6369. }
  6370. // ggml_get_rel_pos
  6371. struct ggml_tensor * ggml_get_rel_pos(
  6372. struct ggml_context * ctx,
  6373. struct ggml_tensor * a,
  6374. int qh,
  6375. int kh) {
  6376. GGML_ASSERT(qh == kh);
  6377. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6378. bool is_node = false;
  6379. if (a->grad) {
  6380. GGML_ASSERT(false); // TODO: implement backward
  6381. is_node = true;
  6382. }
  6383. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6384. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6385. result->op = GGML_OP_GET_REL_POS;
  6386. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6387. result->src[0] = a;
  6388. result->src[1] = NULL;
  6389. return result;
  6390. }
  6391. // ggml_add_rel_pos
  6392. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6393. struct ggml_context * ctx,
  6394. struct ggml_tensor * a,
  6395. struct ggml_tensor * pw,
  6396. struct ggml_tensor * ph,
  6397. bool inplace) {
  6398. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6399. GGML_ASSERT(ggml_is_contiguous(a));
  6400. GGML_ASSERT(ggml_is_contiguous(pw));
  6401. GGML_ASSERT(ggml_is_contiguous(ph));
  6402. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6403. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6404. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6405. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6406. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6407. bool is_node = false;
  6408. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6409. is_node = true;
  6410. }
  6411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6412. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6413. result->op = GGML_OP_ADD_REL_POS;
  6414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6415. result->src[0] = a;
  6416. result->src[1] = pw;
  6417. result->src[2] = ph;
  6418. return result;
  6419. }
  6420. struct ggml_tensor * ggml_add_rel_pos(
  6421. struct ggml_context * ctx,
  6422. struct ggml_tensor * a,
  6423. struct ggml_tensor * pw,
  6424. struct ggml_tensor * ph) {
  6425. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6426. }
  6427. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6428. struct ggml_context * ctx,
  6429. struct ggml_tensor * a,
  6430. struct ggml_tensor * pw,
  6431. struct ggml_tensor * ph) {
  6432. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6433. }
  6434. // gmml_unary
  6435. static struct ggml_tensor * ggml_unary_impl(
  6436. struct ggml_context * ctx,
  6437. struct ggml_tensor * a,
  6438. enum ggml_unary_op op,
  6439. bool inplace) {
  6440. bool is_node = false;
  6441. if (!inplace && (a->grad)) {
  6442. is_node = true;
  6443. }
  6444. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6445. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6446. result->op = GGML_OP_UNARY;
  6447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6448. result->src[0] = a;
  6449. return result;
  6450. }
  6451. struct ggml_tensor * ggml_unary(
  6452. struct ggml_context * ctx,
  6453. struct ggml_tensor * a,
  6454. enum ggml_unary_op op) {
  6455. return ggml_unary_impl(ctx, a, op, false);
  6456. }
  6457. struct ggml_tensor * ggml_unary_inplace(
  6458. struct ggml_context * ctx,
  6459. struct ggml_tensor * a,
  6460. enum ggml_unary_op op) {
  6461. return ggml_unary_impl(ctx, a, op, true);
  6462. }
  6463. // ggml_map_unary
  6464. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6465. struct ggml_context * ctx,
  6466. struct ggml_tensor * a,
  6467. const ggml_unary_op_f32_t fun,
  6468. bool inplace) {
  6469. bool is_node = false;
  6470. if (!inplace && a->grad) {
  6471. is_node = true;
  6472. }
  6473. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6474. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6475. result->op = GGML_OP_MAP_UNARY;
  6476. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6477. result->src[0] = a;
  6478. return result;
  6479. }
  6480. struct ggml_tensor * ggml_map_unary_f32(
  6481. struct ggml_context * ctx,
  6482. struct ggml_tensor * a,
  6483. const ggml_unary_op_f32_t fun) {
  6484. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6485. }
  6486. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6487. struct ggml_context * ctx,
  6488. struct ggml_tensor * a,
  6489. const ggml_unary_op_f32_t fun) {
  6490. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6491. }
  6492. // ggml_map_binary
  6493. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6494. struct ggml_context * ctx,
  6495. struct ggml_tensor * a,
  6496. struct ggml_tensor * b,
  6497. const ggml_binary_op_f32_t fun,
  6498. bool inplace) {
  6499. GGML_ASSERT(ggml_are_same_shape(a, b));
  6500. bool is_node = false;
  6501. if (!inplace && (a->grad || b->grad)) {
  6502. is_node = true;
  6503. }
  6504. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6505. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6506. result->op = GGML_OP_MAP_BINARY;
  6507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6508. result->src[0] = a;
  6509. result->src[1] = b;
  6510. return result;
  6511. }
  6512. struct ggml_tensor * ggml_map_binary_f32(
  6513. struct ggml_context * ctx,
  6514. struct ggml_tensor * a,
  6515. struct ggml_tensor * b,
  6516. const ggml_binary_op_f32_t fun) {
  6517. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6518. }
  6519. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6520. struct ggml_context * ctx,
  6521. struct ggml_tensor * a,
  6522. struct ggml_tensor * b,
  6523. const ggml_binary_op_f32_t fun) {
  6524. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6525. }
  6526. // ggml_map_custom1_f32
  6527. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6528. struct ggml_context * ctx,
  6529. struct ggml_tensor * a,
  6530. const ggml_custom1_op_f32_t fun,
  6531. bool inplace) {
  6532. bool is_node = false;
  6533. if (!inplace && a->grad) {
  6534. is_node = true;
  6535. }
  6536. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6537. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6538. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6540. result->src[0] = a;
  6541. return result;
  6542. }
  6543. struct ggml_tensor * ggml_map_custom1_f32(
  6544. struct ggml_context * ctx,
  6545. struct ggml_tensor * a,
  6546. const ggml_custom1_op_f32_t fun) {
  6547. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6548. }
  6549. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6550. struct ggml_context * ctx,
  6551. struct ggml_tensor * a,
  6552. const ggml_custom1_op_f32_t fun) {
  6553. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6554. }
  6555. // ggml_map_custom2_f32
  6556. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6557. struct ggml_context * ctx,
  6558. struct ggml_tensor * a,
  6559. struct ggml_tensor * b,
  6560. const ggml_custom2_op_f32_t fun,
  6561. bool inplace) {
  6562. bool is_node = false;
  6563. if (!inplace && (a->grad || b->grad)) {
  6564. is_node = true;
  6565. }
  6566. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6567. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6568. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6570. result->src[0] = a;
  6571. result->src[1] = b;
  6572. return result;
  6573. }
  6574. struct ggml_tensor * ggml_map_custom2_f32(
  6575. struct ggml_context * ctx,
  6576. struct ggml_tensor * a,
  6577. struct ggml_tensor * b,
  6578. const ggml_custom2_op_f32_t fun) {
  6579. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6580. }
  6581. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6582. struct ggml_context * ctx,
  6583. struct ggml_tensor * a,
  6584. struct ggml_tensor * b,
  6585. const ggml_custom2_op_f32_t fun) {
  6586. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6587. }
  6588. // ggml_map_custom3_f32
  6589. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6590. struct ggml_context * ctx,
  6591. struct ggml_tensor * a,
  6592. struct ggml_tensor * b,
  6593. struct ggml_tensor * c,
  6594. const ggml_custom3_op_f32_t fun,
  6595. bool inplace) {
  6596. bool is_node = false;
  6597. if (!inplace && (a->grad || b->grad || c->grad)) {
  6598. is_node = true;
  6599. }
  6600. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6601. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6602. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6604. result->src[0] = a;
  6605. result->src[1] = b;
  6606. result->src[2] = c;
  6607. return result;
  6608. }
  6609. struct ggml_tensor * ggml_map_custom3_f32(
  6610. struct ggml_context * ctx,
  6611. struct ggml_tensor * a,
  6612. struct ggml_tensor * b,
  6613. struct ggml_tensor * c,
  6614. const ggml_custom3_op_f32_t fun) {
  6615. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6616. }
  6617. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6618. struct ggml_context * ctx,
  6619. struct ggml_tensor * a,
  6620. struct ggml_tensor * b,
  6621. struct ggml_tensor * c,
  6622. const ggml_custom3_op_f32_t fun) {
  6623. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6624. }
  6625. // ggml_map_custom1
  6626. struct ggml_map_custom1_op_params {
  6627. ggml_custom1_op_t fun;
  6628. int n_tasks;
  6629. void * userdata;
  6630. };
  6631. static struct ggml_tensor * ggml_map_custom1_impl(
  6632. struct ggml_context * ctx,
  6633. struct ggml_tensor * a,
  6634. const ggml_custom1_op_t fun,
  6635. int n_tasks,
  6636. void * userdata,
  6637. bool inplace) {
  6638. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6639. bool is_node = false;
  6640. if (!inplace && a->grad) {
  6641. is_node = true;
  6642. }
  6643. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6644. struct ggml_map_custom1_op_params params = {
  6645. /*.fun =*/ fun,
  6646. /*.n_tasks =*/ n_tasks,
  6647. /*.userdata =*/ userdata
  6648. };
  6649. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6650. result->op = GGML_OP_MAP_CUSTOM1;
  6651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6652. result->src[0] = a;
  6653. return result;
  6654. }
  6655. struct ggml_tensor * ggml_map_custom1(
  6656. struct ggml_context * ctx,
  6657. struct ggml_tensor * a,
  6658. const ggml_custom1_op_t fun,
  6659. int n_tasks,
  6660. void * userdata) {
  6661. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6662. }
  6663. struct ggml_tensor * ggml_map_custom1_inplace(
  6664. struct ggml_context * ctx,
  6665. struct ggml_tensor * a,
  6666. const ggml_custom1_op_t fun,
  6667. int n_tasks,
  6668. void * userdata) {
  6669. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6670. }
  6671. // ggml_map_custom2
  6672. struct ggml_map_custom2_op_params {
  6673. ggml_custom2_op_t fun;
  6674. int n_tasks;
  6675. void * userdata;
  6676. };
  6677. static struct ggml_tensor * ggml_map_custom2_impl(
  6678. struct ggml_context * ctx,
  6679. struct ggml_tensor * a,
  6680. struct ggml_tensor * b,
  6681. const ggml_custom2_op_t fun,
  6682. int n_tasks,
  6683. void * userdata,
  6684. bool inplace) {
  6685. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6686. bool is_node = false;
  6687. if (!inplace && (a->grad || b->grad)) {
  6688. is_node = true;
  6689. }
  6690. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6691. struct ggml_map_custom2_op_params params = {
  6692. /*.fun =*/ fun,
  6693. /*.n_tasks =*/ n_tasks,
  6694. /*.userdata =*/ userdata
  6695. };
  6696. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6697. result->op = GGML_OP_MAP_CUSTOM2;
  6698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6699. result->src[0] = a;
  6700. result->src[1] = b;
  6701. return result;
  6702. }
  6703. struct ggml_tensor * ggml_map_custom2(
  6704. struct ggml_context * ctx,
  6705. struct ggml_tensor * a,
  6706. struct ggml_tensor * b,
  6707. const ggml_custom2_op_t fun,
  6708. int n_tasks,
  6709. void * userdata) {
  6710. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6711. }
  6712. struct ggml_tensor * ggml_map_custom2_inplace(
  6713. struct ggml_context * ctx,
  6714. struct ggml_tensor * a,
  6715. struct ggml_tensor * b,
  6716. const ggml_custom2_op_t fun,
  6717. int n_tasks,
  6718. void * userdata) {
  6719. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6720. }
  6721. // ggml_map_custom3
  6722. struct ggml_map_custom3_op_params {
  6723. ggml_custom3_op_t fun;
  6724. int n_tasks;
  6725. void * userdata;
  6726. };
  6727. static struct ggml_tensor * ggml_map_custom3_impl(
  6728. struct ggml_context * ctx,
  6729. struct ggml_tensor * a,
  6730. struct ggml_tensor * b,
  6731. struct ggml_tensor * c,
  6732. const ggml_custom3_op_t fun,
  6733. int n_tasks,
  6734. void * userdata,
  6735. bool inplace) {
  6736. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6737. bool is_node = false;
  6738. if (!inplace && (a->grad || b->grad || c->grad)) {
  6739. is_node = true;
  6740. }
  6741. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6742. struct ggml_map_custom3_op_params params = {
  6743. /*.fun =*/ fun,
  6744. /*.n_tasks =*/ n_tasks,
  6745. /*.userdata =*/ userdata
  6746. };
  6747. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6748. result->op = GGML_OP_MAP_CUSTOM3;
  6749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6750. result->src[0] = a;
  6751. result->src[1] = b;
  6752. result->src[2] = c;
  6753. return result;
  6754. }
  6755. struct ggml_tensor * ggml_map_custom3(
  6756. struct ggml_context * ctx,
  6757. struct ggml_tensor * a,
  6758. struct ggml_tensor * b,
  6759. struct ggml_tensor * c,
  6760. const ggml_custom3_op_t fun,
  6761. int n_tasks,
  6762. void * userdata) {
  6763. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6764. }
  6765. struct ggml_tensor * ggml_map_custom3_inplace(
  6766. struct ggml_context * ctx,
  6767. struct ggml_tensor * a,
  6768. struct ggml_tensor * b,
  6769. struct ggml_tensor * c,
  6770. const ggml_custom3_op_t fun,
  6771. int n_tasks,
  6772. void * userdata) {
  6773. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6774. }
  6775. // ggml_cross_entropy_loss
  6776. struct ggml_tensor * ggml_cross_entropy_loss(
  6777. struct ggml_context * ctx,
  6778. struct ggml_tensor * a,
  6779. struct ggml_tensor * b) {
  6780. GGML_ASSERT(ggml_are_same_shape(a, b));
  6781. bool is_node = false;
  6782. if (a->grad || b->grad) {
  6783. is_node = true;
  6784. }
  6785. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6786. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6788. result->src[0] = a;
  6789. result->src[1] = b;
  6790. return result;
  6791. }
  6792. // ggml_cross_entropy_loss_back
  6793. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6794. struct ggml_context * ctx,
  6795. struct ggml_tensor * a,
  6796. struct ggml_tensor * b,
  6797. struct ggml_tensor * c) {
  6798. GGML_ASSERT(ggml_are_same_shape(a, b));
  6799. GGML_ASSERT(ggml_is_scalar(c));
  6800. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6801. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6802. result->grad = NULL;
  6803. result->src[0] = a;
  6804. result->src[1] = b;
  6805. result->src[2] = c;
  6806. return result;
  6807. }
  6808. ////////////////////////////////////////////////////////////////////////////////
  6809. void ggml_set_param(
  6810. struct ggml_context * ctx,
  6811. struct ggml_tensor * tensor) {
  6812. tensor->is_param = true;
  6813. GGML_ASSERT(tensor->grad == NULL);
  6814. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6815. }
  6816. // ggml_compute_forward_dup
  6817. static void ggml_compute_forward_dup_same_cont(
  6818. const struct ggml_compute_params * params,
  6819. const struct ggml_tensor * src0,
  6820. struct ggml_tensor * dst) {
  6821. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6822. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6823. GGML_ASSERT(src0->type == dst->type);
  6824. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6825. return;
  6826. }
  6827. const size_t nb00 = src0->nb[0];
  6828. const size_t nb0 = dst->nb[0];
  6829. const int ith = params->ith; // thread index
  6830. const int nth = params->nth; // number of threads
  6831. // parallelize by elements
  6832. const int ne = ggml_nelements(dst);
  6833. const int dr = (ne + nth - 1) / nth;
  6834. const int ie0 = dr * ith;
  6835. const int ie1 = MIN(ie0 + dr, ne);
  6836. if (ie0 < ie1) {
  6837. memcpy(
  6838. ((char *) dst->data + ie0*nb0),
  6839. ((char *) src0->data + ie0*nb00),
  6840. (ie1 - ie0) * ggml_type_size(src0->type));
  6841. }
  6842. }
  6843. static void ggml_compute_forward_dup_f16(
  6844. const struct ggml_compute_params * params,
  6845. const struct ggml_tensor * src0,
  6846. struct ggml_tensor * dst) {
  6847. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6848. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6849. return;
  6850. }
  6851. GGML_TENSOR_UNARY_OP_LOCALS
  6852. const int ith = params->ith; // thread index
  6853. const int nth = params->nth; // number of threads
  6854. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6855. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6856. return;
  6857. }
  6858. // parallelize by rows
  6859. const int nr = ne01;
  6860. // number of rows per thread
  6861. const int dr = (nr + nth - 1) / nth;
  6862. // row range for this thread
  6863. const int ir0 = dr * ith;
  6864. const int ir1 = MIN(ir0 + dr, nr);
  6865. if (src0->type == dst->type &&
  6866. ne00 == ne0 &&
  6867. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6868. // copy by rows
  6869. const size_t rs = ne00*nb00;
  6870. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6871. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6872. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6873. memcpy(
  6874. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6875. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6876. rs);
  6877. }
  6878. }
  6879. }
  6880. return;
  6881. }
  6882. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6883. if (ggml_is_contiguous(dst)) {
  6884. if (nb00 == sizeof(ggml_fp16_t)) {
  6885. if (dst->type == GGML_TYPE_F16) {
  6886. size_t id = 0;
  6887. const size_t rs = ne00 * nb00;
  6888. char * dst_ptr = (char *) dst->data;
  6889. for (int i03 = 0; i03 < ne03; i03++) {
  6890. for (int i02 = 0; i02 < ne02; i02++) {
  6891. id += rs * ir0;
  6892. for (int i01 = ir0; i01 < ir1; i01++) {
  6893. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6894. memcpy(dst_ptr + id, src0_ptr, rs);
  6895. id += rs;
  6896. }
  6897. id += rs * (ne01 - ir1);
  6898. }
  6899. }
  6900. } else if (dst->type == GGML_TYPE_F32) {
  6901. size_t id = 0;
  6902. float * dst_ptr = (float *) dst->data;
  6903. for (int i03 = 0; i03 < ne03; i03++) {
  6904. for (int i02 = 0; i02 < ne02; i02++) {
  6905. id += ne00 * ir0;
  6906. for (int i01 = ir0; i01 < ir1; i01++) {
  6907. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6908. for (int i00 = 0; i00 < ne00; i00++) {
  6909. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6910. id++;
  6911. }
  6912. }
  6913. id += ne00 * (ne01 - ir1);
  6914. }
  6915. }
  6916. } else if (type_traits[dst->type].from_float) {
  6917. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6918. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6919. size_t id = 0;
  6920. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6921. char * dst_ptr = (char *) dst->data;
  6922. for (int i03 = 0; i03 < ne03; i03++) {
  6923. for (int i02 = 0; i02 < ne02; i02++) {
  6924. id += rs * ir0;
  6925. for (int i01 = ir0; i01 < ir1; i01++) {
  6926. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6927. for (int i00 = 0; i00 < ne00; i00++) {
  6928. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6929. }
  6930. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6931. id += rs;
  6932. }
  6933. id += rs * (ne01 - ir1);
  6934. }
  6935. }
  6936. } else {
  6937. GGML_ASSERT(false); // TODO: implement
  6938. }
  6939. } else {
  6940. //printf("%s: this is not optimal - fix me\n", __func__);
  6941. if (dst->type == GGML_TYPE_F32) {
  6942. size_t id = 0;
  6943. float * dst_ptr = (float *) dst->data;
  6944. for (int i03 = 0; i03 < ne03; i03++) {
  6945. for (int i02 = 0; i02 < ne02; i02++) {
  6946. id += ne00 * ir0;
  6947. for (int i01 = ir0; i01 < ir1; i01++) {
  6948. for (int i00 = 0; i00 < ne00; i00++) {
  6949. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6950. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6951. id++;
  6952. }
  6953. }
  6954. id += ne00 * (ne01 - ir1);
  6955. }
  6956. }
  6957. } else if (dst->type == GGML_TYPE_F16) {
  6958. size_t id = 0;
  6959. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6960. for (int i03 = 0; i03 < ne03; i03++) {
  6961. for (int i02 = 0; i02 < ne02; i02++) {
  6962. id += ne00 * ir0;
  6963. for (int i01 = ir0; i01 < ir1; i01++) {
  6964. for (int i00 = 0; i00 < ne00; i00++) {
  6965. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6966. dst_ptr[id] = *src0_ptr;
  6967. id++;
  6968. }
  6969. }
  6970. id += ne00 * (ne01 - ir1);
  6971. }
  6972. }
  6973. } else {
  6974. GGML_ASSERT(false); // TODO: implement
  6975. }
  6976. }
  6977. return;
  6978. }
  6979. // dst counters
  6980. int64_t i10 = 0;
  6981. int64_t i11 = 0;
  6982. int64_t i12 = 0;
  6983. int64_t i13 = 0;
  6984. if (dst->type == GGML_TYPE_F16) {
  6985. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6986. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6987. i10 += ne00 * ir0;
  6988. while (i10 >= ne0) {
  6989. i10 -= ne0;
  6990. if (++i11 == ne1) {
  6991. i11 = 0;
  6992. if (++i12 == ne2) {
  6993. i12 = 0;
  6994. if (++i13 == ne3) {
  6995. i13 = 0;
  6996. }
  6997. }
  6998. }
  6999. }
  7000. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7001. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7002. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7003. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7004. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  7005. if (++i10 == ne00) {
  7006. i10 = 0;
  7007. if (++i11 == ne01) {
  7008. i11 = 0;
  7009. if (++i12 == ne02) {
  7010. i12 = 0;
  7011. if (++i13 == ne03) {
  7012. i13 = 0;
  7013. }
  7014. }
  7015. }
  7016. }
  7017. }
  7018. }
  7019. i10 += ne00 * (ne01 - ir1);
  7020. while (i10 >= ne0) {
  7021. i10 -= ne0;
  7022. if (++i11 == ne1) {
  7023. i11 = 0;
  7024. if (++i12 == ne2) {
  7025. i12 = 0;
  7026. if (++i13 == ne3) {
  7027. i13 = 0;
  7028. }
  7029. }
  7030. }
  7031. }
  7032. }
  7033. }
  7034. } else if (dst->type == GGML_TYPE_F32) {
  7035. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7036. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7037. i10 += ne00 * ir0;
  7038. while (i10 >= ne0) {
  7039. i10 -= ne0;
  7040. if (++i11 == ne1) {
  7041. i11 = 0;
  7042. if (++i12 == ne2) {
  7043. i12 = 0;
  7044. if (++i13 == ne3) {
  7045. i13 = 0;
  7046. }
  7047. }
  7048. }
  7049. }
  7050. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7051. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7052. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7053. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7054. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  7055. if (++i10 == ne0) {
  7056. i10 = 0;
  7057. if (++i11 == ne1) {
  7058. i11 = 0;
  7059. if (++i12 == ne2) {
  7060. i12 = 0;
  7061. if (++i13 == ne3) {
  7062. i13 = 0;
  7063. }
  7064. }
  7065. }
  7066. }
  7067. }
  7068. }
  7069. i10 += ne00 * (ne01 - ir1);
  7070. while (i10 >= ne0) {
  7071. i10 -= ne0;
  7072. if (++i11 == ne1) {
  7073. i11 = 0;
  7074. if (++i12 == ne2) {
  7075. i12 = 0;
  7076. if (++i13 == ne3) {
  7077. i13 = 0;
  7078. }
  7079. }
  7080. }
  7081. }
  7082. }
  7083. }
  7084. } else {
  7085. GGML_ASSERT(false); // TODO: implement
  7086. }
  7087. }
  7088. static void ggml_compute_forward_dup_f32(
  7089. const struct ggml_compute_params * params,
  7090. const struct ggml_tensor * src0,
  7091. struct ggml_tensor * dst) {
  7092. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7093. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7094. return;
  7095. }
  7096. GGML_TENSOR_UNARY_OP_LOCALS
  7097. const int ith = params->ith; // thread index
  7098. const int nth = params->nth; // number of threads
  7099. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7100. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7101. return;
  7102. }
  7103. // parallelize by rows
  7104. const int nr = ne01;
  7105. // number of rows per thread
  7106. const int dr = (nr + nth - 1) / nth;
  7107. // row range for this thread
  7108. const int ir0 = dr * ith;
  7109. const int ir1 = MIN(ir0 + dr, nr);
  7110. if (src0->type == dst->type &&
  7111. ne00 == ne0 &&
  7112. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7113. // copy by rows
  7114. const size_t rs = ne00*nb00;
  7115. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7116. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7117. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7118. memcpy(
  7119. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7120. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7121. rs);
  7122. }
  7123. }
  7124. }
  7125. return;
  7126. }
  7127. if (ggml_is_contiguous(dst)) {
  7128. // TODO: simplify
  7129. if (nb00 == sizeof(float)) {
  7130. if (dst->type == GGML_TYPE_F32) {
  7131. size_t id = 0;
  7132. const size_t rs = ne00 * nb00;
  7133. char * dst_ptr = (char *) dst->data;
  7134. for (int i03 = 0; i03 < ne03; i03++) {
  7135. for (int i02 = 0; i02 < ne02; i02++) {
  7136. id += rs * ir0;
  7137. for (int i01 = ir0; i01 < ir1; i01++) {
  7138. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7139. memcpy(dst_ptr + id, src0_ptr, rs);
  7140. id += rs;
  7141. }
  7142. id += rs * (ne01 - ir1);
  7143. }
  7144. }
  7145. } else if (type_traits[dst->type].from_float) {
  7146. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7147. size_t id = 0;
  7148. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7149. char * dst_ptr = (char *) dst->data;
  7150. for (int i03 = 0; i03 < ne03; i03++) {
  7151. for (int i02 = 0; i02 < ne02; i02++) {
  7152. id += rs * ir0;
  7153. for (int i01 = ir0; i01 < ir1; i01++) {
  7154. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7155. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7156. id += rs;
  7157. }
  7158. id += rs * (ne01 - ir1);
  7159. }
  7160. }
  7161. } else {
  7162. GGML_ASSERT(false); // TODO: implement
  7163. }
  7164. } else {
  7165. //printf("%s: this is not optimal - fix me\n", __func__);
  7166. if (dst->type == GGML_TYPE_F32) {
  7167. size_t id = 0;
  7168. float * dst_ptr = (float *) dst->data;
  7169. for (int i03 = 0; i03 < ne03; i03++) {
  7170. for (int i02 = 0; i02 < ne02; i02++) {
  7171. id += ne00 * ir0;
  7172. for (int i01 = ir0; i01 < ir1; i01++) {
  7173. for (int i00 = 0; i00 < ne00; i00++) {
  7174. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7175. dst_ptr[id] = *src0_ptr;
  7176. id++;
  7177. }
  7178. }
  7179. id += ne00 * (ne01 - ir1);
  7180. }
  7181. }
  7182. } else if (dst->type == GGML_TYPE_F16) {
  7183. size_t id = 0;
  7184. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7185. for (int i03 = 0; i03 < ne03; i03++) {
  7186. for (int i02 = 0; i02 < ne02; i02++) {
  7187. id += ne00 * ir0;
  7188. for (int i01 = ir0; i01 < ir1; i01++) {
  7189. for (int i00 = 0; i00 < ne00; i00++) {
  7190. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7191. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7192. id++;
  7193. }
  7194. }
  7195. id += ne00 * (ne01 - ir1);
  7196. }
  7197. }
  7198. } else {
  7199. GGML_ASSERT(false); // TODO: implement
  7200. }
  7201. }
  7202. return;
  7203. }
  7204. // dst counters
  7205. int64_t i10 = 0;
  7206. int64_t i11 = 0;
  7207. int64_t i12 = 0;
  7208. int64_t i13 = 0;
  7209. if (dst->type == GGML_TYPE_F32) {
  7210. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7211. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7212. i10 += ne00 * ir0;
  7213. while (i10 >= ne0) {
  7214. i10 -= ne0;
  7215. if (++i11 == ne1) {
  7216. i11 = 0;
  7217. if (++i12 == ne2) {
  7218. i12 = 0;
  7219. if (++i13 == ne3) {
  7220. i13 = 0;
  7221. }
  7222. }
  7223. }
  7224. }
  7225. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7226. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7227. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7228. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7229. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7230. if (++i10 == ne0) {
  7231. i10 = 0;
  7232. if (++i11 == ne1) {
  7233. i11 = 0;
  7234. if (++i12 == ne2) {
  7235. i12 = 0;
  7236. if (++i13 == ne3) {
  7237. i13 = 0;
  7238. }
  7239. }
  7240. }
  7241. }
  7242. }
  7243. }
  7244. i10 += ne00 * (ne01 - ir1);
  7245. while (i10 >= ne0) {
  7246. i10 -= ne0;
  7247. if (++i11 == ne1) {
  7248. i11 = 0;
  7249. if (++i12 == ne2) {
  7250. i12 = 0;
  7251. if (++i13 == ne3) {
  7252. i13 = 0;
  7253. }
  7254. }
  7255. }
  7256. }
  7257. }
  7258. }
  7259. } else if (dst->type == GGML_TYPE_F16) {
  7260. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7261. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7262. i10 += ne00 * ir0;
  7263. while (i10 >= ne0) {
  7264. i10 -= ne0;
  7265. if (++i11 == ne1) {
  7266. i11 = 0;
  7267. if (++i12 == ne2) {
  7268. i12 = 0;
  7269. if (++i13 == ne3) {
  7270. i13 = 0;
  7271. }
  7272. }
  7273. }
  7274. }
  7275. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7276. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7277. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7278. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7279. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7280. if (++i10 == ne0) {
  7281. i10 = 0;
  7282. if (++i11 == ne1) {
  7283. i11 = 0;
  7284. if (++i12 == ne2) {
  7285. i12 = 0;
  7286. if (++i13 == ne3) {
  7287. i13 = 0;
  7288. }
  7289. }
  7290. }
  7291. }
  7292. }
  7293. }
  7294. i10 += ne00 * (ne01 - ir1);
  7295. while (i10 >= ne0) {
  7296. i10 -= ne0;
  7297. if (++i11 == ne1) {
  7298. i11 = 0;
  7299. if (++i12 == ne2) {
  7300. i12 = 0;
  7301. if (++i13 == ne3) {
  7302. i13 = 0;
  7303. }
  7304. }
  7305. }
  7306. }
  7307. }
  7308. }
  7309. } else {
  7310. GGML_ASSERT(false); // TODO: implement
  7311. }
  7312. }
  7313. static void ggml_compute_forward_dup(
  7314. const struct ggml_compute_params * params,
  7315. const struct ggml_tensor * src0,
  7316. struct ggml_tensor * dst) {
  7317. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7318. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7319. return;
  7320. }
  7321. switch (src0->type) {
  7322. case GGML_TYPE_F16:
  7323. {
  7324. ggml_compute_forward_dup_f16(params, src0, dst);
  7325. } break;
  7326. case GGML_TYPE_F32:
  7327. {
  7328. ggml_compute_forward_dup_f32(params, src0, dst);
  7329. } break;
  7330. default:
  7331. {
  7332. GGML_ASSERT(false);
  7333. } break;
  7334. }
  7335. }
  7336. // ggml_compute_forward_add
  7337. static void ggml_compute_forward_add_f32(
  7338. const struct ggml_compute_params * params,
  7339. const struct ggml_tensor * src0,
  7340. const struct ggml_tensor * src1,
  7341. struct ggml_tensor * dst) {
  7342. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7344. return;
  7345. }
  7346. const int ith = params->ith;
  7347. const int nth = params->nth;
  7348. const int nr = ggml_nrows(src0);
  7349. GGML_TENSOR_BINARY_OP_LOCALS
  7350. GGML_ASSERT( nb0 == sizeof(float));
  7351. GGML_ASSERT(nb00 == sizeof(float));
  7352. // rows per thread
  7353. const int dr = (nr + nth - 1)/nth;
  7354. // row range for this thread
  7355. const int ir0 = dr*ith;
  7356. const int ir1 = MIN(ir0 + dr, nr);
  7357. if (nb10 == sizeof(float)) {
  7358. for (int ir = ir0; ir < ir1; ++ir) {
  7359. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7360. const int64_t i03 = ir/(ne02*ne01);
  7361. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7362. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7363. const int64_t i13 = i03 % ne13;
  7364. const int64_t i12 = i02 % ne12;
  7365. const int64_t i11 = i01 % ne11;
  7366. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7367. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7368. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7369. #ifdef GGML_USE_ACCELERATE
  7370. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7371. #else
  7372. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7373. #endif
  7374. }
  7375. } else {
  7376. // src1 is not contiguous
  7377. for (int ir = ir0; ir < ir1; ++ir) {
  7378. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7379. const int64_t i03 = ir/(ne02*ne01);
  7380. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7381. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7382. const int64_t i13 = i03 % ne13;
  7383. const int64_t i12 = i02 % ne12;
  7384. const int64_t i11 = i01 % ne11;
  7385. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7386. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7387. for (int i0 = 0; i0 < ne0; i0++) {
  7388. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7389. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7390. }
  7391. }
  7392. }
  7393. }
  7394. static void ggml_compute_forward_add_f16_f32(
  7395. const struct ggml_compute_params * params,
  7396. const struct ggml_tensor * src0,
  7397. const struct ggml_tensor * src1,
  7398. struct ggml_tensor * dst) {
  7399. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7400. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7401. return;
  7402. }
  7403. const int ith = params->ith;
  7404. const int nth = params->nth;
  7405. const int nr = ggml_nrows(src0);
  7406. GGML_TENSOR_BINARY_OP_LOCALS
  7407. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7408. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7409. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7410. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7411. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7412. // rows per thread
  7413. const int dr = (nr + nth - 1)/nth;
  7414. // row range for this thread
  7415. const int ir0 = dr*ith;
  7416. const int ir1 = MIN(ir0 + dr, nr);
  7417. if (nb10 == sizeof(float)) {
  7418. for (int ir = ir0; ir < ir1; ++ir) {
  7419. // src0, src1 and dst are same shape => same indices
  7420. const int i3 = ir/(ne2*ne1);
  7421. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7422. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7423. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7424. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7425. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7426. for (int i = 0; i < ne0; i++) {
  7427. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7428. }
  7429. }
  7430. }
  7431. else {
  7432. // src1 is not contiguous
  7433. GGML_ASSERT(false);
  7434. }
  7435. }
  7436. static void ggml_compute_forward_add_f16_f16(
  7437. const struct ggml_compute_params * params,
  7438. const struct ggml_tensor * src0,
  7439. const struct ggml_tensor * src1,
  7440. struct ggml_tensor * dst) {
  7441. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7442. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7443. return;
  7444. }
  7445. const int ith = params->ith;
  7446. const int nth = params->nth;
  7447. const int nr = ggml_nrows(src0);
  7448. GGML_TENSOR_BINARY_OP_LOCALS
  7449. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7450. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7451. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7452. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7453. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7454. // rows per thread
  7455. const int dr = (nr + nth - 1)/nth;
  7456. // row range for this thread
  7457. const int ir0 = dr*ith;
  7458. const int ir1 = MIN(ir0 + dr, nr);
  7459. if (nb10 == sizeof(ggml_fp16_t)) {
  7460. for (int ir = ir0; ir < ir1; ++ir) {
  7461. // src0, src1 and dst are same shape => same indices
  7462. const int i3 = ir/(ne2*ne1);
  7463. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7464. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7465. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7466. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7467. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7468. for (int i = 0; i < ne0; i++) {
  7469. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7470. }
  7471. }
  7472. }
  7473. else {
  7474. // src1 is not contiguous
  7475. GGML_ASSERT(false);
  7476. }
  7477. }
  7478. static void ggml_compute_forward_add_q_f32(
  7479. const struct ggml_compute_params * params,
  7480. const struct ggml_tensor * src0,
  7481. const struct ggml_tensor * src1,
  7482. struct ggml_tensor * dst) {
  7483. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7484. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7485. return;
  7486. }
  7487. const int nr = ggml_nrows(src0);
  7488. GGML_TENSOR_BINARY_OP_LOCALS
  7489. const int ith = params->ith;
  7490. const int nth = params->nth;
  7491. const enum ggml_type type = src0->type;
  7492. const enum ggml_type dtype = dst->type;
  7493. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7494. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7495. // we don't support permuted src0 or src1
  7496. GGML_ASSERT(nb00 == ggml_type_size(type));
  7497. GGML_ASSERT(nb10 == sizeof(float));
  7498. // dst cannot be transposed or permuted
  7499. GGML_ASSERT(nb0 <= nb1);
  7500. GGML_ASSERT(nb1 <= nb2);
  7501. GGML_ASSERT(nb2 <= nb3);
  7502. GGML_ASSERT(ggml_is_quantized(src0->type));
  7503. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7504. // rows per thread
  7505. const int dr = (nr + nth - 1)/nth;
  7506. // row range for this thread
  7507. const int ir0 = dr*ith;
  7508. const int ir1 = MIN(ir0 + dr, nr);
  7509. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7510. for (int ir = ir0; ir < ir1; ++ir) {
  7511. // src0 indices
  7512. const int i03 = ir/(ne02*ne01);
  7513. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7514. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7515. // src1 and dst are same shape as src0 => same indices
  7516. const int i13 = i03;
  7517. const int i12 = i02;
  7518. const int i11 = i01;
  7519. const int i3 = i03;
  7520. const int i2 = i02;
  7521. const int i1 = i01;
  7522. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7523. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7524. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7525. assert(ne00 % 32 == 0);
  7526. // unquantize row from src0 to temp buffer
  7527. dequantize_row_q(src0_row, wdata, ne00);
  7528. // add src1
  7529. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7530. // quantize row to dst
  7531. if (quantize_row_q != NULL) {
  7532. quantize_row_q(wdata, dst_row, ne00);
  7533. } else {
  7534. memcpy(dst_row, wdata, ne0*nb0);
  7535. }
  7536. }
  7537. }
  7538. static void ggml_compute_forward_add(
  7539. const struct ggml_compute_params * params,
  7540. const struct ggml_tensor * src0,
  7541. const struct ggml_tensor * src1,
  7542. struct ggml_tensor * dst) {
  7543. switch (src0->type) {
  7544. case GGML_TYPE_F32:
  7545. {
  7546. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7547. } break;
  7548. case GGML_TYPE_F16:
  7549. {
  7550. if (src1->type == GGML_TYPE_F16) {
  7551. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7552. }
  7553. else if (src1->type == GGML_TYPE_F32) {
  7554. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7555. }
  7556. else {
  7557. GGML_ASSERT(false);
  7558. }
  7559. } break;
  7560. case GGML_TYPE_Q4_0:
  7561. case GGML_TYPE_Q4_1:
  7562. case GGML_TYPE_Q5_0:
  7563. case GGML_TYPE_Q5_1:
  7564. case GGML_TYPE_Q8_0:
  7565. case GGML_TYPE_Q2_K:
  7566. case GGML_TYPE_Q3_K:
  7567. case GGML_TYPE_Q4_K:
  7568. case GGML_TYPE_Q5_K:
  7569. case GGML_TYPE_Q6_K:
  7570. {
  7571. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7572. } break;
  7573. default:
  7574. {
  7575. GGML_ASSERT(false);
  7576. } break;
  7577. }
  7578. }
  7579. // ggml_compute_forward_add1
  7580. static void ggml_compute_forward_add1_f32(
  7581. const struct ggml_compute_params * params,
  7582. const struct ggml_tensor * src0,
  7583. const struct ggml_tensor * src1,
  7584. struct ggml_tensor * dst) {
  7585. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7586. GGML_ASSERT(ggml_is_scalar(src1));
  7587. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7588. return;
  7589. }
  7590. const int ith = params->ith;
  7591. const int nth = params->nth;
  7592. const int nr = ggml_nrows(src0);
  7593. GGML_TENSOR_UNARY_OP_LOCALS
  7594. GGML_ASSERT( nb0 == sizeof(float));
  7595. GGML_ASSERT(nb00 == sizeof(float));
  7596. // rows per thread
  7597. const int dr = (nr + nth - 1)/nth;
  7598. // row range for this thread
  7599. const int ir0 = dr*ith;
  7600. const int ir1 = MIN(ir0 + dr, nr);
  7601. for (int ir = ir0; ir < ir1; ++ir) {
  7602. // src0 and dst are same shape => same indices
  7603. const int i3 = ir/(ne2*ne1);
  7604. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7605. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7606. #ifdef GGML_USE_ACCELERATE
  7607. UNUSED(ggml_vec_add1_f32);
  7608. vDSP_vadd(
  7609. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7610. (float *) ((char *) src1->data), 0,
  7611. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7612. ne0);
  7613. #else
  7614. ggml_vec_add1_f32(ne0,
  7615. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7616. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7617. *(float *) src1->data);
  7618. #endif
  7619. }
  7620. }
  7621. static void ggml_compute_forward_add1_f16_f32(
  7622. const struct ggml_compute_params * params,
  7623. const struct ggml_tensor * src0,
  7624. const struct ggml_tensor * src1,
  7625. struct ggml_tensor * dst) {
  7626. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7627. GGML_ASSERT(ggml_is_scalar(src1));
  7628. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7629. return;
  7630. }
  7631. // scalar to add
  7632. const float v = *(float *) src1->data;
  7633. const int ith = params->ith;
  7634. const int nth = params->nth;
  7635. const int nr = ggml_nrows(src0);
  7636. GGML_TENSOR_UNARY_OP_LOCALS
  7637. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7638. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7639. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7640. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7641. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7642. // rows per thread
  7643. const int dr = (nr + nth - 1)/nth;
  7644. // row range for this thread
  7645. const int ir0 = dr*ith;
  7646. const int ir1 = MIN(ir0 + dr, nr);
  7647. for (int ir = ir0; ir < ir1; ++ir) {
  7648. // src0 and dst are same shape => same indices
  7649. const int i3 = ir/(ne2*ne1);
  7650. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7651. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7652. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7653. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7654. for (int i = 0; i < ne0; i++) {
  7655. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7656. }
  7657. }
  7658. }
  7659. static void ggml_compute_forward_add1_f16_f16(
  7660. const struct ggml_compute_params * params,
  7661. const struct ggml_tensor * src0,
  7662. const struct ggml_tensor * src1,
  7663. struct ggml_tensor * dst) {
  7664. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7665. GGML_ASSERT(ggml_is_scalar(src1));
  7666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7667. return;
  7668. }
  7669. // scalar to add
  7670. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7671. const int ith = params->ith;
  7672. const int nth = params->nth;
  7673. const int nr = ggml_nrows(src0);
  7674. GGML_TENSOR_UNARY_OP_LOCALS
  7675. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7676. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7677. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7678. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7679. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7680. // rows per thread
  7681. const int dr = (nr + nth - 1)/nth;
  7682. // row range for this thread
  7683. const int ir0 = dr*ith;
  7684. const int ir1 = MIN(ir0 + dr, nr);
  7685. for (int ir = ir0; ir < ir1; ++ir) {
  7686. // src0 and dst are same shape => same indices
  7687. const int i3 = ir/(ne2*ne1);
  7688. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7689. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7690. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7691. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7692. for (int i = 0; i < ne0; i++) {
  7693. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7694. }
  7695. }
  7696. }
  7697. static void ggml_compute_forward_add1_q_f32(
  7698. const struct ggml_compute_params * params,
  7699. const struct ggml_tensor * src0,
  7700. const struct ggml_tensor * src1,
  7701. struct ggml_tensor * dst) {
  7702. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7703. GGML_ASSERT(ggml_is_scalar(src1));
  7704. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7705. return;
  7706. }
  7707. // scalar to add
  7708. const float v = *(float *) src1->data;
  7709. const int ith = params->ith;
  7710. const int nth = params->nth;
  7711. const int nr = ggml_nrows(src0);
  7712. GGML_TENSOR_UNARY_OP_LOCALS
  7713. const enum ggml_type type = src0->type;
  7714. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7715. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7716. // we don't support permuted src0
  7717. GGML_ASSERT(nb00 == ggml_type_size(type));
  7718. // dst cannot be transposed or permuted
  7719. GGML_ASSERT(nb0 <= nb1);
  7720. GGML_ASSERT(nb1 <= nb2);
  7721. GGML_ASSERT(nb2 <= nb3);
  7722. GGML_ASSERT(ggml_is_quantized(src0->type));
  7723. GGML_ASSERT(dst->type == src0->type);
  7724. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7725. // rows per thread
  7726. const int dr = (nr + nth - 1)/nth;
  7727. // row range for this thread
  7728. const int ir0 = dr*ith;
  7729. const int ir1 = MIN(ir0 + dr, nr);
  7730. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7731. for (int ir = ir0; ir < ir1; ++ir) {
  7732. // src0 and dst are same shape => same indices
  7733. const int i3 = ir/(ne2*ne1);
  7734. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7735. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7736. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7737. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7738. assert(ne0 % 32 == 0);
  7739. // unquantize row from src0 to temp buffer
  7740. dequantize_row_q(src0_row, wdata, ne0);
  7741. // add src1
  7742. ggml_vec_acc1_f32(ne0, wdata, v);
  7743. // quantize row to dst
  7744. quantize_row_q(wdata, dst_row, ne0);
  7745. }
  7746. }
  7747. static void ggml_compute_forward_add1(
  7748. const struct ggml_compute_params * params,
  7749. const struct ggml_tensor * src0,
  7750. const struct ggml_tensor * src1,
  7751. struct ggml_tensor * dst) {
  7752. switch (src0->type) {
  7753. case GGML_TYPE_F32:
  7754. {
  7755. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7756. } break;
  7757. case GGML_TYPE_F16:
  7758. {
  7759. if (src1->type == GGML_TYPE_F16) {
  7760. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7761. }
  7762. else if (src1->type == GGML_TYPE_F32) {
  7763. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7764. }
  7765. else {
  7766. GGML_ASSERT(false);
  7767. }
  7768. } break;
  7769. case GGML_TYPE_Q4_0:
  7770. case GGML_TYPE_Q4_1:
  7771. case GGML_TYPE_Q5_0:
  7772. case GGML_TYPE_Q5_1:
  7773. case GGML_TYPE_Q8_0:
  7774. case GGML_TYPE_Q8_1:
  7775. case GGML_TYPE_Q2_K:
  7776. case GGML_TYPE_Q3_K:
  7777. case GGML_TYPE_Q4_K:
  7778. case GGML_TYPE_Q5_K:
  7779. case GGML_TYPE_Q6_K:
  7780. {
  7781. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7782. } break;
  7783. default:
  7784. {
  7785. GGML_ASSERT(false);
  7786. } break;
  7787. }
  7788. }
  7789. // ggml_compute_forward_acc
  7790. static void ggml_compute_forward_acc_f32(
  7791. const struct ggml_compute_params * params,
  7792. const struct ggml_tensor * src0,
  7793. const struct ggml_tensor * src1,
  7794. struct ggml_tensor * dst) {
  7795. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7796. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7797. // view src0 and dst with these strides and data offset inbytes during acc
  7798. // nb0 is implicitely element_size because src0 and dst are contiguous
  7799. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7800. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7801. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7802. size_t offset = ((int32_t *) dst->op_params)[3];
  7803. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7804. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7805. // memcpy needs to be synchronized across threads to avoid race conditions.
