| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992 |
- #include "arg.h"
- #include "common.h"
- #include "console.h"
- #include "log.h"
- #include "sampling.h"
- #include "llama.h"
- #include "chat.h"
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <fstream>
- #include <iostream>
- #include <sstream>
- #include <string>
- #include <vector>
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- #include <signal.h>
- #include <unistd.h>
- #elif defined (_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #include <signal.h>
- #endif
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- static llama_context ** g_ctx;
- static llama_model ** g_model;
- static common_sampler ** g_smpl;
- static common_params * g_params;
- static std::vector<llama_token> * g_input_tokens;
- static std::ostringstream * g_output_ss;
- static std::vector<llama_token> * g_output_tokens;
- static bool is_interacting = false;
- static bool need_insert_eot = false;
- static void print_usage(int argc, char ** argv) {
- (void) argc;
- LOG("\nexample usage:\n");
- LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128 -no-cnv\n", argv[0]);
- LOG("\n chat (conversation): %s -m your_model.gguf -sys \"You are a helpful assistant\"\n", argv[0]);
- LOG("\n");
- }
- static bool file_exists(const std::string & path) {
- std::ifstream f(path.c_str());
- return f.good();
- }
- static bool file_is_empty(const std::string & path) {
- std::ifstream f;
- f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
- f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
- return f.tellg() == 0;
- }
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
- static void sigint_handler(int signo) {
- if (signo == SIGINT) {
- if (!is_interacting && g_params->interactive) {
- is_interacting = true;
- need_insert_eot = true;
- } else {
- console::cleanup();
- LOG("\n");
- common_perf_print(*g_ctx, *g_smpl);
- // make sure all logs are flushed
- LOG("Interrupted by user\n");
- common_log_pause(common_log_main());
- _exit(130);
- }
- }
- }
- #endif
- int main(int argc, char ** argv) {
- common_params params;
- g_params = ¶ms;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
- return 1;
- }
- common_init();
- auto & sparams = params.sampling;
- // save choice to use color for later
- // (note for later: this is a slightly awkward choice)
- console::init(params.simple_io, params.use_color);
- atexit([]() { console::cleanup(); });
- if (params.embedding) {
- LOG_ERR("************\n");
- LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
- LOG_ERR("************\n\n");
- return 0;
- }
- if (params.n_ctx != 0 && params.n_ctx < 8) {
- LOG_WRN("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
- params.n_ctx = 8;
- }
- if (params.rope_freq_base != 0.0) {
- LOG_WRN("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
- }
- if (params.rope_freq_scale != 0.0) {
- LOG_WRN("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
- }
- LOG_INF("%s: llama backend init\n", __func__);
- llama_backend_init();
- llama_numa_init(params.numa);
- llama_model * model = nullptr;
- llama_context * ctx = nullptr;
- common_sampler * smpl = nullptr;
- g_model = &model;
- g_ctx = &ctx;
- g_smpl = &smpl;
- std::vector<common_chat_msg> chat_msgs;
- // load the model and apply lora adapter, if any
- LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
- common_init_result llama_init = common_init_from_params(params);
- model = llama_init.model.get();
- ctx = llama_init.context.get();
- if (model == NULL) {
- LOG_ERR("%s: error: unable to load model\n", __func__);
- return 1;
- }
- auto * mem = llama_get_memory(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- auto chat_templates = common_chat_templates_init(model, params.chat_template);
- LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
- auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- if (!cpu_dev) {
- LOG_ERR("%s: no CPU backend found\n", __func__);
- return 1;
- }
- auto * reg = ggml_backend_dev_backend_reg(cpu_dev);
- auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_new");
- auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_free");
- struct ggml_threadpool_params tpp_batch =
- ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
- struct ggml_threadpool_params tpp =
- ggml_threadpool_params_from_cpu_params(params.cpuparams);
- set_process_priority(params.cpuparams.priority);
- struct ggml_threadpool * threadpool_batch = NULL;
- if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
- threadpool_batch = ggml_threadpool_new_fn(&tpp_batch);
- if (!threadpool_batch) {
- LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
- return 1;
- }
- // Start the non-batch threadpool in the paused state
- tpp.paused = true;
- }
- struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
- if (!threadpool) {
- LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
- return 1;
- }
