tensor_mapping.py 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv
  27. ),
  28. # Token type embeddings
  29. MODEL_TENSOR.TOKEN_TYPES: (
  30. "embeddings.token_type_embeddings", # bert nomic-bert
  31. ),
  32. # Normalization of token embeddings
  33. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  34. "word_embeddings_layernorm", # bloom
  35. "embeddings.LayerNorm", # bert
  36. "emb_ln", # nomic-bert
  37. "transformer.norm", # openelm
  38. "rwkv.blocks.0.pre_ln", # rwkv
  39. "backbone.norm", # wavtokenizer
  40. ),
  41. # Position embeddings
  42. MODEL_TENSOR.POS_EMBD: (
  43. "transformer.wpe", # gpt2
  44. "embeddings.position_embeddings", # bert
  45. "wpe", # gpt2
  46. ),
  47. # Output
  48. MODEL_TENSOR.OUTPUT: (
  49. "embed_out", # gptneox
  50. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2
  51. "output", # llama-pth bloom internlm2
  52. "word_embeddings_for_head", # persimmon
  53. "lm_head.linear", # phi2
  54. "output_layer", # chatglm
  55. "head", # rwkv
  56. "head.out", # wavtokenizer
  57. ),
  58. # Output norm
  59. MODEL_TENSOR.OUTPUT_NORM: (
  60. "gpt_neox.final_layer_norm", # gptneox
  61. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  62. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2
  63. "norm", # llama-pth
  64. "transformer.norm_f", # mpt dbrx
  65. "ln_f", # refact bloom qwen gpt2
  66. "language_model.encoder.final_layernorm", # persimmon
  67. "model.final_layernorm", # persimmon
  68. "lm_head.ln", # phi2
  69. "model.norm_f", # mamba-qbert
  70. "backbone.norm_f", # mamba
  71. "transformer.rms_norm", # Grok
  72. "encoder.final_layernorm", # chatglm
  73. "transformer.norm", # openelm
  74. "model.norm", # nemotron
  75. