server.cpp 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296
  1. #include "utils.hpp"
  2. #include "common.h"
  3. #include "json-schema-to-grammar.h"
  4. #include "llama.h"
  5. #include "grammar-parser.h"
  6. #ifndef NDEBUG
  7. // crash the server in debug mode, otherwise send an http 500 error
  8. #define CPPHTTPLIB_NO_EXCEPTIONS 1
  9. #endif
  10. // increase max payload length to allow use of larger context size
  11. #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
  12. #include "httplib.h"
  13. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  14. #define JSON_ASSERT GGML_ASSERT
  15. #include "json.hpp"
  16. // auto generated files (update with ./deps.sh)
  17. #include "colorthemes.css.hpp"
  18. #include "style.css.hpp"
  19. #include "theme-beeninorder.css.hpp"
  20. #include "theme-ketivah.css.hpp"
  21. #include "theme-mangotango.css.hpp"
  22. #include "theme-playground.css.hpp"
  23. #include "theme-polarnight.css.hpp"
  24. #include "theme-snowstorm.css.hpp"
  25. #include "index.html.hpp"
  26. #include "index-new.html.hpp"
  27. #include "index.js.hpp"
  28. #include "completion.js.hpp"
  29. #include "system-prompts.js.hpp"
  30. #include "prompt-formats.js.hpp"
  31. #include "json-schema-to-grammar.mjs.hpp"
  32. #include <atomic>
  33. #include <chrono>
  34. #include <condition_variable>
  35. #include <cstddef>
  36. #include <set>
  37. #include <mutex>
  38. #include <thread>
  39. #include <signal.h>
  40. #include <memory>
  41. using json = nlohmann::ordered_json;
  42. bool server_verbose = false;
  43. bool server_log_json = true;
  44. enum stop_type {
  45. STOP_TYPE_FULL,
  46. STOP_TYPE_PARTIAL,
  47. };
  48. enum slot_state {
  49. SLOT_STATE_IDLE,
  50. SLOT_STATE_PROCESSING,
  51. };
  52. enum slot_command {
  53. SLOT_COMMAND_NONE,
  54. SLOT_COMMAND_LOAD_PROMPT,
  55. SLOT_COMMAND_RELEASE,
  56. };
  57. enum server_state {
  58. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  59. SERVER_STATE_READY, // Server is ready and model is loaded
  60. SERVER_STATE_ERROR // An error occurred, load_model failed
  61. };
  62. enum server_task_type {
  63. SERVER_TASK_TYPE_COMPLETION,
  64. SERVER_TASK_TYPE_CANCEL,
  65. SERVER_TASK_TYPE_NEXT_RESPONSE,
  66. SERVER_TASK_TYPE_METRICS,
  67. SERVER_TASK_TYPE_SLOT_SAVE,
  68. SERVER_TASK_TYPE_SLOT_RESTORE,
  69. SERVER_TASK_TYPE_SLOT_ERASE,
  70. };
  71. struct server_task {
  72. int id = -1; // to be filled by server_queue
  73. int id_multi = -1;
  74. int id_target = -1;
  75. server_task_type type;
  76. json data;
  77. bool infill = false;
  78. bool embedding = false;
  79. };
  80. struct server_task_result {
  81. int id = -1;
  82. int id_multi = -1;
  83. json data;
  84. bool stop;
  85. bool error;
  86. };
  87. struct server_task_multi {
  88. int id = -1;
  89. std::set<int> subtasks_remaining;
  90. std::vector<server_task_result> results;
  91. };
  92. struct slot_params {
  93. bool stream = true;
  94. bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
  95. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  96. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  97. int32_t n_predict = -1; // new tokens to predict
  98. std::vector<std::string> antiprompt;
  99. json input_prefix;
  100. json input_suffix;
  101. };
  102. struct server_slot {
  103. int id;
  104. int id_task = -1;
  105. int id_multi = -1;
  106. struct slot_params params;
  107. slot_state state = SLOT_STATE_IDLE;
  108. slot_command command = SLOT_COMMAND_NONE;
  109. // used to determine the slot that has been used the longest
  110. int64_t t_last_used = -1;
  111. // generation props
  112. int32_t n_ctx = 0; // context size per slot
  113. int32_t n_past = 0;
  114. int32_t n_decoded = 0;
  115. int32_t n_remaining = -1;
  116. int32_t i_batch = -1;
  117. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  118. int32_t n_prompt_tokens = 0;
  119. int32_t n_prompt_tokens_processed = 0;
  120. json prompt;
  121. // when a task is submitted, we first tokenize the prompt and store it here
  122. std::vector<llama_token> prompt_tokens;
  123. std::string generated_text;
  124. std::vector<llama_token> cache_tokens;
  125. std::vector<completion_token_output> generated_token_probs;
  126. bool infill = false;
  127. bool embedding = false;
  128. bool has_next_token = true;
  129. bool truncated = false;
  130. bool stopped_eos = false;
  131. bool stopped_word = false;
  132. bool stopped_limit = false;
  133. bool oaicompat = false;
  134. std::string oaicompat_model;
  135. std::string stopping_word;
  136. // sampling
  137. llama_token sampled;
  138. struct llama_sampling_params sparams;
  139. llama_sampling_context * ctx_sampling = nullptr;
  140. json json_schema;
  141. int32_t ga_i = 0; // group-attention state
  142. int32_t ga_n = 1; // group-attention factor
  143. int32_t ga_w = 512; // group-attention width
  144. int32_t n_past_se = 0; // self-extend
  145. // stats
  146. size_t n_sent_text = 0; // number of sent text character
  147. size_t n_sent_token_probs = 0;
  148. int64_t t_start_process_prompt;
  149. int64_t t_start_generation;
  150. double t_prompt_processing; // ms
  151. double t_token_generation; // ms
  152. void reset() {
  153. n_prompt_tokens = 0;
  154. generated_text = "";
  155. truncated = false;
  156. stopped_eos = false;
  157. stopped_word = false;
  158. stopped_limit = false;
  159. stopping_word = "";
  160. n_past = 0;
  161. n_sent_text = 0;
  162. n_sent_token_probs = 0;
  163. infill = false;
  164. ga_i = 0;
  165. n_past_se = 0;
  166. generated_token_probs.clear();
  167. }
  168. bool has_budget(gpt_params &global_params) {
  169. if (params.n_predict == -1 && global_params.n_predict == -1) {
  170. return true; // limitless
  171. }
  172. n_remaining = -1;
  173. if (params.n_predict != -1) {
  174. n_remaining = params.n_predict - n_decoded;
  175. } else if (global_params.n_predict != -1) {
  176. n_remaining = global_params.n_predict - n_decoded;
  177. }
  178. return n_remaining > 0; // no budget
  179. }
  180. bool available() const {
  181. return state == SLOT_STATE_IDLE && command == SLOT_COMMAND_NONE;
  182. }
  183. bool is_processing() const {
  184. return (state == SLOT_STATE_IDLE && command == SLOT_COMMAND_LOAD_PROMPT) || state == SLOT_STATE_PROCESSING;
  185. }
  186. void add_token_string(const completion_token_output & token) {
  187. if (command == SLOT_COMMAND_RELEASE) {
  188. return;
  189. }
  190. generated_token_probs.push_back(token);
  191. }
  192. void release() {
  193. if (state == SLOT_STATE_PROCESSING) {
  194. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  195. command = SLOT_COMMAND_RELEASE;
  196. }
  197. }
  198. json get_formated_timings() const {
  199. return json {
  200. {"prompt_n", n_prompt_tokens_processed},
  201. {"prompt_ms", t_prompt_processing},
  202. {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
  203. {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
  204. {"predicted_n", n_decoded},
  205. {"predicted_ms", t_token_generation},
  206. {"predicted_per_token_ms", t_token_generation / n_decoded},
  207. {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
  208. };
  209. }
  210. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, const stop_type type) {
  211. size_t stop_pos = std::string::npos;
  212. for (const std::string & word : params.antiprompt) {
  213. size_t pos;
  214. if (type == STOP_TYPE_FULL) {
  215. const size_t tmp = word.size() + last_token_size;
  216. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  217. pos = text.find(word, from_pos);
  218. } else {
  219. pos = find_partial_stop_string(word, text);
  220. }
  221. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  222. if (type == STOP_TYPE_FULL) {
  223. stopped_word = true;
  224. stopping_word = word;
  225. has_next_token = false;
  226. }
  227. stop_pos = pos;
  228. }
  229. }
  230. return stop_pos;
  231. }
  232. void print_timings() const {
  233. char buffer[512];
  234. double t_token = t_prompt_processing / n_prompt_tokens_processed;
  235. double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  236. snprintf(buffer, 512, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
  237. t_prompt_processing, n_prompt_tokens_processed,
  238. t_token, n_tokens_second);
  239. LOG_INFO(buffer, {
  240. {"id_slot", id},
  241. {"id_task", id_task},
  242. {"t_prompt_processing", t_prompt_processing},
  243. {"n_prompt_tokens_processed", n_prompt_tokens_processed},
  244. {"t_token", t_token},
  245. {"n_tokens_second", n_tokens_second},
  246. });
  247. t_token = t_token_generation / n_decoded;
  248. n_tokens_second = 1e3 / t_token_generation * n_decoded;
  249. snprintf(buffer, 512, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
  250. t_token_generation, n_decoded,
  251. t_token, n_tokens_second);
  252. LOG_INFO(buffer, {
  253. {"id_slot", id},
  254. {"id_task", id_task},
  255. {"t_token_generation", t_token_generation},
  256. {"n_decoded", n_decoded},
  257. {"t_token", t_token},
  258. {"n_tokens_second", n_tokens_second},
  259. });
  260. snprintf(buffer, 512, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
  261. LOG_INFO(buffer, {
  262. {"id_slot", id},
  263. {"id_task", id_task},
  264. {"t_prompt_processing", t_prompt_processing},
  265. {"t_token_generation", t_token_generation},
  266. {"t_total", t_prompt_processing + t_token_generation},
  267. });
  268. }
  269. };
  270. struct server_metrics {
  271. int64_t t_start = 0;
  272. uint64_t n_prompt_tokens_processed_total = 0;
  273. uint64_t t_prompt_processing_total = 0;
  274. uint64_t n_tokens_predicted_total = 0;
  275. uint64_t t_tokens_generation_total = 0;
  276. uint64_t n_prompt_tokens_processed = 0;
  277. uint64_t t_prompt_processing = 0;
  278. uint64_t n_tokens_predicted = 0;
  279. uint64_t t_tokens_generation = 0;
  280. void init() {
  281. t_start = ggml_time_us();
  282. }
  283. void on_prompt_eval(const server_slot & slot) {
  284. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  285. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  286. t_prompt_processing += slot.t_prompt_processing;
  287. t_prompt_processing_total += slot.t_prompt_processing;
  288. }
  289. void on_prediction(const server_slot & slot) {
  290. n_tokens_predicted_total += slot.n_decoded;
  291. n_tokens_predicted += slot.n_decoded;
  292. t_tokens_generation += slot.t_token_generation;
  293. t_tokens_generation_total += slot.t_token_generation;
  294. }
  295. void reset_bucket() {
  296. n_prompt_tokens_processed = 0;
  297. t_prompt_processing = 0;
  298. n_tokens_predicted = 0;
  299. t_tokens_generation = 0;
  300. }
  301. };
  302. struct server_queue {
  303. int id = 0;
  304. bool running;
  305. // queues
  306. std::vector<server_task> queue_tasks;
  307. std::vector<server_task> queue_tasks_deferred;
  308. std::vector<server_task_multi> queue_multitasks;
  309. std::mutex mutex_tasks;
  310. std::condition_variable condition_tasks;
  311. // callback functions
  312. std::function<void(server_task &)> callback_new_task;
  313. std::function<void(server_task_multi &)> callback_finish_multitask;
  314. std::function<void(void)> callback_update_slots;
  315. // Add a new task to the end of the queue
  316. int post(server_task task) {
  317. std::unique_lock<std::mutex> lock(mutex_tasks);
  318. if (task.id == -1) {
  319. task.id = id++;
  320. LOG_VERBOSE("new task id", {{"new_id", task.id}});
  321. }
  322. queue_tasks.push_back(std::move(task));
  323. condition_tasks.notify_one();
  324. return task.id;
  325. }
  326. // Add a new task, but defer until one slot is available
  327. void defer(server_task task) {
  328. std::unique_lock<std::mutex> lock(mutex_tasks);
  329. queue_tasks_deferred.push_back(std::move(task));
  330. }
  331. // Get the next id for creating anew task
  332. int get_new_id() {
  333. std::unique_lock<std::mutex> lock(mutex_tasks);
  334. int new_id = id++;
  335. LOG_VERBOSE("new task id", {{"new_id", new_id}});
  336. return new_id;
  337. }
  338. // Register function to process a new task
  339. void on_new_task(std::function<void(server_task &)> callback) {
  340. callback_new_task = std::move(callback);
  341. }
  342. // Register function to process a multitask when it is finished
  343. void on_finish_multitask(std::function<void(server_task_multi&)> callback) {
  344. callback_finish_multitask = std::move(callback);
  345. }
  346. // Register the function to be called when all slots data is ready to be processed
  347. void on_update_slots(std::function<void(void)> callback) {
  348. callback_update_slots = std::move(callback);
  349. }
  350. // Call when the state of one slot is changed
  351. void notify_slot_changed() {
  352. // move deferred tasks back to main loop
  353. std::unique_lock<std::mutex> lock(mutex_tasks);
  354. for (auto & task : queue_tasks_deferred) {
  355. queue_tasks.push_back(std::move(task));
  356. }
  357. queue_tasks_deferred.clear();
  358. }
  359. // end the start_loop routine
  360. void terminate() {
  361. std::unique_lock<std::mutex> lock(mutex_tasks);
  362. running = false;
  363. condition_tasks.notify_all();
  364. }
  365. /**
  366. * Main loop consists of these steps:
  367. * - Wait until a new task arrives
  368. * - Process the task (i.e. maybe copy data into slot)
  369. * - Check if multitask is finished
