llama.cpp 634 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUDA
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <initializer_list>
  72. #include <locale>
  73. #include <map>
  74. #include <memory>
  75. #include <mutex>
  76. #include <numeric>
  77. #include <queue>
  78. #include <random>
  79. #include <regex>
  80. #include <set>
  81. #include <sstream>
  82. #include <thread>
  83. #include <type_traits>
  84. #include <unordered_map>
  85. #if defined(_MSC_VER)
  86. #pragma warning(disable: 4244 4267) // possible loss of data
  87. #endif
  88. #ifdef __GNUC__
  89. #ifdef __MINGW32__
  90. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  93. #endif
  94. #else
  95. #define LLAMA_ATTRIBUTE_FORMAT(...)
  96. #endif
  97. #define LLAMA_MAX_NODES 8192
  98. #define LLAMA_MAX_EXPERTS 8
  99. //
  100. // logging
  101. //
  102. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  103. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  104. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  105. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  106. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  107. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  108. //
  109. // helpers
  110. //
  111. static size_t utf8_len(char src) {
  112. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  113. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  114. return lookup[highbits];
  115. }
  116. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  117. std::string result;
  118. for (size_t pos = 0; ; pos += search.length()) {
  119. auto new_pos = s.find(search, pos);
  120. if (new_pos == std::string::npos) {
  121. result += s.substr(pos, s.size() - pos);
  122. break;
  123. }
  124. result += s.substr(pos, new_pos - pos) + replace;
  125. pos = new_pos;
  126. }
  127. s = std::move(result);
  128. }
  129. static bool is_float_close(float a, float b, float abs_tol) {
  130. // Check for non-negative tolerance
  131. if (abs_tol < 0.0) {
  132. throw std::invalid_argument("Tolerance must be non-negative");
  133. }
  134. // Exact equality check
  135. if (a == b) {
  136. return true;
  137. }
  138. // Check for infinities
  139. if (std::isinf(a) || std::isinf(b)) {
  140. return false;
  141. }
  142. // Regular comparison using the provided absolute tolerance
  143. return std::fabs(b - a) <= abs_tol;
  144. }
  145. static void zeros(std::ofstream & file, size_t n) {
  146. char zero = 0;
  147. for (size_t i = 0; i < n; ++i) {
  148. file.write(&zero, 1);
  149. }
  150. }
  151. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  152. static std::string format(const char * fmt, ...) {
  153. va_list ap;
  154. va_list ap2;
  155. va_start(ap, fmt);
  156. va_copy(ap2, ap);
  157. int size = vsnprintf(NULL, 0, fmt, ap);
  158. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  159. std::vector<char> buf(size + 1);
  160. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  161. GGML_ASSERT(size2 == size);
  162. va_end(ap2);
  163. va_end(ap);
  164. return std::string(buf.data(), size);
  165. }
  166. //
  167. // gguf constants (sync with gguf.py)
  168. //
  169. enum llm_arch {
  170. LLM_ARCH_LLAMA,
  171. LLM_ARCH_FALCON,
  172. LLM_ARCH_BAICHUAN,
  173. LLM_ARCH_GROK,
  174. LLM_ARCH_GPT2,
  175. LLM_ARCH_GPTJ,
  176. LLM_ARCH_GPTNEOX,
  177. LLM_ARCH_MPT,
  178. LLM_ARCH_STARCODER,
  179. LLM_ARCH_PERSIMMON,
  180. LLM_ARCH_REFACT,
  181. LLM_ARCH_BERT,
  182. LLM_ARCH_NOMIC_BERT,
  183. LLM_ARCH_BLOOM,
  184. LLM_ARCH_STABLELM,
  185. LLM_ARCH_QWEN,
  186. LLM_ARCH_QWEN2,
  187. LLM_ARCH_PHI2,
  188. LLM_ARCH_PLAMO,
  189. LLM_ARCH_CODESHELL,
  190. LLM_ARCH_ORION,
  191. LLM_ARCH_INTERNLM2,
  192. LLM_ARCH_MINICPM,
  193. LLM_ARCH_GEMMA,
  194. LLM_ARCH_STARCODER2,
  195. LLM_ARCH_MAMBA,
  196. LLM_ARCH_XVERSE,
  197. LLM_ARCH_COMMAND_R,
  198. LLM_ARCH_UNKNOWN,
  199. };
  200. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  201. { LLM_ARCH_LLAMA, "llama" },
  202. { LLM_ARCH_FALCON, "falcon" },
  203. { LLM_ARCH_GROK, "grok" },
  204. { LLM_ARCH_GPT2, "gpt2" },
  205. { LLM_ARCH_GPTJ, "gptj" },
  206. { LLM_ARCH_GPTNEOX, "gptneox" },
  207. { LLM_ARCH_MPT, "mpt" },
  208. { LLM_ARCH_BAICHUAN, "baichuan" },
  209. { LLM_ARCH_STARCODER, "starcoder" },
  210. { LLM_ARCH_PERSIMMON, "persimmon" },
  211. { LLM_ARCH_REFACT, "refact" },
  212. { LLM_ARCH_BERT, "bert" },
  213. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  214. { LLM_ARCH_BLOOM, "bloom" },
  215. { LLM_ARCH_STABLELM, "stablelm" },
  216. { LLM_ARCH_QWEN, "qwen" },
  217. { LLM_ARCH_QWEN2, "qwen2" },
  218. { LLM_ARCH_PHI2, "phi2" },
  219. { LLM_ARCH_PLAMO, "plamo" },
  220. { LLM_ARCH_CODESHELL, "codeshell" },
  221. { LLM_ARCH_ORION, "orion" },
  222. { LLM_ARCH_INTERNLM2, "internlm2" },
  223. { LLM_ARCH_MINICPM, "minicpm" },
  224. { LLM_ARCH_GEMMA, "gemma" },
  225. { LLM_ARCH_STARCODER2, "starcoder2" },
  226. { LLM_ARCH_MAMBA, "mamba" },
  227. { LLM_ARCH_XVERSE, "xverse" },
  228. { LLM_ARCH_COMMAND_R, "command-r" },
  229. { LLM_ARCH_UNKNOWN, "(unknown)" },
  230. };
  231. enum llm_kv {
  232. LLM_KV_GENERAL_ARCHITECTURE,
  233. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  234. LLM_KV_GENERAL_ALIGNMENT,
  235. LLM_KV_GENERAL_NAME,
  236. LLM_KV_GENERAL_AUTHOR,
  237. LLM_KV_GENERAL_VERSION,
  238. LLM_KV_GENERAL_URL,
  239. LLM_KV_GENERAL_DESCRIPTION,
  240. LLM_KV_GENERAL_LICENSE,
  241. LLM_KV_GENERAL_SOURCE_URL,
  242. LLM_KV_GENERAL_SOURCE_HF_REPO,
  243. LLM_KV_VOCAB_SIZE,
  244. LLM_KV_CONTEXT_LENGTH,
  245. LLM_KV_EMBEDDING_LENGTH,
  246. LLM_KV_BLOCK_COUNT,
  247. LLM_KV_FEED_FORWARD_LENGTH,
  248. LLM_KV_USE_PARALLEL_RESIDUAL,
  249. LLM_KV_TENSOR_DATA_LAYOUT,
  250. LLM_KV_EXPERT_COUNT,
  251. LLM_KV_EXPERT_USED_COUNT,
  252. LLM_KV_POOLING_TYPE,
  253. LLM_KV_LOGIT_SCALE,
  254. LLM_KV_ATTENTION_HEAD_COUNT,
  255. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  256. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  257. LLM_KV_ATTENTION_CLAMP_KQV,
  258. LLM_KV_ATTENTION_KEY_LENGTH,
  259. LLM_KV_ATTENTION_VALUE_LENGTH,
  260. LLM_KV_ATTENTION_LAYERNORM_EPS,
  261. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  262. LLM_KV_ATTENTION_CAUSAL,
  263. LLM_KV_ROPE_DIMENSION_COUNT,
  264. LLM_KV_ROPE_FREQ_BASE,
  265. LLM_KV_ROPE_SCALE_LINEAR,
  266. LLM_KV_ROPE_SCALING_TYPE,
  267. LLM_KV_ROPE_SCALING_FACTOR,
  268. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  269. LLM_KV_ROPE_SCALING_FINETUNED,
  270. LLM_KV_SPLIT_NO,
  271. LLM_KV_SPLIT_COUNT,
  272. LLM_KV_SPLIT_TENSORS_COUNT,
  273. LLM_KV_SSM_INNER_SIZE,
  274. LLM_KV_SSM_CONV_KERNEL,
  275. LLM_KV_SSM_STATE_SIZE,
  276. LLM_KV_SSM_TIME_STEP_RANK,
  277. LLM_KV_TOKENIZER_MODEL,
  278. LLM_KV_TOKENIZER_LIST,
  279. LLM_KV_TOKENIZER_TOKEN_TYPE,
  280. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  281. LLM_KV_TOKENIZER_SCORES,
  282. LLM_KV_TOKENIZER_MERGES,
  283. LLM_KV_TOKENIZER_BOS_ID,
  284. LLM_KV_TOKENIZER_EOS_ID,
  285. LLM_KV_TOKENIZER_UNK_ID,
  286. LLM_KV_TOKENIZER_SEP_ID,
  287. LLM_KV_TOKENIZER_PAD_ID,
  288. LLM_KV_TOKENIZER_ADD_BOS,
  289. LLM_KV_TOKENIZER_ADD_EOS,
  290. LLM_KV_TOKENIZER_ADD_PREFIX,
  291. LLM_KV_TOKENIZER_HF_JSON,
  292. LLM_KV_TOKENIZER_RWKV,
  293. };
  294. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  295. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  296. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  297. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  298. { LLM_KV_GENERAL_NAME, "general.name" },
  299. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  300. { LLM_KV_GENERAL_VERSION, "general.version" },
  301. { LLM_KV_GENERAL_URL, "general.url" },
  302. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  303. { LLM_KV_GENERAL_LICENSE, "general.license" },
  304. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  305. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  306. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  307. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  308. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  309. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  310. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  311. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  312. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  313. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  314. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  315. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  316. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  317. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  318. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  319. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  320. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  321. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  322. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  323. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  324. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  325. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  326. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  327. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  328. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  329. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  330. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  331. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  332. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  333. { LLM_KV_SPLIT_NO, "split.no" },
  334. { LLM_KV_SPLIT_COUNT, "split.count" },
  335. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  336. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  337. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  338. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  339. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  340. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  341. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  342. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  343. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  344. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  345. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  346. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  347. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  348. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  349. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  350. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  351. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  352. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  353. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  354. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  355. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  356. };
  357. struct LLM_KV {
  358. LLM_KV(llm_arch arch) : arch(arch) {}
  359. llm_arch arch;
  360. std::string operator()(llm_kv kv) const {
  361. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  362. }
  363. };
  364. enum llm_tensor {
  365. LLM_TENSOR_TOKEN_EMBD,
  366. LLM_TENSOR_TOKEN_EMBD_NORM,
  367. LLM_TENSOR_TOKEN_TYPES,
  368. LLM_TENSOR_POS_EMBD,
  369. LLM_TENSOR_OUTPUT,
  370. LLM_TENSOR_OUTPUT_NORM,
  371. LLM_TENSOR_ROPE_FREQS,
  372. LLM_TENSOR_ATTN_Q,
  373. LLM_TENSOR_ATTN_K,
  374. LLM_TENSOR_ATTN_V,
  375. LLM_TENSOR_ATTN_QKV,
  376. LLM_TENSOR_ATTN_OUT,
  377. LLM_TENSOR_ATTN_NORM,
  378. LLM_TENSOR_ATTN_NORM_2,
  379. LLM_TENSOR_ATTN_OUT_NORM,
  380. LLM_TENSOR_ATTN_ROT_EMBD,
  381. LLM_TENSOR_FFN_GATE_INP,
  382. LLM_TENSOR_FFN_NORM,
  383. LLM_TENSOR_FFN_GATE,
  384. LLM_TENSOR_FFN_DOWN,
  385. LLM_TENSOR_FFN_UP,
  386. LLM_TENSOR_FFN_ACT,
  387. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  388. LLM_TENSOR_FFN_GATE_EXP,
  389. LLM_TENSOR_FFN_UP_EXP,
  390. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  391. LLM_TENSOR_FFN_GATE_EXPS,
  392. LLM_TENSOR_FFN_UP_EXPS,
  393. LLM_TENSOR_ATTN_Q_NORM,
  394. LLM_TENSOR_ATTN_K_NORM,
  395. LLM_TENSOR_LAYER_OUT_NORM,
  396. LLM_TENSOR_SSM_IN,
  397. LLM_TENSOR_SSM_CONV1D,
  398. LLM_TENSOR_SSM_X,
  399. LLM_TENSOR_SSM_DT,
  400. LLM_TENSOR_SSM_A,
  401. LLM_TENSOR_SSM_D,
  402. LLM_TENSOR_SSM_OUT,
  403. };
  404. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  405. {
  406. LLM_ARCH_LLAMA,
  407. {
  408. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  409. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  410. { LLM_TENSOR_OUTPUT, "output" },
  411. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  412. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  413. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  414. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  415. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  416. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  417. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  418. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  419. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  420. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  421. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  422. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  423. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  424. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  425. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  426. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  427. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  428. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  429. },
  430. },
  431. {
  432. LLM_ARCH_BAICHUAN,
  433. {
  434. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  435. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  436. { LLM_TENSOR_OUTPUT, "output" },
  437. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  438. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  439. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  440. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  441. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  442. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  443. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  444. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  445. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  446. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  447. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  448. },
  449. },
  450. {
  451. LLM_ARCH_FALCON,
  452. {
  453. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  454. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  455. { LLM_TENSOR_OUTPUT, "output" },
  456. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  457. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  458. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  459. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  460. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  461. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  462. },
  463. },
  464. {
  465. LLM_ARCH_GROK,
  466. {
  467. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  468. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  469. { LLM_TENSOR_OUTPUT, "output" },
  470. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  471. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  472. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  473. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  474. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  475. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  476. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  477. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  478. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  479. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  480. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  481. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  482. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  483. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  484. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  485. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  486. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  487. },
  488. },
  489. {
  490. LLM_ARCH_GPT2,
  491. {
  492. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  493. { LLM_TENSOR_POS_EMBD, "position_embd" },
  494. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  495. { LLM_TENSOR_OUTPUT, "output" },
  496. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  497. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  498. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  499. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  500. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  501. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  502. },
  503. },
  504. {
  505. LLM_ARCH_GPTJ,
  506. {
  507. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  508. },
  509. },
  510. {
  511. LLM_ARCH_GPTNEOX,
  512. {
  513. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  514. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  515. { LLM_TENSOR_OUTPUT, "output" },
  516. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  517. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  518. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  519. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  520. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  521. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  522. },
  523. },
  524. {
  525. LLM_ARCH_PERSIMMON,
  526. {
  527. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  528. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  529. { LLM_TENSOR_OUTPUT, "output"},
  530. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  531. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  532. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  533. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  534. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  535. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  536. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  537. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  538. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  539. },
  540. },
  541. {
  542. LLM_ARCH_MPT,
  543. {
  544. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  545. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  546. { LLM_TENSOR_OUTPUT, "output"},
  547. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  548. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  549. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  550. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  551. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  552. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  553. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  554. { LLM_TENSOR_POS_EMBD, "position_embd" },
  555. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  556. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  557. },
  558. },
  559. {
  560. LLM_ARCH_STARCODER,
  561. {
  562. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  563. { LLM_TENSOR_POS_EMBD, "position_embd" },
  564. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  565. { LLM_TENSOR_OUTPUT, "output" },
  566. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  567. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  568. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  569. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  570. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  571. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  572. },
  573. },
  574. {
  575. LLM_ARCH_REFACT,
  576. {
  577. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  578. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  579. { LLM_TENSOR_OUTPUT, "output" },
  580. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  581. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  582. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  583. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  584. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  585. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  586. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  587. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  588. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  589. },
  590. },
  591. {
  592. LLM_ARCH_BERT,
  593. {
  594. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  595. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  596. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  597. { LLM_TENSOR_POS_EMBD, "position_embd" },
  598. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  599. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  600. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  601. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  602. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  603. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  604. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  605. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  606. },
  607. },
  608. {
  609. LLM_ARCH_NOMIC_BERT,
  610. {
  611. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  612. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  613. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  614. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  615. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  616. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  617. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  618. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  619. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  620. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  621. },
  622. },
  623. {
  624. LLM_ARCH_BLOOM,
  625. {
  626. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  627. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  628. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  629. { LLM_TENSOR_OUTPUT, "output" },
  630. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  631. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  632. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  633. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  634. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  635. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  636. },
  637. },
  638. {
  639. LLM_ARCH_STABLELM,
  640. {
  641. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  642. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  643. { LLM_TENSOR_OUTPUT, "output" },
  644. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  645. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  646. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  647. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  648. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  649. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  650. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  651. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  652. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  653. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  654. },
  655. },
  656. {
  657. LLM_ARCH_QWEN,
  658. {
  659. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  660. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  661. { LLM_TENSOR_OUTPUT, "output" },
  662. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  663. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  664. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  665. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  666. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  667. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  668. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  669. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  670. },
  671. },
  672. {
  673. LLM_ARCH_QWEN2,
  674. {
  675. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  676. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  677. { LLM_TENSOR_OUTPUT, "output" },
  678. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  679. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  680. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  681. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  682. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  683. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  684. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  685. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  686. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  687. },
  688. },
  689. {
  690. LLM_ARCH_PHI2,
  691. {
  692. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  693. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  694. { LLM_TENSOR_OUTPUT, "output" },
  695. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  696. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  697. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  698. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  699. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  700. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  701. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  702. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  703. },
  704. },
  705. {
  706. LLM_ARCH_PLAMO,
  707. {
  708. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  709. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  710. { LLM_TENSOR_OUTPUT, "output" },
  711. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  712. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  713. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  714. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  715. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  716. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  717. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  718. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  719. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  720. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  721. },
  722. },
  723. {
  724. LLM_ARCH_CODESHELL,
  725. {
  726. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  727. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  728. { LLM_TENSOR_OUTPUT, "output" },
  729. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  730. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  731. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  732. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  733. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  734. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  735. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  736. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  737. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  738. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  739. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  740. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  741. },
  742. },
  743. {
  744. LLM_ARCH_ORION,
  745. {
  746. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  747. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  748. { LLM_TENSOR_OUTPUT, "output" },
  749. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  750. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  751. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  752. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  753. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  754. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  755. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  756. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  757. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  758. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  759. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  760. },
  761. },
  762. {
  763. LLM_ARCH_INTERNLM2,
  764. {
  765. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  766. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  767. { LLM_TENSOR_OUTPUT, "output" },
  768. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  769. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  770. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  771. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  772. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  773. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  774. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  775. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  776. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  777. },
  778. },
  779. {
  780. LLM_ARCH_MINICPM,
  781. {
  782. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  783. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  784. { LLM_TENSOR_OUTPUT, "output" },
  785. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  786. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  787. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  788. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  789. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  790. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  791. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  792. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  793. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  794. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  795. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  796. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  797. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  798. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  799. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  800. },
  801. },
  802. {
  803. LLM_ARCH_GEMMA,
  804. {
  805. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  806. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  807. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  808. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  809. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  810. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  811. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  812. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  813. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  814. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  815. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  816. },
  817. },
  818. {
  819. LLM_ARCH_STARCODER2,
  820. {
  821. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  822. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  823. { LLM_TENSOR_OUTPUT, "output" },
  824. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  825. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  826. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  827. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  828. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  829. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  830. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  831. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  832. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  833. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  834. },
  835. },
  836. {
  837. LLM_ARCH_MAMBA,
  838. {
  839. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  840. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  841. { LLM_TENSOR_OUTPUT, "output" },
  842. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  843. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  844. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  845. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  846. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  847. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  848. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  849. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  850. },
  851. },
  852. {
  853. LLM_ARCH_XVERSE,
  854. {
  855. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  856. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  857. { LLM_TENSOR_OUTPUT, "output" },
  858. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  859. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  860. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  861. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  862. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  863. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  864. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  865. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  866. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  867. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  868. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  869. },
  870. },
  871. {
  872. LLM_ARCH_COMMAND_R,
  873. {
  874. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  875. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  876. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  877. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  878. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  879. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  880. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  881. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  882. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  883. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  884. },
  885. },
  886. {
  887. LLM_ARCH_UNKNOWN,
  888. {
  889. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  890. },
  891. },
  892. };
  893. static llm_arch llm_arch_from_string(const std::string & name) {
  894. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  895. if (kv.second == name) {
  896. return kv.first;
  897. }
  898. }
  899. return LLM_ARCH_UNKNOWN;
  900. }
  901. // helper to handle gguf constants
  902. // usage:
  903. //
  904. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  905. //
  906. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  907. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  908. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  909. //
  910. struct LLM_TN {
  911. LLM_TN(llm_arch arch) : arch(arch) {}
  912. llm_arch arch;
  913. std::string operator()(llm_tensor tensor) const {
  914. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  915. return "__missing__";
  916. }
  917. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  918. }
  919. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  920. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  921. return "__missing__";
  922. }
  923. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  924. }
  925. std::string operator()(llm_tensor tensor, int bid) const {
  926. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  927. return "__missing__";
  928. }
  929. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  930. }
  931. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  932. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  933. return "__missing__";
  934. }
  935. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  936. }
  937. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  938. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  939. return "__missing__";
  940. }
  941. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  942. }
  943. };
  944. //
  945. // gguf helpers
  946. //
  947. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  948. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  949. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  950. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  951. };
  952. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  953. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  954. if (kv.second == name) {
  955. return (llama_rope_scaling_type) kv.first;
  956. }
  957. }
  958. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  959. }
  960. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  961. switch (type) {
  962. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  963. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  964. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  965. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  966. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  967. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  968. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  969. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  970. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  971. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  972. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  973. default: return format("unknown type %d", type);
  974. }
  975. }
  976. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  977. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  978. switch (type) {
  979. case GGUF_TYPE_STRING:
  980. return gguf_get_val_str(ctx_gguf, i);
  981. case GGUF_TYPE_ARRAY:
  982. {
  983. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  984. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  985. const void * data = gguf_get_arr_data(ctx_gguf, i);
  986. std::stringstream ss;
  987. ss << "[";
  988. for (int j = 0; j < arr_n; j++) {
  989. if (arr_type == GGUF_TYPE_STRING) {
  990. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  991. // escape quotes
  992. replace_all(val, "\\", "\\\\");
  993. replace_all(val, "\"", "\\\"");
  994. ss << '"' << val << '"';
  995. } else if (arr_type == GGUF_TYPE_ARRAY) {
  996. ss << "???";
  997. } else {
  998. ss << gguf_data_to_str(arr_type, data, j);
  999. }
  1000. if (j < arr_n - 1) {
  1001. ss << ", ";
  1002. }
  1003. }
  1004. ss << "]";
  1005. return ss.str();
  1006. }
  1007. default:
  1008. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1009. }
  1010. }
  1011. //
  1012. // llama helpers
  1013. //
  1014. #if defined(_WIN32)
  1015. static std::string llama_format_win_err(DWORD err) {
  1016. LPSTR buf;
  1017. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1018. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1019. if (!size) {
  1020. return "FormatMessageA failed";
  1021. }
  1022. std::string ret(buf, size);
  1023. LocalFree(buf);
  1024. return ret;
  1025. }
  1026. #endif
  1027. template <typename T>
  1028. struct no_init {
  1029. T value;
  1030. no_init() { /* do nothing */ }
  1031. };
  1032. struct llama_file {
  1033. // use FILE * so we don't have to re-open the file to mmap
  1034. FILE * fp;
  1035. size_t size;
  1036. llama_file(const char * fname, const char * mode) {
  1037. fp = ggml_fopen(fname, mode);
  1038. if (fp == NULL) {
  1039. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1040. }
  1041. seek(0, SEEK_END);
  1042. size = tell();
  1043. seek(0, SEEK_SET);
  1044. }
  1045. size_t tell() const {
  1046. #ifdef _WIN32
  1047. __int64 ret = _ftelli64(fp);
  1048. #else
  1049. long ret = std::ftell(fp);
  1050. #endif
  1051. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1052. return (size_t) ret;
  1053. }
  1054. void seek(size_t offset, int whence) const {
  1055. #ifdef _WIN32
  1056. int ret = _fseeki64(fp, (__int64) offset, whence);
  1057. #else
  1058. int ret = std::fseek(fp, (long) offset, whence);
  1059. #endif
  1060. GGML_ASSERT(ret == 0); // same
  1061. }
  1062. void read_raw(void * ptr, size_t len) const {
  1063. if (len == 0) {
  1064. return;
  1065. }
  1066. errno = 0;
  1067. std::size_t ret = std::fread(ptr, len, 1, fp);
  1068. if (ferror(fp)) {
  1069. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1070. }
  1071. if (ret != 1) {
  1072. throw std::runtime_error("unexpectedly reached end of file");
  1073. }
  1074. }
  1075. uint32_t read_u32() const {
  1076. uint32_t ret;
  1077. read_raw(&ret, sizeof(ret));
  1078. return ret;
  1079. }
  1080. void write_raw(const void * ptr, size_t len) const {
  1081. if (len == 0) {
  1082. return;
  1083. }
  1084. errno = 0;
  1085. size_t ret = std::fwrite(ptr, len, 1, fp);
  1086. if (ret != 1) {
  1087. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1088. }
  1089. }
  1090. void write_u32(std::uint32_t val) const {
  1091. write_raw(&val, sizeof(val));
  1092. }
  1093. ~llama_file() {
  1094. if (fp) {
  1095. std::fclose(fp);
  1096. }
  1097. }
  1098. };
  1099. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1100. struct llama_mmap {
  1101. void * addr;
  1102. size_t size;
  1103. llama_mmap(const llama_mmap &) = delete;
  1104. #ifdef _POSIX_MAPPED_FILES
  1105. static constexpr bool SUPPORTED = true;
  1106. // list of mapped fragments (first_offset, last_offset)
  1107. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1108. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1109. size = file->size;
  1110. int fd = fileno(file->fp);
  1111. int flags = MAP_SHARED;
  1112. // prefetch/readahead impairs performance on NUMA systems
  1113. if (numa) { prefetch = 0; }
  1114. #ifdef __linux__
  1115. // advise the kernel to read the file sequentially (increases readahead)
  1116. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1117. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1118. strerror(errno));
  1119. }
  1120. if (prefetch) { flags |= MAP_POPULATE; }
  1121. #endif
  1122. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1123. if (addr == MAP_FAILED) { // NOLINT
  1124. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1125. }
  1126. if (prefetch > 0) {
  1127. // advise the kernel to preload the mapped memory
  1128. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1129. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1130. strerror(errno));
  1131. }
  1132. }
  1133. if (numa) {
  1134. // advise the kernel not to use readahead
  1135. // (because the next page might not belong on the same node)
  1136. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1137. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1138. strerror(errno));
  1139. }
  1140. }
  1141. // initialize list of mapped_fragments
  1142. mapped_fragments.emplace_back(0, file->size);
  1143. }
  1144. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1145. // align first to the next page
  1146. size_t offset_in_page = *first & (page_size - 1);
  1147. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1148. *first += offset_to_page;
  1149. // align last to the previous page
  1150. *last = *last & ~(page_size - 1);
  1151. if (*last <= *first) {
  1152. *last = *first;
  1153. }
  1154. }
  1155. // partially unmap the file in the range [first, last)
  1156. void unmap_fragment(size_t first, size_t last) {
  1157. // note: this function must not be called multiple times with overlapping ranges
  1158. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1159. int page_size = sysconf(_SC_PAGESIZE);
  1160. align_range(&first, &last, page_size);
  1161. size_t len = last - first;
  1162. if (len == 0) {
  1163. return;
  1164. }
  1165. GGML_ASSERT(first % page_size == 0);
  1166. GGML_ASSERT(last % page_size == 0);
  1167. GGML_ASSERT(last > first);
  1168. void * next_page_start = (uint8_t *) addr + first;
  1169. // unmap the range
  1170. if (munmap(next_page_start, len)) {
  1171. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1172. }
  1173. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1174. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1175. for (const auto & frag : mapped_fragments) {
  1176. if (frag.first < first && frag.second > last) {
  1177. // the range is in the middle of the fragment, split it
  1178. new_mapped_fragments.emplace_back(frag.first, first);
  1179. new_mapped_fragments.emplace_back(last, frag.second);
  1180. } else if (frag.first < first && frag.second > first) {
  1181. // the range starts in the middle of the fragment
  1182. new_mapped_fragments.emplace_back(frag.first, first);
  1183. } else if (frag.first < last && frag.second > last) {
  1184. // the range ends in the middle of the fragment
  1185. new_mapped_fragments.emplace_back(last, frag.second);
  1186. } else if (frag.first >= first && frag.second <= last) {
  1187. // the range covers the entire fragment
  1188. } else {
  1189. // the range is outside the fragment
  1190. new_mapped_fragments.push_back(frag);
  1191. }
  1192. }
  1193. mapped_fragments = std::move(new_mapped_fragments);
  1194. }
  1195. ~llama_mmap() {
  1196. for (const auto & frag : mapped_fragments) {
  1197. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1198. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1199. }
  1200. }
  1201. }
  1202. #elif defined(_WIN32)
  1203. static constexpr bool SUPPORTED = true;
  1204. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1205. GGML_UNUSED(numa);
  1206. size = file->size;
  1207. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1208. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1209. if (hMapping == NULL) {
  1210. DWORD error = GetLastError();
  1211. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1212. }
  1213. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1214. DWORD error = GetLastError();
  1215. CloseHandle(hMapping);
  1216. if (addr == NULL) {
  1217. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1218. }
  1219. if (prefetch > 0) {
  1220. #if _WIN32_WINNT >= 0x602
  1221. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1222. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1223. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1224. // may fail on pre-Windows 8 systems
  1225. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1226. if (pPrefetchVirtualMemory) {
  1227. // advise the kernel to preload the mapped memory
  1228. WIN32_MEMORY_RANGE_ENTRY range;
  1229. range.VirtualAddress = addr;
  1230. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1231. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1232. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1233. llama_format_win_err(GetLastError()).c_str());
  1234. }
  1235. }
  1236. #else
  1237. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1238. #endif
  1239. }
  1240. }
  1241. void unmap_fragment(size_t first, size_t last) {
  1242. // not supported
  1243. GGML_UNUSED(first);
  1244. GGML_UNUSED(last);
  1245. }
  1246. ~llama_mmap() {
  1247. if (!UnmapViewOfFile(addr)) {
  1248. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1249. llama_format_win_err(GetLastError()).c_str());
  1250. }
  1251. }
  1252. #else
  1253. static constexpr bool SUPPORTED = false;
  1254. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1255. GGML_UNUSED(file);
  1256. GGML_UNUSED(prefetch);
  1257. GGML_UNUSED(numa);
  1258. throw std::runtime_error("mmap not supported");
  1259. }
  1260. void unmap_fragment(size_t first, size_t last) {
  1261. GGML_UNUSED(first);
  1262. GGML_UNUSED(last);
  1263. throw std::runtime_error("mmap not supported");
  1264. }
  1265. #endif
  1266. };
  1267. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1268. // Represents some region of memory being locked using mlock or VirtualLock;
  1269. // will automatically unlock on destruction.
  1270. struct llama_mlock {
  1271. void * addr = NULL;
  1272. size_t size = 0;
  1273. bool failed_already = false;
  1274. llama_mlock() {}
  1275. llama_mlock(const llama_mlock &) = delete;
  1276. ~llama_mlock() {
  1277. if (size) {
  1278. raw_unlock(addr, size);
  1279. }
  1280. }
  1281. void init(void * ptr) {
  1282. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1283. addr = ptr;
  1284. }
  1285. void grow_to(size_t target_size) {
  1286. GGML_ASSERT(addr);
  1287. if (failed_already) {
  1288. return;
  1289. }
  1290. size_t granularity = lock_granularity();
  1291. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1292. if (target_size > size) {
  1293. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1294. size = target_size;
  1295. } else {
  1296. failed_already = true;
  1297. }
  1298. }
  1299. }
  1300. #ifdef _POSIX_MEMLOCK_RANGE
  1301. static constexpr bool SUPPORTED = true;
  1302. static size_t lock_granularity() {
  1303. return (size_t) sysconf(_SC_PAGESIZE);
  1304. }
  1305. #ifdef __APPLE__
  1306. #define MLOCK_SUGGESTION \
  1307. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1308. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1309. #else
  1310. #define MLOCK_SUGGESTION \
  1311. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1312. #endif
  1313. bool raw_lock(const void * addr, size_t size) const {
  1314. if (!mlock(addr, size)) {
  1315. return true;
  1316. }
  1317. char* errmsg = std::strerror(errno);
  1318. bool suggest = (errno == ENOMEM);
  1319. // Check if the resource limit is fine after all
  1320. struct rlimit lock_limit;
  1321. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1322. suggest = false;
  1323. }
  1324. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1325. suggest = false;
  1326. }
  1327. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1328. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1329. return false;
  1330. }
  1331. #undef MLOCK_SUGGESTION
  1332. static void raw_unlock(void * addr, size_t size) {
  1333. if (munlock(addr, size)) {
  1334. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1335. }
  1336. }
  1337. #elif defined(_WIN32)
  1338. static constexpr bool SUPPORTED = true;
  1339. static size_t lock_granularity() {
  1340. SYSTEM_INFO si;
  1341. GetSystemInfo(&si);
  1342. return (size_t) si.dwPageSize;
  1343. }
  1344. bool raw_lock(void * ptr, size_t len) const {
  1345. for (int tries = 1; ; tries++) {
  1346. if (VirtualLock(ptr, len)) {
  1347. return true;
  1348. }
  1349. if (tries == 2) {
  1350. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1351. len, size, llama_format_win_err(GetLastError()).c_str());
  1352. return false;
  1353. }
  1354. // It failed but this was only the first try; increase the working
  1355. // set size and try again.
  1356. SIZE_T min_ws_size, max_ws_size;
  1357. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1358. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1359. llama_format_win_err(GetLastError()).c_str());
  1360. return false;
  1361. }
  1362. // Per MSDN: "The maximum number of pages that a process can lock
  1363. // is equal to the number of pages in its minimum working set minus
  1364. // a small overhead."
  1365. // Hopefully a megabyte is enough overhead:
  1366. size_t increment = len + 1048576;
  1367. // The minimum must be <= the maximum, so we need to increase both:
  1368. min_ws_size += increment;
  1369. max_ws_size += increment;
  1370. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1371. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1372. llama_format_win_err(GetLastError()).c_str());
  1373. return false;
  1374. }
  1375. }
  1376. }
  1377. static void raw_unlock(void * ptr, size_t len) {
  1378. if (!VirtualUnlock(ptr, len)) {
  1379. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1380. llama_format_win_err(GetLastError()).c_str());
  1381. }
  1382. }
  1383. #else
  1384. static constexpr bool SUPPORTED = false;
  1385. static size_t lock_granularity() {
  1386. return (size_t) 65536;
  1387. }
  1388. bool raw_lock(const void * addr, size_t len) const {
  1389. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1390. return false;
  1391. }
  1392. static void raw_unlock(const void * addr, size_t len) {}
  1393. #endif
  1394. };
  1395. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1396. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  1397. std::vector<char> result(8, 0);
  1398. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1399. if (n_tokens < 0) {
  1400. result.resize(-n_tokens);
  1401. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1402. GGML_ASSERT(check == -n_tokens);
  1403. }
  1404. else {
  1405. result.resize(n_tokens);
  1406. }
  1407. return std::string(result.data(), result.size());
  1408. }
  1409. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1410. ggml_backend_buffer_type_t buft = nullptr;
  1411. #if defined(GGML_USE_CUDA)
  1412. // host buffers should only be used when data is expected to be copied to/from the GPU
  1413. if (host_buffer) {
  1414. buft = ggml_backend_cuda_host_buffer_type();
  1415. }
  1416. #elif defined(GGML_USE_SYCL)
  1417. if (host_buffer) {
  1418. buft = ggml_backend_sycl_host_buffer_type();
  1419. }
  1420. #elif defined(GGML_USE_CPU_HBM)
  1421. buft = ggml_backend_cpu_hbm_buffer_type();
  1422. #elif defined(GGML_USE_VULKAN)
  1423. if (host_buffer) {
  1424. buft = ggml_backend_vk_host_buffer_type();
  1425. }
  1426. #endif
  1427. if (buft == nullptr) {
  1428. buft = ggml_backend_cpu_buffer_type();
  1429. }
  1430. return buft;
  1431. GGML_UNUSED(host_buffer);
  1432. }
  1433. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1434. ggml_backend_buffer_type_t buft = nullptr;
  1435. #ifdef GGML_USE_METAL
  1436. buft = ggml_backend_metal_buffer_type();
  1437. #elif defined(GGML_USE_CUDA)
  1438. buft = ggml_backend_cuda_buffer_type(gpu);
  1439. #elif defined(GGML_USE_VULKAN)
  1440. buft = ggml_backend_vk_buffer_type(gpu);
  1441. #elif defined(GGML_USE_SYCL)
  1442. buft = ggml_backend_sycl_buffer_type(gpu);
  1443. #elif defined(GGML_USE_CLBLAST)
  1444. buft = ggml_backend_opencl_buffer_type();
  1445. #elif defined(GGML_USE_KOMPUTE)
  1446. buft = ggml_backend_kompute_buffer_type(gpu);
  1447. if (buft == nullptr) {
  1448. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1449. }
  1450. #endif
  1451. if (buft == nullptr) {
  1452. buft = llama_default_buffer_type_cpu(true);
  1453. }
  1454. return buft;
  1455. GGML_UNUSED(gpu);
  1456. }
  1457. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1458. ggml_backend_buffer_type_t buft = nullptr;
  1459. #ifdef GGML_USE_CUDA
  1460. if (ggml_backend_cuda_get_device_count() > 1) {
  1461. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1462. }
  1463. #endif
  1464. #ifdef GGML_USE_SYCL
  1465. if (ggml_backend_sycl_get_device_count() > 1) {
  1466. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  1467. }
  1468. #endif
  1469. if (buft == nullptr) {
  1470. buft = llama_default_buffer_type_offload(fallback_gpu);
  1471. }
  1472. return buft;
  1473. GGML_UNUSED(tensor_split);
  1474. }
  1475. static size_t llama_get_device_count() {
  1476. #if defined(GGML_USE_CUDA)
  1477. return ggml_backend_cuda_get_device_count();
  1478. #elif defined(GGML_USE_SYCL)
  1479. return ggml_backend_sycl_get_device_count();
  1480. #elif defined(GGML_USE_VULKAN)
  1481. return ggml_backend_vk_get_device_count();
  1482. #else
  1483. return 1;
  1484. #endif
  1485. }
  1486. static size_t llama_get_device_memory(int device) {
  1487. #if defined(GGML_USE_CUDA)
  1488. size_t total;
  1489. size_t free;
  1490. ggml_backend_cuda_get_device_memory(device, &total, &free);
  1491. return free;
  1492. #elif defined(GGML_USE_SYCL)
  1493. size_t total;
  1494. size_t free;
  1495. ggml_backend_sycl_get_device_memory(device, &total, &free);
  1496. return free;
  1497. #elif defined(GGML_USE_VULKAN)
  1498. size_t total;
  1499. size_t free;
  1500. ggml_backend_vk_get_device_memory(device, &total, &free);
  1501. return free;
  1502. #else
  1503. return 1;
  1504. GGML_UNUSED(device);
  1505. #endif
  1506. }
  1507. //
  1508. // globals
  1509. //
  1510. struct llama_state {
  1511. llama_state() {
  1512. #ifdef GGML_USE_METAL
  1513. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1514. #endif
  1515. }
  1516. // We save the log callback globally
  1517. ggml_log_callback log_callback = llama_log_callback_default;
  1518. void * log_callback_user_data = nullptr;
  1519. };
  1520. static llama_state g_state;
  1521. // available llama models
  1522. enum e_model {
  1523. MODEL_UNKNOWN,
  1524. MODEL_17M,
  1525. MODEL_22M,
  1526. MODEL_33M,
  1527. MODEL_109M,
  1528. MODEL_137M,
  1529. MODEL_335M,
  1530. MODEL_0_5B,
  1531. MODEL_1B,
  1532. MODEL_2B,
  1533. MODEL_3B,
  1534. MODEL_4B,
  1535. MODEL_7B,
  1536. MODEL_8B,
  1537. MODEL_13B,
  1538. MODEL_14B,
  1539. MODEL_15B,
  1540. MODEL_20B,
  1541. MODEL_30B,
  1542. MODEL_34B,
  1543. MODEL_35B,
  1544. MODEL_40B,
  1545. MODEL_65B,
  1546. MODEL_70B,
  1547. MODEL_314B,
  1548. MODEL_SMALL,
  1549. MODEL_MEDIUM,
  1550. MODEL_LARGE,
  1551. MODEL_XL,
  1552. };
  1553. static const size_t kiB = 1024;
  1554. static const size_t MiB = 1024*kiB;
  1555. static const size_t GiB = 1024*MiB;
  1556. struct llama_hparams {
  1557. bool vocab_only;
  1558. bool rope_finetuned;
  1559. uint32_t n_vocab;
  1560. uint32_t n_ctx_train; // context size the model was trained on
  1561. uint32_t n_embd;
  1562. uint32_t n_head;
  1563. uint32_t n_head_kv;
  1564. uint32_t n_layer;
  1565. uint32_t n_rot;
  1566. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1567. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1568. uint32_t n_ff;
  1569. uint32_t n_expert = 0;
  1570. uint32_t n_expert_used = 0;
  1571. uint32_t n_vocab_type = 0; // for BERT-style token types
  1572. float f_norm_eps;
  1573. float f_norm_rms_eps;
  1574. float rope_freq_base_train;
  1575. float rope_freq_scale_train;
  1576. uint32_t n_yarn_orig_ctx;
  1577. // for State Space Models
  1578. uint32_t ssm_d_conv = 0;
  1579. uint32_t ssm_d_inner = 0;
  1580. uint32_t ssm_d_state = 0;
  1581. uint32_t ssm_dt_rank = 0;
  1582. float f_clamp_kqv = 0.0f;
  1583. float f_max_alibi_bias = 0.0f;
  1584. float f_logit_scale = 0.0f;
  1585. bool causal_attn = true;
  1586. bool need_kq_pos = false;
  1587. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1588. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1589. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1590. bool operator!=(const llama_hparams & other) const {
  1591. if (this->vocab_only != other.vocab_only) return true;
  1592. if (this->n_vocab != other.n_vocab) return true;
  1593. if (this->n_ctx_train != other.n_ctx_train) return true;
  1594. if (this->n_embd != other.n_embd) return true;
  1595. if (this->n_head != other.n_head) return true;
  1596. if (this->n_head_kv != other.n_head_kv) return true;
  1597. if (this->n_layer != other.n_layer) return true;
  1598. if (this->n_rot != other.n_rot) return true;
  1599. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1600. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1601. if (this->n_ff != other.n_ff) return true;
  1602. if (this->n_expert != other.n_expert) return true;
  1603. if (this->n_expert_used != other.n_expert_used) return true;
  1604. if (this->rope_finetuned != other.rope_finetuned) return true;
  1605. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1606. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1607. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1608. if (this->ssm_d_state != other.ssm_d_state) return true;
  1609. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1610. const float EPSILON = 1e-9f;
  1611. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1612. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1613. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1614. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1615. return false;
  1616. }
  1617. uint32_t n_gqa() const {
  1618. if (n_head_kv == 0) {
  1619. return 0;
  1620. }
  1621. return n_head/n_head_kv;
  1622. }
  1623. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1624. return n_embd_head_k * n_head_kv;
  1625. }
  1626. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1627. return n_embd_head_v * n_head_kv;
  1628. }
  1629. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1630. // corresponds to Mamba's conv_states size
  1631. // TODO: maybe support other convolution strides than 1
  1632. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1633. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1634. }
  1635. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1636. // corresponds to Mamba's ssm_states size
  1637. return ssm_d_state * ssm_d_inner;
  1638. }
  1639. };
  1640. struct llama_cparams {
  1641. uint32_t n_ctx; // context size used during inference
  1642. uint32_t n_batch;
  1643. uint32_t n_ubatch;
  1644. uint32_t n_seq_max;
  1645. uint32_t n_threads; // number of threads to use for generation
  1646. uint32_t n_threads_batch; // number of threads to use for batch processing
  1647. float rope_freq_base;
  1648. float rope_freq_scale;
  1649. uint32_t n_yarn_orig_ctx;
  1650. // These hyperparameters are not exposed in GGUF, because all
  1651. // existing YaRN models use the same values for them.
  1652. float yarn_ext_factor;
  1653. float yarn_attn_factor;
  1654. float yarn_beta_fast;
  1655. float yarn_beta_slow;
  1656. float defrag_thold;
  1657. bool embeddings;
  1658. bool causal_attn;
  1659. bool offload_kqv;
  1660. enum llama_pooling_type pooling_type;
  1661. ggml_backend_sched_eval_callback cb_eval;
  1662. void * cb_eval_user_data;
  1663. };
  1664. struct llama_layer {
  1665. // normalization
  1666. struct ggml_tensor * attn_norm;
  1667. struct ggml_tensor * attn_norm_b;
  1668. struct ggml_tensor * attn_norm_2;
  1669. struct ggml_tensor * attn_norm_2_b;
  1670. struct ggml_tensor * attn_q_norm;
  1671. struct ggml_tensor * attn_q_norm_b;
  1672. struct ggml_tensor * attn_k_norm;
  1673. struct ggml_tensor * attn_k_norm_b;
  1674. struct ggml_tensor * attn_out_norm;
  1675. struct ggml_tensor * attn_out_norm_b;
  1676. // attention
  1677. struct ggml_tensor * wq;
  1678. struct ggml_tensor * wk;
  1679. struct ggml_tensor * wv;
  1680. struct ggml_tensor * wo;
  1681. struct ggml_tensor * wqkv;
  1682. // attention bias
  1683. struct ggml_tensor * bq;
  1684. struct ggml_tensor * bk;
  1685. struct ggml_tensor * bv;
  1686. struct ggml_tensor * bo;
  1687. struct ggml_tensor * bqkv;
  1688. // normalization
  1689. struct ggml_tensor * ffn_norm;
  1690. struct ggml_tensor * ffn_norm_b;
  1691. struct ggml_tensor * layer_out_norm;
  1692. struct ggml_tensor * layer_out_norm_b;
  1693. // ff
  1694. struct ggml_tensor * ffn_gate; // w1
  1695. struct ggml_tensor * ffn_down; // w2
  1696. struct ggml_tensor * ffn_up; // w3
  1697. // ff MoE
  1698. struct ggml_tensor * ffn_gate_inp;
  1699. struct ggml_tensor * ffn_gate_exps;
  1700. struct ggml_tensor * ffn_down_exps;
  1701. struct ggml_tensor * ffn_up_exps ;
  1702. // ff bias
  1703. struct ggml_tensor * ffn_down_b; // b2
  1704. struct ggml_tensor * ffn_up_b; // b3
  1705. struct ggml_tensor * ffn_act;
  1706. // mamba proj
  1707. struct ggml_tensor * ssm_in;
  1708. struct ggml_tensor * ssm_x;
  1709. struct ggml_tensor * ssm_dt;
  1710. struct ggml_tensor * ssm_out;
  1711. // mamba
  1712. struct ggml_tensor * ssm_conv1d;
  1713. struct ggml_tensor * ssm_a;
  1714. struct ggml_tensor * ssm_d;
  1715. // mamba bias
  1716. struct ggml_tensor * ssm_conv1d_b;
  1717. struct ggml_tensor * ssm_dt_b;
  1718. };
  1719. struct llama_kv_cell {
  1720. llama_pos pos = -1;
  1721. llama_pos delta = 0;
  1722. int32_t src = 0; // used by recurrent state models to copy states
  1723. std::set<llama_seq_id> seq_id;
  1724. bool has_seq_id(const llama_seq_id & id) const {
  1725. return seq_id.find(id) != seq_id.end();
  1726. }
  1727. bool is_empty() const {
  1728. return seq_id.empty();
  1729. }
  1730. bool is_same_seq(const llama_kv_cell & other) const {
  1731. return seq_id == other.seq_id;
  1732. }
  1733. };
  1734. // ring-buffer of cached KV data
  1735. struct llama_kv_cache {
  1736. bool has_shift = false;
  1737. bool do_defrag = false;
  1738. bool do_copy = false;
  1739. // with recurrent state models, a cell can hold the state for more than one past token
  1740. bool recurrent = false;
  1741. // Note: The value of head isn't only used to optimize searching
  1742. // for a free KV slot. llama_decode_internal also uses it, so it
  1743. // cannot be freely changed after a slot has been allocated.
