clip-impl.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. #include "ggml.h"
  2. #include "gguf.h"
  3. #include "clip.h"
  4. #include <climits>
  5. #include <cstdarg>
  6. #include <cinttypes>
  7. #include <string>
  8. #include <map>
  9. #include <sstream>
  10. #include <vector>
  11. #include <memory>
  12. // Internal header for clip.cpp
  13. #define KEY_FTYPE "general.file_type"
  14. #define KEY_NAME "general.name"
  15. #define KEY_DESCRIPTION "general.description"
  16. #define KEY_PROJ_TYPE "clip.projector_type"
  17. #define KEY_HAS_AUDIO_ENC "clip.has_audio_encoder"
  18. #define KEY_HAS_VISION_ENC "clip.has_vision_encoder"
  19. #define KEY_USE_GELU "clip.use_gelu"
  20. #define KEY_USE_SILU "clip.use_silu"
  21. #define KEY_N_EMBD "clip.%s.embedding_length"
  22. #define KEY_N_FF "clip.%s.feed_forward_length"
  23. #define KEY_N_BLOCK "clip.%s.block_count"
  24. #define KEY_PROJ_DIM "clip.%s.projection_dim"
  25. #define KEY_N_HEAD "clip.%s.attention.head_count"
  26. #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
  27. // vision-specific
  28. #define KEY_IMAGE_SIZE "clip.vision.image_size"
  29. #define KEY_PATCH_SIZE "clip.vision.patch_size"
  30. #define KEY_IMAGE_MEAN "clip.vision.image_mean"
  31. #define KEY_IMAGE_STD "clip.vision.image_std"
  32. #define KEY_FEATURE_LAYER "clip.vision.feature_layer"
  33. #define KEY_PROJ_SCALE_FACTOR "clip.vision.projector.scale_factor"
  34. #define KEY_SPATIAL_MERGE_SIZE "clip.vision.spatial_merge_size"
  35. #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
  36. #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
  37. #define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
  38. #define KEY_WIN_ATTN_PATTERN "clip.vision.n_wa_pattern"
  39. #define KEY_ATTN_WINDOW_SIZE "clip.vision.window_size"
  40. #define KEY_MINICPMV_VERSION "clip.minicpmv_version"
  41. #define KEY_MINICPMV_QUERY_NUM "clip.minicpmv_query_num"
  42. // audio-specific
  43. #define KEY_A_NUM_MEL_BINS "clip.audio.num_mel_bins"
  44. #define KEY_A_PROJ_STACK_FACTOR "clip.audio.projector.stack_factor"
  45. //
  46. // tensor name constants
  47. //
  48. #define TN_POS_EMBD "%s.position_embd.weight"
  49. #define TN_CLASS_EMBD "v.class_embd"
  50. #define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
  51. #define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
  52. #define TN_PATCH_BIAS "v.patch_embd.bias"
  53. #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
  54. #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
  55. #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
  56. #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
  57. #define TN_ATTN_K_NORM "%s.blk.%d.attn_k_norm.%s"
  58. #define TN_ATTN_Q_NORM "%s.blk.%d.attn_q_norm.%s"
  59. #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
  60. #define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
  61. #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
  62. #define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
  63. #define TN_LN_1 "%s.blk.%d.ln1.%s" // layer norm
  64. #define TN_LN_2 "%s.blk.%d.ln2.%s" // layer norm
  65. #define TN_LS_1 "%s.blk.%d.ls1.%s" // layer scale
  66. #define TN_LS_2 "%s.blk.%d.ls2.%s" // layer scale
  67. #define TN_LN_PRE "%s.pre_ln.%s"
  68. #define TN_LN_POST "%s.post_ln.%s"
  69. #define TN_LLAVA_PROJ "mm.%d.%s"
  70. #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
  71. #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
  72. #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
  73. #define TN_IMAGE_NEWLINE "model.image_newline"
  74. #define TN_MM_INP_NORM "mm.input_norm.weight"
