ggml.c 372 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include <cublas_v2.h>
  128. #include <cuda_runtime.h>
  129. #define CUDA_CHECK(err) \
  130. do { \
  131. cudaError_t err_ = (err); \
  132. if (err_ != cudaSuccess) { \
  133. printf("CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
  134. cudaGetErrorString(err_)); \
  135. exit(1); \
  136. } \
  137. } while (0)
  138. #define CUBLAS_CHECK(err) \
  139. do { \
  140. cublasStatus_t err_ = (err); \
  141. if (err_ != CUBLAS_STATUS_SUCCESS) { \
  142. printf("cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
  143. exit(1); \
  144. } \
  145. } while (0)
  146. static cublasHandle_t cublasH = NULL;
  147. static cudaStream_t cudaStream = NULL;
  148. static void init_cublas(void) {
  149. if (cublasH == NULL) {
  150. // create cublas handle, bind a stream
  151. CUBLAS_CHECK(cublasCreate(&cublasH));
  152. CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
  153. CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
  154. // configure logging to stdout
  155. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
  156. }
  157. }
  158. #endif
  159. #undef MIN
  160. #undef MAX
  161. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  162. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  163. // floating point type used to accumulate sums
  164. typedef double ggml_float;
  165. // 16-bit float
  166. // on Arm, we use __fp16
  167. // on x86, we use uint16_t
  168. #ifdef __ARM_NEON
  169. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  170. //
  171. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  172. //
  173. #include <arm_neon.h>
  174. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  175. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  176. #define GGML_FP16_TO_FP32(x) ((float) (x))
  177. #define GGML_FP32_TO_FP16(x) (x)
  178. #else
  179. #ifdef __wasm_simd128__
  180. #include <wasm_simd128.h>
  181. #else
  182. #ifdef __POWER9_VECTOR__
  183. #include <altivec.h>
  184. #undef bool
  185. #define bool _Bool
  186. #else
  187. #include <immintrin.h>
  188. #endif
  189. #endif
  190. #ifdef __F16C__
  191. #ifdef _MSC_VER
  192. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  193. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  194. #else
  195. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  196. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  197. #endif
  198. #elif defined(__POWER9_VECTOR__)
  199. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  200. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  201. /* the inline asm below is about 12% faster than the lookup method */
  202. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  203. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  204. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  205. register float f;
  206. register double d;
  207. __asm__(
  208. "mtfprd %0,%2\n"
  209. "xscvhpdp %0,%0\n"
  210. "frsp %1,%0\n" :
  211. /* temp */ "=d"(d),
  212. /* out */ "=f"(f):
  213. /* in */ "r"(h));
  214. return f;
  215. }
  216. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  217. register double d;
  218. register ggml_fp16_t r;
  219. __asm__( /* xscvdphp can work on double or single precision */
  220. "xscvdphp %0,%2\n"
  221. "mffprd %1,%0\n" :
  222. /* temp */ "=d"(d),
  223. /* out */ "=r"(r):
  224. /* in */ "f"(f));
  225. return r;
  226. }
  227. #else
  228. // FP16 <-> FP32
  229. // ref: https://github.com/Maratyszcza/FP16
  230. static inline float fp32_from_bits(uint32_t w) {
  231. union {
  232. uint32_t as_bits;
  233. float as_value;
  234. } fp32;
  235. fp32.as_bits = w;
  236. return fp32.as_value;
  237. }
  238. static inline uint32_t fp32_to_bits(float f) {
  239. union {
  240. float as_value;
  241. uint32_t as_bits;
  242. } fp32;
  243. fp32.as_value = f;
  244. return fp32.as_bits;
  245. }
  246. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  247. const uint32_t w = (uint32_t) h << 16;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. const uint32_t two_w = w + w;
  250. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  251. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  252. const float exp_scale = 0x1.0p-112f;
  253. #else
  254. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  255. #endif
  256. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  257. const uint32_t magic_mask = UINT32_C(126) << 23;
  258. const float magic_bias = 0.5f;
  259. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  260. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  261. const uint32_t result = sign |
  262. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  263. return fp32_from_bits(result);
  264. }
  265. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  266. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  267. const float scale_to_inf = 0x1.0p+112f;
  268. const float scale_to_zero = 0x1.0p-110f;
  269. #else
  270. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  271. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  272. #endif
  273. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  274. const uint32_t w = fp32_to_bits(f);
  275. const uint32_t shl1_w = w + w;
  276. const uint32_t sign = w & UINT32_C(0x80000000);
  277. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  278. if (bias < UINT32_C(0x71000000)) {
  279. bias = UINT32_C(0x71000000);
  280. }
  281. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  282. const uint32_t bits = fp32_to_bits(base);
  283. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  284. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  285. const uint32_t nonsign = exp_bits + mantissa_bits;
  286. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  287. }
  288. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  289. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  290. #endif // __F16C__
  291. #endif // __ARM_NEON
  292. //
  293. // global data
  294. //
  295. // precomputed gelu table for f16 (128 KB)
  296. static ggml_fp16_t table_gelu_f16[1 << 16];
  297. // precomputed silu table for f16 (128 KB)
  298. static ggml_fp16_t table_silu_f16[1 << 16];
  299. // precomputed exp table for f16 (128 KB)
  300. static ggml_fp16_t table_exp_f16[1 << 16];
  301. // precomputed f32 table for f16 (256 KB)
  302. static float table_f32_f16[1 << 16];
  303. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  304. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  305. // This is also true for POWER9.
  306. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  307. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  308. uint16_t s;
  309. memcpy(&s, &f, sizeof(uint16_t));
  310. return table_f32_f16[s];
  311. }
  312. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  313. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  314. #endif
  315. // note: do not use these inside ggml.c
  316. // these are meant to be used via the ggml.h API
  317. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  318. return (float) GGML_FP16_TO_FP32(x);
  319. }
  320. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  321. return GGML_FP32_TO_FP16(x);
  322. }
  323. //
  324. // timing
  325. //
  326. #if defined(_MSC_VER) || defined(__MINGW32__)
  327. static int64_t timer_freq;
  328. void ggml_time_init(void) {
  329. LARGE_INTEGER frequency;
  330. QueryPerformanceFrequency(&frequency);
  331. timer_freq = frequency.QuadPart;
  332. }
  333. int64_t ggml_time_ms(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return (t.QuadPart * 1000) / timer_freq;
  337. }
  338. int64_t ggml_time_us(void) {
  339. LARGE_INTEGER t;
  340. QueryPerformanceCounter(&t);
  341. return (t.QuadPart * 1000000) / timer_freq;
  342. }
  343. #else
  344. void ggml_time_init(void) {}
  345. int64_t ggml_time_ms(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  349. }
  350. int64_t ggml_time_us(void) {
  351. struct timespec ts;
  352. clock_gettime(CLOCK_MONOTONIC, &ts);
  353. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  354. }
  355. #endif
  356. int64_t ggml_cycles(void) {
  357. return clock();
  358. }
  359. int64_t ggml_cycles_per_ms(void) {
  360. return CLOCKS_PER_SEC/1000;
  361. }
  362. #ifdef GGML_PERF
  363. #define ggml_perf_time_ms() ggml_time_ms()
  364. #define ggml_perf_time_us() ggml_time_us()
  365. #define ggml_perf_cycles() ggml_cycles()
  366. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  367. #else
  368. #define ggml_perf_time_ms() 0
  369. #define ggml_perf_time_us() 0
  370. #define ggml_perf_cycles() 0
  371. #define ggml_perf_cycles_per_ms() 0
  372. #endif
  373. //
  374. // cache line
  375. //
  376. #if defined(__cpp_lib_hardware_interference_size)
  377. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  378. #else
  379. #if defined(__POWER9_VECTOR__)
  380. #define CACHE_LINE_SIZE 128
  381. #else
  382. #define CACHE_LINE_SIZE 64
  383. #endif
  384. #endif
  385. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  386. //
  387. // quantization
  388. //
  389. // AVX routines provided by GH user Const-me
  390. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  391. #if __AVX2__ || __AVX512F__
  392. // Unpack 32 4-bit fields into 32 bytes
  393. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  394. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  395. {
  396. // Load 16 bytes from memory
  397. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  398. // Expand bytes into uint16_t values
  399. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  400. // Unpack values into individual bytes
  401. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  402. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  403. __m256i low = _mm256_and_si256( lowMask, bytes );
  404. high = _mm256_slli_epi16( high, 4 );
  405. bytes = _mm256_or_si256( low, high );
  406. return bytes;
  407. }
  408. static inline __m128i packNibbles( __m256i bytes )
  409. {
  410. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  411. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  412. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  413. __m256i low = _mm256_and_si256( lowByte, bytes );
  414. high = _mm256_srli_epi16( high, 4 );
  415. bytes = _mm256_or_si256( low, high );
  416. // Compress uint16_t lanes into bytes
  417. __m128i r0 = _mm256_castsi256_si128( bytes );
  418. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  419. return _mm_packus_epi16( r0, r1 );
  420. }
  421. #elif __AVX__
  422. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  423. {
  424. // Load 8 bytes from memory
  425. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  426. // Expand bytes into uint16_t values
  427. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  428. // Unpack values into individual bytes
  429. const __m128i lowMask = _mm_set1_epi8( 0xF );
  430. __m128i high = _mm_andnot_si128( lowMask, bytes );
  431. __m128i low = _mm_and_si128( lowMask, bytes );
  432. high = _mm_slli_epi16( high, 4 );
  433. bytes = _mm_or_si128( low, high );
  434. return bytes;
  435. }
  436. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  437. {
  438. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  439. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  440. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  441. __m128i low = _mm_and_si128( lowByte, bytes1 );
  442. high = _mm_srli_epi16( high, 4 );
  443. bytes1 = _mm_or_si128( low, high );
  444. high = _mm_andnot_si128( lowByte, bytes2 );
  445. low = _mm_and_si128( lowByte, bytes2 );
  446. high = _mm_srli_epi16( high, 4 );
  447. bytes2 = _mm_or_si128( low, high );
  448. return _mm_packus_epi16( bytes1, bytes2);
  449. }
  450. #endif
  451. #if __ARM_NEON
  452. #if !defined(__aarch64__)
  453. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  454. return
  455. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  456. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  457. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  458. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  459. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  460. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  461. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  462. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  463. }
  464. inline static int16_t vaddvq_s8(int8x16_t v) {
  465. return
  466. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  467. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  468. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  469. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  470. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  471. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  472. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  473. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  474. }
  475. inline static int32_t vaddvq_s16(int16x8_t v) {
  476. return
  477. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  478. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  479. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  480. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  481. }
  482. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  483. return
  484. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  485. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  486. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  487. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  488. }
  489. inline static int32_t vaddvq_s32(int32x4_t v) {
  490. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  491. }
  492. inline static float vaddvq_f32(float32x4_t v) {
  493. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  494. }
  495. float vminvq_f32(float32x4_t v) {
  496. return
  497. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  498. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  499. }
  500. float vmaxvq_f32(float32x4_t v) {
  501. return
  502. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  503. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  504. }
  505. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  506. return vget_low_s8(vcombine_s8(a, b));
  507. }
  508. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  509. return vget_high_s8(vcombine_s8(a, b));
  510. }
  511. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  512. return vget_low_u8(vcombine_u8(a, b));
  513. }
  514. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  515. return vget_high_u8(vcombine_u8(a, b));
  516. }
  517. #endif
  518. #endif
  519. #define QK4_0 32
  520. typedef struct {
  521. float d; // delta
  522. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  523. } block_q4_0;
  524. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  525. #define QK4_1 32
  526. typedef struct {
  527. float d; // delta
  528. float m; // min
  529. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  530. } block_q4_1;
  531. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
  532. #define QK4_2 16
  533. typedef struct {
  534. ggml_fp16_t d; // delta
  535. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  536. } block_q4_2;
  537. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  538. #define QK8_0 32
  539. typedef struct {
  540. float d; // delta
  541. int8_t qs[QK8_0]; // quants
  542. } block_q8_0;
  543. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  544. // reference implementation for deterministic creation of model files
  545. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  546. assert(k % QK4_0 == 0);
  547. const int nb = k / QK4_0;
  548. uint8_t pp[QK4_0/2];
  549. for (int i = 0; i < nb; i++) {
  550. float amax = 0.0f; // absolute max
  551. for (int l = 0; l < QK4_0; l++) {
  552. const float v = x[i*QK4_0 + l];
  553. amax = MAX(amax, fabsf(v));
  554. }
  555. const float d = amax / ((1 << 3) - 1);
  556. const float id = d ? 1.0f/d : 0.0f;
  557. y[i].d = d;
  558. for (int l = 0; l < QK4_0; l += 2) {
  559. const float v0 = x[i*QK4_0 + l + 0]*id;
  560. const float v1 = x[i*QK4_0 + l + 1]*id;
  561. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  562. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  563. assert(vi0 < 16);
  564. assert(vi1 < 16);
  565. pp[l/2] = vi0 | (vi1 << 4);
  566. }
  567. memcpy(y[i].qs, pp, sizeof(pp));
  568. }
  569. }
  570. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  571. assert(k % QK4_0 == 0);
  572. const int nb = k / QK4_0;
  573. block_q4_0 * restrict y = vy;
  574. #if defined(__POWER9_VECTOR__)
  575. const vector float v85 = vec_splats(8.5f);
  576. for (int i = 0; i < nb; i++) {
  577. float amax = 0.0f; // absolute max
  578. vector float srcv [8];
  579. vector float asrcv[8];
  580. vector float amaxv[8];
  581. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  582. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  583. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  584. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  585. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  586. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  587. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  588. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  589. amax = MAX(
  590. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  591. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  592. const float d = amax / ((1 << 3) - 1);
  593. const float id = d ? 1.0/d : 0.0;
  594. y[i].d = d;
  595. const vector float vid = vec_splats(id);
  596. uint8_t * restrict pb = y[i].qs;
  597. for (int l = 0; l < 8; l++) {
  598. const vector float vf = vec_madd(srcv[l], vid, v85);
  599. const vector signed int vi = vec_signed(vf);
  600. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  601. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  602. }
  603. }
  604. #elif __ARM_NEON
  605. for (int i = 0; i < nb; i++) {
  606. float32x4_t srcv [8];
  607. float32x4_t asrcv[8];
  608. float32x4_t amaxv[8];
  609. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  610. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  611. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  612. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  613. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  614. const float amax = vmaxvq_f32(amaxv[0]);
  615. const float d = amax / ((1 << 3) - 1);
  616. const float id = d ? 1.0f/d : 0.0f;
  617. y[i].d = d;
  618. for (int l = 0; l < 8; l++) {
  619. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  620. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  621. const int32x4_t vi = vcvtq_s32_f32(vf);
  622. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  623. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  624. }
  625. }
  626. #elif defined(__AVX2__)
  627. for (int i = 0; i < nb; i++) {
  628. // Load elements into 4 AVX vectors
  629. __m256 v0 = _mm256_loadu_ps( x );
  630. __m256 v1 = _mm256_loadu_ps( x + 8 );
  631. __m256 v2 = _mm256_loadu_ps( x + 16 );
  632. __m256 v3 = _mm256_loadu_ps( x + 24 );
  633. x += 32;
  634. // Compute max(abs(e)) for the block
  635. const __m256 signBit = _mm256_set1_ps( -0.0f );
  636. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  637. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  638. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  639. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  640. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  641. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  642. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  643. const float maxScalar = _mm_cvtss_f32( max4 );
  644. // Quantize these floats
  645. const float d = maxScalar / 7.0f;
  646. y[i].d = d;
  647. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  648. const __m256 mul = _mm256_set1_ps( id );
  649. // Apply the multiplier
  650. v0 = _mm256_mul_ps( v0, mul );
  651. v1 = _mm256_mul_ps( v1, mul );
  652. v2 = _mm256_mul_ps( v2, mul );
  653. v3 = _mm256_mul_ps( v3, mul );
  654. // Round to nearest integer
  655. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  656. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  657. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  658. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  659. // Convert floats to integers
  660. __m256i i0 = _mm256_cvtps_epi32( v0 );
  661. __m256i i1 = _mm256_cvtps_epi32( v1 );
  662. __m256i i2 = _mm256_cvtps_epi32( v2 );
  663. __m256i i3 = _mm256_cvtps_epi32( v3 );
  664. // Convert int32 to int16
  665. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  666. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  667. // Convert int16 to int8
  668. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  669. // We got our precious signed bytes, but the order is now wrong
  670. // These AVX2 pack instructions process 16-byte pieces independently
  671. // The following instruction is fixing the order
  672. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  673. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  674. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  675. const __m256i off = _mm256_set1_epi8( 8 );
  676. i0 = _mm256_add_epi8( i0, off );
  677. // Compress the vector into 4 bit/value, and store
  678. __m128i res = packNibbles( i0 );
  679. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  680. }
  681. #elif defined(__AVX__)
  682. for (int i = 0; i < nb; i++) {
  683. // Load elements into 4 AVX vectors
  684. __m256 v0 = _mm256_loadu_ps( x );
  685. __m256 v1 = _mm256_loadu_ps( x + 8 );
  686. __m256 v2 = _mm256_loadu_ps( x + 16 );
  687. __m256 v3 = _mm256_loadu_ps( x + 24 );
  688. x += 32;
  689. // Compute max(abs(e)) for the block
  690. const __m256 signBit = _mm256_set1_ps( -0.0f );
  691. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  692. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  693. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  694. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  695. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  696. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  697. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  698. const float maxScalar = _mm_cvtss_f32( max4 );
  699. // Quantize these floats
  700. const float d = maxScalar / 7.0f;
  701. y[i].d = d;
  702. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  703. const __m256 mul = _mm256_set1_ps( id );
  704. // Apply the multiplier
  705. v0 = _mm256_mul_ps( v0, mul );
  706. v1 = _mm256_mul_ps( v1, mul );
  707. v2 = _mm256_mul_ps( v2, mul );
  708. v3 = _mm256_mul_ps( v3, mul );
  709. // Round to nearest integer
  710. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  711. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  712. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  713. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  714. // Convert floats to integers
  715. __m256i i0 = _mm256_cvtps_epi32( v0 );
  716. __m256i i1 = _mm256_cvtps_epi32( v1 );
  717. __m256i i2 = _mm256_cvtps_epi32( v2 );
  718. __m256i i3 = _mm256_cvtps_epi32( v3 );
  719. // Since we don't have in AVX some necessary functions,
  720. // we split the registers in half and call AVX2 analogs from SSE
  721. __m128i ni0 = _mm256_castsi256_si128( i0 );
  722. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  723. __m128i ni2 = _mm256_castsi256_si128( i1 );
  724. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  725. __m128i ni4 = _mm256_castsi256_si128( i2 );
  726. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  727. __m128i ni6 = _mm256_castsi256_si128( i3 );
  728. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  729. // Convert int32 to int16
  730. ni0 = _mm_packs_epi32( ni0, ni1 );
  731. ni2 = _mm_packs_epi32( ni2, ni3 );
  732. ni4 = _mm_packs_epi32( ni4, ni5 );
  733. ni6 = _mm_packs_epi32( ni6, ni7 );
  734. // Convert int16 to int8
  735. ni0 = _mm_packs_epi16( ni0, ni2 );
  736. ni4 = _mm_packs_epi16( ni4, ni6 );
  737. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  738. const __m128i off = _mm_set1_epi8( 8);
  739. ni0 = _mm_add_epi8( ni0, off );
  740. ni4 = _mm_add_epi8( ni4, off );
  741. // Compress the vector into 4 bit/value, and store
  742. __m128i res = packNibbles( ni0, ni4 );
  743. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  744. }
  745. #elif defined(__wasm_simd128__)
  746. for (int i = 0; i < nb; i++) {
  747. float amax = 0.0f; // absolute max
  748. v128_t srcv [8];
  749. v128_t asrcv[8];
  750. v128_t amaxv[8];
  751. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  752. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  753. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  754. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  755. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  756. amax = MAX(
  757. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  758. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  759. const float d = amax / ((1 << 3) - 1);
  760. const float id = d ? 1.0/d : 0.0;
  761. y[i].d = d;
  762. for (int l = 0; l < 8; l++) {
  763. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  764. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  765. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  766. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  767. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  768. }
  769. }
  770. #else
  771. // scalar
  772. quantize_row_q4_0_reference(x, y, k);
  773. #endif
  774. }
  775. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  776. assert(k % QK4_1 == 0);
  777. const int nb = k / QK4_1;
  778. block_q4_1 * restrict y = vy;
  779. uint8_t pp[QK4_1/2];
  780. for (int i = 0; i < nb; i++) {
  781. float min = FLT_MAX;
  782. float max = -FLT_MAX;
  783. for (int l = 0; l < QK4_1; l++) {
  784. const float v = x[i*QK4_1 + l];
  785. if (v < min) min = v;
  786. if (v > max) max = v;
  787. }
  788. const float d = (max - min) / ((1 << 4) - 1);
  789. const float id = d ? 1.0f/d : 0.0f;
  790. y[i].d = d;
  791. y[i].m = min;
  792. for (int l = 0; l < QK4_1; l += 2) {
  793. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  794. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  795. const uint8_t vi0 = roundf(v0);
  796. const uint8_t vi1 = roundf(v1);
  797. assert(vi0 < 16);
  798. assert(vi1 < 16);
  799. pp[l/2] = vi0 | (vi1 << 4);
  800. }
  801. memcpy(y[i].qs, pp, sizeof(pp));
  802. }
  803. }
  804. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  805. assert(k % QK4_1 == 0);
  806. const int nb = k / QK4_1;
  807. block_q4_1 * restrict y = vy;
  808. #if defined(__AVX2__)
  809. for (int i = 0; i < nb; i++) {
  810. // Load elements into 4 AVX vectors
  811. __m256 v0 = _mm256_loadu_ps( x );
  812. __m256 v1 = _mm256_loadu_ps( x + 8 );
  813. __m256 v2 = _mm256_loadu_ps( x + 16 );
  814. __m256 v3 = _mm256_loadu_ps( x + 24 );
  815. x += 32;
  816. // Compute max for the block
  817. __m256 vmax;
  818. vmax = _mm256_max_ps( v0, v1 );
  819. vmax = _mm256_max_ps( vmax, v2 );
  820. vmax = _mm256_max_ps( vmax, v3 );
  821. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  822. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  823. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  824. const float maxScalar = _mm_cvtss_f32( max4 );
  825. // Compute min for the block
  826. __m256 vmin;
  827. vmin = _mm256_min_ps( v0, v1 );
  828. vmin = _mm256_min_ps( vmin, v2 );
  829. vmin = _mm256_min_ps( vmin, v3 );
  830. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  831. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  832. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  833. const float minScalar = _mm_cvtss_f32( min4 );
  834. // Quantize these floats
  835. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  836. const float id = d ? 1.0f/d : 0.0f;
  837. y[i].m = minScalar;
  838. y[i].d = d;
  839. // x = (x-min)*id
  840. const __m256 mul = _mm256_set1_ps( id );
  841. const __m256 off = _mm256_set1_ps( minScalar );
  842. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  843. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  844. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  845. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  846. // Round to nearest integer
  847. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  848. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  849. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  850. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  851. // Convert floats to integers
  852. __m256i i0 = _mm256_cvtps_epi32( v0 );
  853. __m256i i1 = _mm256_cvtps_epi32( v1 );
  854. __m256i i2 = _mm256_cvtps_epi32( v2 );
  855. __m256i i3 = _mm256_cvtps_epi32( v3 );
  856. // Convert int32 to int16
  857. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  858. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  859. // Convert int16 to int8
  860. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  861. // We got our precious signed bytes, but the order is now wrong
  862. // These AVX2 pack instructions process 16-byte pieces independently
  863. // The following instruction is fixing the order
  864. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  865. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  866. // Compress the vector into 4 bit/value, and store
  867. __m128i res = packNibbles( i0 );
  868. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  869. }
  870. #elif __ARM_NEON
  871. for (int i = 0; i < nb; i++) {
  872. float32x4_t srcv[8];
  873. float32x4_t minv[8];
  874. float32x4_t maxv[8];
  875. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  876. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  877. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  878. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  879. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  880. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  881. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  882. const float min = vminvq_f32(minv[0]);
  883. const float max = vmaxvq_f32(maxv[0]);
  884. const float d = (max - min) / ((1 << 4) - 1);
  885. const float id = d ? 1.0f/d : 0.0f;
  886. y[i].d = d;
  887. y[i].m = min;
  888. const float32x4_t minv0 = vdupq_n_f32(min);
  889. for (int l = 0; l < 8; l++) {
  890. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  891. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  892. const int32x4_t vi = vcvtq_s32_f32(vf);
  893. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  894. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  895. }
  896. }
  897. #else
  898. // scalar
  899. quantize_row_q4_1_reference(x, vy, k);
  900. #endif
  901. }
  902. // reference implementation for deterministic creation of model files
  903. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  904. assert(k % QK4_2 == 0);
  905. const int nb = k / QK4_2;
  906. for (int i = 0; i < nb; i++) {
  907. float amax = 0.0f; // absolute max
  908. for (int l = 0; l < QK4_2; l++) {
  909. const float v = x[i*QK4_2 + l];
  910. amax = MAX(amax, fabsf(v));
  911. }
  912. const float d = amax / ((1 << 3) - 1);
  913. const float id = d ? 1.0f/d : 0.0f;
  914. y[i].d = GGML_FP32_TO_FP16(d);
  915. for (int l = 0; l < QK4_2; l += 2) {
  916. const float v0 = x[i*QK4_2 + l + 0]*id;
  917. const float v1 = x[i*QK4_2 + l + 1]*id;
  918. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  919. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  920. assert(vi0 < 16);
  921. assert(vi1 < 16);
  922. y[i].qs[l/2] = vi0 | (vi1 << 4);
  923. }
  924. }
  925. }
  926. static inline int nearest_int(float fval) {
  927. assert(fval <= 4194303.f);
  928. float val = fval + 12582912.f;
  929. int i; memcpy(&i, &val, sizeof(int));
  930. return (i & 0x007fffff) - 0x00400000;
  931. }
  932. static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
  933. const float * restrict candidates, int8_t * restrict L) {
  934. assert (nmin >= INT8_MIN);
  935. assert (nmax <= INT8_MAX);
  936. float amax = 0;
  937. for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
  938. if (!amax) { // all zero
  939. for (int i=0; i<n; ++i) L[i] = 0;
  940. return 1.f;
  941. }
  942. float best = 0, bestScale = 0;
  943. for (int si=0; si<nCandidates; ++si) {
  944. float iscale = candidates[si]/amax;
  945. float sumlxP = 0; int suml2P = 0;
  946. float sumlxM = 0; int suml2M = 0;
  947. for (int i=0; i<n; ++i) {
  948. int l = nearest_int(iscale*X[i]);
  949. int lp = MAX(nmin, MIN(nmax, +l));
  950. int lm = MAX(nmin, MIN(nmax, -l));
  951. sumlxP += X[i]*lp; suml2P += lp*lp;
  952. sumlxM += X[i]*lm; suml2M += lm*lm;
  953. }
  954. float sumlxP2 = sumlxP*sumlxP;
  955. float sumlxM2 = sumlxM*sumlxM;
  956. if (sumlxP2*suml2M > sumlxM2*suml2P) {
  957. if (sumlxP2 > best*suml2P) {
  958. best = sumlxP2/suml2P; bestScale = iscale;
  959. }
  960. } else {
  961. if (sumlxM2 > best*suml2M) {
  962. best = sumlxM2/suml2M; bestScale = -iscale;
  963. }
  964. }
  965. }
  966. float sumlx = 0; int suml2 = 0;
  967. for (int i=0; i<n; ++i) {
  968. int l = nearest_int(bestScale*X[i]);
  969. l = MAX(nmin, MIN(nmax, l));
  970. sumlx += X[i]*l; suml2 += l*l;
  971. L[i] = l;
  972. }
  973. float scale = sumlx/suml2;
  974. return scale;
  975. }
  976. static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
  977. #define CANDIDATE_COUNT 8
  978. static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
  979. assert(k % QK4_2 == 0);
  980. int8_t L[QK4_2];
  981. const int nb = k / QK4_2;
  982. for (int i = 0; i < nb; i++) {
  983. float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
  984. y[i].d = GGML_FP32_TO_FP16(scale);
  985. for (int l = 0; l < QK4_2; l += 2) {
  986. const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
  987. const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
  988. assert(vi0 < 16);
  989. assert(vi1 < 16);
  990. y[i].qs[l/2] = vi0 | (vi1 << 4);
  991. }
  992. x += QK4_2;
  993. }
  994. }
  995. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  996. assert(k % QK4_2 == 0);
  997. block_q4_2 * restrict y = vy;
  998. //quantize_row_q4_2_reference(x, y, k);
  999. // This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
  1000. quantize_row_q4_2_rmse(x, y, k);
  1001. }
  1002. // reference implementation for deterministic creation of model files
  1003. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1004. assert(k % QK8_0 == 0);
  1005. const int nb = k / QK8_0;
  1006. for (int i = 0; i < nb; i++) {
  1007. float amax = 0.0f; // absolute max
  1008. for (int l = 0; l < QK8_0; l++) {
  1009. const float v = x[i*QK8_0 + l];
  1010. amax = MAX(amax, fabsf(v));
  1011. }
  1012. const float d = amax / ((1 << 7) - 1);
  1013. const float id = d ? 1.0f/d : 0.0f;
  1014. y[i].d = d;
  1015. for (int l = 0; l < QK8_0; ++l) {
  1016. const float v = x[i*QK8_0 + l]*id;
  1017. y[i].qs[l] = roundf(v);
  1018. }
  1019. }
  1020. }
  1021. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1022. assert(k % QK8_0 == 0);
  1023. const int nb = k / QK8_0;
  1024. block_q8_0 * restrict y = vy;
  1025. #if defined(__ARM_NEON)
  1026. for (int i = 0; i < nb; i++) {
  1027. float32x4_t srcv [8];
  1028. float32x4_t asrcv[8];
  1029. float32x4_t amaxv[8];
  1030. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1031. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1032. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1033. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1034. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1035. const float amax = vmaxvq_f32(amaxv[0]);
  1036. const float d = amax / ((1 << 7) - 1);
  1037. const float id = d ? 1.0f/d : 0.0f;
  1038. y[i].d = d;
  1039. for (int l = 0; l < 8; l++) {
  1040. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1041. const int32x4_t vi = vcvtnq_s32_f32(v);
  1042. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1043. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1044. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1045. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1046. }
  1047. }
  1048. #elif defined(__AVX2__) || defined(__AVX__)
  1049. for (int i = 0; i < nb; i++) {
  1050. // Load elements into 4 AVX vectors
  1051. __m256 v0 = _mm256_loadu_ps( x );
  1052. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1053. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1054. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1055. x += 32;
  1056. // Compute max(abs(e)) for the block
  1057. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1058. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1059. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1060. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1061. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1062. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1063. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1064. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1065. const float maxScalar = _mm_cvtss_f32( max4 );
  1066. // Quantize these floats
  1067. const float d = maxScalar / 127.f;
  1068. y[i].d = d;
  1069. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1070. const __m256 mul = _mm256_set1_ps( id );
  1071. // Apply the multiplier
  1072. v0 = _mm256_mul_ps( v0, mul );
  1073. v1 = _mm256_mul_ps( v1, mul );
  1074. v2 = _mm256_mul_ps( v2, mul );
  1075. v3 = _mm256_mul_ps( v3, mul );
  1076. // Round to nearest integer
  1077. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1078. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1079. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1080. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1081. // Convert floats to integers
  1082. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1083. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1084. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1085. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1086. #if defined(__AVX2__)
  1087. // Convert int32 to int16
  1088. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1089. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1090. // Convert int16 to int8
  1091. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1092. // We got our precious signed bytes, but the order is now wrong
  1093. // These AVX2 pack instructions process 16-byte pieces independently
  1094. // The following instruction is fixing the order
  1095. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1096. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1097. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1098. #else
  1099. // Since we don't have in AVX some necessary functions,
  1100. // we split the registers in half and call AVX2 analogs from SSE
  1101. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1102. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1103. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1104. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1105. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1106. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1107. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1108. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1109. // Convert int32 to int16
  1110. ni0 = _mm_packs_epi32( ni0, ni1 );
  1111. ni2 = _mm_packs_epi32( ni2, ni3 );
  1112. ni4 = _mm_packs_epi32( ni4, ni5 );
  1113. ni6 = _mm_packs_epi32( ni6, ni7 );
  1114. // Convert int16 to int8
  1115. ni0 = _mm_packs_epi16( ni0, ni2 );
  1116. ni4 = _mm_packs_epi16( ni4, ni6 );
  1117. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1118. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1119. #endif
  1120. }
  1121. #else
  1122. // scalar
  1123. quantize_row_q8_0_reference(x, y, k);
  1124. #endif
  1125. }
  1126. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1127. assert(k % QK4_0 == 0);
  1128. const int nb = k / QK4_0;
  1129. const block_q4_0 * restrict x = vx;
  1130. #if defined(__AVX2__)
  1131. for (int i = 0; i < nb; i++) {
  1132. // scale factor
  1133. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1134. const uint8_t * restrict pp = x[i].qs;
  1135. for (int l = 0; l < QK4_0; l += 32) {
  1136. // Load 32x4-bit integers into 32x8-bit integers
  1137. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1138. // Subtract 8 from the integers
  1139. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1140. // Convert to 16-bit int
  1141. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1142. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1143. // Convert to 32-bit int -> float 32
  1144. const __m256 vf[4] = {
  1145. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1146. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1147. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1148. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1149. };
  1150. // Scale and store
  1151. for (int j = 0; j < 4; j++) {
  1152. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1153. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1154. }
  1155. }
  1156. }
  1157. #elif defined(__ARM_NEON)
  1158. for (int i = 0; i < nb; i++) {
  1159. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1160. const uint8_t * restrict pp = x[i].qs;
  1161. for (int l = 0; l < QK4_0; l += 16) {
  1162. // Load 16x4-bit integers into 8x8-bit integers
  1163. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1164. // Expand 4-bit qs to 8-bit bytes
  1165. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1166. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1167. // Convert to signed 8-bit integers
  1168. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1169. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1170. // Subtract 8 from each byte
  1171. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1172. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1173. // Interleave and combine
  1174. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1175. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1176. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1177. // convert to 2x int16x8_t
  1178. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1179. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1180. // convert to 4x float32x4_t
  1181. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1182. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1183. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1184. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1185. // Multiply by d
  1186. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1187. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1188. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1189. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1190. // Store
  1191. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1192. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1193. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1194. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1195. }
  1196. }
  1197. #else
  1198. // scalar
  1199. for (int i = 0; i < nb; i++) {
  1200. const float d = x[i].d;
  1201. const uint8_t * restrict pp = x[i].qs;
  1202. for (int l = 0; l < QK4_0; l += 2) {
  1203. const uint8_t vi = pp[l/2];
  1204. const int8_t vi0 = vi & 0xf;
  1205. const int8_t vi1 = vi >> 4;
  1206. const float v0 = (vi0 - 8)*d;
  1207. const float v1 = (vi1 - 8)*d;
  1208. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1209. y[i*QK4_0 + l + 0] = v0;
  1210. y[i*QK4_0 + l + 1] = v1;
  1211. assert(!isnan(y[i*QK4_0 + l + 0]));
  1212. assert(!isnan(y[i*QK4_0 + l + 1]));
  1213. }
  1214. }
  1215. #endif
  1216. }
  1217. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1218. assert(k % QK4_1 == 0);
  1219. const int nb = k / QK4_1;
  1220. const block_q4_1 * restrict x = vx;
  1221. #if defined(__AVX2__)
  1222. for (int i = 0; i < nb; i++) {
  1223. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1224. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1225. const uint8_t * restrict pp = x[i].qs;
  1226. for (int l = 0; l < QK4_1; l += 32) {
  1227. // Load 32x4-bit integers into 32x8-bit integers
  1228. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1229. // Convert to 16-bit int
  1230. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1231. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1232. // Convert to 32-bit int -> float 32
  1233. const __m256 vf[4] = {
  1234. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1235. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1236. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1237. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1238. };
  1239. // Scale, add m and store
  1240. for (int j = 0; j < 4; j++) {
  1241. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1242. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1243. }
  1244. }
  1245. }
  1246. #elif defined(__ARM_NEON)
  1247. for (int i = 0; i < nb; i++) {
  1248. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1249. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1250. const uint8_t * restrict pp = x[i].qs;
  1251. for (int l = 0; l < QK4_1; l += 16) {
  1252. // Load 16x4-bit integers into 8x8-bit integers
  1253. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1254. // Expand 4-bit qs to 8-bit bytes
  1255. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1256. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1257. // Interleave and combine
  1258. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1259. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1260. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1261. // convert to 2x uint16x8_t
  1262. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1263. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1264. // convert to 4x float32x4_t
  1265. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1266. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1267. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1268. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1269. // multiply by d and add m
  1270. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1271. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1272. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1273. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1274. // Store
  1275. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1276. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1277. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1278. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1279. }
  1280. }
  1281. #else
  1282. for (int i = 0; i < nb; i++) {
  1283. const float d = x[i].d;
  1284. const float m = x[i].m;
  1285. const uint8_t * restrict pp = x[i].qs;
  1286. for (int l = 0; l < QK4_1; l += 2) {
  1287. const uint8_t vi = pp[l/2];
  1288. const int8_t vi0 = vi & 0xf;
  1289. const int8_t vi1 = vi >> 4;
  1290. const float v0 = vi0*d + m;
  1291. const float v1 = vi1*d + m;
  1292. y[i*QK4_1 + l + 0] = v0;
  1293. y[i*QK4_1 + l + 1] = v1;
  1294. assert(!isnan(y[i*QK4_1 + l + 0]));
  1295. assert(!isnan(y[i*QK4_1 + l + 1]));
  1296. }
  1297. }
  1298. #endif
  1299. }
  1300. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1301. assert(k % QK4_2 == 0);
  1302. const int nb = k / QK4_2;
  1303. const block_q4_2 * restrict x = vx;
  1304. for (int i = 0; i < nb; i++) {
  1305. const float d = GGML_FP16_TO_FP32(x[i].d);
  1306. const uint8_t * restrict pp = x[i].qs;
  1307. for (int l = 0; l < QK4_2; l += 2) {
  1308. const uint8_t vi = pp[l/2];
  1309. const int8_t vi0 = vi & 0xf;
  1310. const int8_t vi1 = vi >> 4;
  1311. const float v0 = (vi0 - 8)*d;
  1312. const float v1 = (vi1 - 8)*d;
  1313. y[i*QK4_2 + l + 0] = v0;
  1314. y[i*QK4_2 + l + 1] = v1;
  1315. assert(!isnan(y[i*QK4_2 + l + 0]));
  1316. assert(!isnan(y[i*QK4_2 + l + 1]));
  1317. }
  1318. }
  1319. }
  1320. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1321. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1322. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1323. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1324. [GGML_TYPE_Q4_0] = {
  1325. .dequantize_row_q = dequantize_row_q4_0,
  1326. .quantize_row_q = quantize_row_q4_0,
  1327. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1328. .quantize_row_q_dot = quantize_row_q8_0,
  1329. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1330. },
  1331. [GGML_TYPE_Q4_1] = {
  1332. .dequantize_row_q = dequantize_row_q4_1,
  1333. .quantize_row_q = quantize_row_q4_1,
  1334. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1335. .quantize_row_q_dot = quantize_row_q8_0,
  1336. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1337. },
  1338. [GGML_TYPE_Q4_2] = {
  1339. .dequantize_row_q = dequantize_row_q4_2,
  1340. .quantize_row_q = quantize_row_q4_2,
  1341. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
  1342. .quantize_row_q_dot = quantize_row_q8_0,
  1343. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1344. },
  1345. [GGML_TYPE_Q8_0] = {
  1346. .dequantize_row_q = NULL, // TODO
  1347. .quantize_row_q = quantize_row_q8_0,
  1348. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1349. .quantize_row_q_dot = quantize_row_q8_0,
  1350. .vec_dot_q = NULL, // TODO
  1351. },
  1352. };
  1353. // For internal test use
  1354. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1355. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1356. return quantize_fns[i];
  1357. }
  1358. //
  1359. // simd mappings
  1360. //
  1361. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1362. // we then implement the fundamental computation operations below using only these macros
  1363. // adding support for new architectures requires to define the corresponding SIMD macros
  1364. //
  1365. // GGML_F32_STEP / GGML_F16_STEP
  1366. // number of elements to process in a single step
  1367. //
  1368. // GGML_F32_EPR / GGML_F16_EPR
  1369. // number of elements to fit in a single register
  1370. //
  1371. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1372. #define GGML_SIMD
  1373. // F32 NEON
  1374. #define GGML_F32_STEP 16
  1375. #define GGML_F32_EPR 4
  1376. #define GGML_F32x4 float32x4_t
  1377. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1378. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1379. #define GGML_F32x4_LOAD vld1q_f32
  1380. #define GGML_F32x4_STORE vst1q_f32
  1381. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1382. #define GGML_F32x4_ADD vaddq_f32
  1383. #define GGML_F32x4_MUL vmulq_f32
  1384. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1385. #define GGML_F32x4_REDUCE(res, x) \
  1386. { \
  1387. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1388. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1389. } \
  1390. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1391. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1392. } \
  1393. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1394. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1395. } \
  1396. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1397. }
  1398. #define GGML_F32_VEC GGML_F32x4
  1399. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1400. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1401. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1402. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1403. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1404. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1405. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1406. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1407. // F16 NEON
  1408. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1409. #define GGML_F16_STEP 32
  1410. #define GGML_F16_EPR 8
  1411. #define GGML_F16x8 float16x8_t
  1412. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1413. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1414. #define GGML_F16x8_LOAD vld1q_f16
  1415. #define GGML_F16x8_STORE vst1q_f16
  1416. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1417. #define GGML_F16x8_ADD vaddq_f16
  1418. #define GGML_F16x8_MUL vmulq_f16
  1419. #define GGML_F16x8_REDUCE(res, x) \
  1420. { \
  1421. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1422. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1423. } \
  1424. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1425. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1426. } \
  1427. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1428. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1429. } \
  1430. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1431. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1432. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1433. }
  1434. #define GGML_F16_VEC GGML_F16x8
  1435. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1436. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1437. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1438. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1439. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1440. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1441. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1442. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1443. #else
  1444. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1445. // and take advantage of the vcvt_ functions to convert to/from FP16
  1446. #define GGML_F16_STEP 16
  1447. #define GGML_F16_EPR 4
  1448. #define GGML_F32Cx4 float32x4_t
  1449. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1450. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1451. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1452. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1453. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1454. #define GGML_F32Cx4_ADD vaddq_f32
  1455. #define GGML_F32Cx4_MUL vmulq_f32
  1456. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1457. #define GGML_F16_VEC GGML_F32Cx4
  1458. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1459. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1460. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1461. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1462. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1463. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1464. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1465. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1466. #endif
  1467. #elif defined(__AVX__)
  1468. #define GGML_SIMD
  1469. // F32 AVX
  1470. #define GGML_F32_STEP 32
  1471. #define GGML_F32_EPR 8
  1472. #define GGML_F32x8 __m256
  1473. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1474. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1475. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1476. #define GGML_F32x8_STORE _mm256_storeu_ps
  1477. #if defined(__FMA__)
  1478. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1479. #else
  1480. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1481. #endif
  1482. #define GGML_F32x8_ADD _mm256_add_ps
  1483. #define GGML_F32x8_MUL _mm256_mul_ps
  1484. #define GGML_F32x8_REDUCE(res, x) \
  1485. { \
  1486. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1487. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1488. } \
  1489. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1490. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1491. } \
  1492. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1493. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1494. } \
  1495. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1496. _mm256_extractf128_ps(x[0], 1)); \
  1497. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1498. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1499. }
  1500. // TODO: is this optimal ?