  370. * - Update all slots
  371. */
  372. void start_loop() {
  373. running = true;
  374. while (true) {
  375. LOG_VERBOSE("new task may arrive", {});
  376. while (true) {
  377. std::unique_lock<std::mutex> lock(mutex_tasks);
  378. if (queue_tasks.empty()) {
  379. lock.unlock();
  380. break;
  381. }
  382. server_task task = queue_tasks.front();
  383. queue_tasks.erase(queue_tasks.begin());
  384. lock.unlock();
  385. LOG_VERBOSE("callback_new_task", {{"id_task", task.id}});
  386. callback_new_task(task);
  387. }
  388. LOG_VERBOSE("update_multitasks", {});
  389. // check if we have any finished multitasks
  390. auto queue_iterator = queue_multitasks.begin();
  391. while (queue_iterator != queue_multitasks.end()) {
  392. if (queue_iterator->subtasks_remaining.empty()) {
  393. // all subtasks done == multitask is done
  394. server_task_multi current_multitask = *queue_iterator;
  395. callback_finish_multitask(current_multitask);
  396. // remove this multitask
  397. queue_iterator = queue_multitasks.erase(queue_iterator);
  398. } else {
  399. ++queue_iterator;
  400. }
  401. }
  402. // all tasks in the current loop is processed, slots data is now ready
  403. LOG_VERBOSE("callback_update_slots", {});
  404. callback_update_slots();
  405. LOG_VERBOSE("wait for new task", {});
  406. {
  407. std::unique_lock<std::mutex> lock(mutex_tasks);
  408. if (queue_tasks.empty()) {
  409. if (!running) {
  410. LOG_VERBOSE("ending start_loop", {});
  411. return;
  412. }
  413. condition_tasks.wait(lock, [&]{
  414. return (!queue_tasks.empty() || !running);
  415. });
  416. }
  417. }
  418. }
  419. }
  420. //
  421. // functions to manage multitasks
  422. //
  423. // add a multitask by specifying the id of all subtask (subtask is a server_task)
  424. void add_multitask(int id_multi, std::vector<int> & sub_ids) {
  425. std::lock_guard<std::mutex> lock(mutex_tasks);
  426. server_task_multi multi;
  427. multi.id = id_multi;
  428. std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
  429. queue_multitasks.push_back(multi);
  430. }
  431. // updatethe remaining subtasks, while appending results to multitask
  432. void update_multitask(int id_multi, int id_sub, server_task_result & result) {
  433. std::lock_guard<std::mutex> lock(mutex_tasks);
  434. for (auto & multitask : queue_multitasks) {
  435. if (multitask.id == id_multi) {
  436. multitask.subtasks_remaining.erase(id_sub);
  437. multitask.results.push_back(result);
  438. }
  439. }
  440. }
  441. };
  442. struct server_response {
  443. typedef std::function<void(int, int, server_task_result &)> callback_multitask_t;
  444. callback_multitask_t callback_update_multitask;
  445. // for keeping track of all tasks waiting for the result
  446. std::set<int> waiting_task_ids;
  447. // the main result queue
  448. std::vector<server_task_result> queue_results;
  449. std::mutex mutex_results;
  450. std::condition_variable condition_results;
  451. // add the id_task to the list of tasks waiting for response
  452. void add_waiting_task_id(int id_task) {
  453. LOG_VERBOSE("waiting for task id", {{"id_task", id_task}});
  454. std::unique_lock<std::mutex> lock(mutex_results);
  455. waiting_task_ids.insert(id_task);
  456. }
  457. // when the request is finished, we can remove task associated with it
  458. void remove_waiting_task_id(int id_task) {
  459. LOG_VERBOSE("remove waiting for task id", {{"id_task", id_task}});
  460. std::unique_lock<std::mutex> lock(mutex_results);
  461. waiting_task_ids.erase(id_task);
  462. }
  463. // This function blocks the thread until there is a response for this id_task
  464. server_task_result recv(int id_task) {
  465. while (true) {
  466. std::unique_lock<std::mutex> lock(mutex_results);
  467. condition_results.wait(lock, [&]{
  468. return !queue_results.empty();
  469. });
  470. for (int i = 0; i < (int) queue_results.size(); i++) {
  471. if (queue_results[i].id == id_task) {
  472. assert(queue_results[i].id_multi == -1);
  473. server_task_result res = queue_results[i];
  474. queue_results.erase(queue_results.begin() + i);
  475. return res;
  476. }
  477. }
  478. }
  479. // should never reach here
  480. }
  481. // Register the function to update multitask
  482. void on_multitask_update(callback_multitask_t callback) {
  483. callback_update_multitask = std::move(callback);
  484. }
  485. // Send a new result to a waiting id_task
  486. void send(server_task_result result) {
  487. LOG_VERBOSE("send new result", {{"id_task", result.id}});
  488. std::unique_lock<std::mutex> lock(mutex_results);
  489. for (const auto & id_task : waiting_task_ids) {
  490. // LOG_TEE("waiting task id %i \n", id_task);
  491. // for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
  492. if (result.id_multi == id_task) {
  493. LOG_VERBOSE("callback_update_multitask", {{"id_task", id_task}});
  494. callback_update_multitask(id_task, result.id, result);
  495. continue;
  496. }
  497. if (result.id == id_task) {
  498. LOG_VERBOSE("queue_results.push_back", {{"id_task", id_task}});
  499. queue_results.push_back(result);
  500. condition_results.notify_all();
  501. return;
  502. }
  503. }
  504. }
  505. };
  506. struct server_context {
  507. llama_model * model = nullptr;
  508. llama_context * ctx = nullptr;
  509. gpt_params params;
  510. llama_batch batch;
  511. bool clean_kv_cache = true;
  512. bool add_bos_token = true;
  513. int32_t n_ctx; // total context for all clients / slots
  514. // system prompt
  515. bool system_need_update = false;
  516. std::string system_prompt;
  517. std::vector<llama_token> system_tokens;
  518. // slots / clients
  519. std::vector<server_slot> slots;
  520. json default_generation_settings_for_props;
  521. server_queue queue_tasks;
  522. server_response queue_results;
  523. server_metrics metrics;
  524. ~server_context() {
  525. if (ctx) {
  526. llama_free(ctx);
  527. ctx = nullptr;
  528. }
  529. if (model) {
  530. llama_free_model(model);
  531. model = nullptr;
  532. }
  533. // Clear any sampling context
  534. for (server_slot & slot : slots) {
  535. if (slot.ctx_sampling != nullptr) {
  536. llama_sampling_free(slot.ctx_sampling);
  537. }
  538. }
  539. llama_batch_free(batch);
  540. }
  541. bool load_model(const gpt_params & params_) {
  542. params = params_;
  543. // dedicate one sequence to the system prompt
  544. params.n_parallel += 1;
  545. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  546. params.n_parallel -= 1; // but be sneaky about it
  547. if (model == nullptr) {
  548. LOG_ERROR("unable to load model", {{"model", params.model}});
  549. return false;
  550. }
  551. n_ctx = llama_n_ctx(ctx);
  552. add_bos_token = llama_should_add_bos_token(model);
  553. GGML_ASSERT(llama_add_eos_token(model) != 1);
  554. return true;
  555. }
  556. bool validate_model_chat_template() const {
  557. llama_chat_message chat[] = {{"user", "test"}};
  558. const int res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
  559. return res > 0;
  560. }
  561. void init() {
  562. const int32_t n_ctx_slot = n_ctx / params.n_parallel;
  563. LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
  564. for (int i = 0; i < params.n_parallel; i++) {
  565. server_slot slot;
  566. slot.id = i;
  567. slot.n_ctx = n_ctx_slot;
  568. slot.n_predict = params.n_predict;
  569. LOG_INFO("new slot", {
  570. {"id_slot", slot.id},
  571. {"n_ctx_slot", slot.n_ctx}
  572. });
  573. const int ga_n = params.grp_attn_n;
  574. const int ga_w = params.grp_attn_w;
  575. if (ga_n != 1) {
  576. GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
  577. GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
  578. //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
  579. //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
  580. LOG_INFO("slot self-extend", {
  581. {"id_slot", slot.id},
  582. {"ga_n", ga_n},
  583. {"ga_w", ga_w}
  584. });
  585. }
  586. slot.ga_i = 0;
  587. slot.ga_n = ga_n;
  588. slot.ga_w = ga_w;
  589. slot.reset();
  590. slots.push_back(slot);
  591. }
  592. default_generation_settings_for_props = get_formated_generation(slots.front());
  593. default_generation_settings_for_props["seed"] = -1;
  594. // the update_slots() logic will always submit a maximum of n_batch tokens
  595. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  596. {
  597. const int32_t n_batch = llama_n_batch(ctx);
  598. // only a single seq_id per token is needed
  599. batch = llama_batch_init(n_batch, 0, 1);
  600. }
  601. metrics.init();
  602. }
  603. std::vector<llama_token> tokenize(const json & json_prompt, bool add_special) const {
  604. // TODO: currently, we tokenize using special tokens by default
  605. // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
  606. // but it's better compared to completely ignoring ChatML and other chat templates
  607. const bool TMP_FORCE_SPECIAL = true;
  608. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  609. // or the first element of the json_prompt array is a string.
  610. std::vector<llama_token> prompt_tokens;
  611. if (json_prompt.is_array()) {
  612. bool first = true;
  613. for (const auto & p : json_prompt) {
  614. if (p.is_string()) {
  615. auto s = p.template get<std::string>();
  616. std::vector<llama_token> p;
  617. if (first) {
  618. p = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
  619. first = false;
  620. } else {
  621. p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
  622. }
  623. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  624. } else {
  625. if (first) {
  626. first = false;
  627. }
  628. prompt_tokens.push_back(p.template get<llama_token>());
  629. }
  630. }
  631. } else {
  632. auto s = json_prompt.template get<std::string>();
  633. prompt_tokens = ::llama_tokenize(ctx, s, add_special, TMP_FORCE_SPECIAL);
  634. }
  635. return prompt_tokens;
  636. }
  637. server_slot * get_slot(int id) {
  638. int64_t t_last = ggml_time_us();
  639. server_slot * last_used = nullptr;
  640. for (server_slot & slot : slots) {
  641. if (slot.id == id && slot.available()) {
  642. return &slot;
  643. }
  644. // among all available slots, find the one that has been least recently used
  645. if (slot.available() && slot.t_last_used < t_last) {
  646. last_used = &slot;
  647. t_last = slot.t_last_used;
  648. }
  649. }
  650. return last_used;
  651. }
  652. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  653. slot_params default_params;
  654. llama_sampling_params default_sparams;
  655. auto & data = task.data;
  656. if (data.count("__oaicompat") != 0) {
  657. slot.oaicompat = true;
  658. slot.oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  659. } else {
  660. slot.oaicompat = false;
  661. slot.oaicompat_model = "";
  662. }
  663. slot.params.stream = json_value(data, "stream", false);
  664. slot.params.cache_prompt = json_value(data, "cache_prompt", false);
  665. slot.params.n_predict = json_value(data, "n_predict", default_params.n_predict);
  666. slot.sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
  667. slot.sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
  668. slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
  669. slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
  670. slot.sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
  671. slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
  672. slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
  673. slot.sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
  674. slot.sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
  675. slot.sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
  676. slot.sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
  677. slot.sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
  678. slot.sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
  679. slot.sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
  680. slot.sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
  681. slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
  682. slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
  683. slot.params.n_discard = json_value(data, "n_discard", default_params.n_discard);
  684. slot.sparams.seed = json_value(data, "seed", default_sparams.seed);
  685. slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
  686. slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
  687. // process "json_schema" and "grammar"
  688. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  689. send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
  690. return false;
  691. } else if (data.contains("json_schema") && !data.contains("grammar")) {
  692. try {
  693. auto schema = json_value(data, "json_schema", json::object());
  694. slot.sparams.grammar = json_schema_to_grammar(schema);
  695. } catch (const std::exception & e) {
  696. send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
  697. return false;
  698. }
  699. } else {
  700. slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
  701. }
  702. if (slot.params.cache_prompt && slot.ga_n != 1) {
  703. LOG_WARNING("cache_prompt is not supported with group-attention", {});
  704. slot.params.cache_prompt = false;
  705. }
  706. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  707. // Might be better to reject the request with a 400 ?