  1744. uint32_t head = 0;
  1745. uint32_t size = 0;
  1746. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1747. // computed before each graph build
  1748. uint32_t n = 0;
  1749. ggml_type type_k = GGML_TYPE_F16;
  1750. ggml_type type_v = GGML_TYPE_F16;
  1751. std::vector<llama_kv_cell> cells;
  1752. std::vector<struct ggml_tensor *> k_l; // per layer
  1753. std::vector<struct ggml_tensor *> v_l;
  1754. std::vector<struct ggml_context *> ctxs;
  1755. std::vector<ggml_backend_buffer_t> bufs;
  1756. size_t total_size() const {
  1757. size_t size = 0;
  1758. for (ggml_backend_buffer_t buf : bufs) {
  1759. size += ggml_backend_buffer_get_size(buf);
  1760. }
  1761. return size;
  1762. }
  1763. ~llama_kv_cache() {
  1764. for (struct ggml_context * ctx : ctxs) {
  1765. ggml_free(ctx);
  1766. }
  1767. for (ggml_backend_buffer_t buf : bufs) {
  1768. ggml_backend_buffer_free(buf);
  1769. }
  1770. }
  1771. };
  1772. struct llama_control_vector {
  1773. std::vector<struct ggml_tensor *> tensors; // per layer
  1774. std::vector<struct ggml_context *> ctxs;
  1775. std::vector<ggml_backend_buffer_t> bufs;
  1776. int32_t layer_start = -1;
  1777. int32_t layer_end = -1;
  1778. ggml_tensor * tensor_for(int il) const {
  1779. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1780. return nullptr;
  1781. }
  1782. return tensors[il];
  1783. }
  1784. ~llama_control_vector() {
  1785. for (struct ggml_context * ctx : ctxs) {
  1786. ggml_free(ctx);
  1787. }
  1788. for (ggml_backend_buffer_t buf : bufs) {
  1789. ggml_backend_buffer_free(buf);
  1790. }
  1791. }
  1792. };
  1793. struct llama_vocab {
  1794. using id = int32_t;
  1795. using token = std::string;
  1796. using ttype = llama_token_type;
  1797. struct token_data {
  1798. token text;
  1799. float score;
  1800. ttype type;
  1801. };
  1802. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1803. std::unordered_map<token, id> token_to_id;
  1804. std::vector<token_data> id_to_token;
  1805. std::unordered_map<token, id> special_tokens_cache;
  1806. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1807. // default LLaMA special tokens
  1808. id special_bos_id = 1;
  1809. id special_eos_id = 2;
  1810. id special_unk_id = 0;
  1811. id special_sep_id = -1;
  1812. id special_pad_id = -1;
  1813. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1814. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1815. id linefeed_id = 13;
  1816. id special_prefix_id = 32007;
  1817. id special_middle_id = 32009;
  1818. id special_suffix_id = 32008;
  1819. id special_eot_id = 32010;
  1820. bool add_space_prefix = true;
  1821. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1822. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1823. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1824. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1825. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1826. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1827. if (it == bpe_ranks.end()) {
  1828. return -1;
  1829. }
  1830. return it->second;
  1831. }
  1832. };
  1833. struct llama_model {
  1834. e_model type = MODEL_UNKNOWN;
  1835. llm_arch arch = LLM_ARCH_UNKNOWN;
  1836. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1837. std::string name = "n/a";
  1838. llama_hparams hparams = {};
  1839. llama_vocab vocab;
  1840. struct ggml_tensor * tok_embd;
  1841. struct ggml_tensor * type_embd;
  1842. struct ggml_tensor * pos_embd;
  1843. struct ggml_tensor * tok_norm;
  1844. struct ggml_tensor * tok_norm_b;
  1845. struct ggml_tensor * output_norm;
  1846. struct ggml_tensor * output_norm_b;
  1847. struct ggml_tensor * output;
  1848. struct ggml_tensor * output_b;
  1849. std::vector<llama_layer> layers;
  1850. llama_split_mode split_mode;
  1851. int main_gpu;
  1852. int n_gpu_layers;
  1853. // gguf metadata
  1854. std::unordered_map<std::string, std::string> gguf_kv;
  1855. // layer -> buffer type mapping
  1856. struct layer_buft {
  1857. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1858. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1859. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1860. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1861. ggml_backend_buffer_type_t buft; // everything else
  1862. };
  1863. layer_buft buft_input;
  1864. layer_buft buft_output;
  1865. std::vector<layer_buft> buft_layer;
  1866. // contexts where the model tensors metadata is stored
  1867. std::vector<struct ggml_context *> ctxs;
  1868. // the model memory buffers for the tensor data
  1869. std::vector<ggml_backend_buffer_t> bufs;
  1870. // model memory mapped files
  1871. llama_mmaps mappings;
  1872. // objects representing data potentially being locked in memory
  1873. llama_mlocks mlock_bufs;
  1874. llama_mlocks mlock_mmaps;
  1875. // for quantize-stats only
  1876. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1877. int64_t t_load_us = 0;
  1878. int64_t t_start_us = 0;
  1879. ~llama_model() {
  1880. for (struct ggml_context * ctx : ctxs) {
  1881. ggml_free(ctx);
  1882. }
  1883. for (ggml_backend_buffer_t buf : bufs) {
  1884. #ifdef GGML_USE_CUDA
  1885. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1886. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1887. }
  1888. #endif
  1889. ggml_backend_buffer_free(buf);
  1890. }
  1891. }
  1892. };
  1893. struct llama_context {
  1894. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1895. ~llama_context() {
  1896. ggml_backend_sched_free(sched);
  1897. for (ggml_backend_t backend : backends) {
  1898. ggml_backend_free(backend);
  1899. }
  1900. ggml_backend_buffer_free(buf_output);
  1901. }
  1902. llama_cparams cparams;
  1903. std::vector<ggml_backend_t> backends;
  1904. #ifdef GGML_USE_METAL
  1905. ggml_backend_t backend_metal = nullptr;
  1906. #endif
  1907. ggml_backend_t backend_cpu = nullptr;
  1908. const llama_model & model;
  1909. // key + value cache for the self attention
  1910. struct llama_kv_cache kv_self;
  1911. std::mt19937 rng;
  1912. bool has_evaluated_once = false;
  1913. int64_t t_start_us;
  1914. int64_t t_load_us;
  1915. int64_t t_sample_us = 0;
  1916. int64_t t_p_eval_us = 0;
  1917. int64_t t_eval_us = 0;
  1918. int64_t t_compute_start_us = 0;
  1919. int64_t n_queued_tokens = 0;
  1920. int32_t n_sample = 0; // number of tokens sampled
  1921. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1922. int32_t n_eval = 0; // number of eval calls
  1923. // host buffer for the model output (logits and embeddings)
  1924. ggml_backend_buffer_t buf_output = nullptr;
  1925. // decode output (2-dimensional array: [n_outputs][n_vocab])
  1926. size_t logits_size = 0; // capacity (of floats) for logits
  1927. float * logits = nullptr;
  1928. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  1929. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  1930. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch
  1931. bool logits_all = false;
  1932. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  1933. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  1934. size_t embd_size = 0; // capacity (of floats) for embeddings
  1935. float * embd = nullptr;
  1936. // sequence embeddings output (map of [n_embd] vectors)
  1937. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  1938. std::map<llama_seq_id, std::vector<float>> embd_seq;
  1939. // memory buffers used to evaluate the model
  1940. std::vector<uint8_t> buf_compute_meta;
  1941. ggml_backend_sched_t sched = nullptr;
  1942. ggml_abort_callback abort_callback = nullptr;
  1943. void * abort_callback_data = nullptr;
  1944. // input tensors
  1945. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  1946. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  1947. struct ggml_tensor * inp_pos; // I32 [n_batch]
  1948. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  1949. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  1950. struct ggml_tensor * inp_KQ_pos; // F32 [n_kv]
  1951. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  1952. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  1953. struct ggml_tensor * inp_cls; // I32 [n_batch]
  1954. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  1955. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  1956. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  1957. // control vectors
  1958. struct llama_control_vector cvec;
  1959. #ifdef GGML_USE_MPI
  1960. ggml_mpi_context * ctx_mpi = NULL;
  1961. #endif
  1962. };
  1963. //
  1964. // kv cache helpers
  1965. //
  1966. static bool llama_kv_cache_init(
  1967. struct llama_kv_cache & cache,
  1968. const llama_model & model,
  1969. ggml_type type_k,
  1970. ggml_type type_v,
  1971. uint32_t kv_size,
  1972. bool offload) {
  1973. const struct llama_hparams & hparams = model.hparams;
  1974. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  1975. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  1976. const int64_t n_layer = hparams.n_layer;
  1977. cache.has_shift = false;
  1978. // TODO: find a nicer way to add other recurrent model architectures
  1979. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  1980. // TODO: support mixed reccurent Transformer architectues
  1981. // NOTE: (!a || b) is a logical implication (a -> b)
  1982. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  1983. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  1984. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  1985. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  1986. cache.head = 0;
  1987. cache.size = kv_size;
  1988. cache.used = 0;
  1989. cache.type_k = type_k;
  1990. cache.type_v = type_v;
  1991. cache.cells.clear();
  1992. cache.cells.resize(kv_size);
  1993. if (cache.recurrent) {
  1994. // init state copy sources
  1995. for (uint32_t i = 0; i < cache.size; ++i) {
  1996. cache.cells[i].src = i;
  1997. }
  1998. }
  1999. #ifdef GGML_USE_CLBLAST
  2000. offload = false;
  2001. #endif
  2002. // count used buffer types
  2003. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2004. if (offload) {
  2005. for (int64_t i = 0; i < n_layer; ++i) {
  2006. buft_layer_count[model.buft_layer[i].buft]++;
  2007. }
  2008. } else {
  2009. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2010. }
  2011. // create a context for each buffer type
  2012. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2013. for (auto & it : buft_layer_count) {
  2014. int n_layers = it.second;
  2015. struct ggml_init_params params = {
  2016. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2017. /*.mem_buffer =*/ NULL,
  2018. /*.no_alloc =*/ true,
  2019. };
  2020. ggml_context * ctx = ggml_init(params);
  2021. if (!ctx) {
  2022. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2023. return false;
  2024. }
  2025. ctx_map[it.first] = ctx;
  2026. cache.ctxs.push_back(ctx);
  2027. }
  2028. cache.k_l.reserve(n_layer);
  2029. cache.v_l.reserve(n_layer);
  2030. for (int i = 0; i < (int) n_layer; i++) {
  2031. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2032. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2033. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2034. ggml_format_name(k, "cache_k_l%d", i);
  2035. ggml_format_name(v, "cache_v_l%d", i);
  2036. cache.k_l.push_back(k);
  2037. cache.v_l.push_back(v);
  2038. }
  2039. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2040. for (auto it : ctx_map) {
  2041. ggml_backend_buffer_type_t buft = it.first;
  2042. ggml_context * ctx = it.second;
  2043. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2044. if (!buf) {
  2045. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2046. return false;
  2047. }
  2048. ggml_backend_buffer_clear(buf, 0);
  2049. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2050. cache.bufs.push_back(buf);
  2051. }
  2052. return true;
  2053. }
  2054. // find an empty slot of size "n_tokens" in the cache
  2055. // updates the cache head
  2056. // Note: On success, it's important that cache.head points
  2057. // to the first cell of the slot.
  2058. static bool llama_kv_cache_find_slot(
  2059. struct llama_kv_cache & cache,
  2060. const struct llama_batch & batch) {
  2061. const uint32_t n_ctx = cache.size;
  2062. const uint32_t n_tokens = batch.n_tokens;
  2063. if (cache.recurrent) {
  2064. // For recurrent state architectures (like Mamba),
  2065. // each KV cache cell can store the state for a whole sequence.
  2066. llama_seq_id min = cache.size - 1;
  2067. llama_seq_id max = 0;
  2068. for (uint32_t i = 0; i < n_tokens; ++i) {
  2069. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2070. llama_seq_id seq_id = batch.seq_id[i][j];
  2071. // make sure it's a valid seq_id
  2072. if ((uint32_t) seq_id < cache.size) {
  2073. if (seq_id > max) {
  2074. max = seq_id;
  2075. }
  2076. if (seq_id < min) {
  2077. min = seq_id;
  2078. }
  2079. // Assuming the tokens are in-order
  2080. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2081. // What should happen when the pos backtracks or skips a value?
  2082. // Clearing the state mid-batch would require special-casing which isn't done.
  2083. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2084. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2085. }
  2086. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2087. cache.used += 1;
  2088. }
  2089. cache.cells[seq_id].pos = batch.pos[i];
  2090. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2091. } else {
  2092. // too big seq_id
  2093. // TODO: would it be possible to resize the KV cache size instead?
  2094. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2095. return false;
  2096. }
  2097. }
  2098. }
  2099. // allow getting the range of used cells, from head to head + n
  2100. cache.head = min;
  2101. cache.n = max - min + 1;
  2102. // sanity check
  2103. return max >= min;
  2104. }
  2105. // otherwise, one cell per token.
  2106. if (n_tokens > n_ctx) {
  2107. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2108. return false;
  2109. }
  2110. uint32_t n_tested = 0;
  2111. while (true) {
  2112. if (cache.head + n_tokens > n_ctx) {
  2113. n_tested += n_ctx - cache.head;
  2114. cache.head = 0;
  2115. continue;
  2116. }
  2117. bool found = true;
  2118. for (uint32_t i = 0; i < n_tokens; i++) {
  2119. if (cache.cells[cache.head + i].pos >= 0) {
  2120. found = false;
  2121. cache.head += i + 1;
  2122. n_tested += i + 1;
  2123. break;
  2124. }
  2125. }
  2126. if (found) {
  2127. break;
  2128. }
  2129. if (n_tested >= n_ctx) {
  2130. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2131. return false;
  2132. }
  2133. }
  2134. for (uint32_t i = 0; i < n_tokens; i++) {
  2135. cache.cells[cache.head + i].pos = batch.pos[i];
  2136. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2137. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2138. }
  2139. }
  2140. cache.used += n_tokens;
  2141. return true;
  2142. }
  2143. // find how many cells are currently in use
  2144. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2145. for (uint32_t i = cache.size; i > 0; --i) {
  2146. const llama_kv_cell & cell = cache.cells[i - 1];
  2147. if (cell.pos >= 0 && !cell.is_empty()) {
  2148. return i;
  2149. }
  2150. }
  2151. return 0;
  2152. }
  2153. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2154. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2155. cache.cells[i].pos = -1;
  2156. cache.cells[i].seq_id.clear();
  2157. }
  2158. cache.head = 0;
  2159. cache.used = 0;
  2160. }
  2161. static bool llama_kv_cache_seq_rm(
  2162. struct llama_kv_cache & cache,
  2163. llama_seq_id seq_id,
  2164. llama_pos p0,
  2165. llama_pos p1) {
  2166. uint32_t new_head = cache.size;
  2167. if (p0 < 0) p0 = 0;
  2168. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2169. // models like Mamba can't have a state partially erased
  2170. if (cache.recurrent) {
  2171. if (seq_id >= (int64_t) cache.size) {
  2172. // could be fatal
  2173. return false;
  2174. }
  2175. if (0 <= seq_id) {
  2176. // partial intersection is invalid
  2177. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2178. return false;
  2179. }
  2180. } else {
  2181. // seq_id is negative, then the range should include everything or nothing
  2182. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2183. return false;
  2184. }
  2185. }
  2186. }
  2187. for (uint32_t i = 0; i < cache.size; ++i) {
  2188. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2189. if (seq_id < 0) {
  2190. cache.cells[i].seq_id.clear();
  2191. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2192. cache.cells[i].seq_id.erase(seq_id);
  2193. } else {
  2194. continue;
  2195. }
  2196. if (cache.cells[i].is_empty()) {
  2197. // keep count of the number of used cells
  2198. if (cache.cells[i].pos >= 0) cache.used--;
  2199. cache.cells[i].pos = -1;
  2200. if (new_head == cache.size) new_head = i;
  2201. }
  2202. }
  2203. }
  2204. // If we freed up a slot, set head to it so searching can start there.
  2205. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2206. return true;
  2207. }
  2208. static void llama_kv_cache_seq_cp(
  2209. struct llama_kv_cache & cache,
  2210. llama_seq_id seq_id_src,
  2211. llama_seq_id seq_id_dst,
  2212. llama_pos p0,
  2213. llama_pos p1) {
  2214. if (p0 < 0) p0 = 0;
  2215. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2216. if (cache.recurrent) {
  2217. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2218. seq_id_src = cache.cells[seq_id_src].src;
  2219. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2220. // intent to "copy from"
  2221. // supports copy chains thanks to taking the source of the source
  2222. cache.cells[seq_id_dst].src = seq_id_src;
  2223. // preserve the "keep or clear" status of the copied sequence
  2224. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2225. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2226. } else {
  2227. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2228. }
  2229. cache.do_copy = true;
  2230. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2231. }
  2232. return;
  2233. }
  2234. // otherwise, this is the KV cache of a Transformer-like model
  2235. cache.head = 0;
  2236. for (uint32_t i = 0; i < cache.size; ++i) {
  2237. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2238. cache.cells[i].seq_id.insert(seq_id_dst);
  2239. }
  2240. }
  2241. }
  2242. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2243. uint32_t new_head = cache.size;
  2244. for (uint32_t i = 0; i < cache.size; ++i) {
  2245. if (!cache.cells[i].has_seq_id(seq_id)) {
  2246. if (cache.cells[i].pos >= 0) cache.used--;
  2247. cache.cells[i].pos = -1;
  2248. cache.cells[i].seq_id.clear();
  2249. if (new_head == cache.size) new_head = i;
  2250. } else {
  2251. cache.cells[i].seq_id.clear();
  2252. cache.cells[i].seq_id.insert(seq_id);
  2253. }
  2254. }
  2255. // If we freed up a slot, set head to it so searching can start there.
  2256. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2257. }
  2258. static void llama_kv_cache_seq_add(
  2259. struct llama_kv_cache & cache,
  2260. llama_seq_id seq_id,
  2261. llama_pos p0,
  2262. llama_pos p1,
  2263. llama_pos delta) {
  2264. uint32_t new_head = cache.size;
  2265. if (p0 < 0) p0 = 0;
  2266. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2267. if (cache.recurrent) {
  2268. // for Mamba-like models, only the pos needs to be shifted
  2269. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2270. llama_kv_cell & cell = cache.cells[seq_id];
  2271. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2272. cell.pos += delta;
  2273. }
  2274. }
  2275. return;
  2276. }
  2277. for (uint32_t i = 0; i < cache.size; ++i) {
  2278. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2279. cache.has_shift = true;
  2280. cache.cells[i].pos += delta;
  2281. cache.cells[i].delta += delta;
  2282. if (cache.cells[i].pos < 0) {
  2283. if (!cache.cells[i].is_empty()) {
  2284. cache.used--;
  2285. }
  2286. cache.cells[i].pos = -1;
  2287. cache.cells[i].seq_id.clear();
  2288. if (new_head == cache.size) {
  2289. new_head = i;
  2290. }
  2291. }
  2292. }
  2293. }
  2294. // If we freed up a slot, set head to it so searching can start there.
  2295. // Otherwise we just start the next search from the beginning.
  2296. cache.head = new_head != cache.size ? new_head : 0;
  2297. }
  2298. static void llama_kv_cache_seq_div(
  2299. struct llama_kv_cache & cache,
  2300. llama_seq_id seq_id,
  2301. llama_pos p0,
  2302. llama_pos p1,
  2303. int d) {
  2304. if (p0 < 0) p0 = 0;
  2305. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2306. if (cache.recurrent) {
  2307. // for Mamba-like models, only the pos needs to be changed
  2308. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2309. llama_kv_cell & cell = cache.cells[seq_id];
  2310. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2311. cell.pos /= d;
  2312. }
  2313. }
  2314. return;
  2315. }
  2316. for (uint32_t i = 0; i < cache.size; ++i) {
  2317. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2318. cache.has_shift = true;
  2319. {
  2320. llama_pos p_old = cache.cells[i].pos;
  2321. cache.cells[i].pos /= d;
  2322. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2323. }
  2324. }
  2325. }
  2326. }
  2327. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2328. llama_pos result = 0;
  2329. for (uint32_t i = 0; i < cache.size; ++i) {
  2330. if (cache.cells[i].has_seq_id(seq_id)) {
  2331. result = std::max(result, cache.cells[i].pos);
  2332. }
  2333. }
  2334. return result;
  2335. }
  2336. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2337. cache.do_defrag = true;
  2338. }
  2339. //
  2340. // model loading and saving
  2341. //
  2342. enum llama_fver {
  2343. GGUF_FILE_VERSION_V1 = 1,
  2344. GGUF_FILE_VERSION_V2 = 2,
  2345. GGUF_FILE_VERSION_V3 = 3,
  2346. };
  2347. static const char * llama_file_version_name(llama_fver version) {
  2348. switch (version) {
  2349. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2350. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2351. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2352. }
  2353. return "unknown";
  2354. }
  2355. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2356. char buf[256];
  2357. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2358. for (size_t i = 1; i < ne.size(); i++) {
  2359. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2360. }
  2361. return buf;
  2362. }
  2363. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2364. char buf[256];
  2365. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2366. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2367. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2368. }
  2369. return buf;
  2370. }
  2371. namespace GGUFMeta {
  2372. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2373. struct GKV_Base_Type {
  2374. static constexpr gguf_type gt = gt_;
  2375. static T getter(const gguf_context * ctx, const int kid) {
  2376. return gfun(ctx, kid);
  2377. }
  2378. };
  2379. template<typename T> struct GKV_Base;
  2380. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2381. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2382. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2383. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2384. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2385. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2386. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2387. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2388. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2389. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2390. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2391. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2392. template<> struct GKV_Base<std::string> {
  2393. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2394. static std::string getter(const gguf_context * ctx, const int kid) {
  2395. return gguf_get_val_str(ctx, kid);
  2396. }
  2397. };
  2398. struct ArrayInfo {
  2399. const gguf_type gt;
  2400. const size_t length;
  2401. const void * data;
  2402. };
  2403. template<> struct GKV_Base<ArrayInfo> {
  2404. public:
  2405. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2406. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2407. return ArrayInfo {
  2408. gguf_get_arr_type(ctx, k),
  2409. size_t(gguf_get_arr_n(ctx, k)),
  2410. gguf_get_arr_data(ctx, k),
  2411. };
  2412. }
  2413. };
  2414. template<typename T>
  2415. class GKV : public GKV_Base<T> {
  2416. GKV() = delete;
  2417. public:
  2418. static T get_kv(const gguf_context * ctx, const int k) {
  2419. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2420. if (kt != GKV::gt) {
  2421. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2422. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2423. }
  2424. return GKV::getter(ctx, k);
  2425. }
  2426. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2427. switch (ty) {
  2428. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2429. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2430. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2431. }
  2432. return "unknown";
  2433. }
  2434. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2435. if (!ovrd) { return false; }
  2436. if (ovrd->tag == expected_type) {
  2437. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2438. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2439. switch (ovrd->tag) {
  2440. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2441. LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false");
  2442. } break;
  2443. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2444. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value);
  2445. } break;
  2446. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2447. LLAMA_LOG_INFO("%.6f\n", ovrd->float_value);
  2448. } break;
  2449. default:
  2450. // Shouldn't be possible to end up here, but just in case...
  2451. throw std::runtime_error(
  2452. format("Unsupported attempt to override %s type for metadata key %s\n",
  2453. override_type_to_str(ovrd->tag), ovrd->key));
  2454. }
  2455. return true;
  2456. }
  2457. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2458. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2459. return false;
  2460. }
  2461. template<typename OT>
  2462. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2463. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2464. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2465. target = ovrd->bool_value;
  2466. return true;
  2467. }
  2468. return false;
  2469. }
  2470. template<typename OT>
  2471. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2472. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2473. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2474. target = ovrd->int_value;
  2475. return true;
  2476. }
  2477. return false;
  2478. }
  2479. template<typename OT>
  2480. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2481. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2482. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2483. target = ovrd->float_value;
  2484. return true;
  2485. }
  2486. return false;
  2487. }
  2488. template<typename OT>
  2489. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2490. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2491. (void)target;
  2492. (void)ovrd;
  2493. if (!ovrd) { return false; }
  2494. // Currently, we should never end up here so it would be a bug if we do.
  2495. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
  2496. ovrd ? ovrd->key : "NULL"));
  2497. }
  2498. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2499. if (try_override<T>(target, ovrd)) {
  2500. return true;
  2501. }
  2502. if (k < 0) { return false; }
  2503. target = get_kv(ctx, k);
  2504. return true;
  2505. }
  2506. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2507. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2508. }
  2509. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2510. return set(ctx, key.c_str(), target, ovrd);
  2511. }
  2512. };
  2513. }
  2514. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2515. struct llama_model_loader {
  2516. int n_kv = 0;
  2517. int n_tensors = 0;
  2518. int n_created = 0;
  2519. int64_t n_elements = 0;
  2520. size_t n_bytes = 0;
  2521. bool use_mmap = false;
  2522. llama_files files;
  2523. llama_ftype ftype;
  2524. llama_fver fver;
  2525. llama_mmaps mappings;
  2526. // Holds information on a model weight
  2527. struct llama_tensor_weight {
  2528. uint16_t idx; // source file index
  2529. size_t offs; // tensor data offset in the original file
  2530. ggml_tensor * tensor;
  2531. llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2532. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2533. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2534. }
  2535. };
  2536. std::vector<llama_tensor_weight> weights;
  2537. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2538. struct gguf_context * meta = NULL;
  2539. std::vector<ggml_context *> contexts;
  2540. std::string arch_name;
  2541. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2542. llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
  2543. int trace = 0;
  2544. if (getenv("LLAMA_TRACE")) {
  2545. trace = atoi(getenv("LLAMA_TRACE"));
  2546. }
  2547. if (param_overrides_p != nullptr) {
  2548. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2549. kv_overrides.insert({std::string(p->key), *p});
  2550. }
  2551. }
  2552. struct ggml_context * ctx = NULL;
  2553. struct gguf_init_params params = {
  2554. /*.no_alloc = */ true,
  2555. /*.ctx = */ &ctx,
  2556. };
  2557. meta = gguf_init_from_file(fname.c_str(), params);
  2558. if (!meta) {
  2559. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2560. }
  2561. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2562. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2563. // Save tensors data offset of the main file.
  2564. // For subsidiary files, `meta` tensor data offset must not be used,
  2565. // so we build a unified tensors index for weights.
  2566. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2567. weights.emplace_back(0, cur->name, meta, cur);
  2568. }
  2569. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2570. contexts.emplace_back(ctx);
  2571. uint16_t n_split = 0;
  2572. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2573. // Load additional GGML contexts
  2574. if (n_split > 1) {
  2575. uint16_t idx = 0;
  2576. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2577. if (idx != 0) {
  2578. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2579. }
  2580. char split_prefix[PATH_MAX] = {0};
  2581. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2582. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2583. }
  2584. if (trace > 0) {
  2585. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2586. }
  2587. char split_path[PATH_MAX] = {0};
  2588. for (idx = 1; idx < n_split; idx++) {
  2589. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2590. struct gguf_init_params split_params = {
  2591. /*.no_alloc = */ true,
  2592. /*.ctx = */ &ctx,
  2593. };
  2594. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2595. if (!ctx_gguf) {
  2596. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2597. }
  2598. // Save tensors data offset info of the shard.
  2599. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2600. weights.emplace_back(idx, cur->name, ctx_gguf, cur);
  2601. }
  2602. files.emplace_back(new llama_file(split_path, "rb"));
  2603. contexts.emplace_back(ctx);
  2604. gguf_free(ctx_gguf);
  2605. }
  2606. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2607. // sanity check
  2608. {
  2609. const int n_tensors_loaded = (int) weights.size();
  2610. if (n_tensors != n_tensors_loaded) {
  2611. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2612. }
  2613. }
  2614. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2615. }
  2616. n_kv = gguf_get_n_kv(meta);
  2617. n_tensors = weights.size();
  2618. fver = (enum llama_fver) gguf_get_version(meta);
  2619. for (auto & w : weights) {
  2620. n_elements += ggml_nelements(w.tensor);
  2621. n_bytes += ggml_nbytes(w.tensor);
  2622. }
  2623. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2624. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2625. // determine file type based on the number of tensors for each quantization and print meta data
  2626. // TODO: make optional
  2627. {
  2628. std::map<enum ggml_type, uint32_t> n_type;
  2629. uint32_t n_type_max = 0;
  2630. enum ggml_type type_max = GGML_TYPE_F32;
  2631. for (int i = 0; i < n_tensors; i++) {
  2632. const ggml_tensor * tensor = weights.at(i).tensor;
  2633. enum ggml_type type = tensor->type;
  2634. n_type[type]++;
  2635. if (n_type_max < n_type[type]) {
  2636. n_type_max = n_type[type];
  2637. type_max = type;
  2638. }
  2639. if (trace > 0) {
  2640. const uint16_t sid = weights.at(i).idx;
  2641. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2642. }
  2643. }
  2644. switch (type_max) {
  2645. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2646. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2647. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2648. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2649. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2650. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2651. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2652. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2653. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2654. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2655. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2656. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2657. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2658. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2659. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2660. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2661. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2662. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2663. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2664. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2665. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2666. default:
  2667. {
  2668. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2669. ftype = LLAMA_FTYPE_ALL_F32;
  2670. } break;
  2671. }
  2672. // this is a way to mark that we have "guessed" the file type
  2673. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2674. {
  2675. const int kid = gguf_find_key(meta, "general.file_type");
  2676. if (kid >= 0) {
  2677. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2678. }
  2679. }
  2680. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2681. for (int i = 0; i < n_kv; i++) {
  2682. const char * name = gguf_get_key(meta, i);
  2683. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2684. const std::string type_name =
  2685. type == GGUF_TYPE_ARRAY
  2686. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2687. : gguf_type_name(type);
  2688. std::string value = gguf_kv_to_str(meta, i);
  2689. const size_t MAX_VALUE_LEN = 40;
  2690. if (value.size() > MAX_VALUE_LEN) {
  2691. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2692. }
  2693. replace_all(value, "\n", "\\n");
  2694. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2695. }
  2696. // print type counts
  2697. for (auto & kv : n_type) {
  2698. if (kv.second == 0) {
  2699. continue;
  2700. }
  2701. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2702. }
  2703. }
  2704. if (!llama_mmap::SUPPORTED) {
  2705. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2706. use_mmap = false;
  2707. }
  2708. this->use_mmap = use_mmap;
  2709. }
  2710. ~llama_model_loader() {
  2711. if (meta) {
  2712. gguf_free(meta);
  2713. }
  2714. for (auto * ctx : contexts) {
  2715. ggml_free(ctx);
  2716. }
  2717. }
  2718. template<typename T>
  2719. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2720. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2721. const int kid = gguf_find_key(meta, key.c_str());
  2722. if (kid < 0) {
  2723. if (required) {
  2724. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2725. }
  2726. return false;
  2727. }
  2728. struct GGUFMeta::ArrayInfo arr_info =
  2729. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2730. result = arr_info.length;
  2731. return true;
  2732. }
  2733. template<typename T>
  2734. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2735. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2736. return get_arr_n(llm_kv(kid), result, required);
  2737. }
  2738. template<typename T>
  2739. bool get_key(const std::string & key, T & result, const bool required = true) {
  2740. auto it = kv_overrides.find(key);
  2741. const struct llama_model_kv_override * override =
  2742. it != kv_overrides.end() ? &it->second : nullptr;
  2743. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2744. if (required && !found) {
  2745. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2746. }
  2747. return found;
  2748. }
  2749. template<typename T>
  2750. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2751. return get_key(llm_kv(kid), result, required);
  2752. }
  2753. std::string get_arch_name() const {
  2754. return arch_name;
  2755. }
  2756. enum llm_arch get_arch() const {
  2757. return llm_kv.arch;
  2758. }
  2759. const char * get_tensor_name(int i) const {
  2760. return weights.at(i).tensor->name;
  2761. }
  2762. const llama_tensor_weight * get_weight(const char * name) const {
  2763. for (const auto & weight : weights) {
  2764. if (strcmp(name, weight.tensor->name) == 0) {
  2765. return &weight;
  2766. }
  2767. }
  2768. return nullptr;
  2769. }
  2770. const llama_tensor_weight & require_weight(const char * name) const {
  2771. const llama_tensor_weight * weight = get_weight(name);
  2772. if (!weight) {
  2773. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2774. }
  2775. return *weight;
  2776. }
  2777. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2778. const auto * weight = get_weight(name);
  2779. if (!weight) {
  2780. return nullptr;
  2781. }
  2782. return weight->tensor;
  2783. }
  2784. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2785. struct ggml_tensor * tensor = get_tensor_meta(name);
  2786. if (!tensor) {
  2787. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2788. }
  2789. return tensor;
  2790. }
  2791. struct ggml_tensor * get_tensor_meta(int i) const {
  2792. return get_tensor_meta(get_tensor_name(i));
  2793. }
  2794. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2795. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2796. ggml_set_name(tensor, ggml_get_name(cur));
  2797. n_created++;
  2798. return tensor;
  2799. }
  2800. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2801. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2802. if (cur == NULL) {
  2803. if (!required) {
  2804. return NULL;
  2805. }
  2806. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2807. }
  2808. {
  2809. bool is_ok = true;
  2810. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2811. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2812. is_ok = false;
  2813. break;
  2814. }
  2815. }
  2816. if (!is_ok) {
  2817. throw std::runtime_error(
  2818. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2819. __func__, name.c_str(),
  2820. llama_format_tensor_shape(ne).c_str(),
  2821. llama_format_tensor_shape(cur).c_str()));
  2822. }
  2823. }
  2824. return cur;
  2825. }
  2826. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2827. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2828. if (cur == NULL) {
  2829. return NULL;
  2830. }
  2831. return create_tensor_for(ctx, cur);
  2832. }
  2833. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  2834. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2835. if (cur == NULL) {
  2836. return NULL;
  2837. }
  2838. if (cur->type != base->type) {
  2839. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  2840. }
  2841. std::array<int64_t, GGML_MAX_DIMS> dims;
  2842. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2843. dims[i] = i < ne.size() ? ne[i] : 1;
  2844. }
  2845. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  2846. dims[0], dims[1], dims[2], dims[3],
  2847. cur->nb[1], cur->nb[2], cur->nb[3],
  2848. offset);
  2849. ggml_set_name(tensor, name.c_str());
  2850. n_created++;
  2851. return tensor;
  2852. }
  2853. void done_getting_tensors() const {
  2854. if (n_created != n_tensors) {
  2855. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2856. }
  2857. }
  2858. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  2859. if (use_mmap) {
  2860. mappings.reserve(files.size());
  2861. mmaps_used.reserve(files.size());
  2862. for (const auto & file : files) {
  2863. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  2864. mmaps_used.emplace_back(mapping->size, 0);
  2865. if (mlock_mmaps) {
  2866. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  2867. mlock_mmap->init(mapping->addr);
  2868. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  2869. }
  2870. mappings.emplace_back(std::move(mapping));
  2871. }
  2872. }
  2873. // compute the total size of all tensors for progress reporting
  2874. for (auto & w : weights) {
  2875. size_data += ggml_nbytes(w.tensor);
  2876. }
  2877. }
  2878. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  2879. GGML_ASSERT(!mappings.empty());
  2880. const auto & mapping = mappings.at(idx);
  2881. *first = mapping->size;
  2882. *last = 0;
  2883. *addr = mapping->addr;
  2884. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2885. try {
  2886. const auto * weight = get_weight(ggml_get_name(tensor));
  2887. if (!weight) {
  2888. continue;
  2889. }
  2890. if (weight->idx != idx) {
  2891. continue;
  2892. }
  2893. *first = std::min(*first, weight->offs);
  2894. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  2895. } catch(...) {
  2896. // the tensor is not in the model
  2897. }
  2898. }
  2899. }
  2900. // for backwards compatibility, does not support ggml-backend
  2901. void load_data_for(struct ggml_tensor * cur) const {
  2902. const auto & w = require_weight(ggml_get_name(cur));
  2903. if (use_mmap) {
  2904. const auto & mapping = mappings.at(w.idx);
  2905. if (cur->data == nullptr) {
  2906. cur->data = (uint8_t *)mapping->addr + w.offs;
  2907. } else {
  2908. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  2909. }
  2910. } else {
  2911. GGML_ASSERT(cur->data != nullptr);
  2912. GGML_ASSERT(w.idx < files.size());
  2913. const auto & file = files.at(w.idx);
  2914. file->seek(w.offs, SEEK_SET);
  2915. file->read_raw(cur->data, ggml_nbytes(cur));
  2916. }
  2917. }
  2918. size_t size_done = 0;
  2919. size_t size_data = 0;
  2920. std::vector<std::pair<size_t, size_t>> mmaps_used;
  2921. // Returns false if cancelled by progress_callback
  2922. bool load_all_data(
  2923. struct ggml_context * ctx,
  2924. llama_buf_map & bufs_mmap,
  2925. llama_mlocks * lmlocks,
  2926. llama_progress_callback progress_callback,
  2927. void * progress_callback_user_data) {
  2928. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  2929. std::vector<no_init<uint8_t>> read_buf;
  2930. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  2931. const auto * weight = get_weight(ggml_get_name(cur));
  2932. if (weight == nullptr) {
  2933. // this can happen with split experts models
  2934. continue;
  2935. }
  2936. if (progress_callback) {
  2937. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  2938. return false;
  2939. }
  2940. }
  2941. size_t n_size = ggml_nbytes(cur);
  2942. if (use_mmap) {
  2943. const auto & mapping = mappings.at(weight->idx);
  2944. ggml_backend_buffer_t buf_mmap = nullptr;
  2945. if (bufs_mmap.count(weight->idx)) {
  2946. buf_mmap = bufs_mmap.at(weight->idx);
  2947. }
  2948. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  2949. if (buf_mmap && cur->data == nullptr) {
  2950. ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
  2951. if (lmlocks) {
  2952. const auto & lmlock = lmlocks->at(weight->idx);
  2953. lmlock->grow_to(weight->offs + ggml_nbytes(cur));
  2954. }
  2955. auto & mmap_used = mmaps_used[weight->idx];
  2956. mmap_used.first = std::min(mmap_used.first, weight->offs);
  2957. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  2958. } else {
  2959. ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
  2960. }
  2961. } else {
  2962. GGML_ASSERT(weight->idx < files.size());
  2963. const auto & file = files.at(weight->idx);
  2964. if (ggml_backend_buffer_is_host(cur->buffer)) {
  2965. file->seek(weight->offs, SEEK_SET);
  2966. file->read_raw(cur->data, ggml_nbytes(cur));
  2967. } else {
  2968. read_buf.resize(ggml_nbytes(cur));
  2969. file->seek(weight->offs, SEEK_SET);
  2970. file->read_raw(read_buf.data(), ggml_nbytes(cur));
  2971. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  2972. }
  2973. }
  2974. size_done += n_size;
  2975. }
  2976. // check if this is the last call and do final cleanup
  2977. if (size_done >= size_data) {
  2978. // unmap offloaded tensors and metadata
  2979. if (use_mmap) {
  2980. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  2981. const auto & mmap_used = mmaps_used.at(idx);
  2982. auto & mapping = mappings.at(idx);
  2983. mapping->unmap_fragment(0, mmap_used.first);
  2984. if (mmap_used.second != 0) {
  2985. mapping->unmap_fragment(mmap_used.second, mapping->size);
  2986. }
  2987. }
  2988. }
  2989. if (progress_callback) {
  2990. // Even though the model is done loading, we still honor
  2991. // cancellation since we need to free allocations.
  2992. return progress_callback(1.0f, progress_callback_user_data);
  2993. }
  2994. }
  2995. return true;
  2996. }
  2997. };
  2998. template<>
  2999. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3000. uint32_t tmp;
  3001. const bool found = get_key(kid, tmp, required);
  3002. if (found) {
  3003. result = (enum llama_pooling_type) tmp;
  3004. } else {
  3005. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3006. }
  3007. return found;
  3008. }
  3009. //
  3010. // load LLaMA models
  3011. //
  3012. static const char * llama_model_arch_name(llm_arch arch) {
  3013. auto it = LLM_ARCH_NAMES.find(arch);
  3014. if (it == LLM_ARCH_NAMES.end()) {
  3015. return "unknown";
  3016. }
  3017. return it->second;
  3018. }
  3019. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3020. if (ftype & LLAMA_FTYPE_GUESSED) {
  3021. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3022. }
  3023. switch (ftype) {
  3024. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3025. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3026. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3027. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3028. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3029. return "Q4_1, some F16";
  3030. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3031. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3032. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3033. // K-quants
  3034. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3035. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3036. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3037. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3038. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3039. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3040. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3041. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3042. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3043. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3044. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3045. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3046. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3047. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3048. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3049. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3050. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3051. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3052. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3053. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3054. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3055. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3056. default: return "unknown, may not work";
  3057. }
  3058. }
  3059. static const char * llama_model_type_name(e_model type) {
  3060. switch (type) {
  3061. case MODEL_22M: return "22M";
  3062. case MODEL_33M: return "33M";
  3063. case MODEL_109M: return "109M";
  3064. case MODEL_137M: return "137M";
  3065. case MODEL_0_5B: return "0.5B";
  3066. case MODEL_1B: return "1B";
  3067. case MODEL_2B: return "2B";
  3068. case MODEL_3B: return "3B";
  3069. case MODEL_7B: return "7B";
  3070. case MODEL_8B: return "8B";
  3071. case MODEL_13B: return "13B";
  3072. case MODEL_14B: return "14B";
  3073. case MODEL_15B: return "15B";
  3074. case MODEL_20B: return "20B";
  3075. case MODEL_30B: return "30B";
  3076. case MODEL_34B: return "34B";
  3077. case MODEL_35B: return "35B";
  3078. case MODEL_40B: return "40B";
  3079. case MODEL_65B: return "65B";
  3080. case MODEL_70B: return "70B";
  3081. case MODEL_314B: return "314B";
  3082. case MODEL_SMALL: return "0.1B";
  3083. case MODEL_MEDIUM: return "0.4B";
  3084. case MODEL_LARGE: return "0.8B";
  3085. case MODEL_XL: return "1.5B";
  3086. default: return "?B";
  3087. }
  3088. }
  3089. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3090. switch (type) {
  3091. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3092. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3093. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3094. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3095. default: return "unknown";
  3096. }
  3097. }
  3098. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3099. model.arch = ml.get_arch();
  3100. if (model.arch == LLM_ARCH_UNKNOWN) {
  3101. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3102. }
  3103. }
  3104. static void llm_load_hparams(
  3105. llama_model_loader & ml,
  3106. llama_model & model) {
  3107. auto & hparams = model.hparams;
  3108. const gguf_context * ctx = ml.meta;
  3109. // get metadata as string
  3110. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3111. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3112. if (type == GGUF_TYPE_ARRAY) {
  3113. continue;
  3114. }
  3115. const char * name = gguf_get_key(ctx, i);
  3116. const std::string value = gguf_kv_to_str(ctx, i);
  3117. model.gguf_kv.emplace(name, value);
  3118. }
  3119. // get general kv
  3120. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3121. // get hparams kv
  3122. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3123. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3124. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3125. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3126. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3127. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3128. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3129. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3130. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3131. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3132. if (hparams.n_expert > 0) {
  3133. GGML_ASSERT(hparams.n_expert_used > 0);
  3134. } else {
  3135. GGML_ASSERT(hparams.n_expert_used == 0);
  3136. }
  3137. // n_head_kv is optional, default to n_head
  3138. hparams.n_head_kv = hparams.n_head;
  3139. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3140. bool rope_finetuned = false;
  3141. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3142. hparams.rope_finetuned = rope_finetuned;
  3143. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3144. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3145. // rope_freq_base (optional)
  3146. hparams.rope_freq_base_train = 10000.0f;
  3147. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3148. std::string rope_scaling("linear");
  3149. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3150. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3151. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3152. // rope_freq_scale (inverse of the kv) is optional
  3153. float ropescale = 0.0f;
  3154. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3155. // try the old key name
  3156. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3157. }
  3158. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3159. // sanity check for n_rot (optional)
  3160. {
  3161. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3162. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3163. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3164. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3165. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3166. }
  3167. }
  3168. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3169. // gpt-j n_rot = rotary_dim
  3170. }
  3171. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3172. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3173. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3174. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3175. // arch-specific KVs
  3176. switch (model.arch) {
  3177. case LLM_ARCH_LLAMA:
  3178. {
  3179. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3180. switch (hparams.n_layer) {
  3181. case 22: model.type = e_model::MODEL_1B; break;
  3182. case 26: model.type = e_model::MODEL_3B; break;
  3183. case 32: model.type = e_model::MODEL_7B; break;
  3184. case 40: model.type = e_model::MODEL_13B; break;
  3185. case 48: model.type = e_model::MODEL_34B; break;
  3186. case 60: model.type = e_model::MODEL_30B; break;
  3187. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3188. default: model.type = e_model::MODEL_UNKNOWN;
  3189. }
  3190. } break;
  3191. case LLM_ARCH_MINICPM:
  3192. {
  3193. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3194. switch (hparams.n_layer) {
  3195. case 40: model.type = e_model::MODEL_2B; break;
  3196. default: model.type = e_model::MODEL_UNKNOWN;
  3197. }
  3198. } break;
  3199. case LLM_ARCH_GROK:
  3200. {
  3201. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3202. switch (hparams.n_layer) {
  3203. case 64: model.type = e_model::MODEL_314B; break;
  3204. default: model.type = e_model::MODEL_UNKNOWN;
  3205. }
  3206. } break;
  3207. case LLM_ARCH_FALCON:
  3208. {
  3209. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3210. switch (hparams.n_layer) {
  3211. case 32: model.type = e_model::MODEL_7B; break;
  3212. case 60: model.type = e_model::MODEL_40B; break;
  3213. default: model.type = e_model::MODEL_UNKNOWN;
  3214. }
  3215. } break;
  3216. case LLM_ARCH_BAICHUAN:
  3217. {
  3218. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3219. switch (hparams.n_layer) {
  3220. case 32: model.type = e_model::MODEL_7B; break;
  3221. case 40: model.type = e_model::MODEL_13B; break;
  3222. default: model.type = e_model::MODEL_UNKNOWN;
  3223. }
  3224. if (model.type == e_model::MODEL_13B) {
  3225. // TODO: become GGUF KV parameter
  3226. hparams.f_max_alibi_bias = 8.0f;
  3227. }
  3228. } break;
  3229. case LLM_ARCH_STARCODER:
  3230. {
  3231. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3232. switch (hparams.n_layer) {
  3233. case 24: model.type = e_model::MODEL_1B; break;
  3234. case 36: model.type = e_model::MODEL_3B; break;
  3235. case 42: model.type = e_model::MODEL_7B; break;
  3236. case 40: model.type = e_model::MODEL_15B; break;
  3237. default: model.type = e_model::MODEL_UNKNOWN;
  3238. }
  3239. } break;
  3240. case LLM_ARCH_PERSIMMON:
  3241. {
  3242. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3243. switch (hparams.n_layer) {
  3244. case 36: model.type = e_model::MODEL_8B; break;
  3245. default: model.type = e_model::MODEL_UNKNOWN;
  3246. }
  3247. } break;
  3248. case LLM_ARCH_REFACT:
  3249. {
  3250. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3251. switch (hparams.n_layer) {
  3252. case 32: model.type = e_model::MODEL_1B; break;
  3253. default: model.type = e_model::MODEL_UNKNOWN;
  3254. }
  3255. // TODO: become GGUF KV parameter
  3256. hparams.f_max_alibi_bias = 8.0f;
  3257. } break;
  3258. case LLM_ARCH_BERT:
  3259. {
  3260. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3261. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3262. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3263. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3264. switch (hparams.n_layer) {
  3265. case 3:
  3266. model.type = e_model::MODEL_17M; break; // bge-micro
  3267. case 6:
  3268. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3269. case 12:
  3270. switch (hparams.n_embd) {
  3271. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3272. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3273. } break;
  3274. case 24:
  3275. model.type = e_model::MODEL_335M; break; // bge-large
  3276. }
  3277. } break;
  3278. case LLM_ARCH_NOMIC_BERT:
  3279. {
  3280. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3281. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3282. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3283. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3284. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3285. model.type = e_model::MODEL_137M;
  3286. }
  3287. } break;
  3288. case LLM_ARCH_BLOOM:
  3289. {
  3290. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3291. switch (hparams.n_layer) {
  3292. case 24: model.type = e_model::MODEL_1B; break;
  3293. case 30:
  3294. switch (hparams.n_embd) {
  3295. case 2560: model.type = e_model::MODEL_3B; break;
  3296. case 4096: model.type = e_model::MODEL_7B; break;
  3297. } break;
  3298. }
  3299. // TODO: become GGUF KV parameter
  3300. hparams.f_max_alibi_bias = 8.0f;
  3301. } break;
  3302. case LLM_ARCH_MPT:
  3303. {
  3304. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3305. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3306. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3307. switch (hparams.n_layer) {
  3308. case 32: model.type = e_model::MODEL_7B; break;
  3309. case 48: model.type = e_model::MODEL_30B; break;
  3310. default: model.type = e_model::MODEL_UNKNOWN;
  3311. }
  3312. } break;
  3313. case LLM_ARCH_STABLELM:
  3314. {
  3315. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3316. switch (hparams.n_layer) {
  3317. case 24: model.type = e_model::MODEL_1B; break;
  3318. case 32: model.type = e_model::MODEL_3B; break;
  3319. default: model.type = e_model::MODEL_UNKNOWN;
  3320. }
  3321. } break;
  3322. case LLM_ARCH_QWEN:
  3323. {
  3324. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3325. switch (hparams.n_layer) {
  3326. case 32: model.type = e_model::MODEL_7B; break;
  3327. case 40: model.type = e_model::MODEL_13B; break;
  3328. default: model.type = e_model::MODEL_UNKNOWN;
  3329. }
  3330. } break;
  3331. case LLM_ARCH_QWEN2:
  3332. {
  3333. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3334. switch (hparams.n_layer) {
  3335. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3336. case 32: model.type = e_model::MODEL_7B; break;
  3337. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3338. case 80: model.type = e_model::MODEL_70B; break;
  3339. default: model.type = e_model::MODEL_UNKNOWN;
  3340. }
  3341. } break;
  3342. case LLM_ARCH_PHI2:
  3343. {
  3344. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3345. switch (hparams.n_layer) {
  3346. case 24: model.type = e_model::MODEL_1B; break;
  3347. case 32: model.type = e_model::MODEL_3B; break;
  3348. default: model.type = e_model::MODEL_UNKNOWN;
  3349. }
  3350. } break;
  3351. case LLM_ARCH_PLAMO:
  3352. {
  3353. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3354. switch (hparams.n_layer) {
  3355. case 40: model.type = e_model::MODEL_13B; break;
  3356. default: model.type = e_model::MODEL_UNKNOWN;
  3357. }
  3358. } break;
  3359. case LLM_ARCH_GPT2:
  3360. {
  3361. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3362. switch (hparams.n_layer) {
  3363. case 12: model.type = e_model::MODEL_SMALL; break;
  3364. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3365. case 36: model.type = e_model::MODEL_LARGE; break;
  3366. case 48: model.type = e_model::MODEL_XL; break;
  3367. default: model.type = e_model::MODEL_UNKNOWN;
  3368. }
  3369. } break;
  3370. case LLM_ARCH_CODESHELL:
  3371. {
  3372. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3373. switch (hparams.n_layer) {
  3374. case 42: model.type = e_model::MODEL_SMALL; break;
  3375. default: model.type = e_model::MODEL_UNKNOWN;
  3376. }
  3377. } break;
  3378. case LLM_ARCH_ORION:
  3379. {
  3380. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3381. switch (hparams.n_layer) {
  3382. case 40: model.type = e_model::MODEL_14B; break;
  3383. default: model.type = e_model::MODEL_UNKNOWN;
  3384. }
  3385. } break;
  3386. case LLM_ARCH_INTERNLM2:
  3387. {
  3388. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3389. switch (hparams.n_layer) {
  3390. case 32: model.type = e_model::MODEL_7B; break;
  3391. case 48: model.type = e_model::MODEL_20B; break;
  3392. default: model.type = e_model::MODEL_UNKNOWN;
  3393. }
  3394. } break;
  3395. case LLM_ARCH_GEMMA:
  3396. {
  3397. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3398. switch (hparams.n_layer) {
  3399. case 18: model.type = e_model::MODEL_2B; break;
  3400. case 28: model.type = e_model::MODEL_7B; break;
  3401. default: model.type = e_model::MODEL_UNKNOWN;
  3402. }
  3403. } break;
  3404. case LLM_ARCH_STARCODER2:
  3405. {
  3406. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3407. switch (hparams.n_layer) {
  3408. case 30: model.type = e_model::MODEL_3B; break;
  3409. case 32: model.type = e_model::MODEL_7B; break;
  3410. case 40: model.type = e_model::MODEL_15B; break;
  3411. default: model.type = e_model::MODEL_UNKNOWN;
  3412. }
  3413. } break;
  3414. case LLM_ARCH_MAMBA:
  3415. {
  3416. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3417. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3418. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3419. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3420. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3421. switch (hparams.n_layer) {
  3422. case 24:
  3423. switch (hparams.n_embd) {
  3424. case 768: model.type = e_model::MODEL_SMALL; break;
  3425. default: model.type = e_model::MODEL_UNKNOWN;
  3426. } break;
  3427. case 48:
  3428. switch (hparams.n_embd) {
  3429. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3430. case 1536: model.type = e_model::MODEL_LARGE; break;
  3431. case 2048: model.type = e_model::MODEL_XL; break;
  3432. default: model.type = e_model::MODEL_UNKNOWN;
  3433. } break;
  3434. case 64:
  3435. switch (hparams.n_embd) {
  3436. case 2560: model.type = e_model::MODEL_3B; break;
  3437. default: model.type = e_model::MODEL_UNKNOWN;
  3438. } break;
  3439. default: model.type = e_model::MODEL_UNKNOWN;
  3440. }
  3441. } break;
  3442. case LLM_ARCH_XVERSE:
  3443. {
  3444. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3445. switch (hparams.n_layer) {
  3446. case 32: model.type = e_model::MODEL_7B; break;
  3447. case 40: model.type = e_model::MODEL_13B; break;
  3448. case 80: model.type = e_model::MODEL_65B; break;
  3449. default: model.type = e_model::MODEL_UNKNOWN;
  3450. }
  3451. } break;
  3452. case LLM_ARCH_COMMAND_R:
  3453. {
  3454. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3455. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3456. switch (hparams.n_layer) {
  3457. case 40: model.type = e_model::MODEL_35B; break;
  3458. default: model.type = e_model::MODEL_UNKNOWN;
  3459. }
  3460. } break;
  3461. default: (void)0;
  3462. }
  3463. model.ftype = ml.ftype;
  3464. if (hparams.f_max_alibi_bias > 0.0f) {
  3465. hparams.need_kq_pos = true;
  3466. }
  3467. hparams.rope_type = llama_rope_type(&model);
  3468. }
  3469. // TODO: This should probably be in llama.h
  3470. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
  3471. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3472. static void llm_load_vocab(
  3473. llama_model_loader & ml,
  3474. llama_model & model) {
  3475. auto & vocab = model.vocab;
  3476. struct gguf_context * ctx = ml.meta;
  3477. const auto kv = LLM_KV(model.arch);
  3478. // determine vocab type
  3479. {
  3480. std::string tokenizer_name;
  3481. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
  3482. if (tokenizer_name == "no_vocab") {
  3483. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3484. // default special tokens
  3485. vocab.special_bos_id = -1;
  3486. vocab.special_eos_id = -1;
  3487. vocab.special_unk_id = -1;
  3488. vocab.special_sep_id = -1;
  3489. vocab.special_pad_id = -1;
  3490. vocab.linefeed_id = -1;
  3491. return;
  3492. } else if (tokenizer_name == "llama") {
  3493. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3494. // default special tokens
  3495. vocab.special_bos_id = 1;
  3496. vocab.special_eos_id = 2;
  3497. vocab.special_unk_id = 0;
  3498. vocab.special_sep_id = -1;
  3499. vocab.special_pad_id = -1;
  3500. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3501. if (add_space_prefix_keyidx != -1) {
  3502. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3503. } // The default value of add_space_prefix is true.
  3504. } else if (tokenizer_name == "gpt2") {
  3505. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3506. // read bpe merges and populate bpe ranks
  3507. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3508. if (merges_keyidx == -1) {
  3509. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3510. }
  3511. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3512. for (int i = 0; i < n_merges; i++) {
  3513. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3514. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3515. std::string first;
  3516. std::string second;
  3517. const size_t pos = word.find(' ', 1);
  3518. if (pos != std::string::npos) {
  3519. first = word.substr(0, pos);
  3520. second = word.substr(pos + 1);
  3521. }
  3522. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3523. }
  3524. // default special tokens
  3525. vocab.special_bos_id = 11;
  3526. vocab.special_eos_id = 11;
  3527. vocab.special_unk_id = -1;
  3528. vocab.special_sep_id = -1;
  3529. vocab.special_pad_id = -1;
  3530. } else if (tokenizer_name == "bert") {
  3531. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3532. // default special tokens
  3533. vocab.special_bos_id = 101;
  3534. vocab.special_eos_id = 102;
  3535. vocab.special_unk_id = 100;
  3536. vocab.special_sep_id = -1;
  3537. vocab.special_pad_id = -1;
  3538. vocab.add_space_prefix = false;
  3539. } else {
  3540. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  3541. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3542. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3543. }
  3544. }
  3545. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3546. if (token_idx == -1) {
  3547. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3548. }
  3549. const float * scores = nullptr;
  3550. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3551. if (score_idx != -1) {
  3552. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3553. }
  3554. const int * toktypes = nullptr;
  3555. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3556. if (toktype_idx != -1) {
  3557. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3558. }
  3559. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3560. vocab.id_to_token.resize(n_vocab);
  3561. for (uint32_t i = 0; i < n_vocab; i++) {
  3562. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3563. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3564. vocab.token_to_id[word] = i;
  3565. auto & token_data = vocab.id_to_token[i];
  3566. token_data.text = std::move(word);
  3567. token_data.score = scores ? scores[i] : 0.0f;
  3568. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3569. }
  3570. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3571. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3572. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3573. try {
  3574. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3575. } catch (const std::exception & e) {
  3576. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3577. vocab.linefeed_id = vocab.special_pad_id;
  3578. }
  3579. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3580. vocab.linefeed_id = vocab.special_pad_id;
  3581. } else {
  3582. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3583. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3584. vocab.linefeed_id = ids[0];
  3585. }
  3586. // special tokens
  3587. {
  3588. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3589. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3590. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3591. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3592. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3593. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3594. };
  3595. for (const auto & it : special_token_types) {
  3596. const std::string & key = kv(std::get<0>(it));
  3597. int32_t & id = std::get<1>(it);
  3598. uint32_t new_id;
  3599. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3600. continue;
  3601. }
  3602. if (new_id >= vocab.id_to_token.size()) {
  3603. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3604. __func__, key.c_str(), new_id, id);
  3605. } else {
  3606. id = new_id;
  3607. }
  3608. }
  3609. // Handle add_bos_token and add_eos_token
  3610. {
  3611. bool temp = true;
  3612. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3613. vocab.special_add_bos = int(temp);
  3614. }
  3615. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3616. vocab.special_add_eos = int(temp);
  3617. }
  3618. }
  3619. }
  3620. // build special tokens cache
  3621. {
  3622. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3623. // and will always be correctly labeled in 'added_tokens.json' etc.