  75. #define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
  76. #define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
  77. #define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3
  78. #define TN_MM_PATCH_MERGER "mm.patch_merger.weight" // mistral small 3.1
  79. #define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral
  80. #define TN_TOK_GLM_BOI "adapter.boi" // glm-edge (these embeddings are not in text model)
  81. #define TN_TOK_GLM_EOI "adapter.eoi" // glm-edge (these embeddings are not in text model)
  82. // mimicpmv
  83. #define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
  84. #define TN_MINICPMV_QUERY "resampler.query"
  85. #define TN_MINICPMV_PROJ "resampler.proj.weight"
  86. #define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
  87. #define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
  88. #define TN_MINICPMV_LN "resampler.ln_%s.%s"
  89. #define TN_GLM_ADAPER_CONV "adapter.conv.%s"
  90. #define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
  91. #define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
  92. #define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
  93. #define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
  94. #define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
  95. // ultravox
  96. #define TN_CONV1D "a.conv1d.%d.%s"
  97. #define TN_MM_AUDIO_MLP "mm.a.mlp.%d.%s"
  98. #define TN_MM_AUDIO_FC "mm.a.fc.%s" // fully connected layer
  99. #define TN_MM_NORM_PRE "mm.a.norm_pre.%s"
  100. #define TN_MM_NORM_MID "mm.a.norm_mid.%s"
  101. // align x to upper multiple of n
  102. #define CLIP_ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))
  103. enum projector_type {
  104. PROJECTOR_TYPE_MLP,
  105. PROJECTOR_TYPE_MLP_NORM,
  106. PROJECTOR_TYPE_LDP,
  107. PROJECTOR_TYPE_LDPV2,
  108. PROJECTOR_TYPE_MINICPMV,
  109. PROJECTOR_TYPE_GLM_EDGE,
  110. PROJECTOR_TYPE_QWEN2VL,
  111. PROJECTOR_TYPE_GEMMA3,
  112. PROJECTOR_TYPE_IDEFICS3,
  113. PROJECTOR_TYPE_PIXTRAL,
  114. PROJECTOR_TYPE_QWEN25VL,
  115. PROJECTOR_TYPE_ULTRAVOX,
  116. PROJECTOR_TYPE_INTERNVL,
  117. PROJECTOR_TYPE_LLAMA4,
  118. PROJECTOR_TYPE_QWEN2A,
  119. PROJECTOR_TYPE_QWEN25O, // will be replaced by QWEN2A or QWEN25VL depending on clip_ctx
  120. PROJECTOR_TYPE_VOXTRAL,
  121. PROJECTOR_TYPE_UNKNOWN,
  122. };
  123. static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
  124. { PROJECTOR_TYPE_MLP, "mlp" },
  125. { PROJECTOR_TYPE_LDP, "ldp" },
  126. { PROJECTOR_TYPE_LDPV2, "ldpv2"},
  127. { PROJECTOR_TYPE_MINICPMV, "resampler"},
  128. { PROJECTOR_TYPE_GLM_EDGE, "adapter"},
  129. { PROJECTOR_TYPE_QWEN2VL, "qwen2vl_merger"},
  130. { PROJECTOR_TYPE_QWEN25VL, "qwen2.5vl_merger"},
  131. { PROJECTOR_TYPE_GEMMA3, "gemma3"},
  132. { PROJECTOR_TYPE_IDEFICS3, "idefics3"},
  133. { PROJECTOR_TYPE_PIXTRAL, "pixtral"},
  134. { PROJECTOR_TYPE_ULTRAVOX, "ultravox"},
  135. { PROJECTOR_TYPE_INTERNVL, "internvl"},
  136. { PROJECTOR_TYPE_LLAMA4, "llama4"},
  137. { PROJECTOR_TYPE_QWEN2A, "qwen2a"},
  138. { PROJECTOR_TYPE_QWEN25O, "qwen2.5o"},
  139. { PROJECTOR_TYPE_VOXTRAL, "voxtral"},
  140. };
  141. static projector_type clip_projector_type_from_string(const std::string & str) {
  142. for (const auto & pair : PROJECTOR_TYPE_NAMES) {
  143. if (pair.second == str) {
  144. return pair.first;
  145. }
  146. }
  147. return PROJECTOR_TYPE_UNKNOWN;
  148. }
  149. // RGB uint8 image
  150. struct clip_image_u8 {
  151. int nx;
  152. int ny;
  153. std::vector<uint8_t> buf;
  154. };
  155. // For images, buf.size() == nx*ny*3
  156. // Memory layout: RGBRGBRGB...