  7806. // => do it in INIT phase
  7807. memcpy(
  7808. ((char *) dst->data),
  7809. ((char *) src0->data),
  7810. ggml_nbytes(dst));
  7811. }
  7812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7813. return;
  7814. }
  7815. const int ith = params->ith;
  7816. const int nth = params->nth;
  7817. const int nr = ggml_nrows(src1);
  7818. const int nc = src1->ne[0];
  7819. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  7820. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  7821. // src0 and dst as viewed during acc
  7822. const size_t nb0 = ggml_element_size(src0);
  7823. const size_t nb00 = nb0;
  7824. const size_t nb01 = nb1;
  7825. const size_t nb02 = nb2;
  7826. const size_t nb03 = nb3;
  7827. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7828. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7829. GGML_ASSERT(nb10 == sizeof(float));
  7830. // rows per thread
  7831. const int dr = (nr + nth - 1)/nth;
  7832. // row range for this thread
  7833. const int ir0 = dr*ith;
  7834. const int ir1 = MIN(ir0 + dr, nr);
  7835. for (int ir = ir0; ir < ir1; ++ir) {
  7836. // src0 and dst are viewed with shape of src1 and offset
  7837. // => same indices
  7838. const int i3 = ir/(ne12*ne11);
  7839. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7840. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7841. #ifdef GGML_USE_ACCELERATE
  7842. vDSP_vadd(
  7843. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7844. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7845. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7846. #else
  7847. ggml_vec_add_f32(nc,
  7848. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7849. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7850. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7851. #endif
  7852. }
  7853. }
  7854. static void ggml_compute_forward_acc(
  7855. const struct ggml_compute_params * params,
  7856. const struct ggml_tensor * src0,
  7857. const struct ggml_tensor * src1,
  7858. struct ggml_tensor * dst) {
  7859. switch (src0->type) {
  7860. case GGML_TYPE_F32:
  7861. {
  7862. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7863. } break;
  7864. case GGML_TYPE_F16:
  7865. case GGML_TYPE_Q4_0:
  7866. case GGML_TYPE_Q4_1:
  7867. case GGML_TYPE_Q5_0:
  7868. case GGML_TYPE_Q5_1:
  7869. case GGML_TYPE_Q8_0:
  7870. case GGML_TYPE_Q8_1:
  7871. case GGML_TYPE_Q2_K:
  7872. case GGML_TYPE_Q3_K:
  7873. case GGML_TYPE_Q4_K:
  7874. case GGML_TYPE_Q5_K:
  7875. case GGML_TYPE_Q6_K:
  7876. default:
  7877. {
  7878. GGML_ASSERT(false);
  7879. } break;
  7880. }
  7881. }
  7882. // ggml_compute_forward_sub
  7883. static void ggml_compute_forward_sub_f32(
  7884. const struct ggml_compute_params * params,
  7885. const struct ggml_tensor * src0,
  7886. const struct ggml_tensor * src1,
  7887. struct ggml_tensor * dst) {
  7888. assert(params->ith == 0);
  7889. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7890. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7891. return;
  7892. }
  7893. const int nr = ggml_nrows(src0);
  7894. GGML_TENSOR_BINARY_OP_LOCALS
  7895. GGML_ASSERT( nb0 == sizeof(float));
  7896. GGML_ASSERT(nb00 == sizeof(float));
  7897. if (nb10 == sizeof(float)) {
  7898. for (int ir = 0; ir < nr; ++ir) {
  7899. // src0, src1 and dst are same shape => same indices
  7900. const int i3 = ir/(ne2*ne1);
  7901. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7902. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7903. #ifdef GGML_USE_ACCELERATE
  7904. vDSP_vsub(
  7905. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7906. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7907. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7908. ne0);
  7909. #else
  7910. ggml_vec_sub_f32(ne0,
  7911. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7912. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7913. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7914. #endif
  7915. // }
  7916. // }
  7917. }
  7918. } else {
  7919. // src1 is not contiguous
  7920. for (int ir = 0; ir < nr; ++ir) {
  7921. // src0, src1 and dst are same shape => same indices
  7922. const int i3 = ir/(ne2*ne1);
  7923. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7924. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7925. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7926. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7927. for (int i0 = 0; i0 < ne0; i0++) {
  7928. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7929. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7930. }
  7931. }
  7932. }
  7933. }
  7934. static void ggml_compute_forward_sub(
  7935. const struct ggml_compute_params * params,
  7936. const struct ggml_tensor * src0,
  7937. const struct ggml_tensor * src1,
  7938. struct ggml_tensor * dst) {
  7939. switch (src0->type) {
  7940. case GGML_TYPE_F32:
  7941. {
  7942. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7943. } break;
  7944. default:
  7945. {
  7946. GGML_ASSERT(false);
  7947. } break;
  7948. }
  7949. }
  7950. // ggml_compute_forward_mul
  7951. static void ggml_compute_forward_mul_f32(
  7952. const struct ggml_compute_params * params,
  7953. const struct ggml_tensor * src0,
  7954. const struct ggml_tensor * src1,
  7955. struct ggml_tensor * dst) {
  7956. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7957. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7958. return;
  7959. }
  7960. const int ith = params->ith;
  7961. const int nth = params->nth;
  7962. #ifdef GGML_USE_CLBLAST
  7963. if (src1->backend == GGML_BACKEND_GPU) {
  7964. if (ith == 0) {
  7965. ggml_cl_mul(src0, src1, dst);
  7966. }
  7967. return;
  7968. }
  7969. #endif
  7970. const int64_t nr = ggml_nrows(src0);
  7971. GGML_TENSOR_BINARY_OP_LOCALS
  7972. GGML_ASSERT( nb0 == sizeof(float));
  7973. GGML_ASSERT(nb00 == sizeof(float));
  7974. GGML_ASSERT(ne00 == ne10);
  7975. if (nb10 == sizeof(float)) {
  7976. for (int64_t ir = ith; ir < nr; ir += nth) {
  7977. // src0 and dst are same shape => same indices
  7978. const int64_t i03 = ir/(ne02*ne01);
  7979. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7980. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7981. const int64_t i13 = i03 % ne13;
  7982. const int64_t i12 = i02 % ne12;
  7983. const int64_t i11 = i01 % ne11;
  7984. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7985. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7986. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7987. #ifdef GGML_USE_ACCELERATE
  7988. UNUSED(ggml_vec_mul_f32);
  7989. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7990. #else
  7991. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7992. #endif
  7993. // }
  7994. // }
  7995. }
  7996. } else {
  7997. // src1 is not contiguous
  7998. for (int64_t ir = ith; ir < nr; ir += nth) {
  7999. // src0 and dst are same shape => same indices
  8000. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8001. const int64_t i03 = ir/(ne02*ne01);
  8002. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8003. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8004. const int64_t i13 = i03 % ne13;
  8005. const int64_t i12 = i02 % ne12;
  8006. const int64_t i11 = i01 % ne11;
  8007. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8008. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8009. for (int64_t i0 = 0; i0 < ne00; i0++) {
  8010. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  8011. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8012. }
  8013. }
  8014. }
  8015. }
  8016. static void ggml_compute_forward_mul(
  8017. const struct ggml_compute_params * params,
  8018. const struct ggml_tensor * src0,
  8019. const struct ggml_tensor * src1,
  8020. struct ggml_tensor * dst) {
  8021. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8022. switch (src0->type) {
  8023. case GGML_TYPE_F32:
  8024. {
  8025. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  8026. } break;
  8027. default:
  8028. {
  8029. GGML_ASSERT(false);
  8030. } break;
  8031. }
  8032. }
  8033. // ggml_compute_forward_div
  8034. static void ggml_compute_forward_div_f32(
  8035. const struct ggml_compute_params * params,
  8036. const struct ggml_tensor * src0,
  8037. const struct ggml_tensor * src1,
  8038. struct ggml_tensor * dst) {
  8039. assert(params->ith == 0);
  8040. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8042. return;
  8043. }
  8044. const int nr = ggml_nrows(src0);
  8045. GGML_TENSOR_BINARY_OP_LOCALS
  8046. GGML_ASSERT( nb0 == sizeof(float));
  8047. GGML_ASSERT(nb00 == sizeof(float));
  8048. if (nb10 == sizeof(float)) {
  8049. for (int ir = 0; ir < nr; ++ir) {
  8050. // src0, src1 and dst are same shape => same indices
  8051. const int i3 = ir/(ne2*ne1);
  8052. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8053. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8054. #ifdef GGML_USE_ACCELERATE
  8055. UNUSED(ggml_vec_div_f32);
  8056. vDSP_vdiv(
  8057. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8058. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8059. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8060. ne0);
  8061. #else
  8062. ggml_vec_div_f32(ne0,
  8063. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8064. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8065. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8066. #endif
  8067. // }
  8068. // }
  8069. }
  8070. } else {
  8071. // src1 is not contiguous
  8072. for (int ir = 0; ir < nr; ++ir) {
  8073. // src0, src1 and dst are same shape => same indices
  8074. const int i3 = ir/(ne2*ne1);
  8075. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8076. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8077. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8078. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8079. for (int i0 = 0; i0 < ne0; i0++) {
  8080. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8081. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8082. }
  8083. }
  8084. }
  8085. }
  8086. static void ggml_compute_forward_div(
  8087. const struct ggml_compute_params * params,
  8088. const struct ggml_tensor * src0,
  8089. const struct ggml_tensor * src1,
  8090. struct ggml_tensor * dst) {
  8091. switch (src0->type) {
  8092. case GGML_TYPE_F32:
  8093. {
  8094. ggml_compute_forward_div_f32(params, src0, src1, dst);
  8095. } break;
  8096. default:
  8097. {
  8098. GGML_ASSERT(false);
  8099. } break;
  8100. }
  8101. }
  8102. // ggml_compute_forward_sqr
  8103. static void ggml_compute_forward_sqr_f32(
  8104. const struct ggml_compute_params * params,
  8105. const struct ggml_tensor * src0,
  8106. struct ggml_tensor * dst) {
  8107. assert(params->ith == 0);
  8108. assert(ggml_are_same_shape(src0, dst));
  8109. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8110. return;
  8111. }
  8112. const int n = ggml_nrows(src0);
  8113. const int nc = src0->ne[0];
  8114. assert( dst->nb[0] == sizeof(float));
  8115. assert(src0->nb[0] == sizeof(float));
  8116. for (int i = 0; i < n; i++) {
  8117. ggml_vec_sqr_f32(nc,
  8118. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8119. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8120. }
  8121. }
  8122. static void ggml_compute_forward_sqr(
  8123. const struct ggml_compute_params * params,
  8124. const struct ggml_tensor * src0,
  8125. struct ggml_tensor * dst) {
  8126. switch (src0->type) {
  8127. case GGML_TYPE_F32:
  8128. {
  8129. ggml_compute_forward_sqr_f32(params, src0, dst);
  8130. } break;
  8131. default:
  8132. {
  8133. GGML_ASSERT(false);
  8134. } break;
  8135. }
  8136. }
  8137. // ggml_compute_forward_sqrt
  8138. static void ggml_compute_forward_sqrt_f32(
  8139. const struct ggml_compute_params * params,
  8140. const struct ggml_tensor * src0,
  8141. struct ggml_tensor * dst) {
  8142. assert(params->ith == 0);
  8143. assert(ggml_are_same_shape(src0, dst));
  8144. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8145. return;
  8146. }
  8147. const int n = ggml_nrows(src0);
  8148. const int nc = src0->ne[0];
  8149. assert( dst->nb[0] == sizeof(float));
  8150. assert(src0->nb[0] == sizeof(float));
  8151. for (int i = 0; i < n; i++) {
  8152. ggml_vec_sqrt_f32(nc,
  8153. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8154. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8155. }
  8156. }
  8157. static void ggml_compute_forward_sqrt(
  8158. const struct ggml_compute_params * params,
  8159. const struct ggml_tensor * src0,
  8160. struct ggml_tensor * dst) {
  8161. switch (src0->type) {
  8162. case GGML_TYPE_F32:
  8163. {
  8164. ggml_compute_forward_sqrt_f32(params, src0, dst);
  8165. } break;
  8166. default:
  8167. {
  8168. GGML_ASSERT(false);
  8169. } break;
  8170. }
  8171. }
  8172. // ggml_compute_forward_log
  8173. static void ggml_compute_forward_log_f32(
  8174. const struct ggml_compute_params * params,
  8175. const struct ggml_tensor * src0,
  8176. struct ggml_tensor * dst) {
  8177. GGML_ASSERT(params->ith == 0);
  8178. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8180. return;
  8181. }
  8182. const int n = ggml_nrows(src0);
  8183. const int nc = src0->ne[0];
  8184. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8185. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8186. for (int i = 0; i < n; i++) {
  8187. ggml_vec_log_f32(nc,
  8188. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8189. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8190. }
  8191. }
  8192. static void ggml_compute_forward_log(
  8193. const struct ggml_compute_params * params,
  8194. const struct ggml_tensor * src0,
  8195. struct ggml_tensor * dst) {
  8196. switch (src0->type) {
  8197. case GGML_TYPE_F32:
  8198. {
  8199. ggml_compute_forward_log_f32(params, src0, dst);
  8200. } break;
  8201. default:
  8202. {
  8203. GGML_ASSERT(false);
  8204. } break;
  8205. }
  8206. }
  8207. // ggml_compute_forward_sum
  8208. static void ggml_compute_forward_sum_f32(
  8209. const struct ggml_compute_params * params,
  8210. const struct ggml_tensor * src0,
  8211. struct ggml_tensor * dst) {
  8212. assert(params->ith == 0);
  8213. assert(ggml_is_scalar(dst));
  8214. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8215. return;
  8216. }
  8217. assert(ggml_is_scalar(dst));
  8218. assert(src0->nb[0] == sizeof(float));
  8219. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8220. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8221. ggml_float sum = 0;
  8222. ggml_float row_sum = 0;
  8223. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8224. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8225. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8226. ggml_vec_sum_f32_ggf(ne00,
  8227. &row_sum,
  8228. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8229. sum += row_sum;
  8230. }
  8231. }
  8232. }
  8233. ((float *) dst->data)[0] = sum;
  8234. }
  8235. static void ggml_compute_forward_sum_f16(
  8236. const struct ggml_compute_params * params,
  8237. const struct ggml_tensor * src0,
  8238. struct ggml_tensor * dst) {
  8239. assert(params->ith == 0);
  8240. assert(ggml_is_scalar(dst));
  8241. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8242. return;
  8243. }
  8244. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8245. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8246. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8247. float sum = 0;
  8248. float row_sum = 0;
  8249. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8250. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8251. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8252. ggml_vec_sum_f16_ggf(ne00,
  8253. &row_sum,
  8254. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8255. sum += row_sum;
  8256. }
  8257. }
  8258. }
  8259. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8260. }
  8261. static void ggml_compute_forward_sum(
  8262. const struct ggml_compute_params * params,
  8263. const struct ggml_tensor * src0,
  8264. struct ggml_tensor * dst) {
  8265. switch (src0->type) {
  8266. case GGML_TYPE_F32:
  8267. {
  8268. ggml_compute_forward_sum_f32(params, src0, dst);
  8269. } break;
  8270. case GGML_TYPE_F16:
  8271. {
  8272. ggml_compute_forward_sum_f16(params, src0, dst);
  8273. } break;
  8274. default:
  8275. {
  8276. GGML_ASSERT(false);
  8277. } break;
  8278. }
  8279. }
  8280. // ggml_compute_forward_sum_rows
  8281. static void ggml_compute_forward_sum_rows_f32(
  8282. const struct ggml_compute_params * params,
  8283. const struct ggml_tensor * src0,
  8284. struct ggml_tensor * dst) {
  8285. GGML_ASSERT(params->ith == 0);
  8286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8287. return;
  8288. }
  8289. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8290. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8291. GGML_TENSOR_UNARY_OP_LOCALS
  8292. GGML_ASSERT(ne0 == 1);
  8293. GGML_ASSERT(ne1 == ne01);
  8294. GGML_ASSERT(ne2 == ne02);
  8295. GGML_ASSERT(ne3 == ne03);
  8296. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8297. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8298. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8299. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8300. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8301. float row_sum = 0;
  8302. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8303. dst_row[0] = row_sum;
  8304. }
  8305. }
  8306. }
  8307. }
  8308. static void ggml_compute_forward_sum_rows(
  8309. const struct ggml_compute_params * params,
  8310. const struct ggml_tensor * src0,
  8311. struct ggml_tensor * dst) {
  8312. switch (src0->type) {
  8313. case GGML_TYPE_F32:
  8314. {
  8315. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  8316. } break;
  8317. default:
  8318. {
  8319. GGML_ASSERT(false);
  8320. } break;
  8321. }
  8322. }
  8323. // ggml_compute_forward_mean
  8324. static void ggml_compute_forward_mean_f32(
  8325. const struct ggml_compute_params * params,
  8326. const struct ggml_tensor * src0,
  8327. struct ggml_tensor * dst) {
  8328. assert(params->ith == 0);
  8329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8330. return;
  8331. }
  8332. assert(src0->nb[0] == sizeof(float));
  8333. GGML_TENSOR_UNARY_OP_LOCALS
  8334. assert(ne0 == 1);
  8335. assert(ne1 == ne01);
  8336. assert(ne2 == ne02);
  8337. assert(ne3 == ne03);
  8338. UNUSED(ne0);
  8339. UNUSED(ne1);
  8340. UNUSED(ne2);
  8341. UNUSED(ne3);
  8342. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8343. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8344. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8345. ggml_vec_sum_f32(ne00,
  8346. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8347. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8348. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8349. }
  8350. }
  8351. }
  8352. }
  8353. static void ggml_compute_forward_mean(
  8354. const struct ggml_compute_params * params,
  8355. const struct ggml_tensor * src0,
  8356. struct ggml_tensor * dst) {
  8357. switch (src0->type) {
  8358. case GGML_TYPE_F32:
  8359. {
  8360. ggml_compute_forward_mean_f32(params, src0, dst);
  8361. } break;
  8362. default:
  8363. {
  8364. GGML_ASSERT(false);
  8365. } break;
  8366. }
  8367. }
  8368. // ggml_compute_forward_argmax
  8369. static void ggml_compute_forward_argmax_f32(
  8370. const struct ggml_compute_params * params,
  8371. const struct ggml_tensor * src0,
  8372. struct ggml_tensor * dst) {
  8373. assert(params->ith == 0);
  8374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8375. return;
  8376. }
  8377. assert(src0->nb[0] == sizeof(float));
  8378. assert(dst->nb[0] == sizeof(float));
  8379. const int64_t ne00 = src0->ne[0];
  8380. const int64_t ne01 = src0->ne[1];
  8381. const size_t nb01 = src0->nb[1];
  8382. const size_t nb0 = dst->nb[0];
  8383. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8384. float * src = (float *) ((char *) src0->data + i1*nb01);
  8385. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8386. int v = 0;
  8387. ggml_vec_argmax_f32(ne00, &v, src);
  8388. dst_[0] = v;
  8389. }
  8390. }
  8391. static void ggml_compute_forward_argmax(
  8392. const struct ggml_compute_params * params,
  8393. const struct ggml_tensor * src0,
  8394. struct ggml_tensor * dst) {
  8395. switch (src0->type) {
  8396. case GGML_TYPE_F32:
  8397. {
  8398. ggml_compute_forward_argmax_f32(params, src0, dst);
  8399. } break;
  8400. default:
  8401. {
  8402. GGML_ASSERT(false);
  8403. } break;
  8404. }
  8405. }
  8406. // ggml_compute_forward_repeat
  8407. static void ggml_compute_forward_repeat_f32(
  8408. const struct ggml_compute_params * params,
  8409. const struct ggml_tensor * src0,
  8410. struct ggml_tensor * dst) {
  8411. GGML_ASSERT(params->ith == 0);
  8412. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8414. return;
  8415. }
  8416. GGML_TENSOR_UNARY_OP_LOCALS
  8417. // guaranteed to be an integer due to the check in ggml_can_repeat
  8418. const int nr0 = (int)(ne0/ne00);
  8419. const int nr1 = (int)(ne1/ne01);
  8420. const int nr2 = (int)(ne2/ne02);
  8421. const int nr3 = (int)(ne3/ne03);
  8422. // TODO: support for transposed / permuted tensors
  8423. GGML_ASSERT(nb0 == sizeof(float));
  8424. GGML_ASSERT(nb00 == sizeof(float));
  8425. // TODO: maybe this is not optimal?
  8426. for (int i3 = 0; i3 < nr3; i3++) {
  8427. for (int k3 = 0; k3 < ne03; k3++) {
  8428. for (int i2 = 0; i2 < nr2; i2++) {
  8429. for (int k2 = 0; k2 < ne02; k2++) {
  8430. for (int i1 = 0; i1 < nr1; i1++) {
  8431. for (int k1 = 0; k1 < ne01; k1++) {
  8432. for (int i0 = 0; i0 < nr0; i0++) {
  8433. ggml_vec_cpy_f32(ne00,
  8434. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8435. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8436. }
  8437. }
  8438. }
  8439. }
  8440. }
  8441. }
  8442. }
  8443. }
  8444. static void ggml_compute_forward_repeat_f16(
  8445. const struct ggml_compute_params * params,
  8446. const struct ggml_tensor * src0,
  8447. struct ggml_tensor * dst) {
  8448. GGML_ASSERT(params->ith == 0);
  8449. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8450. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8451. return;
  8452. }
  8453. GGML_TENSOR_UNARY_OP_LOCALS;
  8454. // guaranteed to be an integer due to the check in ggml_can_repeat
  8455. const int nr0 = (int)(ne0/ne00);
  8456. const int nr1 = (int)(ne1/ne01);
  8457. const int nr2 = (int)(ne2/ne02);
  8458. const int nr3 = (int)(ne3/ne03);
  8459. // TODO: support for transposed / permuted tensors
  8460. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8461. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8462. // TODO: maybe this is not optimal?
  8463. for (int i3 = 0; i3 < nr3; i3++) {
  8464. for (int k3 = 0; k3 < ne03; k3++) {
  8465. for (int i2 = 0; i2 < nr2; i2++) {
  8466. for (int k2 = 0; k2 < ne02; k2++) {
  8467. for (int i1 = 0; i1 < nr1; i1++) {
  8468. for (int k1 = 0; k1 < ne01; k1++) {
  8469. for (int i0 = 0; i0 < nr0; i0++) {
  8470. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8471. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8472. // ggml_vec_cpy_f16(ne00, y, x)
  8473. for (int i = 0; i < ne00; ++i) {
  8474. y[i] = x[i];
  8475. }
  8476. }
  8477. }
  8478. }
  8479. }
  8480. }
  8481. }
  8482. }
  8483. }
  8484. static void ggml_compute_forward_repeat(
  8485. const struct ggml_compute_params * params,
  8486. const struct ggml_tensor * src0,
  8487. struct ggml_tensor * dst) {
  8488. switch (src0->type) {
  8489. case GGML_TYPE_F16:
  8490. {
  8491. ggml_compute_forward_repeat_f16(params, src0, dst);
  8492. } break;
  8493. case GGML_TYPE_F32:
  8494. {
  8495. ggml_compute_forward_repeat_f32(params, src0, dst);
  8496. } break;
  8497. default:
  8498. {
  8499. GGML_ASSERT(false);
  8500. } break;
  8501. }
  8502. }
  8503. // ggml_compute_forward_repeat_back
  8504. static void ggml_compute_forward_repeat_back_f32(
  8505. const struct ggml_compute_params * params,
  8506. const struct ggml_tensor * src0,
  8507. struct ggml_tensor * dst) {
  8508. GGML_ASSERT(params->ith == 0);
  8509. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8510. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8511. return;
  8512. }
  8513. GGML_TENSOR_UNARY_OP_LOCALS
  8514. // guaranteed to be an integer due to the check in ggml_can_repeat
  8515. const int nr0 = (int)(ne00/ne0);
  8516. const int nr1 = (int)(ne01/ne1);
  8517. const int nr2 = (int)(ne02/ne2);
  8518. const int nr3 = (int)(ne03/ne3);
  8519. // TODO: support for transposed / permuted tensors
  8520. GGML_ASSERT(nb0 == sizeof(float));
  8521. GGML_ASSERT(nb00 == sizeof(float));
  8522. if (ggml_is_contiguous(dst)) {
  8523. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8524. } else {
  8525. for (int k3 = 0; k3 < ne3; k3++) {
  8526. for (int k2 = 0; k2 < ne2; k2++) {
  8527. for (int k1 = 0; k1 < ne1; k1++) {
  8528. ggml_vec_set_f32(ne0,
  8529. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8530. 0);
  8531. }
  8532. }
  8533. }
  8534. }
  8535. // TODO: maybe this is not optimal?
  8536. for (int i3 = 0; i3 < nr3; i3++) {
  8537. for (int k3 = 0; k3 < ne3; k3++) {
  8538. for (int i2 = 0; i2 < nr2; i2++) {
  8539. for (int k2 = 0; k2 < ne2; k2++) {
  8540. for (int i1 = 0; i1 < nr1; i1++) {
  8541. for (int k1 = 0; k1 < ne1; k1++) {
  8542. for (int i0 = 0; i0 < nr0; i0++) {
  8543. ggml_vec_acc_f32(ne0,
  8544. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8545. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8546. }
  8547. }
  8548. }
  8549. }
  8550. }
  8551. }
  8552. }
  8553. }
  8554. static void ggml_compute_forward_repeat_back(
  8555. const struct ggml_compute_params * params,
  8556. const struct ggml_tensor * src0,
  8557. struct ggml_tensor * dst) {
  8558. switch (src0->type) {
  8559. case GGML_TYPE_F32:
  8560. {
  8561. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8562. } break;
  8563. default:
  8564. {
  8565. GGML_ASSERT(false);
  8566. } break;
  8567. }
  8568. }
  8569. // ggml_compute_forward_concat
  8570. static void ggml_compute_forward_concat_f32(
  8571. const struct ggml_compute_params * params,
  8572. const struct ggml_tensor * src0,
  8573. const struct ggml_tensor * src1,
  8574. struct ggml_tensor * dst) {
  8575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8576. return;
  8577. }
  8578. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8579. const int ith = params->ith;
  8580. GGML_TENSOR_BINARY_OP_LOCALS
  8581. // TODO: support for transposed / permuted tensors
  8582. GGML_ASSERT(nb0 == sizeof(float));
  8583. GGML_ASSERT(nb00 == sizeof(float));
  8584. GGML_ASSERT(nb10 == sizeof(float));
  8585. for (int i3 = 0; i3 < ne3; i3++) {
  8586. for (int i2 = ith; i2 < ne2; i2++) {
  8587. if (i2 < ne02) { // src0
  8588. for (int i1 = 0; i1 < ne1; i1++) {
  8589. for (int i0 = 0; i0 < ne0; i0++) {
  8590. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8591. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8592. *y = *x;
  8593. }
  8594. }
  8595. } // src1
  8596. else {
  8597. for (int i1 = 0; i1 < ne1; i1++) {
  8598. for (int i0 = 0; i0 < ne0; i0++) {
  8599. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8600. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8601. *y = *x;
  8602. }
  8603. }
  8604. }
  8605. }
  8606. }
  8607. }
  8608. static void ggml_compute_forward_concat(
  8609. const struct ggml_compute_params* params,
  8610. const struct ggml_tensor* src0,
  8611. const struct ggml_tensor* src1,
  8612. struct ggml_tensor* dst) {
  8613. switch (src0->type) {
  8614. case GGML_TYPE_F32:
  8615. {
  8616. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8617. } break;
  8618. default:
  8619. {
  8620. GGML_ASSERT(false);
  8621. } break;
  8622. }
  8623. }
  8624. // ggml_compute_forward_abs
  8625. static void ggml_compute_forward_abs_f32(
  8626. const struct ggml_compute_params * params,
  8627. const struct ggml_tensor * src0,
  8628. struct ggml_tensor * dst) {
  8629. assert(params->ith == 0);
  8630. assert(ggml_are_same_shape(src0, dst));
  8631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8632. return;
  8633. }
  8634. const int n = ggml_nrows(src0);
  8635. const int nc = src0->ne[0];
  8636. assert(dst->nb[0] == sizeof(float));
  8637. assert(src0->nb[0] == sizeof(float));
  8638. for (int i = 0; i < n; i++) {
  8639. ggml_vec_abs_f32(nc,
  8640. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8641. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8642. }
  8643. }
  8644. static void ggml_compute_forward_abs(
  8645. const struct ggml_compute_params * params,
  8646. const struct ggml_tensor * src0,
  8647. struct ggml_tensor * dst) {
  8648. switch (src0->type) {
  8649. case GGML_TYPE_F32:
  8650. {
  8651. ggml_compute_forward_abs_f32(params, src0, dst);
  8652. } break;
  8653. default:
  8654. {
  8655. GGML_ASSERT(false);
  8656. } break;
  8657. }
  8658. }
  8659. // ggml_compute_forward_sgn
  8660. static void ggml_compute_forward_sgn_f32(
  8661. const struct ggml_compute_params * params,
  8662. const struct ggml_tensor * src0,
  8663. struct ggml_tensor * dst) {
  8664. assert(params->ith == 0);
  8665. assert(ggml_are_same_shape(src0, dst));
  8666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8667. return;
  8668. }
  8669. const int n = ggml_nrows(src0);
  8670. const int nc = src0->ne[0];
  8671. assert(dst->nb[0] == sizeof(float));
  8672. assert(src0->nb[0] == sizeof(float));
  8673. for (int i = 0; i < n; i++) {
  8674. ggml_vec_sgn_f32(nc,
  8675. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8676. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8677. }
  8678. }
  8679. static void ggml_compute_forward_sgn(
  8680. const struct ggml_compute_params * params,
  8681. const struct ggml_tensor * src0,
  8682. struct ggml_tensor * dst) {
  8683. switch (src0->type) {
  8684. case GGML_TYPE_F32:
  8685. {
  8686. ggml_compute_forward_sgn_f32(params, src0, dst);
  8687. } break;
  8688. default:
  8689. {
  8690. GGML_ASSERT(false);
  8691. } break;
  8692. }
  8693. }
  8694. // ggml_compute_forward_neg
  8695. static void ggml_compute_forward_neg_f32(
  8696. const struct ggml_compute_params * params,
  8697. const struct ggml_tensor * src0,
  8698. struct ggml_tensor * dst) {
  8699. assert(params->ith == 0);
  8700. assert(ggml_are_same_shape(src0, dst));
  8701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8702. return;
  8703. }
  8704. const int n = ggml_nrows(src0);
  8705. const int nc = src0->ne[0];
  8706. assert(dst->nb[0] == sizeof(float));
  8707. assert(src0->nb[0] == sizeof(float));
  8708. for (int i = 0; i < n; i++) {
  8709. ggml_vec_neg_f32(nc,
  8710. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8711. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8712. }
  8713. }
  8714. static void ggml_compute_forward_neg(
  8715. const struct ggml_compute_params * params,
  8716. const struct ggml_tensor * src0,
  8717. struct ggml_tensor * dst) {
  8718. switch (src0->type) {
  8719. case GGML_TYPE_F32:
  8720. {
  8721. ggml_compute_forward_neg_f32(params, src0, dst);
  8722. } break;
  8723. default:
  8724. {
  8725. GGML_ASSERT(false);
  8726. } break;
  8727. }
  8728. }
  8729. // ggml_compute_forward_step
  8730. static void ggml_compute_forward_step_f32(
  8731. const struct ggml_compute_params * params,
  8732. const struct ggml_tensor * src0,
  8733. struct ggml_tensor * dst) {
  8734. assert(params->ith == 0);
  8735. assert(ggml_are_same_shape(src0, dst));
  8736. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8737. return;
  8738. }
  8739. const int n = ggml_nrows(src0);
  8740. const int nc = src0->ne[0];
  8741. assert(dst->nb[0] == sizeof(float));
  8742. assert(src0->nb[0] == sizeof(float));
  8743. for (int i = 0; i < n; i++) {
  8744. ggml_vec_step_f32(nc,
  8745. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8746. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8747. }
  8748. }
  8749. static void ggml_compute_forward_step(
  8750. const struct ggml_compute_params * params,
  8751. const struct ggml_tensor * src0,
  8752. struct ggml_tensor * dst) {
  8753. switch (src0->type) {
  8754. case GGML_TYPE_F32:
  8755. {
  8756. ggml_compute_forward_step_f32(params, src0, dst);
  8757. } break;
  8758. default:
  8759. {
  8760. GGML_ASSERT(false);
  8761. } break;
  8762. }
  8763. }
  8764. // ggml_compute_forward_tanh
  8765. static void ggml_compute_forward_tanh_f32(
  8766. const struct ggml_compute_params * params,
  8767. const struct ggml_tensor * src0,
  8768. struct ggml_tensor * dst) {
  8769. assert(params->ith == 0);
  8770. assert(ggml_are_same_shape(src0, dst));
  8771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8772. return;
  8773. }
  8774. const int n = ggml_nrows(src0);
  8775. const int nc = src0->ne[0];
  8776. assert(dst->nb[0] == sizeof(float));
  8777. assert(src0->nb[0] == sizeof(float));
  8778. for (int i = 0; i < n; i++) {
  8779. ggml_vec_tanh_f32(nc,
  8780. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8781. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8782. }
  8783. }
  8784. static void ggml_compute_forward_tanh(
  8785. const struct ggml_compute_params * params,
  8786. const struct ggml_tensor * src0,
  8787. struct ggml_tensor * dst) {
  8788. switch (src0->type) {
  8789. case GGML_TYPE_F32:
  8790. {
  8791. ggml_compute_forward_tanh_f32(params, src0, dst);
  8792. } break;
  8793. default:
  8794. {
  8795. GGML_ASSERT(false);
  8796. } break;
  8797. }
  8798. }
  8799. // ggml_compute_forward_elu
  8800. static void ggml_compute_forward_elu_f32(
  8801. const struct ggml_compute_params * params,
  8802. const struct ggml_tensor * src0,
  8803. struct ggml_tensor * dst) {
  8804. assert(params->ith == 0);
  8805. assert(ggml_are_same_shape(src0, dst));
  8806. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8807. return;
  8808. }
  8809. const int n = ggml_nrows(src0);
  8810. const int nc = src0->ne[0];
  8811. assert(dst->nb[0] == sizeof(float));
  8812. assert(src0->nb[0] == sizeof(float));
  8813. for (int i = 0; i < n; i++) {
  8814. ggml_vec_elu_f32(nc,
  8815. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8816. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8817. }
  8818. }
  8819. static void ggml_compute_forward_elu(
  8820. const struct ggml_compute_params * params,
  8821. const struct ggml_tensor * src0,
  8822. struct ggml_tensor * dst) {
  8823. switch (src0->type) {
  8824. case GGML_TYPE_F32:
  8825. {
  8826. ggml_compute_forward_elu_f32(params, src0, dst);
  8827. } break;
  8828. default:
  8829. {
  8830. GGML_ASSERT(false);
  8831. } break;
  8832. }
  8833. }
  8834. // ggml_compute_forward_relu
  8835. static void ggml_compute_forward_relu_f32(
  8836. const struct ggml_compute_params * params,
  8837. const struct ggml_tensor * src0,
  8838. struct ggml_tensor * dst) {
  8839. assert(params->ith == 0);
  8840. assert(ggml_are_same_shape(src0, dst));
  8841. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8842. return;
  8843. }
  8844. const int n = ggml_nrows(src0);
  8845. const int nc = src0->ne[0];
  8846. assert(dst->nb[0] == sizeof(float));
  8847. assert(src0->nb[0] == sizeof(float));
  8848. for (int i = 0; i < n; i++) {
  8849. ggml_vec_relu_f32(nc,
  8850. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8851. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8852. }
  8853. }
  8854. static void ggml_compute_forward_relu(
  8855. const struct ggml_compute_params * params,
  8856. const struct ggml_tensor * src0,
  8857. struct ggml_tensor * dst) {
  8858. switch (src0->type) {
  8859. case GGML_TYPE_F32:
  8860. {
  8861. ggml_compute_forward_relu_f32(params, src0, dst);
  8862. } break;
  8863. default:
  8864. {
  8865. GGML_ASSERT(false);
  8866. } break;
  8867. }
  8868. }
  8869. // ggml_compute_forward_gelu
  8870. static void ggml_compute_forward_gelu_f32(
  8871. const struct ggml_compute_params * params,
  8872. const struct ggml_tensor * src0,
  8873. struct ggml_tensor * dst) {
  8874. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8875. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8876. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8877. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8878. return;
  8879. }
  8880. const int ith = params->ith;
  8881. const int nth = params->nth;
  8882. const int nc = src0->ne[0];
  8883. const int nr = ggml_nrows(src0);
  8884. // rows per thread
  8885. const int dr = (nr + nth - 1)/nth;
  8886. // row range for this thread
  8887. const int ir0 = dr*ith;
  8888. const int ir1 = MIN(ir0 + dr, nr);
  8889. for (int i1 = ir0; i1 < ir1; i1++) {
  8890. ggml_vec_gelu_f32(nc,
  8891. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8892. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8893. #ifndef NDEBUG
  8894. for (int k = 0; k < nc; k++) {
  8895. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8896. UNUSED(x);
  8897. assert(!isnan(x));
  8898. assert(!isinf(x));
  8899. }
  8900. #endif
  8901. }
  8902. }
  8903. static void ggml_compute_forward_gelu(
  8904. const struct ggml_compute_params * params,
  8905. const struct ggml_tensor * src0,
  8906. struct ggml_tensor * dst) {
  8907. switch (src0->type) {
  8908. case GGML_TYPE_F32:
  8909. {
  8910. ggml_compute_forward_gelu_f32(params, src0, dst);
  8911. } break;
  8912. default:
  8913. {
  8914. GGML_ASSERT(false);
  8915. } break;
  8916. }
  8917. }
  8918. // ggml_compute_forward_gelu_quick
  8919. static void ggml_compute_forward_gelu_quick_f32(
  8920. const struct ggml_compute_params * params,
  8921. const struct ggml_tensor * src0,
  8922. struct ggml_tensor * dst) {
  8923. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8924. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8925. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8926. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8927. return;
  8928. }
  8929. const int ith = params->ith;
  8930. const int nth = params->nth;
  8931. const int nc = src0->ne[0];
  8932. const int nr = ggml_nrows(src0);
  8933. // rows per thread
  8934. const int dr = (nr + nth - 1)/nth;
  8935. // row range for this thread
  8936. const int ir0 = dr*ith;
  8937. const int ir1 = MIN(ir0 + dr, nr);
  8938. for (int i1 = ir0; i1 < ir1; i1++) {
  8939. ggml_vec_gelu_quick_f32(nc,
  8940. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8941. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8942. #ifndef NDEBUG
  8943. for (int k = 0; k < nc; k++) {
  8944. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8945. UNUSED(x);
  8946. assert(!isnan(x));
  8947. assert(!isinf(x));
  8948. }
  8949. #endif
  8950. }
  8951. }
  8952. static void ggml_compute_forward_gelu_quick(
  8953. const struct ggml_compute_params * params,
  8954. const struct ggml_tensor * src0,
  8955. struct ggml_tensor * dst) {
  8956. switch (src0->type) {
  8957. case GGML_TYPE_F32:
  8958. {
  8959. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8960. } break;
  8961. default:
  8962. {
  8963. GGML_ASSERT(false);
  8964. } break;
  8965. }
  8966. }
  8967. // ggml_compute_forward_silu
  8968. static void ggml_compute_forward_silu_f32(
  8969. const struct ggml_compute_params * params,
  8970. const struct ggml_tensor * src0,
  8971. struct ggml_tensor * dst) {
  8972. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8973. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8974. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8975. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8976. return;
  8977. }
  8978. const int ith = params->ith;
  8979. const int nth = params->nth;
  8980. const int nc = src0->ne[0];
  8981. const int nr = ggml_nrows(src0);
  8982. // rows per thread
  8983. const int dr = (nr + nth - 1)/nth;
  8984. // row range for this thread
  8985. const int ir0 = dr*ith;
  8986. const int ir1 = MIN(ir0 + dr, nr);
  8987. for (int i1 = ir0; i1 < ir1; i1++) {
  8988. ggml_vec_silu_f32(nc,
  8989. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8990. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8991. #ifndef NDEBUG
  8992. for (int k = 0; k < nc; k++) {
  8993. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8994. UNUSED(x);
  8995. assert(!isnan(x));
  8996. assert(!isinf(x));
  8997. }
  8998. #endif
  8999. }
  9000. }
  9001. static void ggml_compute_forward_silu(
  9002. const struct ggml_compute_params * params,
  9003. const struct ggml_tensor * src0,
  9004. struct ggml_tensor * dst) {
  9005. switch (src0->type) {
  9006. case GGML_TYPE_F32:
  9007. {
  9008. ggml_compute_forward_silu_f32(params, src0, dst);
  9009. } break;
  9010. default:
  9011. {
  9012. GGML_ASSERT(false);
  9013. } break;
  9014. }
  9015. }
  9016. // ggml_compute_forward_silu_back
  9017. static void ggml_compute_forward_silu_back_f32(
  9018. const struct ggml_compute_params * params,
  9019. const struct ggml_tensor * src0,
  9020. const struct ggml_tensor * grad,
  9021. struct ggml_tensor * dst) {
  9022. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9023. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9024. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9025. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9026. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9027. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9028. return;
  9029. }
  9030. const int ith = params->ith;
  9031. const int nth = params->nth;
  9032. const int nc = src0->ne[0];
  9033. const int nr = ggml_nrows(src0);
  9034. // rows per thread
  9035. const int dr = (nr + nth - 1)/nth;
  9036. // row range for this thread
  9037. const int ir0 = dr*ith;
  9038. const int ir1 = MIN(ir0 + dr, nr);
  9039. for (int i1 = ir0; i1 < ir1; i1++) {
  9040. ggml_vec_silu_backward_f32(nc,
  9041. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9042. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9043. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9044. #ifndef NDEBUG
  9045. for (int k = 0; k < nc; k++) {
  9046. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9047. UNUSED(x);
  9048. assert(!isnan(x));
  9049. assert(!isinf(x));
  9050. }
  9051. #endif
  9052. }
  9053. }
  9054. static void ggml_compute_forward_silu_back(
  9055. const struct ggml_compute_params * params,
  9056. const struct ggml_tensor * src0,
  9057. const struct ggml_tensor * grad,
  9058. struct ggml_tensor * dst) {
  9059. switch (src0->type) {
  9060. case GGML_TYPE_F32:
  9061. {
  9062. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  9063. } break;
  9064. default:
  9065. {
  9066. GGML_ASSERT(false);
  9067. } break;
  9068. }
  9069. }
  9070. // ggml_compute_forward_norm
  9071. static void ggml_compute_forward_norm_f32(
  9072. const struct ggml_compute_params * params,
  9073. const struct ggml_tensor * src0,
  9074. struct ggml_tensor * dst) {
  9075. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9077. return;
  9078. }
  9079. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9080. const int ith = params->ith;
  9081. const int nth = params->nth;
  9082. GGML_TENSOR_UNARY_OP_LOCALS
  9083. float eps;
  9084. memcpy(&eps, dst->op_params, sizeof(float));
  9085. // TODO: optimize
  9086. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9087. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9088. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9089. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9090. ggml_float sum = 0.0;
  9091. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9092. sum += (ggml_float)x[i00];
  9093. }
  9094. float mean = sum/ne00;
  9095. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9096. ggml_float sum2 = 0.0;
  9097. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9098. float v = x[i00] - mean;
  9099. y[i00] = v;
  9100. sum2 += (ggml_float)(v*v);
  9101. }
  9102. float variance = sum2/ne00;
  9103. const float scale = 1.0f/sqrtf(variance + eps);
  9104. ggml_vec_scale_f32(ne00, y, scale);
  9105. }
  9106. }
  9107. }
  9108. }
  9109. static void ggml_compute_forward_norm(
  9110. const struct ggml_compute_params * params,
  9111. const struct ggml_tensor * src0,
  9112. struct ggml_tensor * dst) {
  9113. switch (src0->type) {
  9114. case GGML_TYPE_F32:
  9115. {
  9116. ggml_compute_forward_norm_f32(params, src0, dst);
  9117. } break;
  9118. default:
  9119. {
  9120. GGML_ASSERT(false);
  9121. } break;
  9122. }
  9123. }
  9124. // ggml_compute_forward_group_rms_norm
  9125. static void ggml_compute_forward_rms_norm_f32(
  9126. const struct ggml_compute_params * params,
  9127. const struct ggml_tensor * src0,
  9128. struct ggml_tensor * dst) {
  9129. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9131. return;
  9132. }
  9133. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9134. const int ith = params->ith;
  9135. const int nth = params->nth;
  9136. GGML_TENSOR_UNARY_OP_LOCALS
  9137. float eps;
  9138. memcpy(&eps, dst->op_params, sizeof(float));
  9139. // TODO: optimize
  9140. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9141. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9142. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9143. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9144. ggml_float sum = 0.0;
  9145. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9146. sum += (ggml_float)(x[i00] * x[i00]);
  9147. }
  9148. const float mean = sum/ne00;
  9149. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9150. memcpy(y, x, ne00 * sizeof(float));
  9151. // for (int i00 = 0; i00 < ne00; i00++) {
  9152. // y[i00] = x[i00];
  9153. // }
  9154. const float scale = 1.0f/sqrtf(mean + eps);
  9155. ggml_vec_scale_f32(ne00, y, scale);
  9156. }
  9157. }
  9158. }
  9159. }
  9160. static void ggml_compute_forward_rms_norm(
  9161. const struct ggml_compute_params * params,
  9162. const struct ggml_tensor * src0,
  9163. struct ggml_tensor * dst) {
  9164. switch (src0->type) {
  9165. case GGML_TYPE_F32:
  9166. {
  9167. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  9168. } break;
  9169. default:
  9170. {
  9171. GGML_ASSERT(false);
  9172. } break;
  9173. }
  9174. }
  9175. static void ggml_compute_forward_rms_norm_back_f32(
  9176. const struct ggml_compute_params * params,
  9177. const struct ggml_tensor * src0,
  9178. const struct ggml_tensor * src1,
  9179. struct ggml_tensor * dst) {
  9180. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9182. return;
  9183. }
  9184. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9185. const int ith = params->ith;
  9186. const int nth = params->nth;
  9187. GGML_TENSOR_BINARY_OP_LOCALS
  9188. float eps;
  9189. memcpy(&eps, dst->op_params, sizeof(float));
  9190. // TODO: optimize
  9191. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9192. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9193. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9194. // src1 is same shape as src0 => same indices
  9195. const int64_t i11 = i01;
  9196. const int64_t i12 = i02;
  9197. const int64_t i13 = i03;
  9198. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9199. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9200. ggml_float sum_xx = 0.0;
  9201. ggml_float sum_xdz = 0.0;
  9202. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9203. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9204. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9205. }
  9206. //const float mean = (float)(sum_xx)/ne00;
  9207. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9208. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9209. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9210. // we could cache rms from forward pass to improve performance.