  1501. #define GGML_F32_VEC GGML_F32x8
  1502. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1503. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1504. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1505. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1506. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1507. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1508. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1509. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1510. // F16 AVX
  1511. #define GGML_F16_STEP 32
  1512. #define GGML_F16_EPR 8
  1513. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1514. #define GGML_F32Cx8 __m256
  1515. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1516. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1517. #if defined(__F16C__)
  1518. // the _mm256_cvt intrinsics require F16C
  1519. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1520. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1521. #else
  1522. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1523. float tmp[8];
  1524. for (int i = 0; i < 8; i++)
  1525. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1526. return _mm256_loadu_ps(tmp);
  1527. }
  1528. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1529. float arr[8];
  1530. _mm256_storeu_ps(arr, y);
  1531. for (int i = 0; i < 8; i++)
  1532. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1533. }
  1534. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1535. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1536. #endif
  1537. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1538. #define GGML_F32Cx8_ADD _mm256_add_ps
  1539. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1540. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1541. #define GGML_F16_VEC GGML_F32Cx8
  1542. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1543. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1544. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1545. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1546. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1547. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1548. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1549. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1550. #elif defined(__POWER9_VECTOR__)
  1551. #define GGML_SIMD
  1552. // F32 POWER9
  1553. #define GGML_F32_STEP 32
  1554. #define GGML_F32_EPR 4
  1555. #define GGML_F32x4 vector float
  1556. #define GGML_F32x4_ZERO 0.0f
  1557. #define GGML_F32x4_SET1 vec_splats
  1558. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1559. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1560. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1561. #define GGML_F32x4_ADD vec_add
  1562. #define GGML_F32x4_MUL vec_mul
  1563. #define GGML_F32x4_REDUCE(res, x) \
  1564. { \
  1565. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1566. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1567. } \
  1568. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1569. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1570. } \
  1571. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1572. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1573. } \
  1574. res = vec_extract(x[0], 0) + \
  1575. vec_extract(x[0], 1) + \
  1576. vec_extract(x[0], 2) + \
  1577. vec_extract(x[0], 3); \
  1578. }
  1579. #define GGML_F32_VEC GGML_F32x4
  1580. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1581. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1582. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1583. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1584. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1585. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1586. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1587. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1588. // F16 POWER9
  1589. #define GGML_F16_STEP GGML_F32_STEP
  1590. #define GGML_F16_EPR GGML_F32_EPR
  1591. #define GGML_F16_VEC GGML_F32x4
  1592. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1593. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1594. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1595. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1596. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1597. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1598. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1599. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1600. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1601. #define GGML_F16_VEC_STORE(p, r, i) \
  1602. if (i & 0x1) \
  1603. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1604. r[i - GGML_ENDIAN_BYTE(0)]), \
  1605. 0, p - GGML_F16_EPR)
  1606. #elif defined(__wasm_simd128__)
  1607. #define GGML_SIMD
  1608. // F32 WASM
  1609. #define GGML_F32_STEP 16
  1610. #define GGML_F32_EPR 4
  1611. #define GGML_F32x4 v128_t
  1612. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1613. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1614. #define GGML_F32x4_LOAD wasm_v128_load
  1615. #define GGML_F32x4_STORE wasm_v128_store
  1616. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1617. #define GGML_F32x4_ADD wasm_f32x4_add
  1618. #define GGML_F32x4_MUL wasm_f32x4_mul
  1619. #define GGML_F32x4_REDUCE(res, x) \
  1620. { \
  1621. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1622. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1623. } \
  1624. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1625. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1626. } \
  1627. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1628. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1629. } \
  1630. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1631. wasm_f32x4_extract_lane(x[0], 1) + \
  1632. wasm_f32x4_extract_lane(x[0], 2) + \
  1633. wasm_f32x4_extract_lane(x[0], 3); \
  1634. }
  1635. #define GGML_F32_VEC GGML_F32x4
  1636. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1637. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1638. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1639. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1640. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1641. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1642. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1643. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1644. // F16 WASM
  1645. #define GGML_F16_STEP 16
  1646. #define GGML_F16_EPR 4
  1647. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1648. float tmp[4];
  1649. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1650. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1651. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1652. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1653. return wasm_v128_load(tmp);
  1654. }
  1655. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1656. float tmp[4];
  1657. wasm_v128_store(tmp, x);
  1658. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1659. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1660. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1661. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1662. }
  1663. #define GGML_F16x4 v128_t
  1664. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1665. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1666. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1667. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1668. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1669. #define GGML_F16x4_ADD wasm_f32x4_add
  1670. #define GGML_F16x4_MUL wasm_f32x4_mul
  1671. #define GGML_F16x4_REDUCE(res, x) \
  1672. { \
  1673. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1674. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1675. } \
  1676. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1677. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1678. } \
  1679. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1680. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1681. } \
  1682. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1683. wasm_f32x4_extract_lane(x[0], 1) + \
  1684. wasm_f32x4_extract_lane(x[0], 2) + \
  1685. wasm_f32x4_extract_lane(x[0], 3); \
  1686. }
  1687. #define GGML_F16_VEC GGML_F16x4
  1688. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1689. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1690. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1691. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1692. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1693. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1694. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1695. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1696. #elif defined(__SSE3__)
  1697. #define GGML_SIMD
  1698. // F32 SSE
  1699. #define GGML_F32_STEP 32
  1700. #define GGML_F32_EPR 4
  1701. #define GGML_F32x4 __m128
  1702. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1703. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1704. #define GGML_F32x4_LOAD _mm_loadu_ps
  1705. #define GGML_F32x4_STORE _mm_storeu_ps
  1706. #if defined(__FMA__)
  1707. // TODO: Does this work?
  1708. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1709. #else
  1710. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1711. #endif
  1712. #define GGML_F32x4_ADD _mm_add_ps
  1713. #define GGML_F32x4_MUL _mm_mul_ps
  1714. #define GGML_F32x4_REDUCE(res, x) \
  1715. { \
  1716. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1717. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1718. } \
  1719. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1720. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1721. } \
  1722. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1723. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1724. } \
  1725. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1726. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1727. }
  1728. // TODO: is this optimal ?
  1729. #define GGML_F32_VEC GGML_F32x4
  1730. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1731. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1732. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1733. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1734. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1735. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1736. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1737. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1738. // F16 SSE
  1739. #define GGML_F16_STEP 32
  1740. #define GGML_F16_EPR 4
  1741. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1742. float tmp[4];
  1743. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1744. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1745. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1746. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1747. return _mm_loadu_ps(tmp);
  1748. }
  1749. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1750. float arr[4];
  1751. _mm_storeu_ps(arr, y);
  1752. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1753. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1754. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1755. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1756. }
  1757. #define GGML_F32Cx4 __m128
  1758. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1759. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1760. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1761. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1762. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1763. #define GGML_F32Cx4_ADD _mm_add_ps
  1764. #define GGML_F32Cx4_MUL _mm_mul_ps
  1765. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1766. #define GGML_F16_VEC GGML_F32Cx4
  1767. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1768. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1769. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1770. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1771. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1772. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1773. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1774. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1775. #endif
  1776. // GGML_F32_ARR / GGML_F16_ARR
  1777. // number of registers to use per step
  1778. #ifdef GGML_SIMD
  1779. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1780. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1781. #endif
  1782. //
  1783. // fundamental operations
  1784. //
  1785. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1786. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1787. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1788. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1789. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1790. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1791. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1792. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1793. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1794. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1795. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1796. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1797. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1798. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1799. #ifdef GGML_SIMD
  1800. float sumf = 0.0f;
  1801. const int np = (n & ~(GGML_F32_STEP - 1));
  1802. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1803. GGML_F32_VEC ax[GGML_F32_ARR];
  1804. GGML_F32_VEC ay[GGML_F32_ARR];
  1805. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1806. for (int j = 0; j < GGML_F32_ARR; j++) {
  1807. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1808. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1809. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1810. }
  1811. }
  1812. // reduce sum0..sum3 to sum0
  1813. GGML_F32_VEC_REDUCE(sumf, sum);
  1814. // leftovers
  1815. for (int i = np; i < n; ++i) {
  1816. sumf += x[i]*y[i];
  1817. }
  1818. #else
  1819. // scalar
  1820. ggml_float sumf = 0.0;
  1821. for (int i = 0; i < n; ++i) {
  1822. sumf += (ggml_float)(x[i]*y[i]);
  1823. }
  1824. #endif
  1825. *s = sumf;
  1826. }
  1827. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1828. ggml_float sumf = 0.0;
  1829. #if defined(GGML_SIMD)
  1830. const int np = (n & ~(GGML_F16_STEP - 1));
  1831. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1832. GGML_F16_VEC ax[GGML_F16_ARR];
  1833. GGML_F16_VEC ay[GGML_F16_ARR];
  1834. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1835. for (int j = 0; j < GGML_F16_ARR; j++) {
  1836. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1837. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1838. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1839. }
  1840. }
  1841. // reduce sum0..sum3 to sum0
  1842. GGML_F16_VEC_REDUCE(sumf, sum);
  1843. // leftovers
  1844. for (int i = np; i < n; ++i) {
  1845. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1846. }
  1847. #else
  1848. for (int i = 0; i < n; ++i) {
  1849. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1850. }
  1851. #endif
  1852. *s = sumf;
  1853. }
  1854. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1855. const int nb = n / QK8_0;
  1856. assert(n % QK8_0 == 0);
  1857. assert(nb % 2 == 0);
  1858. const block_q4_0 * restrict x = vx;
  1859. const block_q8_0 * restrict y = vy;
  1860. float sumf = 0.0;
  1861. #if defined(__ARM_NEON)
  1862. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1863. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1864. for (int i = 0; i < nb; i += 2) {
  1865. const block_q4_0 * restrict x0 = &x[i + 0];
  1866. const block_q4_0 * restrict x1 = &x[i + 1];
  1867. const block_q8_0 * restrict y0 = &y[i + 0];
  1868. const block_q8_0 * restrict y1 = &y[i + 1];
  1869. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1870. const int8x16_t s8b = vdupq_n_s8(0x8);
  1871. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1872. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1873. // 4-bit -> 8-bit
  1874. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1875. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1876. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1877. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1878. // sub 8
  1879. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1880. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1881. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1882. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1883. // load y
  1884. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1885. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1886. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1887. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1888. // interleave
  1889. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  1890. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  1891. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  1892. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  1893. #if defined(__ARM_FEATURE_DOTPROD)
  1894. // dot product into int32x4_t
  1895. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  1896. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  1897. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1898. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1899. #else
  1900. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1901. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1902. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1903. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1904. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1905. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1906. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1907. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1908. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1909. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1910. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1911. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1912. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1913. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1914. #endif
  1915. }
  1916. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1917. #elif defined(__AVX2__)
  1918. // Initialize accumulator with zeros
  1919. __m256 acc = _mm256_setzero_ps();
  1920. // Main loop
  1921. for (int i = 0; i < nb; ++i) {
  1922. /* Compute combined scale for the block */
  1923. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1924. __m256i bx = bytesFromNibbles(x[i].qs);
  1925. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1926. const __m256i off = _mm256_set1_epi8( 8 );
  1927. bx = _mm256_sub_epi8( bx, off );
  1928. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1929. // Get absolute values of x vectors
  1930. const __m256i ax = _mm256_sign_epi8(bx, bx);
  1931. // Sign the values of the y vectors
  1932. const __m256i sy = _mm256_sign_epi8(by, bx);
  1933. // Perform multiplication and create 16-bit values
  1934. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  1935. const __m256i ones = _mm256_set1_epi16(1);
  1936. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  1937. /* Convert to vectore of 8 int32_t to 8 floats */
  1938. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1939. /* Multiply q with scale and accumulate */
  1940. acc = _mm256_fmadd_ps( d, q, acc );
  1941. }
  1942. // Return horizontal sum of the acc vector
  1943. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1944. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1945. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1946. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1947. sumf = _mm_cvtss_f32( res );
  1948. #elif defined(__AVX__)
  1949. // Initialize accumulator with zeros
  1950. __m256 acc = _mm256_setzero_ps();
  1951. // Main loop
  1952. for (int i = 0; i < nb; ++i) {
  1953. // Compute combined scale for the block
  1954. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1955. __m128i i32[2];
  1956. for (int j = 0; j < 2; ++j) {
  1957. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1958. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1959. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  1960. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1961. const __m128i off = _mm_set1_epi8( 8 );
  1962. bx = _mm_sub_epi8( bx, off );
  1963. // Get absolute values of x vectors
  1964. const __m128i ax = _mm_sign_epi8(bx, bx);
  1965. // Sign the values of the y vectors
  1966. const __m128i sy = _mm_sign_epi8(by, bx);
  1967. // Perform multiplication and create 16-bit values
  1968. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1969. const __m128i ones = _mm_set1_epi16(1);
  1970. i32[j] = _mm_madd_epi16(ones, dot);
  1971. }
  1972. // Convert int32_t to float
  1973. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1974. // Apply the scale, and accumulate
  1975. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1976. }
  1977. // Return horizontal sum of the acc vector
  1978. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1979. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1980. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1981. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1982. sumf = _mm_cvtss_f32( res );
  1983. #else
  1984. // scalar
  1985. for (int i = 0; i < nb; i++) {
  1986. const float d0 = x[i].d;
  1987. const float d1 = y[i].d;
  1988. const uint8_t * restrict p0 = x[i].qs;
  1989. const int8_t * restrict p1 = y[i].qs;
  1990. int sumi = 0;
  1991. for (int j = 0; j < QK8_0/2; j++) {
  1992. const uint8_t v0 = p0[j];
  1993. const int i0 = (int8_t) (v0 & 0xf) - 8;
  1994. const int i1 = (int8_t) (v0 >> 4) - 8;
  1995. const int i2 = p1[2*j + 0];
  1996. const int i3 = p1[2*j + 1];
  1997. sumi += i0*i2 + i1*i3;
  1998. }
  1999. sumf += d0*d1*sumi;
  2000. }
  2001. #endif
  2002. *s = sumf;
  2003. }
  2004. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2005. const int nb = n / QK8_0;
  2006. assert(n % QK8_0 == 0);
  2007. assert(nb % 2 == 0);
  2008. const block_q4_1 * restrict x = vx;
  2009. const block_q8_0 * restrict y = vy;
  2010. float sumf = 0.0;
  2011. // TODO: add AVX / WASM SIMD / etc
  2012. #if defined(__ARM_NEON)
  2013. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2014. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2015. for (int i = 0; i < nb; i += 2) {
  2016. const block_q4_1 * restrict x0 = &x[i + 0];
  2017. const block_q4_1 * restrict x1 = &x[i + 1];
  2018. const block_q8_0 * restrict y0 = &y[i + 0];
  2019. const block_q8_0 * restrict y1 = &y[i + 1];
  2020. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2021. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2022. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2023. // 4-bit -> 8-bit
  2024. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2025. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2026. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2027. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2028. // load y
  2029. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2030. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2031. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2032. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2033. // interleave
  2034. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2035. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2036. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2037. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2038. const int16x8_t s0i = vaddq_s16(
  2039. vaddq_s16(vmovl_s8(vget_low_s8(v1_0ls)), vmovl_s8(vget_high_s8(v1_0ls))),
  2040. vaddq_s16(vmovl_s8(vget_low_s8(v1_0hs)), vmovl_s8(vget_high_s8(v1_0hs))));
  2041. const int16x8_t s1i = vaddq_s16(
  2042. vaddq_s16(vmovl_s8(vget_low_s8(v1_1ls)), vmovl_s8(vget_high_s8(v1_1ls))),
  2043. vaddq_s16(vmovl_s8(vget_low_s8(v1_1hs)), vmovl_s8(vget_high_s8(v1_1hs))));
  2044. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s0i), vget_high_s16(s0i))), x0->m*y0->d);
  2045. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s1i), vget_high_s16(s1i))), x1->m*y1->d);
  2046. #if defined(__ARM_FEATURE_DOTPROD)
  2047. // dot product into int32x4_t
  2048. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  2049. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2050. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2051. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2052. #else
  2053. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2054. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2055. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2056. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2057. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2058. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2059. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2060. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2061. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2062. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2063. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2064. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2065. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2066. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2067. #endif
  2068. }
  2069. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2070. #elif defined(__AVX2__)
  2071. // Initialize accumulator with zeros
  2072. __m256 acc = _mm256_setzero_ps();
  2073. // Main loop
  2074. for (int i = 0; i < nb; ++i) {
  2075. const float * d0 = &x[i].d;
  2076. const float * d1 = &y[i].d;
  2077. const float * m0 = &x[i].m;
  2078. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2079. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2080. const __m256 m0v = _mm256_broadcast_ss( m0 );
  2081. // Compute combined scales
  2082. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2083. const __m256 d1m0 = _mm256_mul_ps( d1v, m0v );
  2084. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2085. const __m256i bx = bytesFromNibbles( x[i].qs );
  2086. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2087. // Get absolute values of x vectors
  2088. const __m256i ax = _mm256_sign_epi8( bx, bx );
  2089. // Sign the values of the y vectors
  2090. const __m256i sy = _mm256_sign_epi8( by, bx );
  2091. // Perform multiplication and create 16-bit values
  2092. const __m256i dot = _mm256_maddubs_epi16( ax, sy );
  2093. const __m256i ones = _mm256_set1_epi16( 1 );
  2094. const __m256i xy_q = _mm256_madd_epi16( ones, dot );
  2095. // Convert to vector of 8 int32_t to 8 floats
  2096. const __m256 xy = _mm256_cvtepi32_ps( xy_q );
  2097. // Accumulate d0*d1*x*y
  2098. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2099. // Compute sum of y values
  2100. const __m256i y16_l = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  2101. const __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  2102. const __m256i ysumi = _mm256_madd_epi16( _mm256_add_epi16(y16_l, y16_h), ones );
  2103. const __m256 ysum = _mm256_cvtepi32_ps( ysumi );
  2104. // Accumulate d1*m0*y
  2105. acc = _mm256_fmadd_ps( d1m0, ysum, acc );
  2106. }
  2107. // Return horizontal sum of the acc vector
  2108. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2109. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2110. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2111. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2112. sumf = _mm_cvtss_f32( res );
  2113. #else
  2114. // scalar
  2115. for (int i = 0; i < nb; i++) {
  2116. const float d0 = x[i].d;
  2117. const float m0 = x[i].m;
  2118. const float d1 = y[i].d;
  2119. const uint8_t * restrict p0 = x[i].qs;
  2120. const int8_t * restrict p1 = y[i].qs;
  2121. // TODO: this is very slow ..
  2122. for (int j = 0; j < QK8_0/2; j++) {
  2123. const uint8_t v0 = p0[j];
  2124. const float f0 = d0*(v0 & 0xf) + m0;
  2125. const float f1 = d0*(v0 >> 4) + m0;
  2126. const float f2 = d1*p1[2*j + 0];
  2127. const float f3 = d1*p1[2*j + 1];
  2128. sumf += f0*f2 + f1*f3;
  2129. }
  2130. }
  2131. #endif
  2132. *s = sumf;
  2133. }
  2134. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2135. const int nb = n / QK8_0;
  2136. assert(n % QK8_0 == 0);
  2137. assert(nb % 2 == 0);
  2138. assert(QK8_0 == 2*QK4_2);
  2139. const block_q4_2 * restrict x = vx;
  2140. const block_q8_0 * restrict y = vy;
  2141. float sumf = 0.0;
  2142. #if defined(__ARM_NEON)
  2143. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2144. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2145. for (int i = 0; i < nb; i += 2) {
  2146. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2147. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2148. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2149. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2150. const block_q8_0 * restrict y0 = &y[i + 0];
  2151. const block_q8_0 * restrict y1 = &y[i + 1];
  2152. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2153. const int8x16_t s8b = vdupq_n_s8(0x8);
  2154. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2155. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2156. // 4-bit -> 8-bit
  2157. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2158. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2159. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2160. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2161. // sub 8
  2162. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2163. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2164. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2165. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2166. // interleave
  2167. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2168. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2169. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2170. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2171. // load y
  2172. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2173. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2174. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2175. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2176. #if defined(__ARM_FEATURE_DOTPROD)
  2177. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2178. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2179. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2180. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2181. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2182. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2183. #else
  2184. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2185. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2186. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2187. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2188. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2189. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2190. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2191. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2192. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2193. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2194. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2195. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2196. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2197. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2198. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2199. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2200. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2201. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2202. #endif
  2203. }
  2204. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2205. #else
  2206. // scalar
  2207. for (int i = 0; i < nb; i++) {
  2208. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2209. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2210. const int8_t * restrict y0 = y[i].qs;
  2211. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2212. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2213. int sumi_0 = 0;
  2214. int sumi_1 = 0;
  2215. for (int j = 0; j < QK8_0/4; j++) {
  2216. const uint8_t v0 = x0[j];
  2217. const uint8_t v1 = x1[j];
  2218. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2219. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2220. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2221. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2222. const int i2_0 = y0[2*j + 0];
  2223. const int i3_0 = y0[2*j + 1];
  2224. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2225. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2226. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2227. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2228. }
  2229. sumf += (d0 * y[i].d) * sumi_0;
  2230. sumf += (d1 * y[i].d) * sumi_1;
  2231. }
  2232. #endif
  2233. *s = sumf;
  2234. }
  2235. // compute GGML_VEC_DOT_UNROLL dot products at once
  2236. // xs - x row stride in bytes
  2237. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2238. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2239. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2240. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2241. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2242. }
  2243. #if defined(GGML_SIMD)
  2244. const int np = (n & ~(GGML_F16_STEP - 1));
  2245. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2246. GGML_F16_VEC ax[GGML_F16_ARR];
  2247. GGML_F16_VEC ay[GGML_F16_ARR];
  2248. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2249. for (int j = 0; j < GGML_F16_ARR; j++) {
  2250. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2251. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2252. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2253. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2254. }
  2255. }
  2256. }
  2257. // reduce sum0..sum3 to sum0
  2258. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2259. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2260. }
  2261. // leftovers
  2262. for (int i = np; i < n; ++i) {
  2263. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2264. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2265. }
  2266. }
  2267. #else
  2268. for (int i = 0; i < n; ++i) {
  2269. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2270. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2271. }
  2272. }
  2273. #endif
  2274. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2275. s[i] = sumf[i];
  2276. }
  2277. }
  2278. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2279. #if defined(GGML_SIMD)
  2280. const int np = (n & ~(GGML_F32_STEP - 1));
  2281. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2282. GGML_F32_VEC ax[GGML_F32_ARR];
  2283. GGML_F32_VEC ay[GGML_F32_ARR];
  2284. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2285. for (int j = 0; j < GGML_F32_ARR; j++) {
  2286. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2287. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2288. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2289. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2290. }
  2291. }
  2292. // leftovers
  2293. for (int i = np; i < n; ++i) {
  2294. y[i] += x[i]*v;
  2295. }
  2296. #else
  2297. // scalar
  2298. for (int i = 0; i < n; ++i) {
  2299. y[i] += x[i]*v;
  2300. }
  2301. #endif
  2302. }
  2303. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2304. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2305. #if defined(GGML_SIMD)
  2306. const int np = (n & ~(GGML_F32_STEP - 1));
  2307. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2308. GGML_F32_VEC ay[GGML_F32_ARR];
  2309. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2310. for (int j = 0; j < GGML_F32_ARR; j++) {
  2311. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2312. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2313. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2314. }
  2315. }
  2316. // leftovers
  2317. for (int i = np; i < n; ++i) {
  2318. y[i] *= v;
  2319. }
  2320. #else
  2321. // scalar
  2322. for (int i = 0; i < n; ++i) {
  2323. y[i] *= v;
  2324. }
  2325. #endif
  2326. }
  2327. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2328. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2329. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2330. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2331. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2332. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2333. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2334. static const float GELU_COEF_A = 0.044715f;
  2335. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2336. inline static float ggml_gelu_f32(float x) {
  2337. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2338. }
  2339. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2340. const uint16_t * i16 = (const uint16_t *) x;
  2341. for (int i = 0; i < n; ++i) {
  2342. y[i] = table_gelu_f16[i16[i]];
  2343. }
  2344. }
  2345. #ifdef GGML_GELU_FP16
  2346. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2347. uint16_t t;
  2348. for (int i = 0; i < n; ++i) {
  2349. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2350. memcpy(&t, &fp16, sizeof(uint16_t));
  2351. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2352. }
  2353. }
  2354. #else
  2355. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2356. for (int i = 0; i < n; ++i) {
  2357. y[i] = ggml_gelu_f32(x[i]);
  2358. }
  2359. }
  2360. #endif
  2361. // Sigmoid Linear Unit (SiLU) function
  2362. inline static float ggml_silu_f32(float x) {
  2363. return x/(1.0f + expf(-x));
  2364. }
  2365. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2366. const uint16_t * i16 = (const uint16_t *) x;
  2367. for (int i = 0; i < n; ++i) {
  2368. y[i] = table_silu_f16[i16[i]];
  2369. }
  2370. }
  2371. #ifdef GGML_SILU_FP16
  2372. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2373. uint16_t t;
  2374. for (int i = 0; i < n; ++i) {
  2375. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2376. memcpy(&t, &fp16, sizeof(uint16_t));
  2377. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2378. }
  2379. }
  2380. #else
  2381. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2382. for (int i = 0; i < n; ++i) {
  2383. y[i] = ggml_silu_f32(x[i]);
  2384. }
  2385. }
  2386. #endif
  2387. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2388. #ifndef GGML_USE_ACCELERATE
  2389. ggml_float sum = 0.0;
  2390. for (int i = 0; i < n; ++i) {
  2391. sum += (ggml_float)x[i];
  2392. }
  2393. *s = sum;
  2394. #else
  2395. vDSP_sve(x, 1, s, n);
  2396. #endif
  2397. }
  2398. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2399. #ifndef GGML_USE_ACCELERATE
  2400. float max = -INFINITY;
  2401. for (int i = 0; i < n; ++i) {
  2402. max = MAX(max, x[i]);
  2403. }
  2404. *s = max;
  2405. #else
  2406. vDSP_maxv(x, 1, s, n);
  2407. #endif
  2408. }
  2409. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2410. ggml_vec_norm_f32(n, s, x);
  2411. *s = 1.f/(*s);
  2412. }
  2413. //
  2414. // logging
  2415. //
  2416. #if (GGML_DEBUG >= 1)
  2417. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2418. #else
  2419. #define GGML_PRINT_DEBUG(...)
  2420. #endif
  2421. #if (GGML_DEBUG >= 5)
  2422. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2423. #else
  2424. #define GGML_PRINT_DEBUG_5(...)
  2425. #endif
  2426. #if (GGML_DEBUG >= 10)
  2427. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2428. #else
  2429. #define GGML_PRINT_DEBUG_10(...)