  708. LOG_WARNING("Max tokens to predict exceeds server configuration", {
  709. {"params.n_predict", slot.params.n_predict},
  710. {"slot.n_predict", slot.n_predict},
  711. });
  712. slot.params.n_predict = slot.n_predict;
  713. }
  714. // infill
  715. slot.params.input_prefix = json_value(data, "input_prefix", default_params.input_prefix);
  716. slot.params.input_suffix = json_value(data, "input_suffix", default_params.input_suffix);
  717. // get prompt
  718. {
  719. const auto & prompt = data.find("prompt");
  720. if (prompt == data.end()) {
  721. send_error(task, "Either \"prompt\" or \"messages\" must be provided", ERROR_TYPE_INVALID_REQUEST);
  722. return false;
  723. } else {
  724. slot.prompt = *prompt;
  725. }
  726. if (slot.prompt.is_array() && slot.prompt.size() == 0) {
  727. send_error(task, "\"prompt\" cannot be an empty array", ERROR_TYPE_INVALID_REQUEST);
  728. return false;
  729. }
  730. }
  731. // penalize user-provided tokens
  732. {
  733. slot.sparams.penalty_prompt_tokens.clear();
  734. slot.sparams.use_penalty_prompt_tokens = false;
  735. const auto & penalty_prompt = data.find("penalty_prompt");
  736. if (penalty_prompt != data.end()) {
  737. if (penalty_prompt->is_string()) {
  738. const auto penalty_prompt_string = penalty_prompt->get<std::string>();
  739. slot.sparams.penalty_prompt_tokens = llama_tokenize(model, penalty_prompt_string, false);
  740. if (slot.params.n_predict > 0) {
  741. slot.sparams.penalty_prompt_tokens.reserve(slot.sparams.penalty_prompt_tokens.size() + slot.params.n_predict);
  742. }
  743. slot.sparams.use_penalty_prompt_tokens = true;
  744. LOG_VERBOSE("penalty_prompt_tokens", {
  745. {"id_slot", slot.id},
  746. {"tokens", slot.sparams.penalty_prompt_tokens},
  747. });
  748. }
  749. else if (penalty_prompt->is_array()) {
  750. const auto n_tokens = penalty_prompt->size();
  751. slot.sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot.params.n_predict));
  752. const int n_vocab = llama_n_vocab(model);
  753. for (const auto & penalty_token : *penalty_prompt) {
  754. if (penalty_token.is_number_integer()) {
  755. const auto tok = penalty_token.get<llama_token>();
  756. if (tok >= 0 && tok < n_vocab) {
  757. slot.sparams.penalty_prompt_tokens.push_back(tok);
  758. }
  759. }
  760. }
  761. slot.sparams.use_penalty_prompt_tokens = true;
  762. LOG_VERBOSE("penalty_prompt_tokens", {
  763. {"id_slot", slot.id},
  764. {"tokens", slot.sparams.penalty_prompt_tokens},
  765. });
  766. }
  767. }
  768. }
  769. {
  770. slot.sparams.logit_bias.clear();
  771. if (json_value(data, "ignore_eos", false)) {
  772. slot.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  773. }
  774. const auto & logit_bias = data.find("logit_bias");
  775. if (logit_bias != data.end() && logit_bias->is_array()) {
  776. const int n_vocab = llama_n_vocab(model);
  777. for (const auto & el : *logit_bias) {
  778. // TODO: we may want to throw errors here, in case "el" is incorrect
  779. if (el.is_array() && el.size() == 2) {
  780. float bias;
  781. if (el[1].is_number()) {
  782. bias = el[1].get<float>();
  783. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  784. bias = -INFINITY;
  785. } else {
  786. continue;
  787. }
  788. if (el[0].is_number_integer()) {
  789. llama_token tok = el[0].get<llama_token>();
  790. if (tok >= 0 && tok < n_vocab) {
  791. slot.sparams.logit_bias[tok] = bias;
  792. }
  793. } else if (el[0].is_string()) {
  794. auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
  795. for (auto tok : toks) {
  796. slot.sparams.logit_bias[tok] = bias;
  797. }
  798. }
  799. }
  800. }
  801. }
  802. }
  803. {
  804. slot.params.antiprompt.clear();
  805. const auto & stop = data.find("stop");
  806. if (stop != data.end() && stop->is_array()) {
  807. for (const auto & word : *stop) {
  808. if (!word.empty()) {
  809. slot.params.antiprompt.push_back(word);
  810. }
  811. }
  812. }
  813. }
  814. {
  815. const auto & samplers_sequence = data.find("samplers");
  816. if (samplers_sequence != data.end() && samplers_sequence->is_array()) {
  817. std::vector<std::string> sampler_names;
  818. for (const auto & sampler_name : *samplers_sequence) {
  819. if (sampler_name.is_string()) {
  820. sampler_names.emplace_back(sampler_name);
  821. }
  822. }
  823. slot.sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
  824. } else {
  825. slot.sparams.samplers_sequence = default_sparams.samplers_sequence;
  826. }
  827. }
  828. {
  829. if (slot.ctx_sampling != nullptr) {
  830. llama_sampling_free(slot.ctx_sampling);
  831. }
  832. slot.ctx_sampling = llama_sampling_init(slot.sparams);
  833. if (slot.ctx_sampling == nullptr) {
  834. // for now, the only error that may happen here is invalid grammar
  835. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  836. return false;
  837. }
  838. }
  839. slot.command = SLOT_COMMAND_LOAD_PROMPT;
  840. slot.prompt_tokens.clear();
  841. LOG_INFO("slot is processing task", {
  842. {"id_slot", slot.id},
  843. {"id_task", slot.id_task},
  844. });
  845. return true;
  846. }
  847. void kv_cache_clear() {
  848. LOG_VERBOSE("clearing KV cache", {});
  849. // clear the entire KV cache
  850. llama_kv_cache_clear(ctx);
  851. clean_kv_cache = false;
  852. }
  853. void system_prompt_update() {
  854. LOG_VERBOSE("system prompt update", {
  855. {"system_prompt", system_prompt},
  856. });
  857. kv_cache_clear();
  858. system_tokens.clear();
  859. if (!system_prompt.empty()) {
  860. system_tokens = ::llama_tokenize(ctx, system_prompt, true);
  861. llama_batch_clear(batch);
  862. for (int i = 0; i < (int)system_tokens.size(); ++i) {
  863. llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
  864. }
  865. const int32_t n_batch = llama_n_batch(ctx);
  866. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  867. const int32_t n_tokens = std::min(params.n_batch, batch.n_tokens - i);
  868. llama_batch batch_view = {
  869. n_tokens,
  870. batch.token + i,
  871. nullptr,
  872. batch.pos + i,
  873. batch.n_seq_id + i,
  874. batch.seq_id + i,
  875. batch.logits + i,
  876. 0, 0, 0, // unused
  877. };
  878. if (llama_decode(ctx, batch_view) != 0) {
  879. LOG_ERROR("llama_decode() failed", {});
  880. return;
  881. }
  882. }
  883. // assign the system KV cache to all parallel sequences
  884. for (int32_t i = 1; i <= params.n_parallel; ++i) {
  885. llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
  886. }
  887. }
  888. system_need_update = false;
  889. }
  890. bool system_prompt_set(const std::string & sys_prompt) {
  891. system_prompt = sys_prompt;
  892. LOG_VERBOSE("system prompt process", {
  893. {"system_prompt", system_prompt},
  894. });
  895. // release all slots
  896. for (server_slot & slot : slots) {
  897. slot.release();
  898. }
  899. system_need_update = true;
  900. return true;
  901. }
  902. bool process_token(completion_token_output & result, server_slot & slot) {
  903. // remember which tokens were sampled - used for repetition penalties during sampling
  904. const std::string token_str = llama_token_to_piece(ctx, result.tok, false);
  905. slot.sampled = result.tok;
  906. // search stop word and delete it
  907. slot.generated_text += token_str;
  908. slot.has_next_token = true;
  909. if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1) {
  910. // we can change penalty_prompt_tokens because it is always created from scratch each request
  911. slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
  912. }
  913. // check if there is incomplete UTF-8 character at the end
  914. bool incomplete = false;
  915. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) {
  916. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  917. if ((c & 0xC0) == 0x80) {
  918. // continuation byte: 10xxxxxx
  919. continue;
  920. }
  921. if ((c & 0xE0) == 0xC0) {
  922. // 2-byte character: 110xxxxx ...
  923. incomplete = i < 2;
  924. } else if ((c & 0xF0) == 0xE0) {
  925. // 3-byte character: 1110xxxx ...
  926. incomplete = i < 3;
  927. } else if ((c & 0xF8) == 0xF0) {
  928. // 4-byte character: 11110xxx ...
  929. incomplete = i < 4;
  930. }
  931. // else 1-byte character or invalid byte
  932. break;
  933. }
  934. if (!incomplete) {
  935. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  936. const std::string str_test = slot.generated_text.substr(pos);
  937. bool is_stop_full = false;
  938. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_FULL);
  939. if (stop_pos != std::string::npos) {
  940. is_stop_full = true;
  941. slot.generated_text.erase(
  942. slot.generated_text.begin() + pos + stop_pos,
  943. slot.generated_text.end());
  944. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  945. } else {
  946. is_stop_full = false;
  947. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), STOP_TYPE_PARTIAL);
  948. }
  949. // check if there is any token to predict
  950. if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0)) {
  951. // no send the stop word in the response
  952. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  953. slot.n_sent_text += result.text_to_send.size();
  954. // add the token to slot queue and cache
  955. }
  956. slot.add_token_string(result);
  957. if (slot.params.stream) {
  958. send_partial_response(slot, result);
  959. }
  960. }
  961. if (incomplete) {
  962. slot.has_next_token = true;
  963. }
  964. // check the limits
  965. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params)) {
  966. slot.stopped_limit = true;
  967. slot.has_next_token = false;
  968. LOG_VERBOSE("stopped by limit", {
  969. {"id_slot", slot.id},
  970. {"id_task", slot.id_task},
  971. {"n_decoded", slot.n_decoded},
  972. {"n_predict", slot.params.n_predict},
  973. });
  974. }
  975. if (llama_token_is_eog(model, result.tok)) {
  976. slot.stopped_eos = true;
  977. slot.has_next_token = false;
  978. LOG_VERBOSE("eos token found", {});
  979. }
  980. auto n_ctx_train = llama_n_ctx_train(model);
  981. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.ga_n == 1
  982. && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  983. LOG_WARNING("n_predict is not set and self-context extend is disabled."