  3624. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3625. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3626. // are special tokens.
  3627. // From testing, this appears to correlate 1:1 with special tokens.
  3628. //
  3629. // Counting special tokens and verifying in only one direction
  3630. // is sufficient to detect difference in those two sets.
  3631. //
  3632. uint32_t special_tokens_count_by_type = 0;
  3633. uint32_t special_tokens_count_from_verification = 0;
  3634. bool special_tokens_definition_mismatch = false;
  3635. for (const auto & t : vocab.token_to_id) {
  3636. const auto & token = t.first;
  3637. const auto & id = t.second;
  3638. // Count all non-normal tokens in the vocab while iterating
  3639. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3640. special_tokens_count_by_type++;
  3641. }
  3642. // Skip single character tokens
  3643. if (token.length() > 1) {
  3644. bool is_tokenizable = false;
  3645. // Split token string representation in two, in all possible ways
  3646. // and check if both halves can be matched to a valid token
  3647. for (unsigned i = 1; i < token.length();) {
  3648. const auto left = token.substr(0, i);
  3649. const auto right = token.substr(i);
  3650. // check if we didnt partition in the middle of a utf sequence
  3651. auto utf = utf8_len(left.at(left.length() - 1));
  3652. if (utf == 1) {
  3653. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  3654. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  3655. is_tokenizable = true;
  3656. break;
  3657. }
  3658. i++;
  3659. } else {
  3660. // skip over the rest of multibyte utf sequence
  3661. i += utf - 1;
  3662. }
  3663. }
  3664. if (!is_tokenizable) {
  3665. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  3666. // it's faster to re-filter them here, since there are way less candidates now
  3667. // Calculate a total "utf" length of a token string representation
  3668. size_t utf8_str_len = 0;
  3669. for (unsigned i = 0; i < token.length();) {
  3670. utf8_str_len++;
  3671. i += utf8_len(token.at(i));
  3672. }
  3673. // And skip the ones which are one character
  3674. if (utf8_str_len > 1) {
  3675. // At this point what we have left are special tokens only
  3676. vocab.special_tokens_cache[token] = id;
  3677. // Count manually found special tokens
  3678. special_tokens_count_from_verification++;
  3679. // If this manually found special token is not marked as such, flag a mismatch
  3680. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  3681. special_tokens_definition_mismatch = true;
  3682. }
  3683. }
  3684. }
  3685. }
  3686. }
  3687. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  3688. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  3689. __func__,
  3690. special_tokens_count_from_verification, vocab.id_to_token.size(),
  3691. special_tokens_count_by_type, vocab.id_to_token.size()
  3692. );
  3693. } else {
  3694. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  3695. __func__,
  3696. special_tokens_count_from_verification, vocab.id_to_token.size()
  3697. );
  3698. }
  3699. }
  3700. }
  3701. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  3702. const auto & hparams = model.hparams;
  3703. const auto & vocab = model.vocab;
  3704. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3705. // hparams
  3706. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  3707. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  3708. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  3709. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  3710. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  3711. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3712. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3713. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  3714. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  3715. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3716. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3717. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3718. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3719. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  3720. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  3721. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  3722. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3723. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3724. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3725. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3726. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3727. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  3728. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3729. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3730. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3731. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3732. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3733. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3734. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3735. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3736. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  3737. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3738. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3739. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3740. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3741. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3742. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  3743. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  3744. if (ml.n_elements >= 1e12) {
  3745. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  3746. } else if (ml.n_elements >= 1e9) {
  3747. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  3748. } else if (ml.n_elements >= 1e6) {
  3749. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  3750. } else {
  3751. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  3752. }
  3753. if (ml.n_bytes < GiB) {
  3754. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3755. } else {
  3756. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3757. }
  3758. // general kv
  3759. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  3760. // special tokens
  3761. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  3762. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  3763. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  3764. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  3765. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  3766. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  3767. }
  3768. // Returns false if cancelled by progress_callback
  3769. static bool llm_load_tensors(
  3770. llama_model_loader & ml,
  3771. llama_model & model,
  3772. int n_gpu_layers,
  3773. enum llama_split_mode split_mode,
  3774. int main_gpu,
  3775. const float * tensor_split,
  3776. bool use_mlock,
  3777. llama_progress_callback progress_callback,
  3778. void * progress_callback_user_data) {
  3779. model.t_start_us = ggml_time_us();
  3780. auto & hparams = model.hparams;
  3781. model.split_mode = split_mode;
  3782. model.main_gpu = main_gpu;
  3783. model.n_gpu_layers = n_gpu_layers;
  3784. const int64_t n_layer = hparams.n_layer;
  3785. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  3786. bool use_mmap_buffer = true;
  3787. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  3788. model.buft_input = llama_default_buffer_type_cpu(true);
  3789. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  3790. model.buft_layer.resize(n_layer);
  3791. // assign cpu layers
  3792. for (int64_t i = 0; i < i_gpu_start; ++i) {
  3793. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  3794. }
  3795. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  3796. // calculate the split points
  3797. int device_count = llama_get_device_count();
  3798. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  3799. std::vector<float> splits(device_count);
  3800. if (all_zero) {
  3801. // default split, by free memory
  3802. for (int i = 0; i < device_count; ++i) {
  3803. splits[i] = llama_get_device_memory(i);
  3804. }
  3805. } else {
  3806. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  3807. }
  3808. // sum and normalize the splits to get the split points
  3809. float split_sum = 0.0f;
  3810. for (int i = 0; i < device_count; ++i) {
  3811. split_sum += splits[i];
  3812. splits[i] = split_sum;
  3813. }
  3814. for (int i = 0; i < device_count; ++i) {
  3815. splits[i] /= split_sum;
  3816. }
  3817. // assign the repeating layers to the devices according to the splits
  3818. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  3819. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  3820. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  3821. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  3822. }
  3823. // assign the output layer
  3824. if (n_gpu_layers > n_layer) {
  3825. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  3826. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  3827. } else {
  3828. model.buft_output = llama_default_buffer_type_cpu(true);
  3829. }
  3830. } else {
  3831. ggml_backend_buffer_type_t split_buft;
  3832. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  3833. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  3834. } else {
  3835. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  3836. split_buft = llama_default_buffer_type_offload(main_gpu);
  3837. }
  3838. // assign the repeating layers
  3839. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  3840. model.buft_layer[i] = {
  3841. split_buft,
  3842. llama_default_buffer_type_offload(main_gpu)
  3843. };
  3844. }
  3845. // assign the output layer
  3846. if (n_gpu_layers > n_layer) {
  3847. model.buft_output = {
  3848. split_buft,
  3849. llama_default_buffer_type_offload(main_gpu)
  3850. };
  3851. } else {
  3852. model.buft_output = llama_default_buffer_type_cpu(true);
  3853. }
  3854. }
  3855. // count used buffer types
  3856. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  3857. buft_layer_count[model.buft_input.buft]++;
  3858. buft_layer_count[model.buft_input.buft_matrix]++;
  3859. buft_layer_count[model.buft_output.buft]++;
  3860. buft_layer_count[model.buft_output.buft_matrix]++;
  3861. for (int64_t i = 0; i < n_layer; ++i) {
  3862. buft_layer_count[model.buft_layer[i].buft]++;
  3863. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  3864. }
  3865. // create one context per buffer type
  3866. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  3867. // for moe merged tensors
  3868. ctx_size += ggml_tensor_overhead()*hparams.n_expert*n_layer;
  3869. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  3870. for (auto & it : buft_layer_count) {
  3871. struct ggml_init_params params = {
  3872. /*.mem_size =*/ ctx_size,
  3873. /*.mem_buffer =*/ NULL,
  3874. /*.no_alloc =*/ true,
  3875. };
  3876. ggml_context * ctx = ggml_init(params);
  3877. if (!ctx) {
  3878. throw std::runtime_error(format("failed to create context"));
  3879. }
  3880. ctx_map[it.first] = ctx;
  3881. model.ctxs.push_back(ctx);
  3882. }
  3883. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  3884. // create tensors for the weights
  3885. {
  3886. const int64_t n_embd = hparams.n_embd;
  3887. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  3888. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  3889. const int64_t n_embd_gqa = n_embd_v_gqa;
  3890. const int64_t n_vocab = hparams.n_vocab;
  3891. const int64_t n_vocab_type = hparams.n_vocab_type;
  3892. const int64_t n_ff = hparams.n_ff;
  3893. const int64_t n_expert = hparams.n_expert;
  3894. if (n_expert > 0 && hparams.n_expert_used == 0) {
  3895. throw std::runtime_error("model has expert layers but no expert layers are used");
  3896. }
  3897. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  3898. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  3899. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  3900. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  3901. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  3902. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  3903. model.layers.resize(n_layer);
  3904. const auto tn = LLM_TN(model.arch);
  3905. switch (model.arch) {
  3906. case LLM_ARCH_LLAMA:
  3907. case LLM_ARCH_REFACT:
  3908. case LLM_ARCH_MINICPM:
  3909. {
  3910. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3911. // output
  3912. {
  3913. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3914. if (model.arch != LLM_ARCH_MINICPM){
  3915. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  3916. // if output is NULL, init from the input tok embed
  3917. if (model.output == NULL) {
  3918. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3919. ml.n_created--; // artificial tensor
  3920. ml.size_data += ggml_nbytes(model.output);
  3921. }
  3922. }
  3923. }
  3924. for (int i = 0; i < n_layer; ++i) {
  3925. ggml_context * ctx_layer = ctx_for_layer(i);
  3926. ggml_context * ctx_split = ctx_for_layer_split(i);
  3927. auto & layer = model.layers[i];
  3928. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3929. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3930. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3931. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3932. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3933. // optional bias tensors
  3934. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  3935. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  3936. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  3937. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  3938. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3939. if (n_expert == 0) {
  3940. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3941. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3942. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3943. } else {
  3944. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  3945. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  3946. if (layer.ffn_gate_exps) {
  3947. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  3948. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  3949. } else {
  3950. // merge split expert into a single tensor for compatibility with older models
  3951. // requires disabling mmap
  3952. use_mmap_buffer = false;
  3953. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  3954. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  3955. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  3956. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  3957. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  3958. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  3959. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  3960. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  3961. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  3962. for (uint32_t x = 0; x < n_expert; ++x) {
  3963. // the individual experts are loaded into a view of the merged tensor
  3964. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  3965. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  3966. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  3967. }
  3968. }
  3969. }
  3970. }
  3971. } break;
  3972. case LLM_ARCH_GROK:
  3973. {
  3974. if (n_expert == 0) {
  3975. throw std::runtime_error("Grok model cannot have zero experts");
  3976. }
  3977. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3978. // output
  3979. {
  3980. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3981. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  3982. // if output is NULL, init from the input tok embed
  3983. if (model.output == NULL) {
  3984. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3985. ml.n_created--; // artificial tensor
  3986. ml.size_data += ggml_nbytes(model.output);
  3987. }
  3988. }
  3989. for (int i = 0; i < n_layer; ++i) {
  3990. ggml_context * ctx_layer = ctx_for_layer(i);
  3991. ggml_context * ctx_split = ctx_for_layer_split(i);
  3992. auto & layer = model.layers[i];
  3993. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3994. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3995. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3996. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3997. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3998. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  3999. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4000. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4001. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4002. if (layer.ffn_gate_exps) {
  4003. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4004. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4005. } else {
  4006. // merge split expert into a single tensor for compatibility with older models
  4007. // requires disabling mmap
  4008. use_mmap_buffer = false;
  4009. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4010. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4011. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4012. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4013. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4014. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4015. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4016. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4017. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4018. for (uint32_t x = 0; x < n_expert; ++x) {
  4019. // the individual experts are loaded into a view of the merged tensor
  4020. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4021. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4022. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4023. }
  4024. }
  4025. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4026. }
  4027. } break;
  4028. case LLM_ARCH_BAICHUAN:
  4029. {
  4030. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4031. {
  4032. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4033. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4034. }
  4035. for (int i = 0; i < n_layer; ++i) {
  4036. ggml_context * ctx_layer = ctx_for_layer(i);
  4037. ggml_context * ctx_split = ctx_for_layer_split(i);
  4038. auto & layer = model.layers[i];
  4039. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4040. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4041. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4042. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4043. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4044. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4045. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4046. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4047. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4048. }
  4049. } break;
  4050. case LLM_ARCH_FALCON:
  4051. {
  4052. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4053. // output
  4054. {
  4055. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4056. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4057. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4058. if (!model.output) {
  4059. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4060. ml.n_created--; // artificial tensor
  4061. ml.size_data += ggml_nbytes(model.output);
  4062. }
  4063. }
  4064. for (int i = 0; i < n_layer; ++i) {
  4065. ggml_context * ctx_layer = ctx_for_layer(i);
  4066. ggml_context * ctx_split = ctx_for_layer_split(i);
  4067. auto & layer = model.layers[i];
  4068. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4069. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4070. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4071. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4072. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4073. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4074. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4075. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4076. }
  4077. } break;
  4078. case LLM_ARCH_STARCODER:
  4079. {
  4080. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4081. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4082. // output
  4083. {
  4084. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4085. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4086. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4087. }
  4088. for (int i = 0; i < n_layer; ++i) {
  4089. ggml_context * ctx_layer = ctx_for_layer(i);
  4090. ggml_context * ctx_split = ctx_for_layer_split(i);
  4091. auto & layer = model.layers[i];
  4092. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4093. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4094. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4095. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4096. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4097. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4098. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4099. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4100. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4101. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4102. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4103. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4104. }
  4105. } break;
  4106. case LLM_ARCH_PERSIMMON:
  4107. {
  4108. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4109. {
  4110. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4111. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4112. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4113. }
  4114. for (int i = 0; i < n_layer; ++i) {
  4115. ggml_context * ctx_layer = ctx_for_layer(i);
  4116. ggml_context * ctx_split = ctx_for_layer_split(i);
  4117. auto & layer = model.layers[i];
  4118. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4119. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4120. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4121. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4122. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4123. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4124. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4125. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4126. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4127. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4128. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4129. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4130. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4131. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4132. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4133. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4134. }
  4135. } break;
  4136. case LLM_ARCH_BERT:
  4137. case LLM_ARCH_NOMIC_BERT:
  4138. {
  4139. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4140. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4141. if (model.arch == LLM_ARCH_BERT) {
  4142. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4143. }
  4144. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4145. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4146. for (int i = 0; i < n_layer; ++i) {
  4147. ggml_context * ctx_layer = ctx_for_layer(i);
  4148. ggml_context * ctx_split = ctx_for_layer_split(i);
  4149. auto & layer = model.layers[i];
  4150. if (model.arch == LLM_ARCH_BERT) {
  4151. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4152. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4153. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4154. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4155. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4156. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4157. } else {
  4158. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4159. }
  4160. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4161. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4162. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4163. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4164. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4165. if (model.arch == LLM_ARCH_BERT) {
  4166. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4167. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4168. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4169. } else {
  4170. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4171. }
  4172. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4173. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4174. }
  4175. } break;
  4176. case LLM_ARCH_BLOOM:
  4177. {
  4178. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4179. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4180. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4181. // output
  4182. {
  4183. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4184. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4185. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4186. }
  4187. for (int i = 0; i < n_layer; ++i) {
  4188. ggml_context * ctx_layer = ctx_for_layer(i);
  4189. ggml_context * ctx_split = ctx_for_layer_split(i);
  4190. auto & layer = model.layers[i];
  4191. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4192. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4193. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4194. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4195. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4196. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4197. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4198. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4199. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4200. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4201. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4202. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4203. }
  4204. } break;
  4205. case LLM_ARCH_MPT:
  4206. {
  4207. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4208. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4209. // output
  4210. {
  4211. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4212. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4213. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4214. if (!model.output) {
  4215. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4216. ml.n_created--; // artificial tensor
  4217. ml.size_data += ggml_nbytes(model.output);
  4218. }
  4219. }
  4220. for (int i = 0; i < n_layer; ++i) {
  4221. ggml_context * ctx_layer = ctx_for_layer(i);
  4222. ggml_context * ctx_split = ctx_for_layer_split(i);
  4223. auto & layer = model.layers[i];
  4224. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4225. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4226. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4227. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4228. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4229. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4230. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4231. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4232. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4233. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4234. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4235. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4236. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4237. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4238. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4239. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4240. // AWQ ScaleActivation layer
  4241. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4242. }
  4243. } break;
  4244. case LLM_ARCH_STABLELM:
  4245. {
  4246. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4247. // output
  4248. {
  4249. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4250. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4251. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4252. }
  4253. for (int i = 0; i < n_layer; ++i) {
  4254. ggml_context * ctx_layer = ctx_for_layer(i);
  4255. ggml_context * ctx_split = ctx_for_layer_split(i);
  4256. auto & layer = model.layers[i];
  4257. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4258. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4259. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4260. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4261. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4262. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4263. // optional bias tensors, present in Stable LM 2 1.6B
  4264. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4265. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4266. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4267. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4268. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4269. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4270. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4271. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4272. }
  4273. } break;
  4274. case LLM_ARCH_QWEN:
  4275. {
  4276. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4277. // output
  4278. {
  4279. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4280. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4281. }
  4282. for (int i = 0; i < n_layer; ++i) {
  4283. ggml_context * ctx_layer = ctx_for_layer(i);
  4284. ggml_context * ctx_split = ctx_for_layer_split(i);
  4285. auto & layer = model.layers[i];
  4286. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4287. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4288. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4289. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4290. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4291. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4292. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4293. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4294. }
  4295. } break;
  4296. case LLM_ARCH_QWEN2:
  4297. {
  4298. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4299. // output
  4300. {
  4301. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4302. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4303. }
  4304. for (int i = 0; i < n_layer; ++i) {
  4305. ggml_context * ctx_layer = ctx_for_layer(i);
  4306. ggml_context * ctx_split = ctx_for_layer_split(i);
  4307. auto & layer = model.layers[i];
  4308. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4309. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4310. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4311. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4312. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4313. // optional bias tensors
  4314. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4315. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4316. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4317. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4318. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4319. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4320. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4321. }
  4322. } break;
  4323. case LLM_ARCH_PHI2:
  4324. {
  4325. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4326. // output
  4327. {
  4328. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4329. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4330. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4331. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4332. }
  4333. for (int i = 0; i < n_layer; ++i) {
  4334. ggml_context * ctx_layer = ctx_for_layer(i);
  4335. ggml_context * ctx_split = ctx_for_layer_split(i);
  4336. auto & layer = model.layers[i];
  4337. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4338. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4339. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4340. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4341. if (layer.wqkv == nullptr) {
  4342. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4343. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4344. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4345. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4346. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4347. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4348. }
  4349. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4350. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4351. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4352. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4353. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4354. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4355. }
  4356. } break;
  4357. case LLM_ARCH_PLAMO:
  4358. {
  4359. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4360. // output
  4361. {
  4362. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4363. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4364. }
  4365. for (int i = 0; i < n_layer; ++i) {
  4366. ggml_context * ctx_layer = ctx_for_layer(i);
  4367. ggml_context * ctx_split = ctx_for_layer_split(i);
  4368. auto & layer = model.layers[i];
  4369. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4370. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4371. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4372. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4373. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4374. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4375. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4376. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4377. }
  4378. } break;
  4379. case LLM_ARCH_GPT2:
  4380. {
  4381. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4382. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4383. // output
  4384. {
  4385. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4386. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4387. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4388. }
  4389. for (int i = 0; i < n_layer; ++i) {
  4390. ggml_context * ctx_layer = ctx_for_layer(i);
  4391. ggml_context * ctx_split = ctx_for_layer_split(i);
  4392. auto & layer = model.layers[i];
  4393. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4394. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4395. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4396. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4397. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4398. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4399. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4400. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4401. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4402. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4403. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4404. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4405. }
  4406. } break;
  4407. case LLM_ARCH_CODESHELL:
  4408. {
  4409. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4410. // output
  4411. {
  4412. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4413. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4414. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4415. }
  4416. for (int i = 0; i < n_layer; ++i) {
  4417. ggml_context * ctx_layer = ctx_for_layer(i);
  4418. ggml_context * ctx_split = ctx_for_layer_split(i);
  4419. auto & layer = model.layers[i];
  4420. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4421. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4422. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4423. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4424. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4425. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4426. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4427. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4428. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4429. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4430. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4431. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4432. }
  4433. } break;
  4434. case LLM_ARCH_ORION:
  4435. {
  4436. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4437. {
  4438. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4439. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4440. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4441. }
  4442. for (int i = 0; i < n_layer; ++i) {
  4443. ggml_context * ctx_layer = ctx_for_layer(i);
  4444. ggml_context * ctx_split = ctx_for_layer_split(i);
  4445. auto & layer = model.layers[i];
  4446. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4447. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4448. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4449. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4450. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4451. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4452. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4453. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4454. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4455. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4456. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4457. }
  4458. } break;
  4459. case LLM_ARCH_INTERNLM2:
  4460. {
  4461. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4462. // output
  4463. {
  4464. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4465. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4466. }
  4467. for (int i = 0; i < n_layer; ++i) {
  4468. ggml_context * ctx_layer = ctx_for_layer(i);
  4469. ggml_context * ctx_split = ctx_for_layer_split(i);
  4470. auto & layer = model.layers[i];
  4471. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4472. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4473. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4474. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4475. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4476. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4477. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4478. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4479. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4480. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4481. }
  4482. } break;
  4483. case LLM_ARCH_GEMMA:
  4484. {
  4485. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4486. // output
  4487. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4488. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  4489. ml.n_created--; // artificial tensor
  4490. ml.size_data += ggml_nbytes(model.output);
  4491. const int64_t n_ff = hparams.n_ff;
  4492. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4493. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4494. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4495. for (uint32_t i = 0; i < n_layer; ++i) {
  4496. ggml_context * ctx_layer = ctx_for_layer(i);
  4497. ggml_context * ctx_split = ctx_for_layer_split(i);
  4498. auto & layer = model.layers[i];
  4499. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4500. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  4501. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  4502. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  4503. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  4504. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4505. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4506. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4507. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4508. }
  4509. } break;
  4510. case LLM_ARCH_STARCODER2:
  4511. {
  4512. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4513. // output
  4514. {
  4515. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4516. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4517. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4518. // if output is NULL, init from the input tok embed
  4519. if (model.output == NULL) {
  4520. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4521. ml.n_created--; // artificial tensor
  4522. ml.size_data += ggml_nbytes(model.output);
  4523. }
  4524. }
  4525. for (int i = 0; i < n_layer; ++i) {
  4526. ggml_context * ctx_layer = ctx_for_layer(i);
  4527. ggml_context * ctx_split = ctx_for_layer_split(i);
  4528. auto & layer = model.layers[i];
  4529. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4530. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4531. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4532. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4533. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4534. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4535. // optional bias tensors
  4536. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4537. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4538. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4539. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4540. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4541. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4542. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4543. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4544. // optional bias tensors
  4545. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4546. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  4547. }
  4548. } break;
  4549. case LLM_ARCH_MAMBA:
  4550. {
  4551. const int64_t d_conv = hparams.ssm_d_conv;
  4552. const int64_t d_inner = hparams.ssm_d_inner;
  4553. const int64_t d_state = hparams.ssm_d_state;
  4554. const int64_t dt_rank = hparams.ssm_dt_rank;
  4555. // only an expansion factor of 2 is supported for now
  4556. GGML_ASSERT(2 * n_embd == d_inner);
  4557. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4558. // output
  4559. {
  4560. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4561. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4562. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4563. if (model.output == NULL) {
  4564. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4565. ml.n_created--; // artificial tensor
  4566. ml.size_data += ggml_nbytes(model.output);
  4567. }
  4568. }
  4569. for (int i = 0; i < n_layer; ++i) {
  4570. ggml_context * ctx_layer = ctx_for_layer(i);
  4571. ggml_context * ctx_split = ctx_for_layer_split(i);
  4572. auto & layer = model.layers[i];
  4573. // norm
  4574. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4575. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  4576. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  4577. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  4578. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  4579. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  4580. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  4581. // no "weight" suffix for these
  4582. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  4583. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  4584. // out_proj
  4585. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  4586. }
  4587. } break;
  4588. case LLM_ARCH_XVERSE:
  4589. {
  4590. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4591. {
  4592. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4593. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4594. }
  4595. for (int i = 0; i < n_layer; ++i) {
  4596. ggml_context * ctx_layer = ctx_for_layer(i);
  4597. ggml_context * ctx_split = ctx_for_layer_split(i);
  4598. auto & layer = model.layers[i];
  4599. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4600. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4601. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4602. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4603. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4604. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4605. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4606. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4607. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4608. }
  4609. } break;
  4610. case LLM_ARCH_COMMAND_R:
  4611. {
  4612. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4613. // output
  4614. {
  4615. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4616. // init output from the input tok embed
  4617. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4618. ml.n_created--; // artificial tensor
  4619. ml.size_data += ggml_nbytes(model.output);
  4620. }
  4621. for (int i = 0; i < n_layer; ++i) {
  4622. ggml_context * ctx_layer = ctx_for_layer(i);
  4623. ggml_context * ctx_split = ctx_for_layer_split(i);
  4624. auto & layer = model.layers[i];
  4625. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4626. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4627. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4628. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4629. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4630. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4631. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4632. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4633. }
  4634. } break;
  4635. default:
  4636. throw std::runtime_error("unknown architecture");
  4637. }
  4638. }
  4639. ml.done_getting_tensors();
  4640. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  4641. model.mappings.reserve(ml.mappings.size());
  4642. // create the backend buffers
  4643. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  4644. ctx_bufs.reserve(ctx_map.size());
  4645. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  4646. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  4647. model.bufs.reserve(n_max_backend_buffer);
  4648. for (auto & it : ctx_map) {
  4649. ggml_backend_buffer_type_t buft = it.first;
  4650. ggml_context * ctx = it.second;
  4651. llama_buf_map bufs;
  4652. bufs.reserve(n_max_backend_buffer);
  4653. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  4654. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  4655. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  4656. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  4657. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4658. void * addr = nullptr;
  4659. size_t first, last;
  4660. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  4661. if (first >= last) {
  4662. continue;
  4663. }
  4664. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  4665. if (buf == nullptr) {
  4666. throw std::runtime_error("unable to allocate backend CPU buffer");
  4667. }
  4668. model.bufs.push_back(buf);
  4669. bufs.emplace(idx, buf);
  4670. #ifdef GGML_USE_CUDA
  4671. if (n_layer >= n_gpu_layers) {
  4672. ggml_backend_cuda_register_host_buffer(
  4673. ggml_backend_buffer_get_base(buf),
  4674. ggml_backend_buffer_get_size(buf));
  4675. }
  4676. #endif
  4677. }
  4678. }
  4679. #ifdef GGML_USE_METAL
  4680. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  4681. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4682. const size_t max_size = ggml_get_max_tensor_size(ctx);
  4683. void * addr = nullptr;
  4684. size_t first, last;
  4685. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  4686. if (first >= last) {
  4687. continue;
  4688. }
  4689. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  4690. if (buf == nullptr) {
  4691. throw std::runtime_error("unable to allocate backend metal buffer");
  4692. }
  4693. model.bufs.push_back(buf);
  4694. bufs.emplace(idx, buf);
  4695. }
  4696. }
  4697. #endif
  4698. else {
  4699. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  4700. if (buf == nullptr) {
  4701. throw std::runtime_error("unable to allocate backend buffer");
  4702. }
  4703. model.bufs.push_back(buf);
  4704. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  4705. model.mlock_bufs.emplace_back(new llama_mlock);
  4706. auto & mlock_buf = model.mlock_bufs.back();
  4707. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  4708. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  4709. }
  4710. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4711. bufs.emplace(idx, buf);
  4712. }
  4713. }
  4714. if (bufs.empty()) {
  4715. throw std::runtime_error("failed to allocate buffer");
  4716. }
  4717. for (auto & buf : bufs) {
  4718. // indicate that this buffer contains weights
  4719. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  4720. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  4721. }
  4722. ctx_bufs.emplace_back(ctx, bufs);
  4723. }
  4724. if (llama_supports_gpu_offload()) {
  4725. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  4726. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  4727. if (n_gpu_layers > (int) hparams.n_layer) {
  4728. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  4729. }
  4730. const int max_backend_supported_layers = hparams.n_layer + 1;
  4731. const int max_offloadable_layers = hparams.n_layer + 1;
  4732. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  4733. }
  4734. // print memory requirements
  4735. for (ggml_backend_buffer_t buf : model.bufs) {
  4736. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  4737. }
  4738. // populate tensors_by_name
  4739. for (ggml_context * ctx : model.ctxs) {
  4740. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  4741. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  4742. }
  4743. }
  4744. // load tensor data
  4745. for (auto & it : ctx_bufs) {
  4746. ggml_context * ctx = it.first;
  4747. auto & bufs = it.second;
  4748. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  4749. return false;
  4750. }
  4751. }
  4752. if (use_mmap_buffer) {
  4753. for (auto & mapping : ml.mappings) {
  4754. model.mappings.emplace_back(std::move(mapping));
  4755. }
  4756. }
  4757. // loading time will be recalculate after the first eval, so
  4758. // we take page faults deferred by mmap() into consideration
  4759. model.t_load_us = ggml_time_us() - model.t_start_us;
  4760. return true;
  4761. }
  4762. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  4763. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  4764. try {
  4765. llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
  4766. model.hparams.vocab_only = params.vocab_only;
  4767. try {
  4768. llm_load_arch(ml, model);
  4769. } catch(const std::exception & e) {
  4770. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  4771. }
  4772. try {
  4773. llm_load_hparams(ml, model);
  4774. } catch(const std::exception & e) {
  4775. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  4776. }
  4777. try {
  4778. llm_load_vocab(ml, model);
  4779. } catch(const std::exception & e) {
  4780. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  4781. }
  4782. llm_load_print_meta(ml, model);
  4783. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  4784. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  4785. throw std::runtime_error("vocab size mismatch");
  4786. }
  4787. if (params.vocab_only) {
  4788. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  4789. return 0;
  4790. }
  4791. #ifdef GGML_USE_KOMPUTE
  4792. if (params.n_gpu_layers > 0 && (
  4793. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  4794. || !(
  4795. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  4796. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  4797. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  4798. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  4799. )
  4800. )) {
  4801. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  4802. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  4803. params.n_gpu_layers = 0;
  4804. }
  4805. #endif
  4806. #ifdef GGML_USE_SYCL
  4807. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  4808. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  4809. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  4810. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  4811. } else {
  4812. ggml_backend_sycl_set_mul_device_mode();
  4813. }
  4814. #endif
  4815. if (!llm_load_tensors(
  4816. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  4817. params.progress_callback, params.progress_callback_user_data
  4818. )) {
  4819. return -2;
  4820. }
  4821. } catch (const std::exception & err) {
  4822. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  4823. return -1;
  4824. }
  4825. return 0;
  4826. }
  4827. //
  4828. // llm_build
  4829. //
  4830. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  4831. enum llm_ffn_op_type {
  4832. LLM_FFN_SILU,
  4833. LLM_FFN_GELU,
  4834. LLM_FFN_RELU,
  4835. LLM_FFN_RELU_SQR,
  4836. };
  4837. enum llm_ffn_gate_type {
  4838. LLM_FFN_SEQ,
  4839. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  4840. };
  4841. enum llm_norm_type {
  4842. LLM_NORM,
  4843. LLM_NORM_RMS,
  4844. };
  4845. static struct ggml_tensor * llm_build_inp_embd(
  4846. struct ggml_context * ctx,
  4847. struct llama_context & lctx,
  4848. const llama_hparams & hparams,
  4849. const llama_batch & batch,
  4850. struct ggml_tensor * tok_embd,
  4851. const llm_build_cb & cb) {
  4852. const int64_t n_embd = hparams.n_embd;
  4853. struct ggml_tensor * inpL;
  4854. if (batch.token) {
  4855. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  4856. cb(lctx.inp_tokens, "inp_tokens", -1);
  4857. ggml_set_input(lctx.inp_tokens);
  4858. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  4859. } else {
  4860. #ifdef GGML_USE_MPI
  4861. GGML_ASSERT(false && "not implemented");
  4862. #endif
  4863. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  4864. inpL = lctx.inp_embd;
  4865. ggml_set_input(lctx.inp_embd);
  4866. }
  4867. cb(inpL, "inp_embd", -1);
  4868. return inpL;
  4869. }
  4870. static void llm_build_kv_store(
  4871. struct ggml_context * ctx,
  4872. const llama_hparams & hparams,
  4873. const llama_kv_cache & kv,
  4874. struct ggml_cgraph * graph,
  4875. struct ggml_tensor * k_cur,
  4876. struct ggml_tensor * v_cur,
  4877. int64_t n_ctx,
  4878. int32_t n_tokens,
  4879. int32_t kv_head,
  4880. const llm_build_cb & cb,
  4881. int64_t il) {
  4882. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4883. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4884. GGML_ASSERT(kv.size == n_ctx);
  4885. // compute the transposed [n_tokens, n_embd] V matrix
  4886. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  4887. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur);
  4888. cb(v_cur_t, "v_cur_t", il);
  4889. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  4890. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  4891. cb(k_cache_view, "k_cache_view", il);
  4892. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  4893. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  4894. (kv_head)*ggml_element_size(kv.v_l[il]));
  4895. cb(v_cache_view, "v_cache_view", il);
  4896. // important: storing RoPE-ed version of K in the KV cache!
  4897. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  4898. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  4899. }
  4900. static struct ggml_tensor * llm_build_norm(
  4901. struct ggml_context * ctx,
  4902. struct ggml_tensor * cur,
  4903. const llama_hparams & hparams,
  4904. struct ggml_tensor * mw,
  4905. struct ggml_tensor * mb,
  4906. llm_norm_type type,
  4907. const llm_build_cb & cb,
  4908. int il) {
  4909. switch (type) {
  4910. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  4911. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  4912. }
  4913. if (mw || mb) {
  4914. cb(cur, "norm", il);
  4915. }
  4916. if (mw) {
  4917. cur = ggml_mul(ctx, cur, mw);
  4918. if (mb) {
  4919. cb(cur, "norm_w", il);
  4920. }
  4921. }
  4922. if (mb) {
  4923. cur = ggml_add(ctx, cur, mb);
  4924. }
  4925. return cur;
  4926. }
  4927. static struct ggml_tensor * llm_build_ffn(
  4928. struct ggml_context * ctx,
  4929. struct ggml_tensor * cur,
  4930. struct ggml_tensor * up,
  4931. struct ggml_tensor * up_b,
  4932. struct ggml_tensor * gate,
  4933. struct ggml_tensor * gate_b,
  4934. struct ggml_tensor * down,
  4935. struct ggml_tensor * down_b,
  4936. struct ggml_tensor * act_scales,
  4937. llm_ffn_op_type type_op,
  4938. llm_ffn_gate_type type_gate,
  4939. const llm_build_cb & cb,
  4940. int il) {
  4941. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  4942. cb(tmp, "ffn_up", il);
  4943. if (up_b) {
  4944. tmp = ggml_add(ctx, tmp, up_b);
  4945. cb(tmp, "ffn_up_b", il);
  4946. }
  4947. if (gate) {
  4948. switch (type_gate) {
  4949. case LLM_FFN_SEQ:
  4950. {
  4951. cur = ggml_mul_mat(ctx, gate, tmp);
  4952. cb(cur, "ffn_gate", il);
  4953. } break;
  4954. case LLM_FFN_PAR:
  4955. {
  4956. cur = ggml_mul_mat(ctx, gate, cur);
  4957. cb(cur, "ffn_gate", il);
  4958. } break;
  4959. }
  4960. if (gate_b) {
  4961. cur = ggml_add(ctx, cur, gate_b);
  4962. cb(cur, "ffn_gate_b", il);
  4963. }
  4964. } else {
  4965. cur = tmp;
  4966. }
  4967. switch (type_op) {
  4968. case LLM_FFN_SILU:
  4969. {
  4970. cur = ggml_silu(ctx, cur);
  4971. cb(cur, "ffn_silu", il);
  4972. } break;
  4973. case LLM_FFN_GELU:
  4974. {
  4975. cur = ggml_gelu(ctx, cur);
  4976. cb(cur, "ffn_gelu", il);
  4977. if (act_scales != NULL) {
  4978. cur = ggml_div(ctx, cur, act_scales);
  4979. cb(cur, "ffn_act", il);
  4980. }
  4981. } break;
  4982. case LLM_FFN_RELU:
  4983. {
  4984. cur = ggml_relu(ctx, cur);
  4985. cb(cur, "ffn_relu", il);
  4986. } break;
  4987. case LLM_FFN_RELU_SQR:
  4988. {
  4989. cur = ggml_relu(ctx, cur);
  4990. cb(cur, "ffn_relu", il);
  4991. cur = ggml_sqr(ctx, cur);
  4992. cb(cur, "ffn_sqr(relu)", il);
  4993. } break;
  4994. }
  4995. if (type_gate == LLM_FFN_PAR) {
  4996. cur = ggml_mul(ctx, cur, tmp);
  4997. cb(cur, "ffn_gate_par", il);
  4998. }
  4999. cur = ggml_mul_mat(ctx, down, cur);
  5000. if (down_b) {
  5001. cb(cur, "ffn_down", il);
  5002. }
  5003. if (down_b) {
  5004. cur = ggml_add(ctx, cur, down_b);
  5005. }
  5006. return cur;
  5007. }
  5008. // if max_alibi_bias > 0 then apply ALiBi
  5009. static struct ggml_tensor * llm_build_kqv(
  5010. struct ggml_context * ctx,
  5011. const llama_model & model,
  5012. const llama_hparams & hparams,
  5013. const llama_kv_cache & kv,
  5014. struct ggml_cgraph * graph,
  5015. struct ggml_tensor * wo,
  5016. struct ggml_tensor * wo_b,
  5017. struct ggml_tensor * q_cur,
  5018. struct ggml_tensor * kq_mask,
  5019. struct ggml_tensor * kq_pos,
  5020. int64_t n_ctx,
  5021. int32_t n_tokens,
  5022. int32_t n_kv,
  5023. float kq_scale,
  5024. const llm_build_cb & cb,
  5025. int il) {
  5026. const int64_t n_head = hparams.n_head;
  5027. const int64_t n_head_kv = hparams.n_head_kv;
  5028. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5029. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5030. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5031. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5032. cb(q, "q", il);
  5033. struct ggml_tensor * k =
  5034. ggml_view_3d(ctx, kv.k_l[il],
  5035. n_embd_head_k, n_kv, n_head_kv,
  5036. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5037. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5038. 0);
  5039. cb(k, "k", il);
  5040. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5041. cb(kq, "kq", il);
  5042. if (model.arch == LLM_ARCH_PHI2) {
  5043. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5044. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5045. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5046. }
  5047. if (model.arch == LLM_ARCH_GROK) {
  5048. // need to do the following:
  5049. // multiply by attn_output_multiplyer of 0.08838834764831845
  5050. // and then :
  5051. // kq = 30 * tanh(kq / 30)
  5052. // before the softmax below
  5053. //try from phi2
  5054. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5055. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5056. kq = ggml_scale(ctx, kq, 30);
  5057. }
  5058. #if defined(GGML_USE_KOMPUTE)
  5059. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
  5060. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  5061. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  5062. if (hparams.f_max_alibi_bias > 0.0f) {
  5063. kq = ggml_scale(ctx, kq, kq_scale);
  5064. cb(kq, "kq_scaled", il);
  5065. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  5066. cb(kq, "kq_scaled_alibi", il);
  5067. kq = ggml_add(ctx, kq, kq_mask);
  5068. cb(kq, "kq_masked", il);
  5069. kq = ggml_soft_max(ctx, kq);
  5070. cb(kq, "kq_soft_max", il);
  5071. } else
  5072. #endif
  5073. {
  5074. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  5075. cb(kq, "kq_soft_max_ext", il);
  5076. }
  5077. GGML_ASSERT(kv.size == n_ctx);
  5078. // split cached v into n_head heads
  5079. struct ggml_tensor * v =
  5080. ggml_view_3d(ctx, kv.v_l[il],
  5081. n_kv, n_embd_head_v, n_head_kv,
  5082. ggml_element_size(kv.v_l[il])*n_ctx,
  5083. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5084. 0);
  5085. cb(v, "v", il);
  5086. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5087. cb(kqv, "kqv", il);
  5088. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5089. cb(kqv_merged, "kqv_merged", il);
  5090. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  5091. cb(cur, "kqv_merged_cont", il);
  5092. ggml_build_forward_expand(graph, cur);
  5093. cur = ggml_mul_mat(ctx, wo, cur);
  5094. if (wo_b) {
  5095. cb(cur, "kqv_wo", il);
  5096. }
  5097. if (wo_b) {
  5098. cur = ggml_add(ctx, cur, wo_b);
  5099. }
  5100. return cur;
  5101. }
  5102. static struct ggml_tensor * llm_build_kv(
  5103. struct ggml_context * ctx,
  5104. const llama_model & model,
  5105. const llama_hparams & hparams,
  5106. const llama_kv_cache & kv,
  5107. struct ggml_cgraph * graph,
  5108. struct ggml_tensor * wo,
  5109. struct ggml_tensor * wo_b,
  5110. struct ggml_tensor * k_cur,
  5111. struct ggml_tensor * v_cur,
  5112. struct ggml_tensor * q_cur,
  5113. struct ggml_tensor * kq_mask,
  5114. struct ggml_tensor * kq_pos,
  5115. int64_t n_ctx,
  5116. int32_t n_tokens,
  5117. int32_t kv_head,
  5118. int32_t n_kv,
  5119. float kq_scale,
  5120. const llm_build_cb & cb,
  5121. int il) {
  5122. // these nodes are added to the graph together so that they are not reordered
  5123. // by doing so, the number of splits in the graph is reduced
  5124. ggml_build_forward_expand(graph, q_cur);
  5125. ggml_build_forward_expand(graph, k_cur);
  5126. ggml_build_forward_expand(graph, v_cur);
  5127. llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
  5128. struct ggml_tensor * cur;
  5129. cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
  5130. q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
  5131. cb(cur, "kqv_out", il);
  5132. return cur;
  5133. }
  5134. struct llm_build_context {
  5135. const llama_model & model;
  5136. llama_context & lctx;
  5137. const llama_hparams & hparams;
  5138. const llama_cparams & cparams;
  5139. const llama_batch & batch;
  5140. const llama_kv_cache & kv_self;
  5141. const int64_t n_embd;
  5142. const int64_t n_layer;
  5143. const int64_t n_rot;
  5144. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5145. const int64_t n_head;
  5146. const int64_t n_head_kv;
  5147. const int64_t n_embd_head_k;
  5148. const int64_t n_embd_k_gqa;
  5149. const int64_t n_embd_head_v;
  5150. const int64_t n_embd_v_gqa;
  5151. const int64_t n_expert;
  5152. const int64_t n_expert_used;
  5153. const float freq_base;
  5154. const float freq_scale;
  5155. const float ext_factor;
  5156. const float attn_factor;
  5157. const float beta_fast;
  5158. const float beta_slow;
  5159. const float norm_eps;
  5160. const float norm_rms_eps;
  5161. const int32_t n_tokens;
  5162. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5163. const int32_t n_outputs;
  5164. const int32_t kv_head; // index of where we store new KV data in the cache
  5165. const int32_t n_orig_ctx;
  5166. const enum llama_pooling_type pooling_type;
  5167. const enum llama_rope_type rope_type;
  5168. const llm_build_cb & cb;
  5169. std::vector<uint8_t> & buf_compute_meta;
  5170. struct ggml_context * ctx0 = nullptr;
  5171. // TODO: consider making the entire interface noexcept
  5172. llm_build_context(
  5173. llama_context & lctx,
  5174. const llama_batch & batch,
  5175. const llm_build_cb & cb,
  5176. bool worst_case) :
  5177. model (lctx.model),
  5178. lctx (lctx),
  5179. hparams (model.hparams),
  5180. cparams (lctx.cparams),
  5181. batch (batch),
  5182. kv_self (lctx.kv_self),
  5183. n_embd (hparams.n_embd),
  5184. n_layer (hparams.n_layer),
  5185. n_rot (hparams.n_rot),
  5186. n_ctx (cparams.n_ctx),
  5187. n_head (hparams.n_head),
  5188. n_head_kv (hparams.n_head_kv),
  5189. n_embd_head_k (hparams.n_embd_head_k),
  5190. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5191. n_embd_head_v (hparams.n_embd_head_v),
  5192. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5193. n_expert (hparams.n_expert),