  2430. #endif
  2431. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2432. //
  2433. // data types
  2434. //
  2435. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2436. [GGML_TYPE_F32] = 1,
  2437. [GGML_TYPE_F16] = 1,
  2438. [GGML_TYPE_Q4_0] = QK4_0,
  2439. [GGML_TYPE_Q4_1] = QK4_1,
  2440. [GGML_TYPE_Q4_2] = QK4_2,
  2441. [GGML_TYPE_Q8_0] = QK8_0,
  2442. [GGML_TYPE_I8] = 1,
  2443. [GGML_TYPE_I16] = 1,
  2444. [GGML_TYPE_I32] = 1,
  2445. };
  2446. static_assert(GGML_TYPE_COUNT == 9, "GGML_BLCK_SIZE is outdated");
  2447. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2448. [GGML_TYPE_F32] = sizeof(float),
  2449. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2450. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2451. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2452. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2453. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2454. [GGML_TYPE_I8] = sizeof(int8_t),
  2455. [GGML_TYPE_I16] = sizeof(int16_t),
  2456. [GGML_TYPE_I32] = sizeof(int32_t),
  2457. };
  2458. static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_SIZE is outdated");
  2459. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2460. [GGML_TYPE_F32] = "f32",
  2461. [GGML_TYPE_F16] = "f16",
  2462. [GGML_TYPE_Q4_0] = "q4_0",
  2463. [GGML_TYPE_Q4_1] = "q4_1",
  2464. [GGML_TYPE_Q4_2] = "q4_2",
  2465. [GGML_TYPE_Q8_0] = "q8_0",
  2466. [GGML_TYPE_I8] = "i8",
  2467. [GGML_TYPE_I16] = "i16",
  2468. [GGML_TYPE_I32] = "i32",
  2469. };
  2470. static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_NAME is outdated");
  2471. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2472. [GGML_TYPE_F32] = false,
  2473. [GGML_TYPE_F16] = false,
  2474. [GGML_TYPE_Q4_0] = true,
  2475. [GGML_TYPE_Q4_1] = true,
  2476. [GGML_TYPE_Q4_2] = true,
  2477. [GGML_TYPE_Q8_0] = true,
  2478. [GGML_TYPE_I8] = false,
  2479. [GGML_TYPE_I16] = false,
  2480. [GGML_TYPE_I32] = false,
  2481. };
  2482. static_assert(GGML_TYPE_COUNT == 9, "GGML_IS_QUANTIZED is outdated");
  2483. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2484. "NONE",
  2485. "DUP",
  2486. "ADD",
  2487. "SUB",
  2488. "MUL",
  2489. "DIV",
  2490. "SQR",
  2491. "SQRT",
  2492. "SUM",
  2493. "MEAN",
  2494. "REPEAT",
  2495. "ABS",
  2496. "SGN",
  2497. "NEG",
  2498. "STEP",
  2499. "RELU",
  2500. "GELU",
  2501. "SILU",
  2502. "NORM",
  2503. "RMS_NORM",
  2504. "MUL_MAT",
  2505. "SCALE",
  2506. "CPY",
  2507. "CONT",
  2508. "RESHAPE",
  2509. "VIEW",
  2510. "PERMUTE",
  2511. "TRANSPOSE",
  2512. "GET_ROWS",
  2513. "DIAG_MASK_INF",
  2514. "SOFT_MAX",
  2515. "ROPE",
  2516. "CONV_1D_1S",
  2517. "CONV_1D_2S",
  2518. "FLASH_ATTN",
  2519. "FLASH_FF",
  2520. "MAP_UNARY",
  2521. "MAP_BINARY",
  2522. };
  2523. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2524. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2525. "none",
  2526. "x",
  2527. "x+y",
  2528. "x-y",
  2529. "x*y",
  2530. "x/y",
  2531. "x^2",
  2532. "√x",
  2533. "Σx",
  2534. "Σx/n",
  2535. "repeat(x)",
  2536. "abs(x)",
  2537. "sgn(x)",
  2538. "-x",
  2539. "step(x)",
  2540. "relu(x)",
  2541. "gelu(x)",
  2542. "silu(x)",
  2543. "norm(x)",
  2544. "rms_norm(x)",
  2545. "X*Y",
  2546. "x*v",
  2547. "x-\\>y",
  2548. "cont(x)",
  2549. "reshape(x)",
  2550. "view(x)",
  2551. "permute(x)",
  2552. "transpose(x)",
  2553. "get_rows(x)",
  2554. "diag_mask_inf(x)",
  2555. "soft_max(x)",
  2556. "rope(x)",
  2557. "conv_1d_1s(x)",
  2558. "conv_1d_2s(x)",
  2559. "flash_attn(x)",
  2560. "flash_ff(x)",
  2561. "f(x)",
  2562. "f(x,y)",
  2563. };
  2564. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2565. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2566. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2567. //
  2568. // ggml context
  2569. //
  2570. struct ggml_context {
  2571. size_t mem_size;
  2572. void * mem_buffer;
  2573. bool mem_buffer_owned;
  2574. bool no_alloc;
  2575. int n_objects;
  2576. struct ggml_object * objects_begin;
  2577. struct ggml_object * objects_end;
  2578. struct ggml_scratch scratch;
  2579. struct ggml_scratch scratch_save;
  2580. };
  2581. struct ggml_context_container {
  2582. bool used;
  2583. struct ggml_context context;
  2584. };
  2585. //
  2586. // compute types
  2587. //
  2588. enum ggml_task_type {
  2589. GGML_TASK_INIT = 0,
  2590. GGML_TASK_COMPUTE,
  2591. GGML_TASK_FINALIZE,
  2592. };
  2593. struct ggml_compute_params {
  2594. enum ggml_task_type type;
  2595. int ith, nth;
  2596. // work buffer for all threads
  2597. size_t wsize;
  2598. void * wdata;
  2599. };
  2600. //
  2601. // ggml state
  2602. //
  2603. struct ggml_state {
  2604. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2605. };
  2606. // global state
  2607. static struct ggml_state g_state;
  2608. static atomic_int g_state_barrier = 0;
  2609. // barrier via spin lock
  2610. inline static void ggml_critical_section_start(void) {
  2611. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2612. while (processing > 0) {
  2613. // wait for other threads to finish
  2614. atomic_fetch_sub(&g_state_barrier, 1);
  2615. sched_yield(); // TODO: reconsider this
  2616. processing = atomic_fetch_add(&g_state_barrier, 1);
  2617. }
  2618. }
  2619. // TODO: make this somehow automatically executed
  2620. // some sort of "sentry" mechanism
  2621. inline static void ggml_critical_section_end(void) {
  2622. atomic_fetch_sub(&g_state_barrier, 1);
  2623. }
  2624. ////////////////////////////////////////////////////////////////////////////////
  2625. void ggml_print_object(const struct ggml_object * obj) {
  2626. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2627. obj->offs, obj->size, (const void *) obj->next);
  2628. }
  2629. void ggml_print_objects(const struct ggml_context * ctx) {
  2630. struct ggml_object * obj = ctx->objects_begin;
  2631. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2632. while (obj != NULL) {
  2633. ggml_print_object(obj);
  2634. obj = obj->next;
  2635. }
  2636. GGML_PRINT("%s: --- end ---\n", __func__);
  2637. }
  2638. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2639. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2640. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2641. }
  2642. int ggml_nrows(const struct ggml_tensor * tensor) {
  2643. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2644. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2645. }
  2646. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2647. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2648. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2649. }
  2650. int ggml_blck_size(enum ggml_type type) {
  2651. return GGML_BLCK_SIZE[type];
  2652. }
  2653. size_t ggml_type_size(enum ggml_type type) {
  2654. return GGML_TYPE_SIZE[type];
  2655. }
  2656. float ggml_type_sizef(enum ggml_type type) {
  2657. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2658. }
  2659. const char * ggml_type_name(enum ggml_type type) {
  2660. return GGML_TYPE_NAME[type];
  2661. }
  2662. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2663. return GGML_TYPE_SIZE[tensor->type];
  2664. }
  2665. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2666. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2667. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2668. }
  2669. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2670. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2671. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2672. }
  2673. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2674. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2675. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2676. }
  2677. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2678. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2679. return
  2680. (t0->ne[0] == t1->ne[0]) &&
  2681. (t0->ne[2] == t1->ne[2]) &&
  2682. (t0->ne[3] == t1->ne[3]);
  2683. }
  2684. static inline bool ggml_is_quantized(enum ggml_type type) {
  2685. return GGML_IS_QUANTIZED[type];
  2686. }
  2687. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2688. return tensor->nb[0] > tensor->nb[1];
  2689. }
  2690. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2691. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2692. return
  2693. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2694. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2695. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2696. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2697. }
  2698. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2699. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2700. return
  2701. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2702. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2703. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2704. }
  2705. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2706. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2707. return
  2708. (t0->ne[0] == t1->ne[0] ) &&
  2709. (t0->ne[1] == t1->ne[1] ) &&
  2710. (t0->ne[2] == t1->ne[2] ) &&
  2711. (t0->ne[3] == t1->ne[3] );
  2712. }
  2713. // check if t1 can be represented as a repeatition of t0
  2714. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2715. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2716. return
  2717. (t1->ne[0]%t0->ne[0] == 0) &&
  2718. (t1->ne[1]%t0->ne[1] == 0) &&
  2719. (t1->ne[2]%t0->ne[2] == 0) &&
  2720. (t1->ne[3]%t0->ne[3] == 0);
  2721. }
  2722. static inline int ggml_up32(int n) {
  2723. return (n + 31) & ~31;
  2724. }
  2725. static inline int ggml_up64(int n) {
  2726. return (n + 63) & ~63;
  2727. }
  2728. static inline int ggml_up(int n, int m) {
  2729. // assert m is a power of 2
  2730. GGML_ASSERT((m & (m - 1)) == 0);
  2731. return (n + m - 1) & ~(m - 1);
  2732. }
  2733. // assert that pointer is aligned to GGML_MEM_ALIGN
  2734. #define ggml_assert_aligned(ptr) \
  2735. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2736. ////////////////////////////////////////////////////////////////////////////////
  2737. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2738. // make this function thread safe
  2739. ggml_critical_section_start();
  2740. static bool is_first_call = true;
  2741. if (is_first_call) {
  2742. // initialize time system (required on Windows)
  2743. ggml_time_init();
  2744. // initialize GELU, SILU and EXP F32 tables
  2745. {
  2746. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2747. ggml_fp16_t ii;
  2748. for (int i = 0; i < (1 << 16); ++i) {
  2749. uint16_t ui = i;
  2750. memcpy(&ii, &ui, sizeof(ii));
  2751. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2752. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2753. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2754. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2755. }
  2756. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2757. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2758. }
  2759. // initialize g_state
  2760. {
  2761. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2762. g_state = (struct ggml_state) {
  2763. /*.contexts =*/ { { 0 } },
  2764. };
  2765. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2766. g_state.contexts[i].used = false;
  2767. }
  2768. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2769. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2770. }
  2771. // initialize cuBLAS
  2772. #if defined(GGML_USE_CUBLAS)
  2773. init_cublas();
  2774. #endif
  2775. is_first_call = false;
  2776. }
  2777. // find non-used context in g_state
  2778. struct ggml_context * ctx = NULL;
  2779. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2780. if (!g_state.contexts[i].used) {
  2781. g_state.contexts[i].used = true;
  2782. ctx = &g_state.contexts[i].context;
  2783. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2784. break;
  2785. }
  2786. }
  2787. if (ctx == NULL) {
  2788. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2789. ggml_critical_section_end();
  2790. return NULL;
  2791. }
  2792. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2793. *ctx = (struct ggml_context) {
  2794. /*.mem_size =*/ mem_size,
  2795. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2796. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2797. /*.no_alloc =*/ params.no_alloc,
  2798. /*.n_objects =*/ 0,
  2799. /*.objects_begin =*/ NULL,
  2800. /*.objects_end =*/ NULL,
  2801. /*.scratch =*/ { 0, 0, NULL, },
  2802. /*.scratch_save =*/ { 0, 0, NULL, },
  2803. };
  2804. GGML_ASSERT(ctx->mem_buffer != NULL);
  2805. ggml_assert_aligned(ctx->mem_buffer);
  2806. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2807. ggml_critical_section_end();
  2808. return ctx;
  2809. }
  2810. void ggml_free(struct ggml_context * ctx) {
  2811. // make this function thread safe
  2812. ggml_critical_section_start();
  2813. bool found = false;
  2814. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2815. if (&g_state.contexts[i].context == ctx) {
  2816. g_state.contexts[i].used = false;
  2817. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2818. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2819. if (ctx->mem_buffer_owned) {
  2820. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2821. }
  2822. found = true;
  2823. break;
  2824. }
  2825. }
  2826. if (!found) {
  2827. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2828. }
  2829. ggml_critical_section_end();
  2830. }
  2831. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2832. return ctx->objects_end->offs + ctx->objects_end->size;
  2833. }
  2834. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2835. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2836. ctx->scratch = scratch;
  2837. return result;
  2838. }
  2839. ////////////////////////////////////////////////////////////////////////////////
  2840. struct ggml_tensor * ggml_new_tensor_impl(
  2841. struct ggml_context * ctx,
  2842. enum ggml_type type,
  2843. int n_dims,
  2844. const int64_t* ne,
  2845. void* data) {
  2846. // always insert objects at the end of the context's memory pool
  2847. struct ggml_object * obj_cur = ctx->objects_end;
  2848. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2849. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2850. const size_t cur_end = cur_offs + cur_size;
  2851. size_t size_needed = 0;
  2852. if (data == NULL && !ctx->no_alloc) {
  2853. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2854. for (int i = 1; i < n_dims; i++) {
  2855. size_needed *= ne[i];
  2856. }
  2857. // align to GGML_MEM_ALIGN
  2858. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2859. }
  2860. char * const mem_buffer = ctx->mem_buffer;
  2861. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2862. if (ctx->scratch.data == NULL || data != NULL) {
  2863. size_needed += sizeof(struct ggml_tensor);
  2864. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2865. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2866. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2867. assert(false);
  2868. return NULL;
  2869. }
  2870. *obj_new = (struct ggml_object) {
  2871. .offs = cur_end + GGML_OBJECT_SIZE,
  2872. .size = size_needed,
  2873. .next = NULL,
  2874. };
  2875. } else {
  2876. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2877. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2878. assert(false);
  2879. return NULL;
  2880. }
  2881. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2882. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2883. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2884. assert(false);
  2885. return NULL;
  2886. }
  2887. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2888. *obj_new = (struct ggml_object) {
  2889. .offs = cur_end + GGML_OBJECT_SIZE,
  2890. .size = sizeof(struct ggml_tensor),
  2891. .next = NULL,
  2892. };
  2893. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2894. ctx->scratch.offs += size_needed;
  2895. }
  2896. if (obj_cur != NULL) {
  2897. obj_cur->next = obj_new;
  2898. } else {
  2899. // this is the first object in this context
  2900. ctx->objects_begin = obj_new;
  2901. }
  2902. ctx->objects_end = obj_new;
  2903. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2904. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2905. ggml_assert_aligned(result);
  2906. *result = (struct ggml_tensor) {
  2907. /*.type =*/ type,
  2908. /*.n_dims =*/ n_dims,
  2909. /*.ne =*/ { 1, 1, 1, 1 },
  2910. /*.nb =*/ { 0, 0, 0, 0 },
  2911. /*.op =*/ GGML_OP_NONE,
  2912. /*.is_param =*/ false,
  2913. /*.grad =*/ NULL,
  2914. /*.src0 =*/ NULL,
  2915. /*.src1 =*/ NULL,
  2916. /*.opt =*/ { NULL },
  2917. /*.n_tasks =*/ 0,
  2918. /*.perf_runs =*/ 0,
  2919. /*.perf_cycles =*/ 0,
  2920. /*.perf_time_us =*/ 0,
  2921. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2922. /*.pad =*/ { 0 },
  2923. };
  2924. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2925. //ggml_assert_aligned(result->data);
  2926. for (int i = 0; i < n_dims; i++) {
  2927. result->ne[i] = ne[i];
  2928. }
  2929. result->nb[0] = GGML_TYPE_SIZE[type];
  2930. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2931. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2932. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2933. }
  2934. ctx->n_objects++;
  2935. return result;
  2936. }
  2937. struct ggml_tensor * ggml_new_tensor(
  2938. struct ggml_context * ctx,
  2939. enum ggml_type type,
  2940. int n_dims,
  2941. const int64_t * ne) {
  2942. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2943. }
  2944. struct ggml_tensor * ggml_new_tensor_1d(
  2945. struct ggml_context * ctx,
  2946. enum ggml_type type,
  2947. int64_t ne0) {
  2948. return ggml_new_tensor(ctx, type, 1, &ne0);
  2949. }
  2950. struct ggml_tensor * ggml_new_tensor_2d(
  2951. struct ggml_context * ctx,
  2952. enum ggml_type type,
  2953. int64_t ne0,
  2954. int64_t ne1) {
  2955. const int64_t ne[2] = { ne0, ne1 };
  2956. return ggml_new_tensor(ctx, type, 2, ne);
  2957. }
  2958. struct ggml_tensor * ggml_new_tensor_3d(
  2959. struct ggml_context * ctx,
  2960. enum ggml_type type,
  2961. int64_t ne0,
  2962. int64_t ne1,
  2963. int64_t ne2) {
  2964. const int64_t ne[3] = { ne0, ne1, ne2 };
  2965. return ggml_new_tensor(ctx, type, 3, ne);
  2966. }
  2967. struct ggml_tensor * ggml_new_tensor_4d(
  2968. struct ggml_context * ctx,
  2969. enum ggml_type type,
  2970. int64_t ne0,
  2971. int64_t ne1,
  2972. int64_t ne2,
  2973. int64_t ne3) {
  2974. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2975. return ggml_new_tensor(ctx, type, 4, ne);
  2976. }
  2977. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2978. ctx->scratch_save = ctx->scratch;
  2979. ctx->scratch.data = NULL;
  2980. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2981. ctx->scratch = ctx->scratch_save;
  2982. ggml_set_i32(result, value);
  2983. return result;
  2984. }
  2985. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2986. ctx->scratch_save = ctx->scratch;
  2987. ctx->scratch.data = NULL;
  2988. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2989. ctx->scratch = ctx->scratch_save;
  2990. ggml_set_f32(result, value);
  2991. return result;
  2992. }
  2993. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2994. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2995. }
  2996. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2997. memset(tensor->data, 0, ggml_nbytes(tensor));
  2998. return tensor;
  2999. }
  3000. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3001. const int n = ggml_nrows(tensor);
  3002. const int nc = tensor->ne[0];
  3003. const size_t n1 = tensor->nb[1];
  3004. char * const data = tensor->data;
  3005. switch (tensor->type) {
  3006. case GGML_TYPE_I8:
  3007. {
  3008. assert(tensor->nb[0] == sizeof(int8_t));
  3009. for (int i = 0; i < n; i++) {
  3010. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3011. }
  3012. } break;
  3013. case GGML_TYPE_I16:
  3014. {
  3015. assert(tensor->nb[0] == sizeof(int16_t));
  3016. for (int i = 0; i < n; i++) {
  3017. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3018. }
  3019. } break;
  3020. case GGML_TYPE_I32:
  3021. {
  3022. assert(tensor->nb[0] == sizeof(int32_t));
  3023. for (int i = 0; i < n; i++) {
  3024. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3025. }
  3026. } break;
  3027. case GGML_TYPE_F16:
  3028. {
  3029. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3030. for (int i = 0; i < n; i++) {
  3031. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3032. }
  3033. } break;
  3034. case GGML_TYPE_F32:
  3035. {
  3036. assert(tensor->nb[0] == sizeof(float));
  3037. for (int i = 0; i < n; i++) {
  3038. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3039. }
  3040. } break;
  3041. default:
  3042. {
  3043. GGML_ASSERT(false);
  3044. } break;
  3045. }
  3046. return tensor;
  3047. }
  3048. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3049. const int n = ggml_nrows(tensor);
  3050. const int nc = tensor->ne[0];
  3051. const size_t n1 = tensor->nb[1];
  3052. char * const data = tensor->data;
  3053. switch (tensor->type) {
  3054. case GGML_TYPE_I8:
  3055. {
  3056. assert(tensor->nb[0] == sizeof(int8_t));
  3057. for (int i = 0; i < n; i++) {
  3058. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3059. }
  3060. } break;
  3061. case GGML_TYPE_I16:
  3062. {
  3063. assert(tensor->nb[0] == sizeof(int16_t));
  3064. for (int i = 0; i < n; i++) {
  3065. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3066. }
  3067. } break;
  3068. case GGML_TYPE_I32:
  3069. {
  3070. assert(tensor->nb[0] == sizeof(int32_t));
  3071. for (int i = 0; i < n; i++) {
  3072. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3073. }
  3074. } break;
  3075. case GGML_TYPE_F16:
  3076. {
  3077. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3078. for (int i = 0; i < n; i++) {
  3079. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3080. }
  3081. } break;
  3082. case GGML_TYPE_F32:
  3083. {
  3084. assert(tensor->nb[0] == sizeof(float));
  3085. for (int i = 0; i < n; i++) {
  3086. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3087. }
  3088. } break;
  3089. default:
  3090. {
  3091. GGML_ASSERT(false);
  3092. } break;
  3093. }
  3094. return tensor;
  3095. }
  3096. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3097. switch (tensor->type) {
  3098. case GGML_TYPE_I8:
  3099. {
  3100. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3101. return ((int8_t *)(tensor->data))[i];
  3102. } break;
  3103. case GGML_TYPE_I16:
  3104. {
  3105. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3106. return ((int16_t *)(tensor->data))[i];
  3107. } break;
  3108. case GGML_TYPE_I32:
  3109. {
  3110. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3111. return ((int32_t *)(tensor->data))[i];
  3112. } break;
  3113. case GGML_TYPE_F16:
  3114. {
  3115. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3116. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3117. } break;
  3118. case GGML_TYPE_F32:
  3119. {
  3120. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3121. return ((float *)(tensor->data))[i];
  3122. } break;
  3123. default:
  3124. {
  3125. GGML_ASSERT(false);
  3126. } break;
  3127. }
  3128. return 0.0f;
  3129. }
  3130. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3131. switch (tensor->type) {
  3132. case GGML_TYPE_I8:
  3133. {
  3134. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3135. ((int8_t *)(tensor->data))[i] = value;
  3136. } break;
  3137. case GGML_TYPE_I16:
  3138. {
  3139. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3140. ((int16_t *)(tensor->data))[i] = value;
  3141. } break;
  3142. case GGML_TYPE_I32:
  3143. {
  3144. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3145. ((int32_t *)(tensor->data))[i] = value;
  3146. } break;
  3147. case GGML_TYPE_F16:
  3148. {
  3149. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3150. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3151. } break;
  3152. case GGML_TYPE_F32:
  3153. {
  3154. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3155. ((float *)(tensor->data))[i] = value;
  3156. } break;
  3157. default:
  3158. {
  3159. GGML_ASSERT(false);
  3160. } break;
  3161. }
  3162. }
  3163. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3164. switch (tensor->type) {
  3165. case GGML_TYPE_I8:
  3166. {
  3167. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3168. return ((int8_t *)(tensor->data))[i];
  3169. } break;
  3170. case GGML_TYPE_I16:
  3171. {
  3172. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3173. return ((int16_t *)(tensor->data))[i];
  3174. } break;
  3175. case GGML_TYPE_I32:
  3176. {
  3177. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3178. return ((int32_t *)(tensor->data))[i];
  3179. } break;
  3180. case GGML_TYPE_F16:
  3181. {
  3182. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3183. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3184. } break;
  3185. case GGML_TYPE_F32:
  3186. {
  3187. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3188. return ((float *)(tensor->data))[i];
  3189. } break;
  3190. default:
  3191. {
  3192. GGML_ASSERT(false);
  3193. } break;
  3194. }
  3195. return 0.0f;
  3196. }
  3197. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3198. switch (tensor->type) {
  3199. case GGML_TYPE_I8:
  3200. {
  3201. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3202. ((int8_t *)(tensor->data))[i] = value;
  3203. } break;
  3204. case GGML_TYPE_I16:
  3205. {
  3206. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3207. ((int16_t *)(tensor->data))[i] = value;
  3208. } break;
  3209. case GGML_TYPE_I32:
  3210. {
  3211. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3212. ((int32_t *)(tensor->data))[i] = value;
  3213. } break;
  3214. case GGML_TYPE_F16:
  3215. {
  3216. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3217. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3218. } break;
  3219. case GGML_TYPE_F32:
  3220. {
  3221. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3222. ((float *)(tensor->data))[i] = value;
  3223. } break;
  3224. default:
  3225. {
  3226. GGML_ASSERT(false);
  3227. } break;
  3228. }
  3229. }
  3230. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3231. return tensor->data;
  3232. }
  3233. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3234. assert(tensor->type == GGML_TYPE_F32);
  3235. return (float *)(tensor->data);
  3236. }
  3237. struct ggml_tensor * ggml_view_tensor(
  3238. struct ggml_context * ctx,
  3239. const struct ggml_tensor * src) {
  3240. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3241. result->nb[0] = src->nb[0];
  3242. result->nb[1] = src->nb[1];
  3243. result->nb[2] = src->nb[2];
  3244. result->nb[3] = src->nb[3];
  3245. return result;
  3246. }
  3247. ////////////////////////////////////////////////////////////////////////////////
  3248. // ggml_dup
  3249. struct ggml_tensor * ggml_dup_impl(
  3250. struct ggml_context * ctx,
  3251. struct ggml_tensor * a,
  3252. bool inplace) {
  3253. bool is_node = false;
  3254. if (!inplace && (a->grad)) {
  3255. is_node = true;
  3256. }
  3257. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3258. result->op = GGML_OP_DUP;
  3259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3260. result->src0 = a;
  3261. result->src1 = NULL;
  3262. return result;
  3263. }
  3264. struct ggml_tensor * ggml_dup(
  3265. struct ggml_context * ctx,
  3266. struct ggml_tensor * a) {
  3267. return ggml_dup_impl(ctx, a, false);
  3268. }
  3269. struct ggml_tensor * ggml_dup_inplace(
  3270. struct ggml_context * ctx,
  3271. struct ggml_tensor * a) {
  3272. return ggml_dup_impl(ctx, a, true);
  3273. }
  3274. // ggml_add
  3275. struct ggml_tensor * ggml_add_impl(
  3276. struct ggml_context * ctx,
  3277. struct ggml_tensor * a,
  3278. struct ggml_tensor * b,
  3279. bool inplace) {
  3280. GGML_ASSERT(ggml_are_same_shape(a, b));
  3281. bool is_node = false;
  3282. if (!inplace && (a->grad || b->grad)) {
  3283. is_node = true;
  3284. }
  3285. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3286. result->op = GGML_OP_ADD;
  3287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3288. result->src0 = a;
  3289. result->src1 = b;
  3290. return result;
  3291. }
  3292. struct ggml_tensor * ggml_add(
  3293. struct ggml_context * ctx,
  3294. struct ggml_tensor * a,
  3295. struct ggml_tensor * b) {
  3296. return ggml_add_impl(ctx, a, b, false);
  3297. }
  3298. struct ggml_tensor * ggml_add_inplace(
  3299. struct ggml_context * ctx,
  3300. struct ggml_tensor * a,
  3301. struct ggml_tensor * b) {
  3302. return ggml_add_impl(ctx, a, b, true);
  3303. }
  3304. // ggml_sub
  3305. struct ggml_tensor * ggml_sub_impl(
  3306. struct ggml_context * ctx,
  3307. struct ggml_tensor * a,
  3308. struct ggml_tensor * b,
  3309. bool inplace) {
  3310. GGML_ASSERT(ggml_are_same_shape(a, b));
  3311. bool is_node = false;
  3312. if (!inplace && (a->grad || b->grad)) {
  3313. is_node = true;
  3314. }
  3315. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3316. result->op = GGML_OP_SUB;
  3317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3318. result->src0 = a;
  3319. result->src1 = b;
  3320. return result;
  3321. }
  3322. struct ggml_tensor * ggml_sub(
  3323. struct ggml_context * ctx,
  3324. struct ggml_tensor * a,
  3325. struct ggml_tensor * b) {
  3326. return ggml_sub_impl(ctx, a, b, false);
  3327. }
  3328. struct ggml_tensor * ggml_sub_inplace(
  3329. struct ggml_context * ctx,
  3330. struct ggml_tensor * a,
  3331. struct ggml_tensor * b) {
  3332. return ggml_sub_impl(ctx, a, b, true);
  3333. }
  3334. // ggml_mul
  3335. struct ggml_tensor * ggml_mul_impl(
  3336. struct ggml_context * ctx,
  3337. struct ggml_tensor * a,
  3338. struct ggml_tensor * b,
  3339. bool inplace) {
  3340. GGML_ASSERT(ggml_are_same_shape(a, b));
  3341. bool is_node = false;
  3342. if (!inplace && (a->grad || b->grad)) {
  3343. is_node = true;
  3344. }
  3345. if (inplace) {
  3346. GGML_ASSERT(is_node == false);
  3347. }
  3348. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3349. result->op = GGML_OP_MUL;
  3350. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3351. result->src0 = a;
  3352. result->src1 = b;
  3353. return result;
  3354. }
  3355. struct ggml_tensor * ggml_mul(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a,
  3358. struct ggml_tensor * b) {
  3359. return ggml_mul_impl(ctx, a, b, false);
  3360. }
  3361. struct ggml_tensor * ggml_mul_inplace(
  3362. struct ggml_context * ctx,
  3363. struct ggml_tensor * a,
  3364. struct ggml_tensor * b) {
  3365. return ggml_mul_impl(ctx, a, b, true);
  3366. }
  3367. // ggml_div
  3368. struct ggml_tensor * ggml_div_impl(
  3369. struct ggml_context * ctx,
  3370. struct ggml_tensor * a,
  3371. struct ggml_tensor * b,
  3372. bool inplace) {
  3373. GGML_ASSERT(ggml_are_same_shape(a, b));
  3374. bool is_node = false;
  3375. if (!inplace && (a->grad || b->grad)) {
  3376. is_node = true;
  3377. }
  3378. if (inplace) {
  3379. GGML_ASSERT(is_node == false);
  3380. }
  3381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3382. result->op = GGML_OP_DIV;
  3383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3384. result->src0 = a;
  3385. result->src1 = b;
  3386. return result;
  3387. }
  3388. struct ggml_tensor * ggml_div(
  3389. struct ggml_context * ctx,
  3390. struct ggml_tensor * a,
  3391. struct ggml_tensor * b) {
  3392. return ggml_div_impl(ctx, a, b, false);
  3393. }
  3394. struct ggml_tensor * ggml_div_inplace(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a,
  3397. struct ggml_tensor * b) {
  3398. return ggml_div_impl(ctx, a, b, true);
  3399. }
  3400. // ggml_sqr
  3401. struct ggml_tensor * ggml_sqr_impl(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a,
  3404. bool inplace) {
  3405. bool is_node = false;
  3406. if (!inplace && (a->grad)) {
  3407. is_node = true;
  3408. }
  3409. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3410. result->op = GGML_OP_SQR;
  3411. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3412. result->src0 = a;
  3413. result->src1 = NULL;
  3414. return result;
  3415. }
  3416. struct ggml_tensor * ggml_sqr(
  3417. struct ggml_context * ctx,
  3418. struct ggml_tensor * a) {
  3419. return ggml_sqr_impl(ctx, a, false);
  3420. }
  3421. struct ggml_tensor * ggml_sqr_inplace(
  3422. struct ggml_context * ctx,
  3423. struct ggml_tensor * a) {
  3424. return ggml_sqr_impl(ctx, a, true);
  3425. }
  3426. // ggml_sqrt
  3427. struct ggml_tensor * ggml_sqrt_impl(
  3428. struct ggml_context * ctx,
  3429. struct ggml_tensor * a,
  3430. bool inplace) {
  3431. bool is_node = false;
  3432. if (!inplace && (a->grad)) {
  3433. is_node = true;
  3434. }
  3435. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3436. result->op = GGML_OP_SQRT;
  3437. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3438. result->src0 = a;
  3439. result->src1 = NULL;
  3440. return result;
  3441. }
  3442. struct ggml_tensor * ggml_sqrt(
  3443. struct ggml_context * ctx,
  3444. struct ggml_tensor * a) {
  3445. return ggml_sqrt_impl(ctx, a, false);
  3446. }
  3447. struct ggml_tensor * ggml_sqrt_inplace(
  3448. struct ggml_context * ctx,
  3449. struct ggml_tensor * a) {
  3450. return ggml_sqrt_impl(ctx, a, true);
  3451. }
  3452. // ggml_sum
  3453. struct ggml_tensor * ggml_sum(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a) {
  3456. bool is_node = false;
  3457. if (a->grad) {
  3458. is_node = true;
  3459. }
  3460. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3461. result->op = GGML_OP_SUM;
  3462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3463. result->src0 = a;
  3464. result->src1 = NULL;
  3465. return result;
  3466. }
  3467. // ggml_mean
  3468. struct ggml_tensor * ggml_mean(
  3469. struct ggml_context * ctx,
  3470. struct ggml_tensor * a) {
  3471. bool is_node = false;
  3472. if (a->grad) {
  3473. GGML_ASSERT(false); // TODO: implement
  3474. is_node = true;
  3475. }
  3476. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3477. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3478. result->op = GGML_OP_MEAN;
  3479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3480. result->src0 = a;
  3481. result->src1 = NULL;
  3482. return result;
  3483. }
  3484. // ggml_repeat
  3485. struct ggml_tensor * ggml_repeat(
  3486. struct ggml_context * ctx,
  3487. struct ggml_tensor * a,
  3488. struct ggml_tensor * b) {
  3489. GGML_ASSERT(ggml_can_repeat(a, b));
  3490. bool is_node = false;
  3491. if (a->grad) {
  3492. is_node = true;
  3493. }
  3494. if (ggml_are_same_shape(a, b) && !is_node) {
  3495. return a;
  3496. }
  3497. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3498. result->op = GGML_OP_REPEAT;
  3499. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3500. result->src0 = a;
  3501. result->src1 = b;
  3502. return result;
  3503. }
  3504. // ggml_abs
  3505. struct ggml_tensor * ggml_abs_impl(
  3506. struct ggml_context * ctx,
  3507. struct ggml_tensor * a,
  3508. bool inplace) {
  3509. bool is_node = false;
  3510. if (!inplace && (a->grad)) {
  3511. is_node = true;
  3512. }
  3513. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3514. result->op = GGML_OP_ABS;
  3515. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3516. result->src0 = a;
  3517. result->src1 = NULL;
  3518. return result;
  3519. }
  3520. struct ggml_tensor * ggml_abs(
  3521. struct ggml_context * ctx,
  3522. struct ggml_tensor * a) {
  3523. return ggml_abs_impl(ctx, a, false);
  3524. }
  3525. struct ggml_tensor * ggml_abs_inplace(
  3526. struct ggml_context * ctx,
  3527. struct ggml_tensor * a) {
  3528. return ggml_abs_impl(ctx, a, true);
  3529. }
  3530. // ggml_sgn
  3531. struct ggml_tensor * ggml_sgn_impl(
  3532. struct ggml_context * ctx,
  3533. struct ggml_tensor * a,
  3534. bool inplace) {
  3535. bool is_node = false;
  3536. if (!inplace && (a->grad)) {
  3537. is_node = true;
  3538. }
  3539. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3540. result->op = GGML_OP_SGN;
  3541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3542. result->src0 = a;
  3543. result->src1 = NULL;
  3544. return result;
  3545. }
  3546. struct ggml_tensor * ggml_sgn(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a) {
  3549. return ggml_sgn_impl(ctx, a, false);
  3550. }
  3551. struct ggml_tensor * ggml_sgn_inplace(
  3552. struct ggml_context * ctx,
  3553. struct ggml_tensor * a) {
  3554. return ggml_sgn_impl(ctx, a, true);
  3555. }
  3556. // ggml_neg
  3557. struct ggml_tensor * ggml_neg_impl(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. bool inplace) {
  3561. bool is_node = false;
  3562. if (!inplace && (a->grad)) {
  3563. is_node = true;
  3564. }
  3565. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3566. result->op = GGML_OP_NEG;
  3567. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3568. result->src0 = a;
  3569. result->src1 = NULL;
  3570. return result;
  3571. }
  3572. struct ggml_tensor * ggml_neg(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * a) {
  3575. return ggml_neg_impl(ctx, a, false);
  3576. }
  3577. struct ggml_tensor * ggml_neg_inplace(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a) {
  3580. return ggml_neg_impl(ctx, a, true);
  3581. }
  3582. // ggml_step
  3583. struct ggml_tensor * ggml_step_impl(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. bool inplace) {
  3587. bool is_node = false;
  3588. if (!inplace && (a->grad)) {
  3589. is_node = true;
  3590. }
  3591. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3592. result->op = GGML_OP_STEP;
  3593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3594. result->src0 = a;
  3595. result->src1 = NULL;
  3596. return result;
  3597. }
  3598. struct ggml_tensor * ggml_step(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a) {
  3601. return ggml_step_impl(ctx, a, false);
  3602. }
  3603. struct ggml_tensor * ggml_step_inplace(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a) {
  3606. return ggml_step_impl(ctx, a, true);
  3607. }
  3608. // ggml_relu
  3609. struct ggml_tensor * ggml_relu_impl(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a,
  3612. bool inplace) {
  3613. bool is_node = false;
  3614. if (!inplace && (a->grad)) {
  3615. is_node = true;
  3616. }
  3617. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3618. result->op = GGML_OP_RELU;
  3619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3620. result->src0 = a;
  3621. result->src1 = NULL;
  3622. return result;
  3623. }
  3624. struct ggml_tensor * ggml_relu(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a) {
  3627. return ggml_relu_impl(ctx, a, false);
  3628. }
  3629. struct ggml_tensor * ggml_relu_inplace(
  3630. struct ggml_context * ctx,
  3631. struct ggml_tensor * a) {
  3632. return ggml_relu_impl(ctx, a, true);
  3633. }
  3634. // ggml_gelu
  3635. struct ggml_tensor * ggml_gelu_impl(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. bool inplace) {
  3639. bool is_node = false;
  3640. if (!inplace && (a->grad)) {
  3641. is_node = true;
  3642. }
  3643. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3644. result->op = GGML_OP_GELU;
  3645. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3646. result->src0 = a;
  3647. result->src1 = NULL;
  3648. return result;
  3649. }
  3650. struct ggml_tensor * ggml_gelu(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a) {
  3653. return ggml_gelu_impl(ctx, a, false);
  3654. }
  3655. struct ggml_tensor * ggml_gelu_inplace(
  3656. struct ggml_context * ctx,
  3657. struct ggml_tensor * a) {
  3658. return ggml_gelu_impl(ctx, a, true);
  3659. }
  3660. // ggml_silu
  3661. struct ggml_tensor * ggml_silu_impl(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a,
  3664. bool inplace) {
  3665. bool is_node = false;
  3666. if (!inplace && (a->grad)) {
  3667. is_node = true;
  3668. }
  3669. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3670. result->op = GGML_OP_SILU;
  3671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3672. result->src0 = a;
  3673. result->src1 = NULL;
  3674. return result;
  3675. }
  3676. struct ggml_tensor * ggml_silu(
  3677. struct ggml_context * ctx,
  3678. struct ggml_tensor * a) {
  3679. return ggml_silu_impl(ctx, a, false);
  3680. }
  3681. struct ggml_tensor * ggml_silu_inplace(
  3682. struct ggml_context * ctx,
  3683. struct ggml_tensor * a) {
  3684. return ggml_silu_impl(ctx, a, true);
  3685. }
  3686. // ggml_norm
  3687. struct ggml_tensor * ggml_norm_impl(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a,
  3690. bool inplace) {
  3691. bool is_node = false;
  3692. if (!inplace && (a->grad)) {
  3693. GGML_ASSERT(false); // TODO: implement backward
  3694. is_node = true;
  3695. }
  3696. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3697. result->op = GGML_OP_NORM;
  3698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3699. result->src0 = a;
  3700. result->src1 = NULL; // TODO: maybe store epsilon here?
  3701. return result;
  3702. }
  3703. struct ggml_tensor * ggml_norm(
  3704. struct ggml_context * ctx,
  3705. struct ggml_tensor * a) {
  3706. return ggml_norm_impl(ctx, a, false);
  3707. }
  3708. struct ggml_tensor * ggml_norm_inplace(
  3709. struct ggml_context * ctx,
  3710. struct ggml_tensor * a) {
  3711. return ggml_norm_impl(ctx, a, true);
  3712. }
  3713. struct ggml_tensor * ggml_rms_norm_impl(
  3714. struct ggml_context * ctx,
  3715. struct ggml_tensor * a,
  3716. bool inplace) {
  3717. bool is_node = false;
  3718. if (!inplace && (a->grad)) {
  3719. GGML_ASSERT(false); // TODO: implement backward
  3720. is_node = true;
  3721. }
  3722. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3723. result->op = GGML_OP_RMS_NORM;
  3724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3725. result->src0 = a;
  3726. result->src1 = NULL; // TODO: maybe store epsilon here?
  3727. return result;
  3728. }
  3729. struct ggml_tensor * ggml_rms_norm(
  3730. struct ggml_context * ctx,
  3731. struct ggml_tensor * a) {
  3732. return ggml_rms_norm_impl(ctx, a, false);
  3733. }
  3734. struct ggml_tensor * ggml_rms_norm_inplace(
  3735. struct ggml_context * ctx,
  3736. struct ggml_tensor * a) {
  3737. return ggml_rms_norm_impl(ctx, a, true);
  3738. }
  3739. // ggml_mul_mat
  3740. struct ggml_tensor * ggml_mul_mat(
  3741. struct ggml_context * ctx,
  3742. struct ggml_tensor * a,
  3743. struct ggml_tensor * b) {
  3744. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3745. GGML_ASSERT(!ggml_is_transposed(a));
  3746. bool is_node = false;
  3747. if (a->grad || b->grad) {
  3748. is_node = true;
  3749. }
  3750. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3751. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3752. result->op = GGML_OP_MUL_MAT;
  3753. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3754. result->src0 = a;
  3755. result->src1 = b;
  3756. return result;
  3757. }
  3758. // ggml_scale
  3759. struct ggml_tensor * ggml_scale_impl(
  3760. struct ggml_context * ctx,
  3761. struct ggml_tensor * a,
  3762. struct ggml_tensor * b,
  3763. bool inplace) {
  3764. GGML_ASSERT(ggml_is_scalar(b));
  3765. GGML_ASSERT(ggml_is_padded_1d(a));
  3766. bool is_node = false;
  3767. if (!inplace && (a->grad || b->grad)) {
  3768. GGML_ASSERT(false); // TODO: implement backward
  3769. is_node = true;
  3770. }
  3771. // TODO: when implement backward, fix this:
  3772. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3773. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3774. result->op = GGML_OP_SCALE;
  3775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3776. result->src0 = a;
  3777. result->src1 = b;
  3778. return result;
  3779. }
  3780. struct ggml_tensor * ggml_scale(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. struct ggml_tensor * b) {
  3784. return ggml_scale_impl(ctx, a, b, false);
  3785. }
  3786. struct ggml_tensor * ggml_scale_inplace(
  3787. struct ggml_context * ctx,
  3788. struct ggml_tensor * a,
  3789. struct ggml_tensor * b) {
  3790. return ggml_scale_impl(ctx, a, b, true);
  3791. }
  3792. // ggml_cpy
  3793. struct ggml_tensor * ggml_cpy_impl(
  3794. struct ggml_context * ctx,
  3795. struct ggml_tensor * a,
  3796. struct ggml_tensor * b,
  3797. bool inplace) {
  3798. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3799. bool is_node = false;
  3800. if (!inplace && (a->grad || b->grad)) {
  3801. GGML_ASSERT(false); // TODO: implement backward
  3802. is_node = true;
  3803. }
  3804. // make a view of the destination
  3805. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3806. result->op = GGML_OP_CPY;
  3807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3808. result->src0 = a;
  3809. result->src1 = b;
  3810. return result;
  3811. }
  3812. struct ggml_tensor * ggml_cpy(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a,
  3815. struct ggml_tensor * b) {
  3816. return ggml_cpy_impl(ctx, a, b, false);
  3817. }
  3818. struct ggml_tensor * ggml_cpy_inplace(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a,
  3821. struct ggml_tensor * b) {
  3822. return ggml_cpy_impl(ctx, a, b, true);
  3823. }
  3824. // ggml_cont
  3825. struct ggml_tensor * ggml_cont_impl(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a,
  3828. bool inplace) {
  3829. bool is_node = false;
  3830. if (!inplace && a->grad) {
  3831. GGML_ASSERT(false); // TODO: implement backward
  3832. is_node = true;
  3833. }
  3834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3835. result->op = GGML_OP_CONT;
  3836. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3837. result->src0 = a;
  3838. result->src1 = NULL;
  3839. return result;
  3840. }
  3841. struct ggml_tensor * ggml_cont(
  3842. struct ggml_context * ctx,
  3843. struct ggml_tensor * a) {
  3844. return ggml_cont_impl(ctx, a, false);
  3845. }
  3846. struct ggml_tensor * ggml_cont_inplace(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a) {
  3849. return ggml_cont_impl(ctx, a, true);
  3850. }
  3851. // ggml_reshape
  3852. struct ggml_tensor * ggml_reshape(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a,
  3855. struct ggml_tensor * b) {
  3856. GGML_ASSERT(ggml_is_contiguous(a));
  3857. GGML_ASSERT(ggml_is_contiguous(b));
  3858. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3859. bool is_node = false;
  3860. if (a->grad || b->grad) {
  3861. GGML_ASSERT(false); // TODO: implement backward
  3862. is_node = true;
  3863. }
  3864. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3865. result->op = GGML_OP_RESHAPE;
  3866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3867. result->src0 = a;
  3868. result->src1 = NULL;
  3869. return result;
  3870. }
  3871. struct ggml_tensor * ggml_reshape_2d(
  3872. struct ggml_context * ctx,
  3873. struct ggml_tensor * a,
  3874. int64_t ne0,
  3875. int64_t ne1) {
  3876. GGML_ASSERT(ggml_is_contiguous(a));
  3877. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3878. bool is_node = false;
  3879. if (a->grad) {
  3880. GGML_ASSERT(false); // TODO: implement backward
  3881. is_node = true;
  3882. }
  3883. const int64_t ne[2] = { ne0, ne1 };
  3884. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3885. result->op = GGML_OP_RESHAPE;
  3886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3887. result->src0 = a;
  3888. result->src1 = NULL;
  3889. return result;
  3890. }
  3891. struct ggml_tensor * ggml_reshape_3d(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. int64_t ne0,
  3895. int64_t ne1,
  3896. int64_t ne2) {
  3897. GGML_ASSERT(ggml_is_contiguous(a));
  3898. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3899. bool is_node = false;
  3900. if (a->grad) {
  3901. GGML_ASSERT(false); // TODO: implement backward
  3902. is_node = true;
  3903. }
  3904. const int64_t ne[3] = { ne0, ne1, ne2 };
  3905. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3906. result->op = GGML_OP_RESHAPE;
  3907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3908. result->src0 = a;
  3909. result->src1 = NULL;
  3910. return result;
  3911. }
  3912. // ggml_view_1d
  3913. struct ggml_tensor * ggml_view_1d(
  3914. struct ggml_context * ctx,
  3915. struct ggml_tensor * a,
  3916. int64_t ne0,
  3917. size_t offset) {
  3918. if (a->grad) {
  3919. GGML_ASSERT(false); // gradient propagation is not supported
  3920. }
  3921. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3922. result->op = GGML_OP_VIEW;
  3923. result->grad = NULL;
  3924. result->src0 = a;
  3925. result->src1 = NULL; // TODO: maybe store the offset here?
  3926. return result;
  3927. }
  3928. // ggml_view_2d
  3929. struct ggml_tensor * ggml_view_2d(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. int64_t ne0,
  3933. int64_t ne1,
  3934. size_t nb1,
  3935. size_t offset) {
  3936. if (a->grad) {
  3937. GGML_ASSERT(false); // gradient propagation is not supported
  3938. }
  3939. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3940. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3941. result->nb[1] = nb1;
  3942. result->nb[2] = result->nb[1]*ne1;
  3943. result->nb[3] = result->nb[2];
  3944. result->op = GGML_OP_VIEW;
  3945. result->grad = NULL;
  3946. result->src0 = a;
  3947. result->src1 = NULL; // TODO: maybe store the offset here?
  3948. return result;
  3949. }
  3950. // ggml_view_3d
  3951. struct ggml_tensor * ggml_view_3d(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a,
  3954. int64_t ne0,
  3955. int64_t ne1,
  3956. int64_t ne2,
  3957. size_t nb1,
  3958. size_t nb2,
  3959. size_t offset) {
  3960. if (a->grad) {
  3961. GGML_ASSERT(false); // gradient propagation is not supported
  3962. }
  3963. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3964. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3965. result->nb[1] = nb1;
  3966. result->nb[2] = nb2;
  3967. result->nb[3] = result->nb[2]*ne2;
  3968. result->op = GGML_OP_VIEW;
  3969. result->grad = NULL;
  3970. result->src0 = a;
  3971. result->src1 = NULL; // TODO: maybe store the offset here?
  3972. return result;
  3973. }
  3974. // ggml_permute
  3975. struct ggml_tensor * ggml_permute(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. int axis0,
  3979. int axis1,
  3980. int axis2,
  3981. int axis3) {
  3982. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3983. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3984. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3985. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3986. GGML_ASSERT(axis0 != axis1);
  3987. GGML_ASSERT(axis0 != axis2);
  3988. GGML_ASSERT(axis0 != axis3);
  3989. GGML_ASSERT(axis1 != axis2);
  3990. GGML_ASSERT(axis1 != axis3);
  3991. GGML_ASSERT(axis2 != axis3);
  3992. bool is_node = false;
  3993. if (a->grad) {
  3994. GGML_ASSERT(false); // TODO: implement backward
  3995. is_node = true;
  3996. }
  3997. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3998. int ne[GGML_MAX_DIMS];
  3999. int nb[GGML_MAX_DIMS];
  4000. ne[axis0] = a->ne[0];
  4001. ne[axis1] = a->ne[1];
  4002. ne[axis2] = a->ne[2];
  4003. ne[axis3] = a->ne[3];
  4004. nb[axis0] = a->nb[0];
  4005. nb[axis1] = a->nb[1];
  4006. nb[axis2] = a->nb[2];
  4007. nb[axis3] = a->nb[3];
  4008. result->ne[0] = ne[0];
  4009. result->ne[1] = ne[1];
  4010. result->ne[2] = ne[2];
  4011. result->ne[3] = ne[3];
  4012. result->nb[0] = nb[0];
  4013. result->nb[1] = nb[1];
  4014. result->nb[2] = nb[2];
  4015. result->nb[3] = nb[3];
  4016. result->op = GGML_OP_PERMUTE;
  4017. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4018. result->src0 = a;
  4019. result->src1 = NULL; // TODO: maybe store the permutation here?
  4020. return result;
  4021. }
  4022. // ggml_transpose
  4023. struct ggml_tensor * ggml_transpose(
  4024. struct ggml_context * ctx,
  4025. struct ggml_tensor * a) {
  4026. bool is_node = false;
  4027. if (a->grad) {
  4028. GGML_ASSERT(false); // TODO: implement backward
  4029. is_node = true;
  4030. }
  4031. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4032. result->ne[0] = a->ne[1];
  4033. result->ne[1] = a->ne[0];
  4034. result->nb[0] = a->nb[1];
  4035. result->nb[1] = a->nb[0];
  4036. result->op = GGML_OP_TRANSPOSE;
  4037. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4038. result->src0 = a;
  4039. result->src1 = NULL;
  4040. return result;
  4041. }
  4042. // ggml_get_rows
  4043. struct ggml_tensor * ggml_get_rows(
  4044. struct ggml_context * ctx,
  4045. struct ggml_tensor * a,
  4046. struct ggml_tensor * b) {
  4047. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4048. bool is_node = false;
  4049. if (a->grad || b->grad) {
  4050. GGML_ASSERT(false); // TODO: implement backward
  4051. is_node = true;
  4052. }
  4053. // TODO: implement non F32 return
  4054. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4055. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4056. result->op = GGML_OP_GET_ROWS;
  4057. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4058. result->src0 = a;
  4059. result->src1 = b;
  4060. return result;
  4061. }
  4062. // ggml_diag_mask_inf
  4063. struct ggml_tensor * ggml_diag_mask_inf(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a,
  4066. int n_past) {
  4067. bool is_node = false;
  4068. if (a->grad) {
  4069. GGML_ASSERT(false); // TODO: implement backward
  4070. is_node = true;
  4071. }
  4072. // TODO: when implement backward, fix this:
  4073. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4074. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4075. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4076. result->op = GGML_OP_DIAG_MASK_INF;
  4077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4078. result->src0 = a;
  4079. result->src1 = b;
  4080. return result;
  4081. }
  4082. // ggml_soft_max
  4083. struct ggml_tensor * ggml_soft_max(
  4084. struct ggml_context * ctx,
  4085. struct ggml_tensor * a) {
  4086. bool is_node = false;
  4087. if (a->grad) {
  4088. GGML_ASSERT(false); // TODO: implement backward
  4089. is_node = true;
  4090. }
  4091. // TODO: when implement backward, fix this:
  4092. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4093. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4094. result->op = GGML_OP_SOFT_MAX;
  4095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4096. result->src0 = a;
  4097. result->src1 = NULL;
  4098. return result;
  4099. }
  4100. // ggml_rope
  4101. struct ggml_tensor * ggml_rope(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. int n_past,
  4105. int n_dims,
  4106. int mode) {
  4107. GGML_ASSERT(n_past >= 0);
  4108. bool is_node = false;
  4109. if (a->grad) {
  4110. GGML_ASSERT(false); // TODO: implement backward
  4111. is_node = true;
  4112. }
  4113. // TODO: when implement backward, fix this:
  4114. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4115. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4116. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4117. ((int32_t *) b->data)[0] = n_past;
  4118. ((int32_t *) b->data)[1] = n_dims;
  4119. ((int32_t *) b->data)[2] = mode;
  4120. result->op = GGML_OP_ROPE;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src0 = a;
  4123. result->src1 = b;
  4124. return result;
  4125. }
  4126. // ggml_conv_1d_1s
  4127. struct ggml_tensor * ggml_conv_1d_1s(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a,
  4130. struct ggml_tensor * b) {
  4131. GGML_ASSERT(ggml_is_matrix(b));
  4132. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4133. GGML_ASSERT(a->ne[3] == 1);
  4134. bool is_node = false;
  4135. if (a->grad || b->grad) {
  4136. GGML_ASSERT(false); // TODO: implement backward
  4137. is_node = true;
  4138. }
  4139. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4140. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4141. result->op = GGML_OP_CONV_1D_1S;
  4142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4143. result->src0 = a;
  4144. result->src1 = b;
  4145. return result;
  4146. }
  4147. // ggml_conv_1d_2s
  4148. struct ggml_tensor * ggml_conv_1d_2s(
  4149. struct ggml_context * ctx,
  4150. struct ggml_tensor * a,
  4151. struct ggml_tensor * b) {
  4152. GGML_ASSERT(ggml_is_matrix(b));
  4153. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4154. GGML_ASSERT(a->ne[3] == 1);
  4155. bool is_node = false;
  4156. if (a->grad || b->grad) {
  4157. GGML_ASSERT(false); // TODO: implement backward
  4158. is_node = true;
  4159. }
  4160. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4161. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4162. result->op = GGML_OP_CONV_1D_2S;
  4163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4164. result->src0 = a;
  4165. result->src1 = b;
  4166. return result;
  4167. }
  4168. // ggml_flash_attn
  4169. struct ggml_tensor * ggml_flash_attn(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * q,
  4172. struct ggml_tensor * k,
  4173. struct ggml_tensor * v,
  4174. bool masked) {
  4175. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4176. // TODO: check if vT can be multiplied by (k*qT)
  4177. bool is_node = false;
  4178. if (q->grad || k->grad || v->grad) {
  4179. GGML_ASSERT(false); // TODO: implement backward
  4180. is_node = true;
  4181. }
  4182. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4183. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4184. result->op = GGML_OP_FLASH_ATTN;
  4185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4186. result->src0 = q;
  4187. result->src1 = k;
  4188. result->opt[0] = v;
  4189. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4190. return result;
  4191. }
  4192. // ggml_flash_ff
  4193. struct ggml_tensor * ggml_flash_ff(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. struct ggml_tensor * b0,
  4197. struct ggml_tensor * b1,
  4198. struct ggml_tensor * c0,
  4199. struct ggml_tensor * c1) {
  4200. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4201. // TODO: more checks
  4202. bool is_node = false;
  4203. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4204. GGML_ASSERT(false); // TODO: implement backward
  4205. is_node = true;
  4206. }
  4207. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4208. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4209. result->op = GGML_OP_FLASH_FF;
  4210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4211. result->src0 = a;
  4212. result->src1 = b0;
  4213. result->opt[0] = b1;
  4214. result->opt[1] = c0;
  4215. result->opt[2] = c1;
  4216. return result;
  4217. }
  4218. // ggml_map_unary
  4219. struct ggml_tensor * ggml_map_unary_impl_f32(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a,
  4222. const ggml_unary_op_f32_t fun,
  4223. bool inplace) {
  4224. bool is_node = false;
  4225. if (!inplace && a->grad) {
  4226. is_node = true;
  4227. }
  4228. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4229. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4230. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4231. result->op = GGML_OP_MAP_UNARY;
  4232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4233. result->src0 = a;
  4234. result->opt[0] = addr_tensor;
  4235. return result;
  4236. }
  4237. struct ggml_tensor * ggml_map_unary_f32(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a,
  4240. const ggml_unary_op_f32_t fun) {
  4241. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4242. }
  4243. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a,
  4246. const ggml_unary_op_f32_t fun) {
  4247. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4248. }
  4249. // ggml_map_binary
  4250. struct ggml_tensor * ggml_map_binary_impl_f32(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. struct ggml_tensor * b,
  4254. const ggml_binary_op_f32_t fun,
  4255. bool inplace) {
  4256. GGML_ASSERT(ggml_are_same_shape(a, b));
  4257. bool is_node = false;
  4258. if (!inplace && (a->grad || b->grad)) {
  4259. is_node = true;
  4260. }
  4261. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4262. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4263. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4264. result->op = GGML_OP_MAP_BINARY;
  4265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4266. result->src0 = a;
  4267. result->src1 = b;
  4268. result->opt[0] = addr_tensor;
  4269. return result;
  4270. }
  4271. struct ggml_tensor * ggml_map_binary_f32(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a,
  4274. struct ggml_tensor * b,
  4275. const ggml_binary_op_f32_t fun) {
  4276. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4277. }
  4278. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. struct ggml_tensor * b,
  4282. const ggml_binary_op_f32_t fun) {
  4283. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4284. }
  4285. ////////////////////////////////////////////////////////////////////////////////
  4286. void ggml_set_param(
  4287. struct ggml_context * ctx,
  4288. struct ggml_tensor * tensor) {
  4289. tensor->is_param = true;
  4290. GGML_ASSERT(tensor->grad == NULL);
  4291. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4292. }
  4293. // ggml_compute_forward_dup
  4294. static void ggml_compute_forward_dup_f16(
  4295. const struct ggml_compute_params * params,
  4296. const struct ggml_tensor * src0,
  4297. struct ggml_tensor * dst) {
  4298. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4299. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4300. return;
  4301. }
  4302. const int64_t ne00 = src0->ne[0];
  4303. const int64_t ne01 = src0->ne[1];
  4304. const int64_t ne02 = src0->ne[2];
  4305. const int64_t ne03 = src0->ne[3];
  4306. const int64_t ne0 = dst->ne[0];
  4307. const int64_t ne1 = dst->ne[1];
  4308. const int64_t ne2 = dst->ne[2];
  4309. const int64_t ne3 = dst->ne[3];
  4310. const size_t nb00 = src0->nb[0];
  4311. const size_t nb01 = src0->nb[1];
  4312. const size_t nb02 = src0->nb[2];
  4313. const size_t nb03 = src0->nb[3];
  4314. const size_t nb0 = dst->nb[0];
  4315. const size_t nb1 = dst->nb[1];
  4316. const size_t nb2 = dst->nb[2];
  4317. const size_t nb3 = dst->nb[3];
  4318. const int ith = params->ith; // thread index
  4319. const int nth = params->nth; // number of threads
  4320. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4321. // parallelize by elements
  4322. const int ne = ggml_nelements(dst);
  4323. const int dr = (ne + nth - 1) / nth;
  4324. const int ie0 = dr * ith;
  4325. const int ie1 = MIN(ie0 + dr, ne);
  4326. memcpy(
  4327. ((char *) dst->data + ie0*nb0),
  4328. ((char *) src0->data + ie0*nb00),
  4329. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4330. return;
  4331. }
  4332. // parallelize by rows
  4333. const int nr = ne01;
  4334. // number of rows per thread
  4335. const int dr = (nr + nth - 1) / nth;
  4336. // row range for this thread
  4337. const int ir0 = dr * ith;
  4338. const int ir1 = MIN(ir0 + dr, nr);
  4339. if (src0->type == dst->type &&
  4340. ne00 == ne0 &&
  4341. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4342. // copy by rows
  4343. const size_t rs = ne00*nb00;
  4344. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4345. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4346. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4347. memcpy(
  4348. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4349. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4350. rs);
  4351. }
  4352. }
  4353. }
  4354. return;
  4355. }
  4356. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4357. if (ggml_is_contiguous(dst)) {
  4358. if (nb00 == sizeof(ggml_fp16_t)) {
  4359. if (dst->type == GGML_TYPE_F16) {
  4360. size_t id = 0;
  4361. const size_t rs = ne00 * nb00;
  4362. char * dst_ptr = (char *) dst->data;
  4363. for (int i03 = 0; i03 < ne03; i03++) {
  4364. for (int i02 = 0; i02 < ne02; i02++) {
  4365. id += rs * ir0;
  4366. for (int i01 = ir0; i01 < ir1; i01++) {
  4367. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4368. memcpy(dst_ptr + id, src0_ptr, rs);
  4369. id += rs;
  4370. }
  4371. id += rs * (ne01 - ir1);
  4372. }
  4373. }
  4374. } else if (dst->type == GGML_TYPE_F32) {
  4375. size_t id = 0;
  4376. float * dst_ptr = (float *) dst->data;
  4377. for (int i03 = 0; i03 < ne03; i03++) {
  4378. for (int i02 = 0; i02 < ne02; i02++) {
  4379. id += ne00 * ir0;
  4380. for (int i01 = ir0; i01 < ir1; i01++) {
  4381. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4382. for (int i00 = 0; i00 < ne00; i00++) {
  4383. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4384. id++;
  4385. }
  4386. }
  4387. id += ne00 * (ne01 - ir1);
  4388. }
  4389. }
  4390. } else if (ggml_is_quantized(dst->type)) {
  4391. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4392. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4393. size_t id = 0;
  4394. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4395. char * dst_ptr = (char *) dst->data;
  4396. for (int i03 = 0; i03 < ne03; i03++) {
  4397. for (int i02 = 0; i02 < ne02; i02++) {
  4398. id += rs * ir0;
  4399. for (int i01 = ir0; i01 < ir1; i01++) {
  4400. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4401. for (int i00 = 0; i00 < ne00; i00++) {
  4402. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4403. }
  4404. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4405. id += rs;
  4406. }
  4407. id += rs * (ne01 - ir1);
  4408. }
  4409. }
  4410. } else {
  4411. GGML_ASSERT(false); // TODO: implement
  4412. }
  4413. } else {
  4414. //printf("%s: this is not optimal - fix me\n", __func__);
  4415. if (dst->type == GGML_TYPE_F32) {
  4416. size_t id = 0;
  4417. float * dst_ptr = (float *) dst->data;
  4418. for (int i03 = 0; i03 < ne03; i03++) {
  4419. for (int i02 = 0; i02 < ne02; i02++) {
  4420. id += ne00 * ir0;
  4421. for (int i01 = ir0; i01 < ir1; i01++) {
  4422. for (int i00 = 0; i00 < ne00; i00++) {
  4423. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4424. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4425. id++;
  4426. }
  4427. }
  4428. id += ne00 * (ne01 - ir1);
  4429. }
  4430. }
  4431. } else if (dst->type == GGML_TYPE_F16) {
  4432. size_t id = 0;
  4433. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4434. for (int i03 = 0; i03 < ne03; i03++) {
  4435. for (int i02 = 0; i02 < ne02; i02++) {
  4436. id += ne00 * ir0;
  4437. for (int i01 = ir0; i01 < ir1; i01++) {
  4438. for (int i00 = 0; i00 < ne00; i00++) {
  4439. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4440. dst_ptr[id] = *src0_ptr;
  4441. id++;
  4442. }
  4443. }
  4444. id += ne00 * (ne01 - ir1);
  4445. }
  4446. }
  4447. } else {
  4448. GGML_ASSERT(false); // TODO: implement
  4449. }
  4450. }
  4451. return;
  4452. }
  4453. // dst counters
  4454. int64_t i10 = 0;
  4455. int64_t i11 = 0;
  4456. int64_t i12 = 0;
  4457. int64_t i13 = 0;
  4458. if (dst->type == GGML_TYPE_F16) {
  4459. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4460. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4461. i10 += ne00 * ir0;
  4462. while (i10 >= ne0) {
  4463. i10 -= ne0;
  4464. if (++i11 == ne1) {
  4465. i11 = 0;
  4466. if (++i12 == ne2) {
  4467. i12 = 0;
  4468. if (++i13 == ne3) {
  4469. i13 = 0;
  4470. }
  4471. }
  4472. }
  4473. }
  4474. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4475. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4476. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4477. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4478. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4479. if (++i10 == ne00) {
  4480. i10 = 0;
  4481. if (++i11 == ne01) {
  4482. i11 = 0;
  4483. if (++i12 == ne02) {
  4484. i12 = 0;
  4485. if (++i13 == ne03) {
  4486. i13 = 0;
  4487. }
  4488. }
  4489. }
  4490. }
  4491. }
  4492. }
  4493. i10 += ne00 * (ne01 - ir1);
  4494. while (i10 >= ne0) {
  4495. i10 -= ne0;
  4496. if (++i11 == ne1) {
  4497. i11 = 0;
  4498. if (++i12 == ne2) {
  4499. i12 = 0;
  4500. if (++i13 == ne3) {
  4501. i13 = 0;
  4502. }
  4503. }
  4504. }
  4505. }
  4506. }
  4507. }
  4508. } else if (dst->type == GGML_TYPE_F32) {
  4509. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4510. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4511. i10 += ne00 * ir0;
  4512. while (i10 >= ne0) {
  4513. i10 -= ne0;
  4514. if (++i11 == ne1) {
  4515. i11 = 0;
  4516. if (++i12 == ne2) {
  4517. i12 = 0;
  4518. if (++i13 == ne3) {
  4519. i13 = 0;
  4520. }
  4521. }
  4522. }
  4523. }
  4524. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4525. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4526. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4527. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4528. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4529. if (++i10 == ne0) {
  4530. i10 = 0;
  4531. if (++i11 == ne1) {
  4532. i11 = 0;
  4533. if (++i12 == ne2) {
  4534. i12 = 0;
  4535. if (++i13 == ne3) {
  4536. i13 = 0;
  4537. }
  4538. }
  4539. }
  4540. }
  4541. }
  4542. }
  4543. i10 += ne00 * (ne01 - ir1);
  4544. while (i10 >= ne0) {
  4545. i10 -= ne0;
  4546. if (++i11 == ne1) {
  4547. i11 = 0;
  4548. if (++i12 == ne2) {
  4549. i12 = 0;
  4550. if (++i13 == ne3) {
  4551. i13 = 0;
  4552. }
  4553. }
  4554. }
  4555. }
  4556. }
  4557. }
  4558. } else {
  4559. GGML_ASSERT(false); // TODO: implement
  4560. }
  4561. }
  4562. static void ggml_compute_forward_dup_f32(
  4563. const struct ggml_compute_params * params,
  4564. const struct ggml_tensor * src0,
  4565. struct ggml_tensor * dst) {
  4566. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4568. return;
  4569. }
  4570. const int64_t ne00 = src0->ne[0];
  4571. const int64_t ne01 = src0->ne[1];
  4572. const int64_t ne02 = src0->ne[2];
  4573. const int64_t ne03 = src0->ne[3];
  4574. const int64_t ne0 = dst->ne[0];
  4575. const int64_t ne1 = dst->ne[1];
  4576. const int64_t ne2 = dst->ne[2];
  4577. const int64_t ne3 = dst->ne[3];
  4578. const size_t nb00 = src0->nb[0];
  4579. const size_t nb01 = src0->nb[1];
  4580. const size_t nb02 = src0->nb[2];
  4581. const size_t nb03 = src0->nb[3];
  4582. const size_t nb0 = dst->nb[0];
  4583. const size_t nb1 = dst->nb[1];
  4584. const size_t nb2 = dst->nb[2];
  4585. const size_t nb3 = dst->nb[3];
  4586. const int ith = params->ith; // thread index
  4587. const int nth = params->nth; // number of threads
  4588. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4589. // parallelize by elements
  4590. const int ne = ggml_nelements(dst);
  4591. const int dr = (ne + nth - 1) / nth;
  4592. const int ie0 = dr * ith;
  4593. const int ie1 = MIN(ie0 + dr, ne);
  4594. memcpy(
  4595. ((char *) dst->data + ie0*nb0),
  4596. ((char *) src0->data + ie0*nb00),
  4597. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4598. return;
  4599. }
  4600. // parallelize by rows
  4601. const int nr = ne01;
  4602. // number of rows per thread
  4603. const int dr = (nr + nth - 1) / nth;
  4604. // row range for this thread
  4605. const int ir0 = dr * ith;
  4606. const int ir1 = MIN(ir0 + dr, nr);
  4607. if (src0->type == dst->type &&
  4608. ne00 == ne0 &&
  4609. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4610. // copy by rows
  4611. const size_t rs = ne00*nb00;
  4612. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4613. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4614. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4615. memcpy(
  4616. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4617. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4618. rs);
  4619. }
  4620. }
  4621. }
  4622. return;
  4623. }
  4624. if (ggml_is_contiguous(dst)) {
  4625. // TODO: simplify
  4626. if (nb00 == sizeof(float)) {
  4627. if (dst->type == GGML_TYPE_F32) {
  4628. size_t id = 0;
  4629. const size_t rs = ne00 * nb00;
  4630. char * dst_ptr = (char *) dst->data;
  4631. for (int i03 = 0; i03 < ne03; i03++) {
  4632. for (int i02 = 0; i02 < ne02; i02++) {
  4633. id += rs * ir0;
  4634. for (int i01 = ir0; i01 < ir1; i01++) {
  4635. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4636. memcpy(dst_ptr + id, src0_ptr, rs);
  4637. id += rs;
  4638. }
  4639. id += rs * (ne01 - ir1);
  4640. }
  4641. }
  4642. } else if (dst->type == GGML_TYPE_F16) {
  4643. size_t id = 0;
  4644. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4645. for (int i03 = 0; i03 < ne03; i03++) {
  4646. for (int i02 = 0; i02 < ne02; i02++) {
  4647. id += ne00 * ir0;
  4648. for (int i01 = ir0; i01 < ir1; i01++) {
  4649. for (int i00 = 0; i00 < ne00; i00++) {
  4650. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4651. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4652. id++;
  4653. }
  4654. }
  4655. id += ne00 * (ne01 - ir1);
  4656. }
  4657. }
  4658. } else if (ggml_is_quantized(dst->type)) {
  4659. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4660. size_t id = 0;
  4661. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4662. char * dst_ptr = (char *) dst->data;
  4663. for (int i03 = 0; i03 < ne03; i03++) {
  4664. for (int i02 = 0; i02 < ne02; i02++) {
  4665. id += rs * ir0;
  4666. for (int i01 = ir0; i01 < ir1; i01++) {
  4667. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4668. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4669. id += rs;
  4670. }
  4671. id += rs * (ne01 - ir1);
  4672. }
  4673. }
  4674. } else {
  4675. GGML_ASSERT(false); // TODO: implement
  4676. }
  4677. } else {
  4678. //printf("%s: this is not optimal - fix me\n", __func__);
  4679. if (dst->type == GGML_TYPE_F32) {
  4680. size_t id = 0;
  4681. float * dst_ptr = (float *) dst->data;
  4682. for (int i03 = 0; i03 < ne03; i03++) {
  4683. for (int i02 = 0; i02 < ne02; i02++) {
  4684. id += ne00 * ir0;
  4685. for (int i01 = ir0; i01 < ir1; i01++) {
  4686. for (int i00 = 0; i00 < ne00; i00++) {
  4687. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4688. dst_ptr[id] = *src0_ptr;
  4689. id++;
  4690. }
  4691. }
  4692. id += ne00 * (ne01 - ir1);
  4693. }
  4694. }
  4695. } else if (dst->type == GGML_TYPE_F16) {
  4696. size_t id = 0;
  4697. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4698. for (int i03 = 0; i03 < ne03; i03++) {
  4699. for (int i02 = 0; i02 < ne02; i02++) {
  4700. id += ne00 * ir0;
  4701. for (int i01 = ir0; i01 < ir1; i01++) {
  4702. for (int i00 = 0; i00 < ne00; i00++) {
  4703. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4704. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4705. id++;
  4706. }
  4707. }
  4708. id += ne00 * (ne01 - ir1);
  4709. }
  4710. }
  4711. } else {
  4712. GGML_ASSERT(false); // TODO: implement
  4713. }
  4714. }
  4715. return;
  4716. }
  4717. // dst counters
  4718. int64_t i10 = 0;
  4719. int64_t i11 = 0;
  4720. int64_t i12 = 0;
  4721. int64_t i13 = 0;
  4722. if (dst->type == GGML_TYPE_F32) {
  4723. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4724. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4725. i10 += ne00 * ir0;
  4726. while (i10 >= ne0) {
  4727. i10 -= ne0;
  4728. i11++;
  4729. if (++i11 == ne1) {
  4730. i11 = 0;
  4731. if (++i12 == ne2) {
  4732. i12 = 0;
  4733. if (++i13 == ne3) {
  4734. i13 = 0;
  4735. }
  4736. }
  4737. }
  4738. }
  4739. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4740. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4741. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4742. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4743. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4744. if (++i10 == ne0) {
  4745. i10 = 0;
  4746. if (++i11 == ne1) {
  4747. i11 = 0;
  4748. if (++i12 == ne2) {
  4749. i12 = 0;
  4750. if (++i13 == ne3) {
  4751. i13 = 0;
  4752. }
  4753. }
  4754. }
  4755. }
  4756. }
  4757. }
  4758. i10 += ne00 * (ne01 - ir1);
  4759. while (i10 >= ne0) {
  4760. i10 -= ne0;
  4761. if (++i11 == ne1) {
  4762. i11 = 0;
  4763. if (++i12 == ne2) {
  4764. i12 = 0;
  4765. if (++i13 == ne3) {
  4766. i13 = 0;
  4767. }
  4768. }
  4769. }
  4770. }
  4771. }
  4772. }
  4773. } else if (dst->type == GGML_TYPE_F16) {
  4774. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4775. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4776. i10 += ne00 * ir0;
  4777. while (i10 >= ne0) {
  4778. i10 -= ne0;
  4779. if (++i11 == ne1) {
  4780. i11 = 0;
  4781. if (++i12 == ne2) {
  4782. i12 = 0;
  4783. if (++i13 == ne3) {
  4784. i13 = 0;
  4785. }
  4786. }
  4787. }
  4788. }
  4789. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4790. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4791. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4792. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4793. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4794. if (++i10 == ne0) {
  4795. i10 = 0;
  4796. if (++i11 == ne1) {
  4797. i11 = 0;
  4798. if (++i12 == ne2) {
  4799. i12 = 0;
  4800. if (++i13 == ne3) {
  4801. i13 = 0;
  4802. }
  4803. }
  4804. }
  4805. }
  4806. }
  4807. }
  4808. i10 += ne00 * (ne01 - ir1);
  4809. while (i10 >= ne0) {
  4810. i10 -= ne0;
  4811. if (++i11 == ne1) {
  4812. i11 = 0;
  4813. if (++i12 == ne2) {
  4814. i12 = 0;
  4815. if (++i13 == ne3) {
  4816. i13 = 0;
  4817. }
  4818. }
  4819. }
  4820. }
  4821. }
  4822. }
  4823. } else {
  4824. GGML_ASSERT(false); // TODO: implement
  4825. }
  4826. }
  4827. static void ggml_compute_forward_dup(
  4828. const struct ggml_compute_params * params,
  4829. const struct ggml_tensor * src0,
  4830. struct ggml_tensor * dst) {
  4831. switch (src0->type) {
  4832. case GGML_TYPE_F16:
  4833. {
  4834. ggml_compute_forward_dup_f16(params, src0, dst);
  4835. } break;
  4836. case GGML_TYPE_F32:
  4837. {
  4838. ggml_compute_forward_dup_f32(params, src0, dst);
  4839. } break;
  4840. default:
  4841. {
  4842. GGML_ASSERT(false);
  4843. } break;
  4844. }
  4845. }
  4846. // ggml_compute_forward_add
  4847. static void ggml_compute_forward_add_f32(
  4848. const struct ggml_compute_params * params,
  4849. const struct ggml_tensor * src0,
  4850. const struct ggml_tensor * src1,
  4851. struct ggml_tensor * dst) {
  4852. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4853. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4854. return;
  4855. }
  4856. const int ith = params->ith;
  4857. const int nth = params->nth;
  4858. const int n = ggml_nrows(src0);
  4859. const int nc = src0->ne[0];
  4860. const size_t nb00 = src0->nb[0];
  4861. const size_t nb01 = src0->nb[1];
  4862. const size_t nb10 = src1->nb[0];
  4863. const size_t nb11 = src1->nb[1];
  4864. const size_t nb0 = dst->nb[0];
  4865. const size_t nb1 = dst->nb[1];
  4866. GGML_ASSERT( nb0 == sizeof(float));
  4867. GGML_ASSERT(nb00 == sizeof(float));
  4868. if (nb10 == sizeof(float)) {
  4869. for (int j = ith; j < n; j += nth) {
  4870. #ifdef GGML_USE_ACCELERATE
  4871. vDSP_vadd(
  4872. (float *) ((char *) src0->data + j*nb01), 1,
  4873. (float *) ((char *) src1->data + j*nb11), 1,
  4874. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4875. #else
  4876. ggml_vec_add_f32(nc,
  4877. (float *) ((char *) dst->data + j*nb1),
  4878. (float *) ((char *) src0->data + j*nb01),
  4879. (float *) ((char *) src1->data + j*nb11));
  4880. #endif
  4881. }
  4882. } else {
  4883. // src1 is not contiguous
  4884. for (int j = ith; j < n; j += nth) {
  4885. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4886. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4887. for (int i = 0; i < nc; i++) {
  4888. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4889. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4890. }
  4891. }
  4892. }
  4893. }
  4894. static void ggml_compute_forward_add_f16_f32(
  4895. const struct ggml_compute_params * params,
  4896. const struct ggml_tensor * src0,
  4897. const struct ggml_tensor * src1,
  4898. struct ggml_tensor * dst) {
  4899. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4900. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4901. return;
  4902. }
  4903. const int ith = params->ith;
  4904. const int nth = params->nth;
  4905. const int n = ggml_nrows(src0);
  4906. const int nc = src0->ne[0];
  4907. const size_t nb00 = src0->nb[0];
  4908. const size_t nb01 = src0->nb[1];
  4909. const size_t nb10 = src1->nb[0];
  4910. const size_t nb11 = src1->nb[1];
  4911. const size_t nb0 = dst->nb[0];
  4912. const size_t nb1 = dst->nb[1];
  4913. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4914. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4915. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4916. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4917. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4918. if (nb10 == sizeof(float)) {
  4919. for (int j = ith; j < n; j += nth) {
  4920. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4921. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4922. for (int i = 0; i < nc; i++) {
  4923. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4924. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  4925. }
  4926. }
  4927. }
  4928. else {
  4929. // src1 is not contiguous
  4930. GGML_ASSERT(false);
  4931. }
  4932. }
  4933. static void ggml_compute_forward_add_f16_f16(
  4934. const struct ggml_compute_params * params,
  4935. const struct ggml_tensor * src0,
  4936. const struct ggml_tensor * src1,
  4937. struct ggml_tensor * dst) {
  4938. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4939. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4940. return;
  4941. }
  4942. const int ith = params->ith;
  4943. const int nth = params->nth;
  4944. const int n = ggml_nrows(src0);
  4945. const int nc = src0->ne[0];
  4946. const size_t nb00 = src0->nb[0];
  4947. const size_t nb01 = src0->nb[1];
  4948. const size_t nb10 = src1->nb[0];
  4949. const size_t nb11 = src1->nb[1];
  4950. const size_t nb0 = dst->nb[0];
  4951. const size_t nb1 = dst->nb[1];
  4952. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4953. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  4954. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4955. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4956. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4957. if (nb10 == sizeof(ggml_fp16_t)) {
  4958. for (int j = ith; j < n; j += nth) {
  4959. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4960. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4961. for (int i = 0; i < nc; i++) {
  4962. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  4963. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  4964. }
  4965. }
  4966. }
  4967. else {
  4968. // src1 is not contiguous
  4969. GGML_ASSERT(false);
  4970. }
  4971. }
  4972. static void ggml_compute_forward_add_q_f32(
  4973. const struct ggml_compute_params * params,
  4974. const struct ggml_tensor * src0,
  4975. const struct ggml_tensor * src1,
  4976. struct ggml_tensor * dst) {
  4977. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4978. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4979. return;
  4980. }
  4981. const int64_t ne00 = src0->ne[0];
  4982. const int64_t ne01 = src0->ne[1];
  4983. const int64_t ne02 = src0->ne[2];
  4984. const int64_t ne03 = src0->ne[3];
  4985. //const int64_t ne10 = src1->ne[0];
  4986. //const int64_t ne11 = src1->ne[1];
  4987. const int64_t ne12 = src1->ne[2];
  4988. const int64_t ne13 = src1->ne[3];
  4989. //const int64_t ne0 = dst->ne[0];
  4990. //const int64_t ne1 = dst->ne[1];
  4991. const int64_t ne2 = dst->ne[2];
  4992. const int64_t ne3 = dst->ne[3];
  4993. const int nb00 = src0->nb[0];
  4994. const int nb01 = src0->nb[1];
  4995. const int nb02 = src0->nb[2];
  4996. const int nb03 = src0->nb[3];
  4997. const int nb10 = src1->nb[0];
  4998. const int nb11 = src1->nb[1];
  4999. const int nb12 = src1->nb[2];
  5000. const int nb13 = src1->nb[3];
  5001. const int nb0 = dst->nb[0];
  5002. const int nb1 = dst->nb[1];
  5003. const int nb2 = dst->nb[2];
  5004. const int nb3 = dst->nb[3];
  5005. const int ith = params->ith;
  5006. const int nth = params->nth;
  5007. GGML_ASSERT(ne02 == ne12);
  5008. GGML_ASSERT(ne03 == ne13);
  5009. GGML_ASSERT(ne2 == ne12);
  5010. GGML_ASSERT(ne3 == ne13);
  5011. const enum ggml_type type = src0->type;
  5012. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5013. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5014. // we don't support permuted src0 or src1
  5015. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5016. GGML_ASSERT(nb10 == sizeof(float));
  5017. // dst cannot be transposed or permuted
  5018. GGML_ASSERT(nb0 <= nb1);
  5019. GGML_ASSERT(nb1 <= nb2);
  5020. GGML_ASSERT(nb2 <= nb3);
  5021. GGML_ASSERT(ggml_is_quantized(src0->type));
  5022. GGML_ASSERT(dst->type == src0->type);
  5023. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5024. // total rows in src0
  5025. const int nr = ne01*ne02*ne03;
  5026. // rows per thread
  5027. const int dr = (nr + nth - 1)/nth;
  5028. // row range for this thread
  5029. const int ir0 = dr*ith;
  5030. const int ir1 = MIN(ir0 + dr, nr);
  5031. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5032. for (int ir = ir0; ir < ir1; ++ir) {
  5033. // src0 indices
  5034. const int i03 = ir/(ne02*ne01);
  5035. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5036. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5037. // src1 and dst are same shape as src0 => same indices
  5038. const int i13 = i03;
  5039. const int i12 = i02;
  5040. const int i11 = i01;
  5041. const int i3 = i03;
  5042. const int i2 = i02;
  5043. const int i1 = i01;
  5044. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5045. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5046. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5047. assert(ne00 % 32 == 0);
  5048. // unquantize row from src0 to temp buffer
  5049. dequantize_row_q(src0_row, wdata, ne00);
  5050. // add src1
  5051. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5052. // quantize row to dst
  5053. quantize_row_q(wdata, dst_row, ne00);
  5054. }
  5055. }
  5056. static void ggml_compute_forward_add(
  5057. const struct ggml_compute_params * params,
  5058. const struct ggml_tensor * src0,
  5059. const struct ggml_tensor * src1,
  5060. struct ggml_tensor * dst) {
  5061. switch (src0->type) {
  5062. case GGML_TYPE_F32:
  5063. {
  5064. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5065. } break;
  5066. case GGML_TYPE_F16:
  5067. {
  5068. if (src1->type == GGML_TYPE_F16) {
  5069. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5070. }
  5071. else if (src1->type == GGML_TYPE_F32) {
  5072. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5073. }
  5074. else {
  5075. GGML_ASSERT(false);
  5076. }
  5077. } break;
  5078. case GGML_TYPE_Q4_0:
  5079. case GGML_TYPE_Q4_1:
  5080. case GGML_TYPE_Q4_2:
  5081. {
  5082. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5083. } break;
  5084. default:
  5085. {
  5086. GGML_ASSERT(false);
  5087. } break;
  5088. }
  5089. }
  5090. // ggml_compute_forward_sub
  5091. static void ggml_compute_forward_sub_f32(
  5092. const struct ggml_compute_params * params,
  5093. const struct ggml_tensor * src0,
  5094. const struct ggml_tensor * src1,
  5095. struct ggml_tensor * dst) {
  5096. assert(params->ith == 0);
  5097. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5099. return;
  5100. }
  5101. const int n = ggml_nrows(src0);
  5102. const int nc = src0->ne[0];
  5103. assert( dst->nb[0] == sizeof(float));
  5104. assert(src0->nb[0] == sizeof(float));
  5105. assert(src1->nb[0] == sizeof(float));
  5106. for (int i = 0; i < n; i++) {
  5107. ggml_vec_sub_f32(nc,
  5108. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5109. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5110. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5111. }
  5112. }
  5113. static void ggml_compute_forward_sub(
  5114. const struct ggml_compute_params * params,
  5115. const struct ggml_tensor * src0,
  5116. const struct ggml_tensor * src1,
  5117. struct ggml_tensor * dst) {
  5118. switch (src0->type) {
  5119. case GGML_TYPE_F32:
  5120. {
  5121. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5122. } break;
  5123. default:
  5124. {
  5125. GGML_ASSERT(false);
  5126. } break;
  5127. }
  5128. }
  5129. // ggml_compute_forward_mul
  5130. static void ggml_compute_forward_mul_f32(
  5131. const struct ggml_compute_params * params,
  5132. const struct ggml_tensor * src0,
  5133. const struct ggml_tensor * src1,
  5134. struct ggml_tensor * dst) {
  5135. assert(params->ith == 0);
  5136. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5137. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5138. return;
  5139. }
  5140. const int n = ggml_nrows(src0);
  5141. const int nc = src0->ne[0];
  5142. assert( dst->nb[0] == sizeof(float));
  5143. assert(src0->nb[0] == sizeof(float));
  5144. assert(src1->nb[0] == sizeof(float));
  5145. for (int i = 0; i < n; i++) {
  5146. ggml_vec_mul_f32(nc,
  5147. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5148. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5149. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5150. }
  5151. }
  5152. static void ggml_compute_forward_mul(
  5153. const struct ggml_compute_params * params,
  5154. const struct ggml_tensor * src0,
  5155. const struct ggml_tensor * src1,
  5156. struct ggml_tensor * dst) {
  5157. switch (src0->type) {
  5158. case GGML_TYPE_F32:
  5159. {
  5160. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5161. } break;
  5162. default:
  5163. {
  5164. GGML_ASSERT(false);
  5165. } break;
  5166. }
  5167. }
  5168. // ggml_compute_forward_div
  5169. static void ggml_compute_forward_div_f32(
  5170. const struct ggml_compute_params * params,
  5171. const struct ggml_tensor * src0,
  5172. const struct ggml_tensor * src1,
  5173. struct ggml_tensor * dst) {
  5174. assert(params->ith == 0);
  5175. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5176. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5177. return;
  5178. }
  5179. const int n = ggml_nrows(src0);
  5180. const int nc = src0->ne[0];
  5181. assert( dst->nb[0] == sizeof(float));
  5182. assert(src0->nb[0] == sizeof(float));
  5183. assert(src1->nb[0] == sizeof(float));
  5184. for (int i = 0; i < n; i++) {
  5185. ggml_vec_div_f32(nc,
  5186. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5187. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5188. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5189. }
  5190. }
  5191. static void ggml_compute_forward_div(
  5192. const struct ggml_compute_params * params,
  5193. const struct ggml_tensor * src0,
  5194. const struct ggml_tensor * src1,
  5195. struct ggml_tensor * dst) {
  5196. switch (src0->type) {
  5197. case GGML_TYPE_F32:
  5198. {
  5199. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5200. } break;
  5201. default:
  5202. {
  5203. GGML_ASSERT(false);
  5204. } break;
  5205. }
  5206. }
  5207. // ggml_compute_forward_sqr
  5208. static void ggml_compute_forward_sqr_f32(
  5209. const struct ggml_compute_params * params,
  5210. const struct ggml_tensor * src0,
  5211. struct ggml_tensor * dst) {
  5212. assert(params->ith == 0);
  5213. assert(ggml_are_same_shape(src0, dst));
  5214. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5215. return;
  5216. }
  5217. const int n = ggml_nrows(src0);
  5218. const int nc = src0->ne[0];
  5219. assert( dst->nb[0] == sizeof(float));
  5220. assert(src0->nb[0] == sizeof(float));
  5221. for (int i = 0; i < n; i++) {
  5222. ggml_vec_sqr_f32(nc,
  5223. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5224. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5225. }
  5226. }
  5227. static void ggml_compute_forward_sqr(
  5228. const struct ggml_compute_params * params,
  5229. const struct ggml_tensor * src0,
  5230. struct ggml_tensor * dst) {
  5231. switch (src0->type) {
  5232. case GGML_TYPE_F32:
  5233. {
  5234. ggml_compute_forward_sqr_f32(params, src0, dst);
  5235. } break;
  5236. default:
  5237. {
  5238. GGML_ASSERT(false);
  5239. } break;
  5240. }
  5241. }
  5242. // ggml_compute_forward_sqrt
  5243. static void ggml_compute_forward_sqrt_f32(
  5244. const struct ggml_compute_params * params,
  5245. const struct ggml_tensor * src0,
  5246. struct ggml_tensor * dst) {
  5247. assert(params->ith == 0);
  5248. assert(ggml_are_same_shape(src0, dst));
  5249. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5250. return;
  5251. }
  5252. const int n = ggml_nrows(src0);
  5253. const int nc = src0->ne[0];
  5254. assert( dst->nb[0] == sizeof(float));
  5255. assert(src0->nb[0] == sizeof(float));
  5256. for (int i = 0; i < n; i++) {
  5257. ggml_vec_sqrt_f32(nc,
  5258. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5259. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5260. }
  5261. }
  5262. static void ggml_compute_forward_sqrt(
  5263. const struct ggml_compute_params * params,
  5264. const struct ggml_tensor * src0,
  5265. struct ggml_tensor * dst) {
  5266. switch (src0->type) {
  5267. case GGML_TYPE_F32:
  5268. {
  5269. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5270. } break;
  5271. default:
  5272. {
  5273. GGML_ASSERT(false);
  5274. } break;
  5275. }
  5276. }
  5277. // ggml_compute_forward_sum
  5278. static void ggml_compute_forward_sum_f32(
  5279. const struct ggml_compute_params * params,
  5280. const struct ggml_tensor * src0,
  5281. struct ggml_tensor * dst) {
  5282. assert(params->ith == 0);
  5283. assert(ggml_is_scalar(dst));
  5284. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5285. return;
  5286. }
  5287. assert(ggml_is_scalar(dst));
  5288. assert(src0->nb[0] == sizeof(float));
  5289. const int64_t ne00 = src0->ne[0];
  5290. const int64_t ne01 = src0->ne[1];
  5291. const int64_t ne02 = src0->ne[2];
  5292. const int64_t ne03 = src0->ne[3];
  5293. const size_t nb01 = src0->nb[1];
  5294. const size_t nb02 = src0->nb[2];
  5295. const size_t nb03 = src0->nb[3];
  5296. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5297. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5298. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5299. ggml_vec_sum_f32(ne00,
  5300. (float *) (dst->data),
  5301. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5302. }
  5303. }
  5304. }
  5305. }
  5306. static void ggml_compute_forward_sum(
  5307. const struct ggml_compute_params * params,
  5308. const struct ggml_tensor * src0,
  5309. struct ggml_tensor * dst) {
  5310. switch (src0->type) {
  5311. case GGML_TYPE_F32:
  5312. {
  5313. ggml_compute_forward_sum_f32(params, src0, dst);
  5314. } break;
  5315. default:
  5316. {
  5317. GGML_ASSERT(false);
  5318. } break;
  5319. }
  5320. }
  5321. // ggml_compute_forward_mean
  5322. static void ggml_compute_forward_mean_f32(
  5323. const struct ggml_compute_params * params,
  5324. const struct ggml_tensor * src0,
  5325. struct ggml_tensor * dst) {
  5326. assert(params->ith == 0);
  5327. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5328. return;
  5329. }
  5330. assert(src0->nb[0] == sizeof(float));
  5331. const int64_t ne00 = src0->ne[0];
  5332. const int64_t ne01 = src0->ne[1];
  5333. const int64_t ne02 = src0->ne[2];
  5334. const int64_t ne03 = src0->ne[3];
  5335. const size_t nb01 = src0->nb[1];
  5336. const size_t nb02 = src0->nb[2];
  5337. const size_t nb03 = src0->nb[3];
  5338. const int64_t ne0 = dst->ne[0];
  5339. const int64_t ne1 = dst->ne[1];
  5340. const int64_t ne2 = dst->ne[2];
  5341. const int64_t ne3 = dst->ne[3];
  5342. assert(ne0 == 1);
  5343. assert(ne1 == ne01);
  5344. assert(ne2 == ne02);
  5345. assert(ne3 == ne03);
  5346. UNUSED(ne0);
  5347. UNUSED(ne1);
  5348. UNUSED(ne2);
  5349. UNUSED(ne3);
  5350. const size_t nb1 = dst->nb[1];
  5351. const size_t nb2 = dst->nb[2];
  5352. const size_t nb3 = dst->nb[3];
  5353. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5354. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5355. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5356. ggml_vec_sum_f32(ne00,
  5357. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5358. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5359. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5360. }
  5361. }
  5362. }
  5363. }
  5364. static void ggml_compute_forward_mean(
  5365. const struct ggml_compute_params * params,
  5366. const struct ggml_tensor * src0,
  5367. struct ggml_tensor * dst) {
  5368. switch (src0->type) {
  5369. case GGML_TYPE_F32:
  5370. {
  5371. ggml_compute_forward_mean_f32(params, src0, dst);
  5372. } break;
  5373. default:
  5374. {
  5375. GGML_ASSERT(false);
  5376. } break;
  5377. }
  5378. }
  5379. // ggml_compute_forward_repeat
  5380. static void ggml_compute_forward_repeat_f32(
  5381. const struct ggml_compute_params * params,
  5382. const struct ggml_tensor * src0,
  5383. struct ggml_tensor * dst) {
  5384. assert(params->ith == 0);
  5385. assert(ggml_can_repeat(src0, dst));
  5386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5387. return;
  5388. }
  5389. // TODO: implement support for rank > 2 tensors
  5390. assert(src0->ne[2] == 1);
  5391. assert(src0->ne[3] == 1);
  5392. assert( dst->ne[2] == 1);
  5393. assert( dst->ne[3] == 1);
  5394. const int nc = dst->ne[0];
  5395. const int nr = dst->ne[1];
  5396. const int nc0 = src0->ne[0];
  5397. const int nr0 = src0->ne[1];
  5398. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5399. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5400. // TODO: support for transposed / permuted tensors
  5401. assert( dst->nb[0] == sizeof(float));
  5402. assert(src0->nb[0] == sizeof(float));
  5403. // TODO: maybe this is not optimal?