  984. " Limiting generated tokens to n_ctx_train to avoid EOS-less generation infinite loop", {
  985. { "id_slot", slot.id },
  986. { "params.n_predict", slot.params.n_predict },
  987. { "slot.n_prompt_tokens", slot.n_prompt_tokens },
  988. { "slot.n_decoded", slot.n_decoded },
  989. { "slot.n_predict", slot.n_predict },
  990. { "n_slots", params.n_parallel },
  991. { "slot.n_ctx", slot.n_ctx },
  992. { "n_ctx", n_ctx },
  993. { "n_ctx_train", n_ctx_train },
  994. { "ga_n", slot.ga_n },
  995. });
  996. slot.truncated = true;
  997. slot.stopped_limit = true;
  998. slot.has_next_token = false; // stop prediction
  999. }
  1000. LOG_VERBOSE("next token", {
  1001. {"id_slot", slot.id},
  1002. {"id_task", slot.id_task},
  1003. {"token", result.tok},
  1004. {"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
  1005. {"has_next_token", slot.has_next_token},
  1006. {"n_remain", slot.n_remaining},
  1007. {"n_decoded", slot.n_decoded},
  1008. {"stopped_eos", slot.stopped_eos},
  1009. {"stopped_word", slot.stopped_word},
  1010. {"stopped_limit", slot.stopped_limit},
  1011. {"stopping_word", slot.stopping_word},
  1012. });
  1013. return slot.has_next_token; // continue
  1014. }
  1015. json get_formated_generation(const server_slot & slot) const {
  1016. const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
  1017. const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() && eos_bias->second < 0.0f && std::isinf(eos_bias->second);
  1018. std::vector<std::string> samplers_sequence;
  1019. samplers_sequence.reserve(slot.sparams.samplers_sequence.size());
  1020. for (const auto & sampler_type : slot.sparams.samplers_sequence) {
  1021. samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
  1022. }
  1023. return json {
  1024. {"n_ctx", slot.n_ctx},
  1025. {"n_predict", slot.n_predict},
  1026. {"model", params.model_alias},
  1027. {"seed", slot.sparams.seed},
  1028. {"temperature", slot.sparams.temp},
  1029. {"dynatemp_range", slot.sparams.dynatemp_range},
  1030. {"dynatemp_exponent", slot.sparams.dynatemp_exponent},
  1031. {"top_k", slot.sparams.top_k},
  1032. {"top_p", slot.sparams.top_p},
  1033. {"min_p", slot.sparams.min_p},
  1034. {"tfs_z", slot.sparams.tfs_z},
  1035. {"typical_p", slot.sparams.typical_p},
  1036. {"repeat_last_n", slot.sparams.penalty_last_n},
  1037. {"repeat_penalty", slot.sparams.penalty_repeat},
  1038. {"presence_penalty", slot.sparams.penalty_present},
  1039. {"frequency_penalty", slot.sparams.penalty_freq},
  1040. {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
  1041. {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
  1042. {"mirostat", slot.sparams.mirostat},
  1043. {"mirostat_tau", slot.sparams.mirostat_tau},
  1044. {"mirostat_eta", slot.sparams.mirostat_eta},
  1045. {"penalize_nl", slot.sparams.penalize_nl},
  1046. {"stop", slot.params.antiprompt},
  1047. {"n_predict", slot.params.n_predict}, // TODO: fix duplicate key n_predict
  1048. {"n_keep", slot.params.n_keep},
  1049. {"n_discard", slot.params.n_discard},
  1050. {"ignore_eos", ignore_eos},
  1051. {"stream", slot.params.stream},
  1052. {"logit_bias", slot.sparams.logit_bias},
  1053. {"n_probs", slot.sparams.n_probs},
  1054. {"min_keep", slot.sparams.min_keep},
  1055. {"grammar", slot.sparams.grammar},
  1056. {"samplers", samplers_sequence}
  1057. };
  1058. }
  1059. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1060. send_error(task.id, task.id_multi, error, type);
  1061. }
  1062. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1063. send_error(slot.id_task, slot.id_multi, error, type);
  1064. }
  1065. void send_error(const int id_task, const int id_multi, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1066. LOG_ERROR("task error", {
  1067. {"id_multi", id_multi},
  1068. {"id_task", id_task},
  1069. {"error", error},
  1070. });
  1071. server_task_result res;
  1072. res.id = id_task;
  1073. res.id_multi = id_multi;
  1074. res.stop = false;
  1075. res.error = true;
  1076. res.data = format_error_response(error, type);
  1077. queue_results.send(res);
  1078. }
  1079. void send_partial_response(server_slot & slot, completion_token_output tkn) {
  1080. server_task_result res;
  1081. res.id = slot.id_task;
  1082. res.id_multi = slot.id_multi;
  1083. res.error = false;
  1084. res.stop = false;
  1085. res.data = json {
  1086. {"content", tkn.text_to_send},
  1087. {"stop", false},
  1088. {"id_slot", slot.id},
  1089. {"multimodal", false}
  1090. };
  1091. if (slot.sparams.n_probs > 0) {
  1092. const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
  1093. const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
  1094. const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
  1095. std::vector<completion_token_output> probs_output;
  1096. if (probs_pos < probs_stop_pos) {
  1097. probs_output = std::vector<completion_token_output>(
  1098. slot.generated_token_probs.begin() + probs_pos,
  1099. slot.generated_token_probs.begin() + probs_stop_pos);
  1100. }
  1101. slot.n_sent_token_probs = probs_stop_pos;
  1102. res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
  1103. }
  1104. if (slot.oaicompat) {
  1105. res.data["oaicompat_token_ctr"] = slot.n_decoded;
  1106. res.data["model"] = slot.oaicompat_model;
  1107. }
  1108. queue_results.send(res);
  1109. }
  1110. void send_final_response(const server_slot & slot) {
  1111. server_task_result res;
  1112. res.id = slot.id_task;
  1113. res.id_multi = slot.id_multi;
  1114. res.error = false;
  1115. res.stop = true;
  1116. res.data = json {
  1117. {"content", !slot.params.stream ? slot.generated_text : ""},
  1118. {"id_slot", slot.id},
  1119. {"stop", true},
  1120. {"model", params.model_alias},
  1121. {"tokens_predicted", slot.n_decoded},
  1122. {"tokens_evaluated", slot.n_prompt_tokens},
  1123. {"generation_settings", get_formated_generation(slot)},
  1124. {"prompt", slot.prompt},
  1125. {"truncated", slot.truncated},
  1126. {"stopped_eos", slot.stopped_eos},
  1127. {"stopped_word", slot.stopped_word},
  1128. {"stopped_limit", slot.stopped_limit},
  1129. {"stopping_word", slot.stopping_word},
  1130. {"tokens_cached", slot.n_past},
  1131. {"timings", slot.get_formated_timings()}
  1132. };
  1133. if (slot.sparams.n_probs > 0) {
  1134. std::vector<completion_token_output> probs;
  1135. if (!slot.params.stream && slot.stopped_word) {
  1136. const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
  1137. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1138. probs = std::vector<completion_token_output>(
  1139. slot.generated_token_probs.begin(),
  1140. slot.generated_token_probs.end() - safe_offset);
  1141. } else {
  1142. probs = std::vector<completion_token_output>(
  1143. slot.generated_token_probs.begin(),
  1144. slot.generated_token_probs.end());
  1145. }
  1146. res.data["completion_probabilities"] = probs_vector_to_json(ctx, probs);
  1147. }
  1148. if (slot.oaicompat) {
  1149. res.data["oaicompat_token_ctr"] = slot.n_decoded;
  1150. res.data["model"] = slot.oaicompat_model;
  1151. }
  1152. queue_results.send(res);
  1153. }
  1154. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1155. server_task_result res;
  1156. res.id = slot.id_task;
  1157. res.id_multi = slot.id_multi;
  1158. res.error = false;
  1159. res.stop = true;
  1160. const int n_embd = llama_n_embd(model);
  1161. std::vector<float> embd_res(n_embd, 0.0f);
  1162. for (int i = 0; i < batch.n_tokens; ++i) {
  1163. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
  1164. continue;
  1165. }
  1166. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1167. if (embd == NULL) {
  1168. embd = llama_get_embeddings_ith(ctx, i);
  1169. }
  1170. if (embd == NULL) {
  1171. LOG_ERROR("failed to get embeddings", {
  1172. {"token", batch.token [i]},
  1173. {"seq_id", batch.seq_id[i][0]}
  1174. });
  1175. res.data = json {
  1176. {"embedding", std::vector<float>(n_embd, 0.0f)},
  1177. };
  1178. continue;
  1179. }
  1180. llama_embd_normalize(embd, embd_res.data(), n_embd);
  1181. res.data = json {
  1182. {"embedding", embd_res},
  1183. };
  1184. }
  1185. queue_results.send(res);
  1186. }
  1187. void request_completion(int id_task, int id_multi, json data, bool infill, bool embedding) {
  1188. server_task task;
  1189. task.id = id_task;
  1190. task.id_multi = id_multi;
  1191. task.id_target = 0;
  1192. task.data = std::move(data);
  1193. task.infill = infill;
  1194. task.embedding = embedding;
  1195. task.type = SERVER_TASK_TYPE_COMPLETION;
  1196. // when a completion task's prompt array is not a singleton, we split it into multiple requests
  1197. // otherwise, it's a single-prompt task, we actually queue it
  1198. // if there's numbers in the prompt array it will be treated as an array of tokens
  1199. if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
  1200. bool numbers = false;
  1201. for (const auto & e : task.data.at("prompt")) {
  1202. if (e.is_number()) {
  1203. numbers = true;
  1204. break;
  1205. }
  1206. }
  1207. // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
  1208. // it will completely stall the server. I don't know where the bug for this is.
  1209. //
  1210. // if there are numbers, it needs to be treated like a single prompt,
  1211. // queue_tasks handles a mix of strings and numbers just fine.
  1212. if (numbers) {
  1213. queue_tasks.post(task);
  1214. } else {
  1215. split_multiprompt_task(id_task, task);
  1216. }
  1217. } else {
  1218. queue_tasks.post(task);
  1219. }
  1220. }
  1221. void request_cancel(int id_task) {
  1222. server_task task;
  1223. task.type = SERVER_TASK_TYPE_CANCEL;
  1224. task.id_target = id_task;
  1225. queue_tasks.post(task);
  1226. }
  1227. void split_multiprompt_task(int id_multi, const server_task & multiprompt_task) {
  1228. const int prompt_count = multiprompt_task.data.at("prompt").size();
  1229. if (prompt_count <= 1) {
  1230. send_error(multiprompt_task, "error while handling multiple prompts");
  1231. return;
  1232. }
  1233. // generate all the ID for subtask
  1234. std::vector<int> subtask_ids(prompt_count);
  1235. for (int i = 0; i < prompt_count; i++) {
  1236. subtask_ids[i] = queue_tasks.get_new_id();
  1237. }
  1238. // queue up the multitask so we can track its subtask progression
  1239. queue_tasks.add_multitask(id_multi, subtask_ids);
  1240. // add subtasks
  1241. for (int i = 0; i < prompt_count; i++) {
  1242. json subtask_data = multiprompt_task.data;
  1243. subtask_data["prompt"] = subtask_data.at("prompt")[i];
  1244. // subtasks inherit everything else (infill mode, embedding mode, etc.)
  1245. request_completion(subtask_ids[i], id_multi, subtask_data, multiprompt_task.infill, multiprompt_task.embedding);
  1246. }
  1247. }
  1248. void process_single_task(const server_task & task) {
  1249. switch (task.type) {
  1250. case SERVER_TASK_TYPE_COMPLETION:
  1251. {
  1252. server_slot * slot = get_slot(json_value(task.data, "id_slot", -1));
  1253. if (slot == nullptr) {
  1254. // if no slot is available, we defer this task for processing later
  1255. LOG_VERBOSE("no slot is available", {{"id_task", task.id}});
  1256. queue_tasks.defer(task);
  1257. break;
  1258. }
  1259. if (task.data.contains("system_prompt")) {
  1260. std::string sys_prompt = json_value(task.data, "system_prompt", std::string());
  1261. system_prompt_set(sys_prompt);
  1262. for (server_slot & slot : slots) {
  1263. slot.n_past = 0;
  1264. slot.n_past_se = 0;
  1265. }
  1266. }
  1267. slot->reset();
  1268. slot->id_task = task.id;
  1269. slot->id_multi = task.id_multi;
  1270. slot->infill = task.infill;
  1271. slot->embedding = task.embedding;
  1272. if (!launch_slot_with_task(*slot, task)) {
  1273. LOG_ERROR("error while launching slot", task.data);
  1274. break;
  1275. }
  1276. } break;
  1277. case SERVER_TASK_TYPE_CANCEL:
  1278. {
  1279. // release slot linked with the task id
  1280. for (auto & slot : slots) {
  1281. if (slot.id_task == task.id_target) {
  1282. slot.release();
  1283. break;
  1284. }
  1285. }
  1286. } break;
  1287. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1288. {
  1289. // do nothing
  1290. } break;
  1291. case SERVER_TASK_TYPE_METRICS:
  1292. {
  1293. json slots_data = json::array();
  1294. int n_idle_slots = 0;
  1295. int n_processing_slots = 0;
  1296. for (server_slot & slot : slots) {
  1297. json slot_data = get_formated_generation(slot);
  1298. slot_data["id"] = slot.id;
  1299. slot_data["id_task"] = slot.id_task;
  1300. slot_data["state"] = slot.state;
  1301. slot_data["prompt"] = slot.prompt;
  1302. slot_data["next_token"] = {
  1303. {"has_next_token", slot.has_next_token},
  1304. {"n_remain", slot.n_remaining},
  1305. {"n_decoded", slot.n_decoded},
  1306. {"stopped_eos", slot.stopped_eos},
  1307. {"stopped_word", slot.stopped_word},
  1308. {"stopped_limit", slot.stopped_limit},
  1309. {"stopping_word", slot.stopping_word},
  1310. };
  1311. if (slot_data["state"] == SLOT_STATE_IDLE) {
  1312. n_idle_slots++;
  1313. } else {
  1314. n_processing_slots++;
  1315. }
  1316. slots_data.push_back(slot_data);
  1317. }
  1318. LOG_INFO("slot data", {
  1319. {"id_task", task.id},
  1320. {"n_idle_slots", n_idle_slots},
  1321. {"n_processing_slots", n_processing_slots}
  1322. });
  1323. LOG_VERBOSE("slot data", {
  1324. {"id_task", task.id},
  1325. {"n_idle_slots", n_idle_slots},
  1326. {"n_processing_slots", n_processing_slots},
  1327. {"slots", slots_data}
  1328. });
  1329. server_task_result res;
  1330. res.id = task.id;
  1331. res.id_multi = task.id_multi;
  1332. res.stop = true;
  1333. res.error = false;
  1334. res.data = {
  1335. { "idle", n_idle_slots },
  1336. { "processing", n_processing_slots },
  1337. { "deferred", queue_tasks.queue_tasks_deferred.size() },
  1338. { "t_start", metrics.t_start},
  1339. { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
  1340. { "t_tokens_generation_total", metrics.t_tokens_generation_total},
  1341. { "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
  1342. { "t_prompt_processing_total", metrics.t_prompt_processing_total},
  1343. { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