- llama_attach_threadpool(ctx, threadpool, threadpool_batch);
- const int n_ctx_train = llama_model_n_ctx_train(model);
- const int n_ctx = llama_n_ctx(ctx);
- if (n_ctx > n_ctx_train) {
- LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
- }
- // auto enable conversation mode if chat template is available
- const bool has_chat_template = common_chat_templates_was_explicit(chat_templates.get());
- if (params.conversation_mode == COMMON_CONVERSATION_MODE_AUTO) {
- if (has_chat_template) {
- LOG_INF("%s: chat template is available, enabling conversation mode (disable it with -no-cnv)\n", __func__);
- params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
- } else {
- params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
- }
- }
- // in case user force-activate conversation mode (via -cnv) without proper chat template, we show a warning
- if (params.conversation_mode && !has_chat_template) {
- LOG_WRN("%s: chat template is not available or is not supported. This may cause the model to output suboptimal responses\n", __func__);
- }
- // print chat template example in conversation mode
- if (params.conversation_mode) {
- if (params.enable_chat_template) {
- if (!params.prompt.empty() && params.system_prompt.empty()) {
- LOG_WRN("*** User-specified prompt will pre-start conversation, did you mean to set --system-prompt (-sys) instead?\n");
- }
- LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs).c_str());
- } else {
- LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
- }
- }
- // print system information
- {
- LOG_INF("\n");
- LOG_INF("%s\n", common_params_get_system_info(params).c_str());
- LOG_INF("\n");
- }
- std::string path_session = params.path_prompt_cache;
- std::vector<llama_token> session_tokens;
- if (!path_session.empty()) {
- LOG_INF("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
- if (!file_exists(path_session)) {
- LOG_INF("%s: session file does not exist, will create.\n", __func__);
- } else if (file_is_empty(path_session)) {
- LOG_INF("%s: The session file is empty. A new session will be initialized.\n", __func__);
- } else {
- // The file exists and is not empty
- session_tokens.resize(n_ctx);
- size_t n_token_count_out = 0;
- if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
- LOG_ERR("%s: failed to load session file '%s'\n", __func__, path_session.c_str());
- return 1;
- }
- session_tokens.resize(n_token_count_out);
- LOG_INF("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
- }
- }
- const bool add_bos = llama_vocab_get_add_bos(vocab) && !params.use_jinja;
- if (!llama_model_has_encoder(model)) {
- GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
- }
- LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos);
- std::vector<llama_token> embd_inp;
- bool waiting_for_first_input = false;
- auto chat_add_and_format = [&chat_msgs, &chat_templates](const std::string & role, const std::string & content) {
- common_chat_msg new_msg;
- new_msg.role = role;
- new_msg.content = content;
- auto formatted = common_chat_format_single(chat_templates.get(), chat_msgs, new_msg, role == "user", g_params->use_jinja);
- chat_msgs.push_back(new_msg);
- LOG_DBG("formatted: '%s'\n", formatted.c_str());
- return formatted;
- };
- std::string prompt;
- {
- if (params.conversation_mode && params.enable_chat_template) {
- if (!params.system_prompt.empty()) {
- // format the system prompt (will use template default if empty)
- chat_add_and_format("system", params.system_prompt);
- }
- if (!params.prompt.empty()) {
- // format and append the user prompt
- chat_add_and_format("user", params.prompt);
- } else {
- waiting_for_first_input = true;
- }
- if (!params.system_prompt.empty() || !params.prompt.empty()) {
- common_chat_templates_inputs inputs;
- inputs.use_jinja = g_params->use_jinja;
- inputs.messages = chat_msgs;
- inputs.add_generation_prompt = !params.prompt.empty();
- prompt = common_chat_templates_apply(chat_templates.get(), inputs).prompt;
- }
- } else {
- // otherwise use the prompt as is
- prompt = params.prompt;
- }
- if (params.interactive_first || !prompt.empty() || session_tokens.empty()) {
- LOG_DBG("tokenize the prompt\n");
- embd_inp = common_tokenize(ctx, prompt, true, true);
- } else {
- LOG_DBG("use session tokens\n");
- embd_inp = session_tokens;
- }
- LOG_DBG("prompt: \"%s\"\n", prompt.c_str());
- LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
- }
- // Should not run without any tokens
- if (!waiting_for_first_input && embd_inp.empty()) {
- if (add_bos) {
- embd_inp.push_back(llama_vocab_bos(vocab));
- LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
- } else {
- LOG_ERR("input is empty\n");
- return -1;
- }
- }
- // Tokenize negative prompt
- if ((int) embd_inp.size() > n_ctx - 4) {
- LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
- return 1;
- }
- // debug message about similarity of saved session, if applicable
- size_t n_matching_session_tokens = 0;