  5404. for (int i = 0; i < nrr; i++) {
  5405. for (int j = 0; j < ncr; j++) {
  5406. for (int k = 0; k < nr0; k++) {
  5407. ggml_vec_cpy_f32(nc0,
  5408. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5409. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5410. }
  5411. }
  5412. }
  5413. }
  5414. static void ggml_compute_forward_repeat(
  5415. const struct ggml_compute_params * params,
  5416. const struct ggml_tensor * src0,
  5417. struct ggml_tensor * dst) {
  5418. switch (src0->type) {
  5419. case GGML_TYPE_F32:
  5420. {
  5421. ggml_compute_forward_repeat_f32(params, src0, dst);
  5422. } break;
  5423. default:
  5424. {
  5425. GGML_ASSERT(false);
  5426. } break;
  5427. }
  5428. }
  5429. // ggml_compute_forward_abs
  5430. static void ggml_compute_forward_abs_f32(
  5431. const struct ggml_compute_params * params,
  5432. const struct ggml_tensor * src0,
  5433. struct ggml_tensor * dst) {
  5434. assert(params->ith == 0);
  5435. assert(ggml_are_same_shape(src0, dst));
  5436. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5437. return;
  5438. }
  5439. const int n = ggml_nrows(src0);
  5440. const int nc = src0->ne[0];
  5441. assert(dst->nb[0] == sizeof(float));
  5442. assert(src0->nb[0] == sizeof(float));
  5443. for (int i = 0; i < n; i++) {
  5444. ggml_vec_abs_f32(nc,
  5445. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5446. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5447. }
  5448. }
  5449. static void ggml_compute_forward_abs(
  5450. const struct ggml_compute_params * params,
  5451. const struct ggml_tensor * src0,
  5452. struct ggml_tensor * dst) {
  5453. switch (src0->type) {
  5454. case GGML_TYPE_F32:
  5455. {
  5456. ggml_compute_forward_abs_f32(params, src0, dst);
  5457. } break;
  5458. default:
  5459. {
  5460. GGML_ASSERT(false);
  5461. } break;
  5462. }
  5463. }
  5464. // ggml_compute_forward_sgn
  5465. static void ggml_compute_forward_sgn_f32(
  5466. const struct ggml_compute_params * params,
  5467. const struct ggml_tensor * src0,
  5468. struct ggml_tensor * dst) {
  5469. assert(params->ith == 0);
  5470. assert(ggml_are_same_shape(src0, dst));
  5471. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5472. return;
  5473. }
  5474. const int n = ggml_nrows(src0);
  5475. const int nc = src0->ne[0];
  5476. assert(dst->nb[0] == sizeof(float));
  5477. assert(src0->nb[0] == sizeof(float));
  5478. for (int i = 0; i < n; i++) {
  5479. ggml_vec_sgn_f32(nc,
  5480. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5481. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5482. }
  5483. }
  5484. static void ggml_compute_forward_sgn(
  5485. const struct ggml_compute_params * params,
  5486. const struct ggml_tensor * src0,
  5487. struct ggml_tensor * dst) {
  5488. switch (src0->type) {
  5489. case GGML_TYPE_F32:
  5490. {
  5491. ggml_compute_forward_sgn_f32(params, src0, dst);
  5492. } break;
  5493. default:
  5494. {
  5495. GGML_ASSERT(false);
  5496. } break;
  5497. }
  5498. }
  5499. // ggml_compute_forward_neg
  5500. static void ggml_compute_forward_neg_f32(
  5501. const struct ggml_compute_params * params,
  5502. const struct ggml_tensor * src0,
  5503. struct ggml_tensor * dst) {
  5504. assert(params->ith == 0);
  5505. assert(ggml_are_same_shape(src0, dst));
  5506. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5507. return;
  5508. }
  5509. const int n = ggml_nrows(src0);
  5510. const int nc = src0->ne[0];
  5511. assert(dst->nb[0] == sizeof(float));
  5512. assert(src0->nb[0] == sizeof(float));
  5513. for (int i = 0; i < n; i++) {
  5514. ggml_vec_neg_f32(nc,
  5515. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5516. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5517. }
  5518. }
  5519. static void ggml_compute_forward_neg(
  5520. const struct ggml_compute_params * params,
  5521. const struct ggml_tensor * src0,
  5522. struct ggml_tensor * dst) {
  5523. switch (src0->type) {
  5524. case GGML_TYPE_F32:
  5525. {
  5526. ggml_compute_forward_neg_f32(params, src0, dst);
  5527. } break;
  5528. default:
  5529. {
  5530. GGML_ASSERT(false);
  5531. } break;
  5532. }
  5533. }
  5534. // ggml_compute_forward_step
  5535. static void ggml_compute_forward_step_f32(
  5536. const struct ggml_compute_params * params,
  5537. const struct ggml_tensor * src0,
  5538. struct ggml_tensor * dst) {
  5539. assert(params->ith == 0);
  5540. assert(ggml_are_same_shape(src0, dst));
  5541. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5542. return;
  5543. }
  5544. const int n = ggml_nrows(src0);
  5545. const int nc = src0->ne[0];
  5546. assert(dst->nb[0] == sizeof(float));
  5547. assert(src0->nb[0] == sizeof(float));
  5548. for (int i = 0; i < n; i++) {
  5549. ggml_vec_step_f32(nc,
  5550. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5551. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5552. }
  5553. }
  5554. static void ggml_compute_forward_step(
  5555. const struct ggml_compute_params * params,
  5556. const struct ggml_tensor * src0,
  5557. struct ggml_tensor * dst) {
  5558. switch (src0->type) {
  5559. case GGML_TYPE_F32:
  5560. {
  5561. ggml_compute_forward_step_f32(params, src0, dst);
  5562. } break;
  5563. default:
  5564. {
  5565. GGML_ASSERT(false);
  5566. } break;
  5567. }
  5568. }
  5569. // ggml_compute_forward_relu
  5570. static void ggml_compute_forward_relu_f32(
  5571. const struct ggml_compute_params * params,
  5572. const struct ggml_tensor * src0,
  5573. struct ggml_tensor * dst) {
  5574. assert(params->ith == 0);
  5575. assert(ggml_are_same_shape(src0, dst));
  5576. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5577. return;
  5578. }
  5579. const int n = ggml_nrows(src0);
  5580. const int nc = src0->ne[0];
  5581. assert(dst->nb[0] == sizeof(float));
  5582. assert(src0->nb[0] == sizeof(float));
  5583. for (int i = 0; i < n; i++) {
  5584. ggml_vec_relu_f32(nc,
  5585. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5586. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5587. }
  5588. }
  5589. static void ggml_compute_forward_relu(
  5590. const struct ggml_compute_params * params,
  5591. const struct ggml_tensor * src0,
  5592. struct ggml_tensor * dst) {
  5593. switch (src0->type) {
  5594. case GGML_TYPE_F32:
  5595. {
  5596. ggml_compute_forward_relu_f32(params, src0, dst);
  5597. } break;
  5598. default:
  5599. {
  5600. GGML_ASSERT(false);
  5601. } break;
  5602. }
  5603. }
  5604. // ggml_compute_forward_gelu
  5605. static void ggml_compute_forward_gelu_f32(
  5606. const struct ggml_compute_params * params,
  5607. const struct ggml_tensor * src0,
  5608. struct ggml_tensor * dst) {
  5609. GGML_ASSERT(ggml_is_contiguous(src0));
  5610. GGML_ASSERT(ggml_is_contiguous(dst));
  5611. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5612. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5613. return;
  5614. }
  5615. const int ith = params->ith;
  5616. const int nth = params->nth;
  5617. const int nc = src0->ne[0];
  5618. const int nr = ggml_nrows(src0);
  5619. // rows per thread
  5620. const int dr = (nr + nth - 1)/nth;
  5621. // row range for this thread
  5622. const int ir0 = dr*ith;
  5623. const int ir1 = MIN(ir0 + dr, nr);
  5624. for (int i1 = ir0; i1 < ir1; i1++) {
  5625. ggml_vec_gelu_f32(nc,
  5626. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5627. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5628. #ifndef NDEBUG
  5629. for (int k = 0; k < nc; k++) {
  5630. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5631. UNUSED(x);
  5632. assert(!isnan(x));
  5633. assert(!isinf(x));
  5634. }
  5635. #endif
  5636. }
  5637. }
  5638. static void ggml_compute_forward_gelu(
  5639. const struct ggml_compute_params * params,
  5640. const struct ggml_tensor * src0,
  5641. struct ggml_tensor * dst) {
  5642. switch (src0->type) {
  5643. case GGML_TYPE_F32:
  5644. {
  5645. ggml_compute_forward_gelu_f32(params, src0, dst);
  5646. } break;
  5647. default:
  5648. {
  5649. GGML_ASSERT(false);
  5650. } break;
  5651. }
  5652. //printf("XXXXXXXX gelu\n");
  5653. }
  5654. // ggml_compute_forward_silu
  5655. static void ggml_compute_forward_silu_f32(
  5656. const struct ggml_compute_params * params,
  5657. const struct ggml_tensor * src0,
  5658. struct ggml_tensor * dst) {
  5659. GGML_ASSERT(ggml_is_contiguous(src0));
  5660. GGML_ASSERT(ggml_is_contiguous(dst));
  5661. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5662. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5663. return;
  5664. }
  5665. const int ith = params->ith;
  5666. const int nth = params->nth;
  5667. const int nc = src0->ne[0];
  5668. const int nr = ggml_nrows(src0);
  5669. // rows per thread
  5670. const int dr = (nr + nth - 1)/nth;
  5671. // row range for this thread
  5672. const int ir0 = dr*ith;
  5673. const int ir1 = MIN(ir0 + dr, nr);
  5674. for (int i1 = ir0; i1 < ir1; i1++) {
  5675. ggml_vec_silu_f32(nc,
  5676. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5677. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5678. #ifndef NDEBUG
  5679. for (int k = 0; k < nc; k++) {
  5680. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5681. UNUSED(x);
  5682. assert(!isnan(x));
  5683. assert(!isinf(x));
  5684. }
  5685. #endif
  5686. }
  5687. }
  5688. static void ggml_compute_forward_silu(
  5689. const struct ggml_compute_params * params,
  5690. const struct ggml_tensor * src0,
  5691. struct ggml_tensor * dst) {
  5692. switch (src0->type) {
  5693. case GGML_TYPE_F32:
  5694. {
  5695. ggml_compute_forward_silu_f32(params, src0, dst);
  5696. } break;
  5697. default:
  5698. {
  5699. GGML_ASSERT(false);
  5700. } break;
  5701. }
  5702. }
  5703. // ggml_compute_forward_norm
  5704. static void ggml_compute_forward_norm_f32(
  5705. const struct ggml_compute_params * params,
  5706. const struct ggml_tensor * src0,
  5707. struct ggml_tensor * dst) {
  5708. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5709. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5710. return;
  5711. }
  5712. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5713. const int ith = params->ith;
  5714. const int nth = params->nth;
  5715. const int64_t ne00 = src0->ne[0];
  5716. const int64_t ne01 = src0->ne[1];
  5717. const int64_t ne02 = src0->ne[2];
  5718. const int64_t ne03 = src0->ne[3];
  5719. const size_t nb01 = src0->nb[1];
  5720. const size_t nb02 = src0->nb[2];
  5721. const size_t nb03 = src0->nb[3];
  5722. const size_t nb1 = dst->nb[1];
  5723. const size_t nb2 = dst->nb[2];
  5724. const size_t nb3 = dst->nb[3];
  5725. const float eps = 1e-5f; // TODO: make this a parameter
  5726. // TODO: optimize
  5727. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5728. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5729. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5730. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5731. ggml_float sum = 0.0;
  5732. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5733. sum += (ggml_float)x[i00];
  5734. }
  5735. float mean = sum/ne00;
  5736. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5737. ggml_float sum2 = 0.0;
  5738. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5739. float v = x[i00] - mean;
  5740. y[i00] = v;
  5741. sum2 += (ggml_float)(v*v);
  5742. }
  5743. float variance = sum2/ne00;
  5744. const float scale = 1.0f/sqrtf(variance + eps);
  5745. ggml_vec_scale_f32(ne00, y, scale);
  5746. }
  5747. }
  5748. }
  5749. }
  5750. static void ggml_compute_forward_norm(
  5751. const struct ggml_compute_params * params,
  5752. const struct ggml_tensor * src0,
  5753. struct ggml_tensor * dst) {
  5754. switch (src0->type) {
  5755. case GGML_TYPE_F32:
  5756. {
  5757. ggml_compute_forward_norm_f32(params, src0, dst);
  5758. } break;
  5759. default:
  5760. {
  5761. GGML_ASSERT(false);
  5762. } break;
  5763. }
  5764. }
  5765. static void ggml_compute_forward_rms_norm_f32(
  5766. const struct ggml_compute_params * params,
  5767. const struct ggml_tensor * src0,
  5768. struct ggml_tensor * dst) {
  5769. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5770. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5771. return;
  5772. }
  5773. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5774. const int ith = params->ith;
  5775. const int nth = params->nth;
  5776. const int64_t ne00 = src0->ne[0];
  5777. const int64_t ne01 = src0->ne[1];
  5778. const int64_t ne02 = src0->ne[2];
  5779. const int64_t ne03 = src0->ne[3];
  5780. const size_t nb01 = src0->nb[1];
  5781. const size_t nb02 = src0->nb[2];
  5782. const size_t nb03 = src0->nb[3];
  5783. const size_t nb1 = dst->nb[1];
  5784. const size_t nb2 = dst->nb[2];
  5785. const size_t nb3 = dst->nb[3];
  5786. const float eps = 1e-6f; // TODO: make this a parameter
  5787. // TODO: optimize
  5788. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5789. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5790. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5791. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5792. ggml_float sum = 0.0;
  5793. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5794. sum += (ggml_float)(x[i00] * x[i00]);
  5795. }
  5796. float mean = sum/ne00;
  5797. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5798. memcpy(y, x, ne00 * sizeof(float));
  5799. // for (int i00 = 0; i00 < ne00; i00++) {
  5800. // y[i00] = x[i00];
  5801. // }
  5802. const float scale = 1.0f/sqrtf(mean + eps);
  5803. ggml_vec_scale_f32(ne00, y, scale);
  5804. }
  5805. }
  5806. }
  5807. }
  5808. static void ggml_compute_forward_rms_norm(
  5809. const struct ggml_compute_params * params,
  5810. const struct ggml_tensor * src0,
  5811. struct ggml_tensor * dst) {
  5812. switch (src0->type) {
  5813. case GGML_TYPE_F32:
  5814. {
  5815. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5816. } break;
  5817. default:
  5818. {
  5819. GGML_ASSERT(false);
  5820. } break;
  5821. }
  5822. }
  5823. // ggml_compute_forward_mul_mat
  5824. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5825. // helper function to determine if it is better to use BLAS or not
  5826. // for large matrices, BLAS is faster
  5827. static bool ggml_compute_forward_mul_mat_use_blas(
  5828. const struct ggml_tensor * src0,
  5829. const struct ggml_tensor * src1,
  5830. struct ggml_tensor * dst) {
  5831. //const int64_t ne00 = src0->ne[0];
  5832. //const int64_t ne01 = src0->ne[1];
  5833. const int64_t ne10 = src1->ne[0];
  5834. const int64_t ne0 = dst->ne[0];
  5835. const int64_t ne1 = dst->ne[1];
  5836. // TODO: find the optimal values for these
  5837. if (ggml_is_contiguous(src0) &&
  5838. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5839. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5840. return true;
  5841. }
  5842. return false;
  5843. }
  5844. #endif
  5845. static void ggml_compute_forward_mul_mat_f32(
  5846. const struct ggml_compute_params * params,
  5847. const struct ggml_tensor * src0,
  5848. const struct ggml_tensor * src1,
  5849. struct ggml_tensor * dst) {
  5850. int64_t t0 = ggml_perf_time_us();
  5851. UNUSED(t0);
  5852. const int64_t ne00 = src0->ne[0];
  5853. const int64_t ne01 = src0->ne[1];
  5854. const int64_t ne02 = src0->ne[2];
  5855. const int64_t ne03 = src0->ne[3];
  5856. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5857. const int64_t ne10 = src1->ne[0];
  5858. #endif
  5859. const int64_t ne11 = src1->ne[1];
  5860. #ifndef NDEBUG
  5861. const int64_t ne12 = src1->ne[2];
  5862. const int64_t ne13 = src1->ne[3];
  5863. const int64_t ne0 = dst->ne[0];
  5864. const int64_t ne1 = dst->ne[1];
  5865. const int64_t ne2 = dst->ne[2];
  5866. const int64_t ne3 = dst->ne[3];
  5867. const int nb00 = src0->nb[0];
  5868. #endif
  5869. const int nb01 = src0->nb[1];
  5870. const int nb02 = src0->nb[2];
  5871. const int nb03 = src0->nb[3];
  5872. #ifndef NDEBUG
  5873. const int nb10 = src1->nb[0];
  5874. #endif
  5875. const int nb11 = src1->nb[1];
  5876. const int nb12 = src1->nb[2];
  5877. const int nb13 = src1->nb[3];
  5878. const int nb0 = dst->nb[0];
  5879. const int nb1 = dst->nb[1];
  5880. const int nb2 = dst->nb[2];
  5881. const int nb3 = dst->nb[3];
  5882. const int ith = params->ith;
  5883. const int nth = params->nth;
  5884. assert(ne02 == ne12);
  5885. assert(ne03 == ne13);
  5886. assert(ne2 == ne12);
  5887. assert(ne3 == ne13);
  5888. // we don't support permuted src0 or src1
  5889. assert(nb00 == sizeof(float));
  5890. assert(nb10 == sizeof(float));
  5891. // dst cannot be transposed or permuted
  5892. assert(nb0 == sizeof(float));
  5893. assert(nb0 <= nb1);
  5894. assert(nb1 <= nb2);
  5895. assert(nb2 <= nb3);
  5896. assert(ne0 == ne01);
  5897. assert(ne1 == ne11);
  5898. assert(ne2 == ne02);
  5899. assert(ne3 == ne03);
  5900. // nb01 >= nb00 - src0 is not transposed
  5901. // compute by src0 rows
  5902. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5903. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5904. if (params->ith != 0) {
  5905. return;
  5906. }
  5907. if (params->type == GGML_TASK_INIT) {
  5908. return;
  5909. }
  5910. if (params->type == GGML_TASK_FINALIZE) {
  5911. return;
  5912. }
  5913. #if defined(GGML_USE_CUBLAS)
  5914. float *d_X = NULL;
  5915. float *d_Y = NULL;
  5916. float *d_D = NULL;
  5917. const float alpha = 1.0f;
  5918. const float beta = 0.0f;
  5919. const int x_ne = ne01 * ne10;
  5920. const int y_ne = ne11 * ne10;
  5921. const int d_ne = ne11 * ne01;
  5922. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  5923. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  5924. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  5925. #endif
  5926. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5927. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5928. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5929. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5930. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5931. #if defined(GGML_USE_CUBLAS)
  5932. // copy data to device
  5933. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  5934. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  5935. // compute
  5936. CUBLAS_CHECK(
  5937. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  5938. ne01, ne11, ne10,
  5939. &alpha, d_X, ne00,
  5940. d_Y, ne10,
  5941. &beta, d_D, ne01));
  5942. // copy data to host
  5943. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  5944. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  5945. #else
  5946. // zT = y * xT
  5947. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5948. ne11, ne01, ne10,
  5949. 1.0f, y, ne10,
  5950. x, ne00,
  5951. 0.0f, d, ne01);
  5952. #endif
  5953. }
  5954. }
  5955. #if defined(GGML_USE_CUBLAS)
  5956. CUDA_CHECK(cudaFree(d_X));
  5957. CUDA_CHECK(cudaFree(d_Y));
  5958. CUDA_CHECK(cudaFree(d_D));
  5959. #endif
  5960. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5961. return;
  5962. }
  5963. #endif
  5964. if (params->type == GGML_TASK_INIT) {
  5965. return;
  5966. }
  5967. if (params->type == GGML_TASK_FINALIZE) {
  5968. return;
  5969. }
  5970. // parallelize by src0 rows using ggml_vec_dot_f32
  5971. // total rows in src0
  5972. const int nr = ne01*ne02*ne03;
  5973. // rows per thread
  5974. const int dr = (nr + nth - 1)/nth;
  5975. // row range for this thread
  5976. const int ir0 = dr*ith;
  5977. const int ir1 = MIN(ir0 + dr, nr);
  5978. for (int ir = ir0; ir < ir1; ++ir) {
  5979. // src0 indices
  5980. const int i03 = ir/(ne02*ne01);
  5981. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5982. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5983. for (int64_t ic = 0; ic < ne11; ++ic) {
  5984. // src1 indices
  5985. const int i13 = i03;
  5986. const int i12 = i02;
  5987. const int i11 = ic;
  5988. // dst indices
  5989. const int i0 = i01;
  5990. const int i1 = i11;
  5991. const int i2 = i02;
  5992. const int i3 = i03;
  5993. ggml_vec_dot_f32(ne00,
  5994. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5995. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5996. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5997. }
  5998. }
  5999. //int64_t t1 = ggml_perf_time_us();
  6000. //static int64_t acc = 0;
  6001. //acc += t1 - t0;
  6002. //if (t1 - t0 > 10) {
  6003. // printf("\n");
  6004. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6005. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6006. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6007. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6008. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6009. //}
  6010. }
  6011. static void ggml_compute_forward_mul_mat_f16_f32(
  6012. const struct ggml_compute_params * params,
  6013. const struct ggml_tensor * src0,
  6014. const struct ggml_tensor * src1,
  6015. struct ggml_tensor * dst) {
  6016. int64_t t0 = ggml_perf_time_us();
  6017. UNUSED(t0);
  6018. const int64_t ne00 = src0->ne[0];
  6019. const int64_t ne01 = src0->ne[1];
  6020. const int64_t ne02 = src0->ne[2];
  6021. const int64_t ne03 = src0->ne[3];
  6022. const int64_t ne10 = src1->ne[0];
  6023. const int64_t ne11 = src1->ne[1];
  6024. const int64_t ne12 = src1->ne[2];
  6025. const int64_t ne13 = src1->ne[3];
  6026. const int64_t ne0 = dst->ne[0];
  6027. const int64_t ne1 = dst->ne[1];
  6028. const int64_t ne2 = dst->ne[2];
  6029. const int64_t ne3 = dst->ne[3];
  6030. //const int64_t ne = ne0*ne1*ne2*ne3;
  6031. const int nb00 = src0->nb[0];
  6032. const int nb01 = src0->nb[1];
  6033. const int nb02 = src0->nb[2];
  6034. const int nb03 = src0->nb[3];
  6035. const int nb10 = src1->nb[0];
  6036. const int nb11 = src1->nb[1];
  6037. const int nb12 = src1->nb[2];
  6038. const int nb13 = src1->nb[3];
  6039. const int nb0 = dst->nb[0];
  6040. const int nb1 = dst->nb[1];
  6041. const int nb2 = dst->nb[2];
  6042. const int nb3 = dst->nb[3];
  6043. const int ith = params->ith;
  6044. const int nth = params->nth;
  6045. GGML_ASSERT(ne02 == ne12);
  6046. GGML_ASSERT(ne03 == ne13);
  6047. GGML_ASSERT(ne2 == ne12);
  6048. GGML_ASSERT(ne3 == ne13);
  6049. // TODO: we don't support permuted src0
  6050. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6051. // dst cannot be transposed or permuted
  6052. GGML_ASSERT(nb0 == sizeof(float));
  6053. GGML_ASSERT(nb0 <= nb1);
  6054. GGML_ASSERT(nb1 <= nb2);
  6055. GGML_ASSERT(nb2 <= nb3);
  6056. GGML_ASSERT(ne0 == ne01);
  6057. GGML_ASSERT(ne1 == ne11);
  6058. GGML_ASSERT(ne2 == ne02);
  6059. GGML_ASSERT(ne3 == ne03);
  6060. // nb01 >= nb00 - src0 is not transposed
  6061. // compute by src0 rows
  6062. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6063. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6064. GGML_ASSERT(nb10 == sizeof(float));
  6065. if (params->ith != 0) {
  6066. return;
  6067. }
  6068. if (params->type == GGML_TASK_INIT) {
  6069. return;
  6070. }
  6071. if (params->type == GGML_TASK_FINALIZE) {
  6072. return;
  6073. }
  6074. #if defined(GGML_USE_CUBLAS)
  6075. ggml_fp16_t * const wdata = params->wdata;
  6076. float *d_X = NULL;
  6077. float *d_Y = NULL;
  6078. float *d_D = NULL;
  6079. const float alpha = 1.0f;
  6080. const float beta = 0.0f;
  6081. const int x_ne = ne01 * ne10;
  6082. const int y_ne = ne11 * ne10;
  6083. const int d_ne = ne11 * ne01;
  6084. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(ggml_fp16_t) * x_ne));
  6085. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6086. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6087. #else
  6088. float * const wdata = params->wdata;
  6089. #endif
  6090. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6091. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6092. #if defined(GGML_USE_CUBLAS)
  6093. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6094. {
  6095. size_t id = 0;
  6096. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6097. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6098. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6099. }
  6100. }
  6101. }
  6102. #else
  6103. {
  6104. size_t id = 0;
  6105. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6106. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6107. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6108. }
  6109. }
  6110. }
  6111. #endif
  6112. #if defined(GGML_USE_CUBLAS)
  6113. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6114. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6115. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6116. // copy data to device
  6117. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6118. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6119. // compute
  6120. CUBLAS_CHECK(
  6121. cublasGemmEx(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6122. ne01, ne11, ne10,
  6123. &alpha, d_X, CUDA_R_16F, ne00,
  6124. d_Y, CUDA_R_16F, ne10,
  6125. &beta, d_D, CUDA_R_32F, ne01,
  6126. CUBLAS_COMPUTE_32F,
  6127. CUBLAS_GEMM_DEFAULT));
  6128. // copy data to host
  6129. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6130. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6131. #else
  6132. const float * x = wdata;
  6133. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6134. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6135. // zT = y * xT
  6136. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6137. ne11, ne01, ne10,
  6138. 1.0f, y, ne10,
  6139. x, ne00,
  6140. 0.0f, d, ne01);
  6141. #endif
  6142. }
  6143. }
  6144. #if defined(GGML_USE_CUBLAS)
  6145. CUDA_CHECK(cudaFree(d_X));
  6146. CUDA_CHECK(cudaFree(d_Y));
  6147. CUDA_CHECK(cudaFree(d_D));
  6148. #endif
  6149. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6150. return;
  6151. }
  6152. #endif
  6153. if (params->type == GGML_TASK_INIT) {
  6154. ggml_fp16_t * const wdata = params->wdata;
  6155. size_t id = 0;
  6156. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6157. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6158. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6159. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6160. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6161. }
  6162. }
  6163. }
  6164. }
  6165. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6166. return;
  6167. }
  6168. if (params->type == GGML_TASK_FINALIZE) {
  6169. return;
  6170. }
  6171. // fp16 -> half the size, so divide by 2
  6172. // TODO: do not support transposed src1
  6173. assert(nb10/2 == sizeof(ggml_fp16_t));
  6174. // parallelize by src0 rows using ggml_vec_dot_f16
  6175. // total rows in src0
  6176. const int nr = ne01*ne02*ne03;
  6177. // rows per thread
  6178. const int dr = (nr + nth - 1)/nth;
  6179. // row range for this thread
  6180. const int ir0 = dr*ith;
  6181. const int ir1 = MIN(ir0 + dr, nr);
  6182. ggml_fp16_t * wdata = params->wdata;
  6183. for (int ir = ir0; ir < ir1; ++ir) {
  6184. // src0 indices
  6185. const int i03 = ir/(ne02*ne01);
  6186. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6187. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6188. const int i13 = i03;
  6189. const int i12 = i02;
  6190. const int i0 = i01;
  6191. const int i2 = i02;
  6192. const int i3 = i03;
  6193. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6194. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6195. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6196. for (int64_t ic = 0; ic < ne11; ++ic) {
  6197. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6198. }
  6199. }
  6200. //int64_t t1 = ggml_time_us();
  6201. //static int64_t acc = 0;
  6202. //acc += t1 - t0;
  6203. //if (t1 - t0 > 10) {
  6204. // printf("\n");
  6205. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6206. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6207. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6208. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6209. //}
  6210. }
  6211. static void ggml_compute_forward_mul_mat_q_f32(
  6212. const struct ggml_compute_params * params,
  6213. const struct ggml_tensor * src0,
  6214. const struct ggml_tensor * src1,
  6215. struct ggml_tensor * dst) {
  6216. int64_t t0 = ggml_perf_time_us();
  6217. UNUSED(t0);
  6218. const int64_t ne00 = src0->ne[0];
  6219. const int64_t ne01 = src0->ne[1];
  6220. const int64_t ne02 = src0->ne[2];
  6221. const int64_t ne03 = src0->ne[3];
  6222. const int64_t ne10 = src1->ne[0];
  6223. const int64_t ne11 = src1->ne[1];
  6224. const int64_t ne12 = src1->ne[2];
  6225. const int64_t ne13 = src1->ne[3];
  6226. const int64_t ne0 = dst->ne[0];
  6227. const int64_t ne1 = dst->ne[1];
  6228. const int64_t ne2 = dst->ne[2];
  6229. const int64_t ne3 = dst->ne[3];
  6230. const int nb00 = src0->nb[0];
  6231. const int nb01 = src0->nb[1];
  6232. const int nb02 = src0->nb[2];
  6233. const int nb03 = src0->nb[3];
  6234. const int nb10 = src1->nb[0];
  6235. const int nb11 = src1->nb[1];
  6236. const int nb12 = src1->nb[2];
  6237. const int nb13 = src1->nb[3];
  6238. const int nb0 = dst->nb[0];
  6239. const int nb1 = dst->nb[1];
  6240. const int nb2 = dst->nb[2];
  6241. const int nb3 = dst->nb[3];
  6242. const int ith = params->ith;
  6243. const int nth = params->nth;
  6244. GGML_ASSERT(ne02 == ne12);
  6245. GGML_ASSERT(ne03 == ne13);
  6246. GGML_ASSERT(ne2 == ne12);
  6247. GGML_ASSERT(ne3 == ne13);
  6248. const enum ggml_type type = src0->type;
  6249. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6250. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6251. // we don't support permuted src0 or src1
  6252. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6253. GGML_ASSERT(nb10 == sizeof(float));
  6254. // dst cannot be transposed or permuted
  6255. GGML_ASSERT(nb0 == sizeof(float));
  6256. GGML_ASSERT(nb0 <= nb1);
  6257. GGML_ASSERT(nb1 <= nb2);
  6258. GGML_ASSERT(nb2 <= nb3);
  6259. GGML_ASSERT(ne0 == ne01);
  6260. GGML_ASSERT(ne1 == ne11);
  6261. GGML_ASSERT(ne2 == ne02);
  6262. GGML_ASSERT(ne3 == ne03);
  6263. // nb01 >= nb00 - src0 is not transposed
  6264. // compute by src0 rows
  6265. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6266. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6267. if (params->ith != 0) {
  6268. return;
  6269. }
  6270. if (params->type == GGML_TASK_INIT) {
  6271. return;
  6272. }
  6273. if (params->type == GGML_TASK_FINALIZE) {
  6274. return;
  6275. }
  6276. float * const wdata = params->wdata;
  6277. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6278. #if defined(GGML_USE_CUBLAS)
  6279. float *d_X = NULL;
  6280. float *d_Y = NULL;
  6281. float *d_D = NULL;
  6282. const float alpha = 1.0f;
  6283. const float beta = 0.0f;
  6284. const int x_ne = ne01 * ne10;
  6285. const int y_ne = ne11 * ne10;
  6286. const int d_ne = ne11 * ne01;
  6287. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6288. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6289. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6290. #endif
  6291. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6292. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6293. {
  6294. size_t id = 0;
  6295. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6296. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6297. id += ne00;
  6298. }
  6299. }
  6300. const float * x = wdata;
  6301. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6302. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6303. #if defined(GGML_USE_CUBLAS)
  6304. // copy data to device
  6305. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6306. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6307. // compute
  6308. CUBLAS_CHECK(
  6309. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6310. ne01, ne11, ne10,
  6311. &alpha, d_X, ne00,
  6312. d_Y, ne10,
  6313. &beta, d_D, ne01));
  6314. // copy data to host
  6315. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6316. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6317. #else
  6318. // zT = y * xT
  6319. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6320. ne11, ne01, ne10,
  6321. 1.0f, y, ne10,
  6322. x, ne00,
  6323. 0.0f, d, ne01);
  6324. #endif
  6325. }
  6326. }
  6327. #if defined(GGML_USE_CUBLAS)
  6328. CUDA_CHECK(cudaFree(d_X));
  6329. CUDA_CHECK(cudaFree(d_Y));
  6330. CUDA_CHECK(cudaFree(d_D));
  6331. #endif
  6332. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6333. return;
  6334. }
  6335. #endif
  6336. if (params->type == GGML_TASK_INIT) {
  6337. char * wdata = params->wdata;
  6338. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6339. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6340. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6341. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6342. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6343. wdata += row_size;
  6344. }
  6345. }
  6346. }
  6347. return;
  6348. }
  6349. if (params->type == GGML_TASK_FINALIZE) {
  6350. return;
  6351. }
  6352. // parallelize by src0 rows using ggml_vec_dot_q
  6353. // total rows in src0
  6354. const int nr = ne01*ne02*ne03;
  6355. // rows per thread
  6356. const int dr = (nr + nth - 1)/nth;
  6357. // row range for this thread
  6358. const int ir0 = dr*ith;
  6359. const int ir1 = MIN(ir0 + dr, nr);
  6360. void * wdata = params->wdata;
  6361. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6362. for (int ir = ir0; ir < ir1; ++ir) {
  6363. // src0 indices
  6364. const int i03 = ir/(ne02*ne01);
  6365. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6366. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6367. const int i13 = i03;
  6368. const int i12 = i02;
  6369. const int i0 = i01;
  6370. const int i2 = i02;
  6371. const int i3 = i03;
  6372. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6373. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6374. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6375. assert(ne00 % 32 == 0);
  6376. for (int64_t ic = 0; ic < ne11; ++ic) {
  6377. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6378. }
  6379. }
  6380. //int64_t t1 = ggml_time_us();
  6381. //static int64_t acc = 0;
  6382. //acc += t1 - t0;
  6383. //if (t1 - t0 > 10) {
  6384. // printf("\n");
  6385. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6386. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6387. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6388. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6389. //}
  6390. }
  6391. static void ggml_compute_forward_mul_mat(
  6392. const struct ggml_compute_params * params,
  6393. const struct ggml_tensor * src0,
  6394. const struct ggml_tensor * src1,
  6395. struct ggml_tensor * dst) {
  6396. switch (src0->type) {
  6397. case GGML_TYPE_Q4_0:
  6398. case GGML_TYPE_Q4_1:
  6399. case GGML_TYPE_Q4_2:
  6400. case GGML_TYPE_Q8_0:
  6401. {
  6402. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6403. } break;
  6404. case GGML_TYPE_F16:
  6405. {
  6406. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6407. } break;
  6408. case GGML_TYPE_F32:
  6409. {
  6410. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6411. } break;
  6412. default:
  6413. {
  6414. GGML_ASSERT(false);
  6415. } break;
  6416. }
  6417. #if 0
  6418. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  6419. static int first = 8;
  6420. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6421. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6422. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6423. if (first) {
  6424. --first;
  6425. } else {
  6426. for (int k = 0; k < dst->ne[1]; ++k) {
  6427. for (int j = 0; j < dst->ne[0]/16; ++j) {
  6428. for (int i = 0; i < 16; ++i) {
  6429. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6430. }
  6431. printf("\n");
  6432. }
  6433. printf("\n");
  6434. }
  6435. printf("\n");
  6436. exit(0);
  6437. }
  6438. } else {
  6439. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6440. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6441. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6442. }
  6443. #endif
  6444. }
  6445. // ggml_compute_forward_scale
  6446. static void ggml_compute_forward_scale_f32(
  6447. const struct ggml_compute_params * params,
  6448. const struct ggml_tensor * src0,
  6449. const struct ggml_tensor * src1,
  6450. struct ggml_tensor * dst) {
  6451. GGML_ASSERT(ggml_is_contiguous(src0));
  6452. GGML_ASSERT(ggml_is_contiguous(dst));
  6453. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6454. GGML_ASSERT(ggml_is_scalar(src1));
  6455. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6456. return;
  6457. }
  6458. // scale factor
  6459. const float v = *(float *) src1->data;
  6460. const int ith = params->ith;
  6461. const int nth = params->nth;
  6462. const int nc = src0->ne[0];
  6463. const int nr = ggml_nrows(src0);
  6464. // rows per thread
  6465. const int dr = (nr + nth - 1)/nth;
  6466. // row range for this thread