  1344. { "t_prompt_processing", metrics.t_prompt_processing},
  1345. { "n_tokens_predicted", metrics.n_tokens_predicted},
  1346. { "t_tokens_generation", metrics.t_tokens_generation},
  1347. { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
  1348. { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
  1349. { "slots", slots_data },
  1350. };
  1351. if (json_value(task.data, "reset_bucket", false)) {
  1352. metrics.reset_bucket();
  1353. }
  1354. queue_results.send(res);
  1355. } break;
  1356. case SERVER_TASK_TYPE_SLOT_SAVE:
  1357. {
  1358. int id_slot = task.data.at("id_slot");
  1359. server_slot * slot = get_slot(id_slot);
  1360. if (slot == nullptr) {
  1361. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1362. break;
  1363. }
  1364. const size_t token_count = slot->cache_tokens.size();
  1365. const int64_t t_start = ggml_time_us();
  1366. std::string filename = task.data.at("filename");
  1367. std::string filepath = task.data.at("filepath");
  1368. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count);
  1369. const int64_t t_end = ggml_time_us();
  1370. const double t_save_ms = (t_end - t_start) / 1000.0;
  1371. server_task_result result;
  1372. result.id = task.id;
  1373. result.stop = true;
  1374. result.error = false;
  1375. result.data = json {
  1376. { "id_slot", id_slot },
  1377. { "filename", filename },
  1378. { "n_saved", token_count }, // tokens saved
  1379. { "n_written", nwrite }, // bytes written
  1380. { "timings", {
  1381. { "save_ms", t_save_ms }
  1382. } }
  1383. };
  1384. queue_results.send(result);
  1385. } break;
  1386. case SERVER_TASK_TYPE_SLOT_RESTORE:
  1387. {
  1388. int id_slot = task.data.at("id_slot");
  1389. server_slot * slot = get_slot(id_slot);
  1390. if (slot == nullptr) {
  1391. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1392. break;
  1393. }
  1394. const int64_t t_start = ggml_time_us();
  1395. std::string filename = task.data.at("filename");
  1396. std::string filepath = task.data.at("filepath");
  1397. slot->cache_tokens.resize(slot->n_ctx);
  1398. size_t token_count = 0;
  1399. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  1400. if (nread == 0) {
  1401. slot->cache_tokens.resize(0);
  1402. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  1403. break;
  1404. }
  1405. slot->cache_tokens.resize(token_count);
  1406. const int64_t t_end = ggml_time_us();
  1407. const double t_restore_ms = (t_end - t_start) / 1000.0;
  1408. server_task_result result;
  1409. result.id = task.id;
  1410. result.stop = true;
  1411. result.error = false;
  1412. result.data = json {
  1413. { "id_slot", id_slot },
  1414. { "filename", filename },
  1415. { "n_restored", token_count }, // tokens restored
  1416. { "n_read", nread }, // bytes read
  1417. { "timings", {
  1418. { "restore_ms", t_restore_ms }
  1419. } }
  1420. };
  1421. queue_results.send(result);
  1422. } break;
  1423. case SERVER_TASK_TYPE_SLOT_ERASE:
  1424. {
  1425. int id_slot = task.data.at("id_slot");
  1426. server_slot * slot = get_slot(id_slot);
  1427. if (slot == nullptr) {
  1428. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  1429. break;
  1430. }
  1431. // Erase token cache
  1432. const size_t n_erased = slot->cache_tokens.size();
  1433. llama_kv_cache_seq_rm(ctx, slot->id + 1, -1, -1);
  1434. slot->cache_tokens.clear();
  1435. server_task_result result;
  1436. result.id = task.id;
  1437. result.stop = true;
  1438. result.error = false;
  1439. result.data = json {
  1440. { "id_slot", id_slot },
  1441. { "n_erased", n_erased }
  1442. };
  1443. queue_results.send(result);
  1444. } break;
  1445. }
  1446. }
  1447. void on_finish_multitask(const server_task_multi & multitask) {
  1448. // all subtasks done == multitask is done
  1449. server_task_result result;
  1450. result.id = multitask.id;
  1451. result.stop = true;
  1452. result.error = false;
  1453. // collect json results into one json result
  1454. std::vector<json> result_jsons;
  1455. for (const auto & subres : multitask.results) {
  1456. result_jsons.push_back(subres.data);
  1457. result.error = result.error && subres.error;
  1458. }
  1459. result.data = json {
  1460. { "results", result_jsons }
  1461. };
  1462. queue_results.send(result);
  1463. }
  1464. void update_slots() {
  1465. if (system_need_update) {
  1466. system_prompt_update();
  1467. }
  1468. // release slots
  1469. for (auto & slot : slots) {
  1470. if (slot.command == SLOT_COMMAND_RELEASE) {
  1471. slot.state = SLOT_STATE_IDLE;
  1472. slot.command = SLOT_COMMAND_NONE;
  1473. slot.t_last_used = ggml_time_us();
  1474. LOG_INFO("slot released", {
  1475. {"id_slot", slot.id},
  1476. {"id_task", slot.id_task},
  1477. {"n_ctx", n_ctx},
  1478. {"n_past", slot.n_past},
  1479. {"n_system_tokens", system_tokens.size()},
  1480. {"n_cache_tokens", slot.cache_tokens.size()},
  1481. {"truncated", slot.truncated}
  1482. });
  1483. queue_tasks.notify_slot_changed();
  1484. }
  1485. }
  1486. // check if all slots are idle
  1487. {
  1488. bool all_idle = true;
  1489. for (auto & slot : slots) {
  1490. if (slot.state != SLOT_STATE_IDLE || slot.command != SLOT_COMMAND_NONE) {
  1491. all_idle = false;
  1492. break;
  1493. }
  1494. }
  1495. if (all_idle) {
  1496. LOG_INFO("all slots are idle", {});
  1497. if (system_prompt.empty() && clean_kv_cache) {
  1498. kv_cache_clear();
  1499. }
  1500. return;
  1501. }
  1502. }
  1503. {
  1504. LOG_VERBOSE("posting NEXT_RESPONSE", {});
  1505. server_task task;
  1506. task.type = SERVER_TASK_TYPE_NEXT_RESPONSE;
  1507. task.id_target = -1;
  1508. queue_tasks.post(task);
  1509. }
  1510. // apply context-shift if needed
  1511. // TODO: simplify and improve
  1512. for (server_slot & slot : slots) {
  1513. if (slot.ga_n == 1) {
  1514. if (slot.is_processing() && (int) system_tokens.size() + slot.n_past >= slot.n_ctx - 1) {
  1515. // Shift context
  1516. const int n_keep = slot.params.n_keep + add_bos_token;
  1517. const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
  1518. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  1519. LOG_INFO("slot context shift", {
  1520. {"id_slot", slot.id},
  1521. {"id_task", slot.id_task},
  1522. {"n_keep", n_keep},
  1523. {"n_left", n_left},
  1524. {"n_discard", n_discard},
  1525. {"n_ctx", n_ctx},
  1526. {"n_past", slot.n_past},
  1527. {"n_system_tokens", system_tokens.size()},
  1528. {"n_cache_tokens", slot.cache_tokens.size()}
  1529. });
  1530. llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
  1531. llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
  1532. if (slot.params.cache_prompt) {
  1533. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  1534. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1535. }
  1536. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1537. }
  1538. slot.n_past -= n_discard;
  1539. slot.truncated = true;
  1540. }
  1541. }
  1542. }
  1543. // start populating the batch for this iteration
  1544. llama_batch_clear(batch);
  1545. // frist, add sampled tokens from any ongoing sequences
  1546. for (auto & slot : slots) {
  1547. if (slot.state == SLOT_STATE_IDLE) {
  1548. continue;
  1549. }
  1550. slot.i_batch = batch.n_tokens;
  1551. const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1552. // TODO: we always have to take into account the "system_tokens"
  1553. // this is not great and needs to be improved somehow
  1554. llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id + 1 }, true);
  1555. slot.n_past += 1;
  1556. if (slot.params.cache_prompt) {
  1557. slot.cache_tokens.push_back(slot.sampled);
  1558. }
  1559. LOG_VERBOSE("slot decode token", {
  1560. {"id_slot", slot.id},
  1561. {"id_task", slot.id_task},
  1562. {"n_ctx", n_ctx},
  1563. {"n_past", slot.n_past},
  1564. {"n_system_tokens", system_tokens.size()},
  1565. {"n_cache_tokens", slot.cache_tokens.size()},
  1566. {"truncated", slot.truncated}
  1567. });
  1568. }
  1569. // process in chunks of params.n_batch
  1570. int32_t n_batch = llama_n_batch(ctx);
  1571. int32_t n_ubatch = llama_n_ubatch(ctx);
  1572. // next, batch any pending prompts without exceeding n_batch
  1573. if (params.cont_batching || batch.n_tokens == 0) {
  1574. for (auto & slot : slots) {
  1575. // this slot still has a prompt to be processed
  1576. if (slot.state == SLOT_STATE_IDLE && slot.command == SLOT_COMMAND_LOAD_PROMPT) {
  1577. auto & prompt_tokens = slot.prompt_tokens;
  1578. // we haven't tokenized the prompt yet - do it now:
  1579. if (prompt_tokens.empty()) {
  1580. LOG_VERBOSE("tokenizing prompt", {
  1581. {"id_slot", slot.id},
  1582. {"id_task", slot.id_task}
  1583. });
  1584. slot.t_start_process_prompt = ggml_time_us();
  1585. slot.t_start_generation = 0;
  1586. if (slot.infill) {
  1587. bool suff_rm_leading_spc = true;
  1588. if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
  1589. params.input_suffix.erase(0, 1);
  1590. suff_rm_leading_spc = false;
  1591. }
  1592. auto prefix_tokens = tokenize(slot.params.input_prefix, false);
  1593. auto suffix_tokens = tokenize(slot.params.input_suffix, false);
  1594. const int space_token = 29871; // TODO: this should not be hardcoded
  1595. if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
  1596. suffix_tokens.erase(suffix_tokens.begin());
  1597. }
  1598. prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
  1599. prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
  1600. prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
  1601. prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
  1602. prefix_tokens.push_back(llama_token_middle(model));
  1603. prompt_tokens = prefix_tokens;
  1604. } else {
  1605. prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
  1606. }
  1607. slot.n_past = 0;
  1608. slot.n_prompt_tokens = prompt_tokens.size();
  1609. LOG_VERBOSE("prompt tokenized", {
  1610. {"id_slot", slot.id},
  1611. {"id_task", slot.id_task},
  1612. {"n_ctx", slot.n_ctx},
  1613. {"n_keep", slot.params.n_keep},
  1614. {"n_prompt_tokens", slot.n_prompt_tokens},
  1615. {"prompt_tokens", tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
  1616. });
  1617. // empty prompt passed -> release the slot and send empty response
  1618. if (prompt_tokens.empty()) {
  1619. LOG_INFO("empty prompt - releasing slot", {
  1620. {"id_slot", slot.id},
  1621. {"id_task", slot.id_task}
  1622. });
  1623. slot.state = SLOT_STATE_PROCESSING;
  1624. slot.command = SLOT_COMMAND_NONE;
  1625. slot.release();
  1626. slot.print_timings();
  1627. send_final_response(slot);
  1628. continue;
  1629. }
  1630. if (slot.embedding) {
  1631. // this prompt is too large to process - discard it
  1632. if (slot.n_prompt_tokens > n_ubatch) {
  1633. slot.state = SLOT_STATE_PROCESSING;
  1634. slot.command = SLOT_COMMAND_NONE;
  1635. slot.release();
  1636. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  1637. continue;
  1638. }
  1639. } else {
  1640. if (slot.params.n_keep < 0) {
  1641. slot.params.n_keep = slot.n_prompt_tokens;
  1642. }
  1643. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  1644. // if input prompt is too big, truncate it (if group attention self-extend is disabled)
  1645. if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) {
  1646. const int n_left = slot.n_ctx - slot.params.n_keep;
  1647. const int n_block_size = n_left / 2;
  1648. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  1649. std::vector<llama_token> new_tokens(
  1650. prompt_tokens.begin(),
  1651. prompt_tokens.begin() + slot.params.n_keep);
  1652. new_tokens.insert(
  1653. new_tokens.end(),
  1654. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  1655. prompt_tokens.end());
  1656. prompt_tokens = std::move(new_tokens);
  1657. slot.truncated = true;
  1658. slot.n_prompt_tokens = prompt_tokens.size();
  1659. LOG_VERBOSE("input truncated", {
  1660. {"id_slot", slot.id},
  1661. {"id_task", slot.id_task},
  1662. {"n_ctx", slot.n_ctx},
  1663. {"n_keep", slot.params.n_keep},
  1664. {"n_left", n_left},
  1665. {"n_prompt_tokens", slot.n_prompt_tokens},
  1666. {"prompt_tokens", tokens_to_str(ctx, prompt_tokens.cbegin(), prompt_tokens.cend())},
  1667. });
  1668. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  1669. }
  1670. llama_sampling_reset(slot.ctx_sampling);
  1671. if (!slot.params.cache_prompt) {
  1672. slot.n_past_se = 0;
  1673. slot.ga_i = 0;
  1674. } else {
  1675. GGML_ASSERT(slot.ga_n == 1);
  1676. // reuse any previously computed tokens that are common with the new prompt
  1677. slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
  1678. // push the prompt into the sampling context (do not apply grammar)
  1679. for (int i = 0; i < slot.n_past; ++i) {
  1680. llama_sampling_accept(slot.ctx_sampling, ctx, slot.cache_tokens[i], false);
  1681. }
  1682. }
  1683. }
  1684. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  1685. // we have to evaluate at least 1 token to generate logits.
  1686. LOG_INFO("we have to evaluate at least 1 token to generate logits", {
  1687. { "id_slot", slot.id },
  1688. { "id_task", slot.id_task }
  1689. });
  1690. slot.n_past--;
  1691. if (slot.ga_i > 0) {
  1692. slot.n_past_se--;
  1693. }
  1694. }
  1695. slot.n_prompt_tokens_processed = 0;
  1696. }
  1697. if (slot.embedding) {
  1698. // cannot fit the prompt in the current batch - will try next iter
  1699. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  1700. continue;
  1701. }
  1702. }
  1703. // keep only the common part
  1704. int p0 = (int) system_tokens.size() + slot.n_past;
  1705. if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, p0, -1)) {
  1706. // could not partially delete (likely using a non-Transformer model)
  1707. llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1);
  1708. p0 = (int) system_tokens.size();
  1709. if (p0 != 0) {
  1710. // copy over the system prompt when there is one
  1711. llama_kv_cache_seq_cp(ctx, 0, slot.id + 1, -1, -1);
  1712. }
  1713. // there is no common part left (except for the system prompt)
  1714. slot.n_past = 0;
  1715. slot.n_past_se = 0;
  1716. slot.ga_i = 0;
  1717. // TODO: is the system prompt ever in the sampling context?