  157. // For audio, only one channel is used, buf.size() == nx*ny
  158. // nx will be n_frames and ny will be n_mel
  159. struct clip_image_f32 {
  160. int nx;
  161. int ny;
  162. std::vector<float> buf;
  163. };
  164. //
  165. // logging
  166. //
  167. static void clip_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
  168. (void) level;
  169. (void) user_data;
  170. fputs(text, stderr);
  171. fflush(stderr);
  172. }
  173. struct clip_logger_state {
  174. ggml_log_level verbosity_thold;
  175. ggml_log_callback log_callback;
  176. void * log_callback_user_data;
  177. };
  178. extern struct clip_logger_state g_logger_state;
  179. static void clip_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
  180. if (format == NULL) {
  181. return;
  182. }
  183. va_list args_copy;
  184. va_copy(args_copy, args);
  185. char buffer[128];
  186. int len = vsnprintf(buffer, 128, format, args);
  187. if (len < 128) {
  188. g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
  189. } else {
  190. char * buffer2 = (char *) calloc(len + 1, sizeof(char));
  191. vsnprintf(buffer2, len + 1, format, args_copy);
  192. buffer2[len] = 0;
  193. g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
  194. free(buffer2);
  195. }
  196. va_end(args_copy);
  197. }
  198. static void clip_log_internal(enum ggml_log_level level, const char * format, ...) {
  199. va_list args;
  200. va_start(args, format);
  201. clip_log_internal_v(level, format, args);
  202. va_end(args);
  203. }
  204. #define LOG_TMPL(level, ...) \
  205. do { \
  206. if ((level) >= g_logger_state.verbosity_thold) { \
  207. clip_log_internal((level), __VA_ARGS__); \
  208. } \
  209. } while (0)
  210. #define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
  211. #define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
  212. #define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  213. #define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
  214. #define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, __VA_ARGS__)
  215. //
  216. // cpp wrappers
  217. //
  218. // wrapper for clip_image_size
  219. struct clip_image_size_deleter {
  220. void operator()(clip_image_size * val) { clip_image_size_free(val); }
  221. };
  222. typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
  223. // wrapper for clip_image_u8
  224. struct clip_image_u8_deleter {
  225. void operator()(clip_image_u8 * val) { clip_image_u8_free(val); }
  226. };
  227. typedef std::unique_ptr<clip_image_u8, clip_image_u8_deleter> clip_image_u8_ptr;
  228. // wrapper for clip_image_f32
  229. struct clip_image_f32_deleter {
  230. void operator()(clip_image_f32 * val) { clip_image_f32_free(val); }
  231. };
  232. typedef std::unique_ptr<clip_image_f32, clip_image_f32_deleter> clip_image_f32_ptr;
  233. struct clip_image_u8_batch {
  234. std::vector<clip_image_u8_ptr> entries;
  235. };
  236. struct clip_image_f32_batch {
  237. std::vector<clip_image_f32_ptr> entries;
  238. bool is_audio = false;
  239. // for llava-uhd style models, we need to know the grid size
  240. // note: entries.size() == grid_x * grid_y + 1 (one overview image)
  241. int grid_x = 0;
  242. int grid_y = 0;
  243. clip_image_f32_batch clone() const {
  244. clip_image_f32_batch new_batch{
  245. /* entries */ {},
  246. /* is_audio */ is_audio,
  247. /* grid_x */ grid_x,
  248. /* grid_y */ grid_y,
  249. };
  250. new_batch.entries.reserve(entries.size());
  251. for (const auto & entry : entries) {
  252. new_batch.entries.emplace_back(new clip_image_f32(*entry));
  253. }
  254. return new_batch;
  255. }
  256. };
  257. //
  258. // common utils
  259. //
  260. static std::string string_format(const char * fmt, ...) {
  261. va_list ap;
  262. va_list ap2;
  263. va_start(ap, fmt);
  264. va_copy(ap2, ap);
  265. int size = vsnprintf(NULL, 0, fmt, ap);
  266. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  267. std::vector<char> buf(size + 1);
  268. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  269. GGML_ASSERT(size2 == size);
  270. va_end(ap2);
  271. va_end(ap);
  272. return std::string(buf.data(), buf.size());
  273. }
  274. static void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
  275. if (search.empty()) {
  276. return;
  277. }
  278. std::string builder;
  279. builder.reserve(s.length());
  280. size_t pos = 0;
  281. size_t last_pos = 0;
  282. while ((pos = s.find(search, last_pos)) != std::string::npos) {
  283. builder.append(s, last_pos, pos - last_pos);
  284. builder.append(replace);