  6467. const int ir0 = dr*ith;
  6468. const int ir1 = MIN(ir0 + dr, nr);
  6469. for (int i1 = ir0; i1 < ir1; i1++) {
  6470. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6471. }
  6472. }
  6473. static void ggml_compute_forward_scale(
  6474. const struct ggml_compute_params * params,
  6475. const struct ggml_tensor * src0,
  6476. const struct ggml_tensor * src1,
  6477. struct ggml_tensor * dst) {
  6478. switch (src0->type) {
  6479. case GGML_TYPE_F32:
  6480. {
  6481. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6482. } break;
  6483. default:
  6484. {
  6485. GGML_ASSERT(false);
  6486. } break;
  6487. }
  6488. }
  6489. // ggml_compute_forward_cpy
  6490. static void ggml_compute_forward_cpy(
  6491. const struct ggml_compute_params * params,
  6492. const struct ggml_tensor * src0,
  6493. struct ggml_tensor * dst) {
  6494. ggml_compute_forward_dup(params, src0, dst);
  6495. }
  6496. // ggml_compute_forward_cont
  6497. static void ggml_compute_forward_cont(
  6498. const struct ggml_compute_params * params,
  6499. const struct ggml_tensor * src0,
  6500. struct ggml_tensor * dst) {
  6501. ggml_compute_forward_dup(params, src0, dst);
  6502. }
  6503. // ggml_compute_forward_reshape
  6504. static void ggml_compute_forward_reshape(
  6505. const struct ggml_compute_params * params,
  6506. const struct ggml_tensor * src0,
  6507. struct ggml_tensor * dst) {
  6508. // NOP
  6509. UNUSED(params);
  6510. UNUSED(src0);
  6511. UNUSED(dst);
  6512. }
  6513. // ggml_compute_forward_view
  6514. static void ggml_compute_forward_view(
  6515. const struct ggml_compute_params * params,
  6516. const struct ggml_tensor * src0) {
  6517. // NOP
  6518. UNUSED(params);
  6519. UNUSED(src0);
  6520. }
  6521. // ggml_compute_forward_permute
  6522. static void ggml_compute_forward_permute(
  6523. const struct ggml_compute_params * params,
  6524. const struct ggml_tensor * src0) {
  6525. // NOP
  6526. UNUSED(params);
  6527. UNUSED(src0);
  6528. }
  6529. // ggml_compute_forward_transpose
  6530. static void ggml_compute_forward_transpose(
  6531. const struct ggml_compute_params * params,
  6532. const struct ggml_tensor * src0) {
  6533. // NOP
  6534. UNUSED(params);
  6535. UNUSED(src0);
  6536. }
  6537. // ggml_compute_forward_get_rows
  6538. static void ggml_compute_forward_get_rows_q(
  6539. const struct ggml_compute_params * params,
  6540. const struct ggml_tensor * src0,
  6541. const struct ggml_tensor * src1,
  6542. struct ggml_tensor * dst) {
  6543. assert(params->ith == 0);
  6544. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6545. return;
  6546. }
  6547. const int nc = src0->ne[0];
  6548. const int nr = ggml_nelements(src1);
  6549. const enum ggml_type type = src0->type;
  6550. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6551. assert( dst->ne[0] == nc);
  6552. assert( dst->ne[1] == nr);
  6553. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6554. for (int i = 0; i < nr; ++i) {
  6555. const int r = ((int32_t *) src1->data)[i];
  6556. dequantize_row_q(
  6557. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6558. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6559. }
  6560. }
  6561. static void ggml_compute_forward_get_rows_f16(
  6562. const struct ggml_compute_params * params,
  6563. const struct ggml_tensor * src0,
  6564. const struct ggml_tensor * src1,
  6565. struct ggml_tensor * dst) {
  6566. assert(params->ith == 0);
  6567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6568. return;
  6569. }
  6570. const int nc = src0->ne[0];
  6571. const int nr = ggml_nelements(src1);
  6572. assert( dst->ne[0] == nc);
  6573. assert( dst->ne[1] == nr);
  6574. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6575. for (int i = 0; i < nr; ++i) {
  6576. const int r = ((int32_t *) src1->data)[i];
  6577. for (int j = 0; j < nc; ++j) {
  6578. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6579. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6580. }
  6581. }
  6582. }
  6583. static void ggml_compute_forward_get_rows_f32(
  6584. const struct ggml_compute_params * params,
  6585. const struct ggml_tensor * src0,
  6586. const struct ggml_tensor * src1,
  6587. struct ggml_tensor * dst) {
  6588. assert(params->ith == 0);
  6589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6590. return;
  6591. }
  6592. const int nc = src0->ne[0];
  6593. const int nr = ggml_nelements(src1);
  6594. assert( dst->ne[0] == nc);
  6595. assert( dst->ne[1] == nr);
  6596. assert(src0->nb[0] == sizeof(float));
  6597. for (int i = 0; i < nr; ++i) {
  6598. const int r = ((int32_t *) src1->data)[i];
  6599. ggml_vec_cpy_f32(nc,
  6600. (float *) ((char *) dst->data + i*dst->nb[1]),
  6601. (float *) ((char *) src0->data + r*src0->nb[1]));
  6602. }
  6603. }
  6604. static void ggml_compute_forward_get_rows(
  6605. const struct ggml_compute_params * params,
  6606. const struct ggml_tensor * src0,
  6607. const struct ggml_tensor * src1,
  6608. struct ggml_tensor * dst) {
  6609. switch (src0->type) {
  6610. case GGML_TYPE_Q4_0:
  6611. case GGML_TYPE_Q4_1:
  6612. case GGML_TYPE_Q4_2:
  6613. case GGML_TYPE_Q8_0:
  6614. {
  6615. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6616. } break;
  6617. case GGML_TYPE_F16:
  6618. {
  6619. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6620. } break;
  6621. case GGML_TYPE_F32:
  6622. {
  6623. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6624. } break;
  6625. default:
  6626. {
  6627. GGML_ASSERT(false);
  6628. } break;
  6629. }
  6630. //static bool first = true;
  6631. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6632. //if (first) {
  6633. // first = false;
  6634. //} else {
  6635. // for (int k = 0; k < dst->ne[1]; ++k) {
  6636. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6637. // for (int i = 0; i < 16; ++i) {
  6638. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6639. // }
  6640. // printf("\n");
  6641. // }
  6642. // printf("\n");
  6643. // }
  6644. // printf("\n");
  6645. // exit(0);
  6646. //}
  6647. }
  6648. // ggml_compute_forward_diag_mask_inf
  6649. static void ggml_compute_forward_diag_mask_inf_f32(
  6650. const struct ggml_compute_params * params,
  6651. const struct ggml_tensor * src0,
  6652. const struct ggml_tensor * src1,
  6653. struct ggml_tensor * dst) {
  6654. assert(params->ith == 0);
  6655. assert(src1->type == GGML_TYPE_I32);
  6656. assert(ggml_nelements(src1) == 1);
  6657. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6658. return;
  6659. }
  6660. const int n_past = ((int32_t *) src1->data)[0];
  6661. // TODO: handle transposed/permuted matrices
  6662. const int n = ggml_nrows(src0);
  6663. const int nc = src0->ne[0];
  6664. const int nr = src0->ne[1];
  6665. const int nz = n/nr;
  6666. assert( dst->nb[0] == sizeof(float));
  6667. assert(src0->nb[0] == sizeof(float));
  6668. for (int k = 0; k < nz; k++) {
  6669. for (int j = 0; j < nr; j++) {
  6670. for (int i = n_past; i < nc; i++) {
  6671. if (i > n_past + j) {
  6672. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6673. }
  6674. }
  6675. }
  6676. }
  6677. }
  6678. static void ggml_compute_forward_diag_mask_inf(
  6679. const struct ggml_compute_params * params,
  6680. const struct ggml_tensor * src0,
  6681. const struct ggml_tensor * src1,
  6682. struct ggml_tensor * dst) {
  6683. switch (src0->type) {
  6684. case GGML_TYPE_F32:
  6685. {
  6686. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6687. } break;
  6688. default:
  6689. {
  6690. GGML_ASSERT(false);
  6691. } break;
  6692. }
  6693. }
  6694. // ggml_compute_forward_soft_max
  6695. static void ggml_compute_forward_soft_max_f32(
  6696. const struct ggml_compute_params * params,
  6697. const struct ggml_tensor * src0,
  6698. struct ggml_tensor * dst) {
  6699. GGML_ASSERT(ggml_is_contiguous(src0));
  6700. GGML_ASSERT(ggml_is_contiguous(dst));
  6701. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6702. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6703. return;
  6704. }
  6705. // TODO: handle transposed/permuted matrices
  6706. const int ith = params->ith;
  6707. const int nth = params->nth;
  6708. const int nc = src0->ne[0];
  6709. const int nr = ggml_nrows(src0);
  6710. // rows per thread
  6711. const int dr = (nr + nth - 1)/nth;
  6712. // row range for this thread
  6713. const int ir0 = dr*ith;
  6714. const int ir1 = MIN(ir0 + dr, nr);
  6715. for (int i1 = ir0; i1 < ir1; i1++) {
  6716. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6717. #ifndef NDEBUG
  6718. for (int i = 0; i < nc; ++i) {
  6719. //printf("p[%d] = %f\n", i, p[i]);
  6720. assert(!isnan(p[i]));
  6721. }
  6722. #endif
  6723. float max = -INFINITY;
  6724. ggml_vec_max_f32(nc, &max, p);
  6725. ggml_float sum = 0.0;
  6726. uint16_t scvt;
  6727. for (int i = 0; i < nc; i++) {
  6728. if (p[i] == -INFINITY) {
  6729. p[i] = 0.0f;
  6730. } else {
  6731. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6732. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6733. memcpy(&scvt, &s, sizeof(scvt));
  6734. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6735. sum += (ggml_float)val;
  6736. p[i] = val;
  6737. }
  6738. }
  6739. assert(sum > 0.0);
  6740. sum = 1.0/sum;
  6741. ggml_vec_scale_f32(nc, p, sum);
  6742. #ifndef NDEBUG
  6743. for (int i = 0; i < nc; ++i) {
  6744. assert(!isnan(p[i]));
  6745. assert(!isinf(p[i]));
  6746. }
  6747. #endif
  6748. }
  6749. }
  6750. static void ggml_compute_forward_soft_max(
  6751. const struct ggml_compute_params * params,
  6752. const struct ggml_tensor * src0,
  6753. struct ggml_tensor * dst) {
  6754. switch (src0->type) {
  6755. case GGML_TYPE_F32:
  6756. {
  6757. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6758. } break;
  6759. default:
  6760. {
  6761. GGML_ASSERT(false);
  6762. } break;
  6763. }
  6764. }
  6765. // ggml_compute_forward_rope
  6766. static void ggml_compute_forward_rope_f32(
  6767. const struct ggml_compute_params * params,
  6768. const struct ggml_tensor * src0,
  6769. const struct ggml_tensor * src1,
  6770. struct ggml_tensor * dst) {
  6771. assert(src1->type == GGML_TYPE_I32);
  6772. assert(ggml_nelements(src1) == 3);
  6773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6774. return;
  6775. }
  6776. const int n_past = ((int32_t *) src1->data)[0];
  6777. const int n_dims = ((int32_t *) src1->data)[1];
  6778. const int mode = ((int32_t *) src1->data)[2];
  6779. //const int64_t ne0 = src0->ne[0];
  6780. const int64_t ne1 = src0->ne[1];
  6781. const int64_t ne2 = src0->ne[2];
  6782. const int64_t ne3 = src0->ne[3];
  6783. const int nb0 = src0->nb[0];
  6784. const int nb1 = src0->nb[1];
  6785. const int nb2 = src0->nb[2];
  6786. const int nb3 = src0->nb[3];
  6787. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6788. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6789. assert(nb0 == sizeof(float));
  6790. const int ith = params->ith;
  6791. const int nth = params->nth;
  6792. const int nr = ggml_nrows(src0);
  6793. // rows per thread
  6794. const int dr = (nr + nth - 1)/nth;
  6795. // row range for this thread
  6796. const int ir0 = dr*ith;
  6797. const int ir1 = MIN(ir0 + dr, nr);
  6798. // row index used to determine which thread to use
  6799. int ir = 0;
  6800. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6801. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6802. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6803. const int p = (mode == 0 ? n_past + i2 : i2);
  6804. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6805. if (ir++ < ir0) continue;
  6806. if (ir > ir1) break;
  6807. float theta = (float)p;
  6808. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6809. const float cos_theta = cosf(theta);
  6810. const float sin_theta = sinf(theta);
  6811. theta *= theta_scale;
  6812. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6813. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6814. const float x0 = src[0];
  6815. const float x1 = src[1];
  6816. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6817. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6818. }
  6819. }
  6820. }
  6821. }
  6822. }
  6823. static void ggml_compute_forward_rope_f16(
  6824. const struct ggml_compute_params * params,
  6825. const struct ggml_tensor * src0,
  6826. const struct ggml_tensor * src1,
  6827. struct ggml_tensor * dst) {
  6828. assert(src1->type == GGML_TYPE_I32);
  6829. assert(ggml_nelements(src1) == 3);
  6830. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6831. return;
  6832. }
  6833. const int n_past = ((int32_t *) src1->data)[0];
  6834. const int n_dims = ((int32_t *) src1->data)[1];
  6835. const int mode = ((int32_t *) src1->data)[2];
  6836. //const int64_t ne0 = src0->ne[0];
  6837. const int64_t ne1 = src0->ne[1];
  6838. const int64_t ne2 = src0->ne[2];
  6839. const int64_t ne3 = src0->ne[3];
  6840. const int nb0 = src0->nb[0];
  6841. const int nb1 = src0->nb[1];
  6842. const int nb2 = src0->nb[2];
  6843. const int nb3 = src0->nb[3];
  6844. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6845. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6846. assert(nb0 == sizeof(ggml_fp16_t));
  6847. const int ith = params->ith;
  6848. const int nth = params->nth;
  6849. const int nr = ggml_nrows(src0);
  6850. // rows per thread
  6851. const int dr = (nr + nth - 1)/nth;
  6852. // row range for this thread
  6853. const int ir0 = dr*ith;
  6854. const int ir1 = MIN(ir0 + dr, nr);
  6855. // row index used to determine which thread to use
  6856. int ir = 0;
  6857. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6858. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6859. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6860. const int p = (mode == 0 ? n_past + i2 : i2);
  6861. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6862. if (ir++ < ir0) continue;
  6863. if (ir > ir1) break;
  6864. float theta = (float)p;
  6865. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6866. const float cos_theta = cosf(theta);
  6867. const float sin_theta = sinf(theta);
  6868. theta *= theta_scale;
  6869. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6870. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6871. const float x0 = GGML_FP16_TO_FP32(src[0]);
  6872. const float x1 = GGML_FP16_TO_FP32(src[1]);
  6873. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  6874. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  6875. }
  6876. }
  6877. }
  6878. }
  6879. }
  6880. static void ggml_compute_forward_rope(
  6881. const struct ggml_compute_params * params,
  6882. const struct ggml_tensor * src0,
  6883. const struct ggml_tensor * src1,
  6884. struct ggml_tensor * dst) {
  6885. switch (src0->type) {
  6886. case GGML_TYPE_F16:
  6887. {
  6888. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6889. } break;
  6890. case GGML_TYPE_F32:
  6891. {
  6892. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6893. } break;
  6894. default:
  6895. {
  6896. GGML_ASSERT(false);
  6897. } break;
  6898. }
  6899. }
  6900. // ggml_compute_forward_conv_1d_1s
  6901. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6902. const struct ggml_compute_params * params,
  6903. const struct ggml_tensor * src0,
  6904. const struct ggml_tensor * src1,
  6905. struct ggml_tensor * dst) {
  6906. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6907. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6908. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6909. int64_t t0 = ggml_perf_time_us();
  6910. UNUSED(t0);
  6911. const int64_t ne00 = src0->ne[0];
  6912. const int64_t ne01 = src0->ne[1];
  6913. const int64_t ne02 = src0->ne[2];
  6914. //const int64_t ne03 = src0->ne[3];
  6915. const int64_t ne10 = src1->ne[0];
  6916. const int64_t ne11 = src1->ne[1];
  6917. //const int64_t ne12 = src1->ne[2];
  6918. //const int64_t ne13 = src1->ne[3];
  6919. //const int64_t ne0 = dst->ne[0];
  6920. //const int64_t ne1 = dst->ne[1];
  6921. //const int64_t ne2 = dst->ne[2];
  6922. //const int64_t ne3 = dst->ne[3];
  6923. //const int64_t ne = ne0*ne1*ne2*ne3;
  6924. const int nb00 = src0->nb[0];
  6925. const int nb01 = src0->nb[1];
  6926. const int nb02 = src0->nb[2];
  6927. //const int nb03 = src0->nb[3];
  6928. const int nb10 = src1->nb[0];
  6929. const int nb11 = src1->nb[1];
  6930. //const int nb12 = src1->nb[2];
  6931. //const int nb13 = src1->nb[3];
  6932. //const int nb0 = dst->nb[0];
  6933. const int nb1 = dst->nb[1];
  6934. //const int nb2 = dst->nb[2];
  6935. //const int nb3 = dst->nb[3];
  6936. const int ith = params->ith;
  6937. const int nth = params->nth;
  6938. const int nk = ne00;
  6939. const int nh = nk/2;
  6940. const int ew0 = ggml_up32(ne01);
  6941. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6942. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6943. GGML_ASSERT(nb10 == sizeof(float));
  6944. if (params->type == GGML_TASK_INIT) {
  6945. // TODO: fix this memset (wsize is overestimated)
  6946. memset(params->wdata, 0, params->wsize);
  6947. // prepare kernel data (src0)
  6948. {
  6949. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6950. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6951. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6952. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6953. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6954. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6955. dst_data[i00*ew0 + i01] = src[i00];
  6956. }
  6957. }
  6958. }
  6959. }
  6960. // prepare source data (src1)
  6961. {
  6962. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6963. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6964. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6965. ggml_fp16_t * dst_data = wdata;
  6966. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6967. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6968. }
  6969. }
  6970. }
  6971. return;
  6972. }
  6973. if (params->type == GGML_TASK_FINALIZE) {
  6974. return;
  6975. }
  6976. // total rows in dst
  6977. const int nr = ne02;
  6978. // rows per thread
  6979. const int dr = (nr + nth - 1)/nth;
  6980. // row range for this thread
  6981. const int ir0 = dr*ith;
  6982. const int ir1 = MIN(ir0 + dr, nr);
  6983. for (int i1 = ir0; i1 < ir1; i1++) {
  6984. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6985. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6986. dst_data[i0] = 0;
  6987. for (int k = -nh; k <= nh; k++) {
  6988. float v = 0.0f;
  6989. ggml_vec_dot_f16(ew0, &v,
  6990. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6991. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6992. dst_data[i0] += v;
  6993. }
  6994. }
  6995. }
  6996. }
  6997. static void ggml_compute_forward_conv_1d_1s_f32(
  6998. const struct ggml_compute_params * params,
  6999. const struct ggml_tensor * src0,
  7000. const struct ggml_tensor * src1,
  7001. struct ggml_tensor * dst) {
  7002. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7003. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7004. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7005. int64_t t0 = ggml_perf_time_us();
  7006. UNUSED(t0);
  7007. const int64_t ne00 = src0->ne[0];
  7008. const int64_t ne01 = src0->ne[1];
  7009. const int64_t ne02 = src0->ne[2];
  7010. //const int64_t ne03 = src0->ne[3];
  7011. const int64_t ne10 = src1->ne[0];
  7012. const int64_t ne11 = src1->ne[1];
  7013. //const int64_t ne12 = src1->ne[2];
  7014. //const int64_t ne13 = src1->ne[3];
  7015. //const int64_t ne0 = dst->ne[0];
  7016. //const int64_t ne1 = dst->ne[1];
  7017. //const int64_t ne2 = dst->ne[2];
  7018. //const int64_t ne3 = dst->ne[3];
  7019. //const int64_t ne = ne0*ne1*ne2*ne3;
  7020. const int nb00 = src0->nb[0];
  7021. const int nb01 = src0->nb[1];
  7022. const int nb02 = src0->nb[2];
  7023. //const int nb03 = src0->nb[3];
  7024. const int nb10 = src1->nb[0];
  7025. const int nb11 = src1->nb[1];
  7026. //const int nb12 = src1->nb[2];
  7027. //const int nb13 = src1->nb[3];
  7028. //const int nb0 = dst->nb[0];
  7029. const int nb1 = dst->nb[1];
  7030. //const int nb2 = dst->nb[2];
  7031. //const int nb3 = dst->nb[3];
  7032. const int ith = params->ith;
  7033. const int nth = params->nth;
  7034. const int nk = ne00;
  7035. const int nh = nk/2;
  7036. const int ew0 = ggml_up32(ne01);
  7037. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7038. GGML_ASSERT(nb00 == sizeof(float));
  7039. GGML_ASSERT(nb10 == sizeof(float));
  7040. if (params->type == GGML_TASK_INIT) {
  7041. // TODO: fix this memset (wsize is overestimated)
  7042. memset(params->wdata, 0, params->wsize);
  7043. // prepare kernel data (src0)
  7044. {
  7045. float * const wdata = (float *) params->wdata + 0;
  7046. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7047. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7048. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7049. float * dst_data = wdata + i02*ew0*ne00;
  7050. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7051. dst_data[i00*ew0 + i01] = src[i00];
  7052. }
  7053. }
  7054. }
  7055. }
  7056. // prepare source data (src1)
  7057. {
  7058. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7059. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7060. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7061. float * dst_data = wdata;
  7062. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7063. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7064. }
  7065. }
  7066. }
  7067. return;
  7068. }
  7069. if (params->type == GGML_TASK_FINALIZE) {
  7070. return;
  7071. }
  7072. // total rows in dst
  7073. const int nr = ne02;
  7074. // rows per thread
  7075. const int dr = (nr + nth - 1)/nth;
  7076. // row range for this thread
  7077. const int ir0 = dr*ith;
  7078. const int ir1 = MIN(ir0 + dr, nr);
  7079. for (int i1 = ir0; i1 < ir1; i1++) {
  7080. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7081. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7082. dst_data[i0] = 0;
  7083. for (int k = -nh; k <= nh; k++) {
  7084. float v = 0.0f;
  7085. ggml_vec_dot_f32(ew0, &v,
  7086. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7087. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7088. dst_data[i0] += v;
  7089. }
  7090. }
  7091. }
  7092. }
  7093. static void ggml_compute_forward_conv_1d_1s(
  7094. const struct ggml_compute_params * params,
  7095. const struct ggml_tensor * src0,
  7096. const struct ggml_tensor * src1,
  7097. struct ggml_tensor * dst) {
  7098. switch (src0->type) {
  7099. case GGML_TYPE_F16:
  7100. {
  7101. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7102. } break;
  7103. case GGML_TYPE_F32:
  7104. {
  7105. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7106. } break;
  7107. default:
  7108. {
  7109. GGML_ASSERT(false);
  7110. } break;
  7111. }
  7112. }
  7113. // ggml_compute_forward_conv_1d_2s
  7114. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7115. const struct ggml_compute_params * params,
  7116. const struct ggml_tensor * src0,
  7117. const struct ggml_tensor * src1,
  7118. struct ggml_tensor * dst) {
  7119. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7120. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7121. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7122. int64_t t0 = ggml_perf_time_us();
  7123. UNUSED(t0);
  7124. const int64_t ne00 = src0->ne[0];
  7125. const int64_t ne01 = src0->ne[1];
  7126. const int64_t ne02 = src0->ne[2];
  7127. //const int64_t ne03 = src0->ne[3];
  7128. const int64_t ne10 = src1->ne[0];
  7129. const int64_t ne11 = src1->ne[1];
  7130. //const int64_t ne12 = src1->ne[2];
  7131. //const int64_t ne13 = src1->ne[3];
  7132. //const int64_t ne0 = dst->ne[0];
  7133. //const int64_t ne1 = dst->ne[1];
  7134. //const int64_t ne2 = dst->ne[2];
  7135. //const int64_t ne3 = dst->ne[3];
  7136. //const int64_t ne = ne0*ne1*ne2*ne3;
  7137. const int nb00 = src0->nb[0];
  7138. const int nb01 = src0->nb[1];
  7139. const int nb02 = src0->nb[2];
  7140. //const int nb03 = src0->nb[3];
  7141. const int nb10 = src1->nb[0];
  7142. const int nb11 = src1->nb[1];
  7143. //const int nb12 = src1->nb[2];
  7144. //const int nb13 = src1->nb[3];
  7145. //const int nb0 = dst->nb[0];
  7146. const int nb1 = dst->nb[1];
  7147. //const int nb2 = dst->nb[2];
  7148. //const int nb3 = dst->nb[3];
  7149. const int ith = params->ith;
  7150. const int nth = params->nth;
  7151. const int nk = ne00;
  7152. const int nh = nk/2;
  7153. const int ew0 = ggml_up32(ne01);
  7154. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7155. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7156. GGML_ASSERT(nb10 == sizeof(float));
  7157. if (params->type == GGML_TASK_INIT) {
  7158. // TODO: fix this memset (wsize is overestimated)
  7159. memset(params->wdata, 0, params->wsize);
  7160. // prepare kernel data (src0)
  7161. {
  7162. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7163. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7164. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7165. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7166. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7167. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7168. dst_data[i00*ew0 + i01] = src[i00];
  7169. }
  7170. }
  7171. }
  7172. }
  7173. // prepare source data (src1)
  7174. {
  7175. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7176. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7177. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7178. ggml_fp16_t * dst_data = wdata;
  7179. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7180. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7181. }
  7182. }
  7183. }
  7184. return;
  7185. }
  7186. if (params->type == GGML_TASK_FINALIZE) {
  7187. return;
  7188. }
  7189. // total rows in dst
  7190. const int nr = ne02;
  7191. // rows per thread
  7192. const int dr = (nr + nth - 1)/nth;
  7193. // row range for this thread
  7194. const int ir0 = dr*ith;
  7195. const int ir1 = MIN(ir0 + dr, nr);
  7196. for (int i1 = ir0; i1 < ir1; i1++) {
  7197. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7198. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7199. dst_data[i0/2] = 0;
  7200. for (int k = -nh; k <= nh; k++) {
  7201. float v = 0.0f;
  7202. ggml_vec_dot_f16(ew0, &v,
  7203. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7204. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7205. dst_data[i0/2] += v;
  7206. }
  7207. }
  7208. }
  7209. }
  7210. static void ggml_compute_forward_conv_1d_2s_f32(
  7211. const struct ggml_compute_params * params,
  7212. const struct ggml_tensor * src0,
  7213. const struct ggml_tensor * src1,
  7214. struct ggml_tensor * dst) {
  7215. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7216. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7217. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7218. int64_t t0 = ggml_perf_time_us();
  7219. UNUSED(t0);
  7220. const int64_t ne00 = src0->ne[0];
  7221. const int64_t ne01 = src0->ne[1];
  7222. const int64_t ne02 = src0->ne[2];
  7223. //const int64_t ne03 = src0->ne[3];
  7224. const int64_t ne10 = src1->ne[0];
  7225. const int64_t ne11 = src1->ne[1];
  7226. //const int64_t ne12 = src1->ne[2];
  7227. //const int64_t ne13 = src1->ne[3];
  7228. //const int64_t ne0 = dst->ne[0];
  7229. //const int64_t ne1 = dst->ne[1];
  7230. //const int64_t ne2 = dst->ne[2];
  7231. //const int64_t ne3 = dst->ne[3];
  7232. //const int64_t ne = ne0*ne1*ne2*ne3;
  7233. const int nb00 = src0->nb[0];
  7234. const int nb01 = src0->nb[1];
  7235. const int nb02 = src0->nb[2];
  7236. //const int nb03 = src0->nb[3];
  7237. const int nb10 = src1->nb[0];
  7238. const int nb11 = src1->nb[1];
  7239. //const int nb12 = src1->nb[2];
  7240. //const int nb13 = src1->nb[3];
  7241. //const int nb0 = dst->nb[0];
  7242. const int nb1 = dst->nb[1];
  7243. //const int nb2 = dst->nb[2];
  7244. //const int nb3 = dst->nb[3];
  7245. const int ith = params->ith;
  7246. const int nth = params->nth;
  7247. const int nk = ne00;
  7248. const int nh = nk/2;
  7249. const int ew0 = ggml_up32(ne01);
  7250. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7251. GGML_ASSERT(nb00 == sizeof(float));
  7252. GGML_ASSERT(nb10 == sizeof(float));
  7253. if (params->type == GGML_TASK_INIT) {
  7254. // TODO: fix this memset (wsize is overestimated)
  7255. memset(params->wdata, 0, params->wsize);
  7256. // prepare kernel data (src0)
  7257. {
  7258. float * const wdata = (float *) params->wdata + 0;
  7259. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7260. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7261. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7262. float * dst_data = wdata + i02*ew0*ne00;
  7263. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7264. dst_data[i00*ew0 + i01] = src[i00];
  7265. }
  7266. }
  7267. }
  7268. }
  7269. // prepare source data (src1)
  7270. {
  7271. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7272. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7273. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7274. float * dst_data = wdata;
  7275. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7276. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7277. }
  7278. }
  7279. }
  7280. return;
  7281. }
  7282. if (params->type == GGML_TASK_FINALIZE) {
  7283. return;
  7284. }
  7285. // total rows in dst
  7286. const int nr = ne02;
  7287. // rows per thread
  7288. const int dr = (nr + nth - 1)/nth;
  7289. // row range for this thread
  7290. const int ir0 = dr*ith;
  7291. const int ir1 = MIN(ir0 + dr, nr);
  7292. for (int i1 = ir0; i1 < ir1; i1++) {
  7293. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7294. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7295. dst_data[i0/2] = 0;
  7296. for (int k = -nh; k <= nh; k++) {
  7297. float v = 0.0f;
  7298. ggml_vec_dot_f32(ew0, &v,
  7299. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7300. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7301. dst_data[i0/2] += v;
  7302. }
  7303. }
  7304. }
  7305. }
  7306. static void ggml_compute_forward_conv_1d_2s(
  7307. const struct ggml_compute_params * params,
  7308. const struct ggml_tensor * src0,
  7309. const struct ggml_tensor * src1,
  7310. struct ggml_tensor * dst) {
  7311. switch (src0->type) {
  7312. case GGML_TYPE_F16:
  7313. {
  7314. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7315. } break;
  7316. case GGML_TYPE_F32:
  7317. {
  7318. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7319. } break;
  7320. default:
  7321. {
  7322. GGML_ASSERT(false);
  7323. } break;
  7324. }
  7325. }
  7326. // ggml_compute_forward_flash_attn
  7327. static void ggml_compute_forward_flash_attn_f32(
  7328. const struct ggml_compute_params * params,
  7329. const struct ggml_tensor * q,
  7330. const struct ggml_tensor * k,
  7331. const struct ggml_tensor * v,
  7332. const bool masked,
  7333. struct ggml_tensor * dst) {
  7334. int64_t t0 = ggml_perf_time_us();
  7335. UNUSED(t0);
  7336. const int64_t neq0 = q->ne[0];
  7337. const int64_t neq1 = q->ne[1];
  7338. const int64_t neq2 = q->ne[2];
  7339. const int64_t neq3 = q->ne[3];
  7340. const int64_t nek0 = k->ne[0];
  7341. const int64_t nek1 = k->ne[1];
  7342. //const int64_t nek2 = k->ne[2];
  7343. //const int64_t nek3 = k->ne[3];
  7344. //const int64_t nev0 = v->ne[0];
  7345. const int64_t nev1 = v->ne[1];
  7346. //const int64_t nev2 = v->ne[2];
  7347. //const int64_t nev3 = v->ne[3];
  7348. const int64_t ne0 = dst->ne[0];
  7349. const int64_t ne1 = dst->ne[1];
  7350. //const int64_t ne2 = dst->ne[2];
  7351. //const int64_t ne3 = dst->ne[3];
  7352. const int nbk0 = k->nb[0];
  7353. const int nbk1 = k->nb[1];
  7354. const int nbk2 = k->nb[2];
  7355. const int nbk3 = k->nb[3];
  7356. const int nbq0 = q->nb[0];
  7357. const int nbq1 = q->nb[1];
  7358. const int nbq2 = q->nb[2];
  7359. const int nbq3 = q->nb[3];
  7360. const int nbv0 = v->nb[0];
  7361. const int nbv1 = v->nb[1];
  7362. const int nbv2 = v->nb[2];
  7363. const int nbv3 = v->nb[3];
  7364. const int nb0 = dst->nb[0];
  7365. const int nb1 = dst->nb[1];
  7366. const int nb2 = dst->nb[2];
  7367. const int nb3 = dst->nb[3];
  7368. const int ith = params->ith;
  7369. const int nth = params->nth;
  7370. const int64_t D = neq0;
  7371. const int64_t N = neq1;
  7372. const int64_t P = nek1 - N;
  7373. const int64_t M = P + N;
  7374. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7375. GGML_ASSERT(ne0 == D);
  7376. GGML_ASSERT(ne1 == N);
  7377. GGML_ASSERT(P >= 0);
  7378. GGML_ASSERT(nbq0 == sizeof(float));
  7379. GGML_ASSERT(nbk0 == sizeof(float));
  7380. GGML_ASSERT(nbv0 == sizeof(float));
  7381. GGML_ASSERT(neq0 == D);
  7382. GGML_ASSERT(nek0 == D);
  7383. GGML_ASSERT(nev1 == D);
  7384. GGML_ASSERT(neq1 == N);
  7385. GGML_ASSERT(nek1 == N + P);
  7386. GGML_ASSERT(nev1 == D);
  7387. // dst cannot be transposed or permuted
  7388. GGML_ASSERT(nb0 == sizeof(float));
  7389. GGML_ASSERT(nb0 <= nb1);
  7390. GGML_ASSERT(nb1 <= nb2);
  7391. GGML_ASSERT(nb2 <= nb3);
  7392. if (params->type == GGML_TASK_INIT) {
  7393. return;
  7394. }
  7395. if (params->type == GGML_TASK_FINALIZE) {
  7396. return;
  7397. }
  7398. // parallelize by q rows using ggml_vec_dot_f32
  7399. // total rows in q
  7400. const int nr = neq1*neq2*neq3;
  7401. // rows per thread
  7402. const int dr = (nr + nth - 1)/nth;
  7403. // row range for this thread
  7404. const int ir0 = dr*ith;
  7405. const int ir1 = MIN(ir0 + dr, nr);
  7406. const float scale = 1.0f/sqrtf(D);
  7407. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7408. for (int ir = ir0; ir < ir1; ++ir) {
  7409. // q indices
  7410. const int iq3 = ir/(neq2*neq1);
  7411. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7412. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7413. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7414. for (int i = M; i < Mup; ++i) {
  7415. S[i] = -INFINITY;
  7416. }
  7417. for (int64_t ic = 0; ic < nek1; ++ic) {
  7418. // k indices
  7419. const int ik3 = iq3;
  7420. const int ik2 = iq2;
  7421. const int ik1 = ic;
  7422. // S indices
  7423. const int i1 = ik1;
  7424. ggml_vec_dot_f32(neq0,
  7425. S + i1,
  7426. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7427. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7428. }
  7429. // scale
  7430. ggml_vec_scale_f32(nek1, S, scale);
  7431. if (masked) {
  7432. for (int64_t i = P; i < M; i++) {
  7433. if (i > P + iq1) {
  7434. S[i] = -INFINITY;
  7435. }
  7436. }
  7437. }
  7438. // softmax
  7439. {
  7440. float max = -INFINITY;
  7441. ggml_vec_max_f32(M, &max, S);
  7442. ggml_float sum = 0.0;
  7443. {
  7444. #ifdef GGML_SOFT_MAX_ACCELERATE
  7445. max = -max;
  7446. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7447. vvexpf(S, S, &Mup);
  7448. ggml_vec_sum_f32(Mup, &sum, S);
  7449. #else
  7450. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7451. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7452. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7453. float * SS = S + i;
  7454. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7455. if (SS[j] == -INFINITY) {
  7456. SS[j] = 0.0f;
  7457. } else {
  7458. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7459. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7460. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7461. sump[j] += (ggml_float)val;
  7462. SS[j] = val;
  7463. }
  7464. }
  7465. }
  7466. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7467. sum += sump[i];
  7468. }
  7469. #endif
  7470. }
  7471. assert(sum > 0.0);
  7472. sum = 1.0/sum;
  7473. ggml_vec_scale_f32(M, S, sum);
  7474. #ifndef NDEBUG
  7475. for (int i = 0; i < M; ++i) {
  7476. assert(!isnan(S[i]));
  7477. assert(!isinf(S[i]));
  7478. }
  7479. #endif
  7480. }
  7481. for (int64_t ic = 0; ic < nev1; ++ic) {
  7482. // dst indices
  7483. const int i1 = iq1;
  7484. const int i2 = iq2;
  7485. const int i3 = iq3;
  7486. ggml_vec_dot_f32(nek1,
  7487. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7488. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7489. S);
  7490. }
  7491. }
  7492. }
  7493. static void ggml_compute_forward_flash_attn_f16(
  7494. const struct ggml_compute_params * params,
  7495. const struct ggml_tensor * q,
  7496. const struct ggml_tensor * k,
  7497. const struct ggml_tensor * v,
  7498. const bool masked,
  7499. struct ggml_tensor * dst) {
  7500. int64_t t0 = ggml_perf_time_us();
  7501. UNUSED(t0);
  7502. const int64_t neq0 = q->ne[0];
  7503. const int64_t neq1 = q->ne[1];
  7504. const int64_t neq2 = q->ne[2];
  7505. const int64_t neq3 = q->ne[3];
  7506. const int64_t nek0 = k->ne[0];
  7507. const int64_t nek1 = k->ne[1];