  5194. n_expert_used (hparams.n_expert_used),
  5195. freq_base (cparams.rope_freq_base),
  5196. freq_scale (cparams.rope_freq_scale),
  5197. ext_factor (cparams.yarn_ext_factor),
  5198. attn_factor (cparams.yarn_attn_factor),
  5199. beta_fast (cparams.yarn_beta_fast),
  5200. beta_slow (cparams.yarn_beta_slow),
  5201. norm_eps (hparams.f_norm_eps),
  5202. norm_rms_eps (hparams.f_norm_rms_eps),
  5203. n_tokens (batch.n_tokens),
  5204. n_kv (worst_case ? kv_self.size : kv_self.n),
  5205. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5206. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5207. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5208. pooling_type (cparams.pooling_type),
  5209. rope_type (hparams.rope_type),
  5210. cb (cb),
  5211. buf_compute_meta (lctx.buf_compute_meta) {
  5212. // all initializations should be done in init()
  5213. }
  5214. void init() {
  5215. struct ggml_init_params params = {
  5216. /*.mem_size =*/ buf_compute_meta.size(),
  5217. /*.mem_buffer =*/ buf_compute_meta.data(),
  5218. /*.no_alloc =*/ true,
  5219. };
  5220. ctx0 = ggml_init(params);
  5221. lctx.inp_tokens = nullptr;
  5222. lctx.inp_embd = nullptr;
  5223. lctx.inp_pos = nullptr;
  5224. lctx.inp_out_ids = nullptr;
  5225. lctx.inp_KQ_mask = nullptr;
  5226. lctx.inp_KQ_pos = nullptr;
  5227. lctx.inp_K_shift = nullptr;
  5228. lctx.inp_mean = nullptr;
  5229. lctx.inp_cls = nullptr;
  5230. lctx.inp_s_copy = nullptr;
  5231. lctx.inp_s_mask = nullptr;
  5232. lctx.inp_s_seq = nullptr;
  5233. }
  5234. void free() {
  5235. if (ctx0) {
  5236. ggml_free(ctx0);
  5237. ctx0 = nullptr;
  5238. }
  5239. }
  5240. struct ggml_cgraph * build_k_shift() {
  5241. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5242. GGML_ASSERT(kv_self.size == n_ctx);
  5243. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5244. cb(lctx.inp_K_shift, "K_shift", -1);
  5245. ggml_set_input(lctx.inp_K_shift);
  5246. for (int il = 0; il < n_layer; ++il) {
  5247. struct ggml_tensor * tmp =
  5248. // we rotate only the first n_rot dimensions
  5249. ggml_rope_custom_inplace(ctx0,
  5250. ggml_view_3d(ctx0, kv_self.k_l[il],
  5251. n_embd_head_k, n_head_kv, n_ctx,
  5252. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5253. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5254. 0),
  5255. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5256. ext_factor, attn_factor, beta_fast, beta_slow);
  5257. cb(tmp, "K_shifted", il);
  5258. ggml_build_forward_expand(gf, tmp);
  5259. }
  5260. return gf;
  5261. }
  5262. struct ggml_cgraph * build_s_copy() {
  5263. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5264. GGML_ASSERT(kv_self.recurrent);
  5265. struct ggml_tensor * state_copy = build_inp_s_copy();
  5266. for (int il = 0; il < n_layer; ++il) {
  5267. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5268. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5269. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5270. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5271. // TODO: name the intermediate tensors with cb()
  5272. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5273. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5274. }
  5275. return gf;
  5276. }
  5277. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5278. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5279. for (uint32_t i = 0; i < ids.size(); ++i) {
  5280. const uint32_t id = ids[i];
  5281. if (i == id || id == ids.size()) {
  5282. continue;
  5283. }
  5284. uint32_t nm = 1;
  5285. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5286. nm++;
  5287. }
  5288. for (int il = 0; il < n_layer; ++il) {
  5289. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5290. n_embd_k_gqa, nm,
  5291. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5292. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5293. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5294. n_embd_k_gqa, nm,
  5295. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5296. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5297. ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5298. nm, n_embd_v_gqa,
  5299. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5300. ggml_row_size(kv_self.v_l[il]->type, i));
  5301. ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5302. nm, n_embd_v_gqa,
  5303. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5304. ggml_row_size(kv_self.v_l[il]->type, id));
  5305. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5306. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5307. }
  5308. i += nm - 1;
  5309. }
  5310. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5311. return gf;
  5312. }
  5313. struct ggml_tensor * build_inp_pos() {
  5314. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5315. cb(lctx.inp_pos, "inp_pos", -1);
  5316. ggml_set_input(lctx.inp_pos);
  5317. return lctx.inp_pos;
  5318. }
  5319. struct ggml_tensor * build_inp_out_ids() {
  5320. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5321. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5322. ggml_set_input(lctx.inp_out_ids);
  5323. return lctx.inp_out_ids;
  5324. }
  5325. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5326. if (causal) {
  5327. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens);
  5328. } else {
  5329. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5330. }
  5331. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  5332. ggml_set_input(lctx.inp_KQ_mask);
  5333. return lctx.inp_KQ_mask;
  5334. }
  5335. struct ggml_tensor * build_inp_KQ_pos() {
  5336. lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv);
  5337. cb(lctx.inp_KQ_pos, "KQ_pos", -1);
  5338. ggml_set_input(lctx.inp_KQ_pos);
  5339. return lctx.inp_KQ_pos;
  5340. }
  5341. struct ggml_tensor * build_inp_mean() {
  5342. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5343. cb(lctx.inp_mean, "inp_mean", -1);
  5344. ggml_set_input(lctx.inp_mean);
  5345. return lctx.inp_mean;
  5346. }
  5347. struct ggml_tensor * build_inp_cls() {
  5348. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5349. cb(lctx.inp_cls, "inp_cls", -1);
  5350. ggml_set_input(lctx.inp_cls);
  5351. return lctx.inp_cls;
  5352. }
  5353. struct ggml_tensor * build_inp_s_copy() {
  5354. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  5355. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  5356. ggml_set_input(lctx.inp_s_copy);
  5357. return lctx.inp_s_copy;
  5358. }
  5359. struct ggml_tensor * build_inp_s_mask() {
  5360. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  5361. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  5362. ggml_set_input(lctx.inp_s_mask);
  5363. return lctx.inp_s_mask;
  5364. }
  5365. struct ggml_tensor * build_inp_s_seq() {
  5366. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  5367. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  5368. ggml_set_input(lctx.inp_s_seq);
  5369. return lctx.inp_s_seq;
  5370. }
  5371. struct ggml_cgraph * build_llama() {
  5372. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5373. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5374. int32_t n_tokens = this->n_tokens;
  5375. const int64_t n_embd_head = hparams.n_embd_head_v;
  5376. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5377. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5378. struct ggml_tensor * cur;
  5379. struct ggml_tensor * inpL;
  5380. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5381. // inp_pos - contains the positions
  5382. struct ggml_tensor * inp_pos = build_inp_pos();
  5383. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5384. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5385. for (int il = 0; il < n_layer; ++il) {
  5386. struct ggml_tensor * inpSA = inpL;
  5387. // norm
  5388. cur = llm_build_norm(ctx0, inpL, hparams,
  5389. model.layers[il].attn_norm, NULL,
  5390. LLM_NORM_RMS, cb, il);
  5391. cb(cur, "attn_norm", il);
  5392. // self-attention
  5393. {
  5394. // compute Q and K and RoPE them
  5395. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5396. cb(Qcur, "Qcur", il);
  5397. if (model.layers[il].bq) {
  5398. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5399. cb(Qcur, "Qcur", il);
  5400. }
  5401. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5402. cb(Kcur, "Kcur", il);
  5403. if (model.layers[il].bk) {
  5404. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5405. cb(Kcur, "Kcur", il);
  5406. }
  5407. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5408. cb(Vcur, "Vcur", il);
  5409. if (model.layers[il].bv) {
  5410. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5411. cb(Vcur, "Vcur", il);
  5412. }
  5413. Qcur = ggml_rope_custom(
  5414. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5415. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5416. ext_factor, attn_factor, beta_fast, beta_slow
  5417. );
  5418. cb(Qcur, "Qcur", il);
  5419. Kcur = ggml_rope_custom(
  5420. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5421. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5422. ext_factor, attn_factor, beta_fast, beta_slow
  5423. );
  5424. cb(Kcur, "Kcur", il);
  5425. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5426. model.layers[il].wo, model.layers[il].bo,
  5427. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5428. }
  5429. if (il == n_layer - 1) {
  5430. // skip computing output for unused tokens
  5431. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5432. n_tokens = n_outputs;
  5433. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5434. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5435. }
  5436. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5437. cb(ffn_inp, "ffn_inp", il);
  5438. // feed-forward network
  5439. if (model.layers[il].ffn_gate_inp == nullptr) {
  5440. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5441. model.layers[il].ffn_norm, NULL,
  5442. LLM_NORM_RMS, cb, il);
  5443. cb(cur, "ffn_norm", il);
  5444. cur = llm_build_ffn(ctx0, cur,
  5445. model.layers[il].ffn_up, NULL,
  5446. model.layers[il].ffn_gate, NULL,
  5447. model.layers[il].ffn_down, NULL,
  5448. NULL,
  5449. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5450. cb(cur, "ffn_out", il);
  5451. } else {
  5452. // MoE branch
  5453. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5454. model.layers[il].ffn_norm, NULL,
  5455. LLM_NORM_RMS, cb, il);
  5456. cb(cur, "ffn_norm", il);
  5457. ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
  5458. cb(logits, "ffn_moe_logits", il);
  5459. ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
  5460. cb(probs, "ffn_moe_probs", il);
  5461. // select experts
  5462. ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
  5463. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5464. ggml_tensor * weights = ggml_get_rows(ctx0,
  5465. ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
  5466. cb(weights, "ffn_moe_weights", il);
  5467. weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
  5468. ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
  5469. cb(weights_sum, "ffn_moe_weights_sum", il);
  5470. weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
  5471. cb(weights, "ffn_moe_weights_norm", il);
  5472. // compute expert outputs
  5473. ggml_tensor * moe_out = nullptr;
  5474. for (int i = 0; i < n_expert_used; ++i) {
  5475. ggml_tensor * cur_expert;
  5476. ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
  5477. cb(cur_up, "ffn_moe_up", il);
  5478. ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
  5479. cb(cur_gate, "ffn_moe_gate", il);
  5480. cur_gate = ggml_silu(ctx0, cur_gate);
  5481. cb(cur_gate, "ffn_moe_silu", il);
  5482. cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
  5483. cb(cur_expert, "ffn_moe_gate_par", il);
  5484. cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
  5485. cb(cur_expert, "ffn_moe_down", il);
  5486. cur_expert = ggml_mul(ctx0, cur_expert,
  5487. ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
  5488. cb(cur_expert, "ffn_moe_weighted", il);
  5489. if (i == 0) {
  5490. moe_out = cur_expert;
  5491. } else {
  5492. moe_out = ggml_add(ctx0, moe_out, cur_expert);
  5493. cb(moe_out, "ffn_moe_out", il);
  5494. }
  5495. }
  5496. cur = moe_out;
  5497. }
  5498. cur = ggml_add(ctx0, cur, ffn_inp);
  5499. cb(cur, "ffn_out", il);
  5500. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  5501. if (layer_dir != nullptr) {
  5502. cur = ggml_add(ctx0, cur, layer_dir);
  5503. }
  5504. cb(cur, "l_out", il);
  5505. // input for next layer
  5506. inpL = cur;
  5507. }
  5508. cur = inpL;
  5509. cur = llm_build_norm(ctx0, cur, hparams,
  5510. model.output_norm, NULL,
  5511. LLM_NORM_RMS, cb, -1);
  5512. cb(cur, "result_norm", -1);
  5513. // lm_head
  5514. cur = ggml_mul_mat(ctx0, model.output, cur);
  5515. cb(cur, "result_output", -1);
  5516. ggml_build_forward_expand(gf, cur);
  5517. return gf;
  5518. }
  5519. struct ggml_cgraph * build_baichuan() {
  5520. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5521. const int64_t n_embd_head = hparams.n_embd_head_v;
  5522. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5523. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5524. struct ggml_tensor * cur;
  5525. struct ggml_tensor * inpL;
  5526. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5527. // inp_pos - contains the positions
  5528. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  5529. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5530. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5531. // positions of the tokens in the KV cache
  5532. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5533. for (int il = 0; il < n_layer; ++il) {
  5534. struct ggml_tensor * inpSA = inpL;
  5535. cur = llm_build_norm(ctx0, inpL, hparams,
  5536. model.layers[il].attn_norm, NULL,
  5537. LLM_NORM_RMS, cb, il);
  5538. cb(cur, "attn_norm", il);
  5539. // self-attention
  5540. {
  5541. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5542. cb(Qcur, "Qcur", il);
  5543. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5544. cb(Kcur, "Kcur", il);
  5545. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5546. cb(Vcur, "Vcur", il);
  5547. switch (model.type) {
  5548. case MODEL_7B:
  5549. Qcur = ggml_rope_custom(
  5550. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5551. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5552. ext_factor, attn_factor, beta_fast, beta_slow
  5553. );
  5554. Kcur = ggml_rope_custom(
  5555. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5556. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5557. ext_factor, attn_factor, beta_fast, beta_slow
  5558. );
  5559. break;
  5560. case MODEL_13B:
  5561. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  5562. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  5563. break;
  5564. default:
  5565. GGML_ASSERT(false);
  5566. }
  5567. cb(Qcur, "Qcur", il);
  5568. cb(Kcur, "Kcur", il);
  5569. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5570. model.layers[il].wo, NULL,
  5571. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5572. }
  5573. if (il == n_layer - 1) {
  5574. // skip computing output for unused tokens
  5575. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5576. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5577. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5578. }
  5579. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5580. cb(ffn_inp, "ffn_inp", il);
  5581. // feed-forward network
  5582. {
  5583. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5584. model.layers[il].ffn_norm, NULL,
  5585. LLM_NORM_RMS, cb, il);
  5586. cb(cur, "ffn_norm", il);
  5587. cur = llm_build_ffn(ctx0, cur,
  5588. model.layers[il].ffn_up, NULL,
  5589. model.layers[il].ffn_gate, NULL,
  5590. model.layers[il].ffn_down, NULL,
  5591. NULL,
  5592. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5593. cb(cur, "ffn_out", il);
  5594. }
  5595. cur = ggml_add(ctx0, cur, ffn_inp);
  5596. cb(cur, "l_out", il);
  5597. // input for next layer
  5598. inpL = cur;
  5599. }
  5600. cur = inpL;
  5601. cur = llm_build_norm(ctx0, cur, hparams,
  5602. model.output_norm, NULL,
  5603. LLM_NORM_RMS, cb, -1);
  5604. cb(cur, "result_norm", -1);
  5605. // lm_head
  5606. cur = ggml_mul_mat(ctx0, model.output, cur);
  5607. cb(cur, "result_output", -1);
  5608. ggml_build_forward_expand(gf, cur);
  5609. return gf;
  5610. }
  5611. struct ggml_cgraph * build_xverse() {
  5612. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5613. const int64_t n_embd_head = hparams.n_embd_head_v;
  5614. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5615. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5616. struct ggml_tensor * cur;
  5617. struct ggml_tensor * inpL;
  5618. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5619. // inp_pos - contains the positions
  5620. struct ggml_tensor * inp_pos = build_inp_pos();
  5621. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5622. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5623. // positions of the tokens in the KV cache
  5624. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5625. for (int il = 0; il < n_layer; ++il) {
  5626. struct ggml_tensor * inpSA = inpL;
  5627. cur = llm_build_norm(ctx0, inpL, hparams,
  5628. model.layers[il].attn_norm, NULL,
  5629. LLM_NORM_RMS, cb, il);
  5630. cb(cur, "attn_norm", il);
  5631. // self-attention
  5632. {
  5633. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5634. cb(Qcur, "Qcur", il);
  5635. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5636. cb(Kcur, "Kcur", il);
  5637. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5638. cb(Vcur, "Vcur", il);
  5639. Qcur = ggml_rope_custom(
  5640. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5641. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5642. ext_factor, attn_factor, beta_fast, beta_slow
  5643. );
  5644. cb(Qcur, "Qcur", il);
  5645. Kcur = ggml_rope_custom(
  5646. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5647. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5648. ext_factor, attn_factor, beta_fast, beta_slow
  5649. );
  5650. cb(Kcur, "Kcur", il);
  5651. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5652. model.layers[il].wo, NULL,
  5653. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5654. }
  5655. if (il == n_layer - 1) {
  5656. // skip computing output for unused tokens
  5657. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5658. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5659. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5660. }
  5661. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5662. cb(ffn_inp, "ffn_inp", il);
  5663. // feed-forward network
  5664. {
  5665. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5666. model.layers[il].ffn_norm, NULL,
  5667. LLM_NORM_RMS, cb, il);
  5668. cb(cur, "ffn_norm", il);
  5669. cur = llm_build_ffn(ctx0, cur,
  5670. model.layers[il].ffn_up, NULL,
  5671. model.layers[il].ffn_gate, NULL,
  5672. model.layers[il].ffn_down, NULL,
  5673. NULL,
  5674. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5675. cb(cur, "ffn_out", il);
  5676. }
  5677. cur = ggml_add(ctx0, cur, ffn_inp);
  5678. cb(cur, "l_out", il);
  5679. // input for next layer
  5680. inpL = cur;
  5681. }
  5682. cur = inpL;
  5683. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  5684. cb(cur, "result_norm", -1);
  5685. // lm_head
  5686. cur = ggml_mul_mat(ctx0, model.output, cur);
  5687. cb(cur, "result_output", -1);
  5688. ggml_build_forward_expand(gf, cur);
  5689. return gf;
  5690. }
  5691. struct ggml_cgraph * build_falcon() {
  5692. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5693. const int64_t n_embd_head = hparams.n_embd_head_v;
  5694. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5695. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5696. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5697. struct ggml_tensor * cur;
  5698. struct ggml_tensor * inpL;
  5699. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5700. // inp_pos - contains the positions
  5701. struct ggml_tensor * inp_pos = build_inp_pos();
  5702. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5703. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5704. for (int il = 0; il < n_layer; ++il) {
  5705. struct ggml_tensor * attn_norm;
  5706. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  5707. model.layers[il].attn_norm,
  5708. model.layers[il].attn_norm_b,
  5709. LLM_NORM, cb, il);
  5710. cb(attn_norm, "attn_norm", il);
  5711. // self-attention
  5712. {
  5713. if (model.layers[il].attn_norm_2) {
  5714. // Falcon-40B
  5715. cur = llm_build_norm(ctx0, inpL, hparams,
  5716. model.layers[il].attn_norm_2,
  5717. model.layers[il].attn_norm_2_b,
  5718. LLM_NORM, cb, il);
  5719. cb(cur, "attn_norm_2", il);
  5720. } else {
  5721. cur = attn_norm;
  5722. }
  5723. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5724. cb(cur, "wqkv", il);
  5725. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5726. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5727. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5728. cb(Qcur, "Qcur", il);
  5729. cb(Kcur, "Kcur", il);
  5730. cb(Vcur, "Vcur", il);
  5731. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5732. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5733. // using mode = 2 for neox mode
  5734. Qcur = ggml_rope_custom(
  5735. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5736. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5737. );
  5738. cb(Qcur, "Qcur", il);
  5739. Kcur = ggml_rope_custom(
  5740. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5741. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5742. );
  5743. cb(Kcur, "Kcur", il);
  5744. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5745. model.layers[il].wo, NULL,
  5746. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5747. }
  5748. if (il == n_layer - 1) {
  5749. // skip computing output for unused tokens
  5750. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5751. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5752. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5753. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  5754. }
  5755. struct ggml_tensor * ffn_inp = cur;
  5756. // feed forward
  5757. {
  5758. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  5759. model.layers[il].ffn_up, NULL,
  5760. NULL, NULL,
  5761. model.layers[il].ffn_down, NULL,
  5762. NULL,
  5763. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5764. cb(cur, "ffn_out", il);
  5765. }
  5766. cur = ggml_add(ctx0, cur, ffn_inp);
  5767. cb(cur, "l_out", il);
  5768. cur = ggml_add(ctx0, cur, inpL);
  5769. cb(cur, "l_out", il);
  5770. // input for next layer
  5771. inpL = cur;
  5772. }
  5773. cur = inpL;
  5774. // norm
  5775. cur = llm_build_norm(ctx0, cur, hparams,
  5776. model.output_norm,
  5777. model.output_norm_b,
  5778. LLM_NORM, cb, -1);
  5779. cb(cur, "result_norm", -1);
  5780. cur = ggml_mul_mat(ctx0, model.output, cur);
  5781. cb(cur, "result_output", -1);
  5782. ggml_build_forward_expand(gf, cur);
  5783. return gf;
  5784. }
  5785. struct ggml_cgraph * build_grok() {
  5786. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5787. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5788. int32_t n_tokens = this->n_tokens;
  5789. const int64_t n_embd_head = hparams.n_embd_head_v;
  5790. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5791. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5792. struct ggml_tensor * cur;
  5793. struct ggml_tensor * inpL;
  5794. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5795. // multiply by embedding_multiplier_scale of 78.38367176906169
  5796. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  5797. // inp_pos - contains the positions
  5798. struct ggml_tensor * inp_pos = build_inp_pos();
  5799. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5800. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5801. for (int il = 0; il < n_layer; ++il) {
  5802. struct ggml_tensor * inpSA = inpL;
  5803. // norm
  5804. cur = llm_build_norm(ctx0, inpL, hparams,
  5805. model.layers[il].attn_norm, NULL,
  5806. LLM_NORM_RMS, cb, il);
  5807. cb(cur, "attn_norm", il);
  5808. // self-attention
  5809. {
  5810. // compute Q and K and RoPE them
  5811. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5812. cb(Qcur, "Qcur", il);
  5813. if (model.layers[il].bq) {
  5814. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5815. cb(Qcur, "Qcur", il);
  5816. }
  5817. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5818. cb(Kcur, "Kcur", il);
  5819. if (model.layers[il].bk) {
  5820. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5821. cb(Kcur, "Kcur", il);
  5822. }
  5823. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5824. cb(Vcur, "Vcur", il);
  5825. if (model.layers[il].bv) {
  5826. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5827. cb(Vcur, "Vcur", il);
  5828. }
  5829. Qcur = ggml_rope_custom(
  5830. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5831. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5832. ext_factor, attn_factor, beta_fast, beta_slow
  5833. );
  5834. cb(Qcur, "Qcur", il);
  5835. Kcur = ggml_rope_custom(
  5836. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5837. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5838. ext_factor, attn_factor, beta_fast, beta_slow
  5839. );
  5840. cb(Kcur, "Kcur", il);
  5841. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5842. model.layers[il].wo, model.layers[il].bo,
  5843. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  5844. }
  5845. if (il == n_layer - 1) {
  5846. // skip computing output for unused tokens
  5847. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5848. n_tokens = n_outputs;
  5849. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5850. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5851. }
  5852. // Grok
  5853. // if attn_out_norm is present then apply it before adding the input
  5854. if (model.layers[il].attn_out_norm) {
  5855. cur = llm_build_norm(ctx0, cur, hparams,
  5856. model.layers[il].attn_out_norm, NULL,
  5857. LLM_NORM_RMS, cb, il);
  5858. cb(cur, "attn_out_norm", il);
  5859. }
  5860. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5861. cb(ffn_inp, "ffn_inp", il);
  5862. // feed-forward network
  5863. // MoE branch
  5864. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5865. model.layers[il].ffn_norm, NULL,
  5866. LLM_NORM_RMS, cb, il);
  5867. cb(cur, "ffn_norm", il);
  5868. ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
  5869. cb(logits, "ffn_moe_logits", il);
  5870. ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
  5871. cb(probs, "ffn_moe_probs", il);
  5872. // select experts
  5873. ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
  5874. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5875. ggml_tensor * weights = ggml_get_rows(ctx0,
  5876. ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
  5877. cb(weights, "ffn_moe_weights", il);
  5878. weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
  5879. ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
  5880. cb(weights_sum, "ffn_moe_weights_sum", il);
  5881. weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
  5882. cb(weights, "ffn_moe_weights_norm", il);
  5883. // compute expert outputs
  5884. ggml_tensor * moe_out = nullptr;
  5885. for (int i = 0; i < n_expert_used; ++i) {
  5886. ggml_tensor * cur_expert;
  5887. ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
  5888. cb(cur_up, "ffn_moe_up", il);
  5889. ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
  5890. cb(cur_gate, "ffn_moe_gate", il);
  5891. //GeLU
  5892. cur_gate = ggml_gelu(ctx0, cur_gate);
  5893. cb(cur_gate, "ffn_moe_gelu", il);
  5894. cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
  5895. cb(cur_expert, "ffn_moe_gate_par", il);
  5896. cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
  5897. cb(cur_expert, "ffn_moe_down", il);
  5898. cur_expert = ggml_mul(ctx0, cur_expert,
  5899. ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
  5900. cb(cur_expert, "ffn_moe_weighted", il);
  5901. if (i == 0) {
  5902. moe_out = cur_expert;
  5903. } else {
  5904. moe_out = ggml_add(ctx0, moe_out, cur_expert);
  5905. cb(moe_out, "ffn_moe_out", il);
  5906. }
  5907. }
  5908. cur = moe_out;
  5909. // Grok
  5910. // if layer_out_norm is present then apply it before adding the input
  5911. // Idea: maybe ffn_out_norm is a better name
  5912. if (model.layers[il].layer_out_norm) {
  5913. cur = llm_build_norm(ctx0, cur, hparams,
  5914. model.layers[il].layer_out_norm, NULL,
  5915. LLM_NORM_RMS, cb, il);
  5916. cb(cur, "layer_out_norm", il);
  5917. }
  5918. cur = ggml_add(ctx0, cur, ffn_inp);
  5919. cb(cur, "ffn_out", il);
  5920. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  5921. if (layer_dir != nullptr) {
  5922. cur = ggml_add(ctx0, cur, layer_dir);
  5923. }
  5924. cb(cur, "l_out", il);
  5925. // input for next layer
  5926. inpL = cur;
  5927. }
  5928. cur = inpL;
  5929. cur = llm_build_norm(ctx0, cur, hparams,
  5930. model.output_norm, NULL,
  5931. LLM_NORM_RMS, cb, -1);
  5932. cb(cur, "result_norm", -1);
  5933. // lm_head
  5934. cur = ggml_mul_mat(ctx0, model.output, cur);
  5935. // Grok
  5936. // multiply logits by output_multiplier_scale of 0.5773502691896257
  5937. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  5938. cb(cur, "result_output", -1);
  5939. ggml_build_forward_expand(gf, cur);
  5940. return gf;
  5941. }
  5942. struct ggml_cgraph * build_starcoder() {
  5943. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5944. const int64_t n_embd_head = hparams.n_embd_head_v;
  5945. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5946. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5947. struct ggml_tensor * cur;
  5948. struct ggml_tensor * inpL;
  5949. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5950. // inp_pos - contains the positions
  5951. struct ggml_tensor * inp_pos = build_inp_pos();
  5952. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5953. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5954. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  5955. cb(pos, "pos_embd", -1);
  5956. inpL = ggml_add(ctx0, inpL, pos);
  5957. cb(inpL, "inpL", -1);
  5958. for (int il = 0; il < n_layer; ++il) {
  5959. cur = llm_build_norm(ctx0, inpL, hparams,
  5960. model.layers[il].attn_norm,
  5961. model.layers[il].attn_norm_b,
  5962. LLM_NORM, cb, il);
  5963. cb(cur, "attn_norm", il);
  5964. // self-attention
  5965. {
  5966. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5967. cb(cur, "wqkv", il);
  5968. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5969. cb(cur, "bqkv", il);
  5970. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5971. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5972. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5973. cb(Qcur, "Qcur", il);
  5974. cb(Kcur, "Kcur", il);
  5975. cb(Vcur, "Vcur", il);
  5976. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5977. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5978. model.layers[il].wo, model.layers[il].bo,
  5979. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5980. }
  5981. if (il == n_layer - 1) {
  5982. // skip computing output for unused tokens
  5983. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5984. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5985. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5986. }
  5987. // add the input
  5988. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5989. cb(ffn_inp, "ffn_inp", il);
  5990. // FF
  5991. {
  5992. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5993. model.layers[il].ffn_norm,
  5994. model.layers[il].ffn_norm_b,
  5995. LLM_NORM, cb, il);
  5996. cb(cur, "ffn_norm", il);
  5997. cur = llm_build_ffn(ctx0, cur,
  5998. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5999. NULL, NULL,
  6000. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6001. NULL,
  6002. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6003. cb(cur, "ffn_out", il);
  6004. }
  6005. inpL = ggml_add(ctx0, cur, ffn_inp);
  6006. cb(inpL, "l_out", il);
  6007. }
  6008. cur = llm_build_norm(ctx0, inpL, hparams,
  6009. model.output_norm,
  6010. model.output_norm_b,
  6011. LLM_NORM, cb, -1);
  6012. cb(cur, "result_norm", -1);
  6013. cur = ggml_mul_mat(ctx0, model.output, cur);
  6014. cb(cur, "result_output", -1);
  6015. ggml_build_forward_expand(gf, cur);
  6016. return gf;
  6017. }
  6018. struct ggml_cgraph * build_persimmon() {
  6019. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6020. const int64_t n_embd_head = hparams.n_embd_head_v;
  6021. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6022. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6023. struct ggml_tensor * cur;
  6024. struct ggml_tensor * inpL;
  6025. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6026. // inp_pos - contains the positions
  6027. struct ggml_tensor * inp_pos = build_inp_pos();
  6028. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6029. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6030. for (int il = 0; il < n_layer; ++il) {
  6031. struct ggml_tensor * residual = inpL;
  6032. cur = llm_build_norm(ctx0, inpL, hparams,
  6033. model.layers[il].attn_norm,
  6034. model.layers[il].attn_norm_b,
  6035. LLM_NORM, cb, il);
  6036. cb(cur, "attn_norm", il);
  6037. // self attention
  6038. {
  6039. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6040. cb(cur, "wqkv", il);
  6041. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6042. cb(cur, "bqkv", il);
  6043. // split qkv
  6044. GGML_ASSERT(n_head_kv == n_head);
  6045. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6046. cb(tmpqkv, "tmpqkv", il);
  6047. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6048. cb(tmpqkv_perm, "tmpqkv", il);
  6049. struct ggml_tensor * tmpq = ggml_view_3d(
  6050. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6051. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6052. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6053. 0
  6054. );
  6055. cb(tmpq, "tmpq", il);
  6056. struct ggml_tensor * tmpk = ggml_view_3d(
  6057. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6058. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6059. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6060. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6061. );
  6062. cb(tmpk, "tmpk", il);
  6063. // Q/K Layernorm
  6064. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6065. model.layers[il].attn_q_norm,
  6066. model.layers[il].attn_q_norm_b,
  6067. LLM_NORM, cb, il);
  6068. cb(tmpq, "tmpq", il);
  6069. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6070. model.layers[il].attn_k_norm,
  6071. model.layers[il].attn_k_norm_b,
  6072. LLM_NORM, cb, il);
  6073. cb(tmpk, "tmpk", il);
  6074. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6075. struct ggml_tensor * qrot = ggml_view_3d(
  6076. ctx0, tmpq, n_rot, n_head, n_tokens,
  6077. ggml_element_size(tmpq) * n_embd_head,
  6078. ggml_element_size(tmpq) * n_embd_head * n_head,
  6079. 0
  6080. );
  6081. cb(qrot, "qrot", il);
  6082. struct ggml_tensor * krot = ggml_view_3d(
  6083. ctx0, tmpk, n_rot, n_head, n_tokens,
  6084. ggml_element_size(tmpk) * n_embd_head,
  6085. ggml_element_size(tmpk) * n_embd_head * n_head,
  6086. 0
  6087. );
  6088. cb(krot, "krot", il);
  6089. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6090. struct ggml_tensor * qpass = ggml_view_3d(
  6091. ctx0, tmpq, n_rot, n_head, n_tokens,
  6092. ggml_element_size(tmpq) * n_embd_head,
  6093. ggml_element_size(tmpq) * n_embd_head * n_head,
  6094. ggml_element_size(tmpq) * n_rot
  6095. );
  6096. cb(qpass, "qpass", il);
  6097. struct ggml_tensor * kpass = ggml_view_3d(
  6098. ctx0, tmpk, n_rot, n_head, n_tokens,
  6099. ggml_element_size(tmpk) * n_embd_head,
  6100. ggml_element_size(tmpk) * n_embd_head * n_head,
  6101. ggml_element_size(tmpk) * n_rot
  6102. );
  6103. cb(kpass, "kpass", il);
  6104. struct ggml_tensor * qrotated = ggml_rope_custom(
  6105. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6106. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6107. );
  6108. cb(qrotated, "qrotated", il);
  6109. struct ggml_tensor * krotated = ggml_rope_custom(
  6110. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6111. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6112. );
  6113. cb(krotated, "krotated", il);
  6114. // ggml currently only supports concatenation on dim=2
  6115. // so we need to permute qrot, qpass, concat, then permute back.
  6116. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6117. cb(qrotated, "qrotated", il);
  6118. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6119. cb(krotated, "krotated", il);
  6120. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6121. cb(qpass, "qpass", il);
  6122. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6123. cb(kpass, "kpass", il);
  6124. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6125. cb(Qcur, "Qcur", il);
  6126. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6127. cb(Kcur, "Kcur", il);
  6128. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6129. cb(Q, "Q", il);
  6130. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6131. cb(Kcur, "Kcur", il);
  6132. struct ggml_tensor * Vcur = ggml_view_3d(
  6133. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6134. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6135. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6136. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6137. );
  6138. cb(Vcur, "Vcur", il);
  6139. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6140. model.layers[il].wo, model.layers[il].bo,
  6141. Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6142. }
  6143. if (il == n_layer - 1) {
  6144. // skip computing output for unused tokens
  6145. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6146. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6147. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6148. }
  6149. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6150. cb(ffn_inp, "ffn_inp", il);
  6151. // feed-forward network
  6152. {
  6153. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6154. model.layers[il].ffn_norm,
  6155. model.layers[il].ffn_norm_b,
  6156. LLM_NORM, cb, il);
  6157. cb(cur, "ffn_norm", il);
  6158. cur = llm_build_ffn(ctx0, cur,
  6159. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6160. NULL, NULL,
  6161. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6162. NULL,
  6163. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6164. cb(cur, "ffn_out", il);
  6165. }
  6166. cur = ggml_add(ctx0, cur, ffn_inp);
  6167. cb(cur, "l_out", il);
  6168. inpL = cur;
  6169. }
  6170. cur = inpL;
  6171. cur = llm_build_norm(ctx0, cur, hparams,
  6172. model.output_norm,
  6173. model.output_norm_b,
  6174. LLM_NORM, cb, -1);
  6175. cb(cur, "result_norm", -1);
  6176. cur = ggml_mul_mat(ctx0, model.output, cur);
  6177. cb(cur, "result_output", -1);
  6178. ggml_build_forward_expand(gf, cur);
  6179. return gf;
  6180. }
  6181. struct ggml_cgraph * build_refact() {
  6182. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6183. const int64_t n_embd_head = hparams.n_embd_head_v;
  6184. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6185. struct ggml_tensor * cur;
  6186. struct ggml_tensor * inpL;
  6187. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6188. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6189. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6190. // positions of the tokens in the KV cache
  6191. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6192. for (int il = 0; il < n_layer; ++il) {
  6193. struct ggml_tensor * inpSA = inpL;
  6194. cur = llm_build_norm(ctx0, inpL, hparams,
  6195. model.layers[il].attn_norm, NULL,
  6196. LLM_NORM_RMS, cb, il);
  6197. cb(cur, "attn_norm", il);
  6198. // self-attention
  6199. {
  6200. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6201. cb(Qcur, "Qcur", il);
  6202. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6203. cb(Kcur, "Kcur", il);
  6204. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6205. cb(Vcur, "Vcur", il);
  6206. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6207. cb(Kcur, "Kcur", il);
  6208. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6209. cb(Qcur, "Qcur", il);
  6210. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6211. model.layers[il].wo, NULL,
  6212. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6213. }
  6214. if (il == n_layer - 1) {
  6215. // skip computing output for unused tokens
  6216. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6217. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6218. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6219. }
  6220. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6221. cb(ffn_inp, "ffn_inp", il);
  6222. // feed-forward network
  6223. {
  6224. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6225. model.layers[il].ffn_norm, NULL,
  6226. LLM_NORM_RMS, cb, il);
  6227. cb(cur, "ffn_norm", il);
  6228. cur = llm_build_ffn(ctx0, cur,
  6229. model.layers[il].ffn_up, NULL,
  6230. model.layers[il].ffn_gate, NULL,
  6231. model.layers[il].ffn_down, NULL,
  6232. NULL,
  6233. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6234. cb(cur, "ffn_out", il);
  6235. }
  6236. cur = ggml_add(ctx0, cur, ffn_inp);
  6237. cb(cur, "l_out", il);
  6238. // input for next layer
  6239. inpL = cur;
  6240. }
  6241. cur = inpL;
  6242. cur = llm_build_norm(ctx0, cur, hparams,
  6243. model.output_norm, NULL,
  6244. LLM_NORM_RMS, cb, -1);
  6245. cb(cur, "result_norm", -1);
  6246. // lm_head
  6247. cur = ggml_mul_mat(ctx0, model.output, cur);
  6248. cb(cur, "result_output", -1);
  6249. ggml_build_forward_expand(gf, cur);
  6250. return gf;
  6251. }
  6252. struct ggml_cgraph * build_bert() {
  6253. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6254. const int64_t n_embd_head = hparams.n_embd_head_v;
  6255. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6256. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6257. struct ggml_tensor * cur;
  6258. struct ggml_tensor * inpL;
  6259. struct ggml_tensor * inp_pos = build_inp_pos();
  6260. struct ggml_tensor * inp_mean = build_inp_mean();
  6261. struct ggml_tensor * inp_cls = build_inp_cls();
  6262. // construct input embeddings (token, type, position)
  6263. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6264. // token types are hardcoded to zero ("Sentence A")
  6265. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6266. inpL = ggml_add(ctx0, inpL, type_row0);
  6267. if (model.arch == LLM_ARCH_BERT) {
  6268. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6269. }
  6270. cb(inpL, "inp_embd", -1);
  6271. // embed layer norm
  6272. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6273. cb(inpL, "inp_norm", -1);
  6274. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6275. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6276. // iterate layers
  6277. for (int il = 0; il < n_layer; ++il) {
  6278. struct ggml_tensor * cur = inpL;
  6279. struct ggml_tensor * Qcur;
  6280. struct ggml_tensor * Kcur;
  6281. struct ggml_tensor * Vcur;
  6282. // self-attention
  6283. if (model.arch == LLM_ARCH_BERT) {
  6284. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6285. cb(Qcur, "Qcur", il);
  6286. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6287. cb(Kcur, "Kcur", il);
  6288. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6289. cb(Vcur, "Vcur", il);
  6290. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6291. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6292. } else {
  6293. // compute Q and K and RoPE them
  6294. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6295. cb(cur, "wqkv", il);
  6296. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6297. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6298. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6299. cb(Qcur, "Qcur", il);
  6300. cb(Kcur, "Kcur", il);
  6301. cb(Vcur, "Vcur", il);
  6302. Qcur = ggml_rope_custom(
  6303. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6304. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6305. ext_factor, attn_factor, beta_fast, beta_slow
  6306. );
  6307. cb(Qcur, "Qcur", il);
  6308. Kcur = ggml_rope_custom(
  6309. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6310. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6311. ext_factor, attn_factor, beta_fast, beta_slow
  6312. );
  6313. cb(Kcur, "Kcur", il);
  6314. }
  6315. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6316. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6317. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6318. cb(kq, "kq", il);
  6319. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6320. cb(kq, "kq_soft_max_ext", il);
  6321. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6322. cb(v, "v", il);
  6323. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6324. cb(kqv, "kqv", il);
  6325. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6326. cb(kqv_merged, "kqv_merged", il);
  6327. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6328. cb(cur, "kqv_merged_cont", il);
  6329. ggml_build_forward_expand(gf, cur);
  6330. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6331. if (model.layers[il].bo) {
  6332. cb(cur, "kqv_wo", il);
  6333. }
  6334. if (model.layers[il].bo) {
  6335. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6336. }
  6337. cb(cur, "kqv_out", il);
  6338. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6339. // skip computing output for unused tokens
  6340. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6341. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6342. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6343. }
  6344. // re-add the layer input
  6345. cur = ggml_add(ctx0, cur, inpL);
  6346. // attention layer norm
  6347. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6348. struct ggml_tensor * ffn_inp = cur;
  6349. cb(ffn_inp, "ffn_inp", il);
  6350. // feed-forward network
  6351. if (model.arch == LLM_ARCH_BERT) {
  6352. cur = llm_build_ffn(ctx0, cur,
  6353. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6354. NULL, NULL,
  6355. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6356. NULL,
  6357. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6358. } else {
  6359. cur = llm_build_ffn(ctx0, cur,
  6360. model.layers[il].ffn_up, NULL,
  6361. model.layers[il].ffn_gate, NULL,
  6362. model.layers[il].ffn_down, NULL,
  6363. NULL,
  6364. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6365. }
  6366. cb(cur, "ffn_out", il);
  6367. // attentions bypass the intermediate layer
  6368. cur = ggml_add(ctx0, cur, ffn_inp);
  6369. // output layer norm
  6370. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6371. // input for next layer
  6372. inpL = cur;
  6373. }
  6374. // final output
  6375. cur = inpL;
  6376. cb(cur, "result_embd", -1);
  6377. // pooling layer
  6378. switch (pooling_type) {
  6379. case LLAMA_POOLING_TYPE_NONE:
  6380. {
  6381. // nop
  6382. } break;
  6383. case LLAMA_POOLING_TYPE_MEAN:
  6384. {
  6385. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  6386. cb(cur, "result_embd_pooled", -1);
  6387. } break;
  6388. case LLAMA_POOLING_TYPE_CLS:
  6389. {
  6390. cur = ggml_get_rows(ctx0, cur, inp_cls);
  6391. cb(cur, "result_embd_pooled", -1);
  6392. } break;
  6393. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  6394. {
  6395. GGML_ASSERT(false && "Invalid pooling type");
  6396. } break;
  6397. }
  6398. ggml_build_forward_expand(gf, cur);
  6399. return gf;
  6400. }
  6401. struct ggml_cgraph * build_bloom() {
  6402. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6403. const int64_t n_embd_head = hparams.n_embd_head_v;
  6404. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6405. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6406. struct ggml_tensor * cur;
  6407. struct ggml_tensor * inpL;
  6408. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6409. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6410. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6411. // positions of the tokens in the KV cache
  6412. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6413. inpL = llm_build_norm(ctx0, inpL, hparams,
  6414. model.tok_norm,
  6415. model.tok_norm_b,
  6416. LLM_NORM, cb, -1);
  6417. cb(inpL, "inp_norm", -1);
  6418. for (int il = 0; il < n_layer; ++il) {
  6419. cur = llm_build_norm(ctx0, inpL, hparams,
  6420. model.layers[il].attn_norm,
  6421. model.layers[il].attn_norm_b,
  6422. LLM_NORM, cb, il);
  6423. cb(cur, "attn_norm", il);
  6424. // self-attention
  6425. {
  6426. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6427. cb(cur, "wqkv", il);
  6428. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6429. cb(cur, "bqkv", il);
  6430. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6431. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6432. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6433. cb(Qcur, "Qcur", il);
  6434. cb(Kcur, "Kcur", il);
  6435. cb(Vcur, "Vcur", il);
  6436. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6437. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6438. model.layers[il].wo, model.layers[il].bo,
  6439. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6440. }
  6441. if (il == n_layer - 1) {
  6442. // skip computing output for unused tokens
  6443. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6444. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6445. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6446. }
  6447. // Add the input
  6448. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6449. cb(ffn_inp, "ffn_inp", il);
  6450. // FF
  6451. {
  6452. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6453. model.layers[il].ffn_norm,
  6454. model.layers[il].ffn_norm_b,
  6455. LLM_NORM, cb, il);
  6456. cb(cur, "ffn_norm", il);
  6457. cur = llm_build_ffn(ctx0, cur,
  6458. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6459. NULL, NULL,
  6460. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6461. NULL,
  6462. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6463. cb(cur, "ffn_out", il);
  6464. }
  6465. inpL = ggml_add(ctx0, cur, ffn_inp);
  6466. cb(inpL, "l_out", il);
  6467. }
  6468. cur = llm_build_norm(ctx0, inpL, hparams,
  6469. model.output_norm,
  6470. model.output_norm_b,
  6471. LLM_NORM, cb, -1);
  6472. cb(cur, "result_norm", -1);
  6473. cur = ggml_mul_mat(ctx0, model.output, cur);
  6474. cb(cur, "result_output", -1);
  6475. ggml_build_forward_expand(gf, cur);
  6476. return gf;
  6477. }
  6478. struct ggml_cgraph * build_mpt() {
  6479. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6480. const int64_t n_embd_head = hparams.n_embd_head_v;
  6481. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6482. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6483. struct ggml_tensor * cur;
  6484. struct ggml_tensor * pos;
  6485. struct ggml_tensor * inpL;
  6486. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6487. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6488. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6489. // positions of the tokens in the KV cache
  6490. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6491. if (model.pos_embd) {
  6492. // inp_pos - contains the positions
  6493. struct ggml_tensor * inp_pos = build_inp_pos();
  6494. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6495. cb(pos, "pos_embd", -1);
  6496. inpL = ggml_add(ctx0, inpL, pos);
  6497. cb(inpL, "inpL", -1);
  6498. }
  6499. for (int il = 0; il < n_layer; ++il) {
  6500. struct ggml_tensor * attn_norm;
  6501. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6502. model.layers[il].attn_norm,
  6503. model.layers[il].attn_norm_b,
  6504. LLM_NORM, cb, il);
  6505. cb(attn_norm, "attn_norm", il);
  6506. // self-attention
  6507. {
  6508. cur = attn_norm;
  6509. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6510. cb(cur, "wqkv", il);
  6511. if (model.layers[il].bqkv){
  6512. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6513. cb(cur, "bqkv", il);
  6514. }
  6515. if (hparams.f_clamp_kqv > 0.0f) {
  6516. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6517. cb(cur, "wqkv_clamped", il);
  6518. }
  6519. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6520. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6521. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6522. cb(Qcur, "Qcur", il);
  6523. cb(Kcur, "Kcur", il);
  6524. cb(Vcur, "Vcur", il);
  6525. // Q/K Layernorm
  6526. if (model.layers[il].attn_q_norm) {
  6527. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6528. model.layers[il].attn_q_norm,
  6529. model.layers[il].attn_q_norm_b,
  6530. LLM_NORM, cb, il);
  6531. cb(Qcur, "Qcur", il);
  6532. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  6533. model.layers[il].attn_k_norm,
  6534. model.layers[il].attn_k_norm_b,
  6535. LLM_NORM, cb, il);
  6536. cb(Kcur, "Kcur", il);
  6537. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6538. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6539. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6540. model.layers[il].wo, model.layers[il].bo,
  6541. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6542. } else {
  6543. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6544. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6545. model.layers[il].wo, model.layers[il].bo,
  6546. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6547. }
  6548. }
  6549. if (il == n_layer - 1) {
  6550. // skip computing output for unused tokens
  6551. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6552. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6553. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6554. }
  6555. // Add the input
  6556. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6557. cb(ffn_inp, "ffn_inp", il);
  6558. // feed forward
  6559. {
  6560. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6561. model.layers[il].ffn_norm,
  6562. model.layers[il].ffn_norm_b,
  6563. LLM_NORM, cb, il);
  6564. cb(cur, "ffn_norm", il);
  6565. cur = llm_build_ffn(ctx0, cur,
  6566. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6567. NULL, NULL,
  6568. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6569. model.layers[il].ffn_act,
  6570. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6571. cb(cur, "ffn_out", il);
  6572. }
  6573. cur = ggml_add(ctx0, cur, ffn_inp);
  6574. cb(cur, "l_out", il);
  6575. // input for next layer
  6576. inpL = cur;
  6577. }
  6578. cur = inpL;
  6579. cur = llm_build_norm(ctx0, cur, hparams,
  6580. model.output_norm,
  6581. model.output_norm_b,
  6582. LLM_NORM, cb, -1);
  6583. cb(cur, "result_norm", -1);
  6584. cur = ggml_mul_mat(ctx0, model.output, cur);
  6585. cb(cur, "result_output", -1);
  6586. ggml_build_forward_expand(gf, cur);
  6587. return gf;
  6588. }
  6589. struct ggml_cgraph * build_stablelm() {
  6590. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  6591. const int64_t n_embd_head = hparams.n_embd_head_v;
  6592. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6593. struct ggml_tensor * cur;
  6594. struct ggml_tensor * inpL;
  6595. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6596. // inp_pos - contains the positions
  6597. struct ggml_tensor * inp_pos = build_inp_pos();
  6598. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6599. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6600. for (int il = 0; il < n_layer; ++il) {
  6601. struct ggml_tensor * inpSA = inpL;
  6602. // norm
  6603. cur = llm_build_norm(ctx0, inpL, hparams,
  6604. model.layers[il].attn_norm,
  6605. model.layers[il].attn_norm_b,
  6606. LLM_NORM, cb, il);
  6607. cb(cur, "attn_norm", il);
  6608. // self-attention
  6609. {
  6610. // compute Q and K and RoPE them
  6611. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6612. cb(Qcur, "Qcur", il);
  6613. if (model.layers[il].bq) {
  6614. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6615. cb(Qcur, "Qcur", il);
  6616. }
  6617. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6618. cb(Kcur, "Kcur", il);
  6619. if (model.layers[il].bk) {
  6620. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6621. cb(Kcur, "Kcur", il);
  6622. }
  6623. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6624. cb(Vcur, "Vcur", il);
  6625. if (model.layers[il].bv) {
  6626. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6627. cb(Vcur, "Vcur", il);
  6628. }
  6629. Qcur = ggml_rope_custom(
  6630. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6631. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6632. ext_factor, attn_factor, beta_fast, beta_slow
  6633. );
  6634. cb(Qcur, "Qcur", il);
  6635. Kcur = ggml_rope_custom(
  6636. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6637. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6638. ext_factor, attn_factor, beta_fast, beta_slow
  6639. );
  6640. cb(Kcur, "Kcur", il);
  6641. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6642. model.layers[il].wo, NULL,
  6643. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6644. }
  6645. if (il == n_layer - 1) {
  6646. // skip computing output for unused tokens
  6647. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6648. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6649. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6650. }
  6651. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6652. cb(ffn_inp, "ffn_inp", il);
  6653. // feed-forward network
  6654. {
  6655. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6656. model.layers[il].ffn_norm,
  6657. model.layers[il].ffn_norm_b,
  6658. LLM_NORM, cb, il);
  6659. cb(cur, "ffn_norm", il);
  6660. cur = llm_build_ffn(ctx0, cur,
  6661. model.layers[il].ffn_up, NULL,
  6662. model.layers[il].ffn_gate, NULL,
  6663. model.layers[il].ffn_down, NULL,
  6664. NULL,
  6665. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6666. cb(cur, "ffn_out", il);
  6667. }
  6668. cur = ggml_add(ctx0, cur, ffn_inp);
  6669. cb(cur, "l_out", il);
  6670. // input for next layer
  6671. inpL = cur;
  6672. }
  6673. cur = inpL;
  6674. cur = llm_build_norm(ctx0, cur, hparams,
  6675. model.output_norm,
  6676. model.output_norm_b,
  6677. LLM_NORM, cb, -1);
  6678. cb(cur, "result_norm", -1);
  6679. // lm_head
  6680. cur = ggml_mul_mat(ctx0, model.output, cur);
  6681. cb(cur, "result_output", -1);
  6682. ggml_build_forward_expand(gf, cur);
  6683. return gf;
  6684. }
  6685. struct ggml_cgraph * build_qwen() {
  6686. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6687. const int64_t n_embd_head = hparams.n_embd_head_v;
  6688. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6689. struct ggml_tensor * cur;
  6690. struct ggml_tensor * inpL;
  6691. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6692. // inp_pos - contains the positions
  6693. struct ggml_tensor * inp_pos = build_inp_pos();
  6694. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6695. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6696. for (int il = 0; il < n_layer; ++il) {
  6697. struct ggml_tensor * inpSA = inpL;
  6698. cur = llm_build_norm(ctx0, inpL, hparams,
  6699. model.layers[il].attn_norm, NULL,
  6700. LLM_NORM_RMS, cb, il);
  6701. cb(cur, "attn_norm", il);
  6702. // self-attention
  6703. {
  6704. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6705. cb(cur, "wqkv", il);
  6706. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6707. cb(cur, "bqkv", il);
  6708. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6709. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6710. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  6711. cb(Qcur, "Qcur", il);
  6712. cb(Kcur, "Kcur", il);
  6713. cb(Vcur, "Vcur", il);
  6714. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6715. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6716. // using mode = 2 for neox mode
  6717. Qcur = ggml_rope_custom(
  6718. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6719. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6720. );
  6721. cb(Qcur, "Qcur", il);
  6722. Kcur = ggml_rope_custom(
  6723. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6724. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6725. );
  6726. cb(Kcur, "Kcur", il);
  6727. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6728. model.layers[il].wo, NULL,
  6729. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6730. }
  6731. if (il == n_layer - 1) {
  6732. // skip computing output for unused tokens
  6733. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6734. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6735. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6736. }
  6737. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6738. cb(ffn_inp, "ffn_inp", il);
  6739. // feed-forward forward
  6740. {
  6741. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6742. model.layers[il].ffn_norm, NULL,
  6743. LLM_NORM_RMS, cb, il);
  6744. cb(cur, "ffn_norm", il);
  6745. cur = llm_build_ffn(ctx0, cur,
  6746. model.layers[il].ffn_up, NULL,
  6747. model.layers[il].ffn_gate, NULL,
  6748. model.layers[il].ffn_down, NULL,
  6749. NULL,
  6750. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6751. cb(cur, "ffn_out", il);
  6752. }
  6753. cur = ggml_add(ctx0, cur, ffn_inp);
  6754. cb(cur, "l_out", il);
  6755. // input for next layer
  6756. inpL = cur;
  6757. }
  6758. cur = inpL;
  6759. cur = llm_build_norm(ctx0, cur, hparams,
  6760. model.output_norm, NULL,
  6761. LLM_NORM_RMS, cb, -1);
  6762. cb(cur, "result_norm", -1);
  6763. // lm_head
  6764. cur = ggml_mul_mat(ctx0, model.output, cur);
  6765. cb(cur, "result_output", -1);
  6766. ggml_build_forward_expand(gf, cur);
  6767. return gf;
  6768. }
  6769. struct ggml_cgraph * build_qwen2() {
  6770. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6771. const int64_t n_embd_head = hparams.n_embd_head_v;
  6772. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6773. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6774. struct ggml_tensor * cur;
  6775. struct ggml_tensor * inpL;
  6776. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6777. // inp_pos - contains the positions
  6778. struct ggml_tensor * inp_pos = build_inp_pos();
  6779. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6780. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6781. for (int il = 0; il < n_layer; ++il) {
  6782. struct ggml_tensor * inpSA = inpL;
  6783. // norm
  6784. cur = llm_build_norm(ctx0, inpL, hparams,
  6785. model.layers[il].attn_norm, NULL,
  6786. LLM_NORM_RMS, cb, il);
  6787. cb(cur, "attn_norm", il);
  6788. // self-attention
  6789. {
  6790. // compute Q and K and RoPE them
  6791. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6792. cb(Qcur, "Qcur", il);
  6793. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6794. cb(Qcur, "Qcur", il);
  6795. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6796. cb(Kcur, "Kcur", il);
  6797. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6798. cb(Kcur, "Kcur", il);
  6799. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6800. cb(Vcur, "Vcur", il);
  6801. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6802. cb(Vcur, "Vcur", il);
  6803. // these nodes are added to the graph together so that they are not reordered
  6804. // by doing so, the number of splits in the graph is reduced
  6805. ggml_build_forward_expand(gf, Qcur);
  6806. ggml_build_forward_expand(gf, Kcur);
  6807. ggml_build_forward_expand(gf, Vcur);
  6808. Qcur = ggml_rope_custom(
  6809. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6810. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6811. ext_factor, attn_factor, beta_fast, beta_slow
  6812. );
  6813. cb(Qcur, "Qcur", il);
  6814. Kcur = ggml_rope_custom(
  6815. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6816. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6817. ext_factor, attn_factor, beta_fast, beta_slow
  6818. );
  6819. cb(Kcur, "Kcur", il);
  6820. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6821. model.layers[il].wo, model.layers[il].bo,
  6822. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6823. }
  6824. if (il == n_layer - 1) {
  6825. // skip computing output for unused tokens
  6826. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6827. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6828. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6829. }
  6830. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6831. cb(ffn_inp, "ffn_inp", il);
  6832. // feed-forward network
  6833. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6834. model.layers[il].ffn_norm, NULL,