  1718. llama_sampling_reset(slot.ctx_sampling);
  1719. }
  1720. // remove the non-common part from the cache
  1721. slot.cache_tokens.resize(slot.n_past);
  1722. LOG_INFO("kv cache rm [p0, end)", {
  1723. { "id_slot", slot.id },
  1724. { "id_task", slot.id_task },
  1725. { "p0", p0 }
  1726. });
  1727. int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1728. int32_t ga_i = slot.ga_i;
  1729. int32_t ga_n = slot.ga_n;
  1730. int32_t ga_w = slot.ga_w;
  1731. // add prompt tokens for processing in the current batch
  1732. // TODO: the self-extend stuff here is a mess - simplify and/or abstract it somehow
  1733. for (; slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch; ++slot.n_past) {
  1734. if (slot.ga_n != 1) {
  1735. while (slot_npast >= ga_i + ga_w) {
  1736. const int bd = (ga_w/ga_n)*(ga_n - 1);
  1737. slot_npast -= bd;
  1738. ga_i += ga_w/ga_n;
  1739. }
  1740. }
  1741. llama_batch_add(batch, prompt_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id + 1 }, false);
  1742. if (slot.params.cache_prompt) {
  1743. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  1744. }
  1745. slot.n_prompt_tokens_processed++;
  1746. slot_npast++;
  1747. }
  1748. LOG_VERBOSE("prompt processing progress", {
  1749. {"id_slot", slot.id},
  1750. {"n_past", slot.n_past},
  1751. {"n_ctx", n_ctx},
  1752. {"n_tokens", batch.n_tokens},
  1753. {"progress", (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens},
  1754. });
  1755. // entire prompt has been processed - start decoding new tokens
  1756. if (slot.n_past == slot.n_prompt_tokens) {
  1757. slot.state = SLOT_STATE_PROCESSING;
  1758. slot.command = SLOT_COMMAND_NONE;
  1759. GGML_ASSERT(batch.n_tokens > 0);
  1760. // extract the logits only for the last token
  1761. batch.logits[batch.n_tokens - 1] = true;
  1762. slot.n_decoded = 0;
  1763. slot.i_batch = batch.n_tokens - 1;
  1764. LOG_VERBOSE("prompt done", {
  1765. {"id_slot", slot.id},
  1766. {"n_past", slot.n_past},
  1767. {"n_ctx", n_ctx},
  1768. {"n_tokens", batch.n_tokens},
  1769. });
  1770. }
  1771. }
  1772. if (batch.n_tokens >= n_batch) {
  1773. break;
  1774. }
  1775. }
  1776. }
  1777. if (batch.n_tokens == 0) {
  1778. LOG_VERBOSE("no tokens to decode", {});
  1779. return;
  1780. }
  1781. LOG_VERBOSE("decoding batch", {
  1782. {"n_tokens", batch.n_tokens},
  1783. });
  1784. // process the created batch of tokens
  1785. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  1786. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  1787. for (auto & slot : slots) {
  1788. if (slot.ga_n != 1) {
  1789. // context extension via Self-Extend
  1790. // TODO: simplify and/or abstract this
  1791. while (slot.n_past_se >= slot.ga_i + slot.ga_w) {
  1792. const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
  1793. const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
  1794. const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
  1795. LOG_TEE("\n");
  1796. LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
  1797. LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
  1798. LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
  1799. llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i, slot.n_past_se, ib * bd);
  1800. llama_kv_cache_seq_div(ctx, slot.id + 1, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n);
  1801. llama_kv_cache_seq_add(ctx, slot.id + 1, slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd);
  1802. slot.n_past_se -= bd;
  1803. slot.ga_i += slot.ga_w / slot.ga_n;
  1804. LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
  1805. }
  1806. slot.n_past_se += n_tokens;
  1807. }
  1808. }
  1809. llama_batch batch_view = {
  1810. n_tokens,
  1811. batch.token + i,
  1812. nullptr,
  1813. batch.pos + i,
  1814. batch.n_seq_id + i,
  1815. batch.seq_id + i,
  1816. batch.logits + i,
  1817. 0, 0, 0, // unused
  1818. };
  1819. const int ret = llama_decode(ctx, batch_view);
  1820. if (ret != 0) {
  1821. if (n_batch == 1 || ret < 0) {
  1822. // if you get here, it means the KV cache is full - try increasing it via the context size
  1823. LOG_ERROR("failed to decode the batch: KV cache is full - try increasing it via the context size", {
  1824. {"i", i},
  1825. {"n_batch", ret},
  1826. {"ret", ret},
  1827. });
  1828. for (auto & slot : slots) {
  1829. slot.state = SLOT_STATE_PROCESSING;
  1830. slot.command = SLOT_COMMAND_NONE;
  1831. slot.release();
  1832. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  1833. }
  1834. break; // break loop of n_batch
  1835. }
  1836. // retry with half the batch size to try to find a free slot in the KV cache
  1837. n_batch /= 2;
  1838. i -= n_batch;
  1839. LOG_WARNING("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation", {
  1840. {"i", i},
  1841. {"n_batch", n_batch},
  1842. {"ret", ret},
  1843. });
  1844. continue; // continue loop of n_batch
  1845. }
  1846. for (auto & slot : slots) {
  1847. if (slot.state != SLOT_STATE_PROCESSING || slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  1848. continue; // continue loop of slots
  1849. }
  1850. // prompt evaluated for embedding
  1851. if (slot.embedding) {
  1852. send_embedding(slot, batch_view);
  1853. slot.release();
  1854. slot.i_batch = -1;
  1855. continue; // continue loop of slots
  1856. }
  1857. completion_token_output result;
  1858. const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
  1859. llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
  1860. slot.n_decoded += 1;
  1861. if (slot.n_decoded == 1) {
  1862. slot.t_start_generation = ggml_time_us();
  1863. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  1864. metrics.on_prompt_eval(slot);
  1865. }
  1866. llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
  1867. result.tok = id;
  1868. const size_t n_probs = std::min(cur_p.size, (size_t) slot.sparams.n_probs);
  1869. if (n_probs > 0) {
  1870. const size_t n_valid = slot.ctx_sampling->n_valid;
  1871. // Make sure at least n_probs top tokens are at the front of the vector:
  1872. if (slot.sparams.temp == 0.0f && n_probs > n_valid) {
  1873. llama_sample_top_k(ctx, &cur_p, n_probs, 0);
  1874. }
  1875. if (slot.sparams.temp == 0.0f) {
  1876. // With greedy sampling the probabilities have possibly not been calculated.
  1877. for (size_t i = 0; i < n_probs; ++i) {
  1878. result.probs.push_back({
  1879. cur_p.data[i].id,
  1880. i == 0 ? 1.0f : 0.0f
  1881. });
  1882. }
  1883. } else {
  1884. for (size_t i = 0; i < n_probs; ++i) {
  1885. result.probs.push_back({
  1886. cur_p.data[i].id,
  1887. i >= n_valid ? 0.0f : cur_p.data[i].p // Tokens filtered out due to e.g. top_k have 0 probability.
  1888. });
  1889. }
  1890. }
  1891. }
  1892. if (!process_token(result, slot)) {
  1893. slot.release();
  1894. slot.print_timings();
  1895. send_final_response(slot);
  1896. metrics.on_prediction(slot);
  1897. }
  1898. slot.i_batch = -1;
  1899. }
  1900. }
  1901. LOG_VERBOSE("run slots completed", {});
  1902. }
  1903. json model_meta() const {
  1904. return json {
  1905. {"vocab_type", llama_vocab_type (model)},
  1906. {"n_vocab", llama_n_vocab (model)},
  1907. {"n_ctx_train", llama_n_ctx_train (model)},
  1908. {"n_embd", llama_n_embd (model)},
  1909. {"n_params", llama_model_n_params(model)},
  1910. {"size", llama_model_size (model)},
  1911. };
  1912. }
  1913. };
  1914. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  1915. // skip GH copilot requests when using default port
  1916. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  1917. return;
  1918. }
  1919. LOG_INFO("request", {
  1920. {"remote_addr", req.remote_addr},
  1921. {"remote_port", req.remote_port},
  1922. {"status", res.status},
  1923. {"method", req.method},
  1924. {"path", req.path},
  1925. {"params", req.params},
  1926. });
  1927. LOG_VERBOSE("request", {
  1928. {"request", req.body},
  1929. {"response", res.body},
  1930. });
  1931. }
  1932. std::function<void(int)> shutdown_handler;
  1933. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  1934. inline void signal_handler(int signal) {
  1935. if (is_terminating.test_and_set()) {
  1936. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  1937. // this is for better developer experience, we can remove when the server is stable enough
  1938. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  1939. exit(1);
  1940. }
  1941. shutdown_handler(signal);
  1942. }
  1943. int main(int argc, char ** argv) {
  1944. #if SERVER_VERBOSE != 1
  1945. log_disable();
  1946. #endif
  1947. // own arguments required by this example
  1948. gpt_params params;
  1949. if (!gpt_params_parse(argc, argv, params)) {
  1950. gpt_params_print_usage(argc, argv, params);
  1951. return 1;
  1952. }
  1953. // TODO: not great to use extern vars
  1954. server_log_json = params.log_json;
  1955. server_verbose = params.verbosity > 0;
  1956. // struct that contains llama context and inference
  1957. server_context ctx_server;
  1958. if (!params.system_prompt.empty()) {
  1959. ctx_server.system_prompt_set(params.system_prompt);
  1960. }
  1961. if (params.model_alias == "unknown") {
  1962. params.model_alias = params.model;
  1963. }
  1964. llama_backend_init();
  1965. llama_numa_init(params.numa);
  1966. LOG_INFO("build info", {
  1967. {"build", LLAMA_BUILD_NUMBER},
  1968. {"commit", LLAMA_COMMIT}
  1969. });
  1970. LOG_INFO("system info", {
  1971. {"n_threads", params.n_threads},
  1972. {"n_threads_batch", params.n_threads_batch},
  1973. {"total_threads", std::thread::hardware_concurrency()},
  1974. {"system_info", llama_print_system_info()},
  1975. });
  1976. std::unique_ptr<httplib::Server> svr;
  1977. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  1978. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  1979. LOG_INFO("Running with SSL", {{"key", params.ssl_file_key}, {"cert", params.ssl_file_cert}});
  1980. svr.reset(
  1981. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  1982. );
  1983. } else {
  1984. LOG_INFO("Running without SSL", {});
  1985. svr.reset(new httplib::Server());
  1986. }
  1987. #else
  1988. svr.reset(new httplib::Server());
  1989. #endif
  1990. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  1991. svr->set_default_headers({{"Server", "llama.cpp"}});
  1992. // CORS preflight
  1993. svr->Options(R"(.*)", [](const httplib::Request & req, httplib::Response & res) {
  1994. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  1995. res.set_header("Access-Control-Allow-Credentials", "true");
  1996. res.set_header("Access-Control-Allow-Methods", "POST");
  1997. res.set_header("Access-Control-Allow-Headers", "*");
  1998. return res.set_content("", "application/json; charset=utf-8");
  1999. });
  2000. svr->set_logger(log_server_request);
  2001. auto res_error = [](httplib::Response & res, json error_data) {
  2002. json final_response {{"error", error_data}};
  2003. res.set_content(final_response.dump(), "application/json; charset=utf-8");
  2004. res.status = json_value(error_data, "code", 500);
  2005. };
  2006. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, std::exception_ptr ep) {
  2007. std::string message;
  2008. try {
  2009. std::rethrow_exception(std::move(ep));
  2010. } catch (std::exception & e) {
  2011. message = e.what();
  2012. } catch (...) {
  2013. message = "Unknown Exception";
  2014. }
  2015. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2016. LOG_VERBOSE("Got exception", formatted_error);
  2017. res_error(res, formatted_error);
  2018. });
  2019. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2020. if (res.status == 404) {
  2021. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2022. }
  2023. // for other error codes, we skip processing here because it's already done by res_error()
  2024. });
  2025. // set timeouts and change hostname and port
  2026. svr->set_read_timeout (params.timeout_read);
  2027. svr->set_write_timeout(params.timeout_write);
  2028. if (!svr->bind_to_port(params.hostname, params.port)) {
  2029. fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", params.hostname.c_str(), params.port);
  2030. return 1;
  2031. }
  2032. std::unordered_map<std::string, std::string> log_data;
  2033. log_data["hostname"] = params.hostname;
  2034. log_data["port"] = std::to_string(params.port);
  2035. if (params.api_keys.size() == 1) {
  2036. auto key = params.api_keys[0];
  2037. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2038. } else if (params.api_keys.size() > 1) {
  2039. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2040. }
  2041. // load the model
  2042. if (!ctx_server.load_model(params)) {
  2043. state.store(SERVER_STATE_ERROR);
  2044. return 1;
  2045. } else {
  2046. ctx_server.init();
  2047. state.store(SERVER_STATE_READY);
  2048. }
  2049. LOG_INFO("model loaded", {});
  2050. const auto model_meta = ctx_server.model_meta();
  2051. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  2052. if (params.chat_template.empty()) {
  2053. if (!ctx_server.validate_model_chat_template()) {
  2054. LOG_ERROR("The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
  2055. params.chat_template = "chatml";
  2056. }
  2057. }
  2058. // print sample chat example to make it clear which template is used
  2059. {
  2060. json chat;
  2061. chat.push_back({{"role", "system"}, {"content", "You are a helpful assistant"}});
  2062. chat.push_back({{"role", "user"}, {"content", "Hello"}});
  2063. chat.push_back({{"role", "assistant"}, {"content", "Hi there"}});
  2064. chat.push_back({{"role", "user"}, {"content", "How are you?"}});
  2065. const std::string chat_example = format_chat(ctx_server.model, params.chat_template, chat);
  2066. LOG_INFO("chat template", {
  2067. {"chat_example", chat_example},
  2068. {"built_in", params.chat_template.empty()},
  2069. });
  2070. }
  2071. //
  2072. // Middlewares
  2073. //
  2074. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2075. // TODO: should we apply API key to all endpoints, including "/health" and "/models"?