- if (!session_tokens.empty()) {
- for (llama_token id : session_tokens) {
- if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
- break;
- }
- n_matching_session_tokens++;
- }
- if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
- LOG_INF("%s: using full prompt from session file\n", __func__);
- } else if (n_matching_session_tokens >= embd_inp.size()) {
- LOG_INF("%s: session file has exact match for prompt!\n", __func__);
- } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
- LOG_WRN("%s: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
- __func__, n_matching_session_tokens, embd_inp.size());
- } else {
- LOG_INF("%s: session file matches %zu / %zu tokens of prompt\n",
- __func__, n_matching_session_tokens, embd_inp.size());
- }
- // remove any "future" tokens that we might have inherited from the previous session
- llama_memory_seq_rm(mem, -1, n_matching_session_tokens, -1);
- }
- LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
- embd_inp.size(), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
- // if we will use the cache for the full prompt without reaching the end of the cache, force
- // reevaluation of the last token to recalculate the cached logits
- if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
- LOG_DBG("recalculate the cached logits (do): session_tokens.resize( %zu )\n", embd_inp.size() - 1);
- session_tokens.resize(embd_inp.size() - 1);
- }
- // number of tokens to keep when resetting context
- if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
- params.n_keep = (int)embd_inp.size();
- } else {
- params.n_keep += add_bos; // always keep the BOS token
- }
- if (params.conversation_mode) {
- if (params.single_turn && !params.prompt.empty()) {
- params.interactive = false;
- params.interactive_first = false;
- } else {
- params.interactive_first = true;
- }
- }
- // enable interactive mode if interactive start is specified
- if (params.interactive_first) {
- params.interactive = true;
- }
- if (params.verbose_prompt) {
- LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
- LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
- for (int i = 0; i < (int) embd_inp.size(); i++) {
- LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
- }
- if (params.n_keep > add_bos) {
- LOG_INF("%s: static prompt based on n_keep: '", __func__);
- for (int i = 0; i < params.n_keep; i++) {
- LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
- }
- LOG_CNT("'\n");
- }
- LOG_INF("\n");
- }
- // ctrl+C handling
- {
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- struct sigaction sigint_action;
- sigint_action.sa_handler = sigint_handler;
- sigemptyset (&sigint_action.sa_mask);
- sigint_action.sa_flags = 0;
- sigaction(SIGINT, &sigint_action, NULL);
- #elif defined (_WIN32)
- auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
- return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
- };
- SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
- #endif
- }
- if (params.interactive) {
- LOG_INF("%s: interactive mode on.\n", __func__);
- if (!params.antiprompt.empty()) {
- for (const auto & antiprompt : params.antiprompt) {
- LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str());
- if (params.verbose_prompt) {
- auto tmp = common_tokenize(ctx, antiprompt, false, true);
- for (int i = 0; i < (int) tmp.size(); i++) {
- LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
- }
- }
- }
- }
- if (params.input_prefix_bos) {
- LOG_INF("Input prefix with BOS\n");
- }
- if (!params.input_prefix.empty()) {
- LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
- if (params.verbose_prompt) {
- auto tmp = common_tokenize(ctx, params.input_prefix, true, true);
- for (int i = 0; i < (int) tmp.size(); i++) {
- LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
- }
- }
- }
- if (!params.input_suffix.empty()) {
- LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
- if (params.verbose_prompt) {
- auto tmp = common_tokenize(ctx, params.input_suffix, false, true);
- for (int i = 0; i < (int) tmp.size(); i++) {
- LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
- }
- }
- }
- }
- smpl = common_sampler_init(model, sparams);
- if (!smpl) {
- LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
- return 1;
- }
- LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
- LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
- LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
- LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
- // group-attention state
- // number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
- int ga_i = 0;
- const int ga_n = params.grp_attn_n;
- const int ga_w = params.grp_attn_w;
- if (ga_n != 1) {
- GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); // NOLINT
- GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT
- //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT
- //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
- LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
- }
- LOG_INF("\n");
- if (params.interactive) {
- const char * control_message;
- if (params.multiline_input) {
- control_message = " - To return control to the AI, end your input with '\\'.\n"
- " - To return control without starting a new line, end your input with '/'.\n";
- } else {
- control_message = " - Press Return to return control to the AI.\n"
- " - To return control without starting a new line, end your input with '/'.\n"
- " - If you want to submit another line, end your input with '\\'.\n";
- }
- LOG_INF("== Running in interactive mode. ==\n");
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
- LOG_INF( " - Press Ctrl+C to interject at any time.\n");
- #endif
- LOG_INF( "%s", control_message);
- if (params.conversation_mode && params.enable_chat_template && params.system_prompt.empty()) {
- LOG_INF( " - Not using system message. To change it, set a different value via -sys PROMPT\n");
- }
- LOG_INF("\n");
- is_interacting = params.interactive_first;
- }
- bool is_antiprompt = false;
- bool input_echo = true;
- bool display = true;
- bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
- int n_past = 0;
- int n_remain = params.n_predict;
- int n_consumed = 0;
- int n_session_consumed = 0;
- std::vector<int> input_tokens; g_input_tokens = &input_tokens;
- std::vector<int> output_tokens; g_output_tokens = &output_tokens;
- std::ostringstream output_ss; g_output_ss = &output_ss;
- std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode
- // the first thing we will do is to output the prompt, so set color accordingly
- console::set_display(console::prompt);
- display = params.display_prompt;
- std::vector<llama_token> embd;
- // single-token antiprompts
- std::vector<llama_token> antiprompt_token;
- for (const std::string & antiprompt : params.antiprompt) {
- auto ids = ::common_tokenize(ctx, antiprompt, false, true);
- if (ids.size() == 1) {
- antiprompt_token.push_back(ids[0]);
- }
- }
- if (llama_model_has_encoder(model)) {
- int enc_input_size = embd_inp.size();
- llama_token * enc_input_buf = embd_inp.data();
- if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size))) {
- LOG_ERR("%s : failed to eval\n", __func__);
- return 1;
- }
- llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
- if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
- decoder_start_token_id = llama_vocab_bos(vocab);
- }
- embd_inp.clear();
- embd_inp.push_back(decoder_start_token_id);
- }
- while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
- // predict
- if (!embd.empty()) {
- // Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via
- // --prompt or --file which uses the same value.
- int max_embd_size = n_ctx - 4;
- // Ensure the input doesn't exceed the context size by truncating embd if necessary.
- if ((int) embd.size() > max_embd_size) {
- const int skipped_tokens = (int) embd.size() - max_embd_size;
- embd.resize(max_embd_size);
- console::set_display(console::error);
- LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
- console::set_display(console::reset);
- }
- if (ga_n == 1) {
- // infinite text generation via context shifting
- // if we run out of context:
- // - take the n_keep first tokens from the original prompt (via n_past)
- // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
- if (n_past + (int) embd.size() >= n_ctx) {
- if (!params.ctx_shift){
- LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__);
- break;
- }
- if (params.n_predict == -2) {
- LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
- break;
- }
- const int n_left = n_past - params.n_keep;
- const int n_discard = n_left/2;
- LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
- n_past, n_left, n_ctx, params.n_keep, n_discard);
- llama_memory_seq_rm (mem, 0, params.n_keep , params.n_keep + n_discard);
- llama_memory_seq_add(mem, 0, params.n_keep + n_discard, n_past, -n_discard);
- n_past -= n_discard;
- LOG_DBG("after swap: n_past = %d\n", n_past);
- LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
- LOG_DBG("clear session path\n");
- path_session.clear();
- }
- } else {
- // context extension via Self-Extend
- while (n_past >= ga_i + ga_w) {
- const int ib = (ga_n*ga_i)/ga_w;
- const int bd = (ga_w/ga_n)*(ga_n - 1);
- const int dd = (ga_w/ga_n) - ib*bd - ga_w;
- LOG_DBG("\n");
- LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
- LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
- LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
- llama_memory_seq_add(mem, 0, ga_i, n_past, ib*bd);
- llama_memory_seq_div(mem, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
- llama_memory_seq_add(mem, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
- n_past -= bd;
- ga_i += ga_w/ga_n;
- LOG_DBG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
- }
- }
- // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
- if (n_session_consumed < (int) session_tokens.size()) {