  9211. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9212. //const float rms = sqrtf(mean_eps);
  9213. const float rrms = 1.0f / sqrtf(mean_eps);
  9214. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9215. {
  9216. // z = rms_norm(x)
  9217. //
  9218. // rms_norm(src0) =
  9219. // scale(
  9220. // src0,
  9221. // div(
  9222. // 1,
  9223. // sqrt(
  9224. // add(
  9225. // scale(
  9226. // sum(
  9227. // sqr(
  9228. // src0)),
  9229. // (1.0/N)),
  9230. // eps))));
  9231. // postorder:
  9232. // ## op args grad
  9233. // 00 param src0 grad[#00]
  9234. // 01 const 1
  9235. // 02 sqr (#00) grad[#02]
  9236. // 03 sum (#02) grad[#03]
  9237. // 04 const 1/N
  9238. // 05 scale (#03, #04) grad[#05]
  9239. // 06 const eps
  9240. // 07 add (#05, #06) grad[#07]
  9241. // 08 sqrt (#07) grad[#08]
  9242. // 09 div (#01,#08) grad[#09]
  9243. // 10 scale (#00,#09) grad[#10]
  9244. //
  9245. // backward pass, given grad[#10]
  9246. // #10: scale
  9247. // grad[#00] += scale(grad[#10],#09)
  9248. // grad[#09] += sum(mul(grad[#10],#00))
  9249. // #09: div
  9250. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9251. // #08: sqrt
  9252. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9253. // #07: add
  9254. // grad[#05] += grad[#07]
  9255. // #05: scale
  9256. // grad[#03] += scale(grad[#05],#04)
  9257. // #03: sum
  9258. // grad[#02] += repeat(grad[#03], #02)
  9259. // #02:
  9260. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9261. //
  9262. // substitute and simplify:
  9263. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9264. // grad[#02] = repeat(grad[#03], #02)
  9265. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9266. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9267. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9268. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9269. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9270. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9271. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9272. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9273. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9274. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9275. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9276. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9277. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9278. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9279. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9280. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9281. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9282. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9283. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9284. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9285. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9286. // a = b*c + d*e
  9287. // a = b*c*f/f + d*e*f/f
  9288. // a = (b*c*f + d*e*f)*(1/f)
  9289. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9290. // a = (b + d*e/c)*c
  9291. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9292. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9293. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9294. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9295. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9296. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9297. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9298. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9299. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9300. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9301. }
  9302. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9303. // post-order:
  9304. // dx := x
  9305. // dx := scale(dx,-mean_xdz/mean_eps)
  9306. // dx := add(dx, dz)
  9307. // dx := scale(dx, rrms)
  9308. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9309. ggml_vec_cpy_f32 (ne00, dx, x);
  9310. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9311. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9312. ggml_vec_acc_f32 (ne00, dx, dz);
  9313. ggml_vec_scale_f32(ne00, dx, rrms);
  9314. }
  9315. }
  9316. }
  9317. }
  9318. static void ggml_compute_forward_rms_norm_back(
  9319. const struct ggml_compute_params * params,
  9320. const struct ggml_tensor * src0,
  9321. const struct ggml_tensor * src1,
  9322. struct ggml_tensor * dst) {
  9323. switch (src0->type) {
  9324. case GGML_TYPE_F32:
  9325. {
  9326. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  9327. } break;
  9328. default:
  9329. {
  9330. GGML_ASSERT(false);
  9331. } break;
  9332. }
  9333. }
  9334. // ggml_compute_forward_group_norm
  9335. static void ggml_compute_forward_group_norm_f32(
  9336. const struct ggml_compute_params * params,
  9337. const struct ggml_tensor * src0,
  9338. struct ggml_tensor * dst) {
  9339. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9340. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9341. return;
  9342. }
  9343. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9344. const int ith = params->ith;
  9345. const int nth = params->nth;
  9346. GGML_TENSOR_UNARY_OP_LOCALS
  9347. const float eps = 1e-6f; // TODO: make this a parameter
  9348. // TODO: optimize
  9349. int n_channels = src0->ne[2];
  9350. int n_groups = dst->op_params[0];
  9351. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9352. for (int i = ith; i < n_groups; i+=nth) {
  9353. int start = i * n_channels_per_group;
  9354. int end = start + n_channels_per_group;
  9355. if (end > n_channels) {
  9356. end = n_channels;
  9357. }
  9358. int step = end - start;
  9359. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9360. ggml_float sum = 0.0;
  9361. for (int64_t i02 = start; i02 < end; i02++) {
  9362. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9363. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9364. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9365. sum += (ggml_float)x[i00];
  9366. }
  9367. }
  9368. }
  9369. float mean = sum / (ne00 * ne01 * step);
  9370. ggml_float sum2 = 0.0;
  9371. for (int64_t i02 = start; i02 < end; i02++) {
  9372. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9373. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9374. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9375. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9376. float v = x[i00] - mean;
  9377. y[i00] = v;
  9378. sum2 += (ggml_float)(v * v);
  9379. }
  9380. }
  9381. }
  9382. float variance = sum2 / (ne00 * ne01 * step);
  9383. const float scale = 1.0f / sqrtf(variance + eps);
  9384. for (int64_t i02 = start; i02 < end; i02++) {
  9385. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9386. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9387. ggml_vec_scale_f32(ne00, y, scale);
  9388. }
  9389. }
  9390. }
  9391. }
  9392. }
  9393. static void ggml_compute_forward_group_norm(
  9394. const struct ggml_compute_params * params,
  9395. const struct ggml_tensor * src0,
  9396. struct ggml_tensor * dst) {
  9397. switch (src0->type) {
  9398. case GGML_TYPE_F32:
  9399. {
  9400. ggml_compute_forward_group_norm_f32(params, src0, dst);
  9401. } break;
  9402. default:
  9403. {
  9404. GGML_ASSERT(false);
  9405. } break;
  9406. }
  9407. }
  9408. // ggml_compute_forward_mul_mat
  9409. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9410. // helper function to determine if it is better to use BLAS or not
  9411. // for large matrices, BLAS is faster
  9412. static bool ggml_compute_forward_mul_mat_use_blas(
  9413. const struct ggml_tensor * src0,
  9414. const struct ggml_tensor * src1,
  9415. struct ggml_tensor * dst) {
  9416. //const int64_t ne00 = src0->ne[0];
  9417. //const int64_t ne01 = src0->ne[1];
  9418. const int64_t ne10 = src1->ne[0];
  9419. const int64_t ne0 = dst->ne[0];
  9420. const int64_t ne1 = dst->ne[1];
  9421. // TODO: find the optimal values for these
  9422. if (ggml_is_contiguous(src0) &&
  9423. ggml_is_contiguous(src1) &&
  9424. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9425. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9426. return true;
  9427. }
  9428. return false;
  9429. }
  9430. #endif
  9431. static void ggml_compute_forward_mul_mat(
  9432. const struct ggml_compute_params * params,
  9433. const struct ggml_tensor * src0,
  9434. const struct ggml_tensor * src1,
  9435. struct ggml_tensor * dst) {
  9436. int64_t t0 = ggml_perf_time_us();
  9437. UNUSED(t0);
  9438. GGML_TENSOR_BINARY_OP_LOCALS
  9439. const int ith = params->ith;
  9440. const int nth = params->nth;
  9441. const enum ggml_type type = src0->type;
  9442. const bool src1_cont = ggml_is_contiguous(src1);
  9443. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9444. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9445. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9446. GGML_ASSERT(ne0 == ne01);
  9447. GGML_ASSERT(ne1 == ne11);
  9448. GGML_ASSERT(ne2 == ne12);
  9449. GGML_ASSERT(ne3 == ne13);
  9450. // we don't support permuted src0 or src1
  9451. GGML_ASSERT(nb00 == ggml_type_size(type));
  9452. GGML_ASSERT(nb10 == sizeof(float));
  9453. // dst cannot be transposed or permuted
  9454. GGML_ASSERT(nb0 == sizeof(float));
  9455. GGML_ASSERT(nb0 <= nb1);
  9456. GGML_ASSERT(nb1 <= nb2);
  9457. GGML_ASSERT(nb2 <= nb3);
  9458. // broadcast factors
  9459. const int64_t r2 = ne12/ne02;
  9460. const int64_t r3 = ne13/ne03;
  9461. // nb01 >= nb00 - src0 is not transposed
  9462. // compute by src0 rows
  9463. #if defined(GGML_USE_CLBLAST)
  9464. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9465. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  9466. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9467. }
  9468. return;
  9469. }
  9470. #endif
  9471. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9472. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9473. if (params->ith != 0) {
  9474. return;
  9475. }
  9476. if (params->type == GGML_TASK_INIT) {
  9477. return;
  9478. }
  9479. if (params->type == GGML_TASK_FINALIZE) {
  9480. return;
  9481. }
  9482. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9483. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9484. // broadcast src0 into src1 across 2nd,3rd dimension
  9485. const int64_t i03 = i13/r3;
  9486. const int64_t i02 = i12/r2;
  9487. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9488. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9489. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9490. if (type != GGML_TYPE_F32) {
  9491. float * const wdata = params->wdata;
  9492. ggml_to_float_t const to_float = type_traits[type].to_float;
  9493. size_t id = 0;
  9494. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9495. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9496. id += ne00;
  9497. }
  9498. assert(id*sizeof(float) <= params->wsize);
  9499. x = wdata;
  9500. }
  9501. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9502. ne11, ne01, ne10,
  9503. 1.0f, y, ne10,
  9504. x, ne00,
  9505. 0.0f, d, ne01);
  9506. }
  9507. }
  9508. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9509. return;
  9510. }
  9511. #endif
  9512. if (params->type == GGML_TASK_INIT) {
  9513. if (src1->type != vec_dot_type) {
  9514. char * wdata = params->wdata;
  9515. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9516. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9517. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9518. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9519. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9520. wdata += row_size;
  9521. }
  9522. }
  9523. }
  9524. }
  9525. return;
  9526. }
  9527. if (params->type == GGML_TASK_FINALIZE) {
  9528. return;
  9529. }
  9530. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9531. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9532. const int64_t nr0 = ne01; // src0 rows
  9533. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9534. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9535. // distribute the thread work across the inner or outer loop based on which one is larger
  9536. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9537. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9538. const int64_t ith0 = ith % nth0;
  9539. const int64_t ith1 = ith / nth0;
  9540. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9541. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9542. const int64_t ir010 = dr0*ith0;
  9543. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9544. const int64_t ir110 = dr1*ith1;
  9545. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9546. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9547. // threads with no work simply yield (not sure if it helps)
  9548. if (ir010 >= ir011 || ir110 >= ir111) {
  9549. sched_yield();
  9550. return;
  9551. }
  9552. assert(ne12 % ne02 == 0);
  9553. assert(ne13 % ne03 == 0);
  9554. // block-tiling attempt
  9555. const int64_t blck_0 = 16;
  9556. const int64_t blck_1 = 16;
  9557. // attempt to reduce false-sharing (does not seem to make a difference)
  9558. float tmp[16];
  9559. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9560. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9561. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9562. const int64_t i13 = (ir1/(ne12*ne11));
  9563. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9564. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9565. // broadcast src0 into src1
  9566. const int64_t i03 = i13/r3;
  9567. const int64_t i02 = i12/r2;
  9568. const int64_t i1 = i11;
  9569. const int64_t i2 = i12;
  9570. const int64_t i3 = i13;
  9571. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9572. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9573. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9574. // the original src1 data pointer, so we should index using the indices directly
  9575. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9576. const char * src1_col = (const char *) wdata +
  9577. (src1_cont || src1->type != vec_dot_type
  9578. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9579. : (i11*nb11 + i12*nb12 + i13*nb13));
  9580. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9581. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9582. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9583. //}
  9584. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9585. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9586. }
  9587. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9588. }
  9589. }
  9590. }
  9591. }
  9592. // ggml_compute_forward_out_prod
  9593. static void ggml_compute_forward_out_prod_f32(
  9594. const struct ggml_compute_params * params,
  9595. const struct ggml_tensor * src0,
  9596. const struct ggml_tensor * src1,
  9597. struct ggml_tensor * dst) {
  9598. // int64_t t0 = ggml_perf_time_us();
  9599. // UNUSED(t0);
  9600. GGML_TENSOR_BINARY_OP_LOCALS
  9601. const int ith = params->ith;
  9602. const int nth = params->nth;
  9603. GGML_ASSERT(ne02 == ne12);
  9604. GGML_ASSERT(ne03 == ne13);
  9605. GGML_ASSERT(ne2 == ne12);
  9606. GGML_ASSERT(ne3 == ne13);
  9607. // we don't support permuted src0 or src1
  9608. GGML_ASSERT(nb00 == sizeof(float));
  9609. // dst cannot be transposed or permuted
  9610. GGML_ASSERT(nb0 == sizeof(float));
  9611. // GGML_ASSERT(nb0 <= nb1);
  9612. // GGML_ASSERT(nb1 <= nb2);
  9613. // GGML_ASSERT(nb2 <= nb3);
  9614. GGML_ASSERT(ne0 == ne00);
  9615. GGML_ASSERT(ne1 == ne10);
  9616. GGML_ASSERT(ne2 == ne02);
  9617. GGML_ASSERT(ne3 == ne03);
  9618. // nb01 >= nb00 - src0 is not transposed
  9619. // compute by src0 rows
  9620. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9621. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9622. if (params->type == GGML_TASK_INIT) {
  9623. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9624. return;
  9625. }
  9626. if (params->type == GGML_TASK_FINALIZE) {
  9627. return;
  9628. }
  9629. // dst[:,:,:,:] = 0
  9630. // for i2,i3:
  9631. // for i1:
  9632. // for i01:
  9633. // for i0:
  9634. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9635. // parallelize by last three dimensions
  9636. // total rows in dst
  9637. const int64_t nr = ne1*ne2*ne3;
  9638. // rows per thread
  9639. const int64_t dr = (nr + nth - 1)/nth;
  9640. // row range for this thread
  9641. const int64_t ir0 = dr*ith;
  9642. const int64_t ir1 = MIN(ir0 + dr, nr);
  9643. // block-tiling attempt
  9644. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9645. const int64_t blck_1 = 16;
  9646. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9647. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9648. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9649. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9650. for (int64_t ir = bir; ir < bir1; ++ir) {
  9651. // dst indices
  9652. const int64_t i3 = ir/(ne2*ne1);
  9653. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9654. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9655. const int64_t i02 = i2;
  9656. const int64_t i03 = i3;
  9657. //const int64_t i10 = i1;
  9658. const int64_t i12 = i2;
  9659. const int64_t i13 = i3;
  9660. #if GGML_VEC_MAD_UNROLL > 2
  9661. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9662. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9663. const int64_t i11 = i01;
  9664. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9665. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9666. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9667. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9668. }
  9669. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9670. const int64_t i11 = i01;
  9671. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9672. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9673. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9674. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9675. }
  9676. #else
  9677. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9678. const int64_t i11 = i01;
  9679. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9680. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9681. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9682. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9683. }
  9684. #endif
  9685. }
  9686. }
  9687. }
  9688. //int64_t t1 = ggml_perf_time_us();
  9689. //static int64_t acc = 0;
  9690. //acc += t1 - t0;
  9691. //if (t1 - t0 > 10) {
  9692. // printf("\n");
  9693. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9694. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9695. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9696. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9697. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9698. //}
  9699. }
  9700. static void ggml_compute_forward_out_prod_q_f32(
  9701. const struct ggml_compute_params * params,
  9702. const struct ggml_tensor * src0,
  9703. const struct ggml_tensor * src1,
  9704. struct ggml_tensor * dst) {
  9705. // int64_t t0 = ggml_perf_time_us();
  9706. // UNUSED(t0);
  9707. GGML_TENSOR_BINARY_OP_LOCALS;
  9708. const int ith = params->ith;
  9709. const int nth = params->nth;
  9710. const enum ggml_type type = src0->type;
  9711. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9712. GGML_ASSERT(ne02 == ne12);
  9713. GGML_ASSERT(ne03 == ne13);
  9714. GGML_ASSERT(ne2 == ne12);
  9715. GGML_ASSERT(ne3 == ne13);
  9716. // we don't support permuted src0 dim0
  9717. GGML_ASSERT(nb00 == ggml_type_size(type));
  9718. // dst dim0 cannot be transposed or permuted
  9719. GGML_ASSERT(nb0 == sizeof(float));
  9720. // GGML_ASSERT(nb0 <= nb1);
  9721. // GGML_ASSERT(nb1 <= nb2);
  9722. // GGML_ASSERT(nb2 <= nb3);
  9723. GGML_ASSERT(ne0 == ne00);
  9724. GGML_ASSERT(ne1 == ne10);
  9725. GGML_ASSERT(ne2 == ne02);
  9726. GGML_ASSERT(ne3 == ne03);
  9727. // nb01 >= nb00 - src0 is not transposed
  9728. // compute by src0 rows
  9729. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9730. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9731. if (params->type == GGML_TASK_INIT) {
  9732. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9733. return;
  9734. }
  9735. if (params->type == GGML_TASK_FINALIZE) {
  9736. return;
  9737. }
  9738. // parallelize by last three dimensions
  9739. // total rows in dst
  9740. const int64_t nr = ne1*ne2*ne3;
  9741. // rows per thread
  9742. const int64_t dr = (nr + nth - 1)/nth;
  9743. // row range for this thread
  9744. const int64_t ir0 = dr*ith;
  9745. const int64_t ir1 = MIN(ir0 + dr, nr);
  9746. // dst[:,:,:,:] = 0
  9747. // for i2,i3:
  9748. // for i1:
  9749. // for i01:
  9750. // for i0:
  9751. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9752. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9753. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9754. // dst indices
  9755. const int64_t i3 = ir/(ne2*ne1);
  9756. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9757. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9758. const int64_t i02 = i2;
  9759. const int64_t i03 = i3;
  9760. //const int64_t i10 = i1;
  9761. const int64_t i12 = i2;
  9762. const int64_t i13 = i3;
  9763. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9764. const int64_t i11 = i01;
  9765. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9766. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9767. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9768. dequantize_row_q(s0, wdata, ne0);
  9769. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9770. }
  9771. }
  9772. //int64_t t1 = ggml_perf_time_us();
  9773. //static int64_t acc = 0;
  9774. //acc += t1 - t0;
  9775. //if (t1 - t0 > 10) {
  9776. // printf("\n");
  9777. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9778. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9779. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9780. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9781. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9782. //}
  9783. }
  9784. static void ggml_compute_forward_out_prod(
  9785. const struct ggml_compute_params * params,
  9786. const struct ggml_tensor * src0,
  9787. const struct ggml_tensor * src1,
  9788. struct ggml_tensor * dst) {
  9789. switch (src0->type) {
  9790. case GGML_TYPE_Q4_0:
  9791. case GGML_TYPE_Q4_1:
  9792. case GGML_TYPE_Q5_0:
  9793. case GGML_TYPE_Q5_1:
  9794. case GGML_TYPE_Q8_0:
  9795. case GGML_TYPE_Q2_K:
  9796. case GGML_TYPE_Q3_K:
  9797. case GGML_TYPE_Q4_K:
  9798. case GGML_TYPE_Q5_K:
  9799. case GGML_TYPE_Q6_K:
  9800. {
  9801. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9802. } break;
  9803. case GGML_TYPE_F16:
  9804. {
  9805. GGML_ASSERT(false); // todo
  9806. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9807. } break;
  9808. case GGML_TYPE_F32:
  9809. {
  9810. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9811. } break;
  9812. default:
  9813. {
  9814. GGML_ASSERT(false);
  9815. } break;
  9816. }
  9817. }
  9818. // ggml_compute_forward_scale
  9819. static void ggml_compute_forward_scale_f32(
  9820. const struct ggml_compute_params * params,
  9821. const struct ggml_tensor * src0,
  9822. const struct ggml_tensor * src1,
  9823. struct ggml_tensor * dst) {
  9824. GGML_ASSERT(ggml_is_contiguous(src0));
  9825. GGML_ASSERT(ggml_is_contiguous(dst));
  9826. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9827. GGML_ASSERT(ggml_is_scalar(src1));
  9828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9829. return;
  9830. }
  9831. // scale factor
  9832. const float v = *(float *) src1->data;
  9833. const int ith = params->ith;
  9834. const int nth = params->nth;
  9835. const int nc = src0->ne[0];
  9836. const int nr = ggml_nrows(src0);
  9837. // rows per thread
  9838. const int dr = (nr + nth - 1)/nth;
  9839. // row range for this thread
  9840. const int ir0 = dr*ith;
  9841. const int ir1 = MIN(ir0 + dr, nr);
  9842. const size_t nb01 = src0->nb[1];
  9843. const size_t nb1 = dst->nb[1];
  9844. for (int i1 = ir0; i1 < ir1; i1++) {
  9845. if (dst->data != src0->data) {
  9846. // src0 is same shape as dst => same indices
  9847. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9848. }
  9849. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9850. }
  9851. }
  9852. static void ggml_compute_forward_scale(
  9853. const struct ggml_compute_params * params,
  9854. const struct ggml_tensor * src0,
  9855. const struct ggml_tensor * src1,
  9856. struct ggml_tensor * dst) {
  9857. switch (src0->type) {
  9858. case GGML_TYPE_F32:
  9859. {
  9860. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9861. } break;
  9862. default:
  9863. {
  9864. GGML_ASSERT(false);
  9865. } break;
  9866. }
  9867. }
  9868. // ggml_compute_forward_set
  9869. static void ggml_compute_forward_set_f32(
  9870. const struct ggml_compute_params * params,
  9871. const struct ggml_tensor * src0,
  9872. const struct ggml_tensor * src1,
  9873. struct ggml_tensor * dst) {
  9874. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9875. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9876. // view src0 and dst with these strides and data offset inbytes during set
  9877. // nb0 is implicitely element_size because src0 and dst are contiguous
  9878. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9879. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9880. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9881. size_t offset = ((int32_t *) dst->op_params)[3];
  9882. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9883. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9884. // memcpy needs to be synchronized across threads to avoid race conditions.
  9885. // => do it in INIT phase
  9886. memcpy(
  9887. ((char *) dst->data),
  9888. ((char *) src0->data),
  9889. ggml_nbytes(dst));
  9890. }
  9891. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9892. return;
  9893. }
  9894. const int ith = params->ith;
  9895. const int nth = params->nth;
  9896. const int nr = ggml_nrows(src1);
  9897. const int nc = src1->ne[0];
  9898. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9899. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9900. // src0 and dst as viewed during set
  9901. const size_t nb0 = ggml_element_size(src0);
  9902. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9903. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9904. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9905. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9906. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9907. GGML_ASSERT(nb10 == sizeof(float));
  9908. // rows per thread
  9909. const int dr = (nr + nth - 1)/nth;
  9910. // row range for this thread
  9911. const int ir0 = dr*ith;
  9912. const int ir1 = MIN(ir0 + dr, nr);
  9913. for (int ir = ir0; ir < ir1; ++ir) {
  9914. // src0 and dst are viewed with shape of src1 and offset
  9915. // => same indices
  9916. const int i3 = ir/(ne12*ne11);
  9917. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9918. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9919. ggml_vec_cpy_f32(nc,
  9920. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9921. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9922. }
  9923. }
  9924. static void ggml_compute_forward_set(
  9925. const struct ggml_compute_params * params,
  9926. const struct ggml_tensor * src0,
  9927. const struct ggml_tensor * src1,
  9928. struct ggml_tensor * dst) {
  9929. switch (src0->type) {
  9930. case GGML_TYPE_F32:
  9931. {
  9932. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9933. } break;
  9934. case GGML_TYPE_F16:
  9935. case GGML_TYPE_Q4_0:
  9936. case GGML_TYPE_Q4_1:
  9937. case GGML_TYPE_Q5_0:
  9938. case GGML_TYPE_Q5_1:
  9939. case GGML_TYPE_Q8_0:
  9940. case GGML_TYPE_Q8_1:
  9941. case GGML_TYPE_Q2_K:
  9942. case GGML_TYPE_Q3_K:
  9943. case GGML_TYPE_Q4_K:
  9944. case GGML_TYPE_Q5_K:
  9945. case GGML_TYPE_Q6_K:
  9946. default:
  9947. {
  9948. GGML_ASSERT(false);
  9949. } break;
  9950. }
  9951. }
  9952. // ggml_compute_forward_cpy
  9953. static void ggml_compute_forward_cpy(
  9954. const struct ggml_compute_params * params,
  9955. const struct ggml_tensor * src0,
  9956. struct ggml_tensor * dst) {
  9957. ggml_compute_forward_dup(params, src0, dst);
  9958. }
  9959. // ggml_compute_forward_cont
  9960. static void ggml_compute_forward_cont(
  9961. const struct ggml_compute_params * params,
  9962. const struct ggml_tensor * src0,
  9963. struct ggml_tensor * dst) {
  9964. ggml_compute_forward_dup(params, src0, dst);
  9965. }
  9966. // ggml_compute_forward_reshape
  9967. static void ggml_compute_forward_reshape(
  9968. const struct ggml_compute_params * params,
  9969. const struct ggml_tensor * src0,
  9970. struct ggml_tensor * dst) {
  9971. // NOP
  9972. UNUSED(params);
  9973. UNUSED(src0);
  9974. UNUSED(dst);
  9975. }
  9976. // ggml_compute_forward_view
  9977. static void ggml_compute_forward_view(
  9978. const struct ggml_compute_params * params,
  9979. const struct ggml_tensor * src0) {
  9980. // NOP
  9981. UNUSED(params);
  9982. UNUSED(src0);
  9983. }
  9984. // ggml_compute_forward_permute
  9985. static void ggml_compute_forward_permute(
  9986. const struct ggml_compute_params * params,
  9987. const struct ggml_tensor * src0) {
  9988. // NOP
  9989. UNUSED(params);
  9990. UNUSED(src0);
  9991. }
  9992. // ggml_compute_forward_transpose
  9993. static void ggml_compute_forward_transpose(
  9994. const struct ggml_compute_params * params,
  9995. const struct ggml_tensor * src0) {
  9996. // NOP
  9997. UNUSED(params);
  9998. UNUSED(src0);
  9999. }
  10000. // ggml_compute_forward_get_rows
  10001. static void ggml_compute_forward_get_rows_q(
  10002. const struct ggml_compute_params * params,
  10003. const struct ggml_tensor * src0,
  10004. const struct ggml_tensor * src1,
  10005. struct ggml_tensor * dst) {
  10006. assert(params->ith == 0);
  10007. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10008. return;
  10009. }
  10010. const int nc = src0->ne[0];
  10011. const int nr = ggml_nelements(src1);
  10012. const enum ggml_type type = src0->type;
  10013. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10014. assert( dst->ne[0] == nc);
  10015. assert( dst->ne[1] == nr);
  10016. assert(src0->nb[0] == ggml_type_size(type));
  10017. for (int i = 0; i < nr; ++i) {
  10018. const int r = ((int32_t *) src1->data)[i];
  10019. dequantize_row_q(
  10020. (const void *) ((char *) src0->data + r*src0->nb[1]),
  10021. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  10022. }
  10023. }
  10024. static void ggml_compute_forward_get_rows_f16(
  10025. const struct ggml_compute_params * params,
  10026. const struct ggml_tensor * src0,
  10027. const struct ggml_tensor * src1,
  10028. struct ggml_tensor * dst) {
  10029. assert(params->ith == 0);
  10030. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10031. return;
  10032. }
  10033. const int nc = src0->ne[0];
  10034. const int nr = ggml_nelements(src1);
  10035. assert( dst->ne[0] == nc);
  10036. assert( dst->ne[1] == nr);
  10037. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  10038. for (int i = 0; i < nr; ++i) {
  10039. const int r = ((int32_t *) src1->data)[i];
  10040. for (int j = 0; j < nc; ++j) {
  10041. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  10042. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  10043. }
  10044. }
  10045. }
  10046. static void ggml_compute_forward_get_rows_f32(
  10047. const struct ggml_compute_params * params,
  10048. const struct ggml_tensor * src0,
  10049. const struct ggml_tensor * src1,
  10050. struct ggml_tensor * dst) {
  10051. assert(params->ith == 0);
  10052. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10053. return;
  10054. }
  10055. const int nc = src0->ne[0];
  10056. const int nr = ggml_nelements(src1);
  10057. assert( dst->ne[0] == nc);
  10058. assert( dst->ne[1] == nr);
  10059. assert(src0->nb[0] == sizeof(float));
  10060. for (int i = 0; i < nr; ++i) {
  10061. const int r = ((int32_t *) src1->data)[i];
  10062. ggml_vec_cpy_f32(nc,
  10063. (float *) ((char *) dst->data + i*dst->nb[1]),
  10064. (float *) ((char *) src0->data + r*src0->nb[1]));
  10065. }
  10066. }
  10067. static void ggml_compute_forward_get_rows(
  10068. const struct ggml_compute_params * params,
  10069. const struct ggml_tensor * src0,
  10070. const struct ggml_tensor * src1,
  10071. struct ggml_tensor * dst) {
  10072. switch (src0->type) {
  10073. case GGML_TYPE_Q4_0:
  10074. case GGML_TYPE_Q4_1:
  10075. case GGML_TYPE_Q5_0:
  10076. case GGML_TYPE_Q5_1:
  10077. case GGML_TYPE_Q8_0:
  10078. case GGML_TYPE_Q8_1:
  10079. case GGML_TYPE_Q2_K:
  10080. case GGML_TYPE_Q3_K:
  10081. case GGML_TYPE_Q4_K:
  10082. case GGML_TYPE_Q5_K:
  10083. case GGML_TYPE_Q6_K:
  10084. {
  10085. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  10086. } break;
  10087. case GGML_TYPE_F16:
  10088. {
  10089. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  10090. } break;
  10091. case GGML_TYPE_F32:
  10092. {
  10093. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  10094. } break;
  10095. default:
  10096. {
  10097. GGML_ASSERT(false);
  10098. } break;
  10099. }
  10100. //static bool first = true;
  10101. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10102. //if (first) {
  10103. // first = false;
  10104. //} else {
  10105. // for (int k = 0; k < dst->ne[1]; ++k) {
  10106. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10107. // for (int i = 0; i < 16; ++i) {
  10108. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10109. // }
  10110. // printf("\n");
  10111. // }
  10112. // printf("\n");
  10113. // }
  10114. // printf("\n");
  10115. // exit(0);
  10116. //}
  10117. }
  10118. // ggml_compute_forward_get_rows_back
  10119. static void ggml_compute_forward_get_rows_back_f32_f16(
  10120. const struct ggml_compute_params * params,
  10121. const struct ggml_tensor * src0,
  10122. const struct ggml_tensor * src1,
  10123. struct ggml_tensor * dst) {
  10124. GGML_ASSERT(params->ith == 0);
  10125. GGML_ASSERT(ggml_is_contiguous(dst));
  10126. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10127. if (params->type == GGML_TASK_INIT) {
  10128. memset(dst->data, 0, ggml_nbytes(dst));
  10129. }
  10130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10131. return;
  10132. }
  10133. const int nc = src0->ne[0];
  10134. const int nr = ggml_nelements(src1);
  10135. GGML_ASSERT( dst->ne[0] == nc);
  10136. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10137. for (int i = 0; i < nr; ++i) {
  10138. const int r = ((int32_t *) src1->data)[i];
  10139. for (int j = 0; j < nc; ++j) {
  10140. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10141. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10142. }
  10143. }
  10144. }
  10145. static void ggml_compute_forward_get_rows_back_f32(
  10146. const struct ggml_compute_params * params,
  10147. const struct ggml_tensor * src0,
  10148. const struct ggml_tensor * src1,
  10149. struct ggml_tensor * dst) {
  10150. GGML_ASSERT(params->ith == 0);
  10151. GGML_ASSERT(ggml_is_contiguous(dst));
  10152. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10153. if (params->type == GGML_TASK_INIT) {
  10154. memset(dst->data, 0, ggml_nbytes(dst));
  10155. }
  10156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10157. return;
  10158. }
  10159. const int nc = src0->ne[0];
  10160. const int nr = ggml_nelements(src1);
  10161. GGML_ASSERT( dst->ne[0] == nc);
  10162. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10163. for (int i = 0; i < nr; ++i) {
  10164. const int r = ((int32_t *) src1->data)[i];
  10165. ggml_vec_add_f32(nc,
  10166. (float *) ((char *) dst->data + r*dst->nb[1]),
  10167. (float *) ((char *) dst->data + r*dst->nb[1]),
  10168. (float *) ((char *) src0->data + i*src0->nb[1]));
  10169. }
  10170. }
  10171. static void ggml_compute_forward_get_rows_back(
  10172. const struct ggml_compute_params * params,
  10173. const struct ggml_tensor * src0,
  10174. const struct ggml_tensor * src1,
  10175. struct ggml_tensor * dst) {
  10176. switch (src0->type) {
  10177. case GGML_TYPE_F16:
  10178. {
  10179. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  10180. } break;
  10181. case GGML_TYPE_F32:
  10182. {
  10183. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  10184. } break;
  10185. default:
  10186. {
  10187. GGML_ASSERT(false);
  10188. } break;
  10189. }
  10190. //static bool first = true;
  10191. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10192. //if (first) {
  10193. // first = false;
  10194. //} else {
  10195. // for (int k = 0; k < dst->ne[1]; ++k) {
  10196. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10197. // for (int i = 0; i < 16; ++i) {
  10198. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10199. // }
  10200. // printf("\n");
  10201. // }
  10202. // printf("\n");
  10203. // }
  10204. // printf("\n");
  10205. // exit(0);
  10206. //}
  10207. }
  10208. // ggml_compute_forward_diag
  10209. static void ggml_compute_forward_diag_f32(
  10210. const struct ggml_compute_params * params,
  10211. const struct ggml_tensor * src0,
  10212. struct ggml_tensor * dst) {
  10213. GGML_ASSERT(params->ith == 0);
  10214. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10215. return;
  10216. }
  10217. // TODO: handle transposed/permuted matrices
  10218. GGML_TENSOR_UNARY_OP_LOCALS
  10219. GGML_ASSERT(ne00 == ne0);
  10220. GGML_ASSERT(ne00 == ne1);
  10221. GGML_ASSERT(ne01 == 1);
  10222. GGML_ASSERT(ne02 == ne2);
  10223. GGML_ASSERT(ne03 == ne3);
  10224. GGML_ASSERT(nb00 == sizeof(float));
  10225. GGML_ASSERT(nb0 == sizeof(float));
  10226. for (int i3 = 0; i3 < ne3; i3++) {
  10227. for (int i2 = 0; i2 < ne2; i2++) {
  10228. for (int i1 = 0; i1 < ne1; i1++) {
  10229. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  10230. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  10231. for (int i0 = 0; i0 < i1; i0++) {
  10232. d[i0] = 0;
  10233. }
  10234. d[i1] = s[i1];
  10235. for (int i0 = i1+1; i0 < ne0; i0++) {
  10236. d[i0] = 0;
  10237. }
  10238. }
  10239. }
  10240. }
  10241. }
  10242. static void ggml_compute_forward_diag(
  10243. const struct ggml_compute_params * params,
  10244. const struct ggml_tensor * src0,
  10245. struct ggml_tensor * dst) {
  10246. switch (src0->type) {
  10247. case GGML_TYPE_F32:
  10248. {
  10249. ggml_compute_forward_diag_f32(params, src0, dst);
  10250. } break;
  10251. default:
  10252. {
  10253. GGML_ASSERT(false);
  10254. } break;
  10255. }
  10256. }
  10257. // ggml_compute_forward_diag_mask_inf
  10258. static void ggml_compute_forward_diag_mask_f32(
  10259. const struct ggml_compute_params * params,
  10260. const struct ggml_tensor * src0,
  10261. struct ggml_tensor * dst,
  10262. const float value) {
  10263. const int ith = params->ith;
  10264. const int nth = params->nth;
  10265. const int n_past = ((int32_t *) dst->op_params)[0];
  10266. const bool inplace = src0->data == dst->data;
  10267. GGML_ASSERT(n_past >= 0);
  10268. if (!inplace && (params->type == GGML_TASK_INIT)) {
  10269. // memcpy needs to be synchronized across threads to avoid race conditions.