  6835. LLM_NORM_RMS, cb, il);
  6836. cb(cur, "ffn_norm", il);
  6837. cur = llm_build_ffn(ctx0, cur,
  6838. model.layers[il].ffn_up, NULL,
  6839. model.layers[il].ffn_gate, NULL,
  6840. model.layers[il].ffn_down, NULL,
  6841. NULL,
  6842. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6843. cb(cur, "ffn_out", il);
  6844. cur = ggml_add(ctx0, cur, ffn_inp);
  6845. cb(cur, "l_out", il);
  6846. // input for next layer
  6847. inpL = cur;
  6848. }
  6849. cur = inpL;
  6850. cur = llm_build_norm(ctx0, cur, hparams,
  6851. model.output_norm, NULL,
  6852. LLM_NORM_RMS, cb, -1);
  6853. cb(cur, "result_norm", -1);
  6854. // lm_head
  6855. cur = ggml_mul_mat(ctx0, model.output, cur);
  6856. cb(cur, "result_output", -1);
  6857. ggml_build_forward_expand(gf, cur);
  6858. return gf;
  6859. }
  6860. struct ggml_cgraph * build_phi2() {
  6861. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6862. const int64_t n_embd_head = hparams.n_embd_head_v;
  6863. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6864. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6865. struct ggml_tensor * cur;
  6866. struct ggml_tensor * attn_norm_output;
  6867. struct ggml_tensor * ffn_output;
  6868. struct ggml_tensor * inpL;
  6869. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6870. // inp_pos - contains the positions
  6871. struct ggml_tensor * inp_pos = build_inp_pos();
  6872. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6873. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6874. for (int il = 0; il < n_layer; ++il) {
  6875. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  6876. model.layers[il].attn_norm,
  6877. model.layers[il].attn_norm_b,
  6878. LLM_NORM, cb, il);
  6879. cb(attn_norm_output, "attn_norm", il);
  6880. // self-attention
  6881. {
  6882. struct ggml_tensor * Qcur = nullptr;
  6883. struct ggml_tensor * Kcur = nullptr;
  6884. struct ggml_tensor * Vcur = nullptr;
  6885. if (model.layers[il].wqkv) {
  6886. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  6887. cb(cur, "wqkv", il);
  6888. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6889. cb(cur, "bqkv", il);
  6890. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6891. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6892. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6893. } else {
  6894. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  6895. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  6896. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  6897. }
  6898. cb(Qcur, "Qcur", il);
  6899. cb(Kcur, "Kcur", il);
  6900. cb(Vcur, "Vcur", il);
  6901. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6902. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6903. Qcur = ggml_rope_custom(
  6904. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6905. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6906. );
  6907. cb(Qcur, "Qcur", il);
  6908. // with phi2, we scale the Q to avoid precision issues
  6909. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  6910. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  6911. cb(Qcur, "Qcur", il);
  6912. Kcur = ggml_rope_custom(
  6913. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6914. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6915. );
  6916. cb(Kcur, "Kcur", il);
  6917. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6918. model.layers[il].wo, model.layers[il].bo,
  6919. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6920. }
  6921. if (il == n_layer - 1) {
  6922. // skip computing output for unused tokens
  6923. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6924. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6925. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6926. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  6927. }
  6928. // FF
  6929. {
  6930. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  6931. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6932. NULL, NULL,
  6933. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6934. NULL,
  6935. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6936. cb(ffn_output, "ffn_out", il);
  6937. }
  6938. cur = ggml_add(ctx0, cur, ffn_output);
  6939. cb(cur, "l_out", il);
  6940. cur = ggml_add(ctx0, cur, inpL);
  6941. cb(cur, "l_out", il);
  6942. inpL = cur;
  6943. }
  6944. cur = llm_build_norm(ctx0, inpL, hparams,
  6945. model.output_norm,
  6946. model.output_norm_b,
  6947. LLM_NORM, cb, -1);
  6948. cb(cur, "result_norm", -1);
  6949. cur = ggml_mul_mat(ctx0, model.output, cur);
  6950. cb(cur, "result_output_no_bias", -1);
  6951. cur = ggml_add(ctx0, cur, model.output_b);
  6952. cb(cur, "result_output", -1);
  6953. ggml_build_forward_expand(gf, cur);
  6954. return gf;
  6955. }
  6956. struct ggml_cgraph * build_plamo() {
  6957. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  6958. const int64_t n_embd_head = hparams.n_embd_head_v;
  6959. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6960. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6961. struct ggml_tensor * cur;
  6962. struct ggml_tensor * inpL;
  6963. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6964. // inp_pos - contains the positions
  6965. struct ggml_tensor * inp_pos = build_inp_pos();
  6966. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6967. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6968. for (int il = 0; il < n_layer; ++il) {
  6969. // norm
  6970. cur = llm_build_norm(ctx0, inpL, hparams,
  6971. model.layers[il].attn_norm, NULL,
  6972. LLM_NORM_RMS, cb, il);
  6973. cb(cur, "attn_norm", il);
  6974. struct ggml_tensor * attention_norm = cur;
  6975. // self-attention
  6976. {
  6977. // compute Q and K and RoPE them
  6978. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6979. cb(Qcur, "Qcur", il);
  6980. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6981. cb(Kcur, "Kcur", il);
  6982. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6983. cb(Vcur, "Vcur", il);
  6984. Qcur = ggml_rope_custom(
  6985. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  6986. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6987. ext_factor, attn_factor, beta_fast, beta_slow);
  6988. cb(Qcur, "Qcur", il);
  6989. Kcur = ggml_rope_custom(
  6990. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  6991. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6992. ext_factor, attn_factor, beta_fast, beta_slow);
  6993. cb(Kcur, "Kcur", il);
  6994. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6995. model.layers[il].wo, NULL,
  6996. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6997. }
  6998. struct ggml_tensor * sa_out = cur;
  6999. cur = attention_norm;
  7000. if (il == n_layer - 1) {
  7001. // skip computing output for unused tokens
  7002. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7003. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7004. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7005. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7006. }
  7007. // feed-forward network
  7008. {
  7009. cur = llm_build_ffn(ctx0, cur,
  7010. model.layers[il].ffn_up, NULL,
  7011. model.layers[il].ffn_gate, NULL,
  7012. model.layers[il].ffn_down, NULL,
  7013. NULL,
  7014. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7015. cb(cur, "ffn_out", il);
  7016. }
  7017. cur = ggml_add(ctx0, cur, sa_out);
  7018. cb(cur, "l_out", il);
  7019. cur = ggml_add(ctx0, cur, inpL);
  7020. cb(cur, "l_out", il);
  7021. // input for next layer
  7022. inpL = cur;
  7023. }
  7024. cur = inpL;
  7025. cur = llm_build_norm(ctx0, cur, hparams,
  7026. model.output_norm, NULL,
  7027. LLM_NORM_RMS, cb, -1);
  7028. cb(cur, "result_norm", -1);
  7029. // lm_head
  7030. cur = ggml_mul_mat(ctx0, model.output, cur);
  7031. cb(cur, "result_output", -1);
  7032. ggml_build_forward_expand(gf, cur);
  7033. return gf;
  7034. }
  7035. struct ggml_cgraph * build_gpt2() {
  7036. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7037. const int64_t n_embd_head = hparams.n_embd_head_v;
  7038. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7039. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7040. struct ggml_tensor * cur;
  7041. struct ggml_tensor * pos;
  7042. struct ggml_tensor * inpL;
  7043. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7044. // inp_pos - contains the positions
  7045. struct ggml_tensor * inp_pos = build_inp_pos();
  7046. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7047. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7048. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7049. cb(pos, "pos_embd", -1);
  7050. inpL = ggml_add(ctx0, inpL, pos);
  7051. cb(inpL, "inpL", -1);
  7052. for (int il = 0; il < n_layer; ++il) {
  7053. cur = llm_build_norm(ctx0, inpL, hparams,
  7054. model.layers[il].attn_norm,
  7055. model.layers[il].attn_norm_b,
  7056. LLM_NORM, cb, il);
  7057. cb(cur, "attn_norm", il);
  7058. // self-attention
  7059. {
  7060. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7061. cb(cur, "wqkv", il);
  7062. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7063. cb(cur, "bqkv", il);
  7064. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7065. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7066. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7067. cb(Qcur, "Qcur", il);
  7068. cb(Kcur, "Kcur", il);
  7069. cb(Vcur, "Vcur", il);
  7070. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7071. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7072. model.layers[il].wo, model.layers[il].bo,
  7073. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7074. }
  7075. if (il == n_layer - 1) {
  7076. // skip computing output for unused tokens
  7077. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7078. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7079. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7080. }
  7081. // add the input
  7082. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7083. cb(ffn_inp, "ffn_inp", il);
  7084. // FF
  7085. {
  7086. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7087. model.layers[il].ffn_norm,
  7088. model.layers[il].ffn_norm_b,
  7089. LLM_NORM, cb, il);
  7090. cb(cur, "ffn_norm", il);
  7091. cur = llm_build_ffn(ctx0, cur,
  7092. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7093. NULL, NULL,
  7094. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7095. NULL,
  7096. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7097. cb(cur, "ffn_out", il);
  7098. }
  7099. inpL = ggml_add(ctx0, cur, ffn_inp);
  7100. cb(inpL, "l_out", il);
  7101. }
  7102. cur = llm_build_norm(ctx0, inpL, hparams,
  7103. model.output_norm,
  7104. model.output_norm_b,
  7105. LLM_NORM, cb, -1);
  7106. cb(cur, "result_norm", -1);
  7107. cur = ggml_mul_mat(ctx0, model.output, cur);
  7108. cb(cur, "result_output", -1);
  7109. ggml_build_forward_expand(gf, cur);
  7110. return gf;
  7111. }
  7112. struct ggml_cgraph * build_codeshell() {
  7113. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7114. const int64_t n_embd_head = hparams.n_embd_head_v;
  7115. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7116. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7117. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7118. struct ggml_tensor * cur;
  7119. struct ggml_tensor * inpL;
  7120. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7121. // inp_pos - contains the positions
  7122. struct ggml_tensor * inp_pos = build_inp_pos();
  7123. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7124. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7125. for (int il = 0; il < n_layer; ++il) {
  7126. cur = llm_build_norm(ctx0, inpL, hparams,
  7127. model.layers[il].attn_norm,
  7128. model.layers[il].attn_norm_b,
  7129. LLM_NORM, cb, il);
  7130. cb(cur, "attn_norm", il);
  7131. // self-attention
  7132. {
  7133. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7134. cb(cur, "wqkv", il);
  7135. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7136. cb(cur, "bqkv", il);
  7137. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7138. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7139. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7140. cb(tmpq, "tmpq", il);
  7141. cb(tmpk, "tmpk", il);
  7142. cb(Vcur, "Vcur", il);
  7143. struct ggml_tensor * Qcur = ggml_rope_custom(
  7144. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  7145. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7146. ext_factor, attn_factor, beta_fast, beta_slow
  7147. );
  7148. cb(Qcur, "Qcur", il);
  7149. struct ggml_tensor * Kcur = ggml_rope_custom(
  7150. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7151. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7152. ext_factor, attn_factor, beta_fast, beta_slow
  7153. );
  7154. cb(Kcur, "Kcur", il);
  7155. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7156. model.layers[il].wo, model.layers[il].bo,
  7157. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7158. }
  7159. if (il == n_layer - 1) {
  7160. // skip computing output for unused tokens
  7161. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7162. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7163. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7164. }
  7165. // add the input
  7166. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7167. cb(ffn_inp, "ffn_inp", il);
  7168. // FF
  7169. {
  7170. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7171. model.layers[il].ffn_norm,
  7172. model.layers[il].ffn_norm_b,
  7173. LLM_NORM, cb, il);
  7174. cb(cur, "ffn_norm", il);
  7175. cur = llm_build_ffn(ctx0, cur,
  7176. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7177. NULL, NULL,
  7178. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7179. NULL,
  7180. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7181. cb(cur, "ffn_out", il);
  7182. }
  7183. inpL = ggml_add(ctx0, cur, ffn_inp);
  7184. cb(inpL, "l_out", il);
  7185. }
  7186. cur = llm_build_norm(ctx0, inpL, hparams,
  7187. model.output_norm,
  7188. model.output_norm_b,
  7189. LLM_NORM, cb, -1);
  7190. cb(cur, "result_norm", -1);
  7191. cur = ggml_mul_mat(ctx0, model.output, cur);
  7192. cb(cur, "result_output", -1);
  7193. ggml_build_forward_expand(gf, cur);
  7194. return gf;
  7195. }
  7196. struct ggml_cgraph * build_orion() {
  7197. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7198. const int64_t n_embd_head = hparams.n_embd_head_v;
  7199. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7200. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7201. struct ggml_tensor * cur;
  7202. struct ggml_tensor * inpL;
  7203. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7204. // inp_pos - contains the positions
  7205. struct ggml_tensor * inp_pos = build_inp_pos();
  7206. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7207. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7208. for (int il = 0; il < n_layer; ++il) {
  7209. struct ggml_tensor * inpSA = inpL;
  7210. // norm
  7211. cur = llm_build_norm(ctx0, inpL, hparams,
  7212. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7213. LLM_NORM, cb, il);
  7214. cb(cur, "attn_norm", il);
  7215. // self-attention
  7216. {
  7217. // compute Q and K and RoPE them
  7218. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7219. cb(Qcur, "Qcur", il);
  7220. // if (model.layers[il].bq) {
  7221. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7222. // cb(Qcur, "Qcur", il);
  7223. // }
  7224. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7225. cb(Kcur, "Kcur", il);
  7226. // if (model.layers[il].bk) {
  7227. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7228. // cb(Kcur, "Kcur", il);
  7229. // }
  7230. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7231. cb(Vcur, "Vcur", il);
  7232. // if (model.layers[il].bv) {
  7233. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7234. // cb(Vcur, "Vcur", il);
  7235. // }
  7236. Qcur = ggml_rope_custom(
  7237. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7238. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7239. ext_factor, attn_factor, beta_fast, beta_slow
  7240. );
  7241. cb(Qcur, "Qcur", il);
  7242. Kcur = ggml_rope_custom(
  7243. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7244. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7245. ext_factor, attn_factor, beta_fast, beta_slow
  7246. );
  7247. cb(Kcur, "Kcur", il);
  7248. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7249. model.layers[il].wo, NULL,
  7250. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7251. }
  7252. if (il == n_layer - 1) {
  7253. // skip computing output for unused tokens
  7254. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7255. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7256. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7257. }
  7258. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7259. cb(ffn_inp, "ffn_inp", il);
  7260. // feed-forward network
  7261. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7262. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7263. LLM_NORM, cb, il);
  7264. cb(cur, "ffn_norm", il);
  7265. cur = llm_build_ffn(ctx0, cur,
  7266. model.layers[il].ffn_up, NULL,
  7267. model.layers[il].ffn_gate, NULL,
  7268. model.layers[il].ffn_down, NULL,
  7269. NULL,
  7270. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7271. cb(cur, "ffn_out", il);
  7272. cur = ggml_add(ctx0, cur, ffn_inp);
  7273. cb(cur, "l_out", il);
  7274. // input for next layer
  7275. inpL = cur;
  7276. }
  7277. cur = inpL;
  7278. cur = llm_build_norm(ctx0, cur, hparams,
  7279. model.output_norm, model.output_norm_b,
  7280. LLM_NORM, cb, -1);
  7281. cb(cur, "result_norm", -1);
  7282. // lm_head
  7283. cur = ggml_mul_mat(ctx0, model.output, cur);
  7284. cb(cur, "result_output", -1);
  7285. ggml_build_forward_expand(gf, cur);
  7286. return gf;
  7287. }
  7288. struct ggml_cgraph * build_internlm2() {
  7289. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7290. const int64_t n_embd_head = hparams.n_embd_head_v;
  7291. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7292. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7293. struct ggml_tensor * cur;
  7294. struct ggml_tensor * inpL;
  7295. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7296. // inp_pos - contains the positions
  7297. struct ggml_tensor * inp_pos = build_inp_pos();
  7298. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7299. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7300. for (int il = 0; il < n_layer; ++il) {
  7301. struct ggml_tensor * inpSA = inpL;
  7302. // norm
  7303. cur = llm_build_norm(ctx0, inpL, hparams,
  7304. model.layers[il].attn_norm, NULL,
  7305. LLM_NORM_RMS, cb, il);
  7306. cb(cur, "attn_norm", il);
  7307. // self-attention
  7308. {
  7309. // compute Q and K and RoPE them
  7310. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7311. cb(Qcur, "Qcur", il);
  7312. if (model.layers[il].bq) {
  7313. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7314. cb(Qcur, "Qcur", il);
  7315. }
  7316. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7317. cb(Kcur, "Kcur", il);
  7318. if (model.layers[il].bk) {
  7319. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7320. cb(Kcur, "Kcur", il);
  7321. }
  7322. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7323. cb(Vcur, "Vcur", il);
  7324. if (model.layers[il].bv) {
  7325. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7326. cb(Vcur, "Vcur", il);
  7327. }
  7328. Qcur = ggml_rope_custom(
  7329. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7330. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7331. ext_factor, attn_factor, beta_fast, beta_slow
  7332. );
  7333. cb(Qcur, "Qcur", il);
  7334. Kcur = ggml_rope_custom(
  7335. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7336. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7337. ext_factor, attn_factor, beta_fast, beta_slow
  7338. );
  7339. cb(Kcur, "Kcur", il);
  7340. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7341. model.layers[il].wo, model.layers[il].bo,
  7342. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7343. }
  7344. if (il == n_layer - 1) {
  7345. // skip computing output for unused tokens
  7346. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7347. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7348. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7349. }
  7350. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7351. cb(ffn_inp, "ffn_inp", il);
  7352. // feed-forward network
  7353. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7354. model.layers[il].ffn_norm, NULL,
  7355. LLM_NORM_RMS, cb, il);
  7356. cb(cur, "ffn_norm", il);
  7357. cur = llm_build_ffn(ctx0, cur,
  7358. model.layers[il].ffn_up, NULL,
  7359. model.layers[il].ffn_gate, NULL,
  7360. model.layers[il].ffn_down, NULL,
  7361. NULL,
  7362. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7363. cb(cur, "ffn_out", il);
  7364. cur = ggml_add(ctx0, cur, ffn_inp);
  7365. cb(cur, "l_out", il);
  7366. // input for next layer
  7367. inpL = cur;
  7368. }
  7369. cur = inpL;
  7370. cur = llm_build_norm(ctx0, cur, hparams,
  7371. model.output_norm, NULL,
  7372. LLM_NORM_RMS, cb, -1);
  7373. cb(cur, "result_norm", -1);
  7374. // lm_head
  7375. cur = ggml_mul_mat(ctx0, model.output, cur);
  7376. cb(cur, "result_output", -1);
  7377. ggml_build_forward_expand(gf, cur);
  7378. return gf;
  7379. }
  7380. // ref: https://arxiv.org/abs/2203.03466
  7381. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  7382. // based on the original build_llama() function
  7383. struct ggml_cgraph * build_minicpm() {
  7384. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7385. const int64_t n_embd_head = hparams.n_embd_head_v;
  7386. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7387. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7388. const int64_t n_embd = hparams.n_embd;
  7389. //TODO: if the model varies, these parameters need to be read from the model
  7390. const int64_t n_embd_base = 256;
  7391. const float scale_embd = 12.0f;
  7392. const float scale_depth = 1.4f;
  7393. struct ggml_tensor * cur;
  7394. struct ggml_tensor * inpL;
  7395. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7396. // scale the input embeddings
  7397. inpL = ggml_scale(ctx0, inpL, scale_embd);
  7398. cb(inpL, "inp_scaled", -1);
  7399. // inp_pos - contains the positions
  7400. struct ggml_tensor * inp_pos = build_inp_pos();
  7401. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7402. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7403. for (int il = 0; il < n_layer; ++il) {
  7404. struct ggml_tensor * inpSA = inpL;
  7405. // norm
  7406. cur = llm_build_norm(ctx0, inpL, hparams,
  7407. model.layers[il].attn_norm, NULL,
  7408. LLM_NORM_RMS, cb, il);
  7409. cb(cur, "attn_norm", il);
  7410. // self-attention
  7411. {
  7412. // compute Q and K and RoPE them
  7413. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7414. cb(Qcur, "Qcur", il);
  7415. if (model.layers[il].bq) {
  7416. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7417. cb(Qcur, "Qcur", il);
  7418. }
  7419. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7420. cb(Kcur, "Kcur", il);
  7421. if (model.layers[il].bk) {
  7422. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7423. cb(Kcur, "Kcur", il);
  7424. }
  7425. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7426. cb(Vcur, "Vcur", il);
  7427. if (model.layers[il].bv) {
  7428. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7429. cb(Vcur, "Vcur", il);
  7430. }
  7431. Qcur = ggml_rope_custom(
  7432. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7433. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7434. ext_factor, attn_factor, beta_fast, beta_slow
  7435. );
  7436. cb(Qcur, "Qcur", il);
  7437. Kcur = ggml_rope_custom(
  7438. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7439. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7440. ext_factor, attn_factor, beta_fast, beta_slow
  7441. );
  7442. cb(Kcur, "Kcur", il);
  7443. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7444. model.layers[il].wo, model.layers[il].bo,
  7445. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7446. }
  7447. if (il == n_layer - 1) {
  7448. // skip computing output for unused tokens
  7449. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7450. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7451. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7452. }
  7453. // scale_res - scale the hidden states for residual connection
  7454. const float scale_res = scale_depth/sqrtf(float(n_layer));
  7455. cur = ggml_scale(ctx0, cur, scale_res);
  7456. cb(cur, "hidden_scaled", -1);
  7457. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7458. cb(ffn_inp, "ffn_inp", il);
  7459. // feed-forward network
  7460. {
  7461. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7462. model.layers[il].ffn_norm, NULL,
  7463. LLM_NORM_RMS, cb, il);
  7464. cb(cur, "ffn_norm", il);
  7465. cur = llm_build_ffn(ctx0, cur,
  7466. model.layers[il].ffn_up, NULL,
  7467. model.layers[il].ffn_gate, NULL,
  7468. model.layers[il].ffn_down, NULL,
  7469. NULL,
  7470. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7471. cb(cur, "ffn_out", il);
  7472. }
  7473. // scale the hidden states for residual connection
  7474. cur = ggml_scale(ctx0, cur, scale_res);
  7475. cb(cur, "hidden_scaled_ffn", -1);
  7476. cur = ggml_add(ctx0, cur, ffn_inp);
  7477. cb(cur, "l_out", il);
  7478. // input for next layer
  7479. inpL = cur;
  7480. }
  7481. cur = inpL;
  7482. cur = llm_build_norm(ctx0, cur, hparams,
  7483. model.output_norm, NULL,
  7484. LLM_NORM_RMS, cb, -1);
  7485. cb(cur, "result_norm", -1);
  7486. // lm_head scaling
  7487. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  7488. cur = ggml_scale(ctx0, cur, scale_lmhead);
  7489. cb(cur, "lmhead_scaling", -1);
  7490. // lm_head
  7491. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  7492. cb(cur, "result_output", -1);
  7493. ggml_build_forward_expand(gf, cur);
  7494. return gf;
  7495. }
  7496. struct ggml_cgraph * build_gemma() {
  7497. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7498. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  7499. struct ggml_tensor * cur;
  7500. struct ggml_tensor * inpL;
  7501. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7502. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  7503. cb(inpL, "inp_scaled", -1);
  7504. // inp_pos - contains the positions
  7505. struct ggml_tensor * inp_pos = build_inp_pos();
  7506. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7507. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7508. for (int il = 0; il < n_layer; ++il) {
  7509. // norm
  7510. cur = llm_build_norm(ctx0, inpL, hparams,
  7511. model.layers[il].attn_norm, NULL,
  7512. LLM_NORM_RMS, cb, il);
  7513. cb(cur, "attn_norm", il);
  7514. // self-attention
  7515. {
  7516. // compute Q and K and RoPE them
  7517. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7518. cb(Qcur, "Qcur", il);
  7519. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7520. cb(Kcur, "Kcur", il);
  7521. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7522. cb(Vcur, "Vcur", il);
  7523. Qcur = ggml_rope_custom(
  7524. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  7525. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7526. ext_factor, attn_factor, beta_fast, beta_slow);
  7527. cb(Qcur, "Qcur", il);
  7528. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  7529. cb(Qcur, "Qcur_scaled", il);
  7530. Kcur = ggml_rope_custom(
  7531. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  7532. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7533. ext_factor, attn_factor, beta_fast, beta_slow);
  7534. cb(Kcur, "Kcur", il);
  7535. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7536. model.layers[il].wo, NULL,
  7537. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7538. }
  7539. if (il == n_layer - 1) {
  7540. // skip computing output for unused tokens
  7541. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7542. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7543. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7544. }
  7545. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  7546. cb(sa_out, "sa_out", il);
  7547. cur = llm_build_norm(ctx0, sa_out, hparams,
  7548. model.layers[il].ffn_norm, NULL,
  7549. LLM_NORM_RMS, cb, il);
  7550. cb(cur, "ffn_norm", il);
  7551. // feed-forward network
  7552. {
  7553. cur = llm_build_ffn(ctx0, cur,
  7554. model.layers[il].ffn_up, NULL,
  7555. model.layers[il].ffn_gate, NULL,
  7556. model.layers[il].ffn_down, NULL,
  7557. NULL,
  7558. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7559. cb(cur, "ffn_out", il);
  7560. }
  7561. cur = ggml_add(ctx0, cur, sa_out);
  7562. cb(cur, "l_out", il);
  7563. // input for next layer
  7564. inpL = cur;
  7565. }
  7566. cur = inpL;
  7567. cur = llm_build_norm(ctx0, cur, hparams,
  7568. model.output_norm, NULL,
  7569. LLM_NORM_RMS, cb, -1);
  7570. cb(cur, "result_norm", -1);
  7571. // lm_head
  7572. cur = ggml_mul_mat(ctx0, model.output, cur);
  7573. cb(cur, "result_output", -1);
  7574. ggml_build_forward_expand(gf, cur);
  7575. return gf;
  7576. }
  7577. struct ggml_cgraph * build_starcoder2() {
  7578. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7579. const int64_t n_embd_head = hparams.n_embd_head_v;
  7580. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7581. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7582. struct ggml_tensor * cur;
  7583. struct ggml_tensor * inpL;
  7584. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7585. // inp_pos - contains the positions
  7586. struct ggml_tensor * inp_pos = build_inp_pos();
  7587. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7588. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7589. for (int il = 0; il < n_layer; ++il) {
  7590. struct ggml_tensor * inpSA = inpL;
  7591. // norm
  7592. cur = llm_build_norm(ctx0, inpL, hparams,
  7593. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7594. LLM_NORM, cb, il);
  7595. cb(cur, "attn_norm", il);
  7596. // self-attention
  7597. {
  7598. // compute Q and K and RoPE them
  7599. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7600. cb(Qcur, "Qcur", il);
  7601. if (model.layers[il].bq) {
  7602. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7603. cb(Qcur, "Qcur", il);
  7604. }
  7605. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7606. cb(Kcur, "Kcur", il);
  7607. if (model.layers[il].bk) {
  7608. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7609. cb(Kcur, "Kcur", il);
  7610. }
  7611. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7612. cb(Vcur, "Vcur", il);
  7613. if (model.layers[il].bv) {
  7614. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7615. cb(Vcur, "Vcur", il);
  7616. }
  7617. Qcur = ggml_rope_custom(
  7618. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7619. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7620. ext_factor, attn_factor, beta_fast, beta_slow
  7621. );
  7622. cb(Qcur, "Qcur", il);
  7623. Kcur = ggml_rope_custom(
  7624. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7625. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7626. ext_factor, attn_factor, beta_fast, beta_slow
  7627. );
  7628. cb(Kcur, "Kcur", il);
  7629. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7630. model.layers[il].wo, model.layers[il].bo,
  7631. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7632. }
  7633. if (il == n_layer - 1) {
  7634. // skip computing output for unused tokens
  7635. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7636. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7637. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7638. }
  7639. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7640. cb(ffn_inp, "ffn_inp", il);
  7641. // feed-forward network
  7642. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7643. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7644. LLM_NORM, cb, il);
  7645. cb(cur, "ffn_norm", il);
  7646. cur = llm_build_ffn(ctx0, cur,
  7647. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7648. NULL, NULL,
  7649. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7650. NULL,
  7651. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7652. cb(cur, "ffn_out", il);
  7653. cur = ggml_add(ctx0, cur, ffn_inp);
  7654. cb(cur, "l_out", il);
  7655. // input for next layer
  7656. inpL = cur;
  7657. }
  7658. cur = inpL;
  7659. cur = llm_build_norm(ctx0, cur, hparams,
  7660. model.output_norm, model.output_norm_b,
  7661. LLM_NORM, cb, -1);
  7662. cb(cur, "result_norm", -1);
  7663. // lm_head
  7664. cur = ggml_mul_mat(ctx0, model.output, cur);
  7665. cb(cur, "result_output", -1);
  7666. ggml_build_forward_expand(gf, cur);
  7667. return gf;
  7668. }
  7669. struct ggml_cgraph * build_mamba() {
  7670. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7671. const int64_t d_model = n_embd;
  7672. const int64_t d_conv = hparams.ssm_d_conv;
  7673. const int64_t d_inner = hparams.ssm_d_inner;
  7674. GGML_ASSERT(2 * d_model == d_inner);
  7675. const int64_t d_state = hparams.ssm_d_state;
  7676. const int64_t dt_rank = hparams.ssm_dt_rank;
  7677. struct ggml_tensor * cur;
  7678. struct ggml_tensor * inpL;
  7679. // {n_embd, n_tokens}
  7680. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7681. struct ggml_tensor * state_mask = build_inp_s_mask();
  7682. struct ggml_tensor * state_seq = build_inp_s_seq();
  7683. for (int il = 0; il < n_layer; ++il) {
  7684. // (ab)using the KV cache to store the states
  7685. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  7686. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  7687. // clear states of sequences which are starting at the beginning of this batch
  7688. {
  7689. conv_states = ggml_mul(ctx0,
  7690. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  7691. state_mask);
  7692. ssm_states = ggml_mul(ctx0,
  7693. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  7694. state_mask);
  7695. }
  7696. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  7697. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  7698. // norm
  7699. cur = llm_build_norm(ctx0, inpL, hparams,
  7700. model.layers[il].attn_norm, NULL,
  7701. LLM_NORM_RMS, cb, il);
  7702. cb(cur, "attn_norm", il);
  7703. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  7704. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  7705. // split the above in two
  7706. // => {d_inner, n_tokens}
  7707. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  7708. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  7709. // conv
  7710. {
  7711. // Custom operator which is needed only to ease simultaneous sequence processing.
  7712. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  7713. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  7714. // then element-wise multiply that with the conv1d weigth,
  7715. // then sum the elements of each row,
  7716. // (the last two steps are a dot product over rows (also doable with mul_mat))
  7717. // then permute away the ne[0] dimension,
  7718. // and then you're left with the resulting x tensor.
  7719. // The new conv_states is the last (d_conv - 1) columns
  7720. // of the last 3rd dimensional "layer" of the self-overlapping view.
  7721. // For simultaneous sequences, it's more complicated.
  7722. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  7723. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  7724. ggml_build_forward_expand(gf,
  7725. ggml_cpy(ctx0,
  7726. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  7727. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  7728. // extract x from x_conv
  7729. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  7730. // bias
  7731. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  7732. x = ggml_silu(ctx0, x);
  7733. }
  7734. // ssm
  7735. {
  7736. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  7737. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  7738. // split
  7739. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  7740. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  7741. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  7742. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  7743. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  7744. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  7745. // Custom operator to optimize the parallel associative scan
  7746. // as described in the Annex D of the Mamba paper.
  7747. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  7748. // because only a single tensor can be returned.
  7749. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  7750. // store last states (the second part of y_ssm_states)
  7751. ggml_build_forward_expand(gf,
  7752. ggml_cpy(ctx0,
  7753. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  7754. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  7755. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  7756. if (il == n_layer - 1) {
  7757. // skip computing output for unused tokens
  7758. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7759. x = ggml_get_rows(ctx0, x, inp_out_ids);
  7760. y = ggml_get_rows(ctx0, y, inp_out_ids);
  7761. z = ggml_get_rows(ctx0, z, inp_out_ids);
  7762. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7763. }
  7764. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  7765. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  7766. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  7767. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  7768. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  7769. }
  7770. // residual
  7771. cur = ggml_add(ctx0, cur, inpL);
  7772. cb(cur, "l_out", il);
  7773. // input for next layer
  7774. inpL = cur;
  7775. }
  7776. // final rmsnorm
  7777. cur = llm_build_norm(ctx0, inpL, hparams,
  7778. model.output_norm, NULL,
  7779. LLM_NORM_RMS, cb, -1);
  7780. cb(cur, "result_norm", -1);
  7781. // lm_head
  7782. cur = ggml_mul_mat(ctx0, model.output, cur);
  7783. cb(cur, "result_output", -1);
  7784. ggml_build_forward_expand(gf, cur);
  7785. return gf;
  7786. }
  7787. struct ggml_cgraph * build_command_r() {
  7788. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7789. const int64_t n_embd_head = hparams.n_embd_head_v;
  7790. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7791. const float f_logit_scale = hparams.f_logit_scale;
  7792. struct ggml_tensor * cur;
  7793. struct ggml_tensor * inpL;
  7794. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7795. // inp_pos - contains the positions
  7796. struct ggml_tensor * inp_pos = build_inp_pos();
  7797. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7798. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7799. for (int il = 0; il < n_layer; ++il) {
  7800. // norm
  7801. cur = llm_build_norm(ctx0, inpL, hparams,
  7802. model.layers[il].attn_norm, NULL,
  7803. LLM_NORM, cb, il);
  7804. cb(cur, "attn_norm", il);
  7805. struct ggml_tensor * ffn_inp = cur;
  7806. // self-attention
  7807. {
  7808. // compute Q and K and RoPE them
  7809. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7810. cb(Qcur, "Qcur", il);
  7811. if (model.layers[il].bq) {
  7812. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7813. cb(Qcur, "Qcur", il);
  7814. }
  7815. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7816. cb(Kcur, "Kcur", il);
  7817. if (model.layers[il].bk) {
  7818. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7819. cb(Kcur, "Kcur", il);
  7820. }
  7821. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7822. cb(Vcur, "Vcur", il);
  7823. if (model.layers[il].bv) {
  7824. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7825. cb(Vcur, "Vcur", il);
  7826. }
  7827. Qcur = ggml_rope_custom(
  7828. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7829. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7830. ext_factor, attn_factor, beta_fast, beta_slow
  7831. );
  7832. cb(Qcur, "Qcur", il);
  7833. Kcur = ggml_rope_custom(
  7834. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7835. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7836. ext_factor, attn_factor, beta_fast, beta_slow
  7837. );
  7838. cb(Kcur, "Kcur", il);
  7839. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7840. model.layers[il].wo, model.layers[il].bo,
  7841. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7842. }
  7843. if (il == n_layer - 1) {
  7844. // skip computing output for unused tokens
  7845. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7846. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7847. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7848. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7849. }
  7850. struct ggml_tensor * attn_out = cur;
  7851. // feed-forward network
  7852. {
  7853. cur = llm_build_ffn(ctx0, ffn_inp,
  7854. model.layers[il].ffn_up, NULL,
  7855. model.layers[il].ffn_gate, NULL,
  7856. model.layers[il].ffn_down, NULL,
  7857. NULL,
  7858. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7859. cb(cur, "ffn_out", il);
  7860. }
  7861. // add together residual + FFN + self-attention
  7862. cur = ggml_add(ctx0, cur, inpL);
  7863. cur = ggml_add(ctx0, cur, attn_out);
  7864. cb(cur, "l_out", il);
  7865. // input for next layer
  7866. inpL = cur;
  7867. }
  7868. cur = inpL;
  7869. cur = llm_build_norm(ctx0, cur, hparams,
  7870. model.output_norm, NULL,
  7871. LLM_NORM, cb, -1);
  7872. cb(cur, "result_norm", -1);
  7873. // lm_head
  7874. cur = ggml_mul_mat(ctx0, model.output, cur);
  7875. if (f_logit_scale) {
  7876. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7877. }
  7878. cb(cur, "result_output", -1);
  7879. ggml_build_forward_expand(gf, cur);
  7880. return gf;
  7881. }
  7882. };
  7883. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  7884. llama_batch dummy;
  7885. dummy.n_tokens = 0;
  7886. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  7887. struct llm_build_context llm(lctx, dummy, cb, false);
  7888. llm.init();
  7889. struct ggml_cgraph * result = llm.build_defrag(ids);
  7890. llm.free();
  7891. return result;
  7892. }
  7893. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  7894. llama_batch dummy;
  7895. dummy.n_tokens = 0;
  7896. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  7897. struct llm_build_context llm(lctx, dummy, cb, false);
  7898. llm.init();
  7899. struct ggml_cgraph * result = llm.build_k_shift();
  7900. llm.free();
  7901. return result;
  7902. }
  7903. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  7904. llama_batch dummy;
  7905. dummy.n_tokens = 0;
  7906. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  7907. struct llm_build_context llm(lctx, dummy, cb, false);
  7908. llm.init();
  7909. struct ggml_cgraph * result = llm.build_s_copy();
  7910. llm.free();
  7911. return result;
  7912. }
  7913. static struct ggml_cgraph * llama_build_graph(
  7914. llama_context & lctx,
  7915. const llama_batch & batch,
  7916. bool worst_case) {
  7917. const auto & model = lctx.model;
  7918. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  7919. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  7920. if (il >= 0) {
  7921. ggml_format_name(cur, "%s-%d", name, il);
  7922. } else {
  7923. ggml_set_name(cur, name);
  7924. }
  7925. if (!lctx.cparams.offload_kqv) {
  7926. if (strcmp(name, "kqv_merged_cont") == 0) {
  7927. // all nodes between the KV store and the attention output are run on the CPU
  7928. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  7929. }
  7930. }
  7931. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  7932. // FIXME: fix in ggml_backend_sched
  7933. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  7934. if (batch.n_tokens < 32 || full_offload) {
  7935. if (il != -1 && strcmp(name, "norm") == 0) {
  7936. for (auto * backend : lctx.backends) {
  7937. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  7938. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  7939. break;
  7940. }
  7941. }
  7942. }
  7943. }
  7944. };
  7945. struct ggml_cgraph * result = NULL;
  7946. struct llm_build_context llm(lctx, batch, cb, worst_case);
  7947. llm.init();
  7948. switch (model.arch) {
  7949. case LLM_ARCH_LLAMA:
  7950. {
  7951. result = llm.build_llama();
  7952. } break;
  7953. case LLM_ARCH_BAICHUAN:
  7954. {
  7955. result = llm.build_baichuan();
  7956. } break;
  7957. case LLM_ARCH_FALCON:
  7958. {
  7959. result = llm.build_falcon();
  7960. } break;
  7961. case LLM_ARCH_GROK:
  7962. {
  7963. result = llm.build_grok();
  7964. } break;
  7965. case LLM_ARCH_STARCODER:
  7966. {
  7967. result = llm.build_starcoder();
  7968. } break;
  7969. case LLM_ARCH_PERSIMMON:
  7970. {
  7971. result = llm.build_persimmon();
  7972. } break;
  7973. case LLM_ARCH_REFACT:
  7974. {
  7975. result = llm.build_refact();
  7976. } break;
  7977. case LLM_ARCH_BERT:
  7978. case LLM_ARCH_NOMIC_BERT:
  7979. {
  7980. result = llm.build_bert();
  7981. } break;
  7982. case LLM_ARCH_BLOOM:
  7983. {
  7984. result = llm.build_bloom();
  7985. } break;
  7986. case LLM_ARCH_MPT:
  7987. {
  7988. result = llm.build_mpt();
  7989. } break;
  7990. case LLM_ARCH_STABLELM:
  7991. {
  7992. result = llm.build_stablelm();
  7993. } break;
  7994. case LLM_ARCH_QWEN:
  7995. {
  7996. result = llm.build_qwen();
  7997. } break;
  7998. case LLM_ARCH_QWEN2:
  7999. {
  8000. result = llm.build_qwen2();
  8001. } break;
  8002. case LLM_ARCH_PHI2:
  8003. {
  8004. result = llm.build_phi2();
  8005. } break;
  8006. case LLM_ARCH_PLAMO:
  8007. {
  8008. result = llm.build_plamo();
  8009. } break;
  8010. case LLM_ARCH_GPT2:
  8011. {
  8012. result = llm.build_gpt2();
  8013. } break;
  8014. case LLM_ARCH_CODESHELL:
  8015. {
  8016. result = llm.build_codeshell();
  8017. } break;
  8018. case LLM_ARCH_ORION:
  8019. {
  8020. result = llm.build_orion();
  8021. } break;
  8022. case LLM_ARCH_INTERNLM2:
  8023. {
  8024. result = llm.build_internlm2();
  8025. } break;
  8026. case LLM_ARCH_MINICPM:
  8027. {
  8028. result = llm.build_minicpm();
  8029. } break;
  8030. case LLM_ARCH_GEMMA:
  8031. {
  8032. result = llm.build_gemma();
  8033. } break;
  8034. case LLM_ARCH_STARCODER2:
  8035. {
  8036. result = llm.build_starcoder2();
  8037. } break;
  8038. case LLM_ARCH_MAMBA:
  8039. {
  8040. result = llm.build_mamba();
  8041. } break;
  8042. case LLM_ARCH_XVERSE:
  8043. {
  8044. result = llm.build_xverse();
  8045. } break;
  8046. case LLM_ARCH_COMMAND_R:
  8047. {
  8048. result = llm.build_command_r();
  8049. } break;
  8050. default:
  8051. GGML_ASSERT(false);
  8052. }
  8053. llm.free();
  8054. return result;
  8055. }
  8056. static void llama_set_k_shift(llama_context & lctx) {
  8057. const int64_t kv_size = lctx.kv_self.size;
  8058. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  8059. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  8060. for (int i = 0; i < kv_size; ++i) {
  8061. data[i] = lctx.kv_self.cells[i].delta;
  8062. }
  8063. }
  8064. static void llama_set_s_copy(llama_context & lctx) {
  8065. const int64_t kv_size = lctx.kv_self.size;
  8066. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  8067. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  8068. for (int i = 0; i < kv_size; ++i) {
  8069. data[i] = lctx.kv_self.cells[i].src;
  8070. }
  8071. }
  8072. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  8073. //
  8074. // set input data
  8075. //
  8076. const auto & hparams = lctx.model.hparams;
  8077. const auto & cparams = lctx.cparams;
  8078. const auto & kv_self = lctx.kv_self;
  8079. if (batch.token) {
  8080. const int64_t n_tokens = batch.n_tokens;
  8081. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  8082. }
  8083. if (batch.embd) {
  8084. const int64_t n_embd = hparams.n_embd;
  8085. const int64_t n_tokens = batch.n_tokens;
  8086. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  8087. }
  8088. if (batch.pos && lctx.inp_pos) {
  8089. const int64_t n_tokens = batch.n_tokens;
  8090. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  8091. }
  8092. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  8093. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  8094. const int64_t n_tokens = batch.n_tokens;
  8095. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  8096. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  8097. if (lctx.n_outputs == n_tokens) {
  8098. for (int i = 0; i < n_tokens; ++i) {
  8099. data[i] = i;
  8100. }
  8101. } else if (batch.logits) {
  8102. int32_t n_outputs = 0;
  8103. for (int i = 0; i < n_tokens; ++i) {
  8104. if (batch.logits[i]) {
  8105. data[n_outputs++] = i;
  8106. }
  8107. }
  8108. // the graph needs to have been passed the correct number of outputs
  8109. GGML_ASSERT(lctx.n_outputs == n_outputs);
  8110. } else if (lctx.n_outputs == 1) {
  8111. // only keep last output
  8112. data[0] = n_tokens - 1;
  8113. } else {
  8114. GGML_ASSERT(lctx.n_outputs == 0);
  8115. }
  8116. }
  8117. GGML_ASSERT(
  8118. // (!a || b) is a logical implication (a -> b)
  8119. // !hparams.causal_attn -> !cparams.causal_attn
  8120. (hparams.causal_attn || !cparams.causal_attn) &&
  8121. "causal attention with embedding models is not supported"
  8122. );
  8123. if (lctx.inp_KQ_mask) {
  8124. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  8125. if (cparams.causal_attn) {
  8126. const int64_t n_kv = kv_self.n;
  8127. const int64_t n_tokens = batch.n_tokens;
  8128. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8129. float * data = (float *) lctx.inp_KQ_mask->data;
  8130. // For causal attention, use only the previous KV cells
  8131. // of the correct sequence for each token of the batch.
  8132. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  8133. for (int h = 0; h < 1; ++h) {
  8134. for (int j = 0; j < n_tokens; ++j) {
  8135. const llama_pos pos = batch.pos[j];
  8136. const llama_seq_id seq_id = batch.seq_id[j][0];
  8137. for (int i = 0; i < n_kv; ++i) {
  8138. float f;
  8139. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  8140. f = -INFINITY;
  8141. } else {
  8142. f = 0.0f;
  8143. }
  8144. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  8145. }
  8146. }
  8147. }
  8148. } else {
  8149. // when using kv cache, the mask needs to match the kv cache size
  8150. const int64_t n_tokens = batch.n_tokens;
  8151. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  8152. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8153. float * data = (float *) lctx.inp_KQ_mask->data;
  8154. for (int h = 0; h < 1; ++h) {
  8155. for (int j = 0; j < n_tokens; ++j) {
  8156. const llama_seq_id seq_id = batch.seq_id[j][0];
  8157. for (int i = 0; i < n_tokens; ++i) {
  8158. float f = -INFINITY;
  8159. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  8160. if (batch.seq_id[i][s] == seq_id) {
  8161. f = 0.0f;
  8162. break;
  8163. }
  8164. }
  8165. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  8166. }
  8167. for (int i = n_tokens; i < n_stride; ++i) {
  8168. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  8169. }
  8170. }
  8171. }
  8172. }
  8173. }
  8174. if (hparams.need_kq_pos) {
  8175. const int64_t n_kv = kv_self.n;
  8176. GGML_ASSERT(lctx.inp_KQ_pos);
  8177. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  8178. float * data = (float *) lctx.inp_KQ_pos->data;
  8179. for (int i = 0; i < n_kv; ++i) {
  8180. data[i] = float(lctx.kv_self.cells[i].pos);
  8181. }
  8182. }
  8183. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  8184. const int64_t n_tokens = batch.n_tokens;
  8185. GGML_ASSERT(lctx.inp_mean);
  8186. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  8187. float * data = (float *) lctx.inp_mean->data;
  8188. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  8189. std::vector<uint64_t> sum(n_tokens, 0);
  8190. for (int i = 0; i < n_tokens; ++i) {
  8191. const llama_seq_id seq_id = batch.seq_id[i][0];
  8192. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  8193. sum[seq_id] += 1;
  8194. }
  8195. std::vector<float> div(n_tokens, 0.0f);
  8196. for (int i = 0; i < n_tokens; ++i) {
  8197. const uint64_t s = sum[i];
  8198. if (s > 0) {
  8199. div[i] = 1.0f/float(s);
  8200. }
  8201. }
  8202. for (int i = 0; i < n_tokens; ++i) {
  8203. const llama_seq_id seq_id = batch.seq_id[i][0];
  8204. data[seq_id*n_tokens + i] = div[seq_id];
  8205. }
  8206. }
  8207. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  8208. const int64_t n_tokens = batch.n_tokens;
  8209. GGML_ASSERT(lctx.inp_cls);
  8210. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  8211. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  8212. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  8213. for (int i = 0; i < n_tokens; ++i) {
  8214. const llama_seq_id seq_id = batch.seq_id[i][0];
  8215. const llama_pos pos = batch.pos[i];
  8216. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  8217. if (pos == 0) {
  8218. data[seq_id] = i;
  8219. }
  8220. }
  8221. }
  8222. if (kv_self.recurrent) {
  8223. const int64_t n_kv = kv_self.n;
  8224. if (lctx.inp_s_mask) {
  8225. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  8226. float * data = (float *) lctx.inp_s_mask->data;
  8227. // states which are not affected by the current batch are left untouched
  8228. for (int i = 0; i < n_kv; ++i) {
  8229. llama_seq_id seq_id = i + lctx.kv_self.head;
  8230. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  8231. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  8232. data[i] = (float) has_self_seq;
  8233. // ensure current sequences will be kept
  8234. if (!has_self_seq && kv_cell.pos >= 0) {
  8235. kv_cell.seq_id.insert(seq_id);
  8236. }
  8237. }
  8238. }
  8239. // For Mamba (and other recurrent architectures),
  8240. // update the correct state(s)/sequence(s) for each token of the batch.
  8241. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  8242. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  8243. if (lctx.inp_s_seq) {
  8244. const int64_t n_tokens = batch.n_tokens;
  8245. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  8246. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  8247. for (int j = 0; j < n_tokens; ++j) {
  8248. const int32_t n_seq = batch.n_seq_id[j];
  8249. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  8250. for (int i = 0; i < n_kv; ++i) {
  8251. if (i < n_seq) {
  8252. // for this type of model, the head is the minimum seq_id of the batch
  8253. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  8254. } else {
  8255. data[j*n_kv + i] = -1;
  8256. }
  8257. }
  8258. }
  8259. }
  8260. }
  8261. }
  8262. // Make sure enough space is available for outputs.
  8263. // Returns max number of outputs for which space was reserved.
  8264. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  8265. const auto & cparams = lctx.cparams;
  8266. const auto & hparams = lctx.model.hparams;
  8267. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  8268. const auto n_batch = cparams.n_batch;
  8269. const auto n_vocab = hparams.n_vocab;
  8270. const auto n_embd = hparams.n_embd;
  8271. // TODO: use a per-batch flag for logits presence instead
  8272. const bool has_logits = cparams.causal_attn;
  8273. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  8274. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  8275. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  8276. if (lctx.output_ids.empty()) {
  8277. // init, never resized afterwards
  8278. lctx.output_ids.resize(n_batch);
  8279. }
  8280. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  8281. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  8282. // alloc only when more than the current capacity is required
  8283. // TODO: also consider shrinking the buffer
  8284. if (!lctx.buf_output || prev_size < new_size) {
  8285. if (lctx.buf_output) {
  8286. #ifndef NDEBUG
  8287. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  8288. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  8289. #endif
  8290. ggml_backend_buffer_free(lctx.buf_output);
  8291. lctx.buf_output = nullptr;
  8292. lctx.logits = nullptr;
  8293. lctx.embd = nullptr;
  8294. }
  8295. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  8296. if (lctx.buf_output == nullptr) {
  8297. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  8298. return 0;
  8299. }
  8300. }
  8301. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  8302. lctx.logits = has_logits ? output_base : nullptr;
  8303. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  8304. lctx.output_size = n_outputs_max;
  8305. lctx.logits_size = logits_size;
  8306. lctx.embd_size = embd_size;
  8307. // set all ids as invalid (negative)
  8308. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  8309. ggml_backend_buffer_clear(lctx.buf_output, 0);
  8310. lctx.n_outputs = 0;
  8311. return n_outputs_max;
  8312. }
  8313. static void llama_graph_compute(
  8314. llama_context & lctx,
  8315. ggml_cgraph * gf,
  8316. int n_threads) {
  8317. #ifdef GGML_USE_MPI
  8318. const int64_t n_layer = lctx.model.hparams.n_layer;
  8319. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  8320. #endif
  8321. #ifdef GGML_USE_METAL
  8322. if (ggml_backend_is_metal(lctx.backend_metal)) {
  8323. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  8324. }
  8325. #endif
  8326. if (lctx.backend_cpu != nullptr) {
  8327. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  8328. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  8329. }
  8330. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  8331. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  8332. #ifdef GGML_USE_MPI
  8333. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  8334. #endif
  8335. }
  8336. // decode a batch of tokens by evaluating the transformer
  8337. //
  8338. // - lctx: llama context
  8339. // - batch: batch to evaluate
  8340. //
  8341. // return 0 on success
  8342. // return positive int on warning
  8343. // return negative int on error
  8344. //
  8345. static int llama_decode_internal(
  8346. llama_context & lctx,
  8347. llama_batch batch_all) { // TODO: rename back to batch
  8348. const uint32_t n_tokens_all = batch_all.n_tokens;
  8349. if (n_tokens_all == 0) {
  8350. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  8351. return -1;
  8352. }
  8353. const auto & model = lctx.model;
  8354. const auto & hparams = model.hparams;
  8355. const auto & cparams = lctx.cparams;
  8356. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  8357. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  8358. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  8359. if (lctx.t_compute_start_us == 0) {
  8360. lctx.t_compute_start_us = ggml_time_us();
  8361. }
  8362. lctx.n_queued_tokens += n_tokens_all;
  8363. #ifdef GGML_USE_MPI
  8364. // TODO: needs fix after #3228
  8365. GGML_ASSERT(false && "not implemented");
  8366. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  8367. #endif
  8368. auto & kv_self = lctx.kv_self;
  8369. const int64_t n_embd = hparams.n_embd;
  8370. const int64_t n_vocab = hparams.n_vocab;
  8371. uint32_t n_outputs = 0;
  8372. uint32_t n_outputs_prev = 0;
  8373. const auto n_ubatch = cparams.n_ubatch;
  8374. std::vector<llama_pos> pos;
  8375. std::vector<int32_t> n_seq_id;
  8376. std::vector<llama_seq_id *> seq_id_arr;
  8377. std::vector<std::vector<llama_seq_id>> seq_id;
  8378. // count outputs
  8379. if (batch_all.logits) {
  8380. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  8381. n_outputs += batch_all.logits[i] != 0;
  8382. }
  8383. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  8384. n_outputs = n_tokens_all;
  8385. } else {
  8386. // keep last output only
  8387. n_outputs = 1;
  8388. }
  8389. // reserve output buffer
  8390. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  8391. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  8392. return -2;
  8393. };
  8394. // set output mappings
  8395. if (batch_all.logits) {
  8396. int32_t i_logits = 0;
  8397. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  8398. if (batch_all.logits[i]) {
  8399. lctx.output_ids[i] = i_logits++;
  8400. }
  8401. }
  8402. } else {
  8403. for (uint32_t i = 0; i < n_outputs; ++i) {
  8404. lctx.output_ids[i] = i;
  8405. }
  8406. }
  8407. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  8408. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  8409. llama_batch u_batch = {
  8410. /* .n_tokens = */ (int32_t) n_tokens,
  8411. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  8412. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  8413. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  8414. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  8415. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  8416. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  8417. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  8418. /* .all_pos_1 = */ batch_all.all_pos_1,
  8419. /* .all_seq_id = */ batch_all.all_seq_id,
  8420. };
  8421. // count the outputs in this u_batch
  8422. {
  8423. int32_t n_outputs_new = 0;
  8424. if (u_batch.logits) {
  8425. for (uint32_t i = 0; i < n_tokens; i++) {
  8426. n_outputs_new += u_batch.logits[i] != 0;
  8427. }
  8428. } else if (n_outputs == n_tokens_all) {
  8429. n_outputs_new = n_tokens;
  8430. } else {
  8431. // keep last output only
  8432. if (cur_token + n_tokens >= n_tokens_all) {
  8433. n_outputs_new = 1;
  8434. }
  8435. }
  8436. // needs to happen before the graph is built
  8437. lctx.n_outputs = n_outputs_new;
  8438. }
  8439. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  8440. GGML_ASSERT(n_threads > 0);
  8441. // helpers for smoother batch API transition
  8442. // after deprecating the llama_eval calls, these will be removed
  8443. if (u_batch.pos == nullptr) {
  8444. pos.resize(n_tokens);
  8445. for (uint32_t i = 0; i < n_tokens; i++) {
  8446. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  8447. }
  8448. u_batch.pos = pos.data();
  8449. }
  8450. if (u_batch.seq_id == nullptr) {
  8451. n_seq_id.resize(n_tokens);
  8452. seq_id.resize(n_tokens);
  8453. seq_id_arr.resize(n_tokens);
  8454. for (uint32_t i = 0; i < n_tokens; i++) {
  8455. n_seq_id[i] = 1;
  8456. seq_id[i].resize(1);
  8457. seq_id[i][0] = u_batch.all_seq_id;
  8458. seq_id_arr[i] = seq_id[i].data();
  8459. }
  8460. u_batch.n_seq_id = n_seq_id.data();
  8461. u_batch.seq_id = seq_id_arr.data();
  8462. }
  8463. // non-causal masks do not use the KV cache
  8464. if (hparams.causal_attn) {
  8465. llama_kv_cache_update(&lctx);
  8466. // if we have enough unused cells before the current head ->
  8467. // better to start searching from the beginning of the cache, hoping to fill it
  8468. if (kv_self.head > kv_self.used + 2*n_tokens) {
  8469. kv_self.head = 0;
  8470. }
  8471. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  8472. return 1;
  8473. }
  8474. if (!kv_self.recurrent) {
  8475. // a heuristic, to avoid attending the full cache if it is not yet utilized
  8476. // after enough generations, the benefit from this heuristic disappears
  8477. // if we start defragmenting the cache, the benefit from this will be more important
  8478. kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
  8479. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  8480. }
  8481. }
  8482. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  8483. ggml_backend_sched_reset(lctx.sched);
  8484. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  8485. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  8486. // the output is always the last tensor in the graph
  8487. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  8488. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  8489. if (lctx.n_outputs == 0) {
  8490. // no output
  8491. res = nullptr;
  8492. embd = nullptr;
  8493. } else if (!hparams.causal_attn) {
  8494. res = nullptr; // do not extract logits for embedding models such as BERT
  8495. // token or sequence embeddings
  8496. embd = gf->nodes[gf->n_nodes - 1];
  8497. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  8498. } else if (cparams.embeddings) {
  8499. // the embeddings could be in the second to last tensor, or any of the previous tensors
  8500. int i_embd = gf->n_nodes - 2;
  8501. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  8502. i_embd = gf->n_nodes - i;
  8503. if (i_embd < 0) { break; }
  8504. embd = gf->nodes[i_embd];
  8505. }
  8506. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  8507. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  8508. if (!cparams.causal_attn) {
  8509. res = nullptr; // do not extract logits when not needed
  8510. // skip computing logits
  8511. // TODO: is this safe?