- size_t i = 0;
- for ( ; i < embd.size(); i++) {
- if (embd[i] != session_tokens[n_session_consumed]) {
- session_tokens.resize(n_session_consumed);
- break;
- }
- n_past++;
- n_session_consumed++;
- if (n_session_consumed >= (int) session_tokens.size()) {
- ++i;
- break;
- }
- }
- if (i > 0) {
- embd.erase(embd.begin(), embd.begin() + i);
- }
- }
- for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
- int n_eval = (int) embd.size() - i;
- if (n_eval > params.n_batch) {
- n_eval = params.n_batch;
- }
- LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
- if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
- LOG_ERR("%s : failed to eval\n", __func__);
- return 1;
- }
- n_past += n_eval;
- LOG_DBG("n_past = %d\n", n_past);
- // Display total tokens alongside total time
- if (params.n_print > 0 && n_past % params.n_print == 0) {
- LOG_DBG("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
- }
- }
- if (!embd.empty() && !path_session.empty()) {
- session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
- n_session_consumed = session_tokens.size();
- }
- }
- embd.clear();
- if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
- // optionally save the session on first sample (for faster prompt loading next time)
- if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
- need_to_save_session = false;
- llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
- LOG_DBG("saved session to %s\n", path_session.c_str());
- }
- const llama_token id = common_sampler_sample(smpl, ctx, -1);
- common_sampler_accept(smpl, id, /* accept_grammar= */ true);
- // LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
- embd.push_back(id);
- // echo this to console
- input_echo = true;
- // decrement remaining sampling budget
- --n_remain;
- LOG_DBG("n_remain: %d\n", n_remain);
- } else {
- // some user input remains from prompt or interaction, forward it to processing
- LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
- while ((int) embd_inp.size() > n_consumed) {
- embd.push_back(embd_inp[n_consumed]);
- // push the prompt in the sampling context in order to apply repetition penalties later
- // for the prompt, we don't apply grammar rules
- common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
- ++n_consumed;
- if ((int) embd.size() >= params.n_batch) {
- break;
- }
- }
- }
- // display text
- if (input_echo && display) {
- for (auto id : embd) {
- const std::string token_str = common_token_to_piece(ctx, id, params.special);
- // Console/Stream Output
- LOG("%s", token_str.c_str());
- // Record Displayed Tokens To Log
- // Note: Generated tokens are created one by one hence this check
- if (embd.size() > 1) {
- // Incoming Requested Tokens
- input_tokens.push_back(id);
- } else {
- // Outgoing Generated Tokens
- output_tokens.push_back(id);
- output_ss << token_str;
- }
- }
- }
- // reset color to default if there is no pending user input
- if (input_echo && (int) embd_inp.size() == n_consumed) {
- console::set_display(console::reset);
- display = true;
- }
- // if not currently processing queued inputs;
- if ((int) embd_inp.size() <= n_consumed) {
- // check for reverse prompt in the last n_prev tokens
- if (!params.antiprompt.empty()) {
- const int n_prev = 32;
- const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev);
- is_antiprompt = false;
- // Check if each of the reverse prompts appears at the end of the output.
- // If we're not running interactively, the reverse prompt might be tokenized with some following characters
- // so we'll compensate for that by widening the search window a bit.
- for (std::string & antiprompt : params.antiprompt) {
- size_t extra_padding = params.interactive ? 0 : 2;
- size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
- ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
- : 0;
- if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
- if (params.interactive) {
- is_interacting = true;
- }
- is_antiprompt = true;
- break;
- }
- }
- // check for reverse prompt using special tokens
- // avoid calling common_sampler_last() if last_output is empty
- if (!last_output.empty()) {
- llama_token last_token = common_sampler_last(smpl);
- for (auto token : antiprompt_token) {
- if (token == last_token) {
- if (params.interactive) {
- is_interacting = true;
- }
- is_antiprompt = true;
- break;
- }
- }
- }
- if (is_antiprompt) {
- LOG_DBG("found antiprompt: %s\n", last_output.c_str());
- }
- }
- // deal with end of generation tokens in interactive mode
- if (!waiting_for_first_input && llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
- LOG_DBG("found an EOG token\n");
- if (params.interactive) {
- if (!params.antiprompt.empty()) {
- // tokenize and inject first reverse prompt
- const auto first_antiprompt = common_tokenize(ctx, params.antiprompt.front(), false, true);
- embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