  10270. // => do it in INIT phase
  10271. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  10272. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10273. memcpy(
  10274. ((char *) dst->data),
  10275. ((char *) src0->data),
  10276. ggml_nbytes(dst));
  10277. }
  10278. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10279. return;
  10280. }
  10281. // TODO: handle transposed/permuted matrices
  10282. const int n = ggml_nrows(src0);
  10283. const int nc = src0->ne[0];
  10284. const int nr = src0->ne[1];
  10285. const int nz = n/nr;
  10286. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10287. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10288. for (int k = 0; k < nz; k++) {
  10289. for (int j = ith; j < nr; j += nth) {
  10290. for (int i = n_past; i < nc; i++) {
  10291. if (i > n_past + j) {
  10292. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  10293. }
  10294. }
  10295. }
  10296. }
  10297. }
  10298. static void ggml_compute_forward_diag_mask_inf(
  10299. const struct ggml_compute_params * params,
  10300. const struct ggml_tensor * src0,
  10301. struct ggml_tensor * dst) {
  10302. switch (src0->type) {
  10303. case GGML_TYPE_F32:
  10304. {
  10305. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  10306. } break;
  10307. default:
  10308. {
  10309. GGML_ASSERT(false);
  10310. } break;
  10311. }
  10312. }
  10313. static void ggml_compute_forward_diag_mask_zero(
  10314. const struct ggml_compute_params * params,
  10315. const struct ggml_tensor * src0,
  10316. struct ggml_tensor * dst) {
  10317. switch (src0->type) {
  10318. case GGML_TYPE_F32:
  10319. {
  10320. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  10321. } break;
  10322. default:
  10323. {
  10324. GGML_ASSERT(false);
  10325. } break;
  10326. }
  10327. }
  10328. // ggml_compute_forward_soft_max
  10329. static void ggml_compute_forward_soft_max_f32(
  10330. const struct ggml_compute_params * params,
  10331. const struct ggml_tensor * src0,
  10332. struct ggml_tensor * dst) {
  10333. GGML_ASSERT(ggml_is_contiguous(src0));
  10334. GGML_ASSERT(ggml_is_contiguous(dst));
  10335. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10336. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10337. return;
  10338. }
  10339. // TODO: handle transposed/permuted matrices
  10340. const int ith = params->ith;
  10341. const int nth = params->nth;
  10342. const int nc = src0->ne[0];
  10343. const int nr = ggml_nrows(src0);
  10344. // rows per thread
  10345. const int dr = (nr + nth - 1)/nth;
  10346. // row range for this thread
  10347. const int ir0 = dr*ith;
  10348. const int ir1 = MIN(ir0 + dr, nr);
  10349. for (int i1 = ir0; i1 < ir1; i1++) {
  10350. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  10351. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  10352. #ifndef NDEBUG
  10353. for (int i = 0; i < nc; ++i) {
  10354. //printf("p[%d] = %f\n", i, p[i]);
  10355. assert(!isnan(sp[i]));
  10356. }
  10357. #endif
  10358. float max = -INFINITY;
  10359. ggml_vec_max_f32(nc, &max, sp);
  10360. ggml_float sum = 0.0;
  10361. uint16_t scvt;
  10362. for (int i = 0; i < nc; i++) {
  10363. if (sp[i] == -INFINITY) {
  10364. dp[i] = 0.0f;
  10365. } else {
  10366. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  10367. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  10368. memcpy(&scvt, &s, sizeof(scvt));
  10369. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  10370. sum += (ggml_float)val;
  10371. dp[i] = val;
  10372. }
  10373. }
  10374. assert(sum > 0.0);
  10375. sum = 1.0/sum;
  10376. ggml_vec_scale_f32(nc, dp, sum);
  10377. #ifndef NDEBUG
  10378. for (int i = 0; i < nc; ++i) {
  10379. assert(!isnan(dp[i]));
  10380. assert(!isinf(dp[i]));
  10381. }
  10382. #endif
  10383. }
  10384. }
  10385. static void ggml_compute_forward_soft_max(
  10386. const struct ggml_compute_params * params,
  10387. const struct ggml_tensor * src0,
  10388. struct ggml_tensor * dst) {
  10389. switch (src0->type) {
  10390. case GGML_TYPE_F32:
  10391. {
  10392. ggml_compute_forward_soft_max_f32(params, src0, dst);
  10393. } break;
  10394. default:
  10395. {
  10396. GGML_ASSERT(false);
  10397. } break;
  10398. }
  10399. }
  10400. // ggml_compute_forward_soft_max_back
  10401. static void ggml_compute_forward_soft_max_back_f32(
  10402. const struct ggml_compute_params * params,
  10403. const struct ggml_tensor * src0,
  10404. const struct ggml_tensor * src1,
  10405. struct ggml_tensor * dst) {
  10406. GGML_ASSERT(ggml_is_contiguous(src0));
  10407. GGML_ASSERT(ggml_is_contiguous(src1));
  10408. GGML_ASSERT(ggml_is_contiguous(dst));
  10409. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10410. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10412. return;
  10413. }
  10414. // TODO: handle transposed/permuted matrices
  10415. const int ith = params->ith;
  10416. const int nth = params->nth;
  10417. const int nc = src0->ne[0];
  10418. const int nr = ggml_nrows(src0);
  10419. // rows per thread
  10420. const int dr = (nr + nth - 1)/nth;
  10421. // row range for this thread
  10422. const int ir0 = dr*ith;
  10423. const int ir1 = MIN(ir0 + dr, nr);
  10424. for (int i1 = ir0; i1 < ir1; i1++) {
  10425. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10426. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10427. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10428. #ifndef NDEBUG
  10429. for (int i = 0; i < nc; ++i) {
  10430. //printf("p[%d] = %f\n", i, p[i]);
  10431. assert(!isnan(dy[i]));
  10432. assert(!isnan(y[i]));
  10433. }
  10434. #endif
  10435. // Jii = yi - yi*yi
  10436. // Jij = -yi*yj
  10437. // J = diag(y)-y.T*y
  10438. // dx = J * dy
  10439. // dxk = sum_i(Jki * dyi)
  10440. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10441. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10442. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10443. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10444. // dxk = -yk * dot(y, dy) + yk*dyk
  10445. // dxk = yk * (- dot(y, dy) + dyk)
  10446. // dxk = yk * (dyk - dot(y, dy))
  10447. //
  10448. // post-order:
  10449. // dot_y_dy := dot(y, dy)
  10450. // dx := dy
  10451. // dx := dx - dot_y_dy
  10452. // dx := dx * y
  10453. // linear runtime, no additional memory
  10454. float dot_y_dy = 0;
  10455. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  10456. ggml_vec_cpy_f32 (nc, dx, dy);
  10457. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10458. ggml_vec_mul_f32 (nc, dx, dx, y);
  10459. #ifndef NDEBUG
  10460. for (int i = 0; i < nc; ++i) {
  10461. assert(!isnan(dx[i]));
  10462. assert(!isinf(dx[i]));
  10463. }
  10464. #endif
  10465. }
  10466. }
  10467. static void ggml_compute_forward_soft_max_back(
  10468. const struct ggml_compute_params * params,
  10469. const struct ggml_tensor * src0,
  10470. const struct ggml_tensor * src1,
  10471. struct ggml_tensor * dst) {
  10472. switch (src0->type) {
  10473. case GGML_TYPE_F32:
  10474. {
  10475. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  10476. } break;
  10477. default:
  10478. {
  10479. GGML_ASSERT(false);
  10480. } break;
  10481. }
  10482. }
  10483. // ggml_compute_forward_alibi
  10484. static void ggml_compute_forward_alibi_f32(
  10485. const struct ggml_compute_params * params,
  10486. const struct ggml_tensor * src0,
  10487. struct ggml_tensor * dst) {
  10488. assert(params->ith == 0);
  10489. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10490. return;
  10491. }
  10492. const int n_past = ((int32_t *) dst->op_params)[0];
  10493. const int n_head = ((int32_t *) dst->op_params)[1];
  10494. float max_bias;
  10495. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10496. assert(n_past >= 0);
  10497. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10498. const int ne1 = src0->ne[1]; // seq_len_without_past
  10499. const int ne2 = src0->ne[2]; // n_head -> this is k
  10500. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10501. const int n = ggml_nrows(src0);
  10502. const int ne2_ne3 = n/ne1; // ne2*ne3
  10503. const int nb0 = src0->nb[0];
  10504. const int nb1 = src0->nb[1];
  10505. const int nb2 = src0->nb[2];
  10506. //const int nb3 = src0->nb[3];
  10507. GGML_ASSERT(nb0 == sizeof(float));
  10508. GGML_ASSERT(ne1 + n_past == ne0);
  10509. GGML_ASSERT(n_head == ne2);
  10510. // add alibi to src0 (KQ_scaled)
  10511. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10512. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10513. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10514. for (int i = 0; i < ne0; i++) {
  10515. for (int j = 0; j < ne1; j++) {
  10516. for (int k = 0; k < ne2_ne3; k++) {
  10517. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10518. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10519. // TODO: k*nb2 or k*nb3
  10520. float m_k;
  10521. if (k < n_heads_log2_floor) {
  10522. m_k = powf(m0, k + 1);
  10523. } else {
  10524. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10525. }
  10526. pdst[0] = i * m_k + src[0];
  10527. }
  10528. }
  10529. }
  10530. }
  10531. static void ggml_compute_forward_alibi_f16(
  10532. const struct ggml_compute_params * params,
  10533. const struct ggml_tensor * src0,
  10534. struct ggml_tensor * dst) {
  10535. assert(params->ith == 0);
  10536. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10537. return;
  10538. }
  10539. //const int n_past = ((int32_t *) dst->op_params)[0];
  10540. const int n_head = ((int32_t *) dst->op_params)[1];
  10541. float max_bias;
  10542. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10543. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10544. const int ne1 = src0->ne[1]; // seq_len_without_past
  10545. const int ne2 = src0->ne[2]; // n_head -> this is k
  10546. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10547. const int n = ggml_nrows(src0);
  10548. const int ne2_ne3 = n/ne1; // ne2*ne3
  10549. const int nb0 = src0->nb[0];
  10550. const int nb1 = src0->nb[1];
  10551. const int nb2 = src0->nb[2];
  10552. //const int nb3 = src0->nb[3];
  10553. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10554. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10555. GGML_ASSERT(n_head == ne2);
  10556. // add alibi to src0 (KQ_scaled)
  10557. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10558. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10559. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10560. for (int i = 0; i < ne0; i++) {
  10561. for (int j = 0; j < ne1; j++) {
  10562. for (int k = 0; k < ne2_ne3; k++) {
  10563. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10564. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10565. // TODO: k*nb2 or k*nb3
  10566. float m_k;
  10567. if (k < n_heads_log2_floor) {
  10568. m_k = powf(m0, k + 1);
  10569. } else {
  10570. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10571. }
  10572. // we return F32
  10573. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10574. }
  10575. }
  10576. }
  10577. }
  10578. static void ggml_compute_forward_alibi(
  10579. const struct ggml_compute_params * params,
  10580. const struct ggml_tensor * src0,
  10581. struct ggml_tensor * dst) {
  10582. switch (src0->type) {
  10583. case GGML_TYPE_F16:
  10584. {
  10585. ggml_compute_forward_alibi_f16(params, src0, dst);
  10586. } break;
  10587. case GGML_TYPE_F32:
  10588. {
  10589. ggml_compute_forward_alibi_f32(params, src0, dst);
  10590. } break;
  10591. case GGML_TYPE_Q4_0:
  10592. case GGML_TYPE_Q4_1:
  10593. case GGML_TYPE_Q5_0:
  10594. case GGML_TYPE_Q5_1:
  10595. case GGML_TYPE_Q8_0:
  10596. case GGML_TYPE_Q8_1:
  10597. case GGML_TYPE_Q2_K:
  10598. case GGML_TYPE_Q3_K:
  10599. case GGML_TYPE_Q4_K:
  10600. case GGML_TYPE_Q5_K:
  10601. case GGML_TYPE_Q6_K:
  10602. case GGML_TYPE_Q8_K:
  10603. case GGML_TYPE_I8:
  10604. case GGML_TYPE_I16:
  10605. case GGML_TYPE_I32:
  10606. case GGML_TYPE_COUNT:
  10607. {
  10608. GGML_ASSERT(false);
  10609. } break;
  10610. }
  10611. }
  10612. // ggml_compute_forward_clamp
  10613. static void ggml_compute_forward_clamp_f32(
  10614. const struct ggml_compute_params * params,
  10615. const struct ggml_tensor * src0,
  10616. struct ggml_tensor * dst) {
  10617. assert(params->ith == 0);
  10618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10619. return;
  10620. }
  10621. float min;
  10622. float max;
  10623. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10624. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10625. const int ith = params->ith;
  10626. const int nth = params->nth;
  10627. const int n = ggml_nrows(src0);
  10628. const int nc = src0->ne[0];
  10629. const size_t nb00 = src0->nb[0];
  10630. const size_t nb01 = src0->nb[1];
  10631. const size_t nb0 = dst->nb[0];
  10632. const size_t nb1 = dst->nb[1];
  10633. GGML_ASSERT( nb0 == sizeof(float));
  10634. GGML_ASSERT(nb00 == sizeof(float));
  10635. for (int j = ith; j < n; j += nth) {
  10636. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10637. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10638. for (int i = 0; i < nc; i++) {
  10639. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10640. }
  10641. }
  10642. }
  10643. static void ggml_compute_forward_clamp(
  10644. const struct ggml_compute_params * params,
  10645. const struct ggml_tensor * src0,
  10646. struct ggml_tensor * dst) {
  10647. switch (src0->type) {
  10648. case GGML_TYPE_F32:
  10649. {
  10650. ggml_compute_forward_clamp_f32(params, src0, dst);
  10651. } break;
  10652. case GGML_TYPE_F16:
  10653. case GGML_TYPE_Q4_0:
  10654. case GGML_TYPE_Q4_1:
  10655. case GGML_TYPE_Q5_0:
  10656. case GGML_TYPE_Q5_1:
  10657. case GGML_TYPE_Q8_0:
  10658. case GGML_TYPE_Q8_1:
  10659. case GGML_TYPE_Q2_K:
  10660. case GGML_TYPE_Q3_K:
  10661. case GGML_TYPE_Q4_K:
  10662. case GGML_TYPE_Q5_K:
  10663. case GGML_TYPE_Q6_K:
  10664. case GGML_TYPE_Q8_K:
  10665. case GGML_TYPE_I8:
  10666. case GGML_TYPE_I16:
  10667. case GGML_TYPE_I32:
  10668. case GGML_TYPE_COUNT:
  10669. {
  10670. GGML_ASSERT(false);
  10671. } break;
  10672. }
  10673. }
  10674. // ggml_compute_forward_rope
  10675. static void ggml_compute_forward_rope_f32(
  10676. const struct ggml_compute_params * params,
  10677. const struct ggml_tensor * src0,
  10678. const struct ggml_tensor * src1,
  10679. struct ggml_tensor * dst) {
  10680. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10681. return;
  10682. }
  10683. float freq_base;
  10684. float freq_scale;
  10685. // these two only relevant for xPos RoPE:
  10686. float xpos_base;
  10687. bool xpos_down;
  10688. //const int n_past = ((int32_t *) dst->op_params)[0];
  10689. const int n_dims = ((int32_t *) dst->op_params)[1];
  10690. const int mode = ((int32_t *) dst->op_params)[2];
  10691. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10692. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10693. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10694. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10695. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10696. GGML_TENSOR_UNARY_OP_LOCALS
  10697. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10698. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10699. GGML_ASSERT(nb00 == sizeof(float));
  10700. const int ith = params->ith;
  10701. const int nth = params->nth;
  10702. const int nr = ggml_nrows(dst);
  10703. GGML_ASSERT(n_dims <= ne0);
  10704. GGML_ASSERT(n_dims % 2 == 0);
  10705. // rows per thread
  10706. const int dr = (nr + nth - 1)/nth;
  10707. // row range for this thread
  10708. const int ir0 = dr*ith;
  10709. const int ir1 = MIN(ir0 + dr, nr);
  10710. // row index used to determine which thread to use
  10711. int ir = 0;
  10712. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10713. const bool is_neox = mode & 2;
  10714. const bool is_glm = mode & 4;
  10715. const int32_t * pos = (const int32_t *) src1->data;
  10716. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10717. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10718. const int64_t p = pos[i2];
  10719. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10720. if (ir++ < ir0) continue;
  10721. if (ir > ir1) break;
  10722. float theta = freq_scale * (float)p;
  10723. if (is_glm) {
  10724. theta = MIN(p, n_ctx - 2);
  10725. float block_theta = MAX(p - (n_ctx - 2), 0);
  10726. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10727. const float cos_theta = cosf(theta);
  10728. const float sin_theta = sinf(theta);
  10729. const float cos_block_theta = cosf(block_theta);
  10730. const float sin_block_theta = sinf(block_theta);
  10731. theta *= theta_scale;
  10732. block_theta *= theta_scale;
  10733. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10734. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10735. const float x0 = src[0];
  10736. const float x1 = src[n_dims/2];
  10737. const float x2 = src[n_dims];
  10738. const float x3 = src[n_dims/2*3];
  10739. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10740. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10741. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10742. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10743. }
  10744. } else if (!is_neox) {
  10745. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10746. const float cos_theta = cosf(theta);
  10747. const float sin_theta = sinf(theta);
  10748. // zeta scaling for xPos only:
  10749. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10750. if (xpos_down) zeta = 1.0f / zeta;
  10751. theta *= theta_scale;
  10752. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10753. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10754. const float x0 = src[0];
  10755. const float x1 = src[1];
  10756. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10757. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10758. }
  10759. } else {
  10760. // TODO: this might be wrong for ne0 != n_dims - need double check
  10761. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10762. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10763. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10764. const float cos_theta = cosf(theta);
  10765. const float sin_theta = sinf(theta);
  10766. theta *= theta_scale;
  10767. const int64_t i0 = ib*n_dims + ic/2;
  10768. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10769. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10770. const float x0 = src[0];
  10771. const float x1 = src[n_dims/2];
  10772. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10773. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10774. }
  10775. }
  10776. }
  10777. }
  10778. }
  10779. }
  10780. }
  10781. static void ggml_compute_forward_rope_f16(
  10782. const struct ggml_compute_params * params,
  10783. const struct ggml_tensor * src0,
  10784. const struct ggml_tensor * src1,
  10785. struct ggml_tensor * dst) {
  10786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10787. return;
  10788. }
  10789. float freq_base;
  10790. float freq_scale;
  10791. //const int n_past = ((int32_t *) dst->op_params)[0];
  10792. const int n_dims = ((int32_t *) dst->op_params)[1];
  10793. const int mode = ((int32_t *) dst->op_params)[2];
  10794. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10795. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10796. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10797. GGML_TENSOR_UNARY_OP_LOCALS
  10798. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10799. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10800. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10801. const int ith = params->ith;
  10802. const int nth = params->nth;
  10803. const int nr = ggml_nrows(dst);
  10804. GGML_ASSERT(n_dims <= ne0);
  10805. GGML_ASSERT(n_dims % 2 == 0);
  10806. // rows per thread
  10807. const int dr = (nr + nth - 1)/nth;
  10808. // row range for this thread
  10809. const int ir0 = dr*ith;
  10810. const int ir1 = MIN(ir0 + dr, nr);
  10811. // row index used to determine which thread to use
  10812. int ir = 0;
  10813. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10814. const bool is_neox = mode & 2;
  10815. const bool is_glm = mode & 4;
  10816. const int32_t * pos = (const int32_t *) src1->data;
  10817. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10818. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10819. const int64_t p = pos[i2];
  10820. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10821. if (ir++ < ir0) continue;
  10822. if (ir > ir1) break;
  10823. float theta = freq_scale * (float)p;
  10824. if (is_glm) {
  10825. theta = MIN(p, n_ctx - 2);
  10826. float block_theta = MAX(p - (n_ctx - 2), 0);
  10827. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10828. const float cos_theta = cosf(theta);
  10829. const float sin_theta = sinf(theta);
  10830. const float cos_block_theta = cosf(block_theta);
  10831. const float sin_block_theta = sinf(block_theta);
  10832. theta *= theta_scale;
  10833. block_theta *= theta_scale;
  10834. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10835. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10836. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10837. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10838. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10839. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10840. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10841. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10842. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10843. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10844. }
  10845. } if (!is_neox) {
  10846. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10847. const float cos_theta = cosf(theta);
  10848. const float sin_theta = sinf(theta);
  10849. theta *= theta_scale;
  10850. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10851. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10852. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10853. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10854. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10855. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10856. }
  10857. } else {
  10858. // TODO: this might be wrong for ne0 != n_dims - need double check
  10859. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10860. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10861. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10862. const float cos_theta = cosf(theta);
  10863. const float sin_theta = sinf(theta);
  10864. theta *= theta_scale;
  10865. const int64_t i0 = ib*n_dims + ic/2;
  10866. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10867. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10868. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10869. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10870. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10871. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10872. }
  10873. }
  10874. }
  10875. }
  10876. }
  10877. }
  10878. }
  10879. static void ggml_compute_forward_rope(
  10880. const struct ggml_compute_params * params,
  10881. const struct ggml_tensor * src0,
  10882. const struct ggml_tensor * src1,
  10883. struct ggml_tensor * dst) {
  10884. switch (src0->type) {
  10885. case GGML_TYPE_F16:
  10886. {
  10887. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10888. } break;
  10889. case GGML_TYPE_F32:
  10890. {
  10891. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10892. } break;
  10893. default:
  10894. {
  10895. GGML_ASSERT(false);
  10896. } break;
  10897. }
  10898. }
  10899. // ggml_compute_forward_rope_back
  10900. static void ggml_compute_forward_rope_back_f32(
  10901. const struct ggml_compute_params * params,
  10902. const struct ggml_tensor * src0,
  10903. const struct ggml_tensor * src1,
  10904. struct ggml_tensor * dst) {
  10905. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10906. return;
  10907. }
  10908. // y = rope(x, src1)
  10909. // dx = rope_back(dy, src1)
  10910. // src0 is dy, src1 contains options
  10911. float freq_base;
  10912. float freq_scale;
  10913. // these two only relevant for xPos RoPE:
  10914. float xpos_base;
  10915. bool xpos_down;
  10916. //const int n_past = ((int32_t *) dst->op_params)[0];
  10917. const int n_dims = ((int32_t *) dst->op_params)[1];
  10918. const int mode = ((int32_t *) dst->op_params)[2];
  10919. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10920. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10921. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10922. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10923. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10924. GGML_TENSOR_UNARY_OP_LOCALS
  10925. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10926. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10927. assert(nb0 == sizeof(float));
  10928. const int ith = params->ith;
  10929. const int nth = params->nth;
  10930. const int nr = ggml_nrows(dst);
  10931. // rows per thread
  10932. const int dr = (nr + nth - 1)/nth;
  10933. // row range for this thread
  10934. const int ir0 = dr*ith;
  10935. const int ir1 = MIN(ir0 + dr, nr);
  10936. // row index used to determine which thread to use
  10937. int ir = 0;
  10938. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10939. const bool is_neox = mode & 2;
  10940. const int32_t * pos = (const int32_t *) src1->data;
  10941. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10942. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10943. const int64_t p = pos[i2];
  10944. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10945. if (ir++ < ir0) continue;
  10946. if (ir > ir1) break;
  10947. float theta = freq_scale * (float)p;
  10948. if (!is_neox) {
  10949. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10950. const float cos_theta = cosf(theta);
  10951. const float sin_theta = sinf(theta);
  10952. // zeta scaling for xPos only:
  10953. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10954. if (xpos_down) zeta = 1.0f / zeta;
  10955. theta *= theta_scale;
  10956. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10957. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10958. const float dy0 = dy[0];
  10959. const float dy1 = dy[1];
  10960. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10961. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10962. }
  10963. } else {
  10964. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10965. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10966. const float cos_theta = cosf(theta);
  10967. const float sin_theta = sinf(theta);
  10968. theta *= theta_scale;
  10969. const int64_t i0 = ib*n_dims + ic/2;
  10970. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10971. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10972. const float dy0 = dy[0];
  10973. const float dy1 = dy[n_dims/2];
  10974. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10975. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10976. }
  10977. }
  10978. }
  10979. }
  10980. }
  10981. }
  10982. }
  10983. static void ggml_compute_forward_rope_back_f16(
  10984. const struct ggml_compute_params * params,
  10985. const struct ggml_tensor * src0,
  10986. const struct ggml_tensor * src1,
  10987. struct ggml_tensor * dst) {
  10988. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10989. return;
  10990. }
  10991. // y = rope(x, src1)
  10992. // dx = rope_back(dy, src1)
  10993. // src0 is dy, src1 contains options
  10994. //const int n_past = ((int32_t *) dst->op_params)[0];
  10995. const int n_dims = ((int32_t *) dst->op_params)[1];
  10996. const int mode = ((int32_t *) dst->op_params)[2];
  10997. GGML_TENSOR_UNARY_OP_LOCALS
  10998. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10999. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11000. assert(nb0 == sizeof(ggml_fp16_t));
  11001. const int ith = params->ith;
  11002. const int nth = params->nth;
  11003. const int nr = ggml_nrows(dst);
  11004. // rows per thread
  11005. const int dr = (nr + nth - 1)/nth;
  11006. // row range for this thread
  11007. const int ir0 = dr*ith;
  11008. const int ir1 = MIN(ir0 + dr, nr);
  11009. // row index used to determine which thread to use
  11010. int ir = 0;
  11011. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  11012. const bool is_neox = mode & 2;
  11013. const int32_t * pos = (const int32_t *) src1->data;
  11014. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11015. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11016. const int64_t p = pos[i2];
  11017. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11018. if (ir++ < ir0) continue;
  11019. if (ir > ir1) break;
  11020. float theta = (float)p;
  11021. if (!is_neox) {
  11022. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11023. const float cos_theta = cosf(theta);
  11024. const float sin_theta = sinf(theta);
  11025. theta *= theta_scale;
  11026. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11027. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11028. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  11029. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  11030. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  11031. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  11032. }
  11033. } else {
  11034. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  11035. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  11036. const float cos_theta = cosf(theta);
  11037. const float sin_theta = sinf(theta);
  11038. theta *= theta_scale;
  11039. const int64_t i0 = ib*n_dims + ic/2;
  11040. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11041. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11042. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  11043. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  11044. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  11045. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  11046. }
  11047. }
  11048. }
  11049. }
  11050. }
  11051. }
  11052. }
  11053. static void ggml_compute_forward_rope_back(
  11054. const struct ggml_compute_params * params,
  11055. const struct ggml_tensor * src0,
  11056. const struct ggml_tensor * src1,
  11057. struct ggml_tensor * dst) {
  11058. switch (src0->type) {
  11059. case GGML_TYPE_F16:
  11060. {
  11061. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  11062. } break;
  11063. case GGML_TYPE_F32:
  11064. {
  11065. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  11066. } break;
  11067. default:
  11068. {
  11069. GGML_ASSERT(false);
  11070. } break;
  11071. }
  11072. }
  11073. // ggml_compute_forward_conv_1d
  11074. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  11075. const struct ggml_compute_params * params,
  11076. const struct ggml_tensor * src0,
  11077. const struct ggml_tensor * src1,
  11078. struct ggml_tensor * dst) {
  11079. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11080. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11081. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11082. int64_t t0 = ggml_perf_time_us();
  11083. UNUSED(t0);
  11084. GGML_TENSOR_BINARY_OP_LOCALS
  11085. const int ith = params->ith;
  11086. const int nth = params->nth;
  11087. const int nk = ne00;
  11088. const int nh = nk/2;
  11089. const int ew0 = ggml_up32(ne01);
  11090. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11091. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11092. GGML_ASSERT(nb10 == sizeof(float));
  11093. if (params->type == GGML_TASK_INIT) {
  11094. // TODO: fix this memset (wsize is overestimated)
  11095. memset(params->wdata, 0, params->wsize);
  11096. // prepare kernel data (src0)
  11097. {
  11098. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11099. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11100. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11101. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11102. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  11103. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11104. dst_data[i00*ew0 + i01] = src[i00];
  11105. }
  11106. }
  11107. }
  11108. }
  11109. // prepare source data (src1)
  11110. {
  11111. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  11112. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11113. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11114. ggml_fp16_t * dst_data = wdata;
  11115. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11116. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11117. }
  11118. }
  11119. }
  11120. return;
  11121. }
  11122. if (params->type == GGML_TASK_FINALIZE) {
  11123. return;
  11124. }
  11125. // total rows in dst
  11126. const int nr = ne02;
  11127. // rows per thread
  11128. const int dr = (nr + nth - 1)/nth;
  11129. // row range for this thread
  11130. const int ir0 = dr*ith;
  11131. const int ir1 = MIN(ir0 + dr, nr);
  11132. for (int i1 = ir0; i1 < ir1; i1++) {
  11133. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11134. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  11135. dst_data[i0] = 0;
  11136. for (int k = -nh; k <= nh; k++) {
  11137. float v = 0.0f;
  11138. ggml_vec_dot_f16(ew0, &v,
  11139. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11140. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11141. dst_data[i0] += v;
  11142. }
  11143. }
  11144. }
  11145. }
  11146. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  11147. const struct ggml_compute_params * params,
  11148. const struct ggml_tensor * src0,
  11149. const struct ggml_tensor * src1,
  11150. struct ggml_tensor * dst) {
  11151. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11152. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11153. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11154. int64_t t0 = ggml_perf_time_us();
  11155. UNUSED(t0);
  11156. GGML_TENSOR_BINARY_OP_LOCALS
  11157. const int ith = params->ith;
  11158. const int nth = params->nth;
  11159. const int nk = ne00;
  11160. const int nh = nk/2;
  11161. const int ew0 = ggml_up32(ne01);
  11162. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11163. GGML_ASSERT(nb00 == sizeof(float));
  11164. GGML_ASSERT(nb10 == sizeof(float));
  11165. if (params->type == GGML_TASK_INIT) {
  11166. // TODO: fix this memset (wsize is overestimated)
  11167. memset(params->wdata, 0, params->wsize);
  11168. // prepare kernel data (src0)
  11169. {
  11170. float * const wdata = (float *) params->wdata + 0;
  11171. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11172. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11173. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11174. float * dst_data = wdata + i02*ew0*ne00;
  11175. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11176. dst_data[i00*ew0 + i01] = src[i00];
  11177. }
  11178. }
  11179. }
  11180. }
  11181. // prepare source data (src1)
  11182. {
  11183. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  11184. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11185. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11186. float * dst_data = wdata;
  11187. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11188. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  11189. }
  11190. }
  11191. }
  11192. return;
  11193. }
  11194. if (params->type == GGML_TASK_FINALIZE) {
  11195. return;
  11196. }
  11197. // total rows in dst
  11198. const int nr = ne02;
  11199. // rows per thread
  11200. const int dr = (nr + nth - 1)/nth;
  11201. // row range for this thread
  11202. const int ir0 = dr*ith;
  11203. const int ir1 = MIN(ir0 + dr, nr);
  11204. for (int i1 = ir0; i1 < ir1; i1++) {
  11205. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11206. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  11207. dst_data[i0] = 0;
  11208. for (int k = -nh; k <= nh; k++) {
  11209. float v = 0.0f;
  11210. ggml_vec_dot_f32(ew0, &v,
  11211. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11212. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11213. dst_data[i0] += v;
  11214. }
  11215. }
  11216. }
  11217. }
  11218. static void ggml_compute_forward_conv_1d_s1_ph(
  11219. const struct ggml_compute_params * params,
  11220. const struct ggml_tensor * src0,
  11221. const struct ggml_tensor * src1,
  11222. struct ggml_tensor * dst) {
  11223. switch (src0->type) {
  11224. case GGML_TYPE_F16:
  11225. {
  11226. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  11227. } break;
  11228. case GGML_TYPE_F32:
  11229. {
  11230. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  11231. } break;
  11232. default:
  11233. {
  11234. GGML_ASSERT(false);
  11235. } break;
  11236. }
  11237. }
  11238. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  11239. const struct ggml_compute_params * params,
  11240. const struct ggml_tensor * src0,
  11241. const struct ggml_tensor * src1,
  11242. struct ggml_tensor * dst) {
  11243. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11244. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11245. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11246. int64_t t0 = ggml_perf_time_us();
  11247. UNUSED(t0);
  11248. GGML_TENSOR_BINARY_OP_LOCALS
  11249. const int ith = params->ith;
  11250. const int nth = params->nth;
  11251. const int nk = ne00;
  11252. const int nh = nk/2;
  11253. const int ew0 = ggml_up32(ne01);
  11254. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11255. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11256. GGML_ASSERT(nb10 == sizeof(float));
  11257. if (params->type == GGML_TASK_INIT) {
  11258. // TODO: fix this memset (wsize is overestimated)
  11259. memset(params->wdata, 0, params->wsize);
  11260. // prepare kernel data (src0)
  11261. {
  11262. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11263. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11264. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11265. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11266. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  11267. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11268. dst_data[i00*ew0 + i01] = src[i00];
  11269. }
  11270. }
  11271. }
  11272. }
  11273. // prepare source data (src1)
  11274. {
  11275. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  11276. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11277. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11278. ggml_fp16_t * dst_data = wdata;
  11279. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11280. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11281. }
  11282. }
  11283. }
  11284. return;
  11285. }
  11286. if (params->type == GGML_TASK_FINALIZE) {
  11287. return;
  11288. }
  11289. // total rows in dst
  11290. const int nr = ne02;
  11291. // rows per thread
  11292. const int dr = (nr + nth - 1)/nth;
  11293. // row range for this thread
  11294. const int ir0 = dr*ith;
  11295. const int ir1 = MIN(ir0 + dr, nr);
  11296. for (int i1 = ir0; i1 < ir1; i1++) {
  11297. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11298. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  11299. dst_data[i0/2] = 0;
  11300. for (int k = -nh; k <= nh; k++) {
  11301. float v = 0.0f;
  11302. ggml_vec_dot_f16(ew0, &v,
  11303. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11304. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11305. dst_data[i0/2] += v;
  11306. }
  11307. }
  11308. }
  11309. }
  11310. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  11311. const struct ggml_compute_params * params,
  11312. const struct ggml_tensor * src0,
  11313. const struct ggml_tensor * src1,
  11314. struct ggml_tensor * dst) {
  11315. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11316. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11317. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11318. int64_t t0 = ggml_perf_time_us();
  11319. UNUSED(t0);
  11320. GGML_TENSOR_BINARY_OP_LOCALS
  11321. const int ith = params->ith;
  11322. const int nth = params->nth;
  11323. const int nk = ne00;
  11324. const int nh = nk/2;
  11325. const int ew0 = ggml_up32(ne01);
  11326. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  11327. GGML_ASSERT(nb00 == sizeof(float));
  11328. GGML_ASSERT(nb10 == sizeof(float));
  11329. if (params->type == GGML_TASK_INIT) {
  11330. // TODO: fix this memset (wsize is overestimated)
  11331. memset(params->wdata, 0, params->wsize);
  11332. // prepare kernel data (src0)
  11333. {
  11334. float * const wdata = (float *) params->wdata + 0;
  11335. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11336. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11337. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11338. float * dst_data = wdata + i02*ew0*ne00;
  11339. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11340. dst_data[i00*ew0 + i01] = src[i00];
  11341. }
  11342. }
  11343. }
  11344. }
  11345. // prepare source data (src1)
  11346. {
  11347. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  11348. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11349. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11350. float * dst_data = wdata;
  11351. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11352. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  11353. }
  11354. }
  11355. }
  11356. return;
  11357. }
  11358. if (params->type == GGML_TASK_FINALIZE) {
  11359. return;
  11360. }
  11361. // total rows in dst
  11362. const int nr = ne02;
  11363. // rows per thread
  11364. const int dr = (nr + nth - 1)/nth;
  11365. // row range for this thread
  11366. const int ir0 = dr*ith;
  11367. const int ir1 = MIN(ir0 + dr, nr);
  11368. for (int i1 = ir0; i1 < ir1; i1++) {
  11369. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11370. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  11371. dst_data[i0/2] = 0;
  11372. for (int k = -nh; k <= nh; k++) {
  11373. float v = 0.0f;
  11374. ggml_vec_dot_f32(ew0, &v,
  11375. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  11376. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  11377. dst_data[i0/2] += v;
  11378. }
  11379. }
  11380. }
  11381. }
  11382. static void ggml_compute_forward_conv_1d_s2_ph(
  11383. const struct ggml_compute_params * params,
  11384. const struct ggml_tensor * src0,
  11385. const struct ggml_tensor * src1,
  11386. struct ggml_tensor * dst) {
  11387. switch (src0->type) {
  11388. case GGML_TYPE_F16:
  11389. {
  11390. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  11391. } break;
  11392. case GGML_TYPE_F32:
  11393. {
  11394. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  11395. } break;
  11396. default:
  11397. {
  11398. GGML_ASSERT(false);
  11399. } break;
  11400. }
  11401. }
  11402. // ggml_compute_forward_conv_1d
  11403. static void ggml_compute_forward_conv_1d(
  11404. const struct ggml_compute_params * params,
  11405. const struct ggml_tensor * src0,
  11406. const struct ggml_tensor * src1,
  11407. struct ggml_tensor * dst) {
  11408. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11409. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  11410. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  11411. GGML_ASSERT(d0 == 1); // dilation not supported
  11412. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  11413. if (s0 == 1) {
  11414. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  11415. } else if (s0 == 2) {
  11416. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  11417. } else {
  11418. GGML_ASSERT(false); // only stride 1 and 2 supported
  11419. }
  11420. }
  11421. // ggml_compute_forward_conv_2d
  11422. static void ggml_compute_forward_conv_2d_f16_f32(
  11423. const struct ggml_compute_params * params,
  11424. const struct ggml_tensor * src0,
  11425. const struct ggml_tensor * src1,
  11426. struct ggml_tensor * dst) {
  11427. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11428. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11429. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11430. int64_t t0 = ggml_perf_time_us();
  11431. UNUSED(t0);
  11432. GGML_TENSOR_BINARY_OP_LOCALS
  11433. const int ith = params->ith;
  11434. const int nth = params->nth;
  11435. const int nk0 = ne00;
  11436. const int nk1 = ne01;
  11437. // size of the convolution row - the kernel size unrolled across all channels
  11438. const int ew0 = nk0*nk1*ne02;
  11439. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11440. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  11441. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  11442. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  11443. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  11444. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  11445. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11446. GGML_ASSERT(nb10 == sizeof(float));
  11447. if (params->type == GGML_TASK_INIT) {
  11448. memset(params->wdata, 0, params->wsize);
  11449. // prepare source data (src1)
  11450. {
  11451. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11452. for (int i12 = 0; i12 < ne12; i12++) {
  11453. const float * const src = (float *)((char *) src1->data + i12*nb12);
  11454. ggml_fp16_t * dst_data = wdata;
  11455. for (int i1 = 0; i1 < ne1; i1++) {
  11456. for (int i0 = 0; i0 < ne0; i0++) {
  11457. for (int ik1 = 0; ik1 < nk1; ik1++) {
  11458. for (int ik0 = 0; ik0 < nk0; ik0++) {
  11459. const int idx0 = i0*s0 + ik0*d0 - p0;
  11460. const int idx1 = i1*s1 + ik1*d1 - p1;
  11461. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  11462. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  11463. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  11464. }
  11465. }
  11466. }
  11467. }
  11468. }
  11469. }
  11470. }
  11471. return;
  11472. }
  11473. if (params->type == GGML_TASK_FINALIZE) {
  11474. return;
  11475. }
  11476. // total patches in dst
  11477. const int np = ne2;
  11478. // patches per thread
  11479. const int dp = (np + nth - 1)/nth;
  11480. // patch range for this thread
  11481. const int ip0 = dp*ith;
  11482. const int ip1 = MIN(ip0 + dp, np);
  11483. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11484. for (int i3 = 0; i3 < ne3; i3++) {
  11485. for (int i2 = ip0; i2 < ip1; i2++) {
  11486. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  11487. for (int i1 = 0; i1 < ne1; ++i1) {
  11488. for (int i0 = 0; i0 < ne0; ++i0) {
  11489. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  11490. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  11491. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  11492. }
  11493. }
  11494. }
  11495. }
  11496. }
  11497. static void ggml_compute_forward_conv_2d(
  11498. const struct ggml_compute_params * params,
  11499. const struct ggml_tensor * src0,
  11500. const struct ggml_tensor * src1,
  11501. struct ggml_tensor * dst) {
  11502. switch (src0->type) {
  11503. case GGML_TYPE_F16:
  11504. {
  11505. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  11506. } break;
  11507. case GGML_TYPE_F32:
  11508. {
  11509. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  11510. GGML_ASSERT(false);
  11511. } break;
  11512. default:
  11513. {
  11514. GGML_ASSERT(false);
  11515. } break;
  11516. }
  11517. }
  11518. // ggml_compute_forward_conv_transpose_2d
  11519. static void ggml_compute_forward_conv_transpose_2d(
  11520. const struct ggml_compute_params * params,
  11521. const struct ggml_tensor * src0,
  11522. const struct ggml_tensor * src1,
  11523. struct ggml_tensor * dst) {
  11524. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11525. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11526. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11527. int64_t t0 = ggml_perf_time_us();
  11528. UNUSED(t0);
  11529. GGML_TENSOR_BINARY_OP_LOCALS
  11530. const int ith = params->ith;
  11531. const int nth = params->nth;
  11532. const int nk = ne00*ne01*ne02*ne03;
  11533. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11534. GGML_ASSERT(nb10 == sizeof(float));
  11535. if (params->type == GGML_TASK_INIT) {
  11536. memset(params->wdata, 0, params->wsize);
  11537. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11538. {
  11539. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11540. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11541. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11542. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11543. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11544. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11545. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11546. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11547. }
  11548. }
  11549. }
  11550. }
  11551. }
  11552. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11553. {
  11554. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11555. for (int i12 = 0; i12 < ne12; i12++) {
  11556. for (int i11 = 0; i11 < ne11; i11++) {
  11557. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11558. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11559. for (int i10 = 0; i10 < ne10; i10++) {
  11560. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11561. }
  11562. }
  11563. }
  11564. }
  11565. return;
  11566. }
  11567. if (params->type == GGML_TASK_FINALIZE) {
  11568. return;
  11569. }
  11570. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11571. // total patches in dst
  11572. const int np = ne2;
  11573. // patches per thread
  11574. const int dp = (np + nth - 1)/nth;
  11575. // patch range for this thread
  11576. const int ip0 = dp*ith;
  11577. const int ip1 = MIN(ip0 + dp, np);
  11578. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11579. ggml_fp16_t * const wdata_src = wdata + nk;
  11580. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11581. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11582. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11583. for (int i11 = 0; i11 < ne11; i11++) {
  11584. for (int i10 = 0; i10 < ne10; i10++) {
  11585. const int i1n = i11*ne10*ne12 + i10*ne12;
  11586. for (int i01 = 0; i01 < ne01; i01++) {
  11587. for (int i00 = 0; i00 < ne00; i00++) {
  11588. float v = 0;
  11589. ggml_vec_dot_f16(ne03, &v,
  11590. wdata_src + i1n,
  11591. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11592. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11593. }
  11594. }
  11595. }
  11596. }
  11597. }
  11598. }
  11599. // ggml_compute_forward_pool_1d_sk_p0
  11600. static void ggml_compute_forward_pool_1d_sk_p0(
  11601. const struct ggml_compute_params * params,
  11602. const enum ggml_op_pool op,
  11603. const struct ggml_tensor * src,
  11604. const int k,
  11605. struct ggml_tensor * dst) {
  11606. assert(src->type == GGML_TYPE_F32);
  11607. assert(params->ith == 0);
  11608. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11609. return;
  11610. }
  11611. const char * cdata = (const char *)src->data;
  11612. const char * const data_end = cdata + ggml_nbytes(src);
  11613. float * drow = (float *)dst->data;
  11614. const int64_t rs = dst->ne[0];
  11615. while (cdata < data_end) {
  11616. const float * const srow = (const float *)cdata;
  11617. int j = 0;
  11618. for (int64_t i = 0; i < rs; ++i) {
  11619. switch (op) {
  11620. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11621. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11622. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11623. }
  11624. for (int ki = 0; ki < k; ++ki) {
  11625. switch (op) {
  11626. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11627. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11628. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11629. }
  11630. ++j;
  11631. }
  11632. switch (op) {
  11633. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11634. case GGML_OP_POOL_MAX: break;
  11635. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11636. }
  11637. }
  11638. cdata += src->nb[1];
  11639. drow += rs;
  11640. }
  11641. }
  11642. // ggml_compute_forward_pool_1d
  11643. static void ggml_compute_forward_pool_1d(
  11644. const struct ggml_compute_params * params,
  11645. const struct ggml_tensor * src0,
  11646. struct ggml_tensor * dst) {
  11647. const int32_t * opts = (const int32_t *)dst->op_params;
  11648. enum ggml_op_pool op = opts[0];
  11649. const int k0 = opts[1];
  11650. const int s0 = opts[2];
  11651. const int p0 = opts[3];
  11652. GGML_ASSERT(p0 == 0); // padding not supported
  11653. GGML_ASSERT(k0 == s0); // only s = k supported
  11654. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11655. }
  11656. // ggml_compute_forward_pool_2d_sk_p0
  11657. static void ggml_compute_forward_pool_2d_sk_p0(
  11658. const struct ggml_compute_params * params,
  11659. const enum ggml_op_pool op,
  11660. const struct ggml_tensor * src,
  11661. const int k0,
  11662. const int k1,
  11663. struct ggml_tensor * dst) {
  11664. assert(src->type == GGML_TYPE_F32);
  11665. assert(params->ith == 0);
  11666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11667. return;
  11668. }
  11669. const char * cdata = (const char*)src->data;
  11670. const char * const data_end = cdata + ggml_nbytes(src);