  7508. //const int64_t nek2 = k->ne[2];
  7509. //const int64_t nek3 = k->ne[3];
  7510. //const int64_t nev0 = v->ne[0];
  7511. const int64_t nev1 = v->ne[1];
  7512. //const int64_t nev2 = v->ne[2];
  7513. //const int64_t nev3 = v->ne[3];
  7514. const int64_t ne0 = dst->ne[0];
  7515. const int64_t ne1 = dst->ne[1];
  7516. //const int64_t ne2 = dst->ne[2];
  7517. //const int64_t ne3 = dst->ne[3];
  7518. const int nbk0 = k->nb[0];
  7519. const int nbk1 = k->nb[1];
  7520. const int nbk2 = k->nb[2];
  7521. const int nbk3 = k->nb[3];
  7522. const int nbq0 = q->nb[0];
  7523. const int nbq1 = q->nb[1];
  7524. const int nbq2 = q->nb[2];
  7525. const int nbq3 = q->nb[3];
  7526. const int nbv0 = v->nb[0];
  7527. const int nbv1 = v->nb[1];
  7528. const int nbv2 = v->nb[2];
  7529. const int nbv3 = v->nb[3];
  7530. const int nb0 = dst->nb[0];
  7531. const int nb1 = dst->nb[1];
  7532. const int nb2 = dst->nb[2];
  7533. const int nb3 = dst->nb[3];
  7534. const int ith = params->ith;
  7535. const int nth = params->nth;
  7536. const int64_t D = neq0;
  7537. const int64_t N = neq1;
  7538. const int64_t P = nek1 - N;
  7539. const int64_t M = P + N;
  7540. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7541. GGML_ASSERT(ne0 == D);
  7542. GGML_ASSERT(ne1 == N);
  7543. GGML_ASSERT(P >= 0);
  7544. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7545. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7546. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7547. GGML_ASSERT(neq0 == D);
  7548. GGML_ASSERT(nek0 == D);
  7549. GGML_ASSERT(nev1 == D);
  7550. GGML_ASSERT(neq1 == N);
  7551. GGML_ASSERT(nek1 == N + P);
  7552. GGML_ASSERT(nev1 == D);
  7553. // dst cannot be transposed or permuted
  7554. GGML_ASSERT(nb0 == sizeof(float));
  7555. GGML_ASSERT(nb0 <= nb1);
  7556. GGML_ASSERT(nb1 <= nb2);
  7557. GGML_ASSERT(nb2 <= nb3);
  7558. if (params->type == GGML_TASK_INIT) {
  7559. return;
  7560. }
  7561. if (params->type == GGML_TASK_FINALIZE) {
  7562. return;
  7563. }
  7564. // parallelize by q rows using ggml_vec_dot_f32
  7565. // total rows in q
  7566. const int nr = neq1*neq2*neq3;
  7567. // rows per thread
  7568. const int dr = (nr + nth - 1)/nth;
  7569. // row range for this thread
  7570. const int ir0 = dr*ith;
  7571. const int ir1 = MIN(ir0 + dr, nr);
  7572. const float scale = 1.0f/sqrtf(D);
  7573. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7574. for (int ir = ir0; ir < ir1; ++ir) {
  7575. // q indices
  7576. const int iq3 = ir/(neq2*neq1);
  7577. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7578. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7579. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7580. for (int i = M; i < Mup; ++i) {
  7581. S[i] = -INFINITY;
  7582. }
  7583. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7584. for (int64_t ic = 0; ic < nek1; ++ic) {
  7585. // k indices
  7586. const int ik3 = iq3;
  7587. const int ik2 = iq2;
  7588. const int ik1 = ic;
  7589. // S indices
  7590. const int i1 = ik1;
  7591. ggml_vec_dot_f16(neq0,
  7592. S + i1,
  7593. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7594. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7595. }
  7596. } else {
  7597. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7598. // k indices
  7599. const int ik3 = iq3;
  7600. const int ik2 = iq2;
  7601. const int ik1 = ic;
  7602. // S indices
  7603. const int i1 = ik1;
  7604. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7605. S + i1,
  7606. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7607. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7608. }
  7609. }
  7610. // scale
  7611. ggml_vec_scale_f32(nek1, S, scale);
  7612. if (masked) {
  7613. for (int64_t i = P; i < M; i++) {
  7614. if (i > P + iq1) {
  7615. S[i] = -INFINITY;
  7616. }
  7617. }
  7618. }
  7619. // softmax
  7620. {
  7621. float max = -INFINITY;
  7622. ggml_vec_max_f32(M, &max, S);
  7623. ggml_float sum = 0.0;
  7624. {
  7625. #ifdef GGML_SOFT_MAX_ACCELERATE
  7626. max = -max;
  7627. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7628. vvexpf(S, S, &Mup);
  7629. ggml_vec_sum_f32(Mup, &sum, S);
  7630. #else
  7631. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7632. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7633. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7634. float * SS = S + i;
  7635. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7636. if (SS[j] == -INFINITY) {
  7637. SS[j] = 0.0f;
  7638. } else {
  7639. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7640. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7641. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7642. sump[j] += (ggml_float)val;
  7643. SS[j] = val;
  7644. }
  7645. }
  7646. }
  7647. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7648. sum += sump[i];
  7649. }
  7650. #endif
  7651. }
  7652. assert(sum > 0.0);
  7653. sum = 1.0/sum;
  7654. ggml_vec_scale_f32(M, S, sum);
  7655. #ifndef NDEBUG
  7656. for (int i = 0; i < M; ++i) {
  7657. assert(!isnan(S[i]));
  7658. assert(!isinf(S[i]));
  7659. }
  7660. #endif
  7661. }
  7662. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7663. for (int64_t i = 0; i < M; i++) {
  7664. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7665. }
  7666. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7667. for (int64_t ic = 0; ic < nev1; ++ic) {
  7668. // dst indices
  7669. const int i1 = iq1;
  7670. const int i2 = iq2;
  7671. const int i3 = iq3;
  7672. ggml_vec_dot_f16(nek1,
  7673. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7674. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7675. S16);
  7676. }
  7677. } else {
  7678. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7679. // dst indices
  7680. const int i1 = iq1;
  7681. const int i2 = iq2;
  7682. const int i3 = iq3;
  7683. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7684. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7685. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7686. S16);
  7687. }
  7688. }
  7689. }
  7690. }
  7691. static void ggml_compute_forward_flash_attn(
  7692. const struct ggml_compute_params * params,
  7693. const struct ggml_tensor * q,
  7694. const struct ggml_tensor * k,
  7695. const struct ggml_tensor * v,
  7696. const bool masked,
  7697. struct ggml_tensor * dst) {
  7698. switch (q->type) {
  7699. case GGML_TYPE_F16:
  7700. {
  7701. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7702. } break;
  7703. case GGML_TYPE_F32:
  7704. {
  7705. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7706. } break;
  7707. default:
  7708. {
  7709. GGML_ASSERT(false);
  7710. } break;
  7711. }
  7712. }
  7713. // ggml_compute_forward_flash_ff
  7714. static void ggml_compute_forward_flash_ff_f16(
  7715. const struct ggml_compute_params * params,
  7716. const struct ggml_tensor * a, // F16
  7717. const struct ggml_tensor * b0, // F16 fc_w
  7718. const struct ggml_tensor * b1, // F32 fc_b
  7719. const struct ggml_tensor * c0, // F16 proj_w
  7720. const struct ggml_tensor * c1, // F32 proj_b
  7721. struct ggml_tensor * dst) {
  7722. int64_t t0 = ggml_perf_time_us();
  7723. UNUSED(t0);
  7724. const int64_t nea0 = a->ne[0];
  7725. const int64_t nea1 = a->ne[1];
  7726. const int64_t nea2 = a->ne[2];
  7727. const int64_t nea3 = a->ne[3];
  7728. const int64_t neb00 = b0->ne[0];
  7729. const int64_t neb01 = b0->ne[1];
  7730. //const int64_t neb02 = b0->ne[2];
  7731. //const int64_t neb03 = b0->ne[3];
  7732. const int64_t neb10 = b1->ne[0];
  7733. const int64_t neb11 = b1->ne[1];
  7734. //const int64_t neb12 = b1->ne[2];
  7735. //const int64_t neb13 = b1->ne[3];
  7736. const int64_t nec00 = c0->ne[0];
  7737. const int64_t nec01 = c0->ne[1];
  7738. //const int64_t nec02 = c0->ne[2];
  7739. //const int64_t nec03 = c0->ne[3];
  7740. const int64_t nec10 = c1->ne[0];
  7741. const int64_t nec11 = c1->ne[1];
  7742. //const int64_t nec12 = c1->ne[2];
  7743. //const int64_t nec13 = c1->ne[3];
  7744. const int64_t ne0 = dst->ne[0];
  7745. const int64_t ne1 = dst->ne[1];
  7746. const int64_t ne2 = dst->ne[2];
  7747. //const int64_t ne3 = dst->ne[3];
  7748. const int nba0 = a->nb[0];
  7749. const int nba1 = a->nb[1];
  7750. const int nba2 = a->nb[2];
  7751. const int nba3 = a->nb[3];
  7752. const int nbb00 = b0->nb[0];
  7753. const int nbb01 = b0->nb[1];
  7754. const int nbb02 = b0->nb[2];
  7755. const int nbb03 = b0->nb[3];
  7756. const int nbb10 = b1->nb[0];
  7757. //const int nbb11 = b1->nb[1];
  7758. //const int nbb12 = b1->nb[2];
  7759. //const int nbb13 = b1->nb[3];
  7760. const int nbc00 = c0->nb[0];
  7761. const int nbc01 = c0->nb[1];
  7762. const int nbc02 = c0->nb[2];
  7763. const int nbc03 = c0->nb[3];
  7764. const int nbc10 = c1->nb[0];
  7765. //const int nbc11 = c1->nb[1];
  7766. //const int nbc12 = c1->nb[2];
  7767. //const int nbc13 = c1->nb[3];
  7768. const int nb0 = dst->nb[0];
  7769. const int nb1 = dst->nb[1];
  7770. const int nb2 = dst->nb[2];
  7771. const int nb3 = dst->nb[3];
  7772. const int ith = params->ith;
  7773. const int nth = params->nth;
  7774. const int64_t D = nea0;
  7775. //const int64_t N = nea1;
  7776. const int64_t M = neb01;
  7777. GGML_ASSERT(ne0 == nea0);
  7778. GGML_ASSERT(ne1 == nea1);
  7779. GGML_ASSERT(ne2 == nea2);
  7780. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7781. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7782. GGML_ASSERT(nbb10 == sizeof(float));
  7783. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7784. GGML_ASSERT(nbc10 == sizeof(float));
  7785. GGML_ASSERT(neb00 == D);
  7786. GGML_ASSERT(neb01 == M);
  7787. GGML_ASSERT(neb10 == M);
  7788. GGML_ASSERT(neb11 == 1);
  7789. GGML_ASSERT(nec00 == M);
  7790. GGML_ASSERT(nec01 == D);
  7791. GGML_ASSERT(nec10 == D);
  7792. GGML_ASSERT(nec11 == 1);
  7793. // dst cannot be transposed or permuted
  7794. GGML_ASSERT(nb0 == sizeof(float));
  7795. GGML_ASSERT(nb0 <= nb1);
  7796. GGML_ASSERT(nb1 <= nb2);
  7797. GGML_ASSERT(nb2 <= nb3);
  7798. if (params->type == GGML_TASK_INIT) {
  7799. return;
  7800. }
  7801. if (params->type == GGML_TASK_FINALIZE) {
  7802. return;
  7803. }
  7804. // parallelize by a rows using ggml_vec_dot_f32
  7805. // total rows in a
  7806. const int nr = nea1*nea2*nea3;
  7807. // rows per thread
  7808. const int dr = (nr + nth - 1)/nth;
  7809. // row range for this thread
  7810. const int ir0 = dr*ith;
  7811. const int ir1 = MIN(ir0 + dr, nr);
  7812. for (int ir = ir0; ir < ir1; ++ir) {
  7813. // a indices
  7814. const int ia3 = ir/(nea2*nea1);
  7815. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7816. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7817. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7818. for (int64_t ic = 0; ic < neb01; ++ic) {
  7819. // b0 indices
  7820. const int ib03 = ia3;
  7821. const int ib02 = ia2;
  7822. const int ib01 = ic;
  7823. // S indices
  7824. const int i1 = ib01;
  7825. ggml_vec_dot_f16(nea0,
  7826. S + i1,
  7827. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7828. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7829. }
  7830. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7831. //ggml_vec_gelu_f32(neb01, S, S);
  7832. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7833. for (int64_t i = 0; i < M; i++) {
  7834. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7835. }
  7836. ggml_vec_gelu_f16(neb01, S16, S16);
  7837. {
  7838. // dst indices
  7839. const int i1 = ia1;
  7840. const int i2 = ia2;
  7841. const int i3 = ia3;
  7842. for (int64_t ic = 0; ic < nec01; ++ic) {
  7843. ggml_vec_dot_f16(neb01,
  7844. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7845. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7846. S16);
  7847. }
  7848. ggml_vec_add_f32(nec01,
  7849. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7850. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7851. (float *) c1->data);
  7852. }
  7853. }
  7854. }
  7855. static void ggml_compute_forward_flash_ff(
  7856. const struct ggml_compute_params * params,
  7857. const struct ggml_tensor * a,
  7858. const struct ggml_tensor * b0,
  7859. const struct ggml_tensor * b1,
  7860. const struct ggml_tensor * c0,
  7861. const struct ggml_tensor * c1,
  7862. struct ggml_tensor * dst) {
  7863. switch (b0->type) {
  7864. case GGML_TYPE_F16:
  7865. {
  7866. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7867. } break;
  7868. case GGML_TYPE_F32:
  7869. {
  7870. GGML_ASSERT(false); // TODO
  7871. } break;
  7872. default:
  7873. {
  7874. GGML_ASSERT(false);
  7875. } break;
  7876. }
  7877. }
  7878. // ggml_compute_forward_map_unary
  7879. static void ggml_compute_forward_map_unary_f32(
  7880. const struct ggml_compute_params * params,
  7881. const struct ggml_tensor * src0,
  7882. struct ggml_tensor * dst,
  7883. const ggml_unary_op_f32_t fun) {
  7884. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7885. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7886. return;
  7887. }
  7888. const int n = ggml_nrows(src0);
  7889. const int nc = src0->ne[0];
  7890. assert( dst->nb[0] == sizeof(float));
  7891. assert(src0->nb[0] == sizeof(float));
  7892. for (int i = 0; i < n; i++) {
  7893. fun(nc,
  7894. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7895. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7896. }
  7897. }
  7898. static void ggml_compute_forward_map_unary(
  7899. const struct ggml_compute_params * params,
  7900. const struct ggml_tensor * src0,
  7901. struct ggml_tensor * dst,
  7902. const ggml_unary_op_f32_t fun) {
  7903. switch (src0->type) {
  7904. case GGML_TYPE_F32:
  7905. {
  7906. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  7907. } break;
  7908. default:
  7909. {
  7910. GGML_ASSERT(false);
  7911. } break;
  7912. }
  7913. }
  7914. // ggml_compute_forward_map_binary
  7915. static void ggml_compute_forward_map_binary_f32(
  7916. const struct ggml_compute_params * params,
  7917. const struct ggml_tensor * src0,
  7918. const struct ggml_tensor * src1,
  7919. struct ggml_tensor * dst,
  7920. const ggml_binary_op_f32_t fun) {
  7921. assert(params->ith == 0);
  7922. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7924. return;
  7925. }
  7926. const int n = ggml_nrows(src0);
  7927. const int nc = src0->ne[0];
  7928. assert( dst->nb[0] == sizeof(float));
  7929. assert(src0->nb[0] == sizeof(float));
  7930. assert(src1->nb[0] == sizeof(float));
  7931. for (int i = 0; i < n; i++) {
  7932. fun(nc,
  7933. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7934. (float *) ((char *) src0->data + i*(src0->nb[1])),
  7935. (float *) ((char *) src1->data + i*(src1->nb[1])));
  7936. }
  7937. }
  7938. static void ggml_compute_forward_map_binary(
  7939. const struct ggml_compute_params * params,
  7940. const struct ggml_tensor * src0,
  7941. const struct ggml_tensor * src1,
  7942. struct ggml_tensor * dst,
  7943. const ggml_binary_op_f32_t fun) {
  7944. switch (src0->type) {
  7945. case GGML_TYPE_F32:
  7946. {
  7947. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  7948. } break;
  7949. default:
  7950. {
  7951. GGML_ASSERT(false);
  7952. } break;
  7953. }
  7954. }
  7955. /////////////////////////////////
  7956. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7957. GGML_ASSERT(params);
  7958. switch (tensor->op) {
  7959. case GGML_OP_DUP:
  7960. {
  7961. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7962. } break;
  7963. case GGML_OP_ADD:
  7964. {
  7965. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7966. } break;
  7967. case GGML_OP_SUB:
  7968. {
  7969. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7970. } break;
  7971. case GGML_OP_MUL:
  7972. {
  7973. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7974. } break;
  7975. case GGML_OP_DIV:
  7976. {
  7977. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7978. } break;
  7979. case GGML_OP_SQR:
  7980. {
  7981. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7982. } break;
  7983. case GGML_OP_SQRT:
  7984. {
  7985. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7986. } break;
  7987. case GGML_OP_SUM:
  7988. {
  7989. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7990. } break;
  7991. case GGML_OP_MEAN:
  7992. {
  7993. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7994. } break;
  7995. case GGML_OP_REPEAT:
  7996. {
  7997. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7998. } break;
  7999. case GGML_OP_ABS:
  8000. {
  8001. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8002. } break;
  8003. case GGML_OP_SGN:
  8004. {
  8005. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8006. } break;
  8007. case GGML_OP_NEG:
  8008. {
  8009. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8010. } break;
  8011. case GGML_OP_STEP:
  8012. {
  8013. ggml_compute_forward_step(params, tensor->src0, tensor);
  8014. } break;
  8015. case GGML_OP_RELU:
  8016. {
  8017. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8018. } break;
  8019. case GGML_OP_GELU:
  8020. {
  8021. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8022. } break;
  8023. case GGML_OP_SILU:
  8024. {
  8025. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8026. } break;
  8027. case GGML_OP_NORM:
  8028. {
  8029. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8030. } break;
  8031. case GGML_OP_RMS_NORM:
  8032. {
  8033. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8034. } break;
  8035. case GGML_OP_MUL_MAT:
  8036. {
  8037. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8038. } break;
  8039. case GGML_OP_SCALE:
  8040. {
  8041. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8042. } break;
  8043. case GGML_OP_CPY:
  8044. {
  8045. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8046. } break;
  8047. case GGML_OP_CONT:
  8048. {
  8049. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8050. } break;
  8051. case GGML_OP_RESHAPE:
  8052. {
  8053. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8054. } break;
  8055. case GGML_OP_VIEW:
  8056. {
  8057. ggml_compute_forward_view(params, tensor->src0);
  8058. } break;
  8059. case GGML_OP_PERMUTE:
  8060. {
  8061. ggml_compute_forward_permute(params, tensor->src0);
  8062. } break;
  8063. case GGML_OP_TRANSPOSE:
  8064. {
  8065. ggml_compute_forward_transpose(params, tensor->src0);
  8066. } break;
  8067. case GGML_OP_GET_ROWS:
  8068. {
  8069. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8070. } break;
  8071. case GGML_OP_DIAG_MASK_INF:
  8072. {
  8073. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8074. } break;
  8075. case GGML_OP_SOFT_MAX:
  8076. {
  8077. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8078. } break;
  8079. case GGML_OP_ROPE:
  8080. {
  8081. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8082. } break;
  8083. case GGML_OP_CONV_1D_1S:
  8084. {
  8085. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8086. } break;
  8087. case GGML_OP_CONV_1D_2S:
  8088. {
  8089. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8090. } break;
  8091. case GGML_OP_FLASH_ATTN:
  8092. {
  8093. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8094. GGML_ASSERT(t == 0 || t == 1);
  8095. bool masked = t != 0;
  8096. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8097. } break;
  8098. case GGML_OP_FLASH_FF:
  8099. {
  8100. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8101. } break;
  8102. case GGML_OP_MAP_UNARY:
  8103. {
  8104. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8105. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8106. }
  8107. break;
  8108. case GGML_OP_MAP_BINARY:
  8109. {
  8110. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8111. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8112. }
  8113. break;
  8114. case GGML_OP_NONE:
  8115. {
  8116. // nop
  8117. } break;
  8118. case GGML_OP_COUNT:
  8119. {
  8120. GGML_ASSERT(false);
  8121. } break;
  8122. }
  8123. }
  8124. ////////////////////////////////////////////////////////////////////////////////
  8125. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8126. struct ggml_tensor * src0 = tensor->src0;
  8127. struct ggml_tensor * src1 = tensor->src1;
  8128. switch (tensor->op) {
  8129. case GGML_OP_DUP:
  8130. {
  8131. if (src0->grad) {
  8132. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8133. }
  8134. } break;
  8135. case GGML_OP_ADD:
  8136. {
  8137. if (src0->grad) {
  8138. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8139. }
  8140. if (src1->grad) {
  8141. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8142. }
  8143. } break;
  8144. case GGML_OP_SUB:
  8145. {
  8146. if (src0->grad) {
  8147. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8148. }
  8149. if (src1->grad) {
  8150. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8151. }
  8152. } break;
  8153. case GGML_OP_MUL:
  8154. {
  8155. if (src0->grad) {
  8156. src0->grad =
  8157. ggml_add_impl(ctx,
  8158. src0->grad,
  8159. ggml_mul(ctx, src1, tensor->grad),
  8160. inplace);
  8161. }
  8162. if (src1->grad) {
  8163. src1->grad =
  8164. ggml_add_impl(ctx,
  8165. src1->grad,
  8166. ggml_mul(ctx, src0, tensor->grad),
  8167. inplace);
  8168. }
  8169. } break;
  8170. case GGML_OP_DIV:
  8171. {
  8172. if (src0->grad) {
  8173. src0->grad =
  8174. ggml_add_impl(ctx,
  8175. src0->grad,
  8176. ggml_div(ctx, tensor->grad, src1),
  8177. inplace);
  8178. }
  8179. if (src1->grad) {
  8180. src1->grad =
  8181. ggml_sub_impl(ctx,
  8182. src1->grad,
  8183. ggml_mul(ctx,
  8184. tensor->grad,
  8185. ggml_div(ctx, tensor, src1)),
  8186. inplace);
  8187. }
  8188. } break;
  8189. case GGML_OP_SQR:
  8190. {
  8191. if (src0->grad) {
  8192. src0->grad =
  8193. ggml_add_impl(ctx,
  8194. src0->grad,
  8195. ggml_mul(ctx,
  8196. ggml_mul(ctx, src0, tensor->grad),
  8197. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8198. inplace);
  8199. }
  8200. } break;
  8201. case GGML_OP_SQRT:
  8202. {
  8203. if (src0->grad) {
  8204. src0->grad =
  8205. ggml_add_impl(ctx,
  8206. src0->grad,
  8207. ggml_div(ctx,
  8208. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8209. tensor),
  8210. inplace);
  8211. }
  8212. } break;
  8213. case GGML_OP_SUM:
  8214. {
  8215. if (src0->grad) {
  8216. src0->grad =
  8217. ggml_add_impl(ctx,
  8218. src0->grad,
  8219. ggml_repeat(ctx, tensor->grad, src0->grad),
  8220. inplace);
  8221. }
  8222. } break;
  8223. case GGML_OP_MEAN:
  8224. {
  8225. GGML_ASSERT(false); // TODO: implement
  8226. } break;
  8227. case GGML_OP_REPEAT:
  8228. {
  8229. if (src0->grad) {
  8230. src0->grad =
  8231. ggml_add_impl(ctx,
  8232. src0->grad,
  8233. ggml_sum(ctx, tensor->grad),
  8234. inplace);
  8235. }
  8236. } break;
  8237. case GGML_OP_ABS:
  8238. {
  8239. if (src0->grad) {
  8240. src0->grad =
  8241. ggml_add_impl(ctx,
  8242. src0->grad,
  8243. ggml_mul(ctx,
  8244. ggml_sgn(ctx, src0),
  8245. tensor->grad),
  8246. inplace);
  8247. }
  8248. } break;
  8249. case GGML_OP_SGN:
  8250. {
  8251. if (src0->grad) {
  8252. // noop
  8253. }
  8254. } break;
  8255. case GGML_OP_NEG:
  8256. {
  8257. if (src0->grad) {
  8258. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8259. }
  8260. } break;
  8261. case GGML_OP_STEP:
  8262. {
  8263. if (src0->grad) {
  8264. // noop
  8265. }
  8266. } break;
  8267. case GGML_OP_RELU:
  8268. {
  8269. if (src0->grad) {
  8270. src0->grad = ggml_sub_impl(ctx,
  8271. src0->grad,
  8272. ggml_mul(ctx,
  8273. ggml_step(ctx, src0),
  8274. tensor->grad),
  8275. inplace);
  8276. }
  8277. } break;
  8278. case GGML_OP_GELU:
  8279. {
  8280. GGML_ASSERT(false); // TODO: not implemented
  8281. } break;
  8282. case GGML_OP_SILU:
  8283. {
  8284. GGML_ASSERT(false); // TODO: not implemented
  8285. } break;
  8286. case GGML_OP_NORM:
  8287. {
  8288. GGML_ASSERT(false); // TODO: not implemented
  8289. } break;
  8290. case GGML_OP_RMS_NORM:
  8291. {
  8292. GGML_ASSERT(false); // TODO: not implemented
  8293. } break;
  8294. case GGML_OP_MUL_MAT:
  8295. {
  8296. if (src0->grad) {
  8297. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8298. GGML_ASSERT(false);
  8299. }
  8300. if (src1->grad) {
  8301. src1->grad =
  8302. ggml_add_impl(ctx,
  8303. src1->grad,
  8304. ggml_mul_mat(ctx,
  8305. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8306. tensor->grad),
  8307. inplace);
  8308. }
  8309. } break;
  8310. case GGML_OP_SCALE:
  8311. {
  8312. GGML_ASSERT(false); // TODO: not implemented
  8313. } break;
  8314. case GGML_OP_CPY:
  8315. {
  8316. GGML_ASSERT(false); // TODO: not implemented
  8317. } break;
  8318. case GGML_OP_CONT:
  8319. {
  8320. GGML_ASSERT(false); // TODO: not implemented
  8321. } break;
  8322. case GGML_OP_RESHAPE:
  8323. {
  8324. GGML_ASSERT(false); // TODO: not implemented
  8325. } break;
  8326. case GGML_OP_VIEW:
  8327. {
  8328. GGML_ASSERT(false); // not supported
  8329. } break;
  8330. case GGML_OP_PERMUTE:
  8331. {
  8332. GGML_ASSERT(false); // TODO: not implemented
  8333. } break;
  8334. case GGML_OP_TRANSPOSE:
  8335. {
  8336. GGML_ASSERT(false); // TODO: not implemented
  8337. } break;
  8338. case GGML_OP_GET_ROWS:
  8339. {
  8340. GGML_ASSERT(false); // TODO: not implemented
  8341. } break;
  8342. case GGML_OP_DIAG_MASK_INF:
  8343. {
  8344. GGML_ASSERT(false); // TODO: not implemented
  8345. } break;
  8346. case GGML_OP_SOFT_MAX:
  8347. {
  8348. GGML_ASSERT(false); // TODO: not implemented
  8349. } break;
  8350. case GGML_OP_ROPE:
  8351. {
  8352. GGML_ASSERT(false); // TODO: not implemented
  8353. } break;
  8354. case GGML_OP_CONV_1D_1S:
  8355. {
  8356. GGML_ASSERT(false); // TODO: not implemented
  8357. } break;
  8358. case GGML_OP_CONV_1D_2S:
  8359. {
  8360. GGML_ASSERT(false); // TODO: not implemented
  8361. } break;
  8362. case GGML_OP_FLASH_ATTN:
  8363. {
  8364. GGML_ASSERT(false); // not supported
  8365. } break;
  8366. case GGML_OP_FLASH_FF:
  8367. {
  8368. GGML_ASSERT(false); // not supported
  8369. } break;
  8370. case GGML_OP_MAP_UNARY:
  8371. case GGML_OP_MAP_BINARY:
  8372. {
  8373. GGML_ASSERT(false); // not supported
  8374. } break;
  8375. case GGML_OP_NONE:
  8376. {
  8377. // nop
  8378. } break;
  8379. case GGML_OP_COUNT:
  8380. {
  8381. GGML_ASSERT(false);
  8382. } break;
  8383. }
  8384. }
  8385. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8386. if (node->grad == NULL) {
  8387. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8388. // it can also happen during forward pass, if the user performs computations with constants
  8389. if (node->op != GGML_OP_NONE) {
  8390. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8391. }
  8392. }
  8393. // check if already visited
  8394. for (int i = 0; i < cgraph->n_nodes; i++) {
  8395. if (cgraph->nodes[i] == node) {
  8396. return;
  8397. }
  8398. }
  8399. for (int i = 0; i < cgraph->n_leafs; i++) {
  8400. if (cgraph->leafs[i] == node) {
  8401. return;
  8402. }
  8403. }
  8404. if (node->src0) {
  8405. ggml_visit_parents(cgraph, node->src0);
  8406. }
  8407. if (node->src1) {
  8408. ggml_visit_parents(cgraph, node->src1);
  8409. }
  8410. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8411. if (node->opt[i]) {
  8412. ggml_visit_parents(cgraph, node->opt[i]);
  8413. }
  8414. }
  8415. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8416. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8417. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8418. cgraph->leafs[cgraph->n_leafs] = node;
  8419. cgraph->n_leafs++;
  8420. } else {
  8421. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8422. cgraph->nodes[cgraph->n_nodes] = node;
  8423. cgraph->grads[cgraph->n_nodes] = node->grad;
  8424. cgraph->n_nodes++;
  8425. }
  8426. }
  8427. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8428. if (!expand) {
  8429. cgraph->n_nodes = 0;
  8430. cgraph->n_leafs = 0;
  8431. }
  8432. const int n0 = cgraph->n_nodes;
  8433. UNUSED(n0);
  8434. ggml_visit_parents(cgraph, tensor);
  8435. const int n_new = cgraph->n_nodes - n0;
  8436. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8437. if (n_new > 0) {
  8438. // the last added node should always be starting point
  8439. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8440. }
  8441. }
  8442. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8443. ggml_build_forward_impl(cgraph, tensor, true);
  8444. }
  8445. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8446. struct ggml_cgraph result = {
  8447. /*.n_nodes =*/ 0,
  8448. /*.n_leafs =*/ 0,
  8449. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8450. /*.work_size =*/ 0,
  8451. /*.work =*/ NULL,
  8452. /*.nodes =*/ { NULL },
  8453. /*.grads =*/ { NULL },
  8454. /*.leafs =*/ { NULL },
  8455. /*.perf_runs =*/ 0,
  8456. /*.perf_cycles =*/ 0,
  8457. /*.perf_time_us =*/ 0,
  8458. };
  8459. ggml_build_forward_impl(&result, tensor, false);
  8460. return result;
  8461. }
  8462. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8463. struct ggml_cgraph result = *gf;
  8464. GGML_ASSERT(gf->n_nodes > 0);
  8465. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8466. if (keep) {
  8467. for (int i = 0; i < gf->n_nodes; i++) {
  8468. struct ggml_tensor * node = gf->nodes[i];
  8469. if (node->grad) {
  8470. node->grad = ggml_dup_tensor(ctx, node);
  8471. gf->grads[i] = node->grad;
  8472. }
  8473. }
  8474. }
  8475. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8476. struct ggml_tensor * node = gf->nodes[i];
  8477. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8478. if (node->grad) {
  8479. ggml_compute_backward(ctx, node, keep);
  8480. }
  8481. }
  8482. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8483. struct ggml_tensor * node = gf->nodes[i];
  8484. if (node->is_param) {
  8485. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8486. ggml_build_forward_impl(&result, node->grad, true);
  8487. }
  8488. }
  8489. return result;
  8490. }
  8491. //
  8492. // thread data
  8493. //
  8494. // synchronization is done via busy loops
  8495. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8496. //
  8497. #ifdef __APPLE__
  8498. //#include <os/lock.h>
  8499. //
  8500. //typedef os_unfair_lock ggml_lock_t;
  8501. //
  8502. //#define ggml_lock_init(x) UNUSED(x)
  8503. //#define ggml_lock_destroy(x) UNUSED(x)
  8504. //#define ggml_lock_lock os_unfair_lock_lock
  8505. //#define ggml_lock_unlock os_unfair_lock_unlock
  8506. //
  8507. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8508. typedef int ggml_lock_t;
  8509. #define ggml_lock_init(x) UNUSED(x)
  8510. #define ggml_lock_destroy(x) UNUSED(x)
  8511. #define ggml_lock_lock(x) UNUSED(x)
  8512. #define ggml_lock_unlock(x) UNUSED(x)
  8513. #define GGML_LOCK_INITIALIZER 0
  8514. typedef pthread_t ggml_thread_t;
  8515. #define ggml_thread_create pthread_create
  8516. #define ggml_thread_join pthread_join
  8517. #else
  8518. //typedef pthread_spinlock_t ggml_lock_t;
  8519. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8520. //#define ggml_lock_destroy pthread_spin_destroy
  8521. //#define ggml_lock_lock pthread_spin_lock
  8522. //#define ggml_lock_unlock pthread_spin_unlock
  8523. typedef int ggml_lock_t;
  8524. #define ggml_lock_init(x) UNUSED(x)
  8525. #define ggml_lock_destroy(x) UNUSED(x)
  8526. #define ggml_lock_lock(x) UNUSED(x)
  8527. #define ggml_lock_unlock(x) UNUSED(x)
  8528. #define GGML_LOCK_INITIALIZER 0
  8529. typedef pthread_t ggml_thread_t;
  8530. #define ggml_thread_create pthread_create
  8531. #define ggml_thread_join pthread_join
  8532. #endif
  8533. struct ggml_compute_state_shared {
  8534. ggml_lock_t spin;
  8535. int n_threads;
  8536. // synchronization primitives
  8537. atomic_int n_ready;
  8538. atomic_bool has_work;
  8539. atomic_bool stop; // stop all threads
  8540. };
  8541. struct ggml_compute_state {
  8542. ggml_thread_t thrd;
  8543. struct ggml_compute_params params;
  8544. struct ggml_tensor * node;
  8545. struct ggml_compute_state_shared * shared;
  8546. };
  8547. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8548. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8549. const int n_threads = state->shared->n_threads;
  8550. while (true) {
  8551. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8552. atomic_store(&state->shared->has_work, false);
  8553. } else {
  8554. while (atomic_load(&state->shared->has_work)) {
  8555. if (atomic_load(&state->shared->stop)) {
  8556. return 0;
  8557. }
  8558. ggml_lock_lock (&state->shared->spin);
  8559. ggml_lock_unlock(&state->shared->spin);
  8560. }
  8561. }
  8562. atomic_fetch_sub(&state->shared->n_ready, 1);
  8563. // wait for work
  8564. while (!atomic_load(&state->shared->has_work)) {
  8565. if (atomic_load(&state->shared->stop)) {
  8566. return 0;
  8567. }
  8568. ggml_lock_lock (&state->shared->spin);
  8569. ggml_lock_unlock(&state->shared->spin);
  8570. }
  8571. // check if we should stop
  8572. if (atomic_load(&state->shared->stop)) {
  8573. break;
  8574. }
  8575. if (state->node) {
  8576. if (state->params.ith < state->params.nth) {
  8577. ggml_compute_forward(&state->params, state->node);
  8578. }
  8579. state->node = NULL;
  8580. } else {
  8581. break;
  8582. }
  8583. }
  8584. return 0;
  8585. }
  8586. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8587. const int n_threads = cgraph->n_threads;
  8588. struct ggml_compute_state_shared state_shared = {
  8589. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8590. /*.n_threads =*/ n_threads,
  8591. /*.n_ready =*/ 0,
  8592. /*.has_work =*/ false,
  8593. /*.stop =*/ false,
  8594. };
  8595. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8596. // create thread pool
  8597. if (n_threads > 1) {
  8598. ggml_lock_init(&state_shared.spin);
  8599. atomic_store(&state_shared.has_work, true);
  8600. for (int j = 0; j < n_threads - 1; j++) {
  8601. workers[j] = (struct ggml_compute_state) {
  8602. .thrd = 0,
  8603. .params = {
  8604. .type = GGML_TASK_COMPUTE,
  8605. .ith = j + 1,
  8606. .nth = n_threads,
  8607. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8608. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8609. },
  8610. .node = NULL,
  8611. .shared = &state_shared,
  8612. };
  8613. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8614. GGML_ASSERT(rc == 0);
  8615. UNUSED(rc);
  8616. }
  8617. }
  8618. // initialize tasks + work buffer
  8619. {
  8620. size_t work_size = 0;
  8621. // thread scheduling for the different operations
  8622. for (int i = 0; i < cgraph->n_nodes; i++) {
  8623. struct ggml_tensor * node = cgraph->nodes[i];
  8624. switch (node->op) {
  8625. case GGML_OP_CPY:
  8626. case GGML_OP_DUP:
  8627. {
  8628. node->n_tasks = n_threads;
  8629. size_t cur = 0;
  8630. if (ggml_is_quantized(node->type)) {
  8631. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8632. }
  8633. work_size = MAX(work_size, cur);
  8634. } break;
  8635. case GGML_OP_ADD:
  8636. {
  8637. node->n_tasks = n_threads;
  8638. size_t cur = 0;
  8639. if (ggml_is_quantized(node->src0->type)) {
  8640. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8641. }
  8642. work_size = MAX(work_size, cur);
  8643. } break;
  8644. case GGML_OP_SUB:
  8645. case GGML_OP_MUL:
  8646. case GGML_OP_DIV:
  8647. case GGML_OP_SQR:
  8648. case GGML_OP_SQRT:
  8649. case GGML_OP_SUM:
  8650. case GGML_OP_MEAN:
  8651. case GGML_OP_REPEAT:
  8652. case GGML_OP_ABS:
  8653. case GGML_OP_SGN:
  8654. case GGML_OP_NEG:
  8655. case GGML_OP_STEP:
  8656. case GGML_OP_RELU:
  8657. {
  8658. node->n_tasks = 1;
  8659. } break;
  8660. case GGML_OP_GELU:
  8661. {
  8662. node->n_tasks = n_threads;
  8663. } break;
  8664. case GGML_OP_SILU:
  8665. {
  8666. node->n_tasks = n_threads;
  8667. } break;
  8668. case GGML_OP_NORM:
  8669. case GGML_OP_RMS_NORM:
  8670. {
  8671. node->n_tasks = n_threads;
  8672. } break;
  8673. case GGML_OP_MUL_MAT:
  8674. {
  8675. node->n_tasks = n_threads;
  8676. // TODO: use different scheduling for different matrix sizes
  8677. //const int nr0 = ggml_nrows(node->src0);
  8678. //const int nr1 = ggml_nrows(node->src1);
  8679. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8680. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8681. size_t cur = 0;
  8682. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8683. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8684. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8685. node->n_tasks = 1; // TODO: this actually is doing nothing
  8686. // the threads are still spinning
  8687. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8688. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8689. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8690. //printf("cur = %zu\n", cur);
  8691. } else {
  8692. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8693. }
  8694. #else