  2076. static const std::set<std::string> protected_endpoints = {
  2077. "/props",
  2078. "/completion",
  2079. "/completions",
  2080. "/v1/completions",
  2081. "/chat/completions",
  2082. "/v1/chat/completions",
  2083. "/infill",
  2084. "/tokenize",
  2085. "/detokenize",
  2086. "/embedding",
  2087. "/embeddings",
  2088. "/v1/embeddings",
  2089. };
  2090. // If API key is not set, skip validation
  2091. if (params.api_keys.empty()) {
  2092. return true;
  2093. }
  2094. // If path is not in protected_endpoints list, skip validation
  2095. if (protected_endpoints.find(req.path) == protected_endpoints.end()) {
  2096. return true;
  2097. }
  2098. // Check for API key in the header
  2099. auto auth_header = req.get_header_value("Authorization");
  2100. std::string prefix = "Bearer ";
  2101. if (auth_header.substr(0, prefix.size()) == prefix) {
  2102. std::string received_api_key = auth_header.substr(prefix.size());
  2103. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2104. return true; // API key is valid
  2105. }
  2106. }
  2107. // API key is invalid or not provided
  2108. // TODO: make another middleware for CORS related logic
  2109. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2110. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2111. LOG_WARNING("Unauthorized: Invalid API Key", {});
  2112. return false;
  2113. };
  2114. // register server middlewares
  2115. svr->set_pre_routing_handler([&middleware_validate_api_key](const httplib::Request & req, httplib::Response & res) {
  2116. if (!middleware_validate_api_key(req, res)) {
  2117. return httplib::Server::HandlerResponse::Handled;
  2118. }
  2119. return httplib::Server::HandlerResponse::Unhandled;
  2120. });
  2121. //
  2122. // Route handlers (or controllers)
  2123. //
  2124. const auto handle_health = [&](const httplib::Request & req, httplib::Response & res) {
  2125. server_state current_state = state.load();
  2126. switch (current_state) {
  2127. case SERVER_STATE_READY:
  2128. {
  2129. // request slots data using task queue
  2130. server_task task;
  2131. task.id = ctx_server.queue_tasks.get_new_id();
  2132. task.type = SERVER_TASK_TYPE_METRICS;
  2133. task.id_target = -1;
  2134. ctx_server.queue_results.add_waiting_task_id(task.id);
  2135. ctx_server.queue_tasks.post(task);
  2136. // get the result
  2137. server_task_result result = ctx_server.queue_results.recv(task.id);
  2138. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2139. const int n_idle_slots = result.data.at("idle");
  2140. const int n_processing_slots = result.data.at("processing");
  2141. json health = {
  2142. {"status", "ok"},
  2143. {"slots_idle", n_idle_slots},
  2144. {"slots_processing", n_processing_slots}
  2145. };
  2146. res.status = 200; // HTTP OK
  2147. if (params.endpoint_slots && req.has_param("include_slots")) {
  2148. health["slots"] = result.data.at("slots");
  2149. }
  2150. if (n_idle_slots == 0) {
  2151. health["status"] = "no slot available";
  2152. if (req.has_param("fail_on_no_slot")) {
  2153. res.status = 503; // HTTP Service Unavailable
  2154. }
  2155. }
  2156. res.set_content(health.dump(), "application/json");
  2157. break;
  2158. }
  2159. case SERVER_STATE_LOADING_MODEL:
  2160. {
  2161. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2162. } break;
  2163. case SERVER_STATE_ERROR:
  2164. {
  2165. res_error(res, format_error_response("Model failed to load", ERROR_TYPE_SERVER));
  2166. } break;
  2167. }
  2168. };
  2169. const auto handle_slots = [&](const httplib::Request &, httplib::Response & res) {
  2170. if (!params.endpoint_slots) {
  2171. res_error(res, format_error_response("This server does not support slots endpoint.", ERROR_TYPE_NOT_SUPPORTED));
  2172. return;
  2173. }
  2174. // request slots data using task queue
  2175. server_task task;
  2176. task.id = ctx_server.queue_tasks.get_new_id();
  2177. task.id_multi = -1;
  2178. task.id_target = -1;
  2179. task.type = SERVER_TASK_TYPE_METRICS;
  2180. ctx_server.queue_results.add_waiting_task_id(task.id);
  2181. ctx_server.queue_tasks.post(task);
  2182. // get the result
  2183. server_task_result result = ctx_server.queue_results.recv(task.id);
  2184. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2185. res.set_content(result.data.at("slots").dump(), "application/json");
  2186. res.status = 200; // HTTP OK
  2187. };
  2188. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2189. if (!params.endpoint_metrics) {
  2190. res_error(res, format_error_response("This server does not support metrics endpoint.", ERROR_TYPE_NOT_SUPPORTED));
  2191. return;
  2192. }
  2193. // request slots data using task queue
  2194. server_task task;
  2195. task.id = ctx_server.queue_tasks.get_new_id();
  2196. task.id_multi = -1;
  2197. task.id_target = -1;
  2198. task.type = SERVER_TASK_TYPE_METRICS;
  2199. task.data.push_back({{"reset_bucket", true}});
  2200. ctx_server.queue_results.add_waiting_task_id(task.id);
  2201. ctx_server.queue_tasks.post(task);
  2202. // get the result
  2203. server_task_result result = ctx_server.queue_results.recv(task.id);
  2204. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2205. json data = result.data;
  2206. const uint64_t n_prompt_tokens_processed = data.at("n_prompt_tokens_processed");
  2207. const uint64_t t_prompt_processing = data.at("t_prompt_processing");
  2208. const uint64_t n_tokens_predicted = data.at("n_tokens_predicted");
  2209. const uint64_t t_tokens_generation = data.at("t_tokens_generation");
  2210. const int32_t kv_cache_used_cells = data.at("kv_cache_used_cells");
  2211. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2212. json all_metrics_def = json {
  2213. {"counter", {{
  2214. {"name", "prompt_tokens_total"},
  2215. {"help", "Number of prompt tokens processed."},
  2216. {"value", (uint64_t) data.at("n_prompt_tokens_processed_total")}
  2217. }, {
  2218. {"name", "prompt_seconds_total"},
  2219. {"help", "Prompt process time"},
  2220. {"value", (uint64_t) data.at("t_prompt_processing_total") / 1.e3}
  2221. }, {
  2222. {"name", "tokens_predicted_total"},
  2223. {"help", "Number of generation tokens processed."},
  2224. {"value", (uint64_t) data.at("n_tokens_predicted_total")}
  2225. }, {
  2226. {"name", "tokens_predicted_seconds_total"},
  2227. {"help", "Predict process time"},
  2228. {"value", (uint64_t) data.at("t_tokens_generation_total") / 1.e3}
  2229. }}},
  2230. {"gauge", {{
  2231. {"name", "prompt_tokens_seconds"},
  2232. {"help", "Average prompt throughput in tokens/s."},
  2233. {"value", n_prompt_tokens_processed ? 1.e3 / t_prompt_processing * n_prompt_tokens_processed : 0.}
  2234. },{
  2235. {"name", "predicted_tokens_seconds"},
  2236. {"help", "Average generation throughput in tokens/s."},
  2237. {"value", n_tokens_predicted ? 1.e3 / t_tokens_generation * n_tokens_predicted : 0.}
  2238. },{
  2239. {"name", "kv_cache_usage_ratio"},
  2240. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2241. {"value", 1. * kv_cache_used_cells / params.n_ctx}
  2242. },{
  2243. {"name", "kv_cache_tokens"},
  2244. {"help", "KV-cache tokens."},
  2245. {"value", (uint64_t) data.at("kv_cache_tokens_count")}
  2246. },{
  2247. {"name", "requests_processing"},
  2248. {"help", "Number of request processing."},
  2249. {"value", (uint64_t) data.at("processing")}
  2250. },{
  2251. {"name", "requests_deferred"},
  2252. {"help", "Number of request deferred."},
  2253. {"value", (uint64_t) data.at("deferred")}
  2254. }}}
  2255. };
  2256. std::stringstream prometheus;
  2257. for (const auto & el : all_metrics_def.items()) {
  2258. const auto & type = el.key();
  2259. const auto & metrics_def = el.value();
  2260. for (const auto & metric_def : metrics_def) {
  2261. const std::string name = metric_def.at("name");
  2262. const std::string help = metric_def.at("help");
  2263. auto value = json_value(metric_def, "value", 0.);
  2264. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2265. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2266. << "llamacpp:" << name << " " << value << "\n";
  2267. }
  2268. }
  2269. const int64_t t_start = data.at("t_start");
  2270. res.set_header("Process-Start-Time-Unix", std::to_string(t_start));
  2271. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2272. res.status = 200; // HTTP OK
  2273. };
  2274. const auto handle_slots_save = [&ctx_server, &res_error, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2275. json request_data = json::parse(req.body);
  2276. std::string filename = request_data.at("filename");
  2277. if (!fs_validate_filename(filename)) {
  2278. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2279. return;
  2280. }
  2281. std::string filepath = params.slot_save_path + filename;
  2282. server_task task;
  2283. task.type = SERVER_TASK_TYPE_SLOT_SAVE;
  2284. task.data = {
  2285. { "id_slot", id_slot },
  2286. { "filename", filename },
  2287. { "filepath", filepath }
  2288. };
  2289. const int id_task = ctx_server.queue_tasks.post(task);
  2290. ctx_server.queue_results.add_waiting_task_id(id_task);
  2291. server_task_result result = ctx_server.queue_results.recv(id_task);
  2292. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2293. if (result.error) {
  2294. res_error(res, result.data);
  2295. } else {
  2296. res.set_content(result.data.dump(), "application/json");
  2297. }
  2298. };
  2299. const auto handle_slots_restore = [&ctx_server, &res_error, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2300. json request_data = json::parse(req.body);
  2301. std::string filename = request_data.at("filename");
  2302. if (!fs_validate_filename(filename)) {
  2303. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2304. return;
  2305. }
  2306. std::string filepath = params.slot_save_path + filename;
  2307. server_task task;
  2308. task.type = SERVER_TASK_TYPE_SLOT_RESTORE;
  2309. task.data = {
  2310. { "id_slot", id_slot },
  2311. { "filename", filename },
  2312. { "filepath", filepath }
  2313. };
  2314. const int id_task = ctx_server.queue_tasks.post(task);
  2315. ctx_server.queue_results.add_waiting_task_id(id_task);
  2316. server_task_result result = ctx_server.queue_results.recv(id_task);
  2317. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2318. if (result.error) {
  2319. res_error(res, result.data);
  2320. } else {
  2321. res.set_content(result.data.dump(), "application/json");
  2322. }
  2323. };
  2324. const auto handle_slots_erase = [&ctx_server, &res_error](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2325. server_task task;
  2326. task.type = SERVER_TASK_TYPE_SLOT_ERASE;
  2327. task.data = {
  2328. { "id_slot", id_slot },
  2329. };
  2330. const int id_task = ctx_server.queue_tasks.post(task);
  2331. ctx_server.queue_results.add_waiting_task_id(id_task);
  2332. server_task_result result = ctx_server.queue_results.recv(id_task);
  2333. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2334. if (result.error) {
  2335. res_error(res, result.data);
  2336. } else {
  2337. res.set_content(result.data.dump(), "application/json");
  2338. }
  2339. };
  2340. const auto handle_slots_action = [&res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2341. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2342. std::string id_slot_str = req.path_params.at("id_slot");
  2343. int id_slot;
  2344. try {
  2345. id_slot = std::stoi(id_slot_str);
  2346. } catch (const std::exception &) {
  2347. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2348. return;
  2349. }
  2350. std::string action = req.get_param_value("action");
  2351. if (action == "save") {
  2352. handle_slots_save(req, res, id_slot);
  2353. } else if (action == "restore") {
  2354. handle_slots_restore(req, res, id_slot);
  2355. } else if (action == "erase") {
  2356. handle_slots_erase(req, res, id_slot);
  2357. } else {
  2358. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2359. }
  2360. };
  2361. const auto handle_props = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
  2362. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2363. json data = {
  2364. { "system_prompt", ctx_server.system_prompt.c_str() },
  2365. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2366. { "total_slots", ctx_server.params.n_parallel }
  2367. };
  2368. res.set_content(data.dump(), "application/json; charset=utf-8");
  2369. };
  2370. const auto handle_completions = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
  2371. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2372. json data = json::parse(req.body);
  2373. const int id_task = ctx_server.queue_tasks.get_new_id();
  2374. ctx_server.queue_results.add_waiting_task_id(id_task);
  2375. ctx_server.request_completion(id_task, -1, data, false, false);
  2376. if (!json_value(data, "stream", false)) {
  2377. server_task_result result = ctx_server.queue_results.recv(id_task);
  2378. if (!result.error && result.stop) {
  2379. res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
  2380. } else {
  2381. res_error(res, result.data);
  2382. }
  2383. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2384. } else {
  2385. const auto chunked_content_provider = [id_task, &ctx_server](size_t, httplib::DataSink & sink) {
  2386. while (true) {
  2387. server_task_result result = ctx_server.queue_results.recv(id_task);
  2388. if (!result.error) {
  2389. const std::string str =
  2390. "data: " +
  2391. result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
  2392. "\n\n";
  2393. LOG_VERBOSE("data stream", {
  2394. { "to_send", str }
  2395. });
  2396. if (!sink.write(str.c_str(), str.size())) {
  2397. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2398. return false;
  2399. }
  2400. if (result.stop) {
  2401. break;
  2402. }
  2403. } else {
  2404. const std::string str =
  2405. "error: " +
  2406. result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
  2407. "\n\n";