  11671. const int64_t px = dst->ne[0];
  11672. const int64_t py = dst->ne[1];
  11673. const int64_t pa = px * py;
  11674. float * dplane = (float *)dst->data;
  11675. const int ka = k0 * k1;
  11676. while (cdata < data_end) {
  11677. for (int oy = 0; oy < py; ++oy) {
  11678. float * const drow = dplane + oy * px;
  11679. for (int ox = 0; ox < px; ++ox) {
  11680. float * const out = drow + ox;
  11681. switch (op) {
  11682. case GGML_OP_POOL_AVG: *out = 0; break;
  11683. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11684. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11685. }
  11686. const int ix = ox * k0;
  11687. const int iy = oy * k1;
  11688. for (int ky = 0; ky < k1; ++ky) {
  11689. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11690. for (int kx = 0; kx < k0; ++kx) {
  11691. int j = ix + kx;
  11692. switch (op) {
  11693. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11694. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11695. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11696. }
  11697. }
  11698. }
  11699. switch (op) {
  11700. case GGML_OP_POOL_AVG: *out /= ka; break;
  11701. case GGML_OP_POOL_MAX: break;
  11702. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11703. }
  11704. }
  11705. }
  11706. cdata += src->nb[2];
  11707. dplane += pa;
  11708. }
  11709. }
  11710. // ggml_compute_forward_pool_2d
  11711. static void ggml_compute_forward_pool_2d(
  11712. const struct ggml_compute_params * params,
  11713. const struct ggml_tensor * src0,
  11714. struct ggml_tensor * dst) {
  11715. const int32_t * opts = (const int32_t *)dst->op_params;
  11716. enum ggml_op_pool op = opts[0];
  11717. const int k0 = opts[1];
  11718. const int k1 = opts[2];
  11719. const int s0 = opts[3];
  11720. const int s1 = opts[4];
  11721. const int p0 = opts[5];
  11722. const int p1 = opts[6];
  11723. GGML_ASSERT(p0 == 0);
  11724. GGML_ASSERT(p1 == 0); // padding not supported
  11725. GGML_ASSERT(k0 == s0);
  11726. GGML_ASSERT(k1 == s1); // only s = k supported
  11727. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11728. }
  11729. // ggml_compute_forward_upscale
  11730. static void ggml_compute_forward_upscale_f32(
  11731. const struct ggml_compute_params * params,
  11732. const struct ggml_tensor * src0,
  11733. struct ggml_tensor * dst) {
  11734. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11735. return;
  11736. }
  11737. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11738. const int ith = params->ith;
  11739. GGML_TENSOR_UNARY_OP_LOCALS
  11740. const int scale_factor = dst->op_params[0];
  11741. // TODO: optimize
  11742. for (int i03 = 0; i03 < ne03; i03++) {
  11743. for (int i02 = ith; i02 < ne02; i02++) {
  11744. for (int m = 0; m < dst->ne[1]; m++) {
  11745. int i01 = m / scale_factor;
  11746. for (int n = 0; n < dst->ne[0]; n++) {
  11747. int i00 = n / scale_factor;
  11748. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11749. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11750. *y = *x;
  11751. }
  11752. }
  11753. }
  11754. }
  11755. }
  11756. static void ggml_compute_forward_upscale(
  11757. const struct ggml_compute_params * params,
  11758. const struct ggml_tensor * src0,
  11759. struct ggml_tensor * dst) {
  11760. switch (src0->type) {
  11761. case GGML_TYPE_F32:
  11762. {
  11763. ggml_compute_forward_upscale_f32(params, src0, dst);
  11764. } break;
  11765. default:
  11766. {
  11767. GGML_ASSERT(false);
  11768. } break;
  11769. }
  11770. }
  11771. // ggml_compute_forward_flash_attn
  11772. static void ggml_compute_forward_flash_attn_f32(
  11773. const struct ggml_compute_params * params,
  11774. const struct ggml_tensor * q,
  11775. const struct ggml_tensor * k,
  11776. const struct ggml_tensor * v,
  11777. const bool masked,
  11778. struct ggml_tensor * dst) {
  11779. int64_t t0 = ggml_perf_time_us();
  11780. UNUSED(t0);
  11781. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11782. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11783. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11784. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11785. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11786. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11787. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11788. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11789. const int ith = params->ith;
  11790. const int nth = params->nth;
  11791. const int64_t D = neq0;
  11792. const int64_t N = neq1;
  11793. const int64_t P = nek1 - N;
  11794. const int64_t M = P + N;
  11795. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11796. GGML_ASSERT(ne0 == D);
  11797. GGML_ASSERT(ne1 == N);
  11798. GGML_ASSERT(P >= 0);
  11799. GGML_ASSERT(nbq0 == sizeof(float));
  11800. GGML_ASSERT(nbk0 == sizeof(float));
  11801. GGML_ASSERT(nbv0 == sizeof(float));
  11802. GGML_ASSERT(neq0 == D);
  11803. GGML_ASSERT(nek0 == D);
  11804. GGML_ASSERT(nev1 == D);
  11805. GGML_ASSERT(neq1 == N);
  11806. GGML_ASSERT(nek1 == N + P);
  11807. GGML_ASSERT(nev1 == D);
  11808. // dst cannot be transposed or permuted
  11809. GGML_ASSERT(nb0 == sizeof(float));
  11810. GGML_ASSERT(nb0 <= nb1);
  11811. GGML_ASSERT(nb1 <= nb2);
  11812. GGML_ASSERT(nb2 <= nb3);
  11813. if (params->type == GGML_TASK_INIT) {
  11814. return;
  11815. }
  11816. if (params->type == GGML_TASK_FINALIZE) {
  11817. return;
  11818. }
  11819. // parallelize by q rows using ggml_vec_dot_f32
  11820. // total rows in q
  11821. const int nr = neq1*neq2*neq3;
  11822. // rows per thread
  11823. const int dr = (nr + nth - 1)/nth;
  11824. // row range for this thread
  11825. const int ir0 = dr*ith;
  11826. const int ir1 = MIN(ir0 + dr, nr);
  11827. const float scale = 1.0f/sqrtf(D);
  11828. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11829. for (int ir = ir0; ir < ir1; ++ir) {
  11830. // q indices
  11831. const int iq3 = ir/(neq2*neq1);
  11832. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11833. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11834. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11835. for (int i = M; i < Mup; ++i) {
  11836. S[i] = -INFINITY;
  11837. }
  11838. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11839. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11840. // k indices
  11841. const int ik3 = iq3;
  11842. const int ik2 = iq2 % nek2;
  11843. const int ik1 = ic;
  11844. // S indices
  11845. const int i1 = ik1;
  11846. ggml_vec_dot_f32(neq0,
  11847. S + i1,
  11848. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11849. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11850. }
  11851. // scale
  11852. ggml_vec_scale_f32(masked_begin, S, scale);
  11853. for (int64_t i = masked_begin; i < M; i++) {
  11854. S[i] = -INFINITY;
  11855. }
  11856. // softmax
  11857. // exclude known -INF S[..] values from max and loop
  11858. // dont forget to set their SW values to zero
  11859. {
  11860. float max = -INFINITY;
  11861. ggml_vec_max_f32(masked_begin, &max, S);
  11862. ggml_float sum = 0.0;
  11863. {
  11864. #ifdef GGML_SOFT_MAX_ACCELERATE
  11865. max = -max;
  11866. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11867. vvexpf(S, S, &Mup);
  11868. ggml_vec_sum_f32(Mup, &sum, S);
  11869. #else
  11870. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11871. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11872. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11873. if (i >= masked_begin) {
  11874. break;
  11875. }
  11876. float * SS = S + i;
  11877. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11878. if (i + j >= masked_begin) {
  11879. break;
  11880. } else if (SS[j] == -INFINITY) {
  11881. SS[j] = 0.0f;
  11882. } else {
  11883. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11884. const float val = expf(SS[j] - max);
  11885. #else
  11886. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11887. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11888. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11889. #endif
  11890. sump[j] += (ggml_float)val;
  11891. SS[j] = val;
  11892. }
  11893. }
  11894. }
  11895. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11896. sum += sump[i];
  11897. }
  11898. #endif
  11899. }
  11900. assert(sum > 0.0);
  11901. sum = 1.0/sum;
  11902. ggml_vec_scale_f32(masked_begin, S, sum);
  11903. #ifndef NDEBUG
  11904. for (int i = 0; i < masked_begin; ++i) {
  11905. assert(!isnan(S[i]));
  11906. assert(!isinf(S[i]));
  11907. }
  11908. #endif
  11909. }
  11910. for (int64_t ic = 0; ic < nev1; ++ic) {
  11911. // dst indices
  11912. const int i1 = iq1;
  11913. const int i2 = iq2;
  11914. const int i3 = iq3;
  11915. // v indices
  11916. const int iv2 = iq2 % nev2;
  11917. const int iv3 = iq3;
  11918. ggml_vec_dot_f32(masked_begin,
  11919. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11920. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11921. S);
  11922. }
  11923. }
  11924. }
  11925. static void ggml_compute_forward_flash_attn_f16(
  11926. const struct ggml_compute_params * params,
  11927. const struct ggml_tensor * q,
  11928. const struct ggml_tensor * k,
  11929. const struct ggml_tensor * v,
  11930. const bool masked,
  11931. struct ggml_tensor * dst) {
  11932. int64_t t0 = ggml_perf_time_us();
  11933. UNUSED(t0);
  11934. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11935. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11936. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11937. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11938. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11939. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11940. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11941. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11942. const int ith = params->ith;
  11943. const int nth = params->nth;
  11944. const int64_t D = neq0;
  11945. const int64_t N = neq1;
  11946. const int64_t P = nek1 - N;
  11947. const int64_t M = P + N;
  11948. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11949. GGML_ASSERT(ne0 == D);
  11950. GGML_ASSERT(ne1 == N);
  11951. GGML_ASSERT(P >= 0);
  11952. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11953. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11954. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11955. GGML_ASSERT(neq0 == D);
  11956. GGML_ASSERT(nek0 == D);
  11957. GGML_ASSERT(nev1 == D);
  11958. GGML_ASSERT(neq1 == N);
  11959. GGML_ASSERT(nek1 == N + P);
  11960. GGML_ASSERT(nev1 == D);
  11961. // dst cannot be transposed or permuted
  11962. GGML_ASSERT(nb0 == sizeof(float));
  11963. GGML_ASSERT(nb0 <= nb1);
  11964. GGML_ASSERT(nb1 <= nb2);
  11965. GGML_ASSERT(nb2 <= nb3);
  11966. if (params->type == GGML_TASK_INIT) {
  11967. return;
  11968. }
  11969. if (params->type == GGML_TASK_FINALIZE) {
  11970. return;
  11971. }
  11972. // parallelize by q rows using ggml_vec_dot_f32
  11973. // total rows in q
  11974. const int nr = neq1*neq2*neq3;
  11975. // rows per thread
  11976. const int dr = (nr + nth - 1)/nth;
  11977. // row range for this thread
  11978. const int ir0 = dr*ith;
  11979. const int ir1 = MIN(ir0 + dr, nr);
  11980. const float scale = 1.0f/sqrtf(D);
  11981. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11982. for (int ir = ir0; ir < ir1; ++ir) {
  11983. // q indices
  11984. const int iq3 = ir/(neq2*neq1);
  11985. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11986. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11987. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11988. for (int i = M; i < Mup; ++i) {
  11989. S[i] = -INFINITY;
  11990. }
  11991. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11992. for (int64_t ic = 0; ic < nek1; ++ic) {
  11993. // k indices
  11994. const int ik3 = iq3;
  11995. const int ik2 = iq2 % nek2;
  11996. const int ik1 = ic;
  11997. // S indices
  11998. const int i1 = ik1;
  11999. ggml_vec_dot_f16(neq0,
  12000. S + i1,
  12001. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12002. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12003. }
  12004. } else {
  12005. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12006. // k indices
  12007. const int ik3 = iq3;
  12008. const int ik2 = iq2 % nek2;
  12009. const int ik1 = ic;
  12010. // S indices
  12011. const int i1 = ik1;
  12012. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12013. S + i1,
  12014. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12015. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12016. }
  12017. }
  12018. // scale
  12019. ggml_vec_scale_f32(nek1, S, scale);
  12020. if (masked) {
  12021. for (int64_t i = P; i < M; i++) {
  12022. if (i > P + iq1) {
  12023. S[i] = -INFINITY;
  12024. }
  12025. }
  12026. }
  12027. // softmax
  12028. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12029. // dont forget to set their S values to zero
  12030. {
  12031. float max = -INFINITY;
  12032. ggml_vec_max_f32(M, &max, S);
  12033. ggml_float sum = 0.0;
  12034. {
  12035. #ifdef GGML_SOFT_MAX_ACCELERATE
  12036. max = -max;
  12037. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12038. vvexpf(S, S, &Mup);
  12039. ggml_vec_sum_f32(Mup, &sum, S);
  12040. #else
  12041. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  12042. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12043. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12044. float * SS = S + i;
  12045. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12046. if (SS[j] == -INFINITY) {
  12047. SS[j] = 0.0f;
  12048. } else {
  12049. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12050. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12051. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  12052. sump[j] += (ggml_float)val;
  12053. SS[j] = val;
  12054. }
  12055. }
  12056. }
  12057. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12058. sum += sump[i];
  12059. }
  12060. #endif
  12061. }
  12062. assert(sum > 0.0);
  12063. sum = 1.0/sum;
  12064. ggml_vec_scale_f32(M, S, sum);
  12065. #ifndef NDEBUG
  12066. for (int i = 0; i < M; ++i) {
  12067. assert(!isnan(S[i]));
  12068. assert(!isinf(S[i]));
  12069. }
  12070. #endif
  12071. }
  12072. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12073. for (int64_t i = 0; i < M; i++) {
  12074. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12075. }
  12076. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12077. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12078. for (int64_t ic = 0; ic < nev1; ++ic) {
  12079. // dst indices
  12080. const int i1 = iq1;
  12081. const int i2 = iq2;
  12082. const int i3 = iq3;
  12083. // v indices
  12084. const int iv2 = iq2 % nev2;
  12085. const int iv3 = iq3;
  12086. ggml_vec_dot_f16(nev0,
  12087. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12088. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12089. S16);
  12090. }
  12091. } else {
  12092. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12093. // dst indices
  12094. const int i1 = iq1;
  12095. const int i2 = iq2;
  12096. const int i3 = iq3;
  12097. // v indices
  12098. const int iv2 = iq2 % nev2;
  12099. const int iv3 = iq3;
  12100. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12101. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12102. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12103. S16);
  12104. }
  12105. }
  12106. }
  12107. }
  12108. static void ggml_compute_forward_flash_attn(
  12109. const struct ggml_compute_params * params,
  12110. const struct ggml_tensor * q,
  12111. const struct ggml_tensor * k,
  12112. const struct ggml_tensor * v,
  12113. const bool masked,
  12114. struct ggml_tensor * dst) {
  12115. switch (q->type) {
  12116. case GGML_TYPE_F16:
  12117. {
  12118. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  12119. } break;
  12120. case GGML_TYPE_F32:
  12121. {
  12122. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  12123. } break;
  12124. default:
  12125. {
  12126. GGML_ASSERT(false);
  12127. } break;
  12128. }
  12129. }
  12130. // ggml_compute_forward_flash_ff
  12131. static void ggml_compute_forward_flash_ff_f16(
  12132. const struct ggml_compute_params * params,
  12133. const struct ggml_tensor * a, // F16
  12134. const struct ggml_tensor * b0, // F16 fc_w
  12135. const struct ggml_tensor * b1, // F32 fc_b
  12136. const struct ggml_tensor * c0, // F16 proj_w
  12137. const struct ggml_tensor * c1, // F32 proj_b
  12138. struct ggml_tensor * dst) {
  12139. int64_t t0 = ggml_perf_time_us();
  12140. UNUSED(t0);
  12141. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  12142. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  12143. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  12144. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  12145. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  12146. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  12147. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  12148. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  12149. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  12150. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  12151. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12152. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12153. const int ith = params->ith;
  12154. const int nth = params->nth;
  12155. const int64_t D = nea0;
  12156. //const int64_t N = nea1;
  12157. const int64_t M = neb01;
  12158. GGML_ASSERT(ne0 == nea0);
  12159. GGML_ASSERT(ne1 == nea1);
  12160. GGML_ASSERT(ne2 == nea2);
  12161. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  12162. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  12163. GGML_ASSERT(nbb10 == sizeof(float));
  12164. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  12165. GGML_ASSERT(nbc10 == sizeof(float));
  12166. GGML_ASSERT(neb00 == D);
  12167. GGML_ASSERT(neb01 == M);
  12168. GGML_ASSERT(neb10 == M);
  12169. GGML_ASSERT(neb11 == 1);
  12170. GGML_ASSERT(nec00 == M);
  12171. GGML_ASSERT(nec01 == D);
  12172. GGML_ASSERT(nec10 == D);
  12173. GGML_ASSERT(nec11 == 1);
  12174. // dst cannot be transposed or permuted
  12175. GGML_ASSERT(nb0 == sizeof(float));
  12176. GGML_ASSERT(nb0 <= nb1);
  12177. GGML_ASSERT(nb1 <= nb2);
  12178. GGML_ASSERT(nb2 <= nb3);
  12179. if (params->type == GGML_TASK_INIT) {
  12180. return;
  12181. }
  12182. if (params->type == GGML_TASK_FINALIZE) {
  12183. return;
  12184. }
  12185. // parallelize by a rows using ggml_vec_dot_f32
  12186. // total rows in a
  12187. const int nr = nea1*nea2*nea3;
  12188. // rows per thread
  12189. const int dr = (nr + nth - 1)/nth;
  12190. // row range for this thread
  12191. const int ir0 = dr*ith;
  12192. const int ir1 = MIN(ir0 + dr, nr);
  12193. for (int ir = ir0; ir < ir1; ++ir) {
  12194. // a indices
  12195. const int ia3 = ir/(nea2*nea1);
  12196. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  12197. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  12198. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  12199. for (int64_t ic = 0; ic < neb01; ++ic) {
  12200. // b0 indices
  12201. const int ib03 = ia3;
  12202. const int ib02 = ia2;
  12203. const int ib01 = ic;
  12204. // S indices
  12205. const int i1 = ib01;
  12206. ggml_vec_dot_f16(nea0,
  12207. S + i1,
  12208. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  12209. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  12210. }
  12211. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  12212. //ggml_vec_gelu_f32(neb01, S, S);
  12213. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  12214. for (int64_t i = 0; i < M; i++) {
  12215. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12216. }
  12217. ggml_vec_gelu_f16(neb01, S16, S16);
  12218. {
  12219. // dst indices
  12220. const int i1 = ia1;
  12221. const int i2 = ia2;
  12222. const int i3 = ia3;
  12223. for (int64_t ic = 0; ic < nec01; ++ic) {
  12224. ggml_vec_dot_f16(neb01,
  12225. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12226. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  12227. S16);
  12228. }
  12229. ggml_vec_add_f32(nec01,
  12230. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12231. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12232. (float *) c1->data);
  12233. }
  12234. }
  12235. }
  12236. static void ggml_compute_forward_flash_ff(
  12237. const struct ggml_compute_params * params,
  12238. const struct ggml_tensor * a,
  12239. const struct ggml_tensor * b0,
  12240. const struct ggml_tensor * b1,
  12241. const struct ggml_tensor * c0,
  12242. const struct ggml_tensor * c1,
  12243. struct ggml_tensor * dst) {
  12244. switch (b0->type) {
  12245. case GGML_TYPE_F16:
  12246. {
  12247. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  12248. } break;
  12249. case GGML_TYPE_F32:
  12250. {
  12251. GGML_ASSERT(false); // TODO
  12252. } break;
  12253. default:
  12254. {
  12255. GGML_ASSERT(false);
  12256. } break;
  12257. }
  12258. }
  12259. // ggml_compute_forward_flash_attn_back
  12260. static void ggml_compute_forward_flash_attn_back_f32(
  12261. const struct ggml_compute_params * params,
  12262. const struct ggml_tensor * q,
  12263. const struct ggml_tensor * k,
  12264. const struct ggml_tensor * v,
  12265. const struct ggml_tensor * d,
  12266. const bool masked,
  12267. struct ggml_tensor * dst) {
  12268. int64_t t0 = ggml_perf_time_us();
  12269. UNUSED(t0);
  12270. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12271. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12272. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12273. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12274. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12275. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12276. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12277. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12278. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12279. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12280. const int ith = params->ith;
  12281. const int nth = params->nth;
  12282. const int64_t D = neq0;
  12283. const int64_t N = neq1;
  12284. const int64_t P = nek1 - N;
  12285. const int64_t M = P + N;
  12286. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12287. const int mxDM = MAX(D, Mup);
  12288. // GGML_ASSERT(ne0 == D);
  12289. // GGML_ASSERT(ne1 == N);
  12290. GGML_ASSERT(P >= 0);
  12291. GGML_ASSERT(nbq0 == sizeof(float));
  12292. GGML_ASSERT(nbk0 == sizeof(float));
  12293. GGML_ASSERT(nbv0 == sizeof(float));
  12294. GGML_ASSERT(neq0 == D);
  12295. GGML_ASSERT(nek0 == D);
  12296. GGML_ASSERT(nev1 == D);
  12297. GGML_ASSERT(ned0 == D);
  12298. GGML_ASSERT(neq1 == N);
  12299. GGML_ASSERT(nek1 == N + P);
  12300. GGML_ASSERT(nev1 == D);
  12301. GGML_ASSERT(ned1 == N);
  12302. // dst cannot be transposed or permuted
  12303. GGML_ASSERT(nb0 == sizeof(float));
  12304. GGML_ASSERT(nb0 <= nb1);
  12305. GGML_ASSERT(nb1 <= nb2);
  12306. GGML_ASSERT(nb2 <= nb3);
  12307. if (params->type == GGML_TASK_INIT) {
  12308. if (ith == 0) {
  12309. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12310. }
  12311. return;
  12312. }
  12313. if (params->type == GGML_TASK_FINALIZE) {
  12314. return;
  12315. }
  12316. const int64_t elem_q = ggml_nelements(q);
  12317. const int64_t elem_k = ggml_nelements(k);
  12318. enum ggml_type result_type = dst->type;
  12319. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12320. const size_t tsize = ggml_type_size(result_type);
  12321. const size_t offs_q = 0;
  12322. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12323. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12324. void * grad_q = (char *) dst->data;
  12325. void * grad_k = (char *) dst->data + offs_k;
  12326. void * grad_v = (char *) dst->data + offs_v;
  12327. const size_t nbgq1 = nb0*neq0;
  12328. const size_t nbgq2 = nb0*neq0*neq1;
  12329. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12330. const size_t nbgk1 = nb0*nek0;
  12331. const size_t nbgk2 = nb0*nek0*nek1;
  12332. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12333. const size_t nbgv1 = nb0*nev0;
  12334. const size_t nbgv2 = nb0*nev0*nev1;
  12335. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12336. // parallelize by k rows using ggml_vec_dot_f32
  12337. // total rows in k
  12338. const int nr = nek2*nek3;
  12339. // rows per thread
  12340. const int dr = (nr + nth - 1)/nth;
  12341. // row range for this thread
  12342. const int ir0 = dr*ith;
  12343. const int ir1 = MIN(ir0 + dr, nr);
  12344. const float scale = 1.0f/sqrtf(D);
  12345. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12346. // how often k2 (and v2) is repeated in q2
  12347. int nrep = neq2/nek2;
  12348. for (int ir = ir0; ir < ir1; ++ir) {
  12349. // q indices
  12350. const int ik3 = ir/(nek2);
  12351. const int ik2 = ir - ik3*nek2;
  12352. const int iq3 = ik3;
  12353. const int id3 = ik3;
  12354. const int iv3 = ik3;
  12355. const int iv2 = ik2;
  12356. for (int irep = 0; irep < nrep; ++irep) {
  12357. const int iq2 = ik2 + irep*nek2;
  12358. const int id2 = iq2;
  12359. // (ik2 + irep*nek2) % nek2 == ik2
  12360. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12361. const int id1 = iq1;
  12362. // not sure about CACHE_LINE_SIZE_F32..
  12363. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12364. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12365. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12366. for (int i = M; i < Mup; ++i) {
  12367. S[i] = -INFINITY;
  12368. }
  12369. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12370. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12371. // k indices
  12372. const int ik1 = ic;
  12373. // S indices
  12374. const int i1 = ik1;
  12375. ggml_vec_dot_f32(neq0,
  12376. S + i1,
  12377. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12378. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12379. }
  12380. // scale
  12381. ggml_vec_scale_f32(masked_begin, S, scale);
  12382. for (int64_t i = masked_begin; i < M; i++) {
  12383. S[i] = -INFINITY;
  12384. }
  12385. // softmax
  12386. // exclude known -INF S[..] values from max and loop
  12387. // dont forget to set their SM values to zero
  12388. {
  12389. float max = -INFINITY;
  12390. ggml_vec_max_f32(masked_begin, &max, S);
  12391. ggml_float sum = 0.0;
  12392. {
  12393. #ifdef GGML_SOFT_MAX_ACCELERATE
  12394. max = -max;
  12395. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12396. vvexpf(SM, SM, &Mup);
  12397. ggml_vec_sum_f32(Mup, &sum, SM);
  12398. #else
  12399. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12400. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12401. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12402. if (i >= masked_begin) {
  12403. break;
  12404. }
  12405. float * SR = S + i;
  12406. float * SW = SM + i;
  12407. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12408. if (i + j >= masked_begin) {
  12409. break;
  12410. } else if (SR[j] == -INFINITY) {
  12411. SW[j] = 0.0f;
  12412. } else {
  12413. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12414. const float val = expf(SR[j] - max);
  12415. #else
  12416. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12417. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12418. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  12419. #endif
  12420. sump[j] += (ggml_float)val;
  12421. SW[j] = val;
  12422. }
  12423. }
  12424. }
  12425. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12426. sum += sump[i];
  12427. }
  12428. #endif
  12429. }
  12430. assert(sum > 0.0);
  12431. sum = 1.0/sum;
  12432. ggml_vec_scale_f32(masked_begin, SM, sum);
  12433. }
  12434. // step-by-step explanation
  12435. {
  12436. // forward-process shape grads from backward process
  12437. // parallel_for ik2,ik3:
  12438. // for irep:
  12439. // iq2 = ik2 + irep*nek2
  12440. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12441. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12442. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12443. // for iq1:
  12444. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12445. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12446. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12447. // S0 = -Inf [D,1,1,1]
  12448. // ~S1[i] = dot(kcur[:D,i], qcur)
  12449. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12450. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12451. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12452. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12453. // ~S5[i] = dot(vcur[:,i], S4)
  12454. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12455. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12456. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12457. // dst backward-/ grad[dst] = d
  12458. //
  12459. // output gradients with their dependencies:
  12460. //
  12461. // grad[kcur] = grad[S1].T @ qcur
  12462. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12463. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12464. // grad[S4] = grad[S5] @ vcur
  12465. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12466. // grad[qcur] = grad[S1] @ kcur
  12467. // grad[vcur] = grad[S5].T @ S4
  12468. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12469. //
  12470. // in post-order:
  12471. //
  12472. // S1 = qcur @ kcur.T
  12473. // S2 = S1 * scale
  12474. // S3 = diag_mask_inf(S2, P)
  12475. // S4 = softmax(S3)
  12476. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12477. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12478. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12479. // grad[qcur] = grad[S1] @ kcur
  12480. // grad[kcur] = grad[S1].T @ qcur
  12481. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12482. //
  12483. // using less variables (SM=S4):
  12484. //
  12485. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12486. // SM = softmax(S)
  12487. // S = d[:D,iq1,iq2,iq3] @ vcur
  12488. // dot_SM_gradSM = dot(SM, S)
  12489. // S = SM * (S - dot(SM, S))
  12490. // S = diag_mask_zero(S, P) * scale
  12491. //
  12492. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12493. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12494. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12495. }
  12496. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12497. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12498. // for ic:
  12499. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12500. // exclude known future zero S[..] values from operation
  12501. ggml_vec_set_f32(masked_begin, S, 0);
  12502. for (int64_t ic = 0; ic < D; ++ic) {
  12503. ggml_vec_mad_f32(masked_begin,
  12504. S,
  12505. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12506. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12507. }
  12508. // S = SM * (S - dot(SM, S))
  12509. float dot_SM_gradSM = 0;
  12510. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  12511. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12512. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12513. // S = diag_mask_zero(S, P) * scale
  12514. // already done by above ggml_vec_set_f32
  12515. // exclude known zero S[..] values from operation
  12516. ggml_vec_scale_f32(masked_begin, S, scale);
  12517. // S shape [M,1]
  12518. // SM shape [M,1]
  12519. // kcur shape [D,M]
  12520. // qcur shape [D,1]
  12521. // vcur shape [M,D]
  12522. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12523. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12524. // for ic:
  12525. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12526. // exclude known zero S[..] values from loop
  12527. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12528. ggml_vec_mad_f32(D,
  12529. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12530. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12531. S[ic]);
  12532. }
  12533. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12534. // for ic:
  12535. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12536. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12537. // exclude known zero S[..] values from loop
  12538. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12539. ggml_vec_mad_f32(D,
  12540. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12541. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12542. S[ic]);
  12543. }
  12544. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12545. // for ic:
  12546. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12547. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12548. // exclude known zero SM[..] values from mad
  12549. for (int64_t ic = 0; ic < D; ++ic) {
  12550. ggml_vec_mad_f32(masked_begin,
  12551. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12552. SM,
  12553. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12554. }
  12555. }
  12556. }
  12557. }
  12558. }
  12559. static void ggml_compute_forward_flash_attn_back(
  12560. const struct ggml_compute_params * params,
  12561. const struct ggml_tensor * q,
  12562. const struct ggml_tensor * k,
  12563. const struct ggml_tensor * v,
  12564. const struct ggml_tensor * d,
  12565. const bool masked,
  12566. struct ggml_tensor * dst) {
  12567. switch (q->type) {
  12568. case GGML_TYPE_F32:
  12569. {
  12570. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  12571. } break;
  12572. default:
  12573. {
  12574. GGML_ASSERT(false);
  12575. } break;
  12576. }
  12577. }
  12578. // ggml_compute_forward_win_part
  12579. static void ggml_compute_forward_win_part_f32(
  12580. const struct ggml_compute_params * params,
  12581. const struct ggml_tensor * src0,
  12582. struct ggml_tensor * dst) {
  12583. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12584. return;
  12585. }
  12586. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12587. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12588. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12589. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12590. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12591. assert(ne00 == ne0);
  12592. assert(ne3 == nep0*nep1);
  12593. // TODO: optimize / multi-thread
  12594. for (int py = 0; py < nep1; ++py) {
  12595. for (int px = 0; px < nep0; ++px) {
  12596. const int64_t i3 = py*nep0 + px;
  12597. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12598. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12599. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12600. const int64_t i02 = py*w + i2;
  12601. const int64_t i01 = px*w + i1;
  12602. const int64_t i00 = i0;
  12603. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12604. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12605. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12606. ((float *) dst->data)[i] = 0.0f;
  12607. } else {
  12608. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12609. }
  12610. }
  12611. }
  12612. }
  12613. }
  12614. }
  12615. }
  12616. static void ggml_compute_forward_win_part(
  12617. const struct ggml_compute_params * params,
  12618. const struct ggml_tensor * src0,
  12619. struct ggml_tensor * dst) {
  12620. switch (src0->type) {
  12621. case GGML_TYPE_F32:
  12622. {
  12623. ggml_compute_forward_win_part_f32(params, src0, dst);
  12624. } break;
  12625. default:
  12626. {
  12627. GGML_ASSERT(false);
  12628. } break;
  12629. }
  12630. }
  12631. // ggml_compute_forward_win_unpart
  12632. static void ggml_compute_forward_win_unpart_f32(
  12633. const struct ggml_compute_params * params,
  12634. const struct ggml_tensor * src0,
  12635. struct ggml_tensor * dst) {
  12636. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12637. return;
  12638. }
  12639. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12640. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12641. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12642. // padding
  12643. const int px = (w - ne1%w)%w;
  12644. //const int py = (w - ne2%w)%w;
  12645. const int npx = (px + ne1)/w;
  12646. //const int npy = (py + ne2)/w;
  12647. assert(ne0 == ne00);
  12648. // TODO: optimize / multi-thread
  12649. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12650. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12651. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12652. const int ip2 = i2/w;
  12653. const int ip1 = i1/w;
  12654. const int64_t i02 = i2%w;
  12655. const int64_t i01 = i1%w;
  12656. const int64_t i00 = i0;
  12657. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12658. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12659. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12660. }
  12661. }
  12662. }
  12663. }
  12664. static void ggml_compute_forward_win_unpart(
  12665. const struct ggml_compute_params * params,
  12666. const struct ggml_tensor * src0,
  12667. struct ggml_tensor * dst) {
  12668. switch (src0->type) {
  12669. case GGML_TYPE_F32:
  12670. {
  12671. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12672. } break;
  12673. default:
  12674. {
  12675. GGML_ASSERT(false);
  12676. } break;
  12677. }
  12678. }
  12679. //gmml_compute_forward_unary
  12680. static void ggml_compute_forward_unary(
  12681. const struct ggml_compute_params * params,
  12682. const struct ggml_tensor * src0,
  12683. struct ggml_tensor * dst) {
  12684. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12685. switch (op) {
  12686. case GGML_UNARY_OP_ABS:
  12687. {
  12688. ggml_compute_forward_abs(params, src0, dst);
  12689. } break;
  12690. case GGML_UNARY_OP_SGN:
  12691. {
  12692. ggml_compute_forward_sgn(params, src0, dst);
  12693. } break;
  12694. case GGML_UNARY_OP_NEG:
  12695. {
  12696. ggml_compute_forward_neg(params, src0, dst);
  12697. } break;
  12698. case GGML_UNARY_OP_STEP:
  12699. {
  12700. ggml_compute_forward_step(params, src0, dst);
  12701. } break;
  12702. case GGML_UNARY_OP_TANH:
  12703. {
  12704. ggml_compute_forward_tanh(params, src0, dst);
  12705. } break;
  12706. case GGML_UNARY_OP_ELU:
  12707. {
  12708. ggml_compute_forward_elu(params, src0, dst);
  12709. } break;
  12710. case GGML_UNARY_OP_RELU:
  12711. {
  12712. ggml_compute_forward_relu(params, src0, dst);
  12713. } break;
  12714. case GGML_UNARY_OP_GELU:
  12715. {
  12716. ggml_compute_forward_gelu(params, src0, dst);
  12717. } break;
  12718. case GGML_UNARY_OP_GELU_QUICK:
  12719. {
  12720. ggml_compute_forward_gelu_quick(params, src0, dst);
  12721. } break;
  12722. case GGML_UNARY_OP_SILU:
  12723. {
  12724. ggml_compute_forward_silu(params, src0, dst);
  12725. } break;
  12726. default:
  12727. {
  12728. GGML_ASSERT(false);
  12729. } break;
  12730. }
  12731. }
  12732. // ggml_compute_forward_get_rel_pos
  12733. static void ggml_compute_forward_get_rel_pos_f16(
  12734. const struct ggml_compute_params * params,
  12735. const struct ggml_tensor * src0,
  12736. struct ggml_tensor * dst) {
  12737. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12738. return;
  12739. }
  12740. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12741. GGML_TENSOR_UNARY_OP_LOCALS
  12742. const int64_t w = ne1;
  12743. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12744. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12745. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12746. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12747. const int64_t pos = (w - i1 - 1) + i2;
  12748. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12749. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12750. }
  12751. }
  12752. }
  12753. }
  12754. static void ggml_compute_forward_get_rel_pos(
  12755. const struct ggml_compute_params * params,
  12756. const struct ggml_tensor * src0,
  12757. struct ggml_tensor * dst) {
  12758. switch (src0->type) {
  12759. case GGML_TYPE_F16:
  12760. {
  12761. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12762. } break;
  12763. default:
  12764. {
  12765. GGML_ASSERT(false);
  12766. } break;
  12767. }
  12768. }
  12769. // ggml_compute_forward_add_rel_pos
  12770. static void ggml_compute_forward_add_rel_pos_f32(
  12771. const struct ggml_compute_params * params,
  12772. const struct ggml_tensor * src0,
  12773. const struct ggml_tensor * src1,
  12774. const struct ggml_tensor * src2,
  12775. struct ggml_tensor * dst) {
  12776. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12777. if (!inplace && params->type == GGML_TASK_INIT) {
  12778. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12779. return;
  12780. }
  12781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12782. return;
  12783. }
  12784. int64_t t0 = ggml_perf_time_us();
  12785. UNUSED(t0);
  12786. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12787. float * src1_data = (float *) src1->data;
  12788. float * src2_data = (float *) src2->data;
  12789. float * dst_data = (float *) dst->data;
  12790. const int64_t ne10 = src1->ne[0];
  12791. const int64_t ne11 = src1->ne[1];
  12792. const int64_t ne12 = src1->ne[2];
  12793. const int64_t ne13 = src1->ne[3];
  12794. const int ith = params->ith;
  12795. const int nth = params->nth;
  12796. // total patches in dst
  12797. const int np = ne13;
  12798. // patches per thread
  12799. const int dp = (np + nth - 1)/nth;
  12800. // patch range for this thread
  12801. const int ip0 = dp*ith;
  12802. const int ip1 = MIN(ip0 + dp, np);
  12803. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12804. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12805. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12806. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12807. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12808. const int64_t jp0 = jp1 + i10;
  12809. const float src1_e = src1_data[jp0];
  12810. const float src2_e = src2_data[jp0];
  12811. const int64_t jdh = jp0 * ne10;
  12812. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12813. for (int64_t j = 0; j < ne10; ++j) {
  12814. dst_data[jdh + j ] += src2_e;
  12815. dst_data[jdw + j*ne10] += src1_e;
  12816. }
  12817. }
  12818. }
  12819. }
  12820. }
  12821. }
  12822. static void ggml_compute_forward_add_rel_pos(
  12823. const struct ggml_compute_params * params,
  12824. const struct ggml_tensor * src0,
  12825. const struct ggml_tensor * src1,
  12826. const struct ggml_tensor * src2,
  12827. struct ggml_tensor * dst) {
  12828. switch (src0->type) {
  12829. case GGML_TYPE_F32:
  12830. {
  12831. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12832. } break;
  12833. default:
  12834. {
  12835. GGML_ASSERT(false);
  12836. } break;
  12837. }
  12838. }
  12839. // ggml_compute_forward_map_unary
  12840. static void ggml_compute_forward_map_unary_f32(
  12841. const struct ggml_compute_params * params,
  12842. const struct ggml_tensor * src0,
  12843. struct ggml_tensor * dst,
  12844. const ggml_unary_op_f32_t fun) {
  12845. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12846. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12847. return;
  12848. }
  12849. const int n = ggml_nrows(src0);
  12850. const int nc = src0->ne[0];
  12851. assert( dst->nb[0] == sizeof(float));
  12852. assert(src0->nb[0] == sizeof(float));
  12853. for (int i = 0; i < n; i++) {
  12854. fun(nc,
  12855. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12856. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12857. }
  12858. }
  12859. static void ggml_compute_forward_map_unary(
  12860. const struct ggml_compute_params * params,
  12861. const struct ggml_tensor * src0,
  12862. struct ggml_tensor * dst,
  12863. const ggml_unary_op_f32_t fun) {
  12864. switch (src0->type) {
  12865. case GGML_TYPE_F32:
  12866. {
  12867. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12868. } break;
  12869. default:
  12870. {
  12871. GGML_ASSERT(false);
  12872. } break;
  12873. }
  12874. }
  12875. // ggml_compute_forward_map_binary
  12876. static void ggml_compute_forward_map_binary_f32(
  12877. const struct ggml_compute_params * params,
  12878. const struct ggml_tensor * src0,
  12879. const struct ggml_tensor * src1,
  12880. struct ggml_tensor * dst,
  12881. const ggml_binary_op_f32_t fun) {
  12882. assert(params->ith == 0);
  12883. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12884. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12885. return;
  12886. }
  12887. const int n = ggml_nrows(src0);
  12888. const int nc = src0->ne[0];
  12889. assert( dst->nb[0] == sizeof(float));
  12890. assert(src0->nb[0] == sizeof(float));
  12891. assert(src1->nb[0] == sizeof(float));
  12892. for (int i = 0; i < n; i++) {
  12893. fun(nc,
  12894. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12895. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12896. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12897. }
  12898. }
  12899. static void ggml_compute_forward_map_binary(
  12900. const struct ggml_compute_params * params,
  12901. const struct ggml_tensor * src0,
  12902. const struct ggml_tensor * src1,
  12903. struct ggml_tensor * dst,
  12904. const ggml_binary_op_f32_t fun) {
  12905. switch (src0->type) {
  12906. case GGML_TYPE_F32:
  12907. {
  12908. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12909. } break;
  12910. default:
  12911. {
  12912. GGML_ASSERT(false);
  12913. } break;
  12914. }
  12915. }
  12916. // ggml_compute_forward_map_custom1
  12917. static void ggml_compute_forward_map_custom1_f32(
  12918. const struct ggml_compute_params * params,
  12919. const struct ggml_tensor * a,
  12920. struct ggml_tensor * dst,
  12921. const ggml_custom1_op_f32_t fun) {
  12922. assert(params->ith == 0);
  12923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12924. return;
  12925. }
  12926. fun(dst, a);
  12927. }
  12928. // ggml_compute_forward_map_custom2
  12929. static void ggml_compute_forward_map_custom2_f32(
  12930. const struct ggml_compute_params * params,
  12931. const struct ggml_tensor * a,
  12932. const struct ggml_tensor * b,
  12933. struct ggml_tensor * dst,
  12934. const ggml_custom2_op_f32_t fun) {
  12935. assert(params->ith == 0);
  12936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12937. return;
  12938. }
  12939. fun(dst, a, b);
  12940. }
  12941. // ggml_compute_forward_map_custom3
  12942. static void ggml_compute_forward_map_custom3_f32(
  12943. const struct ggml_compute_params * params,
  12944. const struct ggml_tensor * a,
  12945. const struct ggml_tensor * b,
  12946. const struct ggml_tensor * c,
  12947. struct ggml_tensor * dst,
  12948. const ggml_custom3_op_f32_t fun) {
  12949. assert(params->ith == 0);
  12950. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12951. return;
  12952. }
  12953. fun(dst, a, b, c);
  12954. }
  12955. // ggml_compute_forward_map_custom1
  12956. static void ggml_compute_forward_map_custom1(
  12957. const struct ggml_compute_params * params,
  12958. const struct ggml_tensor * a,
  12959. struct ggml_tensor * dst) {
  12960. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12961. return;
  12962. }
  12963. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12964. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12965. }
  12966. // ggml_compute_forward_map_custom2
  12967. static void ggml_compute_forward_map_custom2(
  12968. const struct ggml_compute_params * params,
  12969. const struct ggml_tensor * a,
  12970. const struct ggml_tensor * b,
  12971. struct ggml_tensor * dst) {
  12972. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12973. return;
  12974. }
  12975. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12976. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12977. }
  12978. // ggml_compute_forward_map_custom3
  12979. static void ggml_compute_forward_map_custom3(
  12980. const struct ggml_compute_params * params,
  12981. const struct ggml_tensor * a,
  12982. const struct ggml_tensor * b,
  12983. const struct ggml_tensor * c,
  12984. struct ggml_tensor * dst) {
  12985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12986. return;
  12987. }
  12988. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12989. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12990. }
  12991. // ggml_compute_forward_cross_entropy_loss
  12992. static void ggml_compute_forward_cross_entropy_loss_f32(
  12993. const struct ggml_compute_params * params,
  12994. const struct ggml_tensor * src0,
  12995. const struct ggml_tensor * src1,
  12996. struct ggml_tensor * dst) {
  12997. GGML_ASSERT(ggml_is_contiguous(src0));
  12998. GGML_ASSERT(ggml_is_contiguous(src1));
  12999. GGML_ASSERT(ggml_is_scalar(dst));
  13000. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13001. const int ith = params->ith;
  13002. const int nth = params->nth;
  13003. float * sums = (float *) params->wdata;
  13004. // TODO: handle transposed/permuted matrices
  13005. const int nc = src0->ne[0];
  13006. const int nr = ggml_nrows(src0);
  13007. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13008. if (params->type == GGML_TASK_INIT) {
  13009. if (ith == 0) {
  13010. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13011. }
  13012. return;
  13013. }
  13014. if (params->type == GGML_TASK_FINALIZE) {
  13015. if (ith == 0) {
  13016. float * dp = (float *) dst->data;
  13017. ggml_vec_sum_f32(nth, dp, sums);
  13018. dp[0] *= -1.0f / (float) nr;
  13019. }
  13020. return;
  13021. }
  13022. const double eps = 1e-9;
  13023. // rows per thread
  13024. const int dr = (nr + nth - 1)/nth;
  13025. // row range for this thread
  13026. const int ir0 = dr*ith;
  13027. const int ir1 = MIN(ir0 + dr, nr);
  13028. for (int i1 = ir0; i1 < ir1; i1++) {
  13029. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13030. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13031. float * st = ((float *) params->wdata) + nth + ith*nc;
  13032. #ifndef NDEBUG
  13033. for (int i = 0; i < nc; ++i) {
  13034. //printf("p[%d] = %f\n", i, p[i]);
  13035. assert(!isnan(s0[i]));
  13036. assert(!isnan(s1[i]));
  13037. }
  13038. #endif
  13039. // soft_max
  13040. ggml_float sum = 0.0;
  13041. {
  13042. float max = -INFINITY;
  13043. ggml_vec_max_f32(nc, &max, s0);
  13044. uint16_t scvt; UNUSED(scvt);
  13045. for (int i = 0; i < nc; i++) {
  13046. if (s0[i] == -INFINITY) {
  13047. st[i] = 0.0f;
  13048. } else {
  13049. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13050. const float s = s0[i] - max;
  13051. const float val = expf(s);
  13052. #else
  13053. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13054. memcpy(&scvt, &s, sizeof(scvt));
  13055. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  13056. #endif
  13057. sum += (ggml_float)val;
  13058. st[i] = val;
  13059. }
  13060. }
  13061. assert(sum > 0.0);
  13062. // sum = 1.0/sum;
  13063. }
  13064. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13065. sum = (1.0 - eps) / sum;
  13066. ggml_vec_scale_f32(nc, st, sum);
  13067. ggml_vec_add1_f32(nc, st, st, eps);
  13068. ggml_vec_log_f32(nc, st, st);
  13069. ggml_vec_mul_f32(nc, st, st, s1);
  13070. float st_sum = 0;
  13071. ggml_vec_sum_f32(nc, &st_sum, st);
  13072. sums[ith] += st_sum;
  13073. #ifndef NDEBUG
  13074. for (int i = 0; i < nc; ++i) {
  13075. assert(!isnan(st[i]));
  13076. assert(!isinf(st[i]));
  13077. }
  13078. #endif
  13079. }
  13080. }
  13081. static void ggml_compute_forward_cross_entropy_loss(
  13082. const struct ggml_compute_params * params,
  13083. const struct ggml_tensor * src0,
  13084. const struct ggml_tensor * src1,
  13085. struct ggml_tensor * dst) {
  13086. switch (src0->type) {
  13087. case GGML_TYPE_F32:
  13088. {
  13089. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  13090. } break;
  13091. default:
  13092. {
  13093. GGML_ASSERT(false);
  13094. } break;
  13095. }
  13096. }
  13097. // ggml_compute_forward_cross_entropy_loss_back
  13098. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13099. const struct ggml_compute_params * params,
  13100. const struct ggml_tensor * src0,
  13101. const struct ggml_tensor * src1,
  13102. const struct ggml_tensor * opt0,
  13103. struct ggml_tensor * dst) {
  13104. GGML_ASSERT(ggml_is_contiguous(dst));
  13105. GGML_ASSERT(ggml_is_contiguous(src0));
  13106. GGML_ASSERT(ggml_is_contiguous(src1));
  13107. GGML_ASSERT(ggml_is_contiguous(opt0));
  13108. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13109. const int64_t ith = params->ith;
  13110. const int64_t nth = params->nth;
  13111. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13112. return;
  13113. }
  13114. const double eps = 1e-9;
  13115. // TODO: handle transposed/permuted matrices
  13116. const int64_t nc = src0->ne[0];
  13117. const int64_t nr = ggml_nrows(src0);
  13118. // rows per thread
  13119. const int64_t dr = (nr + nth - 1)/nth;
  13120. // row range for this thread
  13121. const int64_t ir0 = dr*ith;
  13122. const int64_t ir1 = MIN(ir0 + dr, nr);
  13123. float * d = (float *) opt0->data;
  13124. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13125. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13126. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13127. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13128. #ifndef NDEBUG
  13129. for (int i = 0; i < nc; ++i) {