  8695. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8696. #endif
  8697. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8698. cur = 0;
  8699. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8700. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8701. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8702. node->n_tasks = 1;
  8703. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8704. } else
  8705. #endif
  8706. {
  8707. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8708. }
  8709. } else {
  8710. GGML_ASSERT(false);
  8711. }
  8712. work_size = MAX(work_size, cur);
  8713. } break;
  8714. case GGML_OP_SCALE:
  8715. {
  8716. node->n_tasks = n_threads;
  8717. } break;
  8718. case GGML_OP_CONT:
  8719. case GGML_OP_RESHAPE:
  8720. case GGML_OP_VIEW:
  8721. case GGML_OP_PERMUTE:
  8722. case GGML_OP_TRANSPOSE:
  8723. case GGML_OP_GET_ROWS:
  8724. case GGML_OP_DIAG_MASK_INF:
  8725. {
  8726. node->n_tasks = 1;
  8727. } break;
  8728. case GGML_OP_SOFT_MAX:
  8729. {
  8730. node->n_tasks = n_threads;
  8731. } break;
  8732. case GGML_OP_ROPE:
  8733. {
  8734. node->n_tasks = n_threads;
  8735. } break;
  8736. case GGML_OP_CONV_1D_1S:
  8737. case GGML_OP_CONV_1D_2S:
  8738. {
  8739. node->n_tasks = n_threads;
  8740. GGML_ASSERT(node->src0->ne[3] == 1);
  8741. GGML_ASSERT(node->src1->ne[2] == 1);
  8742. GGML_ASSERT(node->src1->ne[3] == 1);
  8743. size_t cur = 0;
  8744. const int nk = node->src0->ne[0];
  8745. if (node->src0->type == GGML_TYPE_F16 &&
  8746. node->src1->type == GGML_TYPE_F32) {
  8747. cur = sizeof(ggml_fp16_t)*(
  8748. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8749. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8750. );
  8751. } else if (node->src0->type == GGML_TYPE_F32 &&
  8752. node->src1->type == GGML_TYPE_F32) {
  8753. cur = sizeof(float)*(
  8754. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8755. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8756. );
  8757. } else {
  8758. GGML_ASSERT(false);
  8759. }
  8760. work_size = MAX(work_size, cur);
  8761. } break;
  8762. case GGML_OP_FLASH_ATTN:
  8763. {
  8764. node->n_tasks = n_threads;
  8765. size_t cur = 0;
  8766. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8767. if (node->src1->type == GGML_TYPE_F32) {
  8768. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8769. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8770. }
  8771. if (node->src1->type == GGML_TYPE_F16) {
  8772. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8773. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8774. }
  8775. work_size = MAX(work_size, cur);
  8776. } break;
  8777. case GGML_OP_FLASH_FF:
  8778. {
  8779. node->n_tasks = n_threads;
  8780. size_t cur = 0;
  8781. if (node->src1->type == GGML_TYPE_F32) {
  8782. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8783. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8784. }
  8785. if (node->src1->type == GGML_TYPE_F16) {
  8786. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8787. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8788. }
  8789. work_size = MAX(work_size, cur);
  8790. } break;
  8791. case GGML_OP_MAP_UNARY:
  8792. case GGML_OP_MAP_BINARY:
  8793. {
  8794. node->n_tasks = 1;
  8795. } break;
  8796. case GGML_OP_NONE:
  8797. {
  8798. node->n_tasks = 1;
  8799. } break;
  8800. case GGML_OP_COUNT:
  8801. {
  8802. GGML_ASSERT(false);
  8803. } break;
  8804. }
  8805. }
  8806. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8807. GGML_ASSERT(false); // TODO: better handling
  8808. }
  8809. if (work_size > 0 && cgraph->work == NULL) {
  8810. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8811. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8812. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8813. }
  8814. }
  8815. const int64_t perf_start_cycles = ggml_perf_cycles();
  8816. const int64_t perf_start_time_us = ggml_perf_time_us();
  8817. for (int i = 0; i < cgraph->n_nodes; i++) {
  8818. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8819. struct ggml_tensor * node = cgraph->nodes[i];
  8820. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8821. //if (node->grad == NULL && node->perf_runs > 0) {
  8822. // continue;
  8823. //}
  8824. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8825. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8826. // INIT
  8827. struct ggml_compute_params params = {
  8828. /*.type =*/ GGML_TASK_INIT,
  8829. /*.ith =*/ 0,
  8830. /*.nth =*/ node->n_tasks,
  8831. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8832. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8833. };
  8834. ggml_compute_forward(&params, node);
  8835. // COMPUTE
  8836. if (node->n_tasks > 1) {
  8837. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8838. atomic_store(&state_shared.has_work, false);
  8839. }
  8840. while (atomic_load(&state_shared.has_work)) {
  8841. ggml_lock_lock (&state_shared.spin);
  8842. ggml_lock_unlock(&state_shared.spin);
  8843. }
  8844. // launch thread pool
  8845. for (int j = 0; j < n_threads - 1; j++) {
  8846. workers[j].params = (struct ggml_compute_params) {
  8847. .type = GGML_TASK_COMPUTE,
  8848. .ith = j + 1,
  8849. .nth = node->n_tasks,
  8850. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8851. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8852. };
  8853. workers[j].node = node;
  8854. }
  8855. atomic_fetch_sub(&state_shared.n_ready, 1);
  8856. while (atomic_load(&state_shared.n_ready) > 0) {
  8857. ggml_lock_lock (&state_shared.spin);
  8858. ggml_lock_unlock(&state_shared.spin);
  8859. }
  8860. atomic_store(&state_shared.has_work, true);
  8861. }
  8862. params.type = GGML_TASK_COMPUTE;
  8863. ggml_compute_forward(&params, node);
  8864. // wait for thread pool
  8865. if (node->n_tasks > 1) {
  8866. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8867. atomic_store(&state_shared.has_work, false);
  8868. }
  8869. while (atomic_load(&state_shared.has_work)) {
  8870. ggml_lock_lock (&state_shared.spin);
  8871. ggml_lock_unlock(&state_shared.spin);
  8872. }
  8873. atomic_fetch_sub(&state_shared.n_ready, 1);
  8874. while (atomic_load(&state_shared.n_ready) != 0) {
  8875. ggml_lock_lock (&state_shared.spin);
  8876. ggml_lock_unlock(&state_shared.spin);
  8877. }
  8878. }
  8879. // FINALIZE
  8880. if (node->n_tasks > 1) {
  8881. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8882. atomic_store(&state_shared.has_work, false);
  8883. }
  8884. while (atomic_load(&state_shared.has_work)) {
  8885. ggml_lock_lock (&state_shared.spin);
  8886. ggml_lock_unlock(&state_shared.spin);
  8887. }
  8888. // launch thread pool
  8889. for (int j = 0; j < n_threads - 1; j++) {
  8890. workers[j].params = (struct ggml_compute_params) {
  8891. .type = GGML_TASK_FINALIZE,
  8892. .ith = j + 1,
  8893. .nth = node->n_tasks,
  8894. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8895. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8896. };
  8897. workers[j].node = node;
  8898. }
  8899. atomic_fetch_sub(&state_shared.n_ready, 1);
  8900. while (atomic_load(&state_shared.n_ready) > 0) {
  8901. ggml_lock_lock (&state_shared.spin);
  8902. ggml_lock_unlock(&state_shared.spin);
  8903. }
  8904. atomic_store(&state_shared.has_work, true);
  8905. }
  8906. params.type = GGML_TASK_FINALIZE;
  8907. ggml_compute_forward(&params, node);
  8908. // wait for thread pool
  8909. if (node->n_tasks > 1) {
  8910. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8911. atomic_store(&state_shared.has_work, false);
  8912. }
  8913. while (atomic_load(&state_shared.has_work)) {
  8914. ggml_lock_lock (&state_shared.spin);
  8915. ggml_lock_unlock(&state_shared.spin);
  8916. }
  8917. atomic_fetch_sub(&state_shared.n_ready, 1);
  8918. while (atomic_load(&state_shared.n_ready) != 0) {
  8919. ggml_lock_lock (&state_shared.spin);
  8920. ggml_lock_unlock(&state_shared.spin);
  8921. }
  8922. }
  8923. // performance stats (node)
  8924. {
  8925. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8926. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8927. node->perf_runs++;
  8928. node->perf_cycles += perf_cycles_cur;
  8929. node->perf_time_us += perf_time_us_cur;
  8930. }
  8931. }
  8932. // join thread pool
  8933. if (n_threads > 1) {
  8934. atomic_store(&state_shared.stop, true);
  8935. atomic_store(&state_shared.has_work, true);
  8936. for (int j = 0; j < n_threads - 1; j++) {
  8937. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8938. GGML_ASSERT(rc == 0);
  8939. UNUSED(rc);
  8940. }
  8941. ggml_lock_destroy(&state_shared.spin);
  8942. }
  8943. // performance stats (graph)
  8944. {
  8945. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8946. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8947. cgraph->perf_runs++;
  8948. cgraph->perf_cycles += perf_cycles_cur;
  8949. cgraph->perf_time_us += perf_time_us_cur;
  8950. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8951. __func__, cgraph->perf_runs,
  8952. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8953. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8954. (double) perf_time_us_cur / 1000.0,
  8955. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8956. }
  8957. }
  8958. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8959. for (int i = 0; i < cgraph->n_nodes; i++) {
  8960. struct ggml_tensor * grad = cgraph->grads[i];
  8961. if (grad) {
  8962. ggml_set_zero(grad);
  8963. }
  8964. }
  8965. }
  8966. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8967. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8968. GGML_PRINT("=== GRAPH ===\n");
  8969. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8970. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  8971. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8972. for (int i = 0; i < cgraph->n_nodes; i++) {
  8973. struct ggml_tensor * node = cgraph->nodes[i];
  8974. perf_total_per_op_us[node->op] += node->perf_time_us;
  8975. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8976. i,
  8977. node->ne[0], node->ne[1], node->ne[2],
  8978. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8979. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8980. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8981. (double) node->perf_time_us / 1000.0,
  8982. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8983. }
  8984. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8985. for (int i = 0; i < cgraph->n_leafs; i++) {
  8986. struct ggml_tensor * node = cgraph->leafs[i];
  8987. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8988. i,
  8989. node->ne[0], node->ne[1],
  8990. GGML_OP_LABEL[node->op]);
  8991. }
  8992. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8993. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8994. }
  8995. GGML_PRINT("========================================\n");
  8996. }
  8997. // check if node is part of the graph
  8998. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8999. if (cgraph == NULL) {
  9000. return true;
  9001. }
  9002. for (int i = 0; i < cgraph->n_nodes; i++) {
  9003. if (cgraph->nodes[i] == node) {
  9004. return true;
  9005. }
  9006. }
  9007. return false;
  9008. }
  9009. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9010. for (int i = 0; i < cgraph->n_nodes; i++) {
  9011. struct ggml_tensor * parent = cgraph->nodes[i];
  9012. if (parent->grad == node) {
  9013. return parent;
  9014. }
  9015. }
  9016. return NULL;
  9017. }
  9018. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9019. char color[16];
  9020. FILE * fp = fopen(filename, "w");
  9021. GGML_ASSERT(fp);
  9022. fprintf(fp, "digraph G {\n");
  9023. fprintf(fp, " newrank = true;\n");
  9024. fprintf(fp, " rankdir = LR;\n");
  9025. for (int i = 0; i < gb->n_nodes; i++) {
  9026. struct ggml_tensor * node = gb->nodes[i];
  9027. if (ggml_graph_get_parent(gb, node) != NULL) {
  9028. continue;
  9029. }
  9030. if (node->is_param) {
  9031. snprintf(color, sizeof(color), "yellow");
  9032. } else if (node->grad) {
  9033. if (ggml_graph_find(gf, node)) {
  9034. snprintf(color, sizeof(color), "green");
  9035. } else {
  9036. snprintf(color, sizeof(color), "lightblue");
  9037. }
  9038. } else {
  9039. snprintf(color, sizeof(color), "white");
  9040. }
  9041. fprintf(fp, " \"%p\" [ \
  9042. style = filled; fillcolor = %s; shape = record; \
  9043. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9044. (void *) node, color,
  9045. i, node->ne[0], node->ne[1],
  9046. GGML_OP_SYMBOL[node->op]);
  9047. if (node->grad) {
  9048. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9049. } else {
  9050. fprintf(fp, "\"; ]\n");
  9051. }
  9052. }
  9053. for (int i = 0; i < gb->n_leafs; i++) {
  9054. struct ggml_tensor * node = gb->leafs[i];
  9055. snprintf(color, sizeof(color), "pink");
  9056. if (ggml_nelements(node) == 1) {
  9057. fprintf(fp, " \"%p\" [ \
  9058. style = filled; fillcolor = %s; shape = record; \
  9059. label=\"<x>%.1e\"; ]\n",
  9060. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9061. } else {
  9062. fprintf(fp, " \"%p\" [ \
  9063. style = filled; fillcolor = %s; shape = record; \
  9064. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9065. (void *) node, color,
  9066. i, node->ne[0], node->ne[1]);
  9067. }
  9068. }
  9069. for (int i = 0; i < gb->n_nodes; i++) {
  9070. struct ggml_tensor * node = gb->nodes[i];
  9071. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9072. if (node->src0) {
  9073. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9074. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9075. parent0 ? (void *) parent0 : (void *) node->src0,
  9076. parent0 ? "g" : "x",
  9077. parent ? (void *) parent : (void *) node,
  9078. parent ? "g" : "x",
  9079. parent ? "empty" : "vee",
  9080. parent ? "dashed" : "solid");
  9081. }
  9082. if (node->src1) {
  9083. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9084. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9085. parent1 ? (void *) parent1 : (void *) node->src1,
  9086. parent1 ? "g" : "x",
  9087. parent ? (void *) parent : (void *) node,
  9088. parent ? "g" : "x",
  9089. parent ? "empty" : "vee",
  9090. parent ? "dashed" : "solid");
  9091. }
  9092. }
  9093. for (int i = 0; i < gb->n_leafs; i++) {
  9094. struct ggml_tensor * node = gb->leafs[i];
  9095. if (node->src0) {
  9096. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9097. (void *) node->src0, "x",
  9098. (void *) node, "x");
  9099. }
  9100. if (node->src1) {
  9101. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9102. (void *) node->src1, "x",
  9103. (void *) node, "x");
  9104. }
  9105. }
  9106. fprintf(fp, "}\n");
  9107. fclose(fp);
  9108. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9109. }
  9110. ////////////////////////////////////////////////////////////////////////////////
  9111. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9112. int i = 0;
  9113. for (int p = 0; p < np; ++p) {
  9114. const int64_t ne = ggml_nelements(ps[p]) ;
  9115. // TODO: add function to set tensor from array
  9116. for (int64_t j = 0; j < ne; ++j) {
  9117. ggml_set_f32_1d(ps[p], j, x[i++]);
  9118. }
  9119. }
  9120. }
  9121. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9122. int i = 0;
  9123. for (int p = 0; p < np; ++p) {
  9124. const int64_t ne = ggml_nelements(ps[p]) ;
  9125. // TODO: add function to get all elements at once
  9126. for (int64_t j = 0; j < ne; ++j) {
  9127. x[i++] = ggml_get_f32_1d(ps[p], j);
  9128. }
  9129. }
  9130. }
  9131. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9132. int i = 0;
  9133. for (int p = 0; p < np; ++p) {
  9134. const int64_t ne = ggml_nelements(ps[p]) ;
  9135. // TODO: add function to get all elements at once
  9136. for (int64_t j = 0; j < ne; ++j) {
  9137. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9138. }
  9139. }
  9140. }
  9141. //
  9142. // ADAM
  9143. //
  9144. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9145. //
  9146. static enum ggml_opt_result ggml_opt_adam(
  9147. struct ggml_context * ctx,
  9148. struct ggml_opt_params params,
  9149. struct ggml_tensor * f,
  9150. struct ggml_cgraph * gf,
  9151. struct ggml_cgraph * gb) {
  9152. GGML_ASSERT(ggml_is_scalar(f));
  9153. gf->n_threads = params.n_threads;
  9154. gb->n_threads = params.n_threads;
  9155. // these will store the parameters we want to optimize
  9156. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9157. int np = 0;
  9158. int nx = 0;
  9159. for (int i = 0; i < gf->n_nodes; ++i) {
  9160. if (gf->nodes[i]->is_param) {
  9161. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9162. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9163. ps[np++] = gf->nodes[i];
  9164. nx += ggml_nelements(gf->nodes[i]);
  9165. }
  9166. }
  9167. // constants
  9168. const float alpha = params.adam.alpha;
  9169. const float beta1 = params.adam.beta1;
  9170. const float beta2 = params.adam.beta2;
  9171. const float eps = params.adam.eps;
  9172. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9173. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9174. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9175. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9176. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9177. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9178. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9179. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9180. // initialize
  9181. ggml_vec_set_f32(nx, m, 0.0f);
  9182. ggml_vec_set_f32(nx, v, 0.0f);
  9183. // update view
  9184. ggml_opt_get_params(np, ps, x);
  9185. // compute the function value
  9186. ggml_graph_reset (gf);
  9187. ggml_set_f32 (f->grad, 1.0f);
  9188. ggml_graph_compute(ctx, gb);
  9189. float fx_prev = ggml_get_f32_1d(f, 0);
  9190. if (pf) {
  9191. pf[0] = fx_prev;
  9192. }
  9193. int n_no_improvement = 0;
  9194. float fx_best = fx_prev;
  9195. // run the optimizer
  9196. for (int t = 0; t < params.adam.n_iter; ++t) {
  9197. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9198. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9199. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9200. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9201. for (int i = 0; i < np; ++i) {
  9202. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9203. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9204. }
  9205. const int64_t t_start_wall = ggml_time_us();
  9206. const int64_t t_start_cpu = ggml_cycles();
  9207. UNUSED(t_start_wall);
  9208. UNUSED(t_start_cpu);
  9209. {
  9210. // update the gradient
  9211. ggml_opt_get_grad(np, ps, g1);
  9212. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9213. ggml_vec_scale_f32(nx, m, beta1);
  9214. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9215. // g2 = g1^2
  9216. ggml_vec_sqr_f32 (nx, g2, g1);
  9217. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9218. ggml_vec_scale_f32(nx, v, beta2);
  9219. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9220. // m^hat = m_t / (1 - beta1^t)
  9221. // v^hat = v_t / (1 - beta2^t)
  9222. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9223. ggml_vec_cpy_f32 (nx, mh, m);
  9224. ggml_vec_cpy_f32 (nx, vh, v);
  9225. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9226. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9227. ggml_vec_sqrt_f32 (nx, vh, vh);
  9228. ggml_vec_acc1_f32 (nx, vh, eps);
  9229. ggml_vec_div_f32 (nx, mh, mh, vh);
  9230. ggml_vec_sub_f32 (nx, x, x, mh);
  9231. // update the parameters
  9232. ggml_opt_set_params(np, ps, x);
  9233. }
  9234. ggml_graph_reset (gf);
  9235. ggml_set_f32 (f->grad, 1.0f);
  9236. ggml_graph_compute(ctx, gb);
  9237. const float fx = ggml_get_f32_1d(f, 0);
  9238. // check convergence
  9239. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9240. GGML_PRINT_DEBUG("converged\n");
  9241. return GGML_OPT_OK;
  9242. }
  9243. // delta-based convergence test
  9244. if (pf != NULL) {
  9245. // need at least params.past iterations to start checking for convergence
  9246. if (params.past <= t) {
  9247. const float rate = (pf[t%params.past] - fx)/fx;
  9248. if (fabsf(rate) < params.delta) {
  9249. return GGML_OPT_OK;
  9250. }
  9251. }
  9252. pf[t%params.past] = fx;
  9253. }
  9254. // check for improvement
  9255. if (params.max_no_improvement > 0) {
  9256. if (fx_best > fx) {
  9257. fx_best = fx;
  9258. n_no_improvement = 0;
  9259. } else {
  9260. ++n_no_improvement;
  9261. if (n_no_improvement >= params.max_no_improvement) {
  9262. return GGML_OPT_OK;
  9263. }
  9264. }
  9265. }
  9266. fx_prev = fx;
  9267. {
  9268. const int64_t t_end_cpu = ggml_cycles();
  9269. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9270. UNUSED(t_end_cpu);
  9271. const int64_t t_end_wall = ggml_time_us();
  9272. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9273. UNUSED(t_end_wall);
  9274. }
  9275. }
  9276. return GGML_OPT_DID_NOT_CONVERGE;
  9277. }
  9278. //
  9279. // L-BFGS
  9280. //
  9281. // the L-BFGS implementation below is based on the following implementation:
  9282. //
  9283. // https://github.com/chokkan/liblbfgs
  9284. //
  9285. struct ggml_lbfgs_iteration_data {
  9286. float alpha;
  9287. float ys;
  9288. float * s;
  9289. float * y;
  9290. };
  9291. static enum ggml_opt_result linesearch_backtracking(
  9292. struct ggml_context * ctx,
  9293. const struct ggml_opt_params * params,
  9294. int nx,
  9295. float * x,
  9296. float * fx,
  9297. float * g,
  9298. float * d,
  9299. float * step,
  9300. const float * xp,
  9301. struct ggml_tensor * f,
  9302. struct ggml_cgraph * gf,
  9303. struct ggml_cgraph * gb,
  9304. const int np,
  9305. struct ggml_tensor * ps[]) {
  9306. int count = 0;
  9307. float width = 0.0f;
  9308. float dg = 0.0f;
  9309. float finit = 0.0f;
  9310. float dginit = 0.0f;
  9311. float dgtest = 0.0f;
  9312. const float dec = 0.5f;
  9313. const float inc = 2.1f;
  9314. if (*step <= 0.f) {
  9315. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9316. }
  9317. // compute the initial gradient in the search direction
  9318. ggml_vec_dot_f32(nx, &dginit, g, d);
  9319. // make sure that d points to a descent direction
  9320. if (0 < dginit) {
  9321. return GGML_LINESEARCH_FAIL;
  9322. }
  9323. // initialize local variables
  9324. finit = *fx;
  9325. dgtest = params->lbfgs.ftol*dginit;
  9326. while (true) {
  9327. ggml_vec_cpy_f32(nx, x, xp);
  9328. ggml_vec_mad_f32(nx, x, d, *step);
  9329. // evaluate the function and gradient values
  9330. {
  9331. ggml_opt_set_params(np, ps, x);
  9332. ggml_graph_reset (gf);
  9333. ggml_set_f32 (f->grad, 1.0f);
  9334. ggml_graph_compute(ctx, gb);
  9335. ggml_opt_get_grad(np, ps, g);
  9336. *fx = ggml_get_f32_1d(f, 0);
  9337. }
  9338. ++count;
  9339. if (*fx > finit + (*step)*dgtest) {
  9340. width = dec;
  9341. } else {
  9342. // Armijo condition is satisfied
  9343. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9344. return count;
  9345. }
  9346. ggml_vec_dot_f32(nx, &dg, g, d);
  9347. // check the Wolfe condition
  9348. if (dg < params->lbfgs.wolfe * dginit) {
  9349. width = inc;
  9350. } else {
  9351. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9352. // regular Wolfe conditions
  9353. return count;
  9354. }
  9355. if(dg > -params->lbfgs.wolfe*dginit) {
  9356. width = dec;
  9357. } else {
  9358. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9359. return count;
  9360. }
  9361. return count;
  9362. }
  9363. }
  9364. if (*step < params->lbfgs.min_step) {
  9365. return GGML_LINESEARCH_MINIMUM_STEP;
  9366. }
  9367. if (*step > params->lbfgs.max_step) {
  9368. return GGML_LINESEARCH_MAXIMUM_STEP;
  9369. }
  9370. if (params->lbfgs.max_linesearch <= count) {
  9371. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9372. }
  9373. (*step) *= width;
  9374. }
  9375. return GGML_LINESEARCH_FAIL;
  9376. }
  9377. static enum ggml_opt_result ggml_opt_lbfgs(
  9378. struct ggml_context * ctx,
  9379. struct ggml_opt_params params,
  9380. struct ggml_tensor * f,
  9381. struct ggml_cgraph * gf,
  9382. struct ggml_cgraph * gb) {
  9383. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9384. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9385. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9386. return GGML_OPT_INVALID_WOLFE;
  9387. }
  9388. }
  9389. gf->n_threads = params.n_threads;
  9390. gb->n_threads = params.n_threads;
  9391. const int m = params.lbfgs.m;
  9392. // these will store the parameters we want to optimize
  9393. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9394. int np = 0;
  9395. int nx = 0;
  9396. for (int i = 0; i < gf->n_nodes; ++i) {
  9397. if (gf->nodes[i]->is_param) {
  9398. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9399. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9400. ps[np++] = gf->nodes[i];
  9401. nx += ggml_nelements(gf->nodes[i]);
  9402. }
  9403. }
  9404. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9405. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9406. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9407. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9408. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9409. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9410. float fx = 0.0f; // cost function value
  9411. float xnorm = 0.0f; // ||x||
  9412. float gnorm = 0.0f; // ||g||
  9413. float step = 0.0f;
  9414. // initialize x from the graph nodes
  9415. ggml_opt_get_params(np, ps, x);
  9416. // the L-BFGS memory
  9417. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9418. for (int i = 0; i < m; ++i) {
  9419. lm[i].alpha = 0.0f;
  9420. lm[i].ys = 0.0f;
  9421. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9422. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9423. }
  9424. // evaluate the function value and its gradient
  9425. {
  9426. ggml_opt_set_params(np, ps, x);
  9427. ggml_graph_reset (gf);
  9428. ggml_set_f32 (f->grad, 1.0f);
  9429. ggml_graph_compute(ctx, gb);
  9430. ggml_opt_get_grad(np, ps, g);
  9431. fx = ggml_get_f32_1d(f, 0);
  9432. }
  9433. if (pf) {
  9434. pf[0] = fx;
  9435. }
  9436. float fx_best = fx;
  9437. // search direction = -gradient
  9438. ggml_vec_neg_f32(nx, d, g);
  9439. // ||x||, ||g||
  9440. ggml_vec_norm_f32(nx, &xnorm, x);
  9441. ggml_vec_norm_f32(nx, &gnorm, g);
  9442. if (xnorm < 1.0f) {
  9443. xnorm = 1.0f;
  9444. }
  9445. // already optimized
  9446. if (gnorm/xnorm <= params.lbfgs.eps) {
  9447. return GGML_OPT_OK;
  9448. }
  9449. // initial step
  9450. ggml_vec_norm_inv_f32(nx, &step, d);
  9451. int j = 0;
  9452. int k = 1;
  9453. int ls = 0;
  9454. int end = 0;
  9455. int bound = 0;
  9456. int n_no_improvement = 0;
  9457. float ys = 0.0f;
  9458. float yy = 0.0f;
  9459. float beta = 0.0f;
  9460. while (true) {
  9461. // store the current position and gradient vectors
  9462. ggml_vec_cpy_f32(nx, xp, x);
  9463. ggml_vec_cpy_f32(nx, gp, g);
  9464. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9465. if (ls < 0) {
  9466. // linesearch failed - go back to the previous point and return
  9467. ggml_vec_cpy_f32(nx, x, xp);
  9468. ggml_vec_cpy_f32(nx, g, gp);
  9469. return ls;
  9470. }
  9471. ggml_vec_norm_f32(nx, &xnorm, x);
  9472. ggml_vec_norm_f32(nx, &gnorm, g);
  9473. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9474. if (xnorm < 1.0f) {
  9475. xnorm = 1.0f;
  9476. }
  9477. if (gnorm/xnorm <= params.lbfgs.eps) {
  9478. // converged
  9479. return GGML_OPT_OK;
  9480. }
  9481. // delta-based convergence test
  9482. if (pf != NULL) {
  9483. // need at least params.past iterations to start checking for convergence
  9484. if (params.past <= k) {
  9485. const float rate = (pf[k%params.past] - fx)/fx;
  9486. if (fabsf(rate) < params.delta) {
  9487. return GGML_OPT_OK;
  9488. }
  9489. }
  9490. pf[k%params.past] = fx;
  9491. }
  9492. // check for improvement
  9493. if (params.max_no_improvement > 0) {
  9494. if (fx < fx_best) {
  9495. fx_best = fx;
  9496. n_no_improvement = 0;
  9497. } else {
  9498. n_no_improvement++;
  9499. if (n_no_improvement >= params.max_no_improvement) {
  9500. return GGML_OPT_OK;
  9501. }
  9502. }
  9503. }
  9504. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9505. // reached the maximum number of iterations
  9506. return GGML_OPT_DID_NOT_CONVERGE;
  9507. }
  9508. // update vectors s and y:
  9509. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9510. // y_{k+1} = g_{k+1} - g_{k}.
  9511. //
  9512. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9513. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9514. // compute scalars ys and yy:
  9515. // ys = y^t \cdot s -> 1 / \rho.
  9516. // yy = y^t \cdot y.
  9517. //
  9518. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9519. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9520. lm[end].ys = ys;
  9521. // find new search direction
  9522. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9523. bound = (m <= k) ? m : k;
  9524. k++;
  9525. end = (end + 1)%m;
  9526. // initialize search direction with -g
  9527. ggml_vec_neg_f32(nx, d, g);
  9528. j = end;
  9529. for (int i = 0; i < bound; ++i) {
  9530. j = (j + m - 1) % m;
  9531. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9532. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9533. lm[j].alpha /= lm[j].ys;
  9534. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9535. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9536. }
  9537. ggml_vec_scale_f32(nx, d, ys/yy);
  9538. for (int i = 0; i < bound; ++i) {
  9539. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9540. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9541. beta /= lm[j].ys;
  9542. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9543. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9544. j = (j + 1)%m;
  9545. }
  9546. step = 1.0;
  9547. }
  9548. return GGML_OPT_DID_NOT_CONVERGE;
  9549. }
  9550. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9551. struct ggml_opt_params result;
  9552. switch (type) {
  9553. case GGML_OPT_ADAM:
  9554. {
  9555. result = (struct ggml_opt_params) {
  9556. .type = GGML_OPT_ADAM,
  9557. .n_threads = 1,
  9558. .past = 0,
  9559. .delta = 1e-5f,
  9560. .max_no_improvement = 100,
  9561. .print_forward_graph = true,
  9562. .print_backward_graph = true,
  9563. .adam = {
  9564. .n_iter = 10000,
  9565. .alpha = 0.001f,
  9566. .beta1 = 0.9f,
  9567. .beta2 = 0.999f,
  9568. .eps = 1e-8f,
  9569. .eps_f = 1e-5f,
  9570. .eps_g = 1e-3f,
  9571. },
  9572. };
  9573. } break;
  9574. case GGML_OPT_LBFGS:
  9575. {
  9576. result = (struct ggml_opt_params) {
  9577. .type = GGML_OPT_LBFGS,
  9578. .n_threads = 1,
  9579. .past = 0,
  9580. .delta = 1e-5f,
  9581. .max_no_improvement = 0,
  9582. .print_forward_graph = true,
  9583. .print_backward_graph = true,
  9584. .lbfgs = {
  9585. .m = 6,
  9586. .n_iter = 100,
  9587. .max_linesearch = 20,
  9588. .eps = 1e-5f,
  9589. .ftol = 1e-4f,
  9590. .wolfe = 0.9f,
  9591. .min_step = 1e-20f,
  9592. .max_step = 1e+20f,
  9593. .linesearch = GGML_LINESEARCH_DEFAULT,
  9594. },
  9595. };
  9596. } break;
  9597. }
  9598. return result;
  9599. }
  9600. enum ggml_opt_result ggml_opt(
  9601. struct ggml_context * ctx,
  9602. struct ggml_opt_params params,
  9603. struct ggml_tensor * f) {
  9604. bool free_ctx = false;
  9605. if (ctx == NULL) {
  9606. struct ggml_init_params params_ctx = {
  9607. .mem_size = 16*1024*1024,
  9608. .mem_buffer = NULL,
  9609. .no_alloc = false,
  9610. };
  9611. ctx = ggml_init(params_ctx);
  9612. if (ctx == NULL) {
  9613. return GGML_OPT_NO_CONTEXT;
  9614. }
  9615. free_ctx = true;
  9616. }
  9617. enum ggml_opt_result result = GGML_OPT_OK;
  9618. // build forward + backward compute graphs
  9619. struct ggml_cgraph gf = ggml_build_forward (f);
  9620. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9621. switch (params.type) {
  9622. case GGML_OPT_ADAM:
  9623. {
  9624. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9625. } break;
  9626. case GGML_OPT_LBFGS:
  9627. {
  9628. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9629. } break;
  9630. }
  9631. if (params.print_forward_graph) {
  9632. ggml_graph_print (&gf);
  9633. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9634. }
  9635. if (params.print_backward_graph) {
  9636. ggml_graph_print (&gb);
  9637. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9638. }
  9639. if (free_ctx) {
  9640. ggml_free(ctx);
  9641. }
  9642. return result;
  9643. }
  9644. ////////////////////////////////////////////////////////////////////////////////
  9645. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9646. assert(k % QK4_0 == 0);
  9647. const int nb = k / QK4_0;
  9648. for (int j = 0; j < n; j += k) {
  9649. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9650. quantize_row_q4_0_reference(src + j, y, k);
  9651. for (int i = 0; i < nb; i++) {
  9652. for (int l = 0; l < QK4_0; l += 2) {
  9653. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9654. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9655. hist[vi0]++;
  9656. hist[vi1]++;
  9657. }
  9658. }
  9659. }
  9660. return (n/QK4_0*sizeof(block_q4_0));
  9661. }
  9662. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9663. assert(k % QK4_1 == 0);
  9664. const int nb = k / QK4_1;
  9665. for (int j = 0; j < n; j += k) {
  9666. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9667. quantize_row_q4_1_reference(src + j, y, k);
  9668. for (int i = 0; i < nb; i++) {
  9669. for (int l = 0; l < QK4_1; l += 2) {
  9670. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9671. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9672. hist[vi0]++;
  9673. hist[vi1]++;
  9674. }
  9675. }
  9676. }
  9677. return (n/QK4_1*sizeof(block_q4_1));
  9678. }
  9679. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9680. assert(k % QK4_2 == 0);
  9681. const int nb = k / QK4_2;
  9682. for (int j = 0; j < n; j += k) {
  9683. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9684. //quantize_row_q4_2_reference(src + j, y, k);
  9685. quantize_row_q4_2_rmse(src + j, y, k);
  9686. for (int i = 0; i < nb; i++) {
  9687. for (int l = 0; l < QK4_2; l += 2) {
  9688. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9689. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9690. hist[vi0]++;
  9691. hist[vi1]++;
  9692. }
  9693. }
  9694. }
  9695. return (n/QK4_2*sizeof(block_q4_2));
  9696. }
  9697. ////////////////////////////////////////////////////////////////////////////////
  9698. int ggml_cpu_has_avx(void) {
  9699. #if defined(__AVX__)
  9700. return 1;
  9701. #else
  9702. return 0;
  9703. #endif
  9704. }
  9705. int ggml_cpu_has_avx2(void) {
  9706. #if defined(__AVX2__)
  9707. return 1;
  9708. #else
  9709. return 0;
  9710. #endif
  9711. }
  9712. int ggml_cpu_has_avx512(void) {
  9713. #if defined(__AVX512F__)
  9714. return 1;
  9715. #else
  9716. return 0;
  9717. #endif
  9718. }
  9719. int ggml_cpu_has_avx512_vbmi(void) {
  9720. #if defined(__AVX512VBMI__)
  9721. return 1;
  9722. #else
  9723. return 0;
  9724. #endif
  9725. }
  9726. int ggml_cpu_has_avx512_vnni(void) {
  9727. #if defined(__AVX512VNNI__)
  9728. return 1;
  9729. #else
  9730. return 0;
  9731. #endif
  9732. }
  9733. int ggml_cpu_has_fma(void) {
  9734. #if defined(__FMA__)
  9735. return 1;
  9736. #else
  9737. return 0;
  9738. #endif
  9739. }
  9740. int ggml_cpu_has_neon(void) {
  9741. #if defined(__ARM_NEON)
  9742. return 1;
  9743. #else
  9744. return 0;
  9745. #endif
  9746. }
  9747. int ggml_cpu_has_arm_fma(void) {
  9748. #if defined(__ARM_FEATURE_FMA)
  9749. return 1;
  9750. #else
  9751. return 0;
  9752. #endif
  9753. }
  9754. int ggml_cpu_has_f16c(void) {
  9755. #if defined(__F16C__)
  9756. return 1;
  9757. #else
  9758. return 0;
  9759. #endif
  9760. }
  9761. int ggml_cpu_has_fp16_va(void) {
  9762. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  9763. return 1;
  9764. #else
  9765. return 0;
  9766. #endif
  9767. }
  9768. int ggml_cpu_has_wasm_simd(void) {
  9769. #if defined(__wasm_simd128__)
  9770. return 1;
  9771. #else
  9772. return 0;
  9773. #endif
  9774. }
  9775. int ggml_cpu_has_blas(void) {
  9776. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9777. return 1;
  9778. #else
  9779. return 0;
  9780. #endif
  9781. }
  9782. int ggml_cpu_has_cublas(void) {
  9783. #if defined(GGML_USE_CUBLAS)
  9784. return 1;
  9785. #else
  9786. return 0;
  9787. #endif
  9788. }
  9789. int ggml_cpu_has_sse3(void) {
  9790. #if defined(__SSE3__)
  9791. return 1;
  9792. #else
  9793. return 0;
  9794. #endif
  9795. }
  9796. int ggml_cpu_has_vsx(void) {
  9797. #if defined(__POWER9_VECTOR__)
  9798. return 1;
  9799. #else
  9800. return 0;
  9801. #endif
  9802. }
  9803. ////////////////////////////////////////////////////////////////////////////////