  8512. gf->n_nodes = i_embd + 1;
  8513. }
  8514. } else {
  8515. embd = nullptr; // do not extract embeddings when not needed
  8516. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  8517. }
  8518. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  8519. // for big prompts, if BLAS is enabled, it is better to use only one thread
  8520. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  8521. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  8522. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  8523. // with the BLAS calls. need a better solution
  8524. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  8525. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  8526. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  8527. n_threads = std::min(4, n_threads);
  8528. }
  8529. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  8530. llama_set_inputs(lctx, u_batch);
  8531. llama_graph_compute(lctx, gf, n_threads);
  8532. // update the kv ring buffer
  8533. {
  8534. kv_self.head += n_tokens;
  8535. // Ensure kv cache head points to a valid index.
  8536. if (kv_self.head >= kv_self.size) {
  8537. kv_self.head = 0;
  8538. }
  8539. }
  8540. #ifdef GGML_PERF
  8541. // print timing information per ggml operation (for debugging purposes)
  8542. // requires GGML_PERF to be defined
  8543. ggml_graph_print(gf);
  8544. #endif
  8545. // plot the computation graph in dot format (for debugging purposes)
  8546. //if (n_past%100 == 0) {
  8547. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  8548. //}
  8549. // extract logits
  8550. if (res) {
  8551. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  8552. GGML_ASSERT(backend_res != nullptr);
  8553. GGML_ASSERT(lctx.logits != nullptr);
  8554. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  8555. const int32_t n_outputs_new = lctx.n_outputs;
  8556. if (n_outputs_new) {
  8557. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  8558. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  8559. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  8560. }
  8561. }
  8562. // extract embeddings
  8563. if (embd) {
  8564. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  8565. GGML_ASSERT(backend_embd != nullptr);
  8566. switch (cparams.pooling_type) {
  8567. case LLAMA_POOLING_TYPE_NONE:
  8568. {
  8569. // extract token embeddings
  8570. GGML_ASSERT(lctx.embd != nullptr);
  8571. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  8572. const int32_t n_outputs_new = lctx.n_outputs;
  8573. if (n_outputs_new) {
  8574. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  8575. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  8576. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  8577. }
  8578. } break;
  8579. case LLAMA_POOLING_TYPE_CLS:
  8580. case LLAMA_POOLING_TYPE_MEAN:
  8581. {
  8582. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  8583. // extract sequence embeddings
  8584. auto & embd_seq_out = lctx.embd_seq;
  8585. embd_seq_out.clear();
  8586. for (uint32_t i = 0; i < n_tokens; i++) {
  8587. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  8588. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  8589. continue;
  8590. }
  8591. embd_seq_out[seq_id].resize(n_embd);
  8592. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  8593. }
  8594. } break;
  8595. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  8596. {
  8597. GGML_ASSERT(false && "unknown pooling type");
  8598. } break;
  8599. }
  8600. }
  8601. n_outputs_prev += lctx.n_outputs;
  8602. }
  8603. // wait for the computation to finish (automatically done when obtaining the model output)
  8604. //llama_synchronize(&lctx);
  8605. // decide if we need to defrag the kv cache
  8606. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  8607. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  8608. // queue defragmentation for next llama_kv_cache_update
  8609. if (fragmentation > cparams.defrag_thold) {
  8610. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  8611. llama_kv_cache_defrag(kv_self);
  8612. }
  8613. }
  8614. return 0;
  8615. }
  8616. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  8617. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  8618. auto & kv_self = lctx.kv_self;
  8619. const auto & hparams = lctx.model.hparams;
  8620. const uint32_t n_layer = hparams.n_layer;
  8621. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  8622. const uint32_t n_used = kv_self.used;
  8623. assert(n_used <= n_kv);
  8624. //const int64_t t_start = ggml_time_us();
  8625. // number of cells moved
  8626. uint32_t n_moves = 0;
  8627. // each move requires 6*n_layer tensors (see build_defrag)
  8628. // - source view, destination view, copy operation
  8629. // - x2 for keys and values
  8630. const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  8631. // determine which KV cells to move where
  8632. //
  8633. // cell i moves to ids[i]
  8634. //
  8635. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  8636. //
  8637. std::vector<uint32_t> ids(n_kv, n_kv);
  8638. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  8639. const auto & cell0 = kv_self.cells[i0];
  8640. if (!cell0.is_empty()) {
  8641. ids[i0] = i0;
  8642. continue;
  8643. }
  8644. // found a hole - fill it with data from the end of the cache
  8645. uint32_t nh = 1;
  8646. // determine the size of the hole
  8647. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  8648. nh++;
  8649. }
  8650. uint32_t nf = 0;
  8651. uint32_t is = n_kv - 1;
  8652. // starting from the end, find nh non-empty cells
  8653. for (; is > i0; --is) {
  8654. const auto & cell1 = kv_self.cells[is];
  8655. if (cell1.is_empty() || ids[is] != n_kv) {
  8656. continue;
  8657. }
  8658. // non-empty cell which is not yet moved
  8659. nf++;
  8660. if (nf == nh) {
  8661. break;
  8662. }
  8663. }
  8664. // this can only happen if `n_used` is not accurate, which would be a bug
  8665. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  8666. nf = 0;
  8667. uint32_t i1 = is;
  8668. // are we moving a continuous block of memory?
  8669. bool cont = false;
  8670. // should we stop searching for the next move?
  8671. bool stop = false;
  8672. // go back and move the nf cells to the hole
  8673. for (; i1 < n_kv; ++i1) {
  8674. auto & cell1 = kv_self.cells[i1];
  8675. if (cell1.is_empty() || ids[i1] != n_kv) {
  8676. if (n_moves == max_moves) {
  8677. stop = true;
  8678. break;
  8679. }
  8680. cont = false;
  8681. continue;
  8682. }
  8683. // this cell goes to (i0 + nf)
  8684. ids[i1] = i0 + nf;
  8685. // move the cell meta data
  8686. kv_self.cells[i0 + nf] = cell1;
  8687. // clear the old cell and move the head there
  8688. cell1 = llama_kv_cell();
  8689. kv_self.head = n_used;
  8690. if (!cont) {
  8691. n_moves++;
  8692. cont = true;
  8693. }
  8694. nf++;
  8695. if (nf == nh) {
  8696. break;
  8697. }
  8698. }
  8699. if (stop || n_moves == max_moves) {
  8700. break;
  8701. }
  8702. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  8703. i0 += nh - 1;
  8704. }
  8705. if (n_moves == 0) {
  8706. return;
  8707. }
  8708. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  8709. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  8710. #if 0
  8711. // CPU defrag
  8712. //
  8713. // TODO: optimizations are possible:
  8714. // - multiple threads
  8715. // - avoid copying to the host memory when already there
  8716. //
  8717. // likely not worth the effort, as we have ggml_graph based defrag
  8718. //
  8719. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  8720. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  8721. const uint32_t kv_size = kv_self.size;
  8722. std::vector<uint8_t> buf_k;
  8723. std::vector<uint8_t> buf_v;
  8724. for (uint32_t il = 0; il < n_layer; ++il) {
  8725. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  8726. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  8727. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  8728. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  8729. buf_k.resize(k_size);
  8730. buf_v.resize(v_size);
  8731. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  8732. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  8733. // batch move [i, i+nm) to [id, id+nm)
  8734. // note: cells can move only to a lower index
  8735. for (uint32_t i = 0; i < n_kv; ++i) {
  8736. const uint32_t id = ids[i];
  8737. if (i == id || id == n_kv) {
  8738. continue;
  8739. }
  8740. uint32_t nm = 1;
  8741. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  8742. nm++;
  8743. }
  8744. // move keys
  8745. {
  8746. const int64_t os = i*k_size_row;
  8747. const int64_t od = id*k_size_row;
  8748. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  8749. }
  8750. // move values (note: they are transposed)
  8751. {
  8752. const int64_t os = i;
  8753. const int64_t od = id;
  8754. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  8755. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  8756. }
  8757. }
  8758. i += nm - 1;
  8759. }
  8760. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  8761. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  8762. }
  8763. #else
  8764. // ggml_graph defrag
  8765. ggml_backend_sched_reset(lctx.sched);
  8766. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  8767. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  8768. #endif
  8769. //const int64_t t_end = ggml_time_us();
  8770. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  8771. }
  8772. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  8773. bool need_reserve = false;
  8774. // apply K-shift if needed
  8775. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  8776. {
  8777. ggml_backend_sched_reset(lctx.sched);
  8778. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  8779. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  8780. llama_set_k_shift(lctx);
  8781. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  8782. need_reserve = true;
  8783. }
  8784. {
  8785. auto & kv_self = lctx.kv_self;
  8786. kv_self.has_shift = false;
  8787. for (uint32_t i = 0; i < kv_self.size; ++i) {
  8788. kv_self.cells[i].delta = 0;
  8789. }
  8790. }
  8791. }
  8792. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  8793. {
  8794. ggml_backend_sched_reset(lctx.sched);
  8795. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  8796. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  8797. llama_set_s_copy(lctx);
  8798. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  8799. need_reserve = true;
  8800. }
  8801. {
  8802. auto & kv_self = lctx.kv_self;
  8803. kv_self.do_copy = false;
  8804. for (uint32_t i = 0; i < kv_self.size; ++i) {
  8805. kv_self.cells[i].src = i;
  8806. }
  8807. }
  8808. }
  8809. // defragment the KV cache if needed
  8810. if (lctx.kv_self.do_defrag) {
  8811. llama_kv_cache_defrag_internal(lctx);
  8812. need_reserve = true;
  8813. lctx.kv_self.do_defrag = false;
  8814. }
  8815. // reserve a worst case graph again
  8816. if (need_reserve) {
  8817. // TODO: extract to a function
  8818. // build worst-case graph
  8819. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  8820. int n_past = lctx.cparams.n_ctx - n_tokens;
  8821. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  8822. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  8823. // initialize scheduler with the worst-case graph
  8824. ggml_backend_sched_reset(lctx.sched);
  8825. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  8826. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  8827. }
  8828. }
  8829. }
  8830. //
  8831. // tokenizer
  8832. //
  8833. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  8834. return vocab.type;
  8835. }
  8836. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  8837. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  8838. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  8839. }
  8840. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  8841. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  8842. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  8843. }
  8844. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  8845. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  8846. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  8847. }
  8848. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  8849. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  8850. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  8851. }
  8852. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  8853. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  8854. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  8855. }
  8856. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  8857. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  8858. GGML_ASSERT(llama_is_byte_token(vocab, id));
  8859. const auto& token_data = vocab.id_to_token.at(id);
  8860. switch (llama_vocab_get_type(vocab)) {
  8861. case LLAMA_VOCAB_TYPE_SPM: {
  8862. auto buf = token_data.text.substr(3, 2);
  8863. return strtol(buf.c_str(), NULL, 16);
  8864. }
  8865. case LLAMA_VOCAB_TYPE_BPE: {
  8866. GGML_ASSERT(false);
  8867. return unicode_utf8_to_byte(token_data.text);
  8868. }
  8869. case LLAMA_VOCAB_TYPE_WPM: {
  8870. GGML_ASSERT(false);
  8871. }
  8872. default:
  8873. GGML_ASSERT(false);
  8874. }
  8875. }
  8876. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  8877. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  8878. static const char * hex = "0123456789ABCDEF";
  8879. switch (llama_vocab_get_type(vocab)) {
  8880. case LLAMA_VOCAB_TYPE_SPM: {
  8881. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  8882. auto token = vocab.token_to_id.find(buf);
  8883. if (token != vocab.token_to_id.end()) {
  8884. return (*token).second;
  8885. }
  8886. // Try to fall back to just the byte as a string
  8887. const char buf2[2] = { (char)ch, 0 };
  8888. return vocab.token_to_id.at(buf2);
  8889. }
  8890. case LLAMA_VOCAB_TYPE_WPM:
  8891. case LLAMA_VOCAB_TYPE_BPE: {
  8892. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  8893. }
  8894. default:
  8895. GGML_ASSERT(false);
  8896. }
  8897. }
  8898. static void llama_escape_whitespace(std::string & text) {
  8899. replace_all(text, " ", "\xe2\x96\x81");
  8900. }
  8901. static void llama_unescape_whitespace(std::string & word) {
  8902. replace_all(word, "\xe2\x96\x81", " ");
  8903. }
  8904. struct llm_symbol {
  8905. using index = int;
  8906. index prev;
  8907. index next;
  8908. const char * text;
  8909. size_t n;
  8910. };
  8911. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  8912. // SPM tokenizer
  8913. // original implementation:
  8914. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  8915. struct llm_bigram_spm {
  8916. struct comparator {
  8917. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  8918. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  8919. }
  8920. };
  8921. using queue_storage = std::vector<llm_bigram_spm>;
  8922. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  8923. llm_symbol::index left;
  8924. llm_symbol::index right;
  8925. float score;
  8926. size_t size;
  8927. };
  8928. struct llm_tokenizer_spm {
  8929. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  8930. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  8931. // split string into utf8 chars
  8932. int index = 0;
  8933. size_t offs = 0;
  8934. while (offs < text.size()) {
  8935. llm_symbol sym;
  8936. size_t len = utf8_len(text[offs]);
  8937. sym.text = text.c_str() + offs;
  8938. sym.n = std::min(len, text.size() - offs);
  8939. offs += sym.n;
  8940. sym.prev = index - 1;
  8941. sym.next = offs == text.size() ? -1 : index + 1;
  8942. index++;
  8943. symbols.emplace_back(sym);
  8944. }
  8945. // seed the work queue with all possible 2-character tokens.
  8946. for (size_t i = 1; i < symbols.size(); ++i) {
  8947. try_add_bigram(i - 1, i);
  8948. }
  8949. // keep substituting the highest frequency pairs for as long as we can.
  8950. while (!work_queue.empty()) {
  8951. auto bigram = work_queue.top();
  8952. work_queue.pop();
  8953. auto & left_sym = symbols[bigram.left];
  8954. auto & right_sym = symbols[bigram.right];
  8955. // if one of the symbols already got merged, skip it.
  8956. if (left_sym.n == 0 || right_sym.n == 0 ||
  8957. left_sym.n + right_sym.n != bigram.size) {
  8958. continue;
  8959. }
  8960. // merge the right sym into the left one
  8961. left_sym.n += right_sym.n;
  8962. right_sym.n = 0;
  8963. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  8964. // remove the right sym from the chain
  8965. left_sym.next = right_sym.next;
  8966. if (right_sym.next >= 0) {
  8967. symbols[right_sym.next].prev = bigram.left;
  8968. }
  8969. // find more substitutions
  8970. try_add_bigram(left_sym.prev, bigram.left);
  8971. try_add_bigram(bigram.left, left_sym.next);
  8972. }
  8973. for (int i = 0; i != -1; i = symbols[i].next) {
  8974. auto & symbol = symbols[i];
  8975. resegment(symbol, output);
  8976. }
  8977. }
  8978. private:
  8979. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  8980. auto text = std::string(symbol.text, symbol.n);
  8981. auto token = vocab.token_to_id.find(text);
  8982. // Do we need to support is_unused?
  8983. if (token != vocab.token_to_id.end()) {
  8984. output.push_back((*token).second);
  8985. return;
  8986. }
  8987. const auto p = rev_merge.find(text);
  8988. if (p == rev_merge.end()) {
  8989. // output any symbols that did not form tokens as bytes.
  8990. output.reserve(output.size() + symbol.n);
  8991. for (int j = 0; j < (int)symbol.n; ++j) {
  8992. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  8993. output.push_back(token_id);
  8994. }
  8995. return;
  8996. }
  8997. resegment(symbols[p->second.first], output);
  8998. resegment(symbols[p->second.second], output);
  8999. }
  9000. void try_add_bigram(int left, int right) {
  9001. if (left == -1 || right == -1) {
  9002. return;
  9003. }
  9004. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  9005. auto token = vocab.token_to_id.find(text);
  9006. if (token == vocab.token_to_id.end()) {
  9007. return;
  9008. }
  9009. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  9010. return;
  9011. }
  9012. const auto & tok_data = vocab.id_to_token[(*token).second];
  9013. llm_bigram_spm bigram;
  9014. bigram.left = left;
  9015. bigram.right = right;
  9016. bigram.score = tok_data.score;
  9017. bigram.size = text.size();
  9018. work_queue.push(bigram);
  9019. // Do we need to support is_unused?
  9020. rev_merge[text] = std::make_pair(left, right);
  9021. }
  9022. const llama_vocab & vocab;
  9023. std::vector<llm_symbol> symbols;
  9024. llm_bigram_spm::queue work_queue;
  9025. std::map<std::string, std::pair<int, int>> rev_merge;
  9026. };
  9027. // BPE tokenizer
  9028. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  9029. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  9030. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  9031. struct llm_bigram_bpe {
  9032. struct comparator {
  9033. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  9034. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  9035. }
  9036. };
  9037. using queue_storage = std::vector<llm_bigram_bpe>;
  9038. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  9039. llm_symbol::index left;
  9040. llm_symbol::index right;
  9041. std::string text;
  9042. int rank;
  9043. size_t size;
  9044. };
  9045. struct llm_tokenizer_bpe {
  9046. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  9047. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9048. int final_prev_index = -1;
  9049. auto word_collection = bpe_gpt2_preprocess(text);
  9050. symbols_final.clear();
  9051. for (auto & word : word_collection) {
  9052. work_queue = llm_bigram_bpe::queue();
  9053. symbols.clear();
  9054. int index = 0;
  9055. size_t offset = 0;
  9056. while (offset < word.size()) {
  9057. llm_symbol sym;
  9058. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  9059. sym.text = word.c_str() + offset;
  9060. sym.n = char_len;
  9061. offset += sym.n;
  9062. sym.prev = index - 1;
  9063. sym.next = offset == word.size() ? -1 : index + 1;
  9064. index++;
  9065. symbols.emplace_back(sym);
  9066. }
  9067. for (size_t i = 1; i < symbols.size(); ++i) {
  9068. add_new_bigram(i - 1, i);
  9069. }
  9070. // build token(s)
  9071. while (!work_queue.empty()) {
  9072. auto bigram = work_queue.top();
  9073. work_queue.pop();
  9074. auto & left_symbol = symbols[bigram.left];
  9075. auto & right_symbol = symbols[bigram.right];
  9076. if (left_symbol.n == 0 || right_symbol.n == 0) {
  9077. continue;
  9078. }
  9079. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  9080. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  9081. if (left_token + right_token != bigram.text) {
  9082. continue; // Skip this bigram if it's outdated
  9083. }
  9084. // merge the right sym into the left one
  9085. left_symbol.n += right_symbol.n;
  9086. right_symbol.n = 0;
  9087. // remove the right sym from the chain
  9088. left_symbol.next = right_symbol.next;
  9089. if (right_symbol.next >= 0) {
  9090. symbols[right_symbol.next].prev = bigram.left;
  9091. }
  9092. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  9093. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  9094. }
  9095. // add the fnished tokens to the final list keeping correct order for next and prev
  9096. for (auto & sym : symbols) {
  9097. if (sym.n > 0) {
  9098. sym.prev = final_prev_index;
  9099. sym.next = -1;
  9100. if (final_prev_index != -1) {
  9101. symbols_final[final_prev_index].next = symbols_final.size();
  9102. }
  9103. symbols_final.emplace_back(sym);
  9104. final_prev_index = symbols_final.size() - 1;
  9105. }
  9106. }
  9107. }
  9108. symbols = symbols_final;
  9109. if (!symbols.empty()) {
  9110. for (int i = 0; i != -1; i = symbols[i].next) {
  9111. auto & symbol = symbols[i];
  9112. if (symbol.n == 0) {
  9113. continue;
  9114. }
  9115. const std::string str = std::string(symbol.text, symbol.n);
  9116. const auto token = vocab.token_to_id.find(str);
  9117. if (token == vocab.token_to_id.end()) {
  9118. for (auto j = str.begin(); j != str.end(); ++j) {
  9119. std::string byte_str(1, *j);
  9120. auto token_multibyte = vocab.token_to_id.find(byte_str);
  9121. if (token_multibyte == vocab.token_to_id.end()) {
  9122. throw std::runtime_error("ERROR: byte not found in vocab");
  9123. }
  9124. output.push_back((*token_multibyte).second);
  9125. }
  9126. } else {
  9127. output.push_back((*token).second);
  9128. }
  9129. }
  9130. }
  9131. }
  9132. private:
  9133. void add_new_bigram(int left, int right) {
  9134. if (left == -1 || right == -1) {
  9135. return;
  9136. }
  9137. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  9138. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  9139. int rank_found = -1;
  9140. rank_found = vocab.find_bpe_rank(left_token, right_token);
  9141. if (rank_found < 0) {
  9142. return;
  9143. }
  9144. llm_bigram_bpe bigram;
  9145. bigram.left = left;
  9146. bigram.right = right;
  9147. bigram.text = left_token + right_token;
  9148. bigram.size = left_token.size() + right_token.size();
  9149. bigram.rank = rank_found;
  9150. work_queue.push(bigram);
  9151. }
  9152. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  9153. std::vector<std::string> bpe_words;
  9154. std::vector<std::string> bpe_encoded_words;
  9155. std::string token = "";
  9156. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  9157. bool collecting_numeric = false;
  9158. bool collecting_letter = false;
  9159. bool collecting_special = false;
  9160. bool collecting_whitespace_lookahead = false;
  9161. bool collecting = false;
  9162. std::vector<std::string> text_utf;
  9163. text_utf.reserve(text.size());
  9164. bpe_words.reserve(text.size());
  9165. bpe_encoded_words.reserve(text.size());
  9166. const auto cpts = unicode_cpts_from_utf8(text);
  9167. for (size_t i = 0; i < cpts.size(); ++i)
  9168. text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i]));
  9169. for (int i = 0; i < (int)text_utf.size(); i++) {
  9170. const std::string & utf_char = text_utf[i];
  9171. bool split_condition = false;
  9172. int bytes_remain = text_utf.size() - i;
  9173. // forward backward lookups
  9174. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  9175. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  9176. // handling contractions
  9177. if (!split_condition && bytes_remain >= 2) {
  9178. // 's|'t|'m|'d
  9179. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  9180. split_condition = true;
  9181. }
  9182. if (split_condition) {
  9183. if (token.size()) {
  9184. bpe_words.emplace_back(token); // push previous content as token
  9185. }
  9186. token = utf_char + utf_char_next;
  9187. bpe_words.emplace_back(token);
  9188. token = "";
  9189. i++;
  9190. continue;
  9191. }
  9192. }
  9193. if (!split_condition && bytes_remain >= 3) {
  9194. // 're|'ve|'ll
  9195. if (utf_char == "\'" && (
  9196. (utf_char_next == "r" && utf_char_next_next == "e") ||
  9197. (utf_char_next == "v" && utf_char_next_next == "e") ||
  9198. (utf_char_next == "l" && utf_char_next_next == "l"))
  9199. ) {
  9200. split_condition = true;
  9201. }
  9202. if (split_condition) {
  9203. // current token + next token can be defined
  9204. if (token.size()) {
  9205. bpe_words.emplace_back(token); // push previous content as token
  9206. }
  9207. token = utf_char + utf_char_next + utf_char_next_next;
  9208. bpe_words.emplace_back(token); // the contraction
  9209. token = "";
  9210. i += 2;
  9211. continue;
  9212. }
  9213. }
  9214. if (!split_condition && !collecting) {
  9215. if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  9216. collecting_letter = true;
  9217. collecting = true;
  9218. }
  9219. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  9220. collecting_numeric = true;
  9221. collecting = true;
  9222. }
  9223. else if (
  9224. ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  9225. (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  9226. ) {
  9227. collecting_special = true;
  9228. collecting = true;
  9229. }
  9230. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  9231. collecting_whitespace_lookahead = true;
  9232. collecting = true;
  9233. }
  9234. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  9235. split_condition = true;
  9236. }
  9237. }
  9238. else if (!split_condition && collecting) {
  9239. if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  9240. split_condition = true;
  9241. }
  9242. else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  9243. split_condition = true;
  9244. }
  9245. else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  9246. split_condition = true;
  9247. }
  9248. else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  9249. split_condition = true;
  9250. }
  9251. }
  9252. if (utf_char_next == "") {
  9253. split_condition = true; // final
  9254. token += utf_char;
  9255. }
  9256. if (split_condition) {
  9257. if (token.size()) {
  9258. bpe_words.emplace_back(token);
  9259. }
  9260. token = utf_char;
  9261. collecting = false;
  9262. collecting_letter = false;
  9263. collecting_numeric = false;
  9264. collecting_special = false;
  9265. collecting_whitespace_lookahead = false;
  9266. }
  9267. else {
  9268. token += utf_char;
  9269. }
  9270. }
  9271. for (std::string & word : bpe_words) {
  9272. std::string encoded_token = "";
  9273. for (char & c : word) {
  9274. encoded_token += unicode_byte_to_utf8(c);
  9275. }
  9276. bpe_encoded_words.emplace_back(encoded_token);
  9277. }
  9278. return bpe_encoded_words;
  9279. }
  9280. const llama_vocab & vocab;
  9281. std::vector<llm_symbol> symbols;
  9282. std::vector<llm_symbol> symbols_final;
  9283. llm_bigram_bpe::queue work_queue;
  9284. };
  9285. struct llm_tokenizer_wpm {
  9286. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  9287. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9288. auto * token_map = &vocab.token_to_id;
  9289. // normalize and split by whitespace
  9290. std::vector<std::string> words = preprocess(text);
  9291. // bos token prepended already
  9292. // find the longest tokens that form the words
  9293. for (const std::string &word : words) {
  9294. // skip empty words
  9295. if (word.size() == 0) {
  9296. continue;
  9297. }
  9298. // prepend phantom space
  9299. std::string word1 = "\xe2\x96\x81" + word;
  9300. int n = word1.size();
  9301. // we're at the start of a new word
  9302. int i = 0;
  9303. bool match_any = false;
  9304. // move through character position in word
  9305. while (i < n) {
  9306. // loop through possible match length
  9307. bool match = false;
  9308. for (int j = n; j > i; j--) {
  9309. auto it = token_map->find(word1.substr(i, j - i));
  9310. if (it != token_map->end()) {
  9311. output.push_back(it->second);
  9312. match = true;
  9313. match_any = true;
  9314. i = j;
  9315. break;
  9316. }
  9317. }
  9318. // must be an unknown character
  9319. if (!match) {
  9320. i++;
  9321. }
  9322. }
  9323. // we didn't find any matches for this word
  9324. if (!match_any) {
  9325. output.push_back(vocab.special_unk_id);
  9326. }
  9327. }
  9328. // append eos token
  9329. output.push_back(vocab.special_eos_id);
  9330. }
  9331. std::vector<std::string> preprocess(const std::string & text) {
  9332. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  9333. // strip accents, strip control, uniformize whitespace,
  9334. // to lowercase, pad chinese characters, pad punctuation
  9335. std::string new_str = "";
  9336. for (uint32_t code : cpts_nfd) {
  9337. int type = unicode_cpt_type(code);
  9338. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  9339. continue;
  9340. }
  9341. code = unicode_tolower(code);
  9342. if (type == CODEPOINT_TYPE_WHITESPACE) {
  9343. code = ' ';
  9344. }
  9345. std::string s = unicode_cpt_to_utf8(code);
  9346. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  9347. new_str += " ";
  9348. new_str += s;
  9349. new_str += " ";
  9350. } else {
  9351. new_str += s;
  9352. }
  9353. }
  9354. // split by whitespace
  9355. uint64_t l = 0;
  9356. uint64_t r = 0;
  9357. std::vector<std::string> words;
  9358. while (r < new_str.size()) {
  9359. // if is whitespace
  9360. if (isspace(new_str[r], std::locale::classic())) {
  9361. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  9362. l = r + 1;
  9363. r = l;
  9364. } else {
  9365. r += 1;
  9366. }
  9367. }
  9368. if (r > l) {
  9369. words.push_back(new_str.substr(l, (r - l)));
  9370. }
  9371. return words;
  9372. }
  9373. bool is_ascii_punct(uint32_t code) {
  9374. if (code > 0xFF) {
  9375. return false;
  9376. }
  9377. auto c = char(static_cast<unsigned char>(code));
  9378. return ispunct(c, std::locale::classic());
  9379. }
  9380. bool is_chinese_char(uint32_t cpt) {
  9381. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  9382. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  9383. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  9384. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  9385. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  9386. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  9387. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  9388. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  9389. (cpt >= 0x3000 && cpt <= 0x303F) ||
  9390. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  9391. return true; // NOLINT
  9392. }
  9393. return false;
  9394. }
  9395. const llama_vocab & vocab;
  9396. };
  9397. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  9398. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  9399. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  9400. } FRAGMENT_BUFFER_VARIANT_TYPE;
  9401. struct fragment_buffer_variant {
  9402. fragment_buffer_variant(llama_vocab::id _token)
  9403. :
  9404. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  9405. token(_token),
  9406. raw_text(_dummy),
  9407. offset(0),
  9408. length(0) {}
  9409. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  9410. :
  9411. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  9412. token((llama_vocab::id) - 1),
  9413. raw_text(_raw_text),
  9414. offset(_offset),
  9415. length(_length){
  9416. GGML_ASSERT(_offset >= 0);
  9417. GGML_ASSERT(_length >= 1);
  9418. GGML_ASSERT(offset + length <= raw_text.length());
  9419. }
  9420. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  9421. const llama_vocab::id token;
  9422. const std::string _dummy;
  9423. const std::string & raw_text;
  9424. const uint64_t offset;
  9425. const uint64_t length;
  9426. };
  9427. // #define PRETOKENIZERDEBUG
  9428. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  9429. // for each special token
  9430. for (const auto & st: vocab.special_tokens_cache) {
  9431. const auto & special_token = st.first;
  9432. const auto & special_id = st.second;
  9433. // for each text fragment
  9434. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  9435. while (it != buffer.end()) {
  9436. auto & fragment = (*it);
  9437. // if a fragment is text ( not yet processed )
  9438. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  9439. auto * raw_text = &(fragment.raw_text);
  9440. auto raw_text_base_offset = fragment.offset;
  9441. auto raw_text_base_length = fragment.length;
  9442. // loop over the text
  9443. while (true) {
  9444. // find the first occurrence of a given special token in this fragment
  9445. // passing offset argument only limit the "search area" but match coordinates
  9446. // are still relative to the source full raw_text
  9447. auto match = raw_text->find(special_token, raw_text_base_offset);
  9448. // no occurrences found, stop processing this fragment for a given special token
  9449. if (match == std::string::npos) break;
  9450. // check if match is within bounds of offset <-> length
  9451. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  9452. #ifdef PRETOKENIZERDEBUG
  9453. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  9454. #endif
  9455. auto source = std::distance(buffer.begin(), it);
  9456. // if match is further than base offset
  9457. // then we have some text to the left of it
  9458. if (match > raw_text_base_offset) {
  9459. // left
  9460. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  9461. const int64_t left_reminder_length = match - raw_text_base_offset;
  9462. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  9463. #ifdef PRETOKENIZERDEBUG
  9464. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  9465. #endif
  9466. it++;
  9467. }
  9468. // special token
  9469. buffer.emplace_after(it, special_id);
  9470. it++;
  9471. // right
  9472. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  9473. const int64_t right_reminder_offset = match + special_token.length();
  9474. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  9475. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  9476. #ifdef PRETOKENIZERDEBUG
  9477. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  9478. #endif
  9479. it++;
  9480. if (source == 0) {
  9481. buffer.erase_after(buffer.before_begin());
  9482. } else {
  9483. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  9484. }
  9485. // repeat for the right side
  9486. raw_text_base_offset = right_reminder_offset;
  9487. raw_text_base_length = right_reminder_length;
  9488. #ifdef PRETOKENIZERDEBUG
  9489. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  9490. #endif
  9491. } else {
  9492. if (source == 0) {
  9493. buffer.erase_after(buffer.before_begin());
  9494. } else {
  9495. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  9496. }
  9497. break;
  9498. }
  9499. }
  9500. }
  9501. it++;
  9502. }
  9503. }
  9504. }
  9505. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
  9506. std::vector<llama_vocab::id> output;
  9507. // OG tokenizer behavior:
  9508. //
  9509. // tokenizer.encode('', add_bos=True) returns [1]
  9510. // tokenizer.encode('', add_bos=False) returns []
  9511. if (bos && vocab.special_bos_id != -1) {
  9512. output.push_back(vocab.special_bos_id);
  9513. }
  9514. if (raw_text.empty()) {
  9515. return output;
  9516. }
  9517. std::forward_list<fragment_buffer_variant> fragment_buffer;
  9518. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  9519. if (special) tokenizer_st_partition(vocab, fragment_buffer);
  9520. switch (vocab.type) {
  9521. case LLAMA_VOCAB_TYPE_SPM:
  9522. {
  9523. for (const auto & fragment : fragment_buffer) {
  9524. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  9525. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  9526. // TODO: It's likely possible to get rid of this string copy entirely
  9527. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  9528. // and passing 'add space prefix' as bool argument
  9529. //
  9530. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  9531. if (&fragment == &fragment_buffer.front()) {
  9532. if (vocab.add_space_prefix) {
  9533. raw_text = " " + raw_text; // prefix with space if the first token is not special
  9534. }
  9535. }
  9536. #ifdef PRETOKENIZERDEBUG
  9537. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  9538. #endif
  9539. llm_tokenizer_spm tokenizer(vocab);
  9540. llama_escape_whitespace(raw_text);
  9541. tokenizer.tokenize(raw_text, output);
  9542. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  9543. output.push_back(fragment.token);
  9544. }
  9545. }
  9546. } break;
  9547. case LLAMA_VOCAB_TYPE_BPE:
  9548. {
  9549. for (const auto & fragment : fragment_buffer) {
  9550. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  9551. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  9552. #ifdef PRETOKENIZERDEBUG
  9553. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  9554. #endif
  9555. llm_tokenizer_bpe tokenizer(vocab);
  9556. tokenizer.tokenize(raw_text, output);
  9557. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  9558. output.push_back(fragment.token);
  9559. }
  9560. }
  9561. } break;
  9562. case LLAMA_VOCAB_TYPE_WPM:
  9563. {
  9564. for (const auto & fragment : fragment_buffer) {
  9565. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  9566. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  9567. #ifdef PRETOKENIZERDEBUG
  9568. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  9569. #endif
  9570. llm_tokenizer_wpm tokenizer(vocab);
  9571. tokenizer.tokenize(raw_text, output);
  9572. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  9573. output.push_back(fragment.token);
  9574. }
  9575. }
  9576. } break;
  9577. case LLAMA_VOCAB_TYPE_NONE:
  9578. GGML_ASSERT(false);
  9579. }
  9580. return output;
  9581. }
  9582. //
  9583. // grammar - internal
  9584. //
  9585. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  9586. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  9587. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  9588. const std::string & src,
  9589. llama_partial_utf8 partial_start) {
  9590. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  9591. const char * pos = src.c_str();
  9592. std::vector<uint32_t> code_points;
  9593. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  9594. code_points.reserve(src.size() + 1);
  9595. uint32_t value = partial_start.value;
  9596. int n_remain = partial_start.n_remain;
  9597. // continue previous decode, if applicable
  9598. while (*pos != 0 && n_remain > 0) {
  9599. uint8_t next_byte = static_cast<uint8_t>(*pos);
  9600. if ((next_byte >> 6) != 2) {
  9601. // invalid sequence, abort
  9602. code_points.push_back(0);
  9603. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  9604. }
  9605. value = (value << 6) + (next_byte & 0x3F);
  9606. ++pos;
  9607. --n_remain;
  9608. }
  9609. if (partial_start.n_remain > 0 && n_remain == 0) {
  9610. code_points.push_back(value);
  9611. }
  9612. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  9613. while (*pos != 0) {
  9614. uint8_t first_byte = static_cast<uint8_t>(*pos);
  9615. uint8_t highbits = first_byte >> 4;
  9616. n_remain = lookup[highbits] - 1;
  9617. if (n_remain < 0) {
  9618. // invalid sequence, abort
  9619. code_points.clear();
  9620. code_points.push_back(0);
  9621. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  9622. }
  9623. uint8_t mask = (1 << (7 - n_remain)) - 1;
  9624. value = first_byte & mask;
  9625. ++pos;
  9626. while (*pos != 0 && n_remain > 0) {
  9627. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  9628. ++pos;
  9629. --n_remain;
  9630. }
  9631. if (n_remain == 0) {
  9632. code_points.push_back(value);
  9633. }
  9634. }
  9635. code_points.push_back(0);
  9636. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  9637. }
  9638. // returns true iff pos points to the end of one of the definitions of a rule
  9639. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  9640. switch (pos->type) {
  9641. case LLAMA_GRETYPE_END: return true; // NOLINT
  9642. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  9643. default: return false;
  9644. }
  9645. }
  9646. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  9647. // asserts that pos is pointing to a char range element
  9648. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  9649. const llama_grammar_element * pos,
  9650. const uint32_t chr) {
  9651. bool found = false;
  9652. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  9653. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  9654. do {
  9655. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  9656. // inclusive range, e.g. [a-z]
  9657. found = found || (pos->value <= chr && chr <= pos[1].value);
  9658. pos += 2;
  9659. } else {
  9660. // exact char match, e.g. [a] or "a"
  9661. found = found || pos->value == chr;
  9662. pos += 1;
  9663. }
  9664. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  9665. return std::make_pair(found == is_positive_char, pos);
  9666. }
  9667. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  9668. // range at pos (regular or inverse range)
  9669. // asserts that pos is pointing to a char range element
  9670. static bool llama_grammar_match_partial_char(
  9671. const llama_grammar_element * pos,
  9672. const llama_partial_utf8 partial_utf8) {
  9673. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  9674. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  9675. uint32_t partial_value = partial_utf8.value;
  9676. int n_remain = partial_utf8.n_remain;
  9677. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  9678. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  9679. return false;
  9680. }
  9681. // range of possible code points this partial UTF-8 sequence could complete to
  9682. uint32_t low = partial_value << (n_remain * 6);
  9683. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  9684. if (low == 0) {
  9685. if (n_remain == 2) {
  9686. low = 1 << 11;
  9687. } else if (n_remain == 3) {
  9688. low = 1 << 16;
  9689. }
  9690. }
  9691. do {
  9692. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  9693. // inclusive range, e.g. [a-z]
  9694. if (pos->value <= high && low <= pos[1].value) {
  9695. return is_positive_char;
  9696. }
  9697. pos += 2;
  9698. } else {
  9699. // exact char match, e.g. [a] or "a"
  9700. if (low <= pos->value && pos->value <= high) {
  9701. return is_positive_char;
  9702. }
  9703. pos += 1;
  9704. }
  9705. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  9706. return !is_positive_char;
  9707. }
  9708. // transforms a grammar pushdown stack into N possible stacks, all ending
  9709. // at a character range (terminal element)
  9710. static void llama_grammar_advance_stack(
  9711. const std::vector<std::vector<llama_grammar_element>> & rules,
  9712. const std::vector<const llama_grammar_element *> & stack,
  9713. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  9714. if (stack.empty()) {
  9715. new_stacks.emplace_back(stack);
  9716. return;
  9717. }
  9718. const llama_grammar_element * pos = stack.back();
  9719. switch (pos->type) {
  9720. case LLAMA_GRETYPE_RULE_REF: {
  9721. const size_t rule_id = static_cast<size_t>(pos->value);
  9722. const llama_grammar_element * subpos = rules[rule_id].data();
  9723. do {
  9724. // init new stack without the top (pos)
  9725. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  9726. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  9727. // if this rule ref is followed by another element, add that to stack
  9728. new_stack.push_back(pos + 1);
  9729. }
  9730. if (!llama_grammar_is_end_of_sequence(subpos)) {
  9731. // if alternate is nonempty, add to stack
  9732. new_stack.push_back(subpos);
  9733. }
  9734. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  9735. while (!llama_grammar_is_end_of_sequence(subpos)) {
  9736. // scan to end of alternate def
  9737. subpos++;
  9738. }
  9739. if (subpos->type == LLAMA_GRETYPE_ALT) {
  9740. // there's another alternate def of this rule to process
  9741. subpos++;
  9742. } else {
  9743. break;
  9744. }
  9745. } while (true);
  9746. break;
  9747. }
  9748. case LLAMA_GRETYPE_CHAR:
  9749. case LLAMA_GRETYPE_CHAR_NOT:
  9750. new_stacks.emplace_back(stack);
  9751. break;
  9752. default:
  9753. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  9754. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  9755. // those
  9756. GGML_ASSERT(false);
  9757. }
  9758. }
  9759. // takes a set of possible pushdown stacks on a grammar, which are required to
  9760. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  9761. // produces the N possible stacks if the given char is accepted at those
  9762. // positions
  9763. std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  9764. const std::vector<std::vector<llama_grammar_element>> & rules,
  9765. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  9766. const uint32_t chr) {
  9767. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  9768. for (const auto & stack : stacks) {
  9769. if (stack.empty()) {
  9770. continue;
  9771. }
  9772. auto match = llama_grammar_match_char(stack.back(), chr);
  9773. if (match.first) {
  9774. const llama_grammar_element * pos = match.second;
  9775. // update top of stack to next element, if any
  9776. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  9777. if (!llama_grammar_is_end_of_sequence(pos)) {
  9778. new_stack.push_back(pos);
  9779. }
  9780. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  9781. }
  9782. }
  9783. return new_stacks;
  9784. }
  9785. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  9786. const std::vector<std::vector<llama_grammar_element>> & rules,
  9787. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  9788. const std::vector<llama_grammar_candidate> & candidates);
  9789. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  9790. const std::vector<std::vector<llama_grammar_element>> & rules,
  9791. const std::vector<const llama_grammar_element *> & stack,
  9792. const std::vector<llama_grammar_candidate> & candidates) {
  9793. std::vector<llama_grammar_candidate> rejects;
  9794. if (stack.empty()) {
  9795. for (const auto & tok : candidates) {
  9796. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  9797. rejects.push_back(tok);
  9798. }
  9799. }
  9800. return rejects;
  9801. }
  9802. const llama_grammar_element * stack_pos = stack.back();
  9803. std::vector<llama_grammar_candidate> next_candidates;
  9804. for (const auto & tok : candidates) {
  9805. if (*tok.code_points == 0) {
  9806. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  9807. // that cannot satisfy this position in grammar
  9808. if (tok.partial_utf8.n_remain != 0 &&
  9809. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  9810. rejects.push_back(tok);
  9811. }
  9812. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  9813. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  9814. } else {
  9815. rejects.push_back(tok);
  9816. }
  9817. }
  9818. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  9819. // update top of stack to next element, if any
  9820. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  9821. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  9822. stack_after.push_back(stack_pos_after);
  9823. }
  9824. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  9825. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  9826. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  9827. for (const auto & tok : next_rejects) {
  9828. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  9829. }
  9830. return rejects;
  9831. }
  9832. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  9833. const std::vector<std::vector<llama_grammar_element>> & rules,
  9834. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  9835. const std::vector<llama_grammar_candidate> & candidates) {
  9836. GGML_ASSERT(!stacks.empty()); // REVIEW
  9837. if (candidates.empty()) {
  9838. return std::vector<llama_grammar_candidate>();
  9839. }
  9840. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  9841. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  9842. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  9843. }
  9844. return rejects;
  9845. }
  9846. //
  9847. // grammar - external
  9848. //
  9849. struct llama_grammar * llama_grammar_init(
  9850. const llama_grammar_element ** rules,
  9851. size_t n_rules,
  9852. size_t start_rule_index) {
  9853. const llama_grammar_element * pos;
  9854. // copy rule definitions into vectors
  9855. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  9856. for (size_t i = 0; i < n_rules; i++) {
  9857. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  9858. vec_rules[i].push_back(*pos);
  9859. }
  9860. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  9861. }
  9862. // loop over alternates of start rule to build initial stacks
  9863. std::vector<std::vector<const llama_grammar_element *>> stacks;
  9864. pos = vec_rules[start_rule_index].data();
  9865. do {
  9866. std::vector<const llama_grammar_element *> stack;
  9867. if (!llama_grammar_is_end_of_sequence(pos)) {
  9868. // if alternate is nonempty, add to stack
  9869. stack.push_back(pos);
  9870. }
  9871. llama_grammar_advance_stack(vec_rules, stack, stacks);
  9872. while (!llama_grammar_is_end_of_sequence(pos)) {
  9873. // scan to end of alternate def
  9874. pos++;
  9875. }
  9876. if (pos->type == LLAMA_GRETYPE_ALT) {
  9877. // there's another alternate def of this rule to process
  9878. pos++;
  9879. } else {
  9880. break;
  9881. }
  9882. } while (true);
  9883. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  9884. }
  9885. void llama_grammar_free(struct llama_grammar * grammar) {
  9886. delete grammar;
  9887. }
  9888. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  9889. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  9890. // redirect elements in stacks to point to new rules
  9891. for (size_t is = 0; is < result->stacks.size(); is++) {
  9892. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  9893. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  9894. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  9895. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  9896. result->stacks[is][ie] = &result->rules[ir0][ir1];
  9897. }
  9898. }
  9899. }
  9900. }
  9901. }
  9902. return result;
  9903. }
  9904. //
  9905. // sampling
  9906. //
  9907. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  9908. if (seed == LLAMA_DEFAULT_SEED) {
  9909. seed = time(NULL);
  9910. }
  9911. ctx->rng.seed(seed);
  9912. }
  9913. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  9914. GGML_ASSERT(candidates->size > 0);
  9915. const int64_t t_start_sample_us = ggml_time_us();
  9916. // Sort the logits in descending order
  9917. if (!candidates->sorted) {
  9918. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  9919. return a.logit > b.logit;
  9920. });
  9921. candidates->sorted = true;
  9922. }
  9923. float max_l = candidates->data[0].logit;
  9924. float cum_sum = 0.0f;
  9925. for (size_t i = 0; i < candidates->size; ++i) {
  9926. float p = expf(candidates->data[i].logit - max_l);
  9927. candidates->data[i].p = p;
  9928. cum_sum += p;
  9929. }
  9930. for (size_t i = 0; i < candidates->size; ++i) {
  9931. candidates->data[i].p /= cum_sum;
  9932. }
  9933. if (ctx) {
  9934. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9935. }
  9936. }
  9937. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  9938. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  9939. // if (k >= (int32_t)candidates->size) {
  9940. // return;
  9941. // }
  9942. const int64_t t_start_sample_us = ggml_time_us();
  9943. if (k <= 0) {
  9944. k = candidates->size;
  9945. }
  9946. k = std::max(k, (int) min_keep);
  9947. k = std::min(k, (int) candidates->size);
  9948. // Sort scores in descending order
  9949. if (!candidates->sorted) {
  9950. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  9951. return a.logit > b.logit;
  9952. };
  9953. if (k <= 128) {
  9954. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  9955. } else {
  9956. constexpr int nbuckets = 128;
  9957. constexpr float bucket_low = -10.0f;
  9958. constexpr float bucket_high = 10.0f;
  9959. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  9960. constexpr float bucker_inter = -bucket_low * bucket_scale;
  9961. std::vector<int> bucket_idx(candidates->size);
  9962. std::vector<int> histo(nbuckets, 0);
  9963. for (int i = 0; i < (int)candidates->size; ++i) {
  9964. const float val = candidates->data[i].logit;
  9965. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  9966. ib = std::max(0, std::min(nbuckets-1, ib));
  9967. bucket_idx[i] = ib;
  9968. ++histo[ib];
  9969. }
  9970. int nhave = 0;
  9971. int ib = nbuckets - 1;
  9972. for ( ; ib >= 0; --ib) {
  9973. nhave += histo[ib];
  9974. if (nhave >= k) break;
  9975. }
  9976. std::vector<llama_token_data> tmp_tokens(nhave);
  9977. auto ptr = tmp_tokens.data();
  9978. std::vector<llama_token_data*> bucket_ptrs;
  9979. bucket_ptrs.reserve(nbuckets - ib);
  9980. for (int j = nbuckets - 1; j >= ib; --j) {
  9981. bucket_ptrs.push_back(ptr);
  9982. ptr += histo[j];
  9983. }
  9984. for (int i = 0; i < (int)candidates->size; ++i) {
  9985. int j = bucket_idx[i];
  9986. if (j >= ib) {
  9987. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  9988. }
  9989. }
  9990. ptr = tmp_tokens.data();
  9991. int ndone = 0;
  9992. for (int j = nbuckets-1; j > ib; --j) {
  9993. std::sort(ptr, ptr + histo[j], comp);
  9994. ptr += histo[j];
  9995. ndone += histo[j];
  9996. }
  9997. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  9998. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  9999. }
  10000. candidates->sorted = true;
  10001. }
  10002. candidates->size = k;
  10003. if (ctx) {
  10004. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10005. }
  10006. }
  10007. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10008. if (p >= 1.0f) {
  10009. return;
  10010. }
  10011. llama_sample_softmax(ctx, candidates);
  10012. const int64_t t_start_sample_us = ggml_time_us();
  10013. // Compute the cumulative probabilities
  10014. float cum_sum = 0.0f;
  10015. size_t last_idx = candidates->size;
  10016. for (size_t i = 0; i < candidates->size; ++i) {
  10017. cum_sum += candidates->data[i].p;
  10018. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  10019. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  10020. if (cum_sum >= p && i + 1 >= min_keep) {
  10021. last_idx = i + 1;
  10022. break;
  10023. }
  10024. }
  10025. // Resize the output vector to keep only the top-p tokens
  10026. candidates->size = last_idx;
  10027. if (ctx) {
  10028. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10029. }
  10030. }
  10031. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10032. if (p <= 0.0f || !candidates->size) {
  10033. return;
  10034. }
  10035. const int64_t t_start_sample_us = ggml_time_us();
  10036. bool min_p_applied = false;
  10037. // if the candidates aren't sorted, try the unsorted implementation first
  10038. if (!candidates->sorted) {
  10039. std::vector<llama_token_data> filtered_tokens;
  10040. float max_logit = -FLT_MAX;
  10041. for (size_t i = 0; i < candidates->size; ++i) {
  10042. max_logit = std::max(max_logit, candidates->data[i].logit);
  10043. }
  10044. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  10045. for (size_t i = 0; i < candidates->size; ++i) {
  10046. if (candidates->data[i].logit >= min_logit) {
  10047. filtered_tokens.push_back(candidates->data[i]);
  10048. }
  10049. }
  10050. // if we have enough values the operation was a success
  10051. if (filtered_tokens.size() >= min_keep) {
  10052. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  10053. candidates->size = filtered_tokens.size();
  10054. min_p_applied = true;
  10055. }
  10056. }
  10057. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  10058. if (!min_p_applied) {
  10059. // Sort the logits in descending order
  10060. if (!candidates->sorted) {
  10061. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10062. return a.logit > b.logit;
  10063. });
  10064. candidates->sorted = true;
  10065. }
  10066. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  10067. size_t i = 1; // first token always matches
  10068. for (; i < candidates->size; ++i) {
  10069. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  10070. break; // prob too small
  10071. }
  10072. }
  10073. // Resize the output vector to keep only the matching tokens
  10074. candidates->size = i;
  10075. }
  10076. if (ctx) {
  10077. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10078. }
  10079. }
  10080. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  10081. if (z >= 1.0f || candidates->size <= 2) {
  10082. return;
  10083. }
  10084. llama_sample_softmax(nullptr, candidates);
  10085. const int64_t t_start_sample_us = ggml_time_us();
  10086. // Compute the first and second derivatives
  10087. std::vector<float> first_derivatives(candidates->size - 1);
  10088. std::vector<float> second_derivatives(candidates->size - 2);
  10089. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  10090. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  10091. }
  10092. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10093. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  10094. }
  10095. // Calculate absolute value of second derivatives
  10096. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10097. second_derivatives[i] = std::abs(second_derivatives[i]);
  10098. }
  10099. // Normalize the second derivatives
  10100. {
  10101. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  10102. if (second_derivatives_sum > 1e-6f) {
  10103. for (float & value : second_derivatives) {
  10104. value /= second_derivatives_sum;
  10105. }
  10106. } else {
  10107. for (float & value : second_derivatives) {
  10108. value = 1.0f / second_derivatives.size();
  10109. }
  10110. }
  10111. }
  10112. float cum_sum = 0.0f;
  10113. size_t last_idx = candidates->size;
  10114. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10115. cum_sum += second_derivatives[i];
  10116. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  10117. if (cum_sum > z && i >= min_keep) {
  10118. last_idx = i;
  10119. break;
  10120. }
  10121. }
  10122. // Resize the output vector to keep only the tokens above the tail location
  10123. candidates->size = last_idx;
  10124. if (ctx) {
  10125. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10126. }
  10127. }
  10128. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10129. // Reference implementation:
  10130. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  10131. if (p >= 1.0f) {
  10132. return;
  10133. }
  10134. // Compute the softmax of logits and calculate entropy
  10135. llama_sample_softmax(nullptr, candidates);
  10136. const int64_t t_start_sample_us = ggml_time_us();
  10137. float entropy = 0.0f;
  10138. for (size_t i = 0; i < candidates->size; ++i) {
  10139. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  10140. }
  10141. // Compute the absolute difference between negative log probability and entropy for each candidate
  10142. std::vector<float> shifted_scores;
  10143. for (size_t i = 0; i < candidates->size; ++i) {
  10144. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  10145. shifted_scores.push_back(shifted_score);
  10146. }
  10147. // Sort tokens based on the shifted_scores and their corresponding indices
  10148. std::vector<size_t> indices(candidates->size);
  10149. std::iota(indices.begin(), indices.end(), 0);
  10150. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  10151. return shifted_scores[a] < shifted_scores[b];
  10152. });
  10153. // Compute the cumulative probabilities
  10154. float cum_sum = 0.0f;
  10155. size_t last_idx = indices.size();
  10156. for (size_t i = 0; i < indices.size(); ++i) {
  10157. size_t idx = indices[i];
  10158. cum_sum += candidates->data[idx].p;
  10159. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  10160. if (cum_sum > p && i >= min_keep - 1) {
  10161. last_idx = i + 1;
  10162. break;
  10163. }
  10164. }
  10165. // Resize the output vector to keep only the locally typical tokens
  10166. std::vector<llama_token_data> new_candidates;
  10167. for (size_t i = 0; i < last_idx; ++i) {
  10168. size_t idx = indices[i];
  10169. new_candidates.push_back(candidates->data[idx]);
  10170. }
  10171. // Replace the data in candidates with the new_candidates data
  10172. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  10173. candidates->size = new_candidates.size();
  10174. candidates->sorted = false;
  10175. if (ctx) {
  10176. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10177. }
  10178. }
  10179. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  10180. const int64_t t_start_sample_us = ggml_time_us();
  10181. // no need to do anything if there is only one (or zero) candidates
  10182. if(candidates_p->size <= 1) {
  10183. return;
  10184. }
  10185. // Calculate maximum possible entropy
  10186. float max_entropy = -logf(1.0f / candidates_p->size);
  10187. llama_sample_softmax(nullptr, candidates_p);
  10188. // Calculate entropy of the softmax probabilities
  10189. float entropy = 0.0f;
  10190. for (size_t i = 0; i < candidates_p->size; ++i) {
  10191. float prob = candidates_p->data[i].p;
  10192. if (prob > 0.0f) { // Ensure no log(0)
  10193. entropy -= prob * logf(prob);
  10194. }
  10195. }
  10196. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  10197. float normalized_entropy = entropy / max_entropy;
  10198. // Map the normalized entropy to the desired temperature range using the power function
  10199. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  10200. #ifdef DEBUG
  10201. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  10202. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  10203. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  10204. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  10205. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  10206. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  10207. #endif
  10208. // Apply the dynamically calculated temperature scaling
  10209. for (size_t i = 0; i < candidates_p->size; ++i) {
  10210. candidates_p->data[i].logit /= dyn_temp;
  10211. }
  10212. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  10213. double max_l_double = candidates_p->data[0].logit;
  10214. double cum_sum_double = 0.0;
  10215. for (size_t i = 0; i < candidates_p->size; ++i) {
  10216. double p = exp(candidates_p->data[i].logit - max_l_double);
  10217. candidates_p->data[i].p = p; // Store the scaled probability
  10218. cum_sum_double += p;
  10219. }
  10220. for (size_t i = 0; i < candidates_p->size; ++i) {
  10221. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  10222. }
  10223. #ifdef DEBUG
  10224. // Print the updated top 25 probabilities after temperature scaling
  10225. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  10226. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  10227. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  10228. }
  10229. #endif
  10230. if (ctx) {
  10231. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10232. }
  10233. }
  10234. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  10235. const int64_t t_start_sample_us = ggml_time_us();
  10236. for (size_t i = 0; i < candidates_p->size; ++i) {
  10237. candidates_p->data[i].logit /= temp;
  10238. }
  10239. if (ctx) {
  10240. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10241. }
  10242. }
  10243. void llama_sample_repetition_penalties(
  10244. struct llama_context * ctx,
  10245. llama_token_data_array * candidates,
  10246. const llama_token * last_tokens,
  10247. size_t penalty_last_n,
  10248. float penalty_repeat,
  10249. float penalty_freq,
  10250. float penalty_present) {
  10251. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  10252. return;
  10253. }
  10254. const int64_t t_start_sample_us = ggml_time_us();
  10255. // Create a frequency map to count occurrences of each token in last_tokens
  10256. std::unordered_map<llama_token, int> token_count;
  10257. for (size_t i = 0; i < penalty_last_n; ++i) {
  10258. token_count[last_tokens[i]]++;
  10259. }
  10260. // Apply frequency and presence penalties to the candidates
  10261. for (size_t i = 0; i < candidates->size; ++i) {
  10262. const auto token_iter = token_count.find(candidates->data[i].id);
  10263. if (token_iter == token_count.end()) {
  10264. continue;
  10265. }
  10266. const int count = token_iter->second;
  10267. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  10268. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  10269. if (candidates->data[i].logit <= 0) {
  10270. candidates->data[i].logit *= penalty_repeat;
  10271. } else {
  10272. candidates->data[i].logit /= penalty_repeat;
  10273. }
  10274. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  10275. }
  10276. candidates->sorted = false;
  10277. if (ctx) {
  10278. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10279. }
  10280. }
  10281. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  10282. GGML_ASSERT(ctx);
  10283. const int64_t t_start_sample_us = ggml_time_us();
  10284. bool allow_eos = false;
  10285. for (const auto & stack : grammar->stacks) {
  10286. if (stack.empty()) {
  10287. allow_eos = true;
  10288. break;
  10289. }
  10290. }
  10291. const llama_token eos = llama_token_eos(&ctx->model);
  10292. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  10293. candidates_decoded.reserve(candidates->size);
  10294. std::vector<llama_grammar_candidate> candidates_grammar;
  10295. candidates_grammar.reserve(candidates->size);
  10296. for (size_t i = 0; i < candidates->size; ++i) {
  10297. const llama_token id = candidates->data[i].id;
  10298. const std::string piece = llama_token_to_piece(ctx, id);
  10299. if (id == eos) {
  10300. if (!allow_eos) {
  10301. candidates->data[i].logit = -INFINITY;
  10302. }
  10303. } else if (piece.empty() || piece[0] == 0) {
  10304. candidates->data[i].logit = -INFINITY;
  10305. } else {
  10306. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  10307. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  10308. }
  10309. }
  10310. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  10311. for (const auto & reject : rejects) {
  10312. candidates->data[reject.index].logit = -INFINITY;
  10313. }
  10314. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10315. }
  10316. static void llama_log_softmax(float * array, size_t size) {
  10317. float max_l = *std::max_element(array, array + size);
  10318. float sum = 0.f;
  10319. for (size_t i = 0; i < size; ++i) {
  10320. float p = expf(array[i] - max_l);
  10321. sum += p;
  10322. array[i] = p;
  10323. }
  10324. for (size_t i = 0; i < size; ++i) {
  10325. array[i] = logf(array[i] / sum);
  10326. }
  10327. }
  10328. void llama_sample_apply_guidance(
  10329. struct llama_context * ctx,
  10330. float * logits,
  10331. float * logits_guidance,
  10332. float scale) {
  10333. GGML_ASSERT(ctx);
  10334. const auto t_start_sample_us = ggml_time_us();
  10335. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  10336. llama_log_softmax(logits, n_vocab);
  10337. llama_log_softmax(logits_guidance, n_vocab);
  10338. for (int i = 0; i < n_vocab; ++i) {
  10339. auto & l = logits[i];
  10340. const auto & g = logits_guidance[i];
  10341. l = scale * (l - g) + g;
  10342. }
  10343. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10344. }
  10345. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  10346. GGML_ASSERT(ctx);
  10347. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  10348. int64_t t_start_sample_us;
  10349. t_start_sample_us = ggml_time_us();
  10350. llama_sample_softmax(nullptr, candidates);
  10351. // Estimate s_hat using the most probable m tokens
  10352. float s_hat = 0.0;
  10353. float sum_ti_bi = 0.0;
  10354. float sum_ti_sq = 0.0;
  10355. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  10356. float t_i = logf(float(i + 2) / float(i + 1));
  10357. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  10358. sum_ti_bi += t_i * b_i;
  10359. sum_ti_sq += t_i * t_i;
  10360. }
  10361. s_hat = sum_ti_bi / sum_ti_sq;
  10362. // Compute k from the estimated s_hat and target surprise value
  10363. float epsilon_hat = s_hat - 1;
  10364. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  10365. // Sample the next word X using top-k sampling
  10366. llama_sample_top_k(nullptr, candidates, int(k), 1);
  10367. if (ctx) {
  10368. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10369. }
  10370. llama_token X = llama_sample_token(ctx, candidates);
  10371. t_start_sample_us = ggml_time_us();
  10372. // Compute error as the difference between observed surprise and target surprise value
  10373. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  10374. return candidate.id == X;
  10375. }));
  10376. float observed_surprise = -log2f(candidates->data[X_idx].p);
  10377. float e = observed_surprise - tau;
  10378. // Update mu using the learning rate and error
  10379. *mu = *mu - eta * e;
  10380. if (ctx) {
  10381. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10382. }
  10383. return X;
  10384. }
  10385. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  10386. int64_t t_start_sample_us;
  10387. t_start_sample_us = ggml_time_us();
  10388. llama_sample_softmax(ctx, candidates);
  10389. // Truncate the words with surprise values greater than mu
  10390. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  10391. return -log2f(candidate.p) > *mu;
  10392. }));
  10393. if (candidates->size == 0) {
  10394. candidates->size = 1;
  10395. }
  10396. if (ctx) {
  10397. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10398. }
  10399. // Normalize the probabilities of the remaining words
  10400. llama_sample_softmax(ctx, candidates);
  10401. // Sample the next word X from the remaining words
  10402. llama_token X = llama_sample_token(ctx, candidates);
  10403. t_start_sample_us = ggml_time_us();
  10404. // Compute error as the difference between observed surprise and target surprise value
  10405. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  10406. return candidate.id == X;
  10407. }));
  10408. float observed_surprise = -log2f(candidates->data[X_idx].p);
  10409. float e = observed_surprise - tau;
  10410. // Update mu using the learning rate and error
  10411. *mu = *mu - eta * e;
  10412. if (ctx) {
  10413. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10414. }
  10415. return X;
  10416. }
  10417. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  10418. const int64_t t_start_sample_us = ggml_time_us();
  10419. // Find max element
  10420. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10421. return a.logit < b.logit;
  10422. });
  10423. llama_token result = max_iter->id;
  10424. if (ctx) {
  10425. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10426. ctx->n_sample++;
  10427. }
  10428. return result;
  10429. }
  10430. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  10431. GGML_ASSERT(ctx);
  10432. const int64_t t_start_sample_us = ggml_time_us();
  10433. llama_sample_softmax(nullptr, candidates);
  10434. std::vector<float> probs;
  10435. probs.reserve(candidates->size);
  10436. for (size_t i = 0; i < candidates->size; ++i) {
  10437. probs.push_back(candidates->data[i].p);
  10438. }
  10439. std::discrete_distribution<> dist(probs.begin(), probs.end());
  10440. auto & rng = ctx->rng;
  10441. int idx = dist(rng);
  10442. llama_token result = candidates->data[idx].id;
  10443. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10444. ctx->n_sample++;
  10445. return result;
  10446. }
  10447. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  10448. const int64_t t_start_sample_us = ggml_time_us();
  10449. if (token == llama_token_eos(&ctx->model)) {
  10450. for (const auto & stack : grammar->stacks) {
  10451. if (stack.empty()) {
  10452. return;
  10453. }
  10454. }
  10455. GGML_ASSERT(false);
  10456. }
  10457. const std::string piece = llama_token_to_piece(ctx, token);
  10458. // Note terminating 0 in decoded string
  10459. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  10460. const auto & code_points = decoded.first;
  10461. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  10462. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  10463. }
  10464. grammar->partial_utf8 = decoded.second;
  10465. GGML_ASSERT(!grammar->stacks.empty());
  10466. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10467. }
  10468. //
  10469. // Beam search
  10470. //
  10471. struct llama_beam {
  10472. std::vector<llama_token> tokens;
  10473. float p; // Cumulative beam probability (renormalized relative to all beams)
  10474. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  10475. // Sort beams by probability. In case of ties, prefer beams at eob.