  13130. //printf("p[%d] = %f\n", i, p[i]);
  13131. assert(!isnan(s0[i]));
  13132. assert(!isnan(s1[i]));
  13133. }
  13134. #endif
  13135. // soft_max
  13136. ggml_float sum = 0.0;
  13137. {
  13138. float max = -INFINITY;
  13139. ggml_vec_max_f32(nc, &max, s0);
  13140. uint16_t scvt; UNUSED(scvt);
  13141. for (int i = 0; i < nc; i++) {
  13142. if (s0[i] == -INFINITY) {
  13143. ds0[i] = 0.0f;
  13144. } else {
  13145. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13146. const float s = s0[i] - max;
  13147. const float val = expf(s);
  13148. #else
  13149. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13150. memcpy(&scvt, &s, sizeof(scvt));
  13151. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  13152. #endif
  13153. sum += (ggml_float)val;
  13154. ds0[i] = val;
  13155. }
  13156. }
  13157. assert(sum > 0.0);
  13158. sum = (1.0 - eps)/sum;
  13159. }
  13160. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13161. ggml_vec_scale_f32(nc, ds0, sum);
  13162. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13163. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13164. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13165. #ifndef NDEBUG
  13166. for (int i = 0; i < nc; ++i) {
  13167. assert(!isnan(ds0[i]));
  13168. assert(!isinf(ds0[i]));
  13169. }
  13170. #endif
  13171. }
  13172. }
  13173. static void ggml_compute_forward_cross_entropy_loss_back(
  13174. const struct ggml_compute_params * params,
  13175. const struct ggml_tensor * src0,
  13176. const struct ggml_tensor * src1,
  13177. const struct ggml_tensor * opt0,
  13178. struct ggml_tensor * dst) {
  13179. switch (src0->type) {
  13180. case GGML_TYPE_F32:
  13181. {
  13182. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  13183. } break;
  13184. default:
  13185. {
  13186. GGML_ASSERT(false);
  13187. } break;
  13188. }
  13189. }
  13190. /////////////////////////////////
  13191. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13192. GGML_ASSERT(params);
  13193. #ifdef GGML_USE_CUBLAS
  13194. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  13195. if (skip_cpu) {
  13196. return;
  13197. }
  13198. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  13199. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  13200. #endif // GGML_USE_CUBLAS
  13201. switch (tensor->op) {
  13202. case GGML_OP_DUP:
  13203. {
  13204. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  13205. } break;
  13206. case GGML_OP_ADD:
  13207. {
  13208. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  13209. } break;
  13210. case GGML_OP_ADD1:
  13211. {
  13212. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  13213. } break;
  13214. case GGML_OP_ACC:
  13215. {
  13216. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  13217. } break;
  13218. case GGML_OP_SUB:
  13219. {
  13220. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  13221. } break;
  13222. case GGML_OP_MUL:
  13223. {
  13224. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  13225. } break;
  13226. case GGML_OP_DIV:
  13227. {
  13228. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  13229. } break;
  13230. case GGML_OP_SQR:
  13231. {
  13232. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  13233. } break;
  13234. case GGML_OP_SQRT:
  13235. {
  13236. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  13237. } break;
  13238. case GGML_OP_LOG:
  13239. {
  13240. ggml_compute_forward_log(params, tensor->src[0], tensor);
  13241. } break;
  13242. case GGML_OP_SUM:
  13243. {
  13244. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  13245. } break;
  13246. case GGML_OP_SUM_ROWS:
  13247. {
  13248. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  13249. } break;
  13250. case GGML_OP_MEAN:
  13251. {
  13252. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  13253. } break;
  13254. case GGML_OP_ARGMAX:
  13255. {
  13256. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  13257. } break;
  13258. case GGML_OP_REPEAT:
  13259. {
  13260. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  13261. } break;
  13262. case GGML_OP_REPEAT_BACK:
  13263. {
  13264. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  13265. } break;
  13266. case GGML_OP_CONCAT:
  13267. {
  13268. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  13269. } break;
  13270. case GGML_OP_SILU_BACK:
  13271. {
  13272. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  13273. } break;
  13274. case GGML_OP_NORM:
  13275. {
  13276. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  13277. } break;
  13278. case GGML_OP_RMS_NORM:
  13279. {
  13280. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  13281. } break;
  13282. case GGML_OP_RMS_NORM_BACK:
  13283. {
  13284. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  13285. } break;
  13286. case GGML_OP_GROUP_NORM:
  13287. {
  13288. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  13289. } break;
  13290. case GGML_OP_MUL_MAT:
  13291. {
  13292. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  13293. } break;
  13294. case GGML_OP_OUT_PROD:
  13295. {
  13296. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  13297. } break;
  13298. case GGML_OP_SCALE:
  13299. {
  13300. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  13301. } break;
  13302. case GGML_OP_SET:
  13303. {
  13304. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  13305. } break;
  13306. case GGML_OP_CPY:
  13307. {
  13308. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  13309. } break;
  13310. case GGML_OP_CONT:
  13311. {
  13312. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  13313. } break;
  13314. case GGML_OP_RESHAPE:
  13315. {
  13316. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  13317. } break;
  13318. case GGML_OP_VIEW:
  13319. {
  13320. ggml_compute_forward_view(params, tensor->src[0]);
  13321. } break;
  13322. case GGML_OP_PERMUTE:
  13323. {
  13324. ggml_compute_forward_permute(params, tensor->src[0]);
  13325. } break;
  13326. case GGML_OP_TRANSPOSE:
  13327. {
  13328. ggml_compute_forward_transpose(params, tensor->src[0]);
  13329. } break;
  13330. case GGML_OP_GET_ROWS:
  13331. {
  13332. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  13333. } break;
  13334. case GGML_OP_GET_ROWS_BACK:
  13335. {
  13336. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  13337. } break;
  13338. case GGML_OP_DIAG:
  13339. {
  13340. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  13341. } break;
  13342. case GGML_OP_DIAG_MASK_INF:
  13343. {
  13344. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  13345. } break;
  13346. case GGML_OP_DIAG_MASK_ZERO:
  13347. {
  13348. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  13349. } break;
  13350. case GGML_OP_SOFT_MAX:
  13351. {
  13352. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  13353. } break;
  13354. case GGML_OP_SOFT_MAX_BACK:
  13355. {
  13356. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  13357. } break;
  13358. case GGML_OP_ROPE:
  13359. {
  13360. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  13361. } break;
  13362. case GGML_OP_ROPE_BACK:
  13363. {
  13364. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  13365. } break;
  13366. case GGML_OP_ALIBI:
  13367. {
  13368. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  13369. } break;
  13370. case GGML_OP_CLAMP:
  13371. {
  13372. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  13373. } break;
  13374. case GGML_OP_CONV_1D:
  13375. {
  13376. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  13377. } break;
  13378. case GGML_OP_CONV_2D:
  13379. {
  13380. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  13381. } break;
  13382. case GGML_OP_CONV_TRANSPOSE_2D:
  13383. {
  13384. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  13385. } break;
  13386. case GGML_OP_POOL_1D:
  13387. {
  13388. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  13389. } break;
  13390. case GGML_OP_POOL_2D:
  13391. {
  13392. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  13393. } break;
  13394. case GGML_OP_UPSCALE:
  13395. {
  13396. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  13397. } break;
  13398. case GGML_OP_FLASH_ATTN:
  13399. {
  13400. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13401. GGML_ASSERT(t == 0 || t == 1);
  13402. const bool masked = t != 0;
  13403. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  13404. } break;
  13405. case GGML_OP_FLASH_FF:
  13406. {
  13407. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  13408. } break;
  13409. case GGML_OP_FLASH_ATTN_BACK:
  13410. {
  13411. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13412. GGML_ASSERT(t == 0 || t == 1);
  13413. bool masked = t != 0;
  13414. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  13415. } break;
  13416. case GGML_OP_WIN_PART:
  13417. {
  13418. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  13419. } break;
  13420. case GGML_OP_WIN_UNPART:
  13421. {
  13422. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  13423. } break;
  13424. case GGML_OP_UNARY:
  13425. {
  13426. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  13427. } break;
  13428. case GGML_OP_GET_REL_POS:
  13429. {
  13430. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  13431. } break;
  13432. case GGML_OP_ADD_REL_POS:
  13433. {
  13434. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13435. } break;
  13436. case GGML_OP_MAP_UNARY:
  13437. {
  13438. ggml_unary_op_f32_t fun;
  13439. memcpy(&fun, tensor->op_params, sizeof(fun));
  13440. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  13441. }
  13442. break;
  13443. case GGML_OP_MAP_BINARY:
  13444. {
  13445. ggml_binary_op_f32_t fun;
  13446. memcpy(&fun, tensor->op_params, sizeof(fun));
  13447. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  13448. }
  13449. break;
  13450. case GGML_OP_MAP_CUSTOM1_F32:
  13451. {
  13452. ggml_custom1_op_f32_t fun;
  13453. memcpy(&fun, tensor->op_params, sizeof(fun));
  13454. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  13455. }
  13456. break;
  13457. case GGML_OP_MAP_CUSTOM2_F32:
  13458. {
  13459. ggml_custom2_op_f32_t fun;
  13460. memcpy(&fun, tensor->op_params, sizeof(fun));
  13461. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  13462. }
  13463. break;
  13464. case GGML_OP_MAP_CUSTOM3_F32:
  13465. {
  13466. ggml_custom3_op_f32_t fun;
  13467. memcpy(&fun, tensor->op_params, sizeof(fun));
  13468. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  13469. }
  13470. break;
  13471. case GGML_OP_MAP_CUSTOM1:
  13472. {
  13473. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  13474. }
  13475. break;
  13476. case GGML_OP_MAP_CUSTOM2:
  13477. {
  13478. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  13479. }
  13480. break;
  13481. case GGML_OP_MAP_CUSTOM3:
  13482. {
  13483. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13484. }
  13485. break;
  13486. case GGML_OP_CROSS_ENTROPY_LOSS:
  13487. {
  13488. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  13489. }
  13490. break;
  13491. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13492. {
  13493. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13494. }
  13495. break;
  13496. case GGML_OP_NONE:
  13497. {
  13498. // nop
  13499. } break;
  13500. case GGML_OP_COUNT:
  13501. {
  13502. GGML_ASSERT(false);
  13503. } break;
  13504. }
  13505. }
  13506. ////////////////////////////////////////////////////////////////////////////////
  13507. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13508. static size_t hash(void * p) {
  13509. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13510. }
  13511. static size_t hash_find(void * hash_table[], void * p) {
  13512. size_t h = hash(p);
  13513. // linear probing
  13514. size_t i = h;
  13515. while (hash_table[i] != NULL && hash_table[i] != p) {
  13516. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13517. if (i == h) {
  13518. // visited all hash table entries -> not found
  13519. return GGML_GRAPH_HASHTABLE_SIZE;
  13520. }
  13521. }
  13522. return i;
  13523. }
  13524. static bool hash_insert(void * hash_table[], void * p) {
  13525. size_t i = hash_find(hash_table, p);
  13526. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13527. if (hash_table[i] == p) {
  13528. return true;
  13529. }
  13530. // insert
  13531. GGML_ASSERT(hash_table[i] == NULL);
  13532. hash_table[i] = p;
  13533. return false;
  13534. }
  13535. static bool hash_contains(void * hash_table[], void * p) {
  13536. size_t i = hash_find(hash_table, p);
  13537. return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
  13538. }
  13539. struct hash_map {
  13540. void * keys[GGML_GRAPH_HASHTABLE_SIZE];
  13541. void * vals[GGML_GRAPH_HASHTABLE_SIZE];
  13542. };
  13543. static struct hash_map * new_hash_map(void) {
  13544. struct hash_map * result = malloc(sizeof(struct hash_map));
  13545. for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
  13546. result->keys[i] = NULL;
  13547. result->vals[i] = NULL;
  13548. }
  13549. return result;
  13550. }
  13551. static void free_hash_map(struct hash_map * map) {
  13552. free(map);
  13553. }
  13554. // gradient checkpointing
  13555. static struct ggml_tensor * ggml_recompute_graph_node(
  13556. struct ggml_context * ctx,
  13557. struct ggml_cgraph * graph,
  13558. struct hash_map * replacements,
  13559. struct ggml_tensor * node) {
  13560. if (node == NULL) {
  13561. return NULL;
  13562. }
  13563. if (node->is_param) {
  13564. return node;
  13565. }
  13566. if (!hash_contains(graph->visited_hash_table, node)) {
  13567. return node;
  13568. }
  13569. int count_children = 0;
  13570. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13571. if (node->src[k]) {
  13572. ++count_children;
  13573. }
  13574. }
  13575. if (count_children == 0) {
  13576. return node;
  13577. }
  13578. size_t i = hash_find(replacements->keys, node);
  13579. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13580. if (replacements->keys[i] == node) {
  13581. return (struct ggml_tensor *) replacements->vals[i];
  13582. }
  13583. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  13584. // insert clone into replacements
  13585. GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
  13586. replacements->keys[i] = node;
  13587. replacements->vals[i] = clone;
  13588. clone->op = node->op;
  13589. clone->grad = node->grad;
  13590. clone->is_param = node->is_param;
  13591. clone->extra = node->extra;
  13592. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13593. clone->nb[k] = node->nb[k];
  13594. }
  13595. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13596. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13597. }
  13598. if (node->view_src != NULL) {
  13599. clone->data = (node->view_src->data == NULL)
  13600. ? NULL // view_src not yet allocated
  13601. : (char *) node->view_src->data // view_src already allocated
  13602. + node->view_offs;
  13603. clone->view_src = node->view_src;
  13604. clone->view_offs = node->view_offs;
  13605. }
  13606. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13607. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13608. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13609. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13610. return clone;
  13611. }
  13612. void ggml_build_backward_gradient_checkpointing(
  13613. struct ggml_context * ctx,
  13614. struct ggml_cgraph * gf,
  13615. struct ggml_cgraph * gb,
  13616. struct ggml_cgraph * gb_tmp,
  13617. struct ggml_tensor * * checkpoints,
  13618. int n_checkpoints) {
  13619. *gb_tmp = *gf;
  13620. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13621. if (n_checkpoints <= 0) {
  13622. *gb = *gb_tmp;
  13623. return;
  13624. }
  13625. struct hash_map * replacements = new_hash_map();
  13626. // insert checkpoints in replacements
  13627. for (int i = 0; i < n_checkpoints; ++i) {
  13628. size_t k = hash_find(replacements->keys, checkpoints[i]);
  13629. GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13630. GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
  13631. replacements->keys[k] = checkpoints[i];
  13632. replacements->vals[k] = checkpoints[i];
  13633. }
  13634. *gb = *gf;
  13635. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13636. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13637. // by recomputing them from checkpoints
  13638. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13639. struct ggml_tensor * node = gb_tmp->nodes[i];
  13640. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13641. // insert new tensors recomputing src, reusing already made replacements,
  13642. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13643. // recurse for input tensors,
  13644. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  13645. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13646. }
  13647. // insert rewritten backward node with replacements made into resulting backward graph gb
  13648. ggml_build_forward_expand(gb, node);
  13649. }
  13650. free_hash_map(replacements);
  13651. }
  13652. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13653. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13654. if (hash_contains(zero_table, a)) {
  13655. return b;
  13656. } else {
  13657. return ggml_add_impl(ctx, a, b, false);
  13658. }
  13659. }
  13660. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, void * zero_table[]) {
  13661. if (hash_contains(zero_table, a)) {
  13662. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  13663. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13664. } else {
  13665. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13666. }
  13667. }
  13668. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13669. if (hash_contains(zero_table, a)) {
  13670. return ggml_repeat(ctx, b, a);
  13671. } else {
  13672. return ggml_add1_impl(ctx, a, b, false);
  13673. }
  13674. }
  13675. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13676. if (hash_contains(zero_table, a)) {
  13677. return ggml_neg(ctx, b);
  13678. } else {
  13679. return ggml_sub_impl(ctx, a, b, false);
  13680. }
  13681. }
  13682. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, void * zero_table[]) {
  13683. struct ggml_tensor * src0 = tensor->src[0];
  13684. struct ggml_tensor * src1 = tensor->src[1];
  13685. switch (tensor->op) {
  13686. case GGML_OP_DUP:
  13687. {
  13688. if (src0->grad) {
  13689. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13690. }
  13691. } break;
  13692. case GGML_OP_ADD:
  13693. {
  13694. if (src0->grad) {
  13695. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13696. }
  13697. if (src1->grad) {
  13698. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13699. }
  13700. } break;
  13701. case GGML_OP_ADD1:
  13702. {
  13703. if (src0->grad) {
  13704. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13705. }
  13706. if (src1->grad) {
  13707. src1->grad = ggml_add_or_set(ctx,
  13708. src1->grad,
  13709. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13710. zero_table);
  13711. }
  13712. } break;
  13713. case GGML_OP_ACC:
  13714. {
  13715. if (src0->grad) {
  13716. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13717. }
  13718. if (src1->grad) {
  13719. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13720. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13721. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13722. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13723. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13724. tensor->grad,
  13725. src1->grad->ne[0],
  13726. src1->grad->ne[1],
  13727. src1->grad->ne[2],
  13728. src1->grad->ne[3],
  13729. nb1, nb2, nb3, offset);
  13730. src1->grad =
  13731. ggml_add_or_set(ctx,
  13732. src1->grad,
  13733. ggml_reshape(ctx,
  13734. ggml_cont(ctx, tensor_grad_view),
  13735. src1->grad),
  13736. zero_table);
  13737. }
  13738. } break;
  13739. case GGML_OP_SUB:
  13740. {
  13741. if (src0->grad) {
  13742. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13743. }
  13744. if (src1->grad) {
  13745. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13746. }
  13747. } break;
  13748. case GGML_OP_MUL:
  13749. {
  13750. if (src0->grad) {
  13751. src0->grad =
  13752. ggml_add_or_set(ctx,
  13753. src0->grad,
  13754. ggml_mul(ctx, src1, tensor->grad),
  13755. zero_table);
  13756. }
  13757. if (src1->grad) {
  13758. src1->grad =
  13759. ggml_add_or_set(ctx,
  13760. src1->grad,
  13761. ggml_mul(ctx, src0, tensor->grad),
  13762. zero_table);
  13763. }
  13764. } break;
  13765. case GGML_OP_DIV:
  13766. {
  13767. if (src0->grad) {
  13768. src0->grad =
  13769. ggml_add_or_set(ctx,
  13770. src0->grad,
  13771. ggml_div(ctx, tensor->grad, src1),
  13772. zero_table);
  13773. }
  13774. if (src1->grad) {
  13775. src1->grad =
  13776. ggml_sub_or_set(ctx,
  13777. src1->grad,
  13778. ggml_mul(ctx,
  13779. tensor->grad,
  13780. ggml_div(ctx, tensor, src1)),
  13781. zero_table);
  13782. }
  13783. } break;
  13784. case GGML_OP_SQR:
  13785. {
  13786. if (src0->grad) {
  13787. src0->grad =
  13788. ggml_add_or_set(ctx,
  13789. src0->grad,
  13790. ggml_scale(ctx,
  13791. ggml_mul(ctx, src0, tensor->grad),
  13792. ggml_new_f32(ctx, 2.0f)),
  13793. zero_table);
  13794. }
  13795. } break;
  13796. case GGML_OP_SQRT:
  13797. {
  13798. if (src0->grad) {
  13799. src0->grad =
  13800. ggml_add_or_set(ctx,
  13801. src0->grad,
  13802. ggml_scale(ctx,
  13803. ggml_div(ctx,
  13804. tensor->grad,
  13805. tensor),
  13806. ggml_new_f32(ctx, 0.5f)),
  13807. zero_table);
  13808. }
  13809. } break;
  13810. case GGML_OP_LOG:
  13811. {
  13812. if (src0->grad) {
  13813. src0->grad =
  13814. ggml_add_or_set(ctx,
  13815. src0->grad,
  13816. ggml_div(ctx,
  13817. tensor->grad,
  13818. src0),
  13819. zero_table);
  13820. }
  13821. } break;
  13822. case GGML_OP_SUM:
  13823. {
  13824. if (src0->grad) {
  13825. src0->grad =
  13826. ggml_add1_or_set(ctx,
  13827. src0->grad,
  13828. tensor->grad,
  13829. zero_table);
  13830. }
  13831. } break;
  13832. case GGML_OP_SUM_ROWS:
  13833. {
  13834. if (src0->grad) {
  13835. src0->grad =
  13836. ggml_add_or_set(ctx,
  13837. src0->grad,
  13838. ggml_repeat(ctx,
  13839. tensor->grad,
  13840. src0->grad),
  13841. zero_table);
  13842. }
  13843. } break;
  13844. case GGML_OP_MEAN:
  13845. case GGML_OP_ARGMAX:
  13846. {
  13847. GGML_ASSERT(false); // TODO: implement
  13848. } break;
  13849. case GGML_OP_REPEAT:
  13850. {
  13851. // necessary for llama
  13852. if (src0->grad) {
  13853. src0->grad = ggml_add_or_set(ctx,
  13854. src0->grad,
  13855. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13856. zero_table);
  13857. }
  13858. } break;
  13859. case GGML_OP_REPEAT_BACK:
  13860. {
  13861. if (src0->grad) {
  13862. // TODO: test this
  13863. src0->grad = ggml_add_or_set(ctx,
  13864. src0->grad,
  13865. ggml_repeat(ctx, tensor->grad, src0->grad),
  13866. zero_table);
  13867. }
  13868. } break;
  13869. case GGML_OP_CONCAT:
  13870. {
  13871. GGML_ASSERT(false); // TODO: implement
  13872. } break;
  13873. case GGML_OP_SILU_BACK:
  13874. {
  13875. GGML_ASSERT(false); // TODO: not implemented
  13876. } break;
  13877. case GGML_OP_NORM:
  13878. {
  13879. GGML_ASSERT(false); // TODO: not implemented
  13880. } break;
  13881. case GGML_OP_RMS_NORM:
  13882. {
  13883. // necessary for llama
  13884. if (src0->grad) {
  13885. float eps;
  13886. memcpy(&eps, tensor->op_params, sizeof(float));
  13887. src0->grad = ggml_add_or_set(ctx,
  13888. src0->grad,
  13889. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13890. zero_table);
  13891. }
  13892. } break;
  13893. case GGML_OP_RMS_NORM_BACK:
  13894. {
  13895. GGML_ASSERT(false); // TODO: not implemented
  13896. } break;
  13897. case GGML_OP_GROUP_NORM:
  13898. {
  13899. GGML_ASSERT(false); // TODO: not implemented
  13900. } break;
  13901. case GGML_OP_MUL_MAT:
  13902. {
  13903. // https://cs231n.github.io/optimization-2/#staged
  13904. // # forward pass
  13905. // s0 = np.random.randn(5, 10)
  13906. // s1 = np.random.randn(10, 3)
  13907. // t = s0.dot(s1)
  13908. // # now suppose we had the gradient on t from above in the circuit
  13909. // dt = np.random.randn(*t.shape) # same shape as t
  13910. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13911. // ds1 = t.T.dot(dt)
  13912. // tensor.shape [m,p,qq,rr]
  13913. // src0.shape [n,m,q1,r1]
  13914. // src1.shape [n,p,qq,rr]
  13915. // necessary for llama
  13916. if (src0->grad) {
  13917. struct ggml_tensor * s1_tg =
  13918. ggml_out_prod(ctx, // [n,m,qq,rr]
  13919. src1, // [n,p,qq,rr]
  13920. tensor->grad); // [m,p,qq,rr]
  13921. const int64_t qq = s1_tg->ne[2];
  13922. const int64_t rr = s1_tg->ne[3];
  13923. const int64_t q1 = src0->ne[2];
  13924. const int64_t r1 = src0->ne[3];
  13925. const bool ne2_broadcasted = qq > q1;
  13926. const bool ne3_broadcasted = rr > r1;
  13927. if (ne2_broadcasted || ne3_broadcasted) {
  13928. // sum broadcast repetitions of s1_tg into shape of src0
  13929. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13930. }
  13931. src0->grad =
  13932. ggml_add_or_set(ctx,
  13933. src0->grad, // [n,m,q1,r1]
  13934. s1_tg, // [n,m,q1,r1]
  13935. zero_table);
  13936. }
  13937. if (src1->grad) {
  13938. src1->grad =
  13939. ggml_add_or_set(ctx,
  13940. src1->grad, // [n,p,qq,rr]
  13941. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13942. // ggml_cont(ctx, // [m,n,q1,r1]
  13943. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13944. // tensor->grad), // [m,p,qq,rr]
  13945. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13946. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13947. // // and then use ggml_out_prod
  13948. ggml_out_prod(ctx, // [n,p,qq,rr]
  13949. src0, // [n,m,q1,r1]
  13950. ggml_transpose(ctx, // [p,m,qq,rr]
  13951. tensor->grad)), // [m,p,qq,rr]
  13952. zero_table);
  13953. }
  13954. } break;
  13955. case GGML_OP_OUT_PROD:
  13956. {
  13957. GGML_ASSERT(false); // TODO: not implemented
  13958. } break;
  13959. case GGML_OP_SCALE:
  13960. {
  13961. // necessary for llama
  13962. if (src0->grad) {
  13963. src0->grad =
  13964. ggml_add_or_set(ctx,
  13965. src0->grad,
  13966. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13967. zero_table);
  13968. }
  13969. if (src1->grad) {
  13970. src1->grad =
  13971. ggml_add_or_set(ctx,
  13972. src1->grad,
  13973. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13974. zero_table);
  13975. }
  13976. } break;
  13977. case GGML_OP_SET:
  13978. {
  13979. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13980. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13981. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13982. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13983. struct ggml_tensor * tensor_grad_view = NULL;
  13984. if (src0->grad || src1->grad) {
  13985. GGML_ASSERT(src0->type == tensor->type);
  13986. GGML_ASSERT(tensor->grad->type == tensor->type);
  13987. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13988. tensor_grad_view = ggml_view_4d(ctx,
  13989. tensor->grad,
  13990. src1->grad->ne[0],
  13991. src1->grad->ne[1],
  13992. src1->grad->ne[2],
  13993. src1->grad->ne[3],
  13994. nb1, nb2, nb3, offset);
  13995. }
  13996. if (src0->grad) {
  13997. src0->grad = ggml_add_or_set(ctx,
  13998. src0->grad,
  13999. ggml_acc_impl(ctx,
  14000. tensor->grad,
  14001. ggml_neg(ctx, tensor_grad_view),
  14002. nb1, nb2, nb3, offset, false),
  14003. zero_table);
  14004. }
  14005. if (src1->grad) {
  14006. src1->grad =
  14007. ggml_add_or_set(ctx,
  14008. src1->grad,
  14009. ggml_reshape(ctx,
  14010. ggml_cont(ctx, tensor_grad_view),
  14011. src1->grad),
  14012. zero_table);
  14013. }
  14014. } break;
  14015. case GGML_OP_CPY:
  14016. {
  14017. // necessary for llama
  14018. // cpy overwrites value of src1 by src0 and returns view(src1)
  14019. // the overwriting is mathematically equivalent to:
  14020. // tensor = src0 * 1 + src1 * 0
  14021. if (src0->grad) {
  14022. // dsrc0 = dtensor * 1
  14023. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14024. }
  14025. if (src1->grad) {
  14026. // dsrc1 = dtensor * 0 -> noop
  14027. }
  14028. } break;
  14029. case GGML_OP_CONT:
  14030. {
  14031. // same as cpy
  14032. if (src0->grad) {
  14033. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14034. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14035. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14036. }
  14037. } break;
  14038. case GGML_OP_RESHAPE:
  14039. {
  14040. // necessary for llama
  14041. if (src0->grad) {
  14042. src0->grad =
  14043. ggml_add_or_set(ctx, src0->grad,
  14044. ggml_reshape(ctx,
  14045. ggml_is_contiguous(tensor->grad)
  14046. ? tensor->grad
  14047. : ggml_cont(ctx, tensor->grad),
  14048. src0->grad),
  14049. zero_table);
  14050. }
  14051. } break;
  14052. case GGML_OP_VIEW:
  14053. {
  14054. // necessary for llama
  14055. if (src0->grad) {
  14056. size_t offset;
  14057. memcpy(&offset, tensor->op_params, sizeof(offset));
  14058. size_t nb1 = tensor->nb[1];
  14059. size_t nb2 = tensor->nb[2];
  14060. size_t nb3 = tensor->nb[3];
  14061. if (src0->type != src0->grad->type) {
  14062. // gradient is typically F32, but src0 could be other type
  14063. size_t ng = ggml_element_size(src0->grad);
  14064. size_t n0 = ggml_element_size(src0);
  14065. GGML_ASSERT(offset % n0 == 0);
  14066. GGML_ASSERT(nb1 % n0 == 0);
  14067. GGML_ASSERT(nb2 % n0 == 0);
  14068. GGML_ASSERT(nb3 % n0 == 0);
  14069. offset = (offset / n0) * ng;
  14070. nb1 = (nb1 / n0) * ng;
  14071. nb2 = (nb2 / n0) * ng;
  14072. nb3 = (nb3 / n0) * ng;
  14073. }
  14074. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14075. }
  14076. } break;
  14077. case GGML_OP_PERMUTE:
  14078. {
  14079. // necessary for llama
  14080. if (src0->grad) {
  14081. int32_t * axes = (int32_t *) tensor->op_params;
  14082. int axis0 = axes[0] & 0x3;
  14083. int axis1 = axes[1] & 0x3;
  14084. int axis2 = axes[2] & 0x3;
  14085. int axis3 = axes[3] & 0x3;
  14086. int axes_backward[4] = {0,0,0,0};
  14087. axes_backward[axis0] = 0;
  14088. axes_backward[axis1] = 1;
  14089. axes_backward[axis2] = 2;
  14090. axes_backward[axis3] = 3;
  14091. src0->grad =
  14092. ggml_add_or_set(ctx, src0->grad,
  14093. ggml_permute(ctx,
  14094. tensor->grad,
  14095. axes_backward[0],
  14096. axes_backward[1],
  14097. axes_backward[2],
  14098. axes_backward[3]),
  14099. zero_table);
  14100. }
  14101. } break;
  14102. case GGML_OP_TRANSPOSE:
  14103. {
  14104. // necessary for llama
  14105. if (src0->grad) {
  14106. src0->grad =
  14107. ggml_add_or_set(ctx, src0->grad,
  14108. ggml_transpose(ctx, tensor->grad),
  14109. zero_table);
  14110. }
  14111. } break;
  14112. case GGML_OP_GET_ROWS:
  14113. {
  14114. // necessary for llama (only for tokenizer)
  14115. if (src0->grad) {
  14116. src0->grad =
  14117. ggml_add_or_set(ctx, src0->grad,
  14118. // last ggml_get_rows_back argument src0->grad is only
  14119. // necessary to setup correct output shape
  14120. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14121. zero_table);
  14122. }
  14123. if (src1->grad) {
  14124. // noop
  14125. }
  14126. } break;
  14127. case GGML_OP_GET_ROWS_BACK:
  14128. {
  14129. GGML_ASSERT(false); // TODO: not implemented
  14130. } break;
  14131. case GGML_OP_DIAG:
  14132. {
  14133. GGML_ASSERT(false); // TODO: not implemented
  14134. } break;
  14135. case GGML_OP_DIAG_MASK_INF:
  14136. {
  14137. // necessary for llama
  14138. if (src0->grad) {
  14139. const int n_past = ((int32_t *) tensor->op_params)[0];
  14140. src0->grad =
  14141. ggml_add_or_set(ctx, src0->grad,
  14142. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14143. zero_table);
  14144. }
  14145. } break;
  14146. case GGML_OP_DIAG_MASK_ZERO:
  14147. {
  14148. // necessary for llama
  14149. if (src0->grad) {
  14150. const int n_past = ((int32_t *) tensor->op_params)[0];
  14151. src0->grad =
  14152. ggml_add_or_set(ctx, src0->grad,
  14153. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14154. zero_table);
  14155. }
  14156. } break;
  14157. case GGML_OP_SOFT_MAX:
  14158. {
  14159. // necessary for llama
  14160. if (src0->grad) {
  14161. src0->grad =
  14162. ggml_add_or_set(ctx, src0->grad,
  14163. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14164. zero_table);
  14165. }
  14166. } break;
  14167. case GGML_OP_SOFT_MAX_BACK:
  14168. {
  14169. GGML_ASSERT(false); // TODO: not implemented
  14170. } break;
  14171. case GGML_OP_ROPE:
  14172. {
  14173. // necessary for llama
  14174. if (src0->grad) {
  14175. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14176. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14177. const int mode = ((int32_t *) tensor->op_params)[2];
  14178. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14179. float freq_base;
  14180. float freq_scale;
  14181. float xpos_base;
  14182. bool xpos_down;
  14183. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  14184. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  14185. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  14186. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  14187. src0->grad = ggml_add_or_set(ctx,
  14188. src0->grad,
  14189. ggml_rope_back(ctx,
  14190. tensor->grad,
  14191. src1,
  14192. n_dims,
  14193. mode,
  14194. n_ctx,
  14195. freq_base,
  14196. freq_scale,
  14197. xpos_base,
  14198. xpos_down),
  14199. zero_table);
  14200. }
  14201. } break;
  14202. case GGML_OP_ROPE_BACK:
  14203. {
  14204. if (src0->grad) {
  14205. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14206. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14207. const int mode = ((int32_t *) tensor->op_params)[2];
  14208. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14209. float freq_base;
  14210. float freq_scale;
  14211. float xpos_base;
  14212. bool xpos_down;
  14213. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  14214. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  14215. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  14216. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  14217. src0->grad = ggml_add_or_set(ctx,
  14218. src0->grad,
  14219. ggml_rope_impl(ctx,
  14220. tensor->grad,
  14221. src1,
  14222. n_dims,
  14223. mode,
  14224. n_ctx,
  14225. freq_base,
  14226. freq_scale,
  14227. xpos_base,
  14228. xpos_down,
  14229. false),
  14230. zero_table);
  14231. }
  14232. } break;
  14233. case GGML_OP_ALIBI:
  14234. {
  14235. GGML_ASSERT(false); // TODO: not implemented
  14236. } break;
  14237. case GGML_OP_CLAMP:
  14238. {
  14239. GGML_ASSERT(false); // TODO: not implemented
  14240. } break;
  14241. case GGML_OP_CONV_1D:
  14242. {
  14243. GGML_ASSERT(false); // TODO: not implemented
  14244. } break;
  14245. case GGML_OP_CONV_2D:
  14246. {
  14247. GGML_ASSERT(false); // TODO: not implemented
  14248. } break;
  14249. case GGML_OP_CONV_TRANSPOSE_2D:
  14250. {
  14251. GGML_ASSERT(false); // TODO: not implemented
  14252. } break;
  14253. case GGML_OP_POOL_1D:
  14254. {
  14255. GGML_ASSERT(false); // TODO: not implemented
  14256. } break;
  14257. case GGML_OP_POOL_2D:
  14258. {
  14259. GGML_ASSERT(false); // TODO: not implemented
  14260. } break;
  14261. case GGML_OP_UPSCALE:
  14262. {
  14263. GGML_ASSERT(false); // TODO: not implemented
  14264. } break;
  14265. case GGML_OP_FLASH_ATTN:
  14266. {
  14267. struct ggml_tensor * flash_grad = NULL;
  14268. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14269. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14270. GGML_ASSERT(t == 0 || t == 1);
  14271. bool masked = t != 0;
  14272. flash_grad =
  14273. ggml_flash_attn_back(ctx,
  14274. src0,
  14275. src1,
  14276. tensor->src[2],
  14277. tensor->grad,
  14278. masked);
  14279. }
  14280. struct ggml_tensor * src2 = tensor->src[2];
  14281. const int64_t elem_q = ggml_nelements(src0);
  14282. const int64_t elem_k = ggml_nelements(src1);
  14283. const int64_t elem_v = ggml_nelements(src2);
  14284. enum ggml_type result_type = flash_grad->type;
  14285. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14286. const size_t tsize = ggml_type_size(result_type);
  14287. const size_t offs_q = 0;
  14288. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14289. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14290. if (src0->grad) {
  14291. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14292. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14293. src0->grad = ggml_add_or_set(ctx,
  14294. src0->grad,
  14295. grad_q,
  14296. zero_table);
  14297. }
  14298. if (src1->grad) {
  14299. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14300. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14301. src1->grad = ggml_add_or_set(ctx,
  14302. src1->grad,
  14303. grad_k,
  14304. zero_table);
  14305. }
  14306. if (src2->grad) {
  14307. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14308. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14309. src2->grad = ggml_add_or_set(ctx,
  14310. src2->grad,
  14311. grad_v,
  14312. zero_table);
  14313. }
  14314. } break;
  14315. case GGML_OP_FLASH_FF:
  14316. {
  14317. GGML_ASSERT(false); // not supported
  14318. } break;
  14319. case GGML_OP_FLASH_ATTN_BACK:
  14320. {
  14321. GGML_ASSERT(false); // not supported
  14322. } break;
  14323. case GGML_OP_WIN_PART:
  14324. case GGML_OP_WIN_UNPART:
  14325. case GGML_OP_UNARY:
  14326. {
  14327. switch (ggml_get_unary_op(tensor)) {
  14328. case GGML_UNARY_OP_ABS:
  14329. {
  14330. if (src0->grad) {
  14331. src0->grad =
  14332. ggml_add_or_set(ctx,
  14333. src0->grad,
  14334. ggml_mul(ctx,
  14335. ggml_sgn(ctx, src0),
  14336. tensor->grad),
  14337. zero_table);
  14338. }
  14339. } break;
  14340. case GGML_UNARY_OP_SGN:
  14341. {
  14342. if (src0->grad) {
  14343. // noop
  14344. }
  14345. } break;
  14346. case GGML_UNARY_OP_NEG:
  14347. {
  14348. if (src0->grad) {
  14349. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14350. }
  14351. } break;
  14352. case GGML_UNARY_OP_STEP:
  14353. {
  14354. if (src0->grad) {
  14355. // noop
  14356. }
  14357. } break;
  14358. case GGML_UNARY_OP_TANH:
  14359. {
  14360. GGML_ASSERT(false); // TODO: not implemented
  14361. } break;
  14362. case GGML_UNARY_OP_ELU:
  14363. {
  14364. GGML_ASSERT(false); // TODO: not implemented
  14365. } break;
  14366. case GGML_UNARY_OP_RELU:
  14367. {
  14368. if (src0->grad) {
  14369. src0->grad = ggml_add_or_set(ctx,
  14370. src0->grad,
  14371. ggml_mul(ctx,
  14372. ggml_step(ctx, src0),
  14373. tensor->grad),
  14374. zero_table);
  14375. }
  14376. } break;
  14377. case GGML_UNARY_OP_GELU:
  14378. {
  14379. GGML_ASSERT(false); // TODO: not implemented
  14380. } break;
  14381. case GGML_UNARY_OP_GELU_QUICK:
  14382. {
  14383. GGML_ASSERT(false); // TODO: not implemented
  14384. } break;
  14385. case GGML_UNARY_OP_SILU:
  14386. {
  14387. // necessary for llama
  14388. if (src0->grad) {
  14389. src0->grad = ggml_add_or_set(ctx,
  14390. src0->grad,
  14391. ggml_silu_back(ctx, src0, tensor->grad),
  14392. zero_table);
  14393. }
  14394. } break;
  14395. default:
  14396. GGML_ASSERT(false);
  14397. }
  14398. } break;
  14399. case GGML_OP_GET_REL_POS:
  14400. case GGML_OP_ADD_REL_POS:
  14401. case GGML_OP_MAP_UNARY:
  14402. case GGML_OP_MAP_BINARY:
  14403. case GGML_OP_MAP_CUSTOM1_F32:
  14404. case GGML_OP_MAP_CUSTOM2_F32:
  14405. case GGML_OP_MAP_CUSTOM3_F32:
  14406. case GGML_OP_MAP_CUSTOM1:
  14407. case GGML_OP_MAP_CUSTOM2:
  14408. case GGML_OP_MAP_CUSTOM3:
  14409. {
  14410. GGML_ASSERT(false); // not supported
  14411. } break;
  14412. case GGML_OP_CROSS_ENTROPY_LOSS:
  14413. {
  14414. if (src0->grad) {
  14415. src0->grad = ggml_add_or_set(ctx,
  14416. src0->grad,
  14417. ggml_cross_entropy_loss_back(ctx,
  14418. src0,
  14419. src1,
  14420. tensor->grad),
  14421. zero_table);
  14422. }
  14423. } break;
  14424. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14425. {
  14426. GGML_ASSERT(false); // not supported
  14427. } break;
  14428. case GGML_OP_NONE:
  14429. {
  14430. // nop
  14431. } break;
  14432. case GGML_OP_COUNT:
  14433. {
  14434. GGML_ASSERT(false);
  14435. } break;
  14436. }
  14437. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14438. if (tensor->src[i] && tensor->src[i]->grad) {
  14439. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14440. }
  14441. }
  14442. }
  14443. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14444. if (node->grad == NULL) {
  14445. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14446. // it can also happen during forward pass, if the user performs computations with constants
  14447. if (node->op != GGML_OP_NONE) {
  14448. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14449. }
  14450. }
  14451. // check if already visited
  14452. if (hash_insert(cgraph->visited_hash_table, node)) {
  14453. return;
  14454. }
  14455. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14456. const int k =
  14457. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14458. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14459. /* unknown order, just fall back to using i*/ i;
  14460. if (node->src[k]) {
  14461. ggml_visit_parents(cgraph, node->src[k]);
  14462. }
  14463. }
  14464. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14465. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14466. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  14467. if (strlen(node->name) == 0) {
  14468. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14469. }
  14470. cgraph->leafs[cgraph->n_leafs] = node;
  14471. cgraph->n_leafs++;
  14472. } else {
  14473. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  14474. if (strlen(node->name) == 0) {
  14475. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14476. }
  14477. cgraph->nodes[cgraph->n_nodes] = node;
  14478. cgraph->grads[cgraph->n_nodes] = node->grad;
  14479. cgraph->n_nodes++;
  14480. }
  14481. }
  14482. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14483. if (!expand) {
  14484. cgraph->n_nodes = 0;
  14485. cgraph->n_leafs = 0;
  14486. }
  14487. const int n0 = cgraph->n_nodes;
  14488. UNUSED(n0);
  14489. ggml_visit_parents(cgraph, tensor);
  14490. const int n_new = cgraph->n_nodes - n0;
  14491. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14492. if (n_new > 0) {
  14493. // the last added node should always be starting point
  14494. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14495. }
  14496. }
  14497. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14498. ggml_build_forward_impl(cgraph, tensor, true);
  14499. }
  14500. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  14501. struct ggml_cgraph result = {
  14502. /*.n_nodes =*/ 0,
  14503. /*.n_leafs =*/ 0,
  14504. /*.nodes =*/ { NULL },
  14505. /*.grads =*/ { NULL },
  14506. /*.leafs =*/ { NULL },
  14507. /*.hash_table =*/ { NULL },
  14508. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14509. /*.perf_runs =*/ 0,
  14510. /*.perf_cycles =*/ 0,
  14511. /*.perf_time_us =*/ 0,
  14512. };
  14513. ggml_build_forward_impl(&result, tensor, false);
  14514. return result;
  14515. }
  14516. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14517. GGML_ASSERT(gf->n_nodes > 0);
  14518. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14519. if (keep) {
  14520. for (int i = 0; i < gf->n_nodes; i++) {
  14521. struct ggml_tensor * node = gf->nodes[i];
  14522. if (node->grad) {
  14523. node->grad = ggml_dup_tensor(ctx, node);
  14524. gf->grads[i] = node->grad;
  14525. }
  14526. }
  14527. }
  14528. // remember original gradients which start with zero values
  14529. void ** zero_table = malloc(sizeof(void *) * GGML_GRAPH_HASHTABLE_SIZE);
  14530. memset(zero_table, 0, sizeof(void*) * GGML_GRAPH_HASHTABLE_SIZE);
  14531. for (int i = 0; i < gf->n_nodes; i++) {
  14532. if (gf->grads[i]) {
  14533. hash_insert(zero_table, gf->grads[i]);
  14534. }
  14535. }
  14536. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14537. struct ggml_tensor * node = gf->nodes[i];
  14538. // inplace operations to add gradients are not created by ggml_compute_backward
  14539. // use allocator to automatically make inplace operations
  14540. if (node->grad) {
  14541. ggml_compute_backward(ctx, node, zero_table);
  14542. }
  14543. }
  14544. for (int i = 0; i < gf->n_nodes; i++) {
  14545. struct ggml_tensor * node = gf->nodes[i];
  14546. if (node->is_param) {
  14547. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14548. ggml_build_forward_expand(gb, node->grad);
  14549. }
  14550. }
  14551. free(zero_table);
  14552. }
  14553. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  14554. struct ggml_cgraph result = *gf;
  14555. ggml_build_backward_expand(ctx, gf, &result, keep);
  14556. return result;
  14557. }
  14558. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14559. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  14560. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14561. *cgraph = (struct ggml_cgraph) {
  14562. /*.n_nodes =*/ 0,
  14563. /*.n_leafs =*/ 0,
  14564. /*.nodes =*/ { NULL },
  14565. /*.grads =*/ { NULL },
  14566. /*.leafs =*/ { NULL },
  14567. /*.hash_table =*/ { NULL },
  14568. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14569. /*.perf_runs =*/ 0,
  14570. /*.perf_cycles =*/ 0,
  14571. /*.perf_time_us =*/ 0,
  14572. };
  14573. return cgraph;
  14574. }
  14575. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  14576. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  14577. ggml_build_forward_impl(cgraph, tensor, false);
  14578. return cgraph;
  14579. }
  14580. size_t ggml_graph_overhead(void) {
  14581. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  14582. }
  14583. //
  14584. // thread data
  14585. //
  14586. // synchronization is done via busy loops
  14587. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14588. //
  14589. #ifdef __APPLE__
  14590. //#include <os/lock.h>
  14591. //
  14592. //typedef os_unfair_lock ggml_lock_t;
  14593. //
  14594. //#define ggml_lock_init(x) UNUSED(x)
  14595. //#define ggml_lock_destroy(x) UNUSED(x)
  14596. //#define ggml_lock_lock os_unfair_lock_lock
  14597. //#define ggml_lock_unlock os_unfair_lock_unlock
  14598. //
  14599. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14600. typedef int ggml_lock_t;
  14601. #define ggml_lock_init(x) UNUSED(x)
  14602. #define ggml_lock_destroy(x) UNUSED(x)
  14603. #define ggml_lock_lock(x) UNUSED(x)
  14604. #define ggml_lock_unlock(x) UNUSED(x)
  14605. #define GGML_LOCK_INITIALIZER 0
  14606. typedef pthread_t ggml_thread_t;
  14607. #define ggml_thread_create pthread_create
  14608. #define ggml_thread_join pthread_join
  14609. #else
  14610. //typedef pthread_spinlock_t ggml_lock_t;
  14611. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14612. //#define ggml_lock_destroy pthread_spin_destroy
  14613. //#define ggml_lock_lock pthread_spin_lock
  14614. //#define ggml_lock_unlock pthread_spin_unlock
  14615. typedef int ggml_lock_t;
  14616. #define ggml_lock_init(x) UNUSED(x)
  14617. #define ggml_lock_destroy(x) UNUSED(x)
  14618. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14619. #define ggml_lock_lock(x) _mm_pause()
  14620. #else
  14621. #define ggml_lock_lock(x) UNUSED(x)
  14622. #endif
  14623. #define ggml_lock_unlock(x) UNUSED(x)
  14624. #define GGML_LOCK_INITIALIZER 0
  14625. typedef pthread_t ggml_thread_t;
  14626. #define ggml_thread_create pthread_create
  14627. #define ggml_thread_join pthread_join
  14628. #endif
  14629. // Android's libc implementation "bionic" does not support setting affinity
  14630. #if defined(__linux__) && !defined(__BIONIC__)
  14631. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  14632. if (!ggml_is_numa()) {
  14633. return;
  14634. }
  14635. // run thread on node_num thread_n / (threads per node)
  14636. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  14637. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14638. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14639. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14640. CPU_ZERO_S(setsize, cpus);
  14641. for (size_t i = 0; i < node->n_cpus; ++i) {
  14642. CPU_SET_S(node->cpus[i], setsize, cpus);
  14643. }
  14644. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14645. if (rv) {
  14646. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14647. strerror(rv));
  14648. }
  14649. CPU_FREE(cpus);
  14650. }
  14651. static void clear_numa_thread_affinity(void) {
  14652. if (!ggml_is_numa()) {
  14653. return;
  14654. }
  14655. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14656. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14657. CPU_ZERO_S(setsize, cpus);
  14658. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14659. CPU_SET_S(i, setsize, cpus);
  14660. }
  14661. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14662. if (rv) {
  14663. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14664. strerror(rv));
  14665. }
  14666. CPU_FREE(cpus);
  14667. }
  14668. #else
  14669. // TODO: Windows etc.
  14670. // (the linux implementation may also work on BSD, someone should test)
  14671. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14672. static void clear_numa_thread_affinity(void) {}
  14673. #endif
  14674. struct ggml_compute_state_shared {
  14675. const struct ggml_cgraph * cgraph;
  14676. const struct ggml_cplan * cplan;
  14677. int64_t perf_node_start_cycles;
  14678. int64_t perf_node_start_time_us;
  14679. const int n_threads;
  14680. // synchronization primitives
  14681. atomic_int n_active; // num active threads
  14682. atomic_int node_n; // active graph node
  14683. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14684. void * abort_callback_data;
  14685. };
  14686. struct ggml_compute_state {
  14687. ggml_thread_t thrd;
  14688. int ith;
  14689. struct ggml_compute_state_shared * shared;
  14690. };
  14691. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14692. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14693. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14694. node->perf_runs++;
  14695. node->perf_cycles += cycles_cur;
  14696. node->perf_time_us += time_us_cur;
  14697. }
  14698. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14699. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14700. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14701. const struct ggml_cplan * cplan = state->shared->cplan;
  14702. const int * n_tasks_arr = cplan->n_tasks;
  14703. const int n_threads = state->shared->n_threads;
  14704. set_numa_thread_affinity(state->ith, n_threads);
  14705. int node_n = -1;
  14706. while (true) {
  14707. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14708. state->shared->node_n += 1;
  14709. return (thread_ret_t) GGML_EXIT_ABORTED;
  14710. }
  14711. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14712. // all other threads are finished and spinning
  14713. // do finalize and init here so we don't have synchronize again
  14714. struct ggml_compute_params params = {
  14715. /*.type =*/ GGML_TASK_FINALIZE,
  14716. /*.ith =*/ 0,
  14717. /*.nth =*/ 0,
  14718. /*.wsize =*/ cplan->work_size,
  14719. /*.wdata =*/ cplan->work_data,
  14720. };
  14721. if (node_n != -1) {
  14722. /* FINALIZE */
  14723. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14724. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14725. params.nth = n_tasks_arr[node_n];
  14726. ggml_compute_forward(&params, node);
  14727. }
  14728. ggml_graph_compute_perf_stats_node(node, state->shared);
  14729. }
  14730. // distribute new work or execute it direct if 1T
  14731. while (++node_n < cgraph->n_nodes) {
  14732. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14733. struct ggml_tensor * node = cgraph->nodes[node_n];
  14734. const int n_tasks = n_tasks_arr[node_n];
  14735. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14736. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14737. params.nth = n_tasks;
  14738. /* INIT */
  14739. if (GGML_OP_HAS_INIT[node->op]) {
  14740. params.type = GGML_TASK_INIT;
  14741. ggml_compute_forward(&params, node);
  14742. }
  14743. if (n_tasks == 1) {
  14744. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14745. // they do something more efficient than spinning (?)
  14746. params.type = GGML_TASK_COMPUTE;
  14747. ggml_compute_forward(&params, node);
  14748. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14749. params.type = GGML_TASK_FINALIZE;
  14750. ggml_compute_forward(&params, node);
  14751. }
  14752. ggml_graph_compute_perf_stats_node(node, state->shared);
  14753. } else {
  14754. break;
  14755. }
  14756. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14757. break;
  14758. }
  14759. }
  14760. atomic_store(&state->shared->n_active, n_threads);
  14761. atomic_store(&state->shared->node_n, node_n);
  14762. } else {
  14763. // wait for other threads to finish
  14764. const int last = node_n;
  14765. while (true) {
  14766. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14767. // depending on the workload and the operating system.