  2408. LOG_VERBOSE("data stream", {
  2409. { "to_send", str }
  2410. });
  2411. if (!sink.write(str.c_str(), str.size())) {
  2412. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2413. return false;
  2414. }
  2415. break;
  2416. }
  2417. }
  2418. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2419. sink.done();
  2420. return true;
  2421. };
  2422. auto on_complete = [id_task, &ctx_server] (bool) {
  2423. // cancel
  2424. ctx_server.request_cancel(id_task);
  2425. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2426. };
  2427. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2428. }
  2429. };
  2430. const auto handle_models = [&params, &model_meta](const httplib::Request & req, httplib::Response & res) {
  2431. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2432. json models = {
  2433. {"object", "list"},
  2434. {"data", {
  2435. {
  2436. {"id", params.model_alias},
  2437. {"object", "model"},
  2438. {"created", std::time(0)},
  2439. {"owned_by", "llamacpp"},
  2440. {"meta", model_meta}
  2441. },
  2442. }}
  2443. };
  2444. res.set_content(models.dump(), "application/json; charset=utf-8");
  2445. };
  2446. const auto handle_chat_completions = [&ctx_server, &params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2447. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2448. json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  2449. const int id_task = ctx_server.queue_tasks.get_new_id();
  2450. ctx_server.queue_results.add_waiting_task_id(id_task);
  2451. ctx_server.request_completion(id_task, -1, data, false, false);
  2452. const auto completion_id = gen_chatcmplid();
  2453. if (!json_value(data, "stream", false)) {
  2454. server_task_result result = ctx_server.queue_results.recv(id_task);
  2455. if (!result.error && result.stop) {
  2456. json result_oai = format_final_response_oaicompat(data, result.data, completion_id);
  2457. res.set_content(result_oai.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
  2458. } else {
  2459. res_error(res, result.data);
  2460. }
  2461. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2462. } else {
  2463. const auto chunked_content_provider = [id_task, &ctx_server, completion_id](size_t, httplib::DataSink & sink) {
  2464. while (true) {
  2465. server_task_result result = ctx_server.queue_results.recv(id_task);
  2466. if (!result.error) {
  2467. std::vector<json> result_array = format_partial_response_oaicompat(result.data, completion_id);
  2468. for (auto it = result_array.begin(); it != result_array.end(); ++it) {
  2469. if (!it->empty()) {
  2470. const std::string str =
  2471. "data: " +
  2472. it->dump(-1, ' ', false, json::error_handler_t::replace) +
  2473. "\n\n";
  2474. LOG_VERBOSE("data stream", {{"to_send", str}});
  2475. if (!sink.write(str.c_str(), str.size())) {
  2476. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2477. return false;
  2478. }
  2479. }
  2480. }
  2481. if (result.stop) {
  2482. break;
  2483. }
  2484. } else {
  2485. const std::string str =
  2486. "error: " +
  2487. result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
  2488. "\n\n";
  2489. LOG_VERBOSE("data stream", {{"to_send", str}});
  2490. if (!sink.write(str.c_str(), str.size())) {
  2491. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2492. return false;
  2493. }
  2494. break;
  2495. }
  2496. }
  2497. sink.done();
  2498. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2499. return true;
  2500. };
  2501. auto on_complete = [id_task, &ctx_server](bool) {
  2502. // cancel request
  2503. ctx_server.request_cancel(id_task);
  2504. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2505. };
  2506. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2507. }
  2508. };
  2509. const auto handle_infill = [&ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
  2510. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2511. json data = json::parse(req.body);
  2512. const int id_task = ctx_server.queue_tasks.get_new_id();
  2513. ctx_server.queue_results.add_waiting_task_id(id_task);
  2514. ctx_server.request_completion(id_task, -1, data, true, false);
  2515. if (!json_value(data, "stream", false)) {
  2516. server_task_result result = ctx_server.queue_results.recv(id_task);
  2517. if (!result.error && result.stop) {
  2518. res.set_content(result.data.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
  2519. } else {
  2520. res_error(res, result.data);
  2521. }
  2522. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2523. } else {
  2524. const auto chunked_content_provider = [id_task, &ctx_server](size_t, httplib::DataSink & sink) {
  2525. while (true) {
  2526. server_task_result result = ctx_server.queue_results.recv(id_task);
  2527. if (!result.error) {
  2528. const std::string str =
  2529. "data: " +
  2530. result.data.dump(-1, ' ', false, json::error_handler_t::replace) +
  2531. "\n\n";
  2532. LOG_VERBOSE("data stream", {
  2533. { "to_send", str }
  2534. });
  2535. if (!sink.write(str.c_str(), str.size())) {
  2536. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2537. return false;
  2538. }
  2539. if (result.stop) {
  2540. break;
  2541. }
  2542. } else {
  2543. break;
  2544. }
  2545. }
  2546. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2547. sink.done();
  2548. return true;
  2549. };
  2550. auto on_complete = [id_task, &ctx_server] (bool) {
  2551. ctx_server.request_cancel(id_task);
  2552. };
  2553. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2554. }
  2555. };
  2556. const auto handle_tokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
  2557. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2558. const json body = json::parse(req.body);
  2559. std::vector<llama_token> tokens;
  2560. if (body.count("content") != 0) {
  2561. const bool add_special = json_value(body, "add_special", false);
  2562. tokens = ctx_server.tokenize(body.at("content"), add_special);
  2563. }
  2564. const json data = format_tokenizer_response(tokens);
  2565. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2566. };
  2567. const auto handle_detokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
  2568. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2569. const json body = json::parse(req.body);
  2570. std::string content;
  2571. if (body.count("tokens") != 0) {
  2572. const std::vector<llama_token> tokens = body.at("tokens");
  2573. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  2574. }
  2575. const json data = format_detokenized_response(content);
  2576. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2577. };
  2578. const auto handle_embeddings = [&params, &ctx_server, &res_error](const httplib::Request & req, httplib::Response & res) {
  2579. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2580. if (!params.embedding) {
  2581. res.status = 501;
  2582. res.set_content("This server does not support embeddings. Start it with `--embeddings`", "text/plain; charset=utf-8");
  2583. return;
  2584. }
  2585. const json body = json::parse(req.body);
  2586. bool is_openai = false;
  2587. // an input prompt can be a string or a list of tokens (integer)
  2588. json prompt;
  2589. if (body.count("input") != 0) {
  2590. is_openai = true;
  2591. prompt = body.at("input");
  2592. } else if (body.count("content") != 0) {
  2593. // with "content", we only support single prompt
  2594. prompt = std::vector<std::string>{body.at("content")};
  2595. } else {
  2596. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  2597. return;
  2598. }
  2599. // create and queue the task
  2600. json responses;
  2601. {
  2602. const int id_task = ctx_server.queue_tasks.get_new_id();
  2603. ctx_server.queue_results.add_waiting_task_id(id_task);
  2604. ctx_server.request_completion(id_task, -1, {{"prompt", prompt}}, false, true);
  2605. // get the result
  2606. server_task_result result = ctx_server.queue_results.recv(id_task);
  2607. ctx_server.queue_results.remove_waiting_task_id(id_task);
  2608. if (!result.error) {
  2609. if (result.data.count("results")) {
  2610. // result for multi-task
  2611. responses = result.data.at("results");
  2612. } else {
  2613. // result for single task
  2614. responses = std::vector<json>{result.data};
  2615. }
  2616. } else {
  2617. // error received, ignore everything else
  2618. res_error(res, result.data);
  2619. return;
  2620. }
  2621. }
  2622. // write JSON response
  2623. json root = is_openai
  2624. ? format_embeddings_response_oaicompat(body, responses)
  2625. : responses[0];
  2626. return res.set_content(root.dump(), "application/json; charset=utf-8");
  2627. };
  2628. auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
  2629. return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
  2630. res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
  2631. return false;
  2632. };
  2633. };
  2634. //
  2635. // Router
  2636. //
  2637. // register static assets routes
  2638. if (!params.public_path.empty()) {
  2639. // Set the base directory for serving static files
  2640. svr->set_base_dir(params.public_path);
  2641. }
  2642. // using embedded static files
  2643. svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
  2644. svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
  2645. svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
  2646. svr->Get("/json-schema-to-grammar.mjs", handle_static_file(json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
  2647. // add new-ui files
  2648. svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8"));
  2649. svr->Get("/style.css", handle_static_file(style_css, style_css_len, "text/css; charset=utf-8"));
  2650. svr->Get("/theme-beeninorder.css", handle_static_file(theme_beeninorder_css, theme_beeninorder_css_len, "text/css; charset=utf-8"));
  2651. svr->Get("/theme-ketivah.css", handle_static_file(theme_ketivah_css, theme_ketivah_css_len, "text/css; charset=utf-8"));
  2652. svr->Get("/theme-mangotango.css", handle_static_file(theme_mangotango_css, theme_mangotango_css_len, "text/css; charset=utf-8"));
  2653. svr->Get("/theme-playground.css", handle_static_file(theme_playground_css, theme_playground_css_len, "text/css; charset=utf-8"));
  2654. svr->Get("/theme-polarnight.css", handle_static_file(theme_polarnight_css, theme_polarnight_css_len, "text/css; charset=utf-8"));
  2655. svr->Get("/theme-snowstorm.css", handle_static_file(theme_snowstorm_css, theme_snowstorm_css_len, "text/css; charset=utf-8"));
  2656. svr->Get("/index-new.html", handle_static_file(index_new_html, index_new_html_len, "text/html; charset=utf-8"));
  2657. svr->Get("/system-prompts.js", handle_static_file(system_prompts_js, system_prompts_js_len, "text/javascript; charset=utf-8"));
  2658. svr->Get("/prompt-formats.js", handle_static_file(prompt_formats_js, prompt_formats_js_len, "text/javascript; charset=utf-8"));
  2659. // register API routes
  2660. svr->Get ("/health", handle_health);
  2661. svr->Get ("/slots", handle_slots);
  2662. svr->Get ("/metrics", handle_metrics);
  2663. svr->Get ("/props", handle_props);
  2664. svr->Get ("/v1/models", handle_models);
  2665. svr->Post("/completion", handle_completions); // legacy
  2666. svr->Post("/completions", handle_completions);
  2667. svr->Post("/v1/completions", handle_completions);
  2668. svr->Post("/chat/completions", handle_chat_completions);
  2669. svr->Post("/v1/chat/completions", handle_chat_completions);
  2670. svr->Post("/infill", handle_infill);
  2671. svr->Post("/embedding", handle_embeddings); // legacy
  2672. svr->Post("/embeddings", handle_embeddings);
  2673. svr->Post("/v1/embeddings", handle_embeddings);
  2674. svr->Post("/tokenize", handle_tokenize);
  2675. svr->Post("/detokenize", handle_detokenize);
  2676. if (!params.slot_save_path.empty()) {
  2677. // only enable slot endpoints if slot_save_path is set
  2678. svr->Post("/slots/:id_slot", handle_slots_action);
  2679. }
  2680. //
  2681. // Start the server
  2682. //
  2683. if (params.n_threads_http < 1) {
  2684. // +2 threads for monitoring endpoints
  2685. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  2686. }
  2687. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  2688. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  2689. LOG_INFO("HTTP server listening", log_data);
  2690. // run the HTTP server in a thread - see comment below
  2691. std::thread t([&]() {
  2692. if (!svr->listen_after_bind()) {
  2693. state.store(SERVER_STATE_ERROR);
  2694. return 1;
  2695. }
  2696. return 0;
  2697. });
  2698. ctx_server.queue_tasks.on_new_task(std::bind(
  2699. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  2700. ctx_server.queue_tasks.on_finish_multitask(std::bind(
  2701. &server_context::on_finish_multitask, &ctx_server, std::placeholders::_1));
  2702. ctx_server.queue_tasks.on_update_slots(std::bind(
  2703. &server_context::update_slots, &ctx_server));
  2704. ctx_server.queue_results.on_multitask_update(std::bind(
  2705. &server_queue::update_multitask,
  2706. &ctx_server.queue_tasks,
  2707. std::placeholders::_1,
  2708. std::placeholders::_2,
  2709. std::placeholders::_3
  2710. ));
  2711. shutdown_handler = [&](int) {
  2712. ctx_server.queue_tasks.terminate();
  2713. };
  2714. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  2715. struct sigaction sigint_action;
  2716. sigint_action.sa_handler = signal_handler;
  2717. sigemptyset (&sigint_action.sa_mask);
  2718. sigint_action.sa_flags = 0;
  2719. sigaction(SIGINT, &sigint_action, NULL);
  2720. sigaction(SIGTERM, &sigint_action, NULL);
  2721. #elif defined (_WIN32)
  2722. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  2723. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  2724. };
  2725. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  2726. #endif
  2727. ctx_server.queue_tasks.start_loop();
  2728. svr->stop();
  2729. t.join();
  2730. llama_backend_free();
  2731. return 0;
  2732. }