  10476. bool operator<(const llama_beam & rhs) const {
  10477. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  10478. }
  10479. // Shift off first n tokens and discard them.
  10480. void shift_tokens(const size_t n) {
  10481. if (n) {
  10482. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  10483. tokens.resize(tokens.size() - n);
  10484. }
  10485. }
  10486. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  10487. };
  10488. // A struct for calculating logit-related info.
  10489. struct llama_logit_info {
  10490. const float * const logits;
  10491. const int n_vocab;
  10492. const float max_l;
  10493. const float normalizer;
  10494. struct sum_exp {
  10495. float max_l;
  10496. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  10497. };
  10498. llama_logit_info(llama_context * ctx)
  10499. : logits(llama_get_logits(ctx))
  10500. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  10501. , max_l(*std::max_element(logits, logits + n_vocab))
  10502. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  10503. { }
  10504. llama_token_data get_token_data(const llama_token token_id) const {
  10505. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  10506. return {token_id, logits[token_id], p};
  10507. }
  10508. // Return top k token_data by logit.
  10509. std::vector<llama_token_data> top_k(size_t k) {
  10510. std::vector<llama_token_data> min_heap; // min-heap by logit
  10511. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  10512. min_heap.reserve(k_min);
  10513. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  10514. min_heap.push_back(get_token_data(token_id));
  10515. }
  10516. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  10517. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  10518. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  10519. if (min_heap.front().logit < logits[token_id]) {
  10520. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  10521. min_heap.back().id = token_id;
  10522. min_heap.back().logit = logits[token_id];
  10523. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  10524. }
  10525. }
  10526. return min_heap;
  10527. }
  10528. float probability_from_logit(float logit) const {
  10529. return normalizer * std::exp(logit - max_l);
  10530. }
  10531. };
  10532. struct llama_beam_search_data {
  10533. llama_context * ctx;
  10534. size_t n_beams;
  10535. int n_past;
  10536. int n_predict;
  10537. std::vector<llama_beam> beams;
  10538. std::vector<llama_beam> next_beams;
  10539. // Re-calculated on each loop iteration
  10540. size_t common_prefix_length;
  10541. // Used to communicate to/from callback on beams state.
  10542. std::vector<llama_beam_view> beam_views;
  10543. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  10544. : ctx(ctx)
  10545. , n_beams(n_beams)
  10546. , n_past(n_past)
  10547. , n_predict(n_predict)
  10548. , beam_views(n_beams) {
  10549. beams.reserve(n_beams);
  10550. next_beams.reserve(n_beams);
  10551. }
  10552. // Collapse beams to a single beam given by index.
  10553. void collapse_beams(const size_t beam_idx) {
  10554. if (0u < beam_idx) {
  10555. std::swap(beams[0], beams[beam_idx]);
  10556. }
  10557. beams.resize(1);
  10558. }
  10559. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  10560. // The repetitive patterns below reflect the 2 stages of heaps:
  10561. // * Gather elements until the vector is full, then call std::make_heap() on it.
  10562. // * If the heap is full and a new element is found that should be included, pop the
  10563. // least element to the back(), replace it with the new, then push it into the heap.
  10564. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  10565. // Min-heaps use a greater-than comparator.
  10566. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  10567. if (beam.eob) {
  10568. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  10569. if (next_beams.size() < n_beams) {
  10570. next_beams.push_back(std::move(beam));
  10571. if (next_beams.size() == n_beams) {
  10572. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  10573. }
  10574. } else if (next_beams.front().p < beam.p) {
  10575. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  10576. next_beams.back() = std::move(beam);
  10577. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  10578. }
  10579. } else {
  10580. // beam is not at end-of-sentence, so branch with next top_k tokens.
  10581. if (!beam.tokens.empty()) {
  10582. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  10583. }
  10584. llama_logit_info logit_info(ctx);
  10585. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  10586. size_t i=0;
  10587. if (next_beams.size() < n_beams) {
  10588. for (; next_beams.size() < n_beams ; ++i) {
  10589. llama_beam next_beam = beam;
  10590. next_beam.tokens.push_back(next_tokens[i].id);
  10591. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  10592. next_beams.push_back(std::move(next_beam));
  10593. }
  10594. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  10595. } else {
  10596. for (; next_beams.front().p == 0.0f ; ++i) {
  10597. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  10598. next_beams.back() = beam;
  10599. next_beams.back().tokens.push_back(next_tokens[i].id);
  10600. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  10601. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  10602. }
  10603. }
  10604. for (; i < n_beams ; ++i) {
  10605. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  10606. if (next_beams.front().p < next_p) {
  10607. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  10608. next_beams.back() = beam;
  10609. next_beams.back().tokens.push_back(next_tokens[i].id);
  10610. next_beams.back().p = next_p;
  10611. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  10612. }
  10613. }
  10614. }
  10615. }
  10616. // Find common_prefix_length based on beams.
  10617. // Requires beams is not empty.
  10618. size_t find_common_prefix_length() {
  10619. size_t common_prefix_length = beams[0].tokens.size();
  10620. for (size_t i = 1 ; i < beams.size() ; ++i) {
  10621. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  10622. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  10623. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  10624. common_prefix_length = j;
  10625. break;
  10626. }
  10627. }
  10628. }
  10629. return common_prefix_length;
  10630. }
  10631. // Construct beams_state to send back to caller via the callback function.
  10632. // Side effect: set common_prefix_length = find_common_prefix_length();
  10633. llama_beams_state get_beams_state(const bool last_call) {
  10634. for (size_t i = 0 ; i < beams.size() ; ++i) {
  10635. beam_views[i] = beams[i].view();
  10636. }
  10637. common_prefix_length = find_common_prefix_length();
  10638. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  10639. }
  10640. // Loop:
  10641. // * while i < n_predict, AND
  10642. // * any of the beams have not yet reached end-of-beam (eob), AND
  10643. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  10644. // (since all other beam probabilities can only decrease)
  10645. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  10646. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  10647. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  10648. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  10649. !beams[top_beam_index()].eob ; ++i) {
  10650. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  10651. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  10652. if (common_prefix_length) {
  10653. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  10654. n_past += common_prefix_length;
  10655. }
  10656. // Zero-out next_beam probabilities to place them last in following min-heap.
  10657. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  10658. for (llama_beam & beam : beams) {
  10659. beam.shift_tokens(common_prefix_length);
  10660. fill_next_beams_by_top_probabilities(beam);
  10661. }
  10662. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  10663. beams.swap(next_beams);
  10664. renormalize_beam_probabilities(beams);
  10665. }
  10666. collapse_beams(top_beam_index());
  10667. callback(callback_data, get_beams_state(true));
  10668. }
  10669. // As beams grow, the cumulative probabilities decrease.
  10670. // Renormalize them to avoid floating point underflow.
  10671. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  10672. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  10673. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  10674. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  10675. }
  10676. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  10677. size_t top_beam_index() {
  10678. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  10679. }
  10680. // Copy (p,eob) for each beam which may have been changed by the callback.
  10681. void update_beams_from_beam_views() {
  10682. for (size_t i = 0 ; i < beams.size() ; ++i) {
  10683. beams[i].p = beam_views[i].p;
  10684. beams[i].eob = beam_views[i].eob;
  10685. }
  10686. }
  10687. };
  10688. void llama_beam_search(llama_context * ctx,
  10689. llama_beam_search_callback_fn_t callback, void * callback_data,
  10690. size_t n_beams, int n_past, int n_predict) {
  10691. assert(ctx);
  10692. const int64_t t_start_sample_us = ggml_time_us();
  10693. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  10694. beam_search_data.loop(callback, callback_data);
  10695. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10696. ctx->n_sample++;
  10697. }
  10698. //
  10699. // quantization
  10700. //
  10701. struct quantize_state_internal {
  10702. const llama_model & model;
  10703. const llama_model_quantize_params * params;
  10704. int n_attention_wv = 0;
  10705. int n_ffn_down = 0;
  10706. int n_ffn_gate = 0;
  10707. int n_ffn_up = 0;
  10708. int i_attention_wv = 0;
  10709. int i_ffn_down = 0;
  10710. int i_ffn_gate = 0;
  10711. int i_ffn_up = 0;
  10712. int n_k_quantized = 0;
  10713. int n_fallback = 0;
  10714. bool has_imatrix = false;
  10715. // used to figure out if a model shares tok_embd with the output weight
  10716. bool has_output = false;
  10717. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  10718. : model(model)
  10719. , params(params)
  10720. {}
  10721. };
  10722. static void llama_tensor_dequantize_internal(
  10723. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  10724. const size_t nelements, const int nthread
  10725. ) {
  10726. if (output.size() < nelements) {
  10727. output.resize(nelements);
  10728. }
  10729. float * f32_output = (float *) output.data();
  10730. ggml_type_traits_t qtype;
  10731. if (ggml_is_quantized(tensor->type)) {
  10732. qtype = ggml_internal_get_type_traits(tensor->type);
  10733. if (qtype.to_float == NULL) {
  10734. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  10735. }
  10736. } else if (tensor->type != GGML_TYPE_F16) {
  10737. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  10738. }
  10739. if (nthread < 2) {
  10740. if (tensor->type == GGML_TYPE_F16) {
  10741. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  10742. } else if (ggml_is_quantized(tensor->type)) {
  10743. qtype.to_float(tensor->data, f32_output, nelements);
  10744. } else {
  10745. GGML_ASSERT(false); // unreachable
  10746. }
  10747. return;
  10748. }
  10749. size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  10750. size_t block_size_bytes = ggml_type_size(tensor->type);
  10751. GGML_ASSERT(nelements % block_size == 0);
  10752. size_t nblocks = nelements / block_size;
  10753. size_t blocks_per_thread = nblocks / nthread;
  10754. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  10755. size_t in_buff_offs = 0;
  10756. size_t out_buff_offs = 0;
  10757. for (int tnum = 0; tnum < nthread; tnum++) {
  10758. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  10759. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  10760. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  10761. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  10762. if (typ == GGML_TYPE_F16) {
  10763. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  10764. } else {
  10765. qtype.to_float(inbuf, outbuf, nels);
  10766. }
  10767. };
  10768. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  10769. in_buff_offs += thr_block_bytes;
  10770. out_buff_offs += thr_elems;
  10771. }
  10772. for (auto & w : workers) { w.join(); }
  10773. workers.clear();
  10774. }
  10775. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  10776. const std::string name = ggml_get_name(tensor);
  10777. // TODO: avoid hardcoded tensor names - use the TN_* constants
  10778. const llm_arch arch = qs.model.arch;
  10779. const auto tn = LLM_TN(arch);
  10780. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  10781. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  10782. };
  10783. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  10784. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  10785. if (n_expert > 1) {
  10786. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  10787. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  10788. // for getting the current layer as I initially thought, and we need to resort to parsing the
  10789. // tensor name.
  10790. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  10791. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  10792. }
  10793. if (i_layer < 0 || i_layer >= n_layer) {
  10794. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  10795. }
  10796. }
  10797. return std::make_pair(i_layer, n_layer);
  10798. };
  10799. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  10800. // with the quantization of the output tensor
  10801. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  10802. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  10803. new_type = qs.params->output_tensor_type;
  10804. } else {
  10805. int nx = tensor->ne[0];
  10806. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  10807. new_type = GGML_TYPE_Q8_0;
  10808. }
  10809. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  10810. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  10811. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  10812. new_type = GGML_TYPE_Q5_K;
  10813. }
  10814. else if (new_type != GGML_TYPE_Q8_0) {
  10815. new_type = GGML_TYPE_Q6_K;
  10816. }
  10817. }
  10818. } else if (name == "token_embd.weight") {
  10819. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  10820. new_type = qs.params->token_embedding_type;
  10821. } else {
  10822. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  10823. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  10824. new_type = GGML_TYPE_Q2_K;
  10825. }
  10826. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  10827. new_type = GGML_TYPE_IQ3_S;
  10828. }
  10829. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  10830. new_type = GGML_TYPE_IQ3_S;
  10831. }
  10832. }
  10833. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  10834. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  10835. if (name.find("attn_v.weight") != std::string::npos) {
  10836. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  10837. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  10838. ++qs.i_attention_wv;
  10839. }
  10840. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  10841. new_type = GGML_TYPE_Q4_K;
  10842. }
  10843. else if (name.find("ffn_down") != std::string::npos) {
  10844. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  10845. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  10846. }
  10847. ++qs.i_ffn_down;
  10848. }
  10849. else if (name.find("attn_output.weight") != std::string::npos) {
  10850. if (qs.model.hparams.n_expert == 8) {
  10851. new_type = GGML_TYPE_Q5_K;
  10852. } else {
  10853. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  10854. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  10855. }
  10856. }
  10857. } else if (name.find("attn_v.weight") != std::string::npos) {
  10858. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  10859. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  10860. }
  10861. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  10862. new_type = GGML_TYPE_Q4_K;
  10863. }
  10864. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  10865. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  10866. }
  10867. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  10868. new_type = GGML_TYPE_Q4_K;
  10869. }
  10870. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  10871. new_type = GGML_TYPE_Q4_K;
  10872. }
  10873. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  10874. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  10875. }
  10876. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  10877. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  10878. new_type = GGML_TYPE_Q5_K;
  10879. }
  10880. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  10881. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  10882. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  10883. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  10884. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  10885. if (qs.model.type == MODEL_70B) {
  10886. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  10887. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  10888. // nearly negligible increase in model size by quantizing this tensor with more bits:
  10889. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  10890. }
  10891. if (qs.model.hparams.n_expert == 8) {
  10892. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  10893. // TODO: explore better strategies
  10894. new_type = GGML_TYPE_Q8_0;
  10895. }
  10896. ++qs.i_attention_wv;
  10897. } else if (name.find("attn_k.weight") != std::string::npos) {
  10898. if (qs.model.hparams.n_expert == 8) {
  10899. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  10900. // TODO: explore better strategies
  10901. new_type = GGML_TYPE_Q8_0;
  10902. }
  10903. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  10904. new_type = GGML_TYPE_IQ3_XXS;
  10905. }
  10906. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  10907. new_type = GGML_TYPE_IQ2_S;
  10908. }
  10909. } else if (name.find("attn_q.weight") != std::string::npos) {
  10910. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  10911. new_type = GGML_TYPE_IQ3_XXS;
  10912. }
  10913. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  10914. new_type = GGML_TYPE_IQ2_S;
  10915. }
  10916. } else if (name.find("ffn_down") != std::string::npos) {
  10917. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  10918. int i_layer = info.first, n_layer = info.second;
  10919. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  10920. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  10921. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  10922. }
  10923. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  10924. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  10925. }
  10926. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  10927. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  10928. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  10929. : GGML_TYPE_Q3_K;
  10930. }
  10931. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  10932. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  10933. new_type = GGML_TYPE_Q4_K;
  10934. }
  10935. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  10936. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  10937. }
  10938. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  10939. if (arch == LLM_ARCH_FALCON) {
  10940. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  10941. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  10942. } else {
  10943. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  10944. }
  10945. }
  10946. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  10947. new_type = GGML_TYPE_Q5_K;
  10948. }
  10949. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  10950. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  10951. new_type = GGML_TYPE_Q5_K;
  10952. }
  10953. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  10954. && qs.has_imatrix && i_layer < n_layer/8) {
  10955. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  10956. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  10957. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  10958. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  10959. }
  10960. ++qs.i_ffn_down;
  10961. } else if (name.find("attn_output.weight") != std::string::npos) {
  10962. if (arch != LLM_ARCH_FALCON) {
  10963. if (qs.model.hparams.n_expert == 8) {
  10964. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  10965. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  10966. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  10967. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  10968. new_type = GGML_TYPE_Q5_K;
  10969. }
  10970. } else {
  10971. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  10972. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  10973. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  10974. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  10975. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  10976. }
  10977. } else {
  10978. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  10979. }
  10980. }
  10981. else if (name.find("attn_qkv.weight") != std::string::npos) {
  10982. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  10983. new_type = GGML_TYPE_Q4_K;
  10984. }
  10985. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  10986. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  10987. }
  10988. else if (name.find("ffn_gate") != std::string::npos) {
  10989. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  10990. int i_layer = info.first, n_layer = info.second;
  10991. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  10992. new_type = GGML_TYPE_IQ3_XXS;
  10993. }
  10994. ++qs.i_ffn_gate;
  10995. }
  10996. else if (name.find("ffn_up") != std::string::npos) {
  10997. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  10998. int i_layer = info.first, n_layer = info.second;
  10999. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11000. new_type = GGML_TYPE_IQ3_XXS;
  11001. }
  11002. ++qs.i_ffn_up;
  11003. }
  11004. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11005. //}
  11006. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  11007. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  11008. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11009. //}
  11010. // This can be used to reduce the size of the Q5_K_S model.
  11011. // The associated PPL increase is fully in line with the size reduction
  11012. //else {
  11013. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  11014. //}
  11015. bool convert_incompatible_tensor = false;
  11016. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  11017. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  11018. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  11019. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  11020. new_type == GGML_TYPE_IQ1_M) {
  11021. int nx = tensor->ne[0];
  11022. int ny = tensor->ne[1];
  11023. if (nx % QK_K != 0) {
  11024. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  11025. convert_incompatible_tensor = true;
  11026. } else {
  11027. ++qs.n_k_quantized;
  11028. }
  11029. }
  11030. if (convert_incompatible_tensor) {
  11031. switch (new_type) {
  11032. case GGML_TYPE_IQ2_XXS:
  11033. case GGML_TYPE_IQ2_XS:
  11034. case GGML_TYPE_IQ2_S:
  11035. case GGML_TYPE_IQ3_XXS:
  11036. case GGML_TYPE_IQ3_S:
  11037. case GGML_TYPE_IQ1_S:
  11038. case GGML_TYPE_IQ1_M:
  11039. case GGML_TYPE_Q2_K:
  11040. case GGML_TYPE_Q3_K:
  11041. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  11042. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  11043. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  11044. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  11045. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  11046. }
  11047. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  11048. ++qs.n_fallback;
  11049. }
  11050. return new_type;
  11051. }
  11052. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  11053. std::mutex mutex;
  11054. int counter = 0;
  11055. size_t new_size = 0;
  11056. if (nthread < 2) {
  11057. // single-thread
  11058. return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  11059. }
  11060. auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
  11061. nrows, n_per_row, imatrix]() {
  11062. const int nrows_per_chunk = chunk_size / n_per_row;
  11063. size_t local_size = 0;
  11064. while (true) {
  11065. std::unique_lock<std::mutex> lock(mutex);
  11066. int first_row = counter; counter += nrows_per_chunk;
  11067. if (first_row >= nrows) {
  11068. if (local_size > 0) {
  11069. new_size += local_size;
  11070. }
  11071. break;
  11072. }
  11073. lock.unlock();
  11074. const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  11075. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  11076. }
  11077. };
  11078. for (int it = 0; it < nthread - 1; ++it) {
  11079. workers.emplace_back(compute);
  11080. }
  11081. compute();
  11082. for (auto & w : workers) { w.join(); }
  11083. workers.clear();
  11084. return new_size;
  11085. }
  11086. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  11087. ggml_type default_type;
  11088. llama_ftype ftype = params->ftype;
  11089. switch (params->ftype) {
  11090. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  11091. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  11092. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  11093. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  11094. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  11095. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  11096. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  11097. // K-quants
  11098. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  11099. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  11100. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  11101. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  11102. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  11103. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  11104. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  11105. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  11106. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  11107. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  11108. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  11109. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  11110. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  11111. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  11112. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  11113. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  11114. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  11115. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  11116. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  11117. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  11118. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  11119. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  11120. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  11121. }
  11122. int nthread = params->nthread;
  11123. if (nthread <= 0) {
  11124. nthread = std::thread::hardware_concurrency();
  11125. }
  11126. // mmap consistently increases speed Linux, and also increases speed on Windows with
  11127. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  11128. #if defined(__linux__) || defined(_WIN32)
  11129. constexpr bool use_mmap = true;
  11130. #else
  11131. constexpr bool use_mmap = false;
  11132. #endif
  11133. llama_model_kv_override * kv_overrides = nullptr;
  11134. if (params->kv_overrides) {
  11135. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  11136. kv_overrides = v->data();
  11137. }
  11138. llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
  11139. ml.init_mappings(false); // no prefetching
  11140. llama_model model;
  11141. llm_load_arch(ml, model);
  11142. llm_load_hparams(ml, model);
  11143. struct quantize_state_internal qs(model, params);
  11144. if (params->only_copy) {
  11145. ftype = model.ftype;
  11146. }
  11147. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  11148. if (params->imatrix) {
  11149. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  11150. if (imatrix_data) {
  11151. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  11152. qs.has_imatrix = true;
  11153. }
  11154. }
  11155. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  11156. struct gguf_context * ctx_out = gguf_init_empty();
  11157. // copy the KV pairs from the input file
  11158. gguf_set_kv (ctx_out, ml.meta);
  11159. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  11160. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  11161. if (params->kv_overrides) {
  11162. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  11163. for (auto & o : overrides) {
  11164. if (o.key[0] == 0) break;
  11165. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  11166. gguf_set_val_f32(ctx_out, o.key, o.float_value);
  11167. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  11168. gguf_set_val_i32(ctx_out, o.key, o.int_value);
  11169. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  11170. gguf_set_val_bool(ctx_out, o.key, o.bool_value);
  11171. } else {
  11172. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  11173. }
  11174. }
  11175. }
  11176. for (int i = 0; i < ml.n_tensors; ++i) {
  11177. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  11178. const std::string name = ggml_get_name(meta);
  11179. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11180. if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
  11181. ++qs.n_attention_wv;
  11182. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  11183. qs.has_output = true;
  11184. }
  11185. }
  11186. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  11187. // sanity checks
  11188. GGML_ASSERT(qs.n_attention_wv == (int)model.hparams.n_layer && "n_attention_wv != n_layer is unexpected");
  11189. size_t total_size_org = 0;
  11190. size_t total_size_new = 0;
  11191. std::vector<std::thread> workers;
  11192. workers.reserve(nthread);
  11193. int idx = 0;
  11194. std::vector<no_init<uint8_t>> read_data;
  11195. std::vector<no_init<uint8_t>> work;
  11196. std::vector<no_init<float>> f32_conv_buf;
  11197. // populate the original tensors so we get an initial meta data
  11198. for (int i = 0; i < ml.n_tensors; ++i) {
  11199. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  11200. gguf_add_tensor(ctx_out, meta);
  11201. }
  11202. std::ofstream fout(fname_out, std::ios::binary);
  11203. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  11204. const size_t meta_size = gguf_get_meta_size(ctx_out);
  11205. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  11206. // placeholder for the meta data
  11207. ::zeros(fout, meta_size);
  11208. const auto tn = LLM_TN(model.arch);
  11209. for (int i = 0; i < ml.n_tensors; ++i) {
  11210. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  11211. const std::string name = ggml_get_name(tensor);
  11212. if (!ml.use_mmap) {
  11213. if (read_data.size() < ggml_nbytes(tensor)) {
  11214. read_data.resize(ggml_nbytes(tensor));
  11215. }
  11216. tensor->data = read_data.data();
  11217. }
  11218. ml.load_data_for(tensor);
  11219. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  11220. ++idx, ml.n_tensors,
  11221. ggml_get_name(tensor),
  11222. llama_format_tensor_shape(tensor).c_str(),
  11223. ggml_type_name(tensor->type));
  11224. // This used to be a regex, but <regex> has an extreme cost to compile times.
  11225. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  11226. // quantize only 2D and 3D tensors (experts)
  11227. quantize &= (ggml_n_dims(tensor) >= 2);
  11228. quantize &= params->quantize_output_tensor || name != "output.weight";
  11229. quantize &= !params->only_copy;
  11230. // do not quantize expert gating tensors
  11231. // NOTE: can't use LLM_TN here because the layer number is not known
  11232. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  11233. // do not quantize positional embeddings and token types (BERT)
  11234. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  11235. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  11236. // do not quantize Mamba's small yet 2D weights
  11237. // NOTE: can't use LLM_TN here because the layer number is not known
  11238. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  11239. quantize &= name.find("ssm_x.weight") == std::string::npos;
  11240. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  11241. enum ggml_type new_type;
  11242. void * new_data;
  11243. size_t new_size;
  11244. if (quantize) {
  11245. new_type = default_type;
  11246. // get more optimal quantization type based on the tensor shape, layer, etc.
  11247. if (!params->pure && ggml_is_quantized(default_type)) {
  11248. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  11249. }
  11250. else if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  11251. new_type = params->token_embedding_type;
  11252. }
  11253. else if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  11254. new_type = params->output_tensor_type;
  11255. }
  11256. // If we've decided to quantize to the same type the tensor is already
  11257. // in then there's nothing to do.
  11258. quantize = tensor->type != new_type;
  11259. }
  11260. if (!quantize) {
  11261. new_type = tensor->type;
  11262. new_data = tensor->data;
  11263. new_size = ggml_nbytes(tensor);
  11264. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  11265. } else {
  11266. const size_t nelements = ggml_nelements(tensor);
  11267. const float * imatrix = nullptr;
  11268. if (imatrix_data) {
  11269. auto it = imatrix_data->find(tensor->name);
  11270. if (it == imatrix_data->end()) {
  11271. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  11272. } else {
  11273. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  11274. imatrix = it->second.data();
  11275. } else {
  11276. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  11277. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  11278. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  11279. // this is a significant error and it may be good idea to abort the process if this happens,
  11280. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  11281. // tok_embd should be ignored in this case, since it always causes this warning
  11282. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  11283. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  11284. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  11285. }
  11286. }
  11287. }
  11288. }
  11289. if ((new_type == GGML_TYPE_IQ2_XXS ||
  11290. new_type == GGML_TYPE_IQ2_XS ||
  11291. new_type == GGML_TYPE_IQ2_S ||
  11292. new_type == GGML_TYPE_IQ1_S ||
  11293. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  11294. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  11295. LLAMA_LOG_ERROR("\n\n============================================================\n");
  11296. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  11297. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  11298. LLAMA_LOG_ERROR("============================================================\n\n");
  11299. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  11300. }
  11301. float * f32_data;
  11302. if (tensor->type == GGML_TYPE_F32) {
  11303. f32_data = (float *) tensor->data;
  11304. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  11305. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  11306. } else {
  11307. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  11308. f32_data = (float *) f32_conv_buf.data();
  11309. }
  11310. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  11311. fflush(stdout);
  11312. if (work.size() < nelements * 4) {
  11313. work.resize(nelements * 4); // upper bound on size
  11314. }
  11315. new_data = work.data();
  11316. const int n_per_row = tensor->ne[0];
  11317. const int nrows = tensor->ne[1];
  11318. static const int min_chunk_size = 32 * 512;
  11319. const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  11320. const int nelements_matrix = tensor->ne[0] * tensor->ne[1];
  11321. const int nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  11322. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  11323. // quantize each expert separately since they have different importance matrices
  11324. new_size = 0;
  11325. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  11326. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  11327. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  11328. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  11329. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  11330. }
  11331. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  11332. }
  11333. total_size_org += ggml_nbytes(tensor);
  11334. total_size_new += new_size;
  11335. // update the gguf meta data as we go
  11336. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  11337. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  11338. // write tensor data + padding
  11339. fout.write((const char *) new_data, new_size);
  11340. zeros(fout, GGML_PAD(new_size, align) - new_size);
  11341. }
  11342. // go back to beginning of file and write the updated meta data
  11343. {
  11344. fout.seekp(0);
  11345. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  11346. gguf_get_meta_data(ctx_out, data.data());
  11347. fout.write((const char *) data.data(), data.size());
  11348. }
  11349. fout.close();
  11350. gguf_free(ctx_out);
  11351. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  11352. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  11353. if (qs.n_fallback > 0) {
  11354. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  11355. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  11356. }
  11357. }
  11358. static int llama_apply_lora_from_file_internal(
  11359. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  11360. ) {
  11361. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  11362. const int64_t t_start_lora_us = ggml_time_us();
  11363. llama_file fin(path_lora, "rb");
  11364. // verify magic and version
  11365. {
  11366. uint32_t magic = fin.read_u32();
  11367. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  11368. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  11369. return 1;
  11370. }
  11371. uint32_t format_version = fin.read_u32();
  11372. if (format_version != 1) {
  11373. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  11374. return 1;
  11375. }
  11376. }
  11377. int32_t lora_r = fin.read_u32();
  11378. int32_t lora_alpha = fin.read_u32();
  11379. float scaling = scale * (float)lora_alpha / (float)lora_r;
  11380. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  11381. // load base model
  11382. std::unique_ptr<llama_model_loader> ml;
  11383. if (path_base_model) {
  11384. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  11385. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
  11386. ml->init_mappings(/*prefetch*/ false); // no prefetching
  11387. }
  11388. struct tensor_meta {
  11389. std::string name;
  11390. ggml_type type;
  11391. int32_t ne[2];
  11392. size_t offset;
  11393. };
  11394. std::map<std::string, tensor_meta> tensor_meta_map;
  11395. // load all tensor meta
  11396. while (true) {
  11397. if (fin.tell() == fin.size) {
  11398. // eof
  11399. break;
  11400. }
  11401. int32_t n_dims;
  11402. int32_t name_len;
  11403. int32_t ftype;
  11404. fin.read_raw(&n_dims, sizeof(n_dims));
  11405. fin.read_raw(&name_len, sizeof(name_len));
  11406. fin.read_raw(&ftype, sizeof(ftype));
  11407. if (n_dims != 1 && n_dims != 2) {
  11408. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  11409. return 1;
  11410. }
  11411. int32_t ne[2] = { 1, 1 };
  11412. for (int i = 0; i < n_dims; ++i) {
  11413. fin.read_raw(&ne[i], sizeof(ne[i]));
  11414. }
  11415. std::string name;
  11416. {
  11417. GGML_ASSERT(name_len < GGML_MAX_NAME);
  11418. char buf[GGML_MAX_NAME];
  11419. fin.read_raw(buf, name_len);
  11420. name = std::string(buf, name_len);
  11421. }
  11422. // check for lora suffix
  11423. std::string lora_suffix;
  11424. if (name.length() > 6) {
  11425. lora_suffix = name.substr(name.length() - 6);
  11426. }
  11427. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  11428. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  11429. return 1;
  11430. }
  11431. // tensor type
  11432. ggml_type wtype;
  11433. switch (ftype) {
  11434. case 0: wtype = GGML_TYPE_F32; break;
  11435. case 1: wtype = GGML_TYPE_F16; break;
  11436. default:
  11437. {
  11438. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  11439. __func__, ftype);
  11440. return 1;
  11441. }
  11442. }
  11443. // data offset
  11444. size_t offset = fin.tell();
  11445. offset = (offset + 31) & -32;
  11446. // skip tensor data
  11447. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  11448. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  11449. }
  11450. bool warned = false;
  11451. int n_tensors = 0;
  11452. // apply
  11453. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  11454. if (backend_cpu == nullptr) {
  11455. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  11456. return 1;
  11457. }
  11458. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  11459. std::vector<no_init<uint8_t>> read_buf;
  11460. for (const auto & it : model.tensors_by_name) {
  11461. const std::string & base_name = it.first;
  11462. ggml_tensor * model_t = it.second;
  11463. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  11464. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  11465. continue;
  11466. }
  11467. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  11468. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  11469. ggml_init_params lora_init_params = {
  11470. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  11471. /* .mem_buffer */ nullptr,
  11472. /* .no_alloc */ true,
  11473. };
  11474. ggml_context * lora_ctx = ggml_init(lora_init_params);
  11475. if (lora_ctx == nullptr) {
  11476. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  11477. ggml_backend_free(backend_cpu);
  11478. return 1;
  11479. }
  11480. // create tensors
  11481. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  11482. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  11483. ggml_set_name(loraA, metaA.name.c_str());
  11484. ggml_set_name(loraB, metaB.name.c_str());
  11485. ggml_tensor * base_t;
  11486. if (ml) {
  11487. if (!ml->get_tensor_meta(base_name.c_str())) {
  11488. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  11489. return 1;
  11490. }
  11491. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  11492. } else {
  11493. base_t = ggml_dup_tensor(lora_ctx, model_t);
  11494. }
  11495. ggml_set_name(base_t, base_name.c_str());
  11496. // allocate in backend buffer
  11497. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  11498. if (lora_buf == nullptr) {
  11499. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  11500. return 1;
  11501. }
  11502. // load tensor data
  11503. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  11504. read_buf.resize(ggml_nbytes(tensor));
  11505. fin.seek(tensor_meta.offset, SEEK_SET);
  11506. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  11507. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  11508. };
  11509. load_tensor(metaA, loraA);
  11510. load_tensor(metaB, loraB);
  11511. // load base model tensor data
  11512. if (ml) {
  11513. ml->load_data_for(base_t);
  11514. } else {
  11515. ggml_backend_tensor_copy(model_t, base_t);
  11516. }
  11517. if (ggml_is_quantized(base_t->type) && !warned) {
  11518. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  11519. "use a f16 or f32 base model with --lora-base\n", __func__);
  11520. warned = true;
  11521. }
  11522. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  11523. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  11524. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  11525. ggml_free(lora_ctx);
  11526. ggml_backend_buffer_free(lora_buf);
  11527. ggml_backend_free(backend_cpu);
  11528. return 1;
  11529. }
  11530. auto build_lora_graph = [&]() {
  11531. // w = w + BA*s
  11532. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  11533. ggml_set_name(BA, "BA");
  11534. if (scaling != 1.0f) {
  11535. BA = ggml_scale(lora_ctx, BA, scaling);
  11536. ggml_set_name(BA, "BA_scaled");
  11537. }
  11538. ggml_tensor * r;
  11539. r = ggml_add_inplace(lora_ctx, base_t, BA);
  11540. ggml_set_name(r, "r_add");
  11541. if (base_t->type != model_t->type) {
  11542. // convert the result to the model type
  11543. r = ggml_cast(lora_ctx, r, model_t->type);
  11544. ggml_set_name(r, "r_cast");
  11545. }
  11546. return r;
  11547. };
  11548. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  11549. ggml_tensor * r = build_lora_graph();
  11550. ggml_build_forward_expand(gf, r);
  11551. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  11552. if (graph_buf == nullptr) {
  11553. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  11554. ggml_free(lora_ctx);
  11555. ggml_backend_buffer_free(lora_buf);
  11556. ggml_backend_free(backend_cpu);
  11557. return 1;
  11558. }
  11559. ggml_backend_graph_compute(backend_cpu, gf);
  11560. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  11561. #if 0
  11562. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  11563. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  11564. // sched compute
  11565. ggml_build_forward_expand(gf, build_graph());
  11566. ggml_backend_sched_init_measure(sched, gf);
  11567. // create the graph again, since the previous one was destroyed by the measure
  11568. ggml_graph_clear(gf);
  11569. ggml_build_forward_expand(gf, build_graph());
  11570. ggml_backend_sched_graph_compute(sched, gf);
  11571. ggml_backend_sched_free(sched);
  11572. #endif
  11573. ggml_backend_buffer_free(lora_buf);
  11574. ggml_backend_buffer_free(graph_buf);
  11575. ggml_free(lora_ctx);
  11576. n_tensors++;
  11577. if (n_tensors % 4 == 0) {
  11578. LLAMA_LOG_INFO(".");
  11579. }
  11580. }
  11581. ggml_backend_free(backend_cpu);
  11582. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  11583. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  11584. return 0;
  11585. }
  11586. //
  11587. // interface implementation
  11588. //
  11589. struct llama_model_params llama_model_default_params() {
  11590. struct llama_model_params result = {
  11591. /*.n_gpu_layers =*/ 0,
  11592. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  11593. /*.main_gpu =*/ 0,
  11594. /*.tensor_split =*/ nullptr,
  11595. /*.progress_callback =*/ nullptr,
  11596. /*.progress_callback_user_data =*/ nullptr,
  11597. /*.kv_overrides =*/ nullptr,
  11598. /*.vocab_only =*/ false,
  11599. /*.use_mmap =*/ true,
  11600. /*.use_mlock =*/ false,
  11601. };
  11602. #ifdef GGML_USE_METAL
  11603. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  11604. result.n_gpu_layers = 999;
  11605. #endif
  11606. return result;
  11607. }
  11608. struct llama_context_params llama_context_default_params() {
  11609. struct llama_context_params result = {
  11610. /*.seed =*/ LLAMA_DEFAULT_SEED,
  11611. /*.n_ctx =*/ 512,
  11612. /*.n_batch =*/ 2048,
  11613. /*.n_ubatch =*/ 512,
  11614. /*.n_seq_max =*/ 1,
  11615. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  11616. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  11617. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  11618. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  11619. /*.rope_freq_base =*/ 0.0f,
  11620. /*.rope_freq_scale =*/ 0.0f,
  11621. /*.yarn_ext_factor =*/ -1.0f,
  11622. /*.yarn_attn_factor =*/ 1.0f,
  11623. /*.yarn_beta_fast =*/ 32.0f,
  11624. /*.yarn_beta_slow =*/ 1.0f,
  11625. /*.yarn_orig_ctx =*/ 0,
  11626. /*.defrag_thold =*/ -1.0f,
  11627. /*.cb_eval =*/ nullptr,
  11628. /*.cb_eval_user_data =*/ nullptr,
  11629. /*.type_k =*/ GGML_TYPE_F16,
  11630. /*.type_v =*/ GGML_TYPE_F16,
  11631. /*.logits_all =*/ false,
  11632. /*.embeddings =*/ false,
  11633. /*.offload_kqv =*/ true,
  11634. /*.abort_callback =*/ nullptr,
  11635. /*.abort_callback_data =*/ nullptr,
  11636. };
  11637. return result;
  11638. }
  11639. struct llama_model_quantize_params llama_model_quantize_default_params() {
  11640. struct llama_model_quantize_params result = {
  11641. /*.nthread =*/ 0,
  11642. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  11643. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  11644. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  11645. /*.allow_requantize =*/ false,
  11646. /*.quantize_output_tensor =*/ true,
  11647. /*.only_copy =*/ false,
  11648. /*.pure =*/ false,
  11649. /*.imatrix =*/ nullptr,
  11650. /*.kv_overrides =*/ nullptr,
  11651. };
  11652. return result;
  11653. }
  11654. size_t llama_max_devices(void) {
  11655. #if defined(GGML_USE_METAL)
  11656. return 1;
  11657. #elif defined(GGML_USE_CUDA)
  11658. return GGML_CUDA_MAX_DEVICES;
  11659. #elif defined(GGML_USE_SYCL)
  11660. return GGML_SYCL_MAX_DEVICES;
  11661. #elif defined(GGML_USE_VULKAN)
  11662. return GGML_VK_MAX_DEVICES;
  11663. #else
  11664. return 1;
  11665. #endif
  11666. }
  11667. bool llama_supports_mmap(void) {
  11668. return llama_mmap::SUPPORTED;
  11669. }
  11670. bool llama_supports_mlock(void) {
  11671. return llama_mlock::SUPPORTED;
  11672. }
  11673. bool llama_supports_gpu_offload(void) {
  11674. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  11675. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  11676. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  11677. return true;
  11678. #else
  11679. return false;
  11680. #endif
  11681. }
  11682. void llama_backend_init(void) {
  11683. ggml_time_init();
  11684. // needed to initialize f16 tables
  11685. {
  11686. struct ggml_init_params params = { 0, NULL, false };
  11687. struct ggml_context * ctx = ggml_init(params);
  11688. ggml_free(ctx);
  11689. }
  11690. #ifdef GGML_USE_MPI
  11691. ggml_mpi_backend_init();
  11692. #endif
  11693. }
  11694. void llama_numa_init(enum ggml_numa_strategy numa) {
  11695. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  11696. ggml_numa_init(numa);
  11697. }
  11698. }
  11699. void llama_backend_free(void) {
  11700. #ifdef GGML_USE_MPI
  11701. ggml_mpi_backend_free();
  11702. #endif
  11703. ggml_quantize_free();
  11704. }
  11705. int64_t llama_time_us(void) {
  11706. return ggml_time_us();
  11707. }
  11708. struct llama_model * llama_load_model_from_file(
  11709. const char * path_model,
  11710. struct llama_model_params params) {
  11711. ggml_time_init();
  11712. llama_model * model = new llama_model;
  11713. unsigned cur_percentage = 0;
  11714. if (params.progress_callback == NULL) {
  11715. params.progress_callback_user_data = &cur_percentage;
  11716. params.progress_callback = [](float progress, void * ctx) {
  11717. unsigned * cur_percentage_p = (unsigned *) ctx;
  11718. unsigned percentage = (unsigned) (100 * progress);
  11719. while (percentage > *cur_percentage_p) {
  11720. *cur_percentage_p = percentage;
  11721. LLAMA_LOG_INFO(".");
  11722. if (percentage >= 100) {
  11723. LLAMA_LOG_INFO("\n");
  11724. }
  11725. }
  11726. return true;
  11727. };
  11728. }
  11729. int status = llama_model_load(path_model, *model, params);
  11730. GGML_ASSERT(status <= 0);
  11731. if (status < 0) {
  11732. if (status == -1) {
  11733. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  11734. } else if (status == -2) {
  11735. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  11736. }
  11737. delete model;
  11738. return nullptr;
  11739. }
  11740. return model;
  11741. }
  11742. void llama_free_model(struct llama_model * model) {
  11743. delete model;
  11744. }
  11745. struct llama_context * llama_new_context_with_model(
  11746. struct llama_model * model,
  11747. struct llama_context_params params) {
  11748. if (!model) {
  11749. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  11750. return nullptr;
  11751. }
  11752. if (params.n_batch == 0 && params.n_ubatch == 0) {
  11753. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  11754. return nullptr;
  11755. }
  11756. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  11757. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  11758. return nullptr;
  11759. }
  11760. llama_context * ctx = new llama_context(*model);
  11761. const auto & hparams = model->hparams;
  11762. auto & cparams = ctx->cparams;
  11763. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  11764. cparams.n_threads = params.n_threads;
  11765. cparams.n_threads_batch = params.n_threads_batch;
  11766. cparams.yarn_ext_factor = params.yarn_ext_factor;
  11767. cparams.yarn_attn_factor = params.yarn_attn_factor;
  11768. cparams.yarn_beta_fast = params.yarn_beta_fast;
  11769. cparams.yarn_beta_slow = params.yarn_beta_slow;
  11770. cparams.defrag_thold = params.defrag_thold;
  11771. cparams.embeddings = params.embeddings;
  11772. cparams.offload_kqv = params.offload_kqv;
  11773. cparams.pooling_type = params.pooling_type;
  11774. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  11775. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  11776. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  11777. // this is necessary due to kv_self.n being padded later during inference
  11778. cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
  11779. // with causal attention, the batch size is limited by the context size
  11780. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  11781. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  11782. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  11783. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  11784. hparams.n_ctx_train;
  11785. cparams.cb_eval = params.cb_eval;
  11786. cparams.cb_eval_user_data = params.cb_eval_user_data;
  11787. auto rope_scaling_type = params.rope_scaling_type;
  11788. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  11789. rope_scaling_type = hparams.rope_scaling_type_train;
  11790. }
  11791. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  11792. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  11793. }
  11794. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  11795. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  11796. }
  11797. cparams.causal_attn = hparams.causal_attn;
  11798. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  11799. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  11800. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  11801. } else {
  11802. cparams.pooling_type = hparams.pooling_type;
  11803. }
  11804. }
  11805. if (params.seed == LLAMA_DEFAULT_SEED) {
  11806. params.seed = time(NULL);
  11807. }
  11808. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  11809. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  11810. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  11811. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  11812. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  11813. ctx->abort_callback = params.abort_callback;
  11814. ctx->abort_callback_data = params.abort_callback_data;
  11815. ctx->rng = std::mt19937(params.seed);
  11816. ctx->logits_all = params.logits_all;
  11817. uint32_t kv_size = cparams.n_ctx;
  11818. ggml_type type_k = params.type_k;
  11819. ggml_type type_v = params.type_v;
  11820. // Mamba only needs a constant number of KV cache cells per sequence
  11821. if (model->arch == LLM_ARCH_MAMBA) {
  11822. // Mamba needs at least as many KV cells as there are sequences kept at any time
  11823. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  11824. // it's probably best to keep as much precision as possible for the states
  11825. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  11826. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  11827. }
  11828. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  11829. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  11830. if (!hparams.vocab_only) {
  11831. // initialize backends
  11832. #ifdef GGML_USE_METAL
  11833. if (model->n_gpu_layers > 0) {
  11834. ctx->backend_metal = ggml_backend_metal_init();
  11835. if (ctx->backend_metal == nullptr) {
  11836. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  11837. llama_free(ctx);
  11838. return nullptr;
  11839. }
  11840. ctx->backends.push_back(ctx->backend_metal);
  11841. }
  11842. #elif defined(GGML_USE_CUDA)
  11843. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  11844. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  11845. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  11846. if (backend == nullptr) {
  11847. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  11848. llama_free(ctx);
  11849. return nullptr;
  11850. }
  11851. ctx->backends.push_back(backend);
  11852. } else {
  11853. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  11854. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  11855. ggml_backend_t backend = ggml_backend_cuda_init(device);
  11856. if (backend == nullptr) {
  11857. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  11858. llama_free(ctx);
  11859. return nullptr;
  11860. }
  11861. ctx->backends.push_back(backend);
  11862. }
  11863. }
  11864. #elif defined(GGML_USE_VULKAN)
  11865. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  11866. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  11867. llama_free(ctx);
  11868. return nullptr;
  11869. }
  11870. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  11871. ggml_backend_t backend = ggml_backend_vk_init(0);
  11872. if (backend == nullptr) {
  11873. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  11874. llama_free(ctx);
  11875. return nullptr;
  11876. }
  11877. ctx->backends.push_back(backend);
  11878. } else {
  11879. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  11880. ggml_backend_t backend = ggml_backend_vk_init(device);
  11881. if (backend == nullptr) {
  11882. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  11883. llama_free(ctx);
  11884. return nullptr;
  11885. }
  11886. ctx->backends.push_back(backend);
  11887. }
  11888. }
  11889. #elif defined(GGML_USE_SYCL)
  11890. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  11891. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  11892. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  11893. if (backend == nullptr) {
  11894. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  11895. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  11896. llama_free(ctx);
  11897. return nullptr;
  11898. }
  11899. ctx->backends.push_back(backend);
  11900. } else {
  11901. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  11902. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  11903. ggml_backend_t backend = ggml_backend_sycl_init(i);