  14768. // since it is not clear what is the best approach, it should potentially become user-configurable
  14769. // ref: https://github.com/ggerganov/ggml/issues/291
  14770. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14771. sched_yield();
  14772. #endif
  14773. node_n = atomic_load(&state->shared->node_n);
  14774. if (node_n != last) break;
  14775. };
  14776. }
  14777. // check if we should stop
  14778. if (node_n >= cgraph->n_nodes) break;
  14779. /* COMPUTE */
  14780. struct ggml_tensor * node = cgraph->nodes[node_n];
  14781. const int n_tasks = n_tasks_arr[node_n];
  14782. struct ggml_compute_params params = {
  14783. /*.type =*/ GGML_TASK_COMPUTE,
  14784. /*.ith =*/ state->ith,
  14785. /*.nth =*/ n_tasks,
  14786. /*.wsize =*/ cplan->work_size,
  14787. /*.wdata =*/ cplan->work_data,
  14788. };
  14789. if (state->ith < n_tasks) {
  14790. ggml_compute_forward(&params, node);
  14791. }
  14792. }
  14793. return GGML_EXIT_SUCCESS;
  14794. }
  14795. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14796. if (n_threads <= 0) {
  14797. n_threads = GGML_DEFAULT_N_THREADS;
  14798. }
  14799. size_t work_size = 0;
  14800. struct ggml_cplan cplan;
  14801. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14802. // thread scheduling for the different operations + work buffer size estimation
  14803. for (int i = 0; i < cgraph->n_nodes; i++) {
  14804. int n_tasks = 1;
  14805. struct ggml_tensor * node = cgraph->nodes[i];
  14806. switch (node->op) {
  14807. case GGML_OP_CPY:
  14808. case GGML_OP_DUP:
  14809. {
  14810. n_tasks = n_threads;
  14811. size_t cur = 0;
  14812. if (ggml_is_quantized(node->type)) {
  14813. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14814. }
  14815. work_size = MAX(work_size, cur);
  14816. } break;
  14817. case GGML_OP_ADD:
  14818. case GGML_OP_ADD1:
  14819. {
  14820. n_tasks = n_threads;
  14821. size_t cur = 0;
  14822. if (ggml_is_quantized(node->src[0]->type)) {
  14823. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14824. }
  14825. work_size = MAX(work_size, cur);
  14826. } break;
  14827. case GGML_OP_ACC:
  14828. {
  14829. n_tasks = n_threads;
  14830. size_t cur = 0;
  14831. if (ggml_is_quantized(node->src[0]->type)) {
  14832. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14833. }
  14834. work_size = MAX(work_size, cur);
  14835. } break;
  14836. case GGML_OP_SUB:
  14837. case GGML_OP_DIV:
  14838. case GGML_OP_SQR:
  14839. case GGML_OP_SQRT:
  14840. case GGML_OP_LOG:
  14841. case GGML_OP_SUM:
  14842. case GGML_OP_SUM_ROWS:
  14843. case GGML_OP_MEAN:
  14844. case GGML_OP_ARGMAX:
  14845. case GGML_OP_REPEAT:
  14846. case GGML_OP_REPEAT_BACK:
  14847. {
  14848. n_tasks = 1;
  14849. } break;
  14850. case GGML_OP_UNARY:
  14851. {
  14852. switch (ggml_get_unary_op(node)) {
  14853. case GGML_UNARY_OP_ABS:
  14854. case GGML_UNARY_OP_SGN:
  14855. case GGML_UNARY_OP_NEG:
  14856. case GGML_UNARY_OP_STEP:
  14857. case GGML_UNARY_OP_TANH:
  14858. case GGML_UNARY_OP_ELU:
  14859. case GGML_UNARY_OP_RELU:
  14860. {
  14861. n_tasks = 1;
  14862. } break;
  14863. case GGML_UNARY_OP_GELU:
  14864. case GGML_UNARY_OP_GELU_QUICK:
  14865. case GGML_UNARY_OP_SILU:
  14866. {
  14867. n_tasks = n_threads;
  14868. } break;
  14869. }
  14870. } break;
  14871. case GGML_OP_SILU_BACK:
  14872. case GGML_OP_MUL:
  14873. case GGML_OP_NORM:
  14874. case GGML_OP_RMS_NORM:
  14875. case GGML_OP_RMS_NORM_BACK:
  14876. case GGML_OP_GROUP_NORM:
  14877. {
  14878. n_tasks = n_threads;
  14879. } break;
  14880. case GGML_OP_CONCAT:
  14881. case GGML_OP_MUL_MAT:
  14882. {
  14883. n_tasks = n_threads;
  14884. // TODO: use different scheduling for different matrix sizes
  14885. //const int nr0 = ggml_nrows(node->src[0]);
  14886. //const int nr1 = ggml_nrows(node->src[1]);
  14887. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14888. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14889. size_t cur = 0;
  14890. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14891. #if defined(GGML_USE_CUBLAS)
  14892. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14893. n_tasks = 1; // TODO: this actually is doing nothing
  14894. // the threads are still spinning
  14895. } else
  14896. #elif defined(GGML_USE_CLBLAST)
  14897. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14898. n_tasks = 1; // TODO: this actually is doing nothing
  14899. // the threads are still spinning
  14900. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14901. } else
  14902. #endif
  14903. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14904. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14905. n_tasks = 1; // TODO: this actually is doing nothing
  14906. // the threads are still spinning
  14907. if (node->src[0]->type != GGML_TYPE_F32) {
  14908. // here we need memory just for single 2D matrix from src0
  14909. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14910. }
  14911. } else
  14912. #endif
  14913. if (node->src[1]->type != vec_dot_type) {
  14914. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14915. } else {
  14916. cur = 0;
  14917. }
  14918. work_size = MAX(work_size, cur);
  14919. } break;
  14920. case GGML_OP_OUT_PROD:
  14921. {
  14922. n_tasks = n_threads;
  14923. size_t cur = 0;
  14924. if (ggml_is_quantized(node->src[0]->type)) {
  14925. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14926. }
  14927. work_size = MAX(work_size, cur);
  14928. } break;
  14929. case GGML_OP_SCALE:
  14930. {
  14931. n_tasks = 1;
  14932. } break;
  14933. case GGML_OP_SET:
  14934. case GGML_OP_CONT:
  14935. case GGML_OP_RESHAPE:
  14936. case GGML_OP_VIEW:
  14937. case GGML_OP_PERMUTE:
  14938. case GGML_OP_TRANSPOSE:
  14939. case GGML_OP_GET_ROWS:
  14940. case GGML_OP_GET_ROWS_BACK:
  14941. case GGML_OP_DIAG:
  14942. {
  14943. n_tasks = 1;
  14944. } break;
  14945. case GGML_OP_DIAG_MASK_ZERO:
  14946. case GGML_OP_DIAG_MASK_INF:
  14947. case GGML_OP_SOFT_MAX:
  14948. case GGML_OP_SOFT_MAX_BACK:
  14949. case GGML_OP_ROPE:
  14950. case GGML_OP_ROPE_BACK:
  14951. case GGML_OP_ADD_REL_POS:
  14952. {
  14953. n_tasks = n_threads;
  14954. } break;
  14955. case GGML_OP_ALIBI:
  14956. {
  14957. n_tasks = 1; //TODO
  14958. } break;
  14959. case GGML_OP_CLAMP:
  14960. {
  14961. n_tasks = 1; //TODO
  14962. } break;
  14963. case GGML_OP_CONV_1D:
  14964. {
  14965. n_tasks = n_threads;
  14966. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14967. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14968. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14969. size_t cur = 0;
  14970. const int nk = node->src[0]->ne[0];
  14971. if (node->src[0]->type == GGML_TYPE_F16 &&
  14972. node->src[1]->type == GGML_TYPE_F32) {
  14973. cur = sizeof(ggml_fp16_t)*(
  14974. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14975. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14976. );
  14977. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14978. node->src[1]->type == GGML_TYPE_F32) {
  14979. cur = sizeof(float)*(
  14980. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14981. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14982. );
  14983. } else {
  14984. GGML_ASSERT(false);
  14985. }
  14986. work_size = MAX(work_size, cur);
  14987. } break;
  14988. case GGML_OP_CONV_2D:
  14989. {
  14990. n_tasks = n_threads;
  14991. const int64_t ne00 = node->src[0]->ne[0]; // W
  14992. const int64_t ne01 = node->src[0]->ne[1]; // H
  14993. const int64_t ne02 = node->src[0]->ne[2]; // C
  14994. const int64_t ne03 = node->src[0]->ne[3]; // N
  14995. const int64_t ne10 = node->src[1]->ne[0]; // W
  14996. const int64_t ne11 = node->src[1]->ne[1]; // H
  14997. const int64_t ne12 = node->src[1]->ne[2]; // C
  14998. const int64_t ne0 = node->ne[0];
  14999. const int64_t ne1 = node->ne[1];
  15000. const int64_t ne2 = node->ne[2];
  15001. const int64_t nk = ne00*ne01;
  15002. const int64_t ew0 = nk * ne02;
  15003. UNUSED(ne03);
  15004. UNUSED(ne2);
  15005. size_t cur = 0;
  15006. if (node->src[0]->type == GGML_TYPE_F16 &&
  15007. node->src[1]->type == GGML_TYPE_F32) {
  15008. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  15009. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15010. node->src[1]->type == GGML_TYPE_F32) {
  15011. cur = sizeof(float)* (ne10*ne11*ne12);
  15012. } else {
  15013. GGML_ASSERT(false);
  15014. }
  15015. work_size = MAX(work_size, cur);
  15016. } break;
  15017. case GGML_OP_CONV_TRANSPOSE_2D:
  15018. {
  15019. n_tasks = n_threads;
  15020. const int64_t ne00 = node->src[0]->ne[0]; // W
  15021. const int64_t ne01 = node->src[0]->ne[1]; // H
  15022. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15023. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15024. const int64_t ne10 = node->src[1]->ne[0]; // W
  15025. const int64_t ne11 = node->src[1]->ne[1]; // H
  15026. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15027. size_t cur = 0;
  15028. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15029. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15030. work_size = MAX(work_size, cur);
  15031. } break;
  15032. case GGML_OP_POOL_1D:
  15033. case GGML_OP_POOL_2D:
  15034. {
  15035. n_tasks = 1;
  15036. } break;
  15037. case GGML_OP_UPSCALE:
  15038. {
  15039. n_tasks = n_threads;
  15040. } break;
  15041. case GGML_OP_FLASH_ATTN:
  15042. {
  15043. n_tasks = n_threads;
  15044. size_t cur = 0;
  15045. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15046. if (node->src[1]->type == GGML_TYPE_F32) {
  15047. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15048. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15049. }
  15050. if (node->src[1]->type == GGML_TYPE_F16) {
  15051. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15052. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15053. }
  15054. work_size = MAX(work_size, cur);
  15055. } break;
  15056. case GGML_OP_FLASH_FF:
  15057. {
  15058. n_tasks = n_threads;
  15059. size_t cur = 0;
  15060. if (node->src[1]->type == GGML_TYPE_F32) {
  15061. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15062. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15063. }
  15064. if (node->src[1]->type == GGML_TYPE_F16) {
  15065. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15066. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15067. }
  15068. work_size = MAX(work_size, cur);
  15069. } break;
  15070. case GGML_OP_FLASH_ATTN_BACK:
  15071. {
  15072. n_tasks = n_threads;
  15073. size_t cur = 0;
  15074. const int64_t D = node->src[0]->ne[0];
  15075. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15076. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15077. if (node->src[1]->type == GGML_TYPE_F32) {
  15078. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15079. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15080. }
  15081. if (node->src[1]->type == GGML_TYPE_F16) {
  15082. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15083. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15084. }
  15085. work_size = MAX(work_size, cur);
  15086. } break;
  15087. case GGML_OP_WIN_PART:
  15088. case GGML_OP_WIN_UNPART:
  15089. case GGML_OP_GET_REL_POS:
  15090. case GGML_OP_MAP_UNARY:
  15091. case GGML_OP_MAP_BINARY:
  15092. case GGML_OP_MAP_CUSTOM1_F32:
  15093. case GGML_OP_MAP_CUSTOM2_F32:
  15094. case GGML_OP_MAP_CUSTOM3_F32:
  15095. {
  15096. n_tasks = 1;
  15097. } break;
  15098. case GGML_OP_MAP_CUSTOM1:
  15099. {
  15100. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  15101. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15102. n_tasks = n_threads;
  15103. } else {
  15104. n_tasks = MIN(p->n_tasks, n_threads);
  15105. }
  15106. } break;
  15107. case GGML_OP_MAP_CUSTOM2:
  15108. {
  15109. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  15110. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15111. n_tasks = n_threads;
  15112. } else {
  15113. n_tasks = MIN(p->n_tasks, n_threads);
  15114. }
  15115. } break;
  15116. case GGML_OP_MAP_CUSTOM3:
  15117. {
  15118. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  15119. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15120. n_tasks = n_threads;
  15121. } else {
  15122. n_tasks = MIN(p->n_tasks, n_threads);
  15123. }
  15124. } break;
  15125. case GGML_OP_CROSS_ENTROPY_LOSS:
  15126. {
  15127. n_tasks = n_threads;
  15128. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15129. work_size = MAX(work_size, cur);
  15130. } break;
  15131. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15132. {
  15133. n_tasks = n_threads;
  15134. } break;
  15135. case GGML_OP_NONE:
  15136. {
  15137. n_tasks = 1;
  15138. } break;
  15139. case GGML_OP_COUNT:
  15140. {
  15141. GGML_ASSERT(false);
  15142. } break;
  15143. }
  15144. cplan.n_tasks[i] = n_tasks;
  15145. }
  15146. if (work_size > 0) {
  15147. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15148. }
  15149. cplan.n_threads = n_threads;
  15150. cplan.work_size = work_size;
  15151. cplan.work_data = NULL;
  15152. return cplan;
  15153. }
  15154. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15155. {
  15156. GGML_ASSERT(cplan);
  15157. GGML_ASSERT(cplan->n_threads > 0);
  15158. if (cplan->work_size > 0) {
  15159. GGML_ASSERT(cplan->work_data);
  15160. }
  15161. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15162. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  15163. GGML_ASSERT(cplan->n_tasks[i] > 0);
  15164. }
  15165. }
  15166. }
  15167. const int n_threads = cplan->n_threads;
  15168. struct ggml_compute_state_shared state_shared = {
  15169. /*.cgraph =*/ cgraph,
  15170. /*.cgraph_plan =*/ cplan,
  15171. /*.perf_node_start_cycles =*/ 0,
  15172. /*.perf_node_start_time_us =*/ 0,
  15173. /*.n_threads =*/ n_threads,
  15174. /*.n_active =*/ n_threads,
  15175. /*.node_n =*/ -1,
  15176. /*.abort_callback =*/ NULL,
  15177. /*.abort_callback_data =*/ NULL,
  15178. };
  15179. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15180. // create thread pool
  15181. if (n_threads > 1) {
  15182. for (int j = 1; j < n_threads; ++j) {
  15183. workers[j] = (struct ggml_compute_state) {
  15184. .thrd = 0,
  15185. .ith = j,
  15186. .shared = &state_shared,
  15187. };
  15188. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15189. GGML_ASSERT(rc == 0);
  15190. UNUSED(rc);
  15191. }
  15192. }
  15193. workers[0].ith = 0;
  15194. workers[0].shared = &state_shared;
  15195. const int64_t perf_start_cycles = ggml_perf_cycles();
  15196. const int64_t perf_start_time_us = ggml_perf_time_us();
  15197. // this is a work thread too
  15198. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  15199. // don't leave affinity set on the main thread
  15200. clear_numa_thread_affinity();
  15201. // join or kill thread pool
  15202. if (n_threads > 1) {
  15203. for (int j = 1; j < n_threads; j++) {
  15204. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15205. GGML_ASSERT(rc == 0);
  15206. }
  15207. }
  15208. // performance stats (graph)
  15209. {
  15210. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15211. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15212. cgraph->perf_runs++;
  15213. cgraph->perf_cycles += perf_cycles_cur;
  15214. cgraph->perf_time_us += perf_time_us_cur;
  15215. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15216. __func__, cgraph->perf_runs,
  15217. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15218. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15219. (double) perf_time_us_cur / 1000.0,
  15220. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15221. }
  15222. return compute_status;
  15223. }
  15224. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15225. for (int i = 0; i < cgraph->n_nodes; i++) {
  15226. struct ggml_tensor * grad = cgraph->grads[i];
  15227. if (grad) {
  15228. ggml_set_zero(grad);
  15229. }
  15230. }
  15231. }
  15232. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15233. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15234. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15235. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15236. ggml_graph_compute(cgraph, &cplan);
  15237. }
  15238. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15239. for (int i = 0; i < cgraph->n_leafs; i++) {
  15240. struct ggml_tensor * leaf = cgraph->leafs[i];
  15241. if (strcmp(leaf->name, name) == 0) {
  15242. return leaf;
  15243. }
  15244. }
  15245. for (int i = 0; i < cgraph->n_nodes; i++) {
  15246. struct ggml_tensor * node = cgraph->nodes[i];
  15247. if (strcmp(node->name, name) == 0) {
  15248. return node;
  15249. }
  15250. }
  15251. return NULL;
  15252. }
  15253. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15254. const int64_t * ne = tensor->ne;
  15255. const size_t * nb = tensor->nb;
  15256. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15257. ggml_type_name(tensor->type),
  15258. ggml_op_name (tensor->op),
  15259. tensor->n_dims,
  15260. ne[0], ne[1], ne[2], ne[3],
  15261. nb[0], nb[1], nb[2], nb[3],
  15262. tensor->data,
  15263. tensor->name);
  15264. }
  15265. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15266. const int64_t * ne = tensor->ne;
  15267. const size_t * nb = tensor->nb;
  15268. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15269. arg,
  15270. ggml_type_name(tensor->type),
  15271. ggml_op_name (tensor->op),
  15272. tensor->n_dims,
  15273. ne[0], ne[1], ne[2], ne[3],
  15274. nb[0], nb[1], nb[2], nb[3],
  15275. tensor->data,
  15276. tensor->name);
  15277. }
  15278. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15279. uint64_t size_eval = 0;
  15280. // compute size of intermediate results
  15281. // TODO: does not take into account scratch buffers !!!!
  15282. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15283. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15284. }
  15285. // print
  15286. {
  15287. FILE * fout = stdout;
  15288. fprintf(fout, "\n");
  15289. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15290. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15291. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15292. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15293. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15294. // header
  15295. fprintf(fout, "\n");
  15296. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15297. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15298. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15299. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15300. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15301. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15302. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15303. }
  15304. // header
  15305. fprintf(fout, "\n");
  15306. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15307. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15308. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15309. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15310. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15311. if (cgraph->nodes[i]->src[j]) {
  15312. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15313. }
  15314. }
  15315. fprintf(fout, "\n");
  15316. }
  15317. fprintf(fout, "\n");
  15318. }
  15319. // write binary data
  15320. {
  15321. FILE * fout = fopen(fname, "wb");
  15322. if (!fout) {
  15323. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15324. return;
  15325. }
  15326. // header
  15327. {
  15328. const uint32_t magic = GGML_FILE_MAGIC;
  15329. const uint32_t version = GGML_FILE_VERSION;
  15330. const uint32_t n_leafs = cgraph->n_leafs;
  15331. const uint32_t nodes = cgraph->n_nodes;
  15332. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15333. fwrite(&version, sizeof(uint32_t), 1, fout);
  15334. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15335. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  15336. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15337. }
  15338. // leafs
  15339. {
  15340. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15341. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15342. const uint32_t type = tensor->type;
  15343. const uint32_t op = tensor->op;
  15344. const uint32_t n_dims = tensor->n_dims;
  15345. fwrite(&type, sizeof(uint32_t), 1, fout);
  15346. fwrite(&op, sizeof(uint32_t), 1, fout);
  15347. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  15348. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15349. const uint64_t ne = tensor->ne[j];
  15350. const uint64_t nb = tensor->nb[j];
  15351. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15352. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15353. }
  15354. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15355. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15356. // dump the data
  15357. // TODO: pad this to 32 byte boundary
  15358. {
  15359. const size_t size = ggml_nbytes(tensor);
  15360. fwrite(tensor->data, sizeof(char), size, fout);
  15361. }
  15362. }
  15363. }
  15364. // nodes
  15365. {
  15366. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15367. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15368. const uint32_t type = tensor->type;
  15369. const uint32_t op = tensor->op;
  15370. const uint32_t n_dims = tensor->n_dims;
  15371. fwrite(&type, sizeof(uint32_t), 1, fout);
  15372. fwrite(&op, sizeof(uint32_t), 1, fout);
  15373. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  15374. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15375. const uint64_t ne = tensor->ne[j];
  15376. const uint64_t nb = tensor->nb[j];
  15377. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15378. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15379. }
  15380. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15381. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15382. // output the op arguments
  15383. {
  15384. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15385. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15386. args[j] = tensor->src[j];
  15387. }
  15388. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15389. if (args[j]) {
  15390. int32_t idx = -1;
  15391. // check if leaf
  15392. {
  15393. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15394. if (args[j] == cgraph->leafs[k]) {
  15395. idx = k;
  15396. break;
  15397. }
  15398. }
  15399. }
  15400. // check if node
  15401. if (idx == -1) {
  15402. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15403. if (args[j] == cgraph->nodes[k]) {
  15404. idx = GGML_MAX_NODES + k;
  15405. break;
  15406. }
  15407. }
  15408. }
  15409. if (idx == -1) {
  15410. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15411. return;
  15412. }
  15413. fwrite(&idx, sizeof(int32_t), 1, fout);
  15414. } else {
  15415. const int32_t nul = -1;
  15416. fwrite(&nul, sizeof(int32_t), 1, fout);
  15417. }
  15418. }
  15419. }
  15420. }
  15421. }
  15422. fclose(fout);
  15423. }
  15424. }
  15425. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15426. assert(*ctx_data == NULL);
  15427. assert(*ctx_eval == NULL);
  15428. struct ggml_cgraph result = { 0 };
  15429. struct ggml_tensor * data = NULL;
  15430. // read file into data
  15431. {
  15432. FILE * fin = fopen(fname, "rb");
  15433. if (!fin) {
  15434. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15435. return result;
  15436. }
  15437. size_t fsize = 0;
  15438. fseek(fin, 0, SEEK_END);
  15439. fsize = ftell(fin);
  15440. fseek(fin, 0, SEEK_SET);
  15441. // create the data context
  15442. {
  15443. const size_t overhead = 1*ggml_tensor_overhead();
  15444. struct ggml_init_params params = {
  15445. .mem_size = fsize + overhead,
  15446. .mem_buffer = NULL,
  15447. .no_alloc = false,
  15448. };
  15449. *ctx_data = ggml_init(params);
  15450. if (!*ctx_data) {
  15451. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15452. fclose(fin);
  15453. return result;
  15454. }
  15455. }
  15456. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15457. {
  15458. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15459. if (ret != fsize) {
  15460. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15461. fclose(fin);
  15462. return result;
  15463. }
  15464. }
  15465. fclose(fin);
  15466. }
  15467. // populate result
  15468. {
  15469. char * ptr = (char *) data->data;
  15470. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15471. if (magic != GGML_FILE_MAGIC) {
  15472. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15473. return result;
  15474. }
  15475. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15476. if (version != GGML_FILE_VERSION) {
  15477. fprintf(stderr, "%s: invalid version number\n", __func__);
  15478. return result;
  15479. }
  15480. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15481. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15482. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15483. result.n_leafs = n_leafs;
  15484. result.n_nodes = n_nodes;
  15485. // create the data context
  15486. {
  15487. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  15488. struct ggml_init_params params = {
  15489. .mem_size = size_eval + overhead,
  15490. .mem_buffer = NULL,
  15491. .no_alloc = true,
  15492. };
  15493. *ctx_eval = ggml_init(params);
  15494. if (!*ctx_eval) {
  15495. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15496. return result;
  15497. }
  15498. }
  15499. // leafs
  15500. {
  15501. uint32_t type;
  15502. uint32_t op;
  15503. uint32_t n_dims;
  15504. for (uint32_t i = 0; i < n_leafs; ++i) {
  15505. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15506. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15507. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  15508. int64_t ne[GGML_MAX_DIMS];
  15509. size_t nb[GGML_MAX_DIMS];
  15510. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15511. uint64_t ne_cur;
  15512. uint64_t nb_cur;
  15513. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15514. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15515. ne[j] = ne_cur;
  15516. nb[j] = nb_cur;
  15517. }
  15518. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15519. tensor->op = (enum ggml_op) op;
  15520. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15521. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15522. tensor->data = (void *) ptr;
  15523. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15524. tensor->nb[j] = nb[j];
  15525. }
  15526. result.leafs[i] = tensor;
  15527. ptr += ggml_nbytes(tensor);
  15528. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15529. }
  15530. }
  15531. ggml_set_no_alloc(*ctx_eval, false);
  15532. // nodes
  15533. {
  15534. uint32_t type;
  15535. uint32_t op;
  15536. uint32_t n_dims;
  15537. for (uint32_t i = 0; i < n_nodes; ++i) {
  15538. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15539. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15540. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  15541. enum ggml_op eop = (enum ggml_op) op;
  15542. int64_t ne[GGML_MAX_DIMS];
  15543. size_t nb[GGML_MAX_DIMS];
  15544. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15545. uint64_t ne_cur;
  15546. uint64_t nb_cur;
  15547. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15548. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15549. ne[j] = ne_cur;
  15550. nb[j] = nb_cur;
  15551. }
  15552. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15553. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15554. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15555. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15556. // parse args
  15557. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15558. const int32_t arg_idx = ptr_arg_idx[j];
  15559. if (arg_idx == -1) {
  15560. continue;
  15561. }
  15562. if (arg_idx < GGML_MAX_NODES) {
  15563. args[j] = result.leafs[arg_idx];
  15564. } else {
  15565. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  15566. }
  15567. }
  15568. // create the tensor
  15569. // "view" operations are handled differently
  15570. // TODO: handle inplace ops - currently a copy is always made
  15571. struct ggml_tensor * tensor = NULL;
  15572. switch (eop) {
  15573. // TODO: implement other view ops
  15574. case GGML_OP_RESHAPE:
  15575. {
  15576. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15577. } break;
  15578. case GGML_OP_VIEW:
  15579. {
  15580. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15581. size_t offs;
  15582. memcpy(&offs, ptr_op_params, sizeof(offs));
  15583. tensor->data = ((char *) tensor->data) + offs;
  15584. } break;
  15585. case GGML_OP_TRANSPOSE:
  15586. {
  15587. tensor = ggml_transpose(*ctx_eval, args[0]);
  15588. } break;
  15589. case GGML_OP_PERMUTE:
  15590. {
  15591. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15592. } break;
  15593. default:
  15594. {
  15595. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15596. tensor->op = eop;
  15597. } break;
  15598. }
  15599. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15600. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15601. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15602. tensor->nb[j] = nb[j];
  15603. }
  15604. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15605. tensor->src[j] = args[j];
  15606. }
  15607. result.nodes[i] = tensor;
  15608. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15609. }
  15610. }
  15611. }
  15612. return result;
  15613. }
  15614. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15615. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15616. GGML_PRINT("=== GRAPH ===\n");
  15617. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15618. for (int i = 0; i < cgraph->n_nodes; i++) {
  15619. struct ggml_tensor * node = cgraph->nodes[i];
  15620. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15621. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15622. i,
  15623. node->ne[0], node->ne[1], node->ne[2],
  15624. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15625. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15626. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15627. (double) node->perf_time_us / 1000.0,
  15628. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15629. }
  15630. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15631. for (int i = 0; i < cgraph->n_leafs; i++) {
  15632. struct ggml_tensor * node = cgraph->leafs[i];
  15633. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15634. i,
  15635. node->ne[0], node->ne[1],
  15636. ggml_op_name(node->op),
  15637. ggml_get_name(node));
  15638. }
  15639. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15640. if (perf_total_per_op_us[i] == 0) {
  15641. continue;
  15642. }
  15643. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15644. }
  15645. GGML_PRINT("========================================\n");
  15646. }
  15647. // check if node is part of the graph
  15648. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15649. if (cgraph == NULL) {
  15650. return true;
  15651. }
  15652. for (int i = 0; i < cgraph->n_nodes; i++) {
  15653. if (cgraph->nodes[i] == node) {
  15654. return true;
  15655. }
  15656. }
  15657. return false;
  15658. }
  15659. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15660. for (int i = 0; i < cgraph->n_nodes; i++) {
  15661. struct ggml_tensor * parent = cgraph->nodes[i];
  15662. if (parent->grad == node) {
  15663. return parent;
  15664. }
  15665. }
  15666. return NULL;
  15667. }
  15668. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15669. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15670. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15671. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15672. gparent0 ? (void *) gparent0 : (void *) parent,
  15673. gparent0 ? "g" : "x",
  15674. gparent ? (void *) gparent : (void *) node,
  15675. gparent ? "g" : "x",
  15676. gparent ? "empty" : "vee",
  15677. gparent ? "dashed" : "solid",
  15678. label);
  15679. }
  15680. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15681. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15682. (void *) parent, "x",
  15683. (void *) node, "x",
  15684. label);
  15685. }
  15686. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15687. char color[16];
  15688. FILE * fp = fopen(filename, "w");
  15689. GGML_ASSERT(fp);
  15690. fprintf(fp, "digraph G {\n");
  15691. fprintf(fp, " newrank = true;\n");
  15692. fprintf(fp, " rankdir = LR;\n");
  15693. for (int i = 0; i < gb->n_nodes; i++) {
  15694. struct ggml_tensor * node = gb->nodes[i];
  15695. if (ggml_graph_get_parent(gb, node) != NULL) {
  15696. continue;
  15697. }
  15698. if (node->is_param) {
  15699. snprintf(color, sizeof(color), "yellow");
  15700. } else if (node->grad) {
  15701. if (ggml_graph_find(gf, node)) {
  15702. snprintf(color, sizeof(color), "green");
  15703. } else {
  15704. snprintf(color, sizeof(color), "lightblue");
  15705. }
  15706. } else {
  15707. snprintf(color, sizeof(color), "white");
  15708. }
  15709. fprintf(fp, " \"%p\" [ "
  15710. "style = filled; fillcolor = %s; shape = record; "
  15711. "label=\"",
  15712. (void *) node, color);
  15713. if (strlen(node->name) > 0) {
  15714. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15715. } else {
  15716. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15717. }
  15718. if (node->n_dims == 2) {
  15719. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15720. } else {
  15721. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15722. }
  15723. if (node->grad) {
  15724. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15725. } else {
  15726. fprintf(fp, "\"; ]\n");
  15727. }
  15728. }
  15729. for (int i = 0; i < gb->n_leafs; i++) {
  15730. struct ggml_tensor * node = gb->leafs[i];
  15731. snprintf(color, sizeof(color), "pink");
  15732. fprintf(fp, " \"%p\" [ "
  15733. "style = filled; fillcolor = %s; shape = record; "
  15734. "label=\"<x>",
  15735. (void *) node, color);
  15736. if (strlen(node->name) > 0) {
  15737. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15738. } else {
  15739. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15740. }
  15741. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15742. if (ggml_nelements(node) < 5) {
  15743. fprintf(fp, " | (");
  15744. for (int j = 0; j < ggml_nelements(node); j++) {
  15745. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15746. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15747. }
  15748. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15749. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15750. }
  15751. else {
  15752. fprintf(fp, "#");
  15753. }
  15754. if (j < ggml_nelements(node) - 1) {
  15755. fprintf(fp, ", ");
  15756. }
  15757. }
  15758. fprintf(fp, ")");
  15759. }
  15760. fprintf(fp, "\"; ]\n");
  15761. }
  15762. for (int i = 0; i < gb->n_nodes; i++) {
  15763. struct ggml_tensor * node = gb->nodes[i];
  15764. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15765. if (node->src[j]) {
  15766. char label[16];
  15767. snprintf(label, sizeof(label), "src %d", j);
  15768. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15769. }
  15770. }
  15771. }
  15772. for (int i = 0; i < gb->n_leafs; i++) {
  15773. struct ggml_tensor * node = gb->leafs[i];
  15774. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15775. if (node->src[j]) {
  15776. char label[16];
  15777. snprintf(label, sizeof(label), "src %d", j);
  15778. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15779. }
  15780. }
  15781. }
  15782. fprintf(fp, "}\n");
  15783. fclose(fp);
  15784. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15785. }
  15786. ////////////////////////////////////////////////////////////////////////////////
  15787. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15788. int i = 0;
  15789. for (int p = 0; p < np; ++p) {
  15790. const int64_t ne = ggml_nelements(ps[p]) ;
  15791. // TODO: add function to set tensor from array
  15792. for (int64_t j = 0; j < ne; ++j) {
  15793. ggml_set_f32_1d(ps[p], j, x[i++]);
  15794. }
  15795. }
  15796. }
  15797. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15798. int i = 0;
  15799. for (int p = 0; p < np; ++p) {
  15800. const int64_t ne = ggml_nelements(ps[p]) ;
  15801. // TODO: add function to get all elements at once
  15802. for (int64_t j = 0; j < ne; ++j) {
  15803. x[i++] = ggml_get_f32_1d(ps[p], j);
  15804. }
  15805. }
  15806. }
  15807. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15808. int64_t i = 0;
  15809. for (int p = 0; p < np; ++p) {
  15810. const int64_t ne = ggml_nelements(ps[p]) ;
  15811. // TODO: add function to get all elements at once
  15812. for (int64_t j = 0; j < ne; ++j) {
  15813. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15814. }
  15815. }
  15816. }
  15817. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15818. int64_t i = 0;
  15819. for (int p = 0; p < np; ++p) {
  15820. const int64_t ne = ggml_nelements(ps[p]) ;
  15821. // TODO: add function to get all elements at once
  15822. for (int64_t j = 0; j < ne; ++j) {
  15823. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15824. }
  15825. }
  15826. }
  15827. //
  15828. // ADAM
  15829. //
  15830. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15831. //
  15832. static enum ggml_opt_result ggml_opt_adam(
  15833. struct ggml_context * ctx,
  15834. struct ggml_opt_context * opt,
  15835. struct ggml_opt_params params,
  15836. struct ggml_tensor * f,
  15837. struct ggml_cgraph * gf,
  15838. struct ggml_cgraph * gb,
  15839. ggml_opt_callback callback,
  15840. void * callback_data) {
  15841. GGML_ASSERT(ggml_is_scalar(f));
  15842. // these will store the parameters we want to optimize
  15843. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15844. int np = 0;
  15845. int64_t nx = 0;
  15846. for (int i = 0; i < gf->n_nodes; ++i) {
  15847. if (gf->nodes[i]->is_param) {
  15848. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15849. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15850. ps[np++] = gf->nodes[i];
  15851. nx += ggml_nelements(gf->nodes[i]);
  15852. }
  15853. }
  15854. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15855. int iter = opt->iter;
  15856. ggml_opt_init(opt->ctx, opt, params, nx);
  15857. opt->iter = iter;
  15858. }
  15859. // constants
  15860. float sched = params.adam.sched;
  15861. const float alpha = params.adam.alpha;
  15862. const float decay = params.adam.decay * alpha;
  15863. const float beta1 = params.adam.beta1;
  15864. const float beta2 = params.adam.beta2;
  15865. const float eps = params.adam.eps;
  15866. const float gclip = params.adam.gclip;
  15867. const int decay_min_ndim = params.adam.decay_min_ndim;
  15868. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15869. const float accum_norm = 1.0f / (float) n_accum;
  15870. float * g = opt->adam.g->data; // gradients
  15871. float * m = opt->adam.m->data; // first moment
  15872. float * v = opt->adam.v->data; // second moment
  15873. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15874. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15875. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15876. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15877. bool cancel = false;
  15878. // compute the function value
  15879. float fx = 0;
  15880. ggml_set_zero(opt->adam.g);
  15881. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15882. if (callback) {
  15883. callback(callback_data, accum_step, &sched, &cancel);
  15884. if (cancel) {
  15885. break;
  15886. }
  15887. }
  15888. // ggml_graph_reset (gf);
  15889. ggml_set_f32 (f->grad, 1.0f);
  15890. ggml_graph_compute(gb, &cplan);
  15891. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15892. fx += ggml_get_f32_1d(f, 0);
  15893. }
  15894. if (cancel) {
  15895. return GGML_OPT_DID_NOT_CONVERGE;
  15896. }
  15897. fx *= accum_norm;
  15898. opt->adam.fx_prev = fx;
  15899. opt->adam.fx_best = opt->adam.fx_prev;
  15900. if (pf) {
  15901. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15902. }
  15903. opt->loss_before = opt->adam.fx_prev;
  15904. opt->loss_after = opt->adam.fx_prev;
  15905. // initialize
  15906. if (opt->just_initialized) {
  15907. opt->adam.n_no_improvement = 0;
  15908. opt->just_initialized = false;
  15909. }
  15910. float * fx_best = &opt->adam.fx_best;
  15911. float * fx_prev = &opt->adam.fx_prev;
  15912. int * n_no_improvement = &opt->adam.n_no_improvement;
  15913. int iter0 = opt->iter;
  15914. // run the optimizer
  15915. for (int t = 0; t < params.adam.n_iter; ++t) {
  15916. if (cancel) {
  15917. break;
  15918. }
  15919. opt->iter = iter0 + t + 1;
  15920. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15921. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15922. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15923. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15924. for (int i = 0; i < np; ++i) {
  15925. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15926. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15927. }
  15928. const int64_t t_start_wall = ggml_time_us();
  15929. const int64_t t_start_cpu = ggml_cycles();
  15930. UNUSED(t_start_wall);
  15931. UNUSED(t_start_cpu);
  15932. {
  15933. float gnorm = 1.0f;
  15934. if (gclip > 0.0f) {
  15935. // gradient clipping
  15936. ggml_float sum = 0.0;
  15937. for (int64_t i = 0; i < nx; ++i) {
  15938. sum += (ggml_float)(g[i]*g[i]);
  15939. }
  15940. ggml_float norm = sqrt(sum);
  15941. if (norm > (ggml_float) gclip) {
  15942. gnorm = (float) ((ggml_float) gclip / norm);
  15943. }
  15944. }
  15945. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15946. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15947. int64_t i = 0;
  15948. for (int p = 0; p < np; ++p) {
  15949. const int64_t ne = ggml_nelements(ps[p]);
  15950. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  15951. for (int64_t j = 0; j < ne; ++j) {
  15952. float x = ggml_get_f32_1d(ps[p], j);
  15953. float g_ = g[i]*gnorm;
  15954. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15955. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15956. float mh = m[i]*beta1h;
  15957. float vh = v[i]*beta2h;
  15958. vh = sqrtf(vh) + eps;
  15959. x = x*(1.0f - p_decay) - mh/vh;
  15960. ggml_set_f32_1d(ps[p], j, x);
  15961. ++i;
  15962. }
  15963. }
  15964. }
  15965. fx = 0;
  15966. ggml_set_zero(opt->adam.g);
  15967. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15968. if (callback) {
  15969. callback(callback_data, accum_step, &sched, &cancel);
  15970. if (cancel) {
  15971. break;
  15972. }
  15973. }
  15974. // ggml_graph_reset (gf);
  15975. ggml_set_f32 (f->grad, 1.0f);
  15976. ggml_graph_compute(gb, &cplan);
  15977. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15978. fx += ggml_get_f32_1d(f, 0);
  15979. }
  15980. if (cancel) {
  15981. break;
  15982. }
  15983. fx *= accum_norm;
  15984. opt->loss_after = fx;
  15985. // check convergence
  15986. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15987. GGML_PRINT_DEBUG("converged\n");
  15988. return GGML_OPT_OK;
  15989. }
  15990. // delta-based convergence test
  15991. if (pf != NULL) {
  15992. // need at least params.past iterations to start checking for convergence
  15993. if (params.past <= iter0 + t) {
  15994. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15995. if (fabsf(rate) < params.delta) {
  15996. return GGML_OPT_OK;
  15997. }
  15998. }
  15999. pf[(iter0 + t)%params.past] = fx;
  16000. }
  16001. // check for improvement
  16002. if (params.max_no_improvement > 0) {
  16003. if (fx_best[0] > fx) {
  16004. fx_best[0] = fx;
  16005. n_no_improvement[0] = 0;
  16006. } else {
  16007. ++n_no_improvement[0];
  16008. if (n_no_improvement[0] >= params.max_no_improvement) {
  16009. return GGML_OPT_OK;
  16010. }
  16011. }
  16012. }
  16013. fx_prev[0] = fx;
  16014. {
  16015. const int64_t t_end_cpu = ggml_cycles();
  16016. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16017. UNUSED(t_end_cpu);
  16018. const int64_t t_end_wall = ggml_time_us();
  16019. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16020. UNUSED(t_end_wall);
  16021. }
  16022. }
  16023. return GGML_OPT_DID_NOT_CONVERGE;
  16024. }
  16025. //
  16026. // L-BFGS
  16027. //
  16028. // the L-BFGS implementation below is based on the following implementation:
  16029. //
  16030. // https://github.com/chokkan/liblbfgs
  16031. //
  16032. struct ggml_lbfgs_iteration_data {
  16033. float alpha;
  16034. float ys;
  16035. float * s;
  16036. float * y;
  16037. };
  16038. static enum ggml_opt_result linesearch_backtracking(
  16039. const struct ggml_opt_params * params,
  16040. int nx,
  16041. float * x,
  16042. float * fx,
  16043. float * g,
  16044. float * d,
  16045. float * step,
  16046. const float * xp,
  16047. struct ggml_tensor * f,
  16048. struct ggml_cgraph * gb,
  16049. struct ggml_cplan * cplan,
  16050. const int np,
  16051. struct ggml_tensor * ps[],
  16052. bool * cancel,
  16053. ggml_opt_callback callback,
  16054. void * callback_data) {
  16055. int count = 0;
  16056. float width = 0.0f;
  16057. float dg = 0.0f;
  16058. float finit = 0.0f;
  16059. float dginit = 0.0f;
  16060. float dgtest = 0.0f;
  16061. const float dec = 0.5f;
  16062. const float inc = 2.1f;
  16063. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16064. const float accum_norm = 1.0f / (float) n_accum;
  16065. if (*step <= 0.f) {
  16066. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16067. }
  16068. // compute the initial gradient in the search direction
  16069. ggml_vec_dot_f32(nx, &dginit, g, d);
  16070. // make sure that d points to a descent direction
  16071. if (0 < dginit) {
  16072. return GGML_LINESEARCH_FAIL;
  16073. }
  16074. // initialize local variables
  16075. finit = *fx;
  16076. dgtest = params->lbfgs.ftol*dginit;
  16077. while (!*cancel) {
  16078. ggml_vec_cpy_f32(nx, x, xp);
  16079. ggml_vec_mad_f32(nx, x, d, *step);
  16080. // evaluate the function and gradient values
  16081. {
  16082. ggml_opt_set_params(np, ps, x);
  16083. *fx = 0;
  16084. memset(g, 0, sizeof(float)*nx);
  16085. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16086. if (callback) {
  16087. // LBFG-S does not support learning rate -> ignore learning schedule
  16088. float sched = 0;
  16089. callback(callback_data, accum_step, &sched, cancel);
  16090. if (*cancel) {
  16091. break;
  16092. }
  16093. }
  16094. // ggml_graph_reset (gf);
  16095. ggml_set_f32 (f->grad, 1.0f);
  16096. ggml_graph_compute(gb, cplan);
  16097. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16098. *fx += ggml_get_f32_1d(f, 0);
  16099. }
  16100. if (*cancel) {
  16101. break;
  16102. }
  16103. *fx *= accum_norm;
  16104. }
  16105. ++count;
  16106. if (*fx > finit + (*step)*dgtest) {
  16107. width = dec;
  16108. } else {
  16109. // Armijo condition is satisfied
  16110. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16111. return count;
  16112. }
  16113. ggml_vec_dot_f32(nx, &dg, g, d);
  16114. // check the Wolfe condition
  16115. if (dg < params->lbfgs.wolfe * dginit) {
  16116. width = inc;
  16117. } else {
  16118. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16119. // regular Wolfe conditions
  16120. return count;
  16121. }
  16122. if(dg > -params->lbfgs.wolfe*dginit) {
  16123. width = dec;
  16124. } else {
  16125. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16126. return count;
  16127. }
  16128. }
  16129. }
  16130. if (*step < params->lbfgs.min_step) {
  16131. return GGML_LINESEARCH_MINIMUM_STEP;
  16132. }
  16133. if (*step > params->lbfgs.max_step) {
  16134. return GGML_LINESEARCH_MAXIMUM_STEP;
  16135. }
  16136. if (params->lbfgs.max_linesearch <= count) {
  16137. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16138. }
  16139. (*step) *= width;
  16140. }
  16141. GGML_UNREACHABLE();
  16142. }
  16143. static enum ggml_opt_result ggml_opt_lbfgs(
  16144. struct ggml_context * ctx,
  16145. struct ggml_opt_context * opt,
  16146. struct ggml_opt_params params,
  16147. struct ggml_tensor * f,
  16148. struct ggml_cgraph * gf,
  16149. struct ggml_cgraph * gb,
  16150. ggml_opt_callback callback,
  16151. void * callback_data) {
  16152. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16153. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16154. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16155. return GGML_OPT_INVALID_WOLFE;
  16156. }
  16157. }
  16158. const int m = params.lbfgs.m;
  16159. // these will store the parameters we want to optimize
  16160. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16161. int np = 0;
  16162. int nx = 0;
  16163. for (int i = 0; i < gf->n_nodes; ++i) {
  16164. if (gf->nodes[i]->is_param) {
  16165. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16166. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16167. ps[np++] = gf->nodes[i];
  16168. nx += ggml_nelements(gf->nodes[i]);
  16169. }
  16170. }
  16171. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16172. int iter = opt->iter;
  16173. ggml_opt_init(ctx, opt, params, nx);
  16174. opt->iter = iter;
  16175. }
  16176. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16177. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  16178. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16179. float * x = opt->lbfgs.x->data; // current parameters
  16180. float * xp = opt->lbfgs.xp->data; // previous parameters
  16181. float * g = opt->lbfgs.g->data; // current gradient
  16182. float * gp = opt->lbfgs.gp->data; // previous gradient
  16183. float * d = opt->lbfgs.d->data; // search direction
  16184. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16185. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16186. const float accum_norm = 1.0f / (float) n_accum;
  16187. float fx = 0.0f; // cost function value
  16188. float xnorm = 0.0f; // ||x||
  16189. float gnorm = 0.0f; // ||g||
  16190. // initialize x from the graph nodes
  16191. ggml_opt_get_params(np, ps, x);
  16192. // the L-BFGS memory
  16193. float * lm_alpha = opt->lbfgs.lmal->data;
  16194. float * lm_ys = opt->lbfgs.lmys->data;
  16195. float * lm_s = opt->lbfgs.lms->data;
  16196. float * lm_y = opt->lbfgs.lmy->data;
  16197. bool cancel = false;
  16198. // evaluate the function value and its gradient
  16199. {
  16200. ggml_opt_set_params(np, ps, x);
  16201. fx = 0;
  16202. memset(g, 0, sizeof(float)*nx);
  16203. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16204. if (callback) {
  16205. // LBFG-S does not support learning rate -> ignore learning schedule
  16206. float sched = 0;
  16207. callback(callback_data, accum_step, &sched, &cancel);
  16208. if (cancel) {
  16209. break;
  16210. }
  16211. }
  16212. // ggml_graph_reset (gf);
  16213. ggml_set_f32 (f->grad, 1.0f);
  16214. ggml_graph_compute(gb, &cplan);
  16215. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16216. fx += ggml_get_f32_1d(f, 0);
  16217. }
  16218. if (cancel) {
  16219. return GGML_OPT_DID_NOT_CONVERGE;
  16220. }
  16221. fx *= accum_norm;
  16222. opt->loss_before = fx;
  16223. opt->loss_after = fx;
  16224. }
  16225. // search direction = -gradient
  16226. ggml_vec_neg_f32(nx, d, g);
  16227. // ||x||, ||g||
  16228. ggml_vec_norm_f32(nx, &xnorm, x);
  16229. ggml_vec_norm_f32(nx, &gnorm, g);
  16230. if (xnorm < 1.0f) {
  16231. xnorm = 1.0f;
  16232. }
  16233. // already optimized
  16234. if (gnorm/xnorm <= params.lbfgs.eps) {
  16235. return GGML_OPT_OK;
  16236. }
  16237. if (opt->just_initialized) {
  16238. if (pf) {
  16239. pf[0] = fx;
  16240. }
  16241. opt->lbfgs.fx_best = fx;
  16242. // initial step
  16243. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16244. opt->lbfgs.j = 0;
  16245. opt->lbfgs.k = 1;
  16246. opt->lbfgs.end = 0;
  16247. opt->lbfgs.n_no_improvement = 0;
  16248. opt->just_initialized = false;
  16249. }
  16250. float * fx_best = &opt->lbfgs.fx_best;
  16251. float * step = &opt->lbfgs.step;
  16252. int * j = &opt->lbfgs.j;
  16253. int * k = &opt->lbfgs.k;
  16254. int * end = &opt->lbfgs.end;
  16255. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16256. int ls = 0;
  16257. int bound = 0;
  16258. float ys = 0.0f;
  16259. float yy = 0.0f;
  16260. float beta = 0.0f;
  16261. int it = 0;
  16262. while (true) {
  16263. // store the current position and gradient vectors
  16264. ggml_vec_cpy_f32(nx, xp, x);
  16265. ggml_vec_cpy_f32(nx, gp, g);
  16266. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16267. if (!cancel) {
  16268. break;
  16269. }
  16270. if (ls < 0) {
  16271. // linesearch failed - go back to the previous point and return
  16272. ggml_vec_cpy_f32(nx, x, xp);
  16273. ggml_vec_cpy_f32(nx, g, gp);
  16274. return ls;
  16275. }
  16276. opt->loss_after = fx;
  16277. ggml_vec_norm_f32(nx, &xnorm, x);
  16278. ggml_vec_norm_f32(nx, &gnorm, g);
  16279. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16280. if (xnorm < 1.0f) {
  16281. xnorm = 1.0f;
  16282. }
  16283. if (gnorm/xnorm <= params.lbfgs.eps) {
  16284. // converged
  16285. return GGML_OPT_OK;
  16286. }
  16287. // delta-based convergence test
  16288. if (pf != NULL) {
  16289. // need at least params.past iterations to start checking for convergence
  16290. if (params.past <= k[0]) {
  16291. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16292. if (fabsf(rate) < params.delta) {
  16293. return GGML_OPT_OK;
  16294. }
  16295. }
  16296. pf[k[0]%params.past] = fx;
  16297. }
  16298. // check for improvement
  16299. if (params.max_no_improvement > 0) {
  16300. if (fx < fx_best[0]) {
  16301. fx_best[0] = fx;
  16302. n_no_improvement[0] = 0;
  16303. } else {
  16304. n_no_improvement[0]++;
  16305. if (n_no_improvement[0] >= params.max_no_improvement) {
  16306. return GGML_OPT_OK;
  16307. }
  16308. }
  16309. }
  16310. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16311. // reached the maximum number of iterations
  16312. return GGML_OPT_DID_NOT_CONVERGE;
  16313. }
  16314. // update vectors s and y:
  16315. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16316. // y_{k+1} = g_{k+1} - g_{k}.