  285. last_pos = pos + search.length();
  286. }
  287. builder.append(s, last_pos, std::string::npos);
  288. s = std::move(builder);
  289. }
  290. // split string by a `std::string delim` instead of `char delim`
  291. static std::vector<std::string> string_split_str(std::string s, const std::string & delimiter) {
  292. std::vector<std::string> tokens;
  293. size_t pos = 0;
  294. std::string token;
  295. while ((pos = s.find(delimiter)) != std::string::npos) {
  296. token = s.substr(0, pos);
  297. tokens.push_back(token);
  298. s.erase(0, pos + delimiter.length());
  299. }
  300. tokens.push_back(s);
  301. return tokens;
  302. }
  303. //
  304. // gguf utils
  305. //
  306. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  307. switch (type) {
  308. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  309. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  310. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  311. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  312. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  313. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  314. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  315. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  316. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  317. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  318. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  319. default: return string_format("unknown type %d", type);
  320. }
  321. }
  322. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  323. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  324. switch (type) {
  325. case GGUF_TYPE_STRING:
  326. return gguf_get_val_str(ctx_gguf, i);
  327. case GGUF_TYPE_ARRAY:
  328. {
  329. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  330. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  331. const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
  332. std::stringstream ss;
  333. ss << "[";
  334. for (int j = 0; j < arr_n; j++) {
  335. if (arr_type == GGUF_TYPE_STRING) {
  336. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  337. // escape quotes
  338. string_replace_all(val, "\\", "\\\\");
  339. string_replace_all(val, "\"", "\\\"");
  340. ss << '"' << val << '"';
  341. } else if (arr_type == GGUF_TYPE_ARRAY) {
  342. ss << "???";
  343. } else {
  344. ss << gguf_data_to_str(arr_type, data, j);
  345. }
  346. if (j < arr_n - 1) {
  347. ss << ", ";
  348. }
  349. }
  350. ss << "]";
  351. return ss.str();
  352. }
  353. default:
  354. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  355. }
  356. }
  357. //
  358. // debugging
  359. //
  360. static void print_tensor_shape(ggml_tensor * t) {
  361. printf("%s.shape = [", t->name);
  362. for (int i = 0; i < ggml_n_dims(t); ++i) {
  363. printf("%" PRId64, t->ne[i]);
  364. if (i < ggml_n_dims(t) - 1) {
  365. printf(", ");
  366. }
  367. }
  368. printf("]\n");
  369. }
  370. static void print_tensor_data(ggml_tensor * t, uint8_t * data, int64_t n) {
  371. ggml_type type = t->type;
  372. int64_t * ne = t->ne;
  373. size_t * nb = t->nb;
  374. for (int64_t i3 = 0; i3 < ne[3]; i3++) {
  375. printf("%s.data: [\n", t->name);
  376. for (int64_t i2 = 0; i2 < ne[2]; i2++) {
  377. if (i2 == n && ne[2] > 2*n) {
  378. printf(" ..., \n");
  379. i2 = ne[2] - n;
  380. }
  381. printf(" [\n");
  382. for (int64_t i1 = 0; i1 < ne[1]; i1++) {
  383. if (i1 == n && ne[1] > 2*n) {
  384. printf(" ..., \n");
  385. i1 = ne[1] - n;
  386. }
  387. printf(" [");
  388. for (int64_t i0 = 0; i0 < ne[0]; i0++) {
  389. if (i0 == n && ne[0] > 2*n) {
  390. printf("..., ");
  391. i0 = ne[0] - n;
  392. }
  393. size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
  394. float v;
  395. if (type == GGML_TYPE_F16) {
  396. v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
  397. } else if (type == GGML_TYPE_F32) {
  398. v = *(float *) &data[i];
  399. } else if (type == GGML_TYPE_I32) {
  400. v = (float) *(int32_t *) &data[i];
  401. } else if (type == GGML_TYPE_I16) {
  402. v = (float) *(int16_t *) &data[i];
  403. } else if (type == GGML_TYPE_I8) {
  404. v = (float) *(int8_t *) &data[i];
  405. } else {
  406. GGML_ABORT("fatal error");
  407. }
  408. printf("%8.4f", v);
  409. if (i0 < ne[0] - 1) printf(", ");
  410. }
  411. printf("],\n");
  412. }
  413. printf(" ],\n");
  414. }
  415. printf(" ]\n");
  416. }
  417. }
  418. //
  419. // API used internally with mtmd
  420. //
  421. projector_type clip_get_projector_type(const struct clip_ctx * ctx);