- is_antiprompt = true;
- }
- if (params.enable_chat_template) {
- chat_add_and_format("assistant", assistant_ss.str());
- }
- is_interacting = true;
- LOG("\n");
- }
- }
- // if current token is not EOG, we add it to current assistant message
- if (params.conversation_mode && !waiting_for_first_input) {
- const auto id = common_sampler_last(smpl);
- assistant_ss << common_token_to_piece(ctx, id, false);
- if (!prompt.empty()) {
- prompt.clear();
- is_interacting = false;
- }
- }
- if ((n_past > 0 || waiting_for_first_input) && is_interacting) {
- LOG_DBG("waiting for user input\n");
- if (params.conversation_mode) {
- LOG("\n> ");
- }
- if (params.input_prefix_bos) {
- LOG_DBG("adding input prefix BOS token\n");
- embd_inp.push_back(llama_vocab_bos(vocab));
- }
- std::string buffer;
- if (!params.input_prefix.empty() && !params.conversation_mode) {
- LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
- LOG("%s", params.input_prefix.c_str());
- }
- // color user input only
- console::set_display(console::user_input);
- display = params.display_prompt;
- std::string line;
- bool another_line = true;
- do {
- another_line = console::readline(line, params.multiline_input);
- buffer += line;
- } while (another_line);
- // done taking input, reset color
- console::set_display(console::reset);
- display = true;
- if (buffer.empty()) { // Ctrl+D on empty line exits
- LOG("EOF by user\n");
- break;
- }
- if (buffer.back() == '\n') {
- // Implement #587:
- // If the user wants the text to end in a newline,
- // this should be accomplished by explicitly adding a newline by using \ followed by return,
- // then returning control by pressing return again.
- buffer.pop_back();
- }
- if (buffer.empty()) { // Enter key on empty line lets the user pass control back
- LOG_DBG("empty line, passing control back\n");
- } else { // Add tokens to embd only if the input buffer is non-empty
- // append input suffix if any
- if (!params.input_suffix.empty() && !params.conversation_mode) {
- LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
- LOG("%s", params.input_suffix.c_str());
- }
- LOG_DBG("buffer: '%s'\n", buffer.c_str());
- const size_t original_size = embd_inp.size();
- if (params.escape) {
- string_process_escapes(buffer);
- }
- bool format_chat = params.conversation_mode && params.enable_chat_template;
- std::string user_inp = format_chat
- ? chat_add_and_format("user", std::move(buffer))
- : std::move(buffer);
- // TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
- const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);
- const auto line_inp = common_tokenize(ctx, user_inp, false, format_chat);
- const auto line_sfx = common_tokenize(ctx, params.input_suffix, false, true);
- LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
- // if user stop generation mid-way, we must add EOT to finish model's last response
- if (need_insert_eot && format_chat) {
- llama_token eot = llama_vocab_eot(vocab);
- embd_inp.push_back(eot == LLAMA_TOKEN_NULL ? llama_vocab_eos(vocab) : eot);
- need_insert_eot = false;
- }
- embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
- embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
- embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
- if (params.verbose_prompt) {
- LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size() - original_size);
- }
- for (size_t i = original_size; i < embd_inp.size(); ++i) {
- const llama_token token = embd_inp[i];
- const std::string token_str = common_token_to_piece(ctx, token);
- output_tokens.push_back(token);
- output_ss << token_str;
- if (params.verbose_prompt) {
- LOG_INF("%6d -> '%s'\n", token, token_str.c_str());
- }
- }
- // reset assistant message
- assistant_ss.str("");
- n_remain -= line_inp.size();
- LOG_DBG("n_remain: %d\n", n_remain);
- }
- input_echo = false; // do not echo this again
- }
- if (n_past > 0 || waiting_for_first_input) {
- if (is_interacting) {
- common_sampler_reset(smpl);
- }
- is_interacting = false;
- if (waiting_for_first_input && params.single_turn) {
- params.interactive = false;
- params.interactive_first = false;
- }
- waiting_for_first_input = false;
- }
- }
- // end of generation
- if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !(params.interactive)) {
- LOG(" [end of text]\n");
- break;
- }
- // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
- // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
- if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
- n_remain = params.n_predict;
- is_interacting = true;
- }
- }
- if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
- LOG("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
- llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
- }
- LOG("\n\n");
- common_perf_print(ctx, smpl);
- common_sampler_free(smpl);
- llama_backend_free();
- ggml_threadpool_free_fn(threadpool);
- ggml_threadpool_free_fn(threadpool_batch);
- return 0;
- }
|