  16317. //
  16318. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16319. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16320. // compute scalars ys and yy:
  16321. // ys = y^t \cdot s -> 1 / \rho.
  16322. // yy = y^t \cdot y.
  16323. //
  16324. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  16325. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  16326. lm_ys[end[0]] = ys;
  16327. // find new search direction
  16328. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16329. bound = (m <= k[0]) ? m : k[0];
  16330. k[0]++;
  16331. it++;
  16332. end[0] = (end[0] + 1)%m;
  16333. // initialize search direction with -g
  16334. ggml_vec_neg_f32(nx, d, g);
  16335. j[0] = end[0];
  16336. for (int i = 0; i < bound; ++i) {
  16337. j[0] = (j[0] + m - 1) % m;
  16338. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16339. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  16340. lm_alpha[j[0]] /= lm_ys[j[0]];
  16341. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16342. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16343. }
  16344. ggml_vec_scale_f32(nx, d, ys/yy);
  16345. for (int i = 0; i < bound; ++i) {
  16346. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16347. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  16348. beta /= lm_ys[j[0]];
  16349. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16350. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16351. j[0] = (j[0] + 1)%m;
  16352. }
  16353. step[0] = 1.0;
  16354. }
  16355. GGML_UNREACHABLE();
  16356. }
  16357. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16358. struct ggml_opt_params result;
  16359. switch (type) {
  16360. case GGML_OPT_ADAM:
  16361. {
  16362. result = (struct ggml_opt_params) {
  16363. .type = GGML_OPT_ADAM,
  16364. .n_threads = 1,
  16365. .past = 0,
  16366. .delta = 1e-5f,
  16367. .max_no_improvement = 100,
  16368. .print_forward_graph = true,
  16369. .print_backward_graph = true,
  16370. .n_gradient_accumulation = 1,
  16371. .adam = {
  16372. .n_iter = 10000,
  16373. .sched = 1.000f,
  16374. .decay = 0.0f,
  16375. .decay_min_ndim = 2,
  16376. .alpha = 0.001f,
  16377. .beta1 = 0.9f,
  16378. .beta2 = 0.999f,
  16379. .eps = 1e-8f,
  16380. .eps_f = 1e-5f,
  16381. .eps_g = 1e-3f,
  16382. .gclip = 0.0f,
  16383. },
  16384. };
  16385. } break;
  16386. case GGML_OPT_LBFGS:
  16387. {
  16388. result = (struct ggml_opt_params) {
  16389. .type = GGML_OPT_LBFGS,
  16390. .n_threads = 1,
  16391. .past = 0,
  16392. .delta = 1e-5f,
  16393. .max_no_improvement = 0,
  16394. .print_forward_graph = true,
  16395. .print_backward_graph = true,
  16396. .n_gradient_accumulation = 1,
  16397. .lbfgs = {
  16398. .m = 6,
  16399. .n_iter = 100,
  16400. .max_linesearch = 20,
  16401. .eps = 1e-5f,
  16402. .ftol = 1e-4f,
  16403. .wolfe = 0.9f,
  16404. .min_step = 1e-20f,
  16405. .max_step = 1e+20f,
  16406. .linesearch = GGML_LINESEARCH_DEFAULT,
  16407. },
  16408. };
  16409. } break;
  16410. }
  16411. return result;
  16412. }
  16413. GGML_API void ggml_opt_init(
  16414. struct ggml_context * ctx,
  16415. struct ggml_opt_context * opt,
  16416. struct ggml_opt_params params,
  16417. int64_t nx) {
  16418. opt->ctx = ctx;
  16419. opt->params = params;
  16420. opt->iter = 0;
  16421. opt->nx = nx;
  16422. opt->just_initialized = true;
  16423. if (opt->ctx == NULL) {
  16424. struct ggml_init_params ctx_opt_params;
  16425. if (opt->params.type == GGML_OPT_ADAM) {
  16426. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16427. if (opt->params.past > 0) {
  16428. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16429. }
  16430. } else if (opt->params.type == GGML_OPT_LBFGS) {
  16431. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16432. if (opt->params.past > 0) {
  16433. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16434. }
  16435. }
  16436. ctx_opt_params.mem_buffer = NULL;
  16437. ctx_opt_params.no_alloc = false;
  16438. opt->ctx = ggml_init(ctx_opt_params);
  16439. }
  16440. switch (opt->params.type) {
  16441. case GGML_OPT_ADAM:
  16442. {
  16443. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16444. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16445. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16446. opt->adam.pf = params.past > 0
  16447. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16448. : NULL;
  16449. ggml_set_zero(opt->adam.m);
  16450. ggml_set_zero(opt->adam.v);
  16451. if (opt->adam.pf) {
  16452. ggml_set_zero(opt->adam.pf);
  16453. }
  16454. } break;
  16455. case GGML_OPT_LBFGS:
  16456. {
  16457. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16458. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16459. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16460. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16461. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16462. opt->lbfgs.pf = params.past > 0
  16463. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16464. : NULL;
  16465. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16466. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16467. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16468. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16469. ggml_set_zero(opt->lbfgs.x);
  16470. ggml_set_zero(opt->lbfgs.xp);
  16471. ggml_set_zero(opt->lbfgs.g);
  16472. ggml_set_zero(opt->lbfgs.gp);
  16473. ggml_set_zero(opt->lbfgs.d);
  16474. if (opt->lbfgs.pf) {
  16475. ggml_set_zero(opt->lbfgs.pf);
  16476. }
  16477. ggml_set_zero(opt->lbfgs.lmal);
  16478. ggml_set_zero(opt->lbfgs.lmys);
  16479. ggml_set_zero(opt->lbfgs.lms);
  16480. ggml_set_zero(opt->lbfgs.lmy);
  16481. } break;
  16482. }
  16483. }
  16484. enum ggml_opt_result ggml_opt(
  16485. struct ggml_context * ctx,
  16486. struct ggml_opt_params params,
  16487. struct ggml_tensor * f) {
  16488. bool free_ctx = false;
  16489. if (ctx == NULL) {
  16490. struct ggml_init_params params_ctx = {
  16491. .mem_size = 16*1024*1024,
  16492. .mem_buffer = NULL,
  16493. .no_alloc = false,
  16494. };
  16495. ctx = ggml_init(params_ctx);
  16496. if (ctx == NULL) {
  16497. return GGML_OPT_NO_CONTEXT;
  16498. }
  16499. free_ctx = true;
  16500. }
  16501. enum ggml_opt_result result = GGML_OPT_OK;
  16502. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16503. ggml_opt_init(ctx, opt, params, 0);
  16504. result = ggml_opt_resume(ctx, opt, f);
  16505. if (free_ctx) {
  16506. ggml_free(ctx);
  16507. }
  16508. return result;
  16509. }
  16510. enum ggml_opt_result ggml_opt_resume(
  16511. struct ggml_context * ctx,
  16512. struct ggml_opt_context * opt,
  16513. struct ggml_tensor * f) {
  16514. // build forward + backward compute graphs
  16515. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  16516. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  16517. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  16518. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  16519. *gf = ggml_build_forward (f);
  16520. *gb = ggml_build_backward(ctx, gf, true);
  16521. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16522. }
  16523. enum ggml_opt_result ggml_opt_resume_g(
  16524. struct ggml_context * ctx,
  16525. struct ggml_opt_context * opt,
  16526. struct ggml_tensor * f,
  16527. struct ggml_cgraph * gf,
  16528. struct ggml_cgraph * gb,
  16529. ggml_opt_callback callback,
  16530. void * callback_data) {
  16531. // build forward + backward compute graphs
  16532. enum ggml_opt_result result = GGML_OPT_OK;
  16533. switch (opt->params.type) {
  16534. case GGML_OPT_ADAM:
  16535. {
  16536. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16537. } break;
  16538. case GGML_OPT_LBFGS:
  16539. {
  16540. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16541. } break;
  16542. }
  16543. if (opt->params.print_forward_graph) {
  16544. ggml_graph_print (gf);
  16545. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16546. }
  16547. if (opt->params.print_backward_graph) {
  16548. ggml_graph_print (gb);
  16549. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16550. }
  16551. return result;
  16552. }
  16553. ////////////////////////////////////////////////////////////////////////////////
  16554. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16555. assert(k % QK4_0 == 0);
  16556. const int nb = k / QK4_0;
  16557. for (int b = 0; b < n; b += k) {
  16558. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16559. quantize_row_q4_0_reference(src + b, y, k);
  16560. for (int i = 0; i < nb; i++) {
  16561. for (int j = 0; j < QK4_0; j += 2) {
  16562. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16563. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16564. hist[vi0]++;
  16565. hist[vi1]++;
  16566. }
  16567. }
  16568. }
  16569. return (n/QK4_0*sizeof(block_q4_0));
  16570. }
  16571. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16572. assert(k % QK4_1 == 0);
  16573. const int nb = k / QK4_1;
  16574. for (int b = 0; b < n; b += k) {
  16575. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16576. quantize_row_q4_1_reference(src + b, y, k);
  16577. for (int i = 0; i < nb; i++) {
  16578. for (int j = 0; j < QK4_1; j += 2) {
  16579. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16580. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16581. hist[vi0]++;
  16582. hist[vi1]++;
  16583. }
  16584. }
  16585. }
  16586. return (n/QK4_1*sizeof(block_q4_1));
  16587. }
  16588. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16589. assert(k % QK5_0 == 0);
  16590. const int nb = k / QK5_0;
  16591. for (int b = 0; b < n; b += k) {
  16592. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16593. quantize_row_q5_0_reference(src + b, y, k);
  16594. for (int i = 0; i < nb; i++) {
  16595. uint32_t qh;
  16596. memcpy(&qh, &y[i].qh, sizeof(qh));
  16597. for (int j = 0; j < QK5_0; j += 2) {
  16598. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  16599. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  16600. // cast to 16 bins
  16601. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16602. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16603. hist[vi0]++;
  16604. hist[vi1]++;
  16605. }
  16606. }
  16607. }
  16608. return (n/QK5_0*sizeof(block_q5_0));
  16609. }
  16610. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16611. assert(k % QK5_1 == 0);
  16612. const int nb = k / QK5_1;
  16613. for (int b = 0; b < n; b += k) {
  16614. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16615. quantize_row_q5_1_reference(src + b, y, k);
  16616. for (int i = 0; i < nb; i++) {
  16617. uint32_t qh;
  16618. memcpy(&qh, &y[i].qh, sizeof(qh));
  16619. for (int j = 0; j < QK5_1; j += 2) {
  16620. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  16621. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  16622. // cast to 16 bins
  16623. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16624. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16625. hist[vi0]++;
  16626. hist[vi1]++;
  16627. }
  16628. }
  16629. }
  16630. return (n/QK5_1*sizeof(block_q5_1));
  16631. }
  16632. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16633. assert(k % QK8_0 == 0);
  16634. const int nb = k / QK8_0;
  16635. for (int b = 0; b < n; b += k) {
  16636. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16637. quantize_row_q8_0_reference(src + b, y, k);
  16638. for (int i = 0; i < nb; i++) {
  16639. for (int j = 0; j < QK8_0; ++j) {
  16640. const int8_t vi = y[i].qs[j];
  16641. hist[vi/16 + 8]++;
  16642. }
  16643. }
  16644. }
  16645. return (n/QK8_0*sizeof(block_q8_0));
  16646. }
  16647. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  16648. size_t result = 0;
  16649. switch (type) {
  16650. case GGML_TYPE_Q4_0:
  16651. {
  16652. GGML_ASSERT(start % QK4_0 == 0);
  16653. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  16654. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  16655. } break;
  16656. case GGML_TYPE_Q4_1:
  16657. {
  16658. GGML_ASSERT(start % QK4_1 == 0);
  16659. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  16660. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  16661. } break;
  16662. case GGML_TYPE_Q5_0:
  16663. {
  16664. GGML_ASSERT(start % QK5_0 == 0);
  16665. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  16666. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  16667. } break;
  16668. case GGML_TYPE_Q5_1:
  16669. {
  16670. GGML_ASSERT(start % QK5_1 == 0);
  16671. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  16672. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  16673. } break;
  16674. case GGML_TYPE_Q8_0:
  16675. {
  16676. GGML_ASSERT(start % QK8_0 == 0);
  16677. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16678. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16679. } break;
  16680. #ifdef GGML_USE_K_QUANTS
  16681. case GGML_TYPE_Q2_K:
  16682. {
  16683. GGML_ASSERT(start % QK_K == 0);
  16684. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  16685. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  16686. } break;
  16687. case GGML_TYPE_Q3_K:
  16688. {
  16689. GGML_ASSERT(start % QK_K == 0);
  16690. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  16691. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  16692. } break;
  16693. case GGML_TYPE_Q4_K:
  16694. {
  16695. GGML_ASSERT(start % QK_K == 0);
  16696. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  16697. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  16698. } break;
  16699. case GGML_TYPE_Q5_K:
  16700. {
  16701. GGML_ASSERT(start % QK_K == 0);
  16702. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  16703. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  16704. } break;
  16705. case GGML_TYPE_Q6_K:
  16706. {
  16707. GGML_ASSERT(start % QK_K == 0);
  16708. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  16709. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  16710. } break;
  16711. #endif
  16712. case GGML_TYPE_F16:
  16713. {
  16714. int elemsize = sizeof(ggml_fp16_t);
  16715. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16716. result = n * elemsize;
  16717. } break;
  16718. case GGML_TYPE_F32:
  16719. {
  16720. int elemsize = sizeof(float);
  16721. result = n * elemsize;
  16722. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16723. } break;
  16724. default:
  16725. assert(false);
  16726. }
  16727. return result;
  16728. }
  16729. ////////////////////////////////////////////////////////////////////////////////
  16730. struct gguf_str {
  16731. uint64_t n; // GGUFv2
  16732. char * data;
  16733. };
  16734. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16735. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16736. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16737. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16738. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16739. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16740. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16741. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16742. [GGUF_TYPE_BOOL] = sizeof(bool),
  16743. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16744. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16745. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16746. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16747. [GGUF_TYPE_ARRAY] = 0, // undefined
  16748. };
  16749. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16750. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16751. [GGUF_TYPE_UINT8] = "u8",
  16752. [GGUF_TYPE_INT8] = "i8",
  16753. [GGUF_TYPE_UINT16] = "u16",
  16754. [GGUF_TYPE_INT16] = "i16",
  16755. [GGUF_TYPE_UINT32] = "u32",
  16756. [GGUF_TYPE_INT32] = "i32",
  16757. [GGUF_TYPE_FLOAT32] = "f32",
  16758. [GGUF_TYPE_BOOL] = "bool",
  16759. [GGUF_TYPE_STRING] = "str",
  16760. [GGUF_TYPE_ARRAY] = "arr",
  16761. [GGUF_TYPE_UINT64] = "u64",
  16762. [GGUF_TYPE_INT64] = "i64",
  16763. [GGUF_TYPE_FLOAT64] = "f64",
  16764. };
  16765. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16766. union gguf_value {
  16767. uint8_t uint8;
  16768. int8_t int8;
  16769. uint16_t uint16;
  16770. int16_t int16;
  16771. uint32_t uint32;
  16772. int32_t int32;
  16773. float float32;
  16774. uint64_t uint64;
  16775. int64_t int64;
  16776. double float64;
  16777. bool bool_;
  16778. struct gguf_str str;
  16779. struct {
  16780. enum gguf_type type;
  16781. uint64_t n; // GGUFv2
  16782. void * data;
  16783. } arr;
  16784. };
  16785. struct gguf_kv {
  16786. struct gguf_str key;
  16787. enum gguf_type type;
  16788. union gguf_value value;
  16789. };
  16790. struct gguf_header {
  16791. uint32_t magic;
  16792. uint32_t version;
  16793. uint64_t n_tensors; // GGUFv2
  16794. uint64_t n_kv; // GGUFv2
  16795. };
  16796. struct gguf_tensor_info {
  16797. struct gguf_str name;
  16798. uint32_t n_dims;
  16799. uint64_t ne[GGML_MAX_DIMS];
  16800. enum ggml_type type;
  16801. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16802. // for writing API
  16803. const void * data;
  16804. size_t size;
  16805. };
  16806. struct gguf_context {
  16807. struct gguf_header header;
  16808. struct gguf_kv * kv;
  16809. struct gguf_tensor_info * infos;
  16810. size_t alignment;
  16811. size_t offset; // offset of `data` from beginning of file
  16812. size_t size; // size of `data` in bytes
  16813. //uint8_t * padding;
  16814. void * data;
  16815. };
  16816. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16817. const size_t n = fread(dst, 1, size, file);
  16818. *offset += n;
  16819. return n == size;
  16820. }
  16821. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16822. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16823. p->n = 0;
  16824. p->data = NULL;
  16825. bool ok = true;
  16826. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16827. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16828. return ok;
  16829. }
  16830. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16831. p->n = 0;
  16832. p->data = NULL;
  16833. bool ok = true;
  16834. uint32_t n = 0;
  16835. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16836. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16837. return ok;
  16838. }
  16839. struct gguf_context * gguf_init_empty(void) {
  16840. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16841. ctx->header.magic = GGUF_MAGIC;
  16842. ctx->header.version = GGUF_VERSION;
  16843. ctx->header.n_tensors = 0;
  16844. ctx->header.n_kv = 0;
  16845. ctx->kv = NULL;
  16846. ctx->infos = NULL;
  16847. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16848. ctx->offset = 0;
  16849. ctx->size = 0;
  16850. ctx->data = NULL;
  16851. return ctx;
  16852. }
  16853. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16854. FILE * file = fopen(fname, "rb");
  16855. if (!file) {
  16856. return NULL;
  16857. }
  16858. // offset from start of file
  16859. size_t offset = 0;
  16860. uint32_t magic = 0;
  16861. // check the magic before making allocations
  16862. {
  16863. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16864. if (magic != GGUF_MAGIC) {
  16865. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16866. fclose(file);
  16867. return NULL;
  16868. }
  16869. }
  16870. bool ok = true;
  16871. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16872. // read the header
  16873. {
  16874. ctx->header.magic = magic;
  16875. ctx->kv = NULL;
  16876. ctx->infos = NULL;
  16877. ctx->data = NULL;
  16878. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16879. if (ctx->header.version == 1) {
  16880. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16881. uint32_t n_tensors = 0;
  16882. uint32_t n_kv = 0;
  16883. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16884. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16885. ctx->header.n_tensors = n_tensors;
  16886. ctx->header.n_kv = n_kv;
  16887. } else {
  16888. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16889. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16890. }
  16891. if (!ok) {
  16892. fprintf(stderr, "%s: failed to read header\n", __func__);
  16893. fclose(file);
  16894. gguf_free(ctx);
  16895. return NULL;
  16896. }
  16897. }
  16898. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16899. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16900. if (ctx->header.version == 1) {
  16901. gguf_fread_str = gguf_fread_str_v1;
  16902. }
  16903. // read the kv pairs
  16904. {
  16905. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16906. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16907. struct gguf_kv * kv = &ctx->kv[i];
  16908. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16909. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16910. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16911. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16912. switch (kv->type) {
  16913. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16914. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16915. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16916. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16917. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16918. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16919. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16920. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16921. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16922. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16923. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16924. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16925. case GGUF_TYPE_ARRAY:
  16926. {
  16927. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16928. if (ctx->header.version == 1) {
  16929. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16930. uint32_t n = 0;
  16931. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16932. kv->value.arr.n = n;
  16933. } else {
  16934. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16935. }
  16936. switch (kv->value.arr.type) {
  16937. case GGUF_TYPE_UINT8:
  16938. case GGUF_TYPE_INT8:
  16939. case GGUF_TYPE_UINT16:
  16940. case GGUF_TYPE_INT16:
  16941. case GGUF_TYPE_UINT32:
  16942. case GGUF_TYPE_INT32:
  16943. case GGUF_TYPE_FLOAT32:
  16944. case GGUF_TYPE_UINT64:
  16945. case GGUF_TYPE_INT64:
  16946. case GGUF_TYPE_FLOAT64:
  16947. case GGUF_TYPE_BOOL:
  16948. {
  16949. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16950. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16951. } break;
  16952. case GGUF_TYPE_STRING:
  16953. {
  16954. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16955. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16956. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16957. }
  16958. } break;
  16959. case GGUF_TYPE_ARRAY:
  16960. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16961. }
  16962. } break;
  16963. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16964. }
  16965. if (!ok) {
  16966. break;
  16967. }
  16968. }
  16969. if (!ok) {
  16970. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16971. fclose(file);
  16972. gguf_free(ctx);
  16973. return NULL;
  16974. }
  16975. }
  16976. // read the tensor infos
  16977. {
  16978. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16979. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16980. struct gguf_tensor_info * info = &ctx->infos[i];
  16981. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16982. info->ne[j] = 1;
  16983. }
  16984. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16985. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16986. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16987. if (ctx->header.version == 1) {
  16988. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16989. uint32_t t = 0;
  16990. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16991. info->ne[j] = t;
  16992. } else {
  16993. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16994. }
  16995. }
  16996. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16997. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16998. if (!ok) {
  16999. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17000. fclose(file);
  17001. gguf_free(ctx);
  17002. return NULL;
  17003. }
  17004. }
  17005. }
  17006. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17007. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17008. if (alignment_idx != -1) {
  17009. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17010. }
  17011. // we require the data section to be aligned, so take into account any padding
  17012. {
  17013. const size_t offset_pad = offset % ctx->alignment;
  17014. if (offset_pad != 0) {
  17015. offset += ctx->alignment - offset_pad;
  17016. fseek(file, offset, SEEK_SET);
  17017. }
  17018. }
  17019. // store the current file offset - this is where the data section starts
  17020. ctx->offset = offset;
  17021. // compute the total size of the data section, taking into account the alignment
  17022. {
  17023. ctx->size = 0;
  17024. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17025. struct gguf_tensor_info * info = &ctx->infos[i];
  17026. const int64_t ne =
  17027. (int64_t) info->ne[0] *
  17028. (int64_t) info->ne[1] *
  17029. (int64_t) info->ne[2] *
  17030. (int64_t) info->ne[3];
  17031. if (ne % ggml_blck_size(info->type) != 0) {
  17032. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17033. __func__, info->name.data, ne, ggml_blck_size(info->type));
  17034. fclose(file);
  17035. gguf_free(ctx);
  17036. return NULL;
  17037. }
  17038. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  17039. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17040. }
  17041. }
  17042. // load the tensor data only if requested
  17043. if (params.ctx != NULL) {
  17044. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17045. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17046. // the ggml_tensor structs to the appropriate locations in the binary blob
  17047. // compute the exact size needed for the new ggml_context
  17048. const size_t mem_size =
  17049. params.no_alloc ?
  17050. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17051. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17052. struct ggml_init_params pdata = {
  17053. .mem_size = mem_size,
  17054. .mem_buffer = NULL,
  17055. .no_alloc = params.no_alloc,
  17056. };
  17057. *params.ctx = ggml_init(pdata);
  17058. struct ggml_context * ctx_data = *params.ctx;
  17059. struct ggml_tensor * data = NULL;
  17060. if (!params.no_alloc) {
  17061. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17062. ok = ok && data != NULL;
  17063. // read the binary blob with the tensor data
  17064. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17065. if (!ok) {
  17066. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17067. fclose(file);
  17068. ggml_free(ctx_data);
  17069. gguf_free(ctx);
  17070. return NULL;
  17071. }
  17072. ctx->data = data->data;
  17073. }
  17074. ggml_set_no_alloc(ctx_data, true);
  17075. // create the tensors
  17076. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17077. const int64_t ne[GGML_MAX_DIMS] = {
  17078. ctx->infos[i].ne[0],
  17079. ctx->infos[i].ne[1],
  17080. ctx->infos[i].ne[2],
  17081. ctx->infos[i].ne[3],
  17082. };
  17083. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17084. ok = ok && cur != NULL;
  17085. ggml_set_name(cur, ctx->infos[i].name.data);
  17086. if (!ok) {
  17087. break;
  17088. }
  17089. // point the data member to the appropriate location in the binary blob using the tensor infos
  17090. if (!params.no_alloc) {
  17091. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17092. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17093. }
  17094. }
  17095. if (!ok) {
  17096. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17097. fclose(file);
  17098. ggml_free(ctx_data);
  17099. gguf_free(ctx);
  17100. return NULL;
  17101. }
  17102. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17103. }
  17104. fclose(file);
  17105. return ctx;
  17106. }
  17107. void gguf_free(struct gguf_context * ctx) {
  17108. if (ctx == NULL) {
  17109. return;
  17110. }
  17111. if (ctx->kv) {
  17112. // free string memory - not great..
  17113. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17114. struct gguf_kv * kv = &ctx->kv[i];
  17115. if (kv->key.data) {
  17116. free(kv->key.data);
  17117. }
  17118. if (kv->type == GGUF_TYPE_STRING) {
  17119. if (kv->value.str.data) {
  17120. free(kv->value.str.data);
  17121. }
  17122. }
  17123. if (kv->type == GGUF_TYPE_ARRAY) {
  17124. if (kv->value.arr.data) {
  17125. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17126. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17127. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17128. if (str->data) {
  17129. free(str->data);
  17130. }
  17131. }
  17132. }
  17133. free(kv->value.arr.data);
  17134. }
  17135. }
  17136. }
  17137. free(ctx->kv);
  17138. }
  17139. if (ctx->infos) {
  17140. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17141. struct gguf_tensor_info * info = &ctx->infos[i];
  17142. if (info->name.data) {
  17143. free(info->name.data);
  17144. }
  17145. }
  17146. free(ctx->infos);
  17147. }
  17148. GGML_ALIGNED_FREE(ctx);
  17149. }
  17150. const char * gguf_type_name(enum gguf_type type) {
  17151. return GGUF_TYPE_NAME[type];
  17152. }
  17153. int gguf_get_version(const struct gguf_context * ctx) {
  17154. return ctx->header.version;
  17155. }
  17156. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17157. return ctx->alignment;
  17158. }
  17159. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17160. return ctx->offset;
  17161. }
  17162. void * gguf_get_data(const struct gguf_context * ctx) {
  17163. return ctx->data;
  17164. }
  17165. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17166. return ctx->header.n_kv;
  17167. }
  17168. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17169. // return -1 if key not found
  17170. int keyfound = -1;
  17171. const int n_kv = gguf_get_n_kv(ctx);
  17172. for (int i = 0; i < n_kv; ++i) {
  17173. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17174. keyfound = i;
  17175. break;
  17176. }
  17177. }
  17178. return keyfound;
  17179. }
  17180. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17181. return ctx->kv[key_id].key.data;
  17182. }
  17183. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17184. return ctx->kv[key_id].type;
  17185. }
  17186. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17187. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17188. return ctx->kv[key_id].value.arr.type;
  17189. }
  17190. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17191. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17192. return ctx->kv[key_id].value.arr.data;
  17193. }
  17194. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17195. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17196. struct gguf_kv * kv = &ctx->kv[key_id];
  17197. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17198. return str->data;
  17199. }
  17200. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17201. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17202. return ctx->kv[key_id].value.arr.n;
  17203. }
  17204. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17205. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17206. return ctx->kv[key_id].value.uint8;
  17207. }
  17208. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17209. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17210. return ctx->kv[key_id].value.int8;
  17211. }
  17212. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17213. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17214. return ctx->kv[key_id].value.uint16;
  17215. }
  17216. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17217. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17218. return ctx->kv[key_id].value.int16;
  17219. }
  17220. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17221. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17222. return ctx->kv[key_id].value.uint32;
  17223. }
  17224. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17225. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17226. return ctx->kv[key_id].value.int32;
  17227. }
  17228. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17229. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17230. return ctx->kv[key_id].value.float32;
  17231. }
  17232. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17233. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17234. return ctx->kv[key_id].value.uint64;
  17235. }
  17236. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17237. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17238. return ctx->kv[key_id].value.int64;
  17239. }
  17240. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17241. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17242. return ctx->kv[key_id].value.float64;
  17243. }
  17244. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17245. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17246. return ctx->kv[key_id].value.bool_;
  17247. }
  17248. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17249. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17250. return ctx->kv[key_id].value.str.data;
  17251. }
  17252. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17253. return ctx->header.n_tensors;
  17254. }
  17255. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17256. // return -1 if tensor not found
  17257. int tensorfound = -1;
  17258. const int n_tensors = gguf_get_n_tensors(ctx);
  17259. for (int i = 0; i < n_tensors; ++i) {
  17260. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17261. tensorfound = i;
  17262. break;
  17263. }
  17264. }
  17265. return tensorfound;
  17266. }
  17267. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17268. return ctx->infos[i].offset;
  17269. }
  17270. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17271. return ctx->infos[i].name.data;
  17272. }
  17273. // returns the index
  17274. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17275. const int idx = gguf_find_key(ctx, key);
  17276. if (idx >= 0) {
  17277. return idx;
  17278. }
  17279. const int n_kv = gguf_get_n_kv(ctx);
  17280. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17281. ctx->kv[n_kv].key.n = strlen(key);
  17282. ctx->kv[n_kv].key.data = strdup(key);
  17283. ctx->header.n_kv++;
  17284. return n_kv;
  17285. }
  17286. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17287. const int idx = gguf_get_or_add_key(ctx, key);
  17288. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17289. ctx->kv[idx].value.uint8 = val;
  17290. }
  17291. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17292. const int idx = gguf_get_or_add_key(ctx, key);
  17293. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17294. ctx->kv[idx].value.int8 = val;
  17295. }
  17296. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17297. const int idx = gguf_get_or_add_key(ctx, key);
  17298. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17299. ctx->kv[idx].value.uint16 = val;
  17300. }
  17301. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17302. const int idx = gguf_get_or_add_key(ctx, key);
  17303. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17304. ctx->kv[idx].value.int16 = val;
  17305. }
  17306. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17307. const int idx = gguf_get_or_add_key(ctx, key);
  17308. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17309. ctx->kv[idx].value.uint32 = val;
  17310. }
  17311. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17312. const int idx = gguf_get_or_add_key(ctx, key);
  17313. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17314. ctx->kv[idx].value.int32 = val;
  17315. }
  17316. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17317. const int idx = gguf_get_or_add_key(ctx, key);
  17318. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17319. ctx->kv[idx].value.float32 = val;
  17320. }
  17321. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17322. const int idx = gguf_get_or_add_key(ctx, key);
  17323. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17324. ctx->kv[idx].value.uint64 = val;
  17325. }
  17326. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17327. const int idx = gguf_get_or_add_key(ctx, key);
  17328. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17329. ctx->kv[idx].value.int64 = val;
  17330. }
  17331. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17332. const int idx = gguf_get_or_add_key(ctx, key);
  17333. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17334. ctx->kv[idx].value.float64 = val;
  17335. }
  17336. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17337. const int idx = gguf_get_or_add_key(ctx, key);
  17338. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17339. ctx->kv[idx].value.bool_ = val;
  17340. }
  17341. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17342. const int idx = gguf_get_or_add_key(ctx, key);
  17343. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17344. ctx->kv[idx].value.str.n = strlen(val);
  17345. ctx->kv[idx].value.str.data = strdup(val);
  17346. }
  17347. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17348. const int idx = gguf_get_or_add_key(ctx, key);
  17349. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17350. ctx->kv[idx].value.arr.type = type;
  17351. ctx->kv[idx].value.arr.n = n;
  17352. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  17353. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  17354. }
  17355. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17356. const int idx = gguf_get_or_add_key(ctx, key);
  17357. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17358. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17359. ctx->kv[idx].value.arr.n = n;
  17360. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  17361. for (int i = 0; i < n; i++) {
  17362. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17363. str->n = strlen(data[i]);
  17364. str->data = strdup(data[i]);
  17365. }
  17366. }
  17367. // set or add KV pairs from another context
  17368. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17369. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17370. switch (src->kv[i].type) {
  17371. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17372. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17373. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17374. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17375. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17376. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17377. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17378. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17379. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17380. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17381. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17382. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17383. case GGUF_TYPE_ARRAY:
  17384. {
  17385. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17386. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  17387. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17388. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17389. }
  17390. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17391. free(data);
  17392. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17393. GGML_ASSERT(false && "nested arrays not supported");
  17394. } else {
  17395. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17396. }
  17397. } break;
  17398. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  17399. }
  17400. }
  17401. }
  17402. void gguf_add_tensor(
  17403. struct gguf_context * ctx,
  17404. const struct ggml_tensor * tensor) {
  17405. const int idx = ctx->header.n_tensors;
  17406. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17407. ctx->infos[idx].name.n = strlen(tensor->name);
  17408. ctx->infos[idx].name.data = strdup(tensor->name);
  17409. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17410. ctx->infos[idx].ne[i] = 1;
  17411. }
  17412. ctx->infos[idx].n_dims = tensor->n_dims;
  17413. for (int i = 0; i < tensor->n_dims; i++) {
  17414. ctx->infos[idx].ne[i] = tensor->ne[i];
  17415. }
  17416. ctx->infos[idx].type = tensor->type;
  17417. ctx->infos[idx].offset = 0;
  17418. ctx->infos[idx].data = tensor->data;
  17419. ctx->infos[idx].size = ggml_nbytes(tensor);
  17420. if (ctx->header.n_tensors > 0) {
  17421. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17422. }
  17423. ctx->header.n_tensors++;
  17424. }
  17425. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17426. const int idx = gguf_find_tensor(ctx, name);
  17427. if (idx < 0) {
  17428. GGML_ASSERT(false && "tensor not found");
  17429. }
  17430. ctx->infos[idx].type = type;
  17431. }
  17432. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17433. const int idx = gguf_find_tensor(ctx, name);
  17434. if (idx < 0) {
  17435. GGML_ASSERT(false && "tensor not found");
  17436. }
  17437. ctx->infos[idx].data = data;
  17438. ctx->infos[idx].size = size;
  17439. // update offsets
  17440. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17441. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17442. }
  17443. }
  17444. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17445. // fwrite(&val->n, sizeof(val->n), 1, file);
  17446. // fwrite(val->data, sizeof(char), val->n, file);
  17447. //}
  17448. //
  17449. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17450. // fwrite(val, sizeof(char), size, file);
  17451. //}
  17452. struct gguf_buf {
  17453. void * data;
  17454. size_t size;
  17455. size_t offset;
  17456. };
  17457. static struct gguf_buf gguf_buf_init(size_t size) {
  17458. struct gguf_buf buf = {
  17459. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  17460. /*buf.size =*/ size,
  17461. /*buf.offset =*/ 0,
  17462. };
  17463. return buf;
  17464. }
  17465. static void gguf_buf_free(struct gguf_buf buf) {
  17466. if (buf.data) {
  17467. free(buf.data);
  17468. }
  17469. }
  17470. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17471. if (buf->offset + size > buf->size) {
  17472. buf->size = 1.5*(buf->offset + size);
  17473. if (buf->data) {
  17474. buf->data = realloc(buf->data, buf->size);
  17475. }
  17476. }
  17477. }
  17478. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17479. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17480. if (buf->data) {
  17481. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17482. }
  17483. buf->offset += sizeof(val->n);
  17484. if (buf->data) {
  17485. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17486. }
  17487. buf->offset += val->n;
  17488. }
  17489. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17490. gguf_buf_grow(buf, el_size);
  17491. if (buf->data) {
  17492. memcpy((char *) buf->data + buf->offset, val, el_size);
  17493. }
  17494. buf->offset += el_size;
  17495. }
  17496. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17497. // write header
  17498. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17499. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17500. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17501. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17502. // write key-value pairs
  17503. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17504. struct gguf_kv * kv = &ctx->kv[i];
  17505. gguf_bwrite_str(buf, &kv->key);
  17506. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17507. switch (kv->type) {
  17508. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17509. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17510. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17511. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17512. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17513. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17514. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17515. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17516. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17517. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17518. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17519. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17520. case GGUF_TYPE_ARRAY:
  17521. {
  17522. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17523. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17524. switch (kv->value.arr.type) {
  17525. case GGUF_TYPE_UINT8:
  17526. case GGUF_TYPE_INT8:
  17527. case GGUF_TYPE_UINT16:
  17528. case GGUF_TYPE_INT16:
  17529. case GGUF_TYPE_UINT32:
  17530. case GGUF_TYPE_INT32:
  17531. case GGUF_TYPE_FLOAT32:
  17532. case GGUF_TYPE_UINT64:
  17533. case GGUF_TYPE_INT64:
  17534. case GGUF_TYPE_FLOAT64:
  17535. case GGUF_TYPE_BOOL:
  17536. {
  17537. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  17538. } break;
  17539. case GGUF_TYPE_STRING:
  17540. {
  17541. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17542. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17543. }
  17544. } break;
  17545. case GGUF_TYPE_ARRAY:
  17546. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  17547. }
  17548. } break;
  17549. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  17550. }
  17551. }
  17552. // write tensor infos
  17553. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17554. struct gguf_tensor_info * info = &ctx->infos[i];
  17555. gguf_bwrite_str(buf, &info->name);
  17556. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17557. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17558. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17559. }
  17560. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17561. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17562. }
  17563. // we require the data section to be aligned, so take into account any padding
  17564. {
  17565. const size_t offset = buf->offset;
  17566. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17567. if (offset_pad != offset) {
  17568. uint8_t pad = 0;
  17569. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17570. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17571. }
  17572. }
  17573. }
  17574. if (only_meta) {
  17575. return;
  17576. }
  17577. size_t offset = 0;
  17578. // write tensor data
  17579. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17580. struct gguf_tensor_info * info = &ctx->infos[i];
  17581. const size_t size = info->size;
  17582. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17583. gguf_bwrite_el(buf, info->data, size);
  17584. if (size_pad != size) {
  17585. uint8_t pad = 0;
  17586. for (size_t j = 0; j < size_pad - size; ++j) {
  17587. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17588. }
  17589. }
  17590. GGML_ASSERT(offset == info->offset);
  17591. offset += size_pad;
  17592. }
  17593. }
  17594. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17595. FILE * file = fopen(fname, "wb");
  17596. if (!file) {
  17597. GGML_ASSERT(false && "failed to open file for writing");
  17598. }
  17599. struct gguf_buf buf = gguf_buf_init(16*1024);
  17600. gguf_write_to_buf(ctx, &buf, only_meta);
  17601. fwrite(buf.data, 1, buf.offset, file);
  17602. gguf_buf_free(buf);
  17603. fclose(file);
  17604. }
  17605. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17606. // no allocs - only compute size
  17607. struct gguf_buf buf = gguf_buf_init(0);
  17608. gguf_write_to_buf(ctx, &buf, true);
  17609. return buf.offset;
  17610. }
  17611. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17612. struct gguf_buf buf = gguf_buf_init(16*1024);
  17613. gguf_write_to_buf(ctx, &buf, true);
  17614. memcpy(data, buf.data, buf.offset);
  17615. gguf_buf_free(buf);
  17616. }
  17617. ////////////////////////////////////////////////////////////////////////////////
  17618. int ggml_cpu_has_avx(void) {
  17619. #if defined(__AVX__)
  17620. return 1;
  17621. #else
  17622. return 0;
  17623. #endif
  17624. }
  17625. int ggml_cpu_has_avx2(void) {
  17626. #if defined(__AVX2__)
  17627. return 1;
  17628. #else
  17629. return 0;
  17630. #endif
  17631. }
  17632. int ggml_cpu_has_avx512(void) {
  17633. #if defined(__AVX512F__)
  17634. return 1;
  17635. #else
  17636. return 0;
  17637. #endif
  17638. }
  17639. int ggml_cpu_has_avx512_vbmi(void) {
  17640. #if defined(__AVX512VBMI__)
  17641. return 1;
  17642. #else
  17643. return 0;
  17644. #endif
  17645. }
  17646. int ggml_cpu_has_avx512_vnni(void) {
  17647. #if defined(__AVX512VNNI__)
  17648. return 1;
  17649. #else
  17650. return 0;
  17651. #endif
  17652. }
  17653. int ggml_cpu_has_fma(void) {
  17654. #if defined(__FMA__)
  17655. return 1;
  17656. #else
  17657. return 0;
  17658. #endif
  17659. }
  17660. int ggml_cpu_has_neon(void) {
  17661. #if defined(__ARM_NEON)
  17662. return 1;
  17663. #else
  17664. return 0;
  17665. #endif
  17666. }
  17667. int ggml_cpu_has_arm_fma(void) {
  17668. #if defined(__ARM_FEATURE_FMA)
  17669. return 1;
  17670. #else
  17671. return 0;
  17672. #endif
  17673. }
  17674. int ggml_cpu_has_metal(void) {
  17675. #if defined(GGML_USE_METAL)
  17676. return 1;
  17677. #else
  17678. return 0;
  17679. #endif
  17680. }
  17681. int ggml_cpu_has_f16c(void) {
  17682. #if defined(__F16C__)
  17683. return 1;
  17684. #else
  17685. return 0;
  17686. #endif
  17687. }
  17688. int ggml_cpu_has_fp16_va(void) {
  17689. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17690. return 1;
  17691. #else
  17692. return 0;
  17693. #endif
  17694. }
  17695. int ggml_cpu_has_wasm_simd(void) {
  17696. #if defined(__wasm_simd128__)
  17697. return 1;
  17698. #else
  17699. return 0;
  17700. #endif
  17701. }
  17702. int ggml_cpu_has_blas(void) {
  17703. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  17704. return 1;
  17705. #else
  17706. return 0;
  17707. #endif
  17708. }
  17709. int ggml_cpu_has_cublas(void) {
  17710. #if defined(GGML_USE_CUBLAS)
  17711. return 1;
  17712. #else
  17713. return 0;
  17714. #endif
  17715. }
  17716. int ggml_cpu_has_clblast(void) {
  17717. #if defined(GGML_USE_CLBLAST)
  17718. return 1;
  17719. #else
  17720. return 0;
  17721. #endif
  17722. }
  17723. int ggml_cpu_has_gpublas(void) {
  17724. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  17725. }
  17726. int ggml_cpu_has_sse3(void) {
  17727. #if defined(__SSE3__)
  17728. return 1;
  17729. #else
  17730. return 0;
  17731. #endif
  17732. }
  17733. int ggml_cpu_has_ssse3(void) {
  17734. #if defined(__SSSE3__)
  17735. return 1;
  17736. #else
  17737. return 0;
  17738. #endif
  17739. }
  17740. int ggml_cpu_has_vsx(void) {
  17741. #if defined(__POWER9_VECTOR__)
  17742. return 1;
  17743. #else
  17744. return 0;
  17745. #endif
  17746. }
  17747. ////////////////////////////////////////////////////////////////////////////////