  11904. if (backend == nullptr) {
  11905. int id_list[GGML_SYCL_MAX_DEVICES];
  11906. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  11907. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  11908. llama_free(ctx);
  11909. return nullptr;
  11910. }
  11911. ctx->backends.push_back(backend);
  11912. }
  11913. }
  11914. #elif defined(GGML_USE_KOMPUTE)
  11915. if (model->n_gpu_layers > 0) {
  11916. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  11917. if (backend == nullptr) {
  11918. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  11919. llama_free(ctx);
  11920. return nullptr;
  11921. }
  11922. ctx->backends.push_back(backend);
  11923. }
  11924. #endif
  11925. ctx->backend_cpu = ggml_backend_cpu_init();
  11926. if (ctx->backend_cpu == nullptr) {
  11927. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  11928. llama_free(ctx);
  11929. return nullptr;
  11930. }
  11931. ctx->backends.push_back(ctx->backend_cpu);
  11932. if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) {
  11933. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  11934. llama_free(ctx);
  11935. return nullptr;
  11936. }
  11937. {
  11938. size_t memory_size_k = 0;
  11939. size_t memory_size_v = 0;
  11940. for (auto & k : ctx->kv_self.k_l) {
  11941. memory_size_k += ggml_nbytes(k);
  11942. }
  11943. for (auto & v : ctx->kv_self.v_l) {
  11944. memory_size_v += ggml_nbytes(v);
  11945. }
  11946. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  11947. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  11948. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  11949. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  11950. }
  11951. // graph outputs buffer
  11952. {
  11953. // resized during inference when a batch uses more outputs
  11954. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  11955. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  11956. llama_free(ctx);
  11957. return nullptr;
  11958. }
  11959. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  11960. ggml_backend_buffer_name(ctx->buf_output),
  11961. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  11962. }
  11963. // scheduler and compute buffers
  11964. {
  11965. // buffer types used for the compute buffer of each backend
  11966. std::vector<ggml_backend_buffer_type_t> backend_buft;
  11967. for (auto * backend : ctx->backends) {
  11968. if (ggml_backend_is_cpu(backend)) {
  11969. // use host buffers for the CPU backend compute buffer
  11970. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  11971. } else {
  11972. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  11973. }
  11974. }
  11975. // buffer used to store the computation graph and the tensor meta data
  11976. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  11977. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  11978. bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
  11979. #ifndef GGML_USE_CUDA
  11980. // pipeline parallelism requires support for async compute and events
  11981. // currently this is only implemented in the CUDA backend
  11982. pipeline_parallel = false;
  11983. #endif
  11984. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  11985. if (pipeline_parallel) {
  11986. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  11987. }
  11988. // build worst-case graph
  11989. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  11990. int n_past = cparams.n_ctx - n_tokens;
  11991. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  11992. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  11993. // initialize scheduler with the worst-case graph
  11994. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  11995. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  11996. llama_free(ctx);
  11997. return nullptr;
  11998. }
  11999. for (size_t i = 0; i < ctx->backends.size(); i++) {
  12000. ggml_backend_t backend = ctx->backends[i];
  12001. ggml_backend_buffer_type_t buft = backend_buft[i];
  12002. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  12003. if (size > 1) {
  12004. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  12005. ggml_backend_buft_name(buft),
  12006. size / 1024.0 / 1024.0);
  12007. }
  12008. }
  12009. // note: the number of splits during measure is higher than during inference due to the kv shift
  12010. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  12011. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  12012. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  12013. }
  12014. }
  12015. #ifdef GGML_USE_MPI
  12016. ctx->ctx_mpi = ggml_mpi_init();
  12017. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  12018. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  12019. // TODO: needs fix after #3228
  12020. GGML_ASSERT(false && "not implemented");
  12021. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  12022. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  12023. llama_backend_free();
  12024. exit(1);
  12025. }
  12026. #endif
  12027. return ctx;
  12028. }
  12029. void llama_free(struct llama_context * ctx) {
  12030. delete ctx;
  12031. }
  12032. const llama_model * llama_get_model(const struct llama_context * ctx) {
  12033. return &ctx->model;
  12034. }
  12035. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  12036. return ctx->cparams.n_ctx;
  12037. }
  12038. uint32_t llama_n_batch(const struct llama_context * ctx) {
  12039. return ctx->cparams.n_batch;
  12040. }
  12041. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  12042. return ctx->cparams.n_ubatch;
  12043. }
  12044. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  12045. return ctx->kv_self.size;
  12046. }
  12047. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  12048. return model->vocab.type;
  12049. }
  12050. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  12051. switch (model->arch) {
  12052. // these models do not use RoPE
  12053. case LLM_ARCH_GPT2:
  12054. case LLM_ARCH_GPTJ:
  12055. case LLM_ARCH_GPTNEOX:
  12056. case LLM_ARCH_MPT:
  12057. case LLM_ARCH_REFACT:
  12058. case LLM_ARCH_BLOOM:
  12059. case LLM_ARCH_MAMBA:
  12060. return LLAMA_ROPE_TYPE_NONE;
  12061. // use what we call a normal RoPE, operating on pairs of consecutive head values
  12062. case LLM_ARCH_LLAMA:
  12063. case LLM_ARCH_BAICHUAN:
  12064. case LLM_ARCH_STARCODER:
  12065. case LLM_ARCH_PLAMO:
  12066. case LLM_ARCH_CODESHELL:
  12067. case LLM_ARCH_ORION:
  12068. case LLM_ARCH_INTERNLM2:
  12069. case LLM_ARCH_MINICPM:
  12070. case LLM_ARCH_XVERSE:
  12071. case LLM_ARCH_COMMAND_R:
  12072. return LLAMA_ROPE_TYPE_NORM;
  12073. // the pairs of head values are offset by n_rot/2
  12074. case LLM_ARCH_FALCON:
  12075. case LLM_ARCH_GROK:
  12076. case LLM_ARCH_PERSIMMON:
  12077. case LLM_ARCH_BERT:
  12078. case LLM_ARCH_NOMIC_BERT:
  12079. case LLM_ARCH_STABLELM:
  12080. case LLM_ARCH_QWEN:
  12081. case LLM_ARCH_QWEN2:
  12082. case LLM_ARCH_PHI2:
  12083. case LLM_ARCH_GEMMA:
  12084. case LLM_ARCH_STARCODER2:
  12085. return LLAMA_ROPE_TYPE_NEOX;
  12086. // all model arches should be listed explicitly here
  12087. case LLM_ARCH_UNKNOWN:
  12088. GGML_ASSERT(false && "unknown architecture");
  12089. break;
  12090. }
  12091. return LLAMA_ROPE_TYPE_NONE;
  12092. }
  12093. int32_t llama_n_vocab(const struct llama_model * model) {
  12094. return model->hparams.n_vocab;
  12095. }
  12096. int32_t llama_n_ctx_train(const struct llama_model * model) {
  12097. return model->hparams.n_ctx_train;
  12098. }
  12099. int32_t llama_n_embd(const struct llama_model * model) {
  12100. return model->hparams.n_embd;
  12101. }
  12102. int32_t llama_n_layer(const struct llama_model * model) {
  12103. return model->hparams.n_layer;
  12104. }
  12105. float llama_rope_freq_scale_train(const struct llama_model * model) {
  12106. return model->hparams.rope_freq_scale_train;
  12107. }
  12108. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  12109. const auto & it = model->gguf_kv.find(key);
  12110. if (it == model->gguf_kv.end()) {
  12111. if (buf_size > 0) {
  12112. buf[0] = '\0';
  12113. }
  12114. return -1;
  12115. }
  12116. return snprintf(buf, buf_size, "%s", it->second.c_str());
  12117. }
  12118. int32_t llama_model_meta_count(const struct llama_model * model) {
  12119. return (int)model->gguf_kv.size();
  12120. }
  12121. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  12122. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  12123. if (buf_size > 0) {
  12124. buf[0] = '\0';
  12125. }
  12126. return -1;
  12127. }
  12128. auto it = model->gguf_kv.begin();
  12129. std::advance(it, i);
  12130. return snprintf(buf, buf_size, "%s", it->first.c_str());
  12131. }
  12132. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  12133. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  12134. if (buf_size > 0) {
  12135. buf[0] = '\0';
  12136. }
  12137. return -1;
  12138. }
  12139. auto it = model->gguf_kv.begin();
  12140. std::advance(it, i);
  12141. return snprintf(buf, buf_size, "%s", it->second.c_str());
  12142. }
  12143. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  12144. return snprintf(buf, buf_size, "%s %s %s",
  12145. llama_model_arch_name(model->arch),
  12146. llama_model_type_name(model->type),
  12147. llama_model_ftype_name(model->ftype).c_str());
  12148. }
  12149. uint64_t llama_model_size(const struct llama_model * model) {
  12150. uint64_t size = 0;
  12151. for (const auto & it : model->tensors_by_name) {
  12152. size += ggml_nbytes(it.second);
  12153. }
  12154. return size;
  12155. }
  12156. uint64_t llama_model_n_params(const struct llama_model * model) {
  12157. uint64_t nparams = 0;
  12158. for (const auto & it : model->tensors_by_name) {
  12159. nparams += ggml_nelements(it.second);
  12160. }
  12161. return nparams;
  12162. }
  12163. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  12164. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  12165. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  12166. return it.first == name;
  12167. });
  12168. if (it == model->tensors_by_name.end()) {
  12169. return nullptr;
  12170. }
  12171. return it->second;
  12172. }
  12173. uint32_t llama_model_quantize(
  12174. const char * fname_inp,
  12175. const char * fname_out,
  12176. const llama_model_quantize_params * params) {
  12177. try {
  12178. llama_model_quantize_internal(fname_inp, fname_out, params);
  12179. return 0;
  12180. } catch (const std::exception & err) {
  12181. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  12182. return 1;
  12183. }
  12184. }
  12185. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  12186. try {
  12187. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  12188. } catch (const std::exception & err) {
  12189. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  12190. return 1;
  12191. }
  12192. }
  12193. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  12194. GGML_ASSERT(cvec.tensors.empty());
  12195. GGML_ASSERT(cvec.ctxs.empty());
  12196. GGML_ASSERT(cvec.bufs.empty());
  12197. // count layer buffer types
  12198. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  12199. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  12200. buft_layer_count[model.buft_layer[i].buft]++;
  12201. }
  12202. // allocate contexts
  12203. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  12204. for (auto & it : buft_layer_count) {
  12205. int n_layers = it.second;
  12206. struct ggml_init_params params = {
  12207. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  12208. /*.mem_buffer =*/ NULL,
  12209. /*.no_alloc =*/ true,
  12210. };
  12211. ggml_context * ctx = ggml_init(params);
  12212. if (!ctx) {
  12213. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  12214. return 1;
  12215. }
  12216. ctx_map[it.first] = ctx;
  12217. }
  12218. // make tensors
  12219. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  12220. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  12221. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  12222. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  12223. cvec.tensors.push_back(tensor);
  12224. }
  12225. // allocate tensors / buffers and zero
  12226. for (auto it : ctx_map) {
  12227. ggml_backend_buffer_type_t buft = it.first;
  12228. ggml_context * ctx = it.second;
  12229. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  12230. if (!buf) {
  12231. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  12232. return false;
  12233. }
  12234. ggml_backend_buffer_clear(buf, 0);
  12235. cvec.ctxs.push_back(ctx);
  12236. cvec.bufs.push_back(buf);
  12237. }
  12238. return true;
  12239. }
  12240. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  12241. const llama_model & model = lctx->model;
  12242. llama_control_vector & cvec = lctx->cvec;
  12243. if (data == nullptr) {
  12244. // disable the current control vector (but leave allocated for later)
  12245. cvec.layer_start = -1;
  12246. cvec.layer_end = -1;
  12247. return 0;
  12248. }
  12249. if (n_embd != (int) model.hparams.n_embd) {
  12250. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  12251. return 1;
  12252. }
  12253. if (cvec.tensors.empty()) {
  12254. if (!llama_control_vector_init(cvec, model)) {
  12255. return 1;
  12256. }
  12257. }
  12258. cvec.layer_start = il_start;
  12259. cvec.layer_end = il_end;
  12260. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  12261. assert(cvec.tensors[il] != nullptr);
  12262. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  12263. if (off + n_embd <= len) {
  12264. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  12265. }
  12266. }
  12267. return 0;
  12268. }
  12269. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  12270. struct llama_kv_cache_view result = {
  12271. /*.n_cells = */ 0,
  12272. /*.n_seq_max = */ n_seq_max,
  12273. /*.token_count = */ 0,
  12274. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  12275. /*.max_contiguous = */ 0,
  12276. /*.max_contiguous_idx = */ -1,
  12277. /*.cells = */ nullptr,
  12278. /*.cells_sequences = */ nullptr,
  12279. };
  12280. return result;
  12281. }
  12282. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  12283. if (view->cells != nullptr) {
  12284. free(view->cells);
  12285. view->cells = nullptr;
  12286. }
  12287. if (view->cells_sequences != nullptr) {
  12288. free(view->cells_sequences);
  12289. view->cells_sequences = nullptr;
  12290. }
  12291. }
  12292. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  12293. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  12294. view->n_cells = int32_t(ctx->kv_self.size);
  12295. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  12296. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  12297. view->cells = (struct llama_kv_cache_view_cell *)p;
  12298. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  12299. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  12300. view->cells_sequences = (llama_seq_id *)p;
  12301. }
  12302. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  12303. llama_kv_cache_view_cell * c_curr = view->cells;
  12304. llama_seq_id * cs_curr = view->cells_sequences;
  12305. int32_t used_cells = 0;
  12306. int32_t token_count = 0;
  12307. int32_t curr_contig_idx = -1;
  12308. uint32_t max_contig = 0;
  12309. int32_t max_contig_idx = -1;
  12310. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  12311. const size_t curr_size = kv_cells[i].seq_id.size();
  12312. token_count += curr_size;
  12313. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  12314. if (curr_size > 0) {
  12315. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  12316. max_contig = i - curr_contig_idx;
  12317. max_contig_idx = curr_contig_idx;
  12318. }
  12319. curr_contig_idx = -1;
  12320. } else if (curr_contig_idx < 0) {
  12321. curr_contig_idx = i;
  12322. }
  12323. int seq_idx = 0;
  12324. for (const llama_seq_id it : kv_cells[i].seq_id) {
  12325. if (seq_idx >= view->n_seq_max) {
  12326. break;
  12327. }
  12328. cs_curr[seq_idx] = it;
  12329. seq_idx++;
  12330. }
  12331. if (seq_idx != 0) {
  12332. used_cells++;
  12333. }
  12334. for (; seq_idx < view->n_seq_max; seq_idx++) {
  12335. cs_curr[seq_idx] = -1;
  12336. }
  12337. }
  12338. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  12339. max_contig_idx = curr_contig_idx;
  12340. max_contig = kv_cells.size() - curr_contig_idx;
  12341. }
  12342. view->max_contiguous = max_contig;
  12343. view->max_contiguous_idx = max_contig_idx;
  12344. view->token_count = token_count;
  12345. view->used_cells = used_cells;
  12346. if (uint32_t(used_cells) != ctx->kv_self.used) {
  12347. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  12348. __func__, ctx->kv_self.used, used_cells);
  12349. }
  12350. }
  12351. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  12352. int result = 0;
  12353. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  12354. result += ctx->kv_self.cells[i].seq_id.size();
  12355. }
  12356. return result;
  12357. }
  12358. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  12359. return ctx->kv_self.used;
  12360. }
  12361. void llama_kv_cache_clear(struct llama_context * ctx) {
  12362. llama_kv_cache_clear(ctx->kv_self);
  12363. }
  12364. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  12365. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  12366. }
  12367. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  12368. if (seq_id_src == seq_id_dst) {
  12369. return;
  12370. }
  12371. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  12372. }
  12373. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  12374. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  12375. }
  12376. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  12377. if (delta == 0) {
  12378. return;
  12379. }
  12380. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  12381. }
  12382. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  12383. if (d == 1) {
  12384. return;
  12385. }
  12386. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  12387. }
  12388. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  12389. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  12390. }
  12391. void llama_kv_cache_defrag(struct llama_context * ctx) {
  12392. llama_kv_cache_defrag(ctx->kv_self);
  12393. }
  12394. void llama_kv_cache_update(struct llama_context * ctx) {
  12395. llama_kv_cache_update_internal(*ctx);
  12396. }
  12397. // Returns the *maximum* size of the state
  12398. size_t llama_get_state_size(const struct llama_context * ctx) {
  12399. const auto & cparams = ctx->cparams;
  12400. const auto & hparams = ctx->model.hparams;
  12401. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  12402. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  12403. const size_t s_rng_size = sizeof(size_t);
  12404. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  12405. const size_t s_n_outputs = sizeof(size_t);
  12406. // assume worst case for outputs although only currently set ones are serialized
  12407. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  12408. const size_t s_logits_size = sizeof(size_t);
  12409. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  12410. const size_t s_embedding_size = sizeof(size_t);
  12411. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  12412. const size_t s_kv_buf_size = sizeof(size_t);
  12413. const size_t s_kv_head = sizeof(uint32_t);
  12414. const size_t s_kv_size = sizeof(uint32_t);
  12415. const size_t s_kv_used = sizeof(uint32_t);
  12416. const size_t s_kv = ctx->kv_self.total_size();
  12417. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  12418. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  12419. const size_t s_total = (
  12420. + s_rng_size
  12421. + s_rng
  12422. + s_n_outputs
  12423. + s_output_pos
  12424. + s_logits_size
  12425. + s_logits
  12426. + s_embedding_size
  12427. + s_embedding
  12428. + s_kv_buf_size
  12429. + s_kv_head
  12430. + s_kv_size
  12431. + s_kv_used
  12432. + s_kv
  12433. + s_kv_cells
  12434. );
  12435. return s_total;
  12436. }
  12437. // llama_context_data
  12438. struct llama_data_context {
  12439. virtual void write(const void * src, size_t size) = 0;
  12440. virtual size_t get_size_written() = 0;
  12441. virtual ~llama_data_context() = default;
  12442. };
  12443. struct llama_data_buffer_context : llama_data_context {
  12444. uint8_t * ptr;
  12445. size_t size_written = 0;
  12446. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  12447. void write(const void * src, size_t size) override {
  12448. memcpy(ptr, src, size);
  12449. ptr += size;
  12450. size_written += size;
  12451. }
  12452. size_t get_size_written() override {
  12453. return size_written;
  12454. }
  12455. };
  12456. struct llama_data_file_context : llama_data_context {
  12457. llama_file * file;
  12458. size_t size_written = 0;
  12459. llama_data_file_context(llama_file * f) : file(f) {}
  12460. void write(const void * src, size_t size) override {
  12461. file->write_raw(src, size);
  12462. size_written += size;
  12463. }
  12464. size_t get_size_written() override {
  12465. return size_written;
  12466. }
  12467. };
  12468. /** copy state data into either a buffer or file depending on the passed in context
  12469. *
  12470. * file context:
  12471. * llama_file file("/path", "wb");
  12472. * llama_data_file_context data_ctx(&file);
  12473. * llama_copy_state_data(ctx, &data_ctx);
  12474. *
  12475. * buffer context:
  12476. * std::vector<uint8_t> buf(max_size, 0);
  12477. * llama_data_buffer_context data_ctx(&buf.data());
  12478. * llama_copy_state_data(ctx, &data_ctx);
  12479. *
  12480. */
  12481. static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  12482. // copy rng
  12483. {
  12484. std::ostringstream rng_ss;
  12485. rng_ss << ctx->rng;
  12486. const std::string & rng_str = rng_ss.str();
  12487. const size_t rng_size = rng_str.size();
  12488. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  12489. data_ctx->write(&rng_size, sizeof(rng_size));
  12490. data_ctx->write(rng_str.data(), rng_size);
  12491. }
  12492. // copy outputs
  12493. {
  12494. // Can't use ctx->n_outputs because it's not for the
  12495. // entire last batch when n_ubatch is smaller than n_batch
  12496. size_t n_outputs = 0;
  12497. // copy output ids
  12498. {
  12499. std::vector<int32_t> output_pos;
  12500. const size_t n_batch = ctx->cparams.n_batch;
  12501. const auto & output_ids = ctx->output_ids;
  12502. output_pos.resize(ctx->output_size);
  12503. // build a more compact representation of the output ids
  12504. for (size_t i = 0; i < n_batch; ++i) {
  12505. // map an output id to a position in the batch
  12506. int32_t pos = output_ids[i];
  12507. if (pos >= 0) {
  12508. if ((size_t) pos >= n_outputs) {
  12509. n_outputs = pos + 1;
  12510. }
  12511. GGML_ASSERT((size_t) pos < ctx->output_size);
  12512. output_pos[pos] = i;
  12513. }
  12514. }
  12515. data_ctx->write(&n_outputs, sizeof(n_outputs));
  12516. if (n_outputs) {
  12517. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  12518. }
  12519. }
  12520. // copy logits
  12521. {
  12522. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  12523. data_ctx->write(&logits_size, sizeof(logits_size));
  12524. if (logits_size) {
  12525. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  12526. }
  12527. }
  12528. // copy embeddings
  12529. {
  12530. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  12531. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  12532. if (embeddings_size) {
  12533. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  12534. }
  12535. }
  12536. }
  12537. // copy kv cache
  12538. {
  12539. const auto & kv_self = ctx->kv_self;
  12540. const auto & hparams = ctx->model.hparams;
  12541. const uint32_t n_layer = hparams.n_layer;
  12542. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  12543. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  12544. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  12545. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  12546. const uint32_t kv_size = kv_self.size;
  12547. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  12548. const uint32_t kv_used = kv_self.used;
  12549. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  12550. data_ctx->write(&kv_head, sizeof(kv_head));
  12551. data_ctx->write(&kv_size, sizeof(kv_size));
  12552. data_ctx->write(&kv_used, sizeof(kv_used));
  12553. if (kv_buf_size) {
  12554. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  12555. std::vector<uint8_t> tmp_buf;
  12556. for (int il = 0; il < (int) n_layer; ++il) {
  12557. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  12558. tmp_buf.resize(k_size);
  12559. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  12560. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  12561. if (kv_self.recurrent) {
  12562. // v is contiguous for recurrent models
  12563. // TODO: use other tensors for state models than k and v
  12564. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  12565. tmp_buf.resize(v_size);
  12566. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  12567. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  12568. continue;
  12569. }
  12570. // v is not contiguous, copy row by row
  12571. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  12572. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  12573. tmp_buf.resize(v_row_size);
  12574. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  12575. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  12576. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  12577. }
  12578. }
  12579. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  12580. }
  12581. for (uint32_t i = 0; i < kv_head; ++i) {
  12582. const auto & cell = kv_self.cells[i];
  12583. const llama_pos pos = cell.pos;
  12584. const size_t seq_id_size = cell.seq_id.size();
  12585. data_ctx->write(&pos, sizeof(pos));
  12586. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  12587. for (auto seq_id : cell.seq_id) {
  12588. data_ctx->write(&seq_id, sizeof(seq_id));
  12589. }
  12590. }
  12591. }
  12592. }
  12593. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  12594. llama_data_buffer_context data_ctx(dst);
  12595. llama_copy_state_data_internal(ctx, &data_ctx);
  12596. return data_ctx.get_size_written();
  12597. }
  12598. // Sets the state reading from the specified source address
  12599. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  12600. const uint8_t * inp = src;
  12601. // set rng
  12602. {
  12603. size_t rng_size;
  12604. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  12605. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  12606. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  12607. std::istringstream rng_ss(rng_str);
  12608. rng_ss >> ctx->rng;
  12609. GGML_ASSERT(!rng_ss.fail());
  12610. }
  12611. // set output ids
  12612. {
  12613. size_t n_outputs;
  12614. std::vector<int32_t> output_pos;
  12615. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  12616. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  12617. if (n_outputs) {
  12618. output_pos.resize(n_outputs);
  12619. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  12620. inp += n_outputs * sizeof(int32_t);
  12621. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  12622. int32_t id = output_pos[i];
  12623. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  12624. ctx->output_ids[id] = i;
  12625. }
  12626. }
  12627. }
  12628. // set logits
  12629. {
  12630. size_t logits_size;
  12631. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  12632. GGML_ASSERT(ctx->logits_size >= logits_size);
  12633. if (logits_size) {
  12634. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  12635. inp += logits_size * sizeof(float);
  12636. }
  12637. }
  12638. // set embeddings
  12639. {
  12640. size_t embeddings_size;
  12641. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  12642. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  12643. if (embeddings_size) {
  12644. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  12645. inp += embeddings_size * sizeof(float);
  12646. }
  12647. }
  12648. // set kv cache
  12649. {
  12650. const auto & kv_self = ctx->kv_self;
  12651. const auto & hparams = ctx->model.hparams;
  12652. const uint32_t n_layer = hparams.n_layer;
  12653. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  12654. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  12655. size_t kv_buf_size;
  12656. uint32_t kv_head;
  12657. uint32_t kv_size;
  12658. uint32_t kv_used;
  12659. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  12660. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  12661. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  12662. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  12663. if (kv_self.size != kv_size) {
  12664. // the KV cache needs to be big enough to load all the KV cells from the saved state
  12665. GGML_ASSERT(kv_self.size >= kv_head);
  12666. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  12667. __func__, kv_head, kv_size, kv_self.size);
  12668. }
  12669. if (kv_buf_size) {
  12670. const size_t pre_kv_buf_size = inp - src;
  12671. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  12672. for (int il = 0; il < (int) n_layer; ++il) {
  12673. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  12674. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  12675. inp += k_size;
  12676. if (kv_self.recurrent) {
  12677. // v is contiguous for recurrent models
  12678. // TODO: use other tensors for state models than k and v
  12679. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  12680. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  12681. inp += v_size;
  12682. continue;
  12683. }
  12684. // v is not contiguous, copy row by row
  12685. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  12686. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  12687. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  12688. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  12689. inp += v_row_size;
  12690. }
  12691. }
  12692. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  12693. }
  12694. llama_kv_cache_clear(ctx);
  12695. ctx->kv_self.head = kv_head;
  12696. ctx->kv_self.used = kv_used;
  12697. for (uint32_t i = 0; i < kv_head; ++i) {
  12698. llama_pos pos;
  12699. size_t seq_id_size;
  12700. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  12701. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  12702. ctx->kv_self.cells[i].pos = pos;
  12703. llama_seq_id seq_id;
  12704. for (size_t j = 0; j < seq_id_size; ++j) {
  12705. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  12706. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  12707. }
  12708. }
  12709. }
  12710. const size_t nread = inp - src;
  12711. const size_t max_size = llama_get_state_size(ctx);
  12712. GGML_ASSERT(nread <= max_size);
  12713. return nread;
  12714. }
  12715. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  12716. llama_file file(path_session, "rb");
  12717. // sanity checks
  12718. {
  12719. const uint32_t magic = file.read_u32();
  12720. const uint32_t version = file.read_u32();
  12721. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  12722. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  12723. return false;
  12724. }
  12725. llama_hparams session_hparams;
  12726. file.read_raw(&session_hparams, sizeof(llama_hparams));
  12727. if (session_hparams != ctx->model.hparams) {
  12728. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  12729. return false;
  12730. }
  12731. }
  12732. // load the prompt
  12733. {
  12734. const uint32_t n_token_count = file.read_u32();
  12735. if (n_token_count > n_token_capacity) {
  12736. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  12737. return false;
  12738. }
  12739. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  12740. *n_token_count_out = n_token_count;
  12741. }
  12742. // restore the context state
  12743. {
  12744. const size_t n_state_size_cur = file.size - file.tell();
  12745. const size_t n_state_size_max = llama_get_state_size(ctx);
  12746. if (n_state_size_cur > n_state_size_max) {
  12747. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  12748. return false;
  12749. }
  12750. std::vector<uint8_t> state_data(n_state_size_max);
  12751. file.read_raw(state_data.data(), n_state_size_cur);
  12752. llama_set_state_data(ctx, state_data.data());
  12753. }
  12754. return true;
  12755. }
  12756. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  12757. try {
  12758. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  12759. } catch (const std::exception & err) {
  12760. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  12761. return false;
  12762. }
  12763. }
  12764. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  12765. llama_file file(path_session, "wb");
  12766. file.write_u32(LLAMA_SESSION_MAGIC);
  12767. file.write_u32(LLAMA_SESSION_VERSION);
  12768. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  12769. // save the prompt
  12770. file.write_u32((uint32_t) n_token_count);
  12771. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  12772. // save the context state using stream saving
  12773. llama_data_file_context data_ctx(&file);
  12774. llama_copy_state_data_internal(ctx, &data_ctx);
  12775. return true;
  12776. }
  12777. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  12778. ctx->cparams.n_threads = n_threads;
  12779. ctx->cparams.n_threads_batch = n_threads_batch;
  12780. }
  12781. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  12782. ctx->abort_callback = abort_callback;
  12783. ctx->abort_callback_data = abort_callback_data;
  12784. }
  12785. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  12786. ctx->cparams.causal_attn = causal_attn;
  12787. }
  12788. struct llama_batch llama_batch_get_one(
  12789. llama_token * tokens,
  12790. int32_t n_tokens,
  12791. llama_pos pos_0,
  12792. llama_seq_id seq_id) {
  12793. return {
  12794. /*n_tokens =*/ n_tokens,
  12795. /*tokens =*/ tokens,
  12796. /*embd =*/ nullptr,
  12797. /*pos =*/ nullptr,
  12798. /*n_seq_id =*/ nullptr,
  12799. /*seq_id =*/ nullptr,
  12800. /*logits =*/ nullptr,
  12801. /*all_pos_0 =*/ pos_0,
  12802. /*all_pos_1 =*/ 1,
  12803. /*all_seq_id =*/ seq_id,
  12804. };
  12805. }
  12806. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  12807. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  12808. if (embd) {
  12809. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  12810. } else {
  12811. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  12812. }
  12813. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  12814. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  12815. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  12816. for (int i = 0; i < n_tokens_alloc; ++i) {
  12817. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  12818. }
  12819. batch.seq_id[n_tokens_alloc] = nullptr;
  12820. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  12821. return batch;
  12822. }
  12823. void llama_batch_free(struct llama_batch batch) {
  12824. if (batch.token) free(batch.token);
  12825. if (batch.embd) free(batch.embd);
  12826. if (batch.pos) free(batch.pos);
  12827. if (batch.n_seq_id) free(batch.n_seq_id);
  12828. if (batch.seq_id) {
  12829. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  12830. free(batch.seq_id[i]);
  12831. }
  12832. free(batch.seq_id);
  12833. }
  12834. if (batch.logits) free(batch.logits);
  12835. }
  12836. int32_t llama_decode(
  12837. struct llama_context * ctx,
  12838. struct llama_batch batch) {
  12839. const int ret = llama_decode_internal(*ctx, batch);
  12840. if (ret < 0) {
  12841. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  12842. }
  12843. return ret;
  12844. }
  12845. void llama_synchronize(struct llama_context * ctx) {
  12846. ggml_backend_sched_synchronize(ctx->sched);
  12847. // FIXME: if multiple single tokens are evaluated without a synchronization,
  12848. // the stats will be added to the prompt evaluation stats
  12849. // this should only happen when using batch size 1 to evaluate a batch
  12850. // add the evaluation to the stats
  12851. if (ctx->n_queued_tokens == 1) {
  12852. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  12853. ctx->n_eval++;
  12854. } else if (ctx->n_queued_tokens > 1) {
  12855. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  12856. ctx->n_p_eval += ctx->n_queued_tokens;
  12857. }
  12858. // get a more accurate load time, upon first eval
  12859. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  12860. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  12861. ctx->has_evaluated_once = true;
  12862. }
  12863. ctx->n_queued_tokens = 0;
  12864. ctx->t_compute_start_us = 0;
  12865. }
  12866. float * llama_get_logits(struct llama_context * ctx) {
  12867. llama_synchronize(ctx);
  12868. return ctx->logits;
  12869. }
  12870. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  12871. llama_synchronize(ctx);
  12872. try {
  12873. if (ctx->logits == nullptr) {
  12874. throw std::runtime_error("no logits");
  12875. }
  12876. if ((size_t) i >= ctx->output_ids.size()) {
  12877. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  12878. }
  12879. const int32_t j = ctx->output_ids[i];
  12880. if (j < 0) {
  12881. throw std::runtime_error(format("batch.logits[%d] != true", i));
  12882. }
  12883. if ((size_t) j >= ctx->output_size) {
  12884. // This should not happen
  12885. throw std::runtime_error(format("corrupt output buffer (j=%d, output_size=%lu)", j, ctx->output_size));
  12886. }
  12887. return ctx->logits + j*ctx->model.hparams.n_vocab;
  12888. } catch (const std::exception & err) {
  12889. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  12890. #ifndef NDEBUG
  12891. GGML_ASSERT(false);
  12892. #endif
  12893. return nullptr;
  12894. }
  12895. }
  12896. float * llama_get_embeddings(struct llama_context * ctx) {
  12897. llama_synchronize(ctx);
  12898. return ctx->embd;
  12899. }
  12900. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  12901. llama_synchronize(ctx);
  12902. try {
  12903. if (ctx->embd == nullptr) {
  12904. throw std::runtime_error("no embeddings");
  12905. }
  12906. if ((size_t) i >= ctx->output_ids.size()) {
  12907. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  12908. }
  12909. const int32_t j = ctx->output_ids[i];
  12910. if (j < 0) {
  12911. throw std::runtime_error(format("batch.logits[%d] != true", i));
  12912. }
  12913. if ((size_t) j >= ctx->output_size) {
  12914. // This should not happen
  12915. throw std::runtime_error(format("corrupt output buffer (j=%d, output_size=%lu)", j, ctx->output_size));
  12916. }
  12917. return ctx->embd + j*ctx->model.hparams.n_embd;
  12918. } catch (const std::exception & err) {
  12919. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  12920. #ifndef NDEBUG
  12921. GGML_ASSERT(false);
  12922. #endif
  12923. return nullptr;
  12924. }
  12925. }
  12926. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  12927. llama_synchronize(ctx);
  12928. auto it = ctx->embd_seq.find(seq_id);
  12929. if (it == ctx->embd_seq.end()) {
  12930. return nullptr;
  12931. }
  12932. return it->second.data();
  12933. }
  12934. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  12935. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12936. return model->vocab.id_to_token[token].text.c_str();
  12937. }
  12938. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  12939. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12940. return model->vocab.id_to_token[token].score;
  12941. }
  12942. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  12943. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12944. return model->vocab.id_to_token[token].type;
  12945. }
  12946. llama_token llama_token_bos(const struct llama_model * model) {
  12947. return model->vocab.special_bos_id;
  12948. }
  12949. llama_token llama_token_eos(const struct llama_model * model) {
  12950. return model->vocab.special_eos_id;
  12951. }
  12952. llama_token llama_token_nl(const struct llama_model * model) {
  12953. return model->vocab.linefeed_id;
  12954. }
  12955. int32_t llama_add_bos_token(const struct llama_model * model) {
  12956. return model->vocab.special_add_bos;
  12957. }
  12958. int32_t llama_add_eos_token(const struct llama_model * model) {
  12959. return model->vocab.special_add_eos;
  12960. }
  12961. llama_token llama_token_prefix(const struct llama_model * model) {
  12962. return model->vocab.special_prefix_id;
  12963. }
  12964. llama_token llama_token_middle(const struct llama_model * model) {
  12965. return model->vocab.special_middle_id;
  12966. }
  12967. llama_token llama_token_suffix(const struct llama_model * model) {
  12968. return model->vocab.special_suffix_id;
  12969. }
  12970. llama_token llama_token_eot(const struct llama_model * model) {
  12971. return model->vocab.special_eot_id;
  12972. }
  12973. int32_t llama_tokenize(
  12974. const struct llama_model * model,
  12975. const char * text,
  12976. int32_t text_len,
  12977. llama_token * tokens,
  12978. int32_t n_tokens_max,
  12979. bool add_bos,
  12980. bool special) {
  12981. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
  12982. if (n_tokens_max < (int) res.size()) {
  12983. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  12984. return -((int) res.size());
  12985. }
  12986. for (size_t i = 0; i < res.size(); i++) {
  12987. tokens[i] = res[i];
  12988. }
  12989. return res.size();
  12990. }
  12991. static std::string llama_decode_text(const std::string & text) {
  12992. std::string decoded_text;
  12993. auto unicode_sequences = unicode_cpts_from_utf8(text);
  12994. for (auto & unicode_sequence : unicode_sequences) {
  12995. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
  12996. }
  12997. return decoded_text;
  12998. }
  12999. // does not write null-terminator to buf
  13000. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) {
  13001. if (0 <= token && token < llama_n_vocab(model)) {
  13002. switch (llama_vocab_get_type(model->vocab)) {
  13003. case LLAMA_VOCAB_TYPE_WPM:
  13004. case LLAMA_VOCAB_TYPE_SPM: {
  13005. // NOTE: we accept all unsupported token types,
  13006. // suppressing them like CONTROL tokens.
  13007. if (llama_is_normal_token(model->vocab, token)) {
  13008. std::string result = model->vocab.id_to_token[token].text;
  13009. llama_unescape_whitespace(result);
  13010. if (length < (int) result.length()) {
  13011. return -(int) result.length();
  13012. }
  13013. memcpy(buf, result.c_str(), result.length());
  13014. return result.length();
  13015. } else if (llama_is_user_defined_token(model->vocab, token)) {
  13016. std::string result = model->vocab.id_to_token[token].text;
  13017. if (length < (int) result.length()) {
  13018. return -(int) result.length();
  13019. }
  13020. memcpy(buf, result.c_str(), result.length());
  13021. return result.length();
  13022. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  13023. if (length < 3) {
  13024. return -3;
  13025. }
  13026. memcpy(buf, "\xe2\x96\x85", 3);
  13027. return 3;
  13028. } else if (llama_is_control_token(model->vocab, token)) {
  13029. ;
  13030. } else if (llama_is_byte_token(model->vocab, token)) {
  13031. if (length < 1) {
  13032. return -1;
  13033. }
  13034. buf[0] = llama_token_to_byte(model->vocab, token);
  13035. return 1;
  13036. }
  13037. break;
  13038. }
  13039. case LLAMA_VOCAB_TYPE_BPE: {
  13040. // NOTE: we accept all unsupported token types,
  13041. // suppressing them like CONTROL tokens.
  13042. if (llama_is_normal_token(model->vocab, token)) {
  13043. std::string result = model->vocab.id_to_token[token].text;
  13044. result = llama_decode_text(result);
  13045. if (length < (int) result.length()) {
  13046. return -(int) result.length();
  13047. }
  13048. memcpy(buf, result.c_str(), result.length());
  13049. return result.length();
  13050. } else if (llama_is_user_defined_token(model->vocab, token)) {
  13051. std::string result = model->vocab.id_to_token[token].text;
  13052. if (length < (int) result.length()) {
  13053. return -(int) result.length();
  13054. }
  13055. memcpy(buf, result.c_str(), result.length());
  13056. return result.length();
  13057. } else if (llama_is_control_token(model->vocab, token)) {
  13058. ;
  13059. }
  13060. break;
  13061. }
  13062. default:
  13063. GGML_ASSERT(false);
  13064. }
  13065. }
  13066. return 0;
  13067. }
  13068. // trim whitespace from the beginning and end of a string
  13069. static std::string trim(const std::string & str) {
  13070. size_t start = 0;
  13071. size_t end = str.size();
  13072. while (start < end && isspace(str[start])) {
  13073. start += 1;
  13074. }
  13075. while (end > start && isspace(str[end - 1])) {
  13076. end -= 1;
  13077. }
  13078. return str.substr(start, end - start);
  13079. }
  13080. // Simple version of "llama_apply_chat_template" that only works with strings
  13081. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  13082. static int32_t llama_chat_apply_template_internal(
  13083. const std::string & tmpl,
  13084. const std::vector<const llama_chat_message *> & chat,
  13085. std::string & dest, bool add_ass) {
  13086. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  13087. std::stringstream ss;
  13088. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  13089. // chatml template
  13090. for (auto message : chat) {
  13091. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  13092. }
  13093. if (add_ass) {
  13094. ss << "<|im_start|>assistant\n";
  13095. }
  13096. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  13097. // llama2 template and its variants
  13098. // [variant] support system message
  13099. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  13100. // [variant] space before + after response
  13101. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  13102. // [variant] add BOS inside history
  13103. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  13104. // [variant] trim spaces from the input message
  13105. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  13106. // construct the prompt
  13107. bool is_inside_turn = true; // skip BOS at the beginning
  13108. ss << "[INST] ";
  13109. for (auto message : chat) {
  13110. std::string content = strip_message ? trim(message->content) : message->content;
  13111. std::string role(message->role);
  13112. if (!is_inside_turn) {
  13113. is_inside_turn = true;
  13114. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  13115. }
  13116. if (role == "system") {
  13117. if (support_system_message) {
  13118. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  13119. } else {
  13120. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  13121. ss << content << "\n";
  13122. }
  13123. } else if (role == "user") {
  13124. ss << content << " [/INST]";
  13125. } else {
  13126. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  13127. is_inside_turn = false;
  13128. }
  13129. }
  13130. // llama2 templates seem to not care about "add_generation_prompt"
  13131. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  13132. // zephyr template
  13133. for (auto message : chat) {
  13134. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  13135. }
  13136. if (add_ass) {
  13137. ss << "<|assistant|>\n";
  13138. }
  13139. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  13140. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  13141. for (auto message : chat) {
  13142. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  13143. ss << bos << message->role << "\n" << message->content << "</s>\n";
  13144. }
  13145. if (add_ass) {
  13146. ss << "<s>assistant\n";
  13147. }
  13148. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  13149. // google/gemma-7b-it
  13150. std::string system_prompt = "";
  13151. for (auto message : chat) {
  13152. std::string role(message->role);
  13153. if (role == "system") {
  13154. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  13155. system_prompt = trim(message->content);
  13156. continue;
  13157. }
  13158. // in gemma, "assistant" is "model"
  13159. role = role == "assistant" ? "model" : message->role;
  13160. ss << "<start_of_turn>" << role << "\n";
  13161. if (!system_prompt.empty() && role != "model") {
  13162. ss << system_prompt << "\n\n";
  13163. system_prompt = "";
  13164. }
  13165. ss << trim(message->content) << "<end_of_turn>\n";
  13166. }
  13167. if (add_ass) {
  13168. ss << "<start_of_turn>model\n";
  13169. }
  13170. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  13171. // OrionStarAI/Orion-14B-Chat
  13172. std::string system_prompt = "";
  13173. for (auto message : chat) {
  13174. std::string role(message->role);
  13175. if (role == "system") {
  13176. // there is no system message support, we will merge it with user prompt
  13177. system_prompt = message->content;
  13178. continue;
  13179. } else if (role == "user") {
  13180. ss << "Human: ";
  13181. if (!system_prompt.empty()) {
  13182. ss << system_prompt << "\n\n";
  13183. system_prompt = "";
  13184. }
  13185. ss << message->content << "\n\nAssistant: </s>";
  13186. } else {
  13187. ss << message->content << "</s>";
  13188. }
  13189. }
  13190. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  13191. // openchat/openchat-3.5-0106,
  13192. for (auto message : chat) {
  13193. std::string role(message->role);
  13194. if (role == "system") {
  13195. ss << message->content << "<|end_of_turn|>";
  13196. } else {
  13197. role[0] = toupper(role[0]);
  13198. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  13199. }
  13200. }
  13201. if (add_ass) {
  13202. ss << "GPT4 Correct Assistant:";
  13203. }
  13204. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  13205. // eachadea/vicuna-13b-1.1 (and Orca variant)
  13206. for (auto message : chat) {
  13207. std::string role(message->role);
  13208. if (role == "system") {
  13209. // Orca-Vicuna variant uses a system prefix
  13210. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  13211. ss << "SYSTEM: " << message->content << "\n";
  13212. } else {
  13213. ss << message->content << "\n\n";
  13214. }
  13215. } else if (role == "user") {
  13216. ss << "USER: " << message->content << "\n";
  13217. } else if (role == "assistant") {
  13218. ss << "ASSISTANT: " << message->content << "</s>\n";
  13219. }
  13220. }
  13221. if (add_ass) {
  13222. ss << "ASSISTANT:";
  13223. }
  13224. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  13225. // deepseek-ai/deepseek-coder-33b-instruct
  13226. for (auto message : chat) {
  13227. std::string role(message->role);
  13228. if (role == "system") {
  13229. ss << message->content;
  13230. } else if (role == "user") {
  13231. ss << "### Instruction:\n" << message->content << "\n";
  13232. } else if (role == "assistant") {
  13233. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  13234. }
  13235. }
  13236. if (add_ass) {
  13237. ss << "### Response:\n";
  13238. }
  13239. } else {
  13240. // template not supported
  13241. return -1;
  13242. }
  13243. dest = ss.str();
  13244. return dest.size();
  13245. }
  13246. LLAMA_API int32_t llama_chat_apply_template(
  13247. const struct llama_model * model,
  13248. const char * tmpl,
  13249. const struct llama_chat_message * chat,
  13250. size_t n_msg,
  13251. bool add_ass,
  13252. char * buf,
  13253. int32_t length) {
  13254. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  13255. if (tmpl == nullptr) {
  13256. GGML_ASSERT(model != nullptr);
  13257. // load template from model
  13258. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  13259. std::string template_key = "tokenizer.chat_template";
  13260. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  13261. if (res < 0) {
  13262. // worst case: there is no information about template, we will use chatml by default
  13263. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  13264. } else {
  13265. curr_tmpl = std::string(model_template.data(), model_template.size());
  13266. }
  13267. }
  13268. // format the chat to string
  13269. std::vector<const llama_chat_message *> chat_vec;
  13270. chat_vec.resize(n_msg);
  13271. for (size_t i = 0; i < n_msg; i++) {
  13272. chat_vec[i] = &chat[i];
  13273. }
  13274. std::string formatted_chat;
  13275. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  13276. if (res < 0) {
  13277. return res;
  13278. }
  13279. if (buf && length > 0) {
  13280. strncpy(buf, formatted_chat.c_str(), length);
  13281. }
  13282. return res;
  13283. }
  13284. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  13285. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  13286. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  13287. return strlen(split_path);
  13288. }
  13289. return 0;
  13290. }
  13291. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  13292. std::string str_split_path(split_path);
  13293. char postfix[32];
  13294. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  13295. std::string str_postfix(postfix);
  13296. // check if dest ends with postfix
  13297. int size_prefix = str_split_path.size() - str_postfix.size();
  13298. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  13299. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  13300. return size_prefix;
  13301. }
  13302. return 0;
  13303. }
  13304. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  13305. struct llama_timings result = {
  13306. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  13307. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  13308. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  13309. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  13310. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  13311. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  13312. /*.n_sample =*/ std::max(1, ctx->n_sample),
  13313. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  13314. /*.n_eval =*/ std::max(1, ctx->n_eval),
  13315. };
  13316. return result;
  13317. }
  13318. void llama_print_timings(struct llama_context * ctx) {
  13319. const llama_timings timings = llama_get_timings(ctx);
  13320. LLAMA_LOG_INFO("\n");
  13321. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  13322. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  13323. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  13324. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  13325. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  13326. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  13327. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  13328. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  13329. }
  13330. void llama_reset_timings(struct llama_context * ctx) {
  13331. ctx->t_start_us = ggml_time_us();
  13332. ctx->t_sample_us = ctx->n_sample = 0;
  13333. ctx->t_eval_us = ctx->n_eval = 0;
  13334. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  13335. }
  13336. const char * llama_print_system_info(void) {
  13337. static std::string s;
  13338. s = "";
  13339. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  13340. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  13341. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  13342. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  13343. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  13344. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  13345. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  13346. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  13347. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  13348. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  13349. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  13350. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  13351. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  13352. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  13353. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  13354. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  13355. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  13356. return s.c_str();
  13357. }
  13358. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  13359. fprintf(stream, "\n");
  13360. fprintf(stream, "###########\n");
  13361. fprintf(stream, "# Timings #\n");
  13362. fprintf(stream, "###########\n");
  13363. fprintf(stream, "\n");
  13364. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  13365. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  13366. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  13367. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  13368. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  13369. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  13370. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  13371. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  13372. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  13373. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  13374. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  13375. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  13376. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  13377. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  13378. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  13379. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  13380. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  13381. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  13382. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  13383. }
  13384. // For internal test use
  13385. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  13386. struct llama_context * ctx
  13387. ) {
  13388. return ctx->model.tensors_by_name;
  13389. }
  13390. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  13391. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  13392. g_state.log_callback_user_data = user_data;
  13393. #ifdef GGML_USE_METAL
  13394. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  13395. #endif
  13396. }
  13397. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  13398. va_list args_copy;
  13399. va_copy(args_copy, args);
  13400. char buffer[128];
  13401. int len = vsnprintf(buffer, 128, format, args);
  13402. if (len < 128) {
  13403. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  13404. } else {
  13405. char* buffer2 = new char[len+1];
  13406. vsnprintf(buffer2, len+1, format, args_copy);
  13407. buffer2[len] = 0;
  13408. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  13409. delete[] buffer2;
  13410. }
  13411. va_end(args_copy);
  13412. }
  13413. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  13414. va_list args;
  13415. va_start(args, format);
  13416. llama_log_internal_v(level, format, args);
  13417. va_end(args);
  13418. }
  13419. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  13420. (void) level;
  13421. (void) user_data;
  13422. fputs(text, stderr);
  13423. fflush(stderr);
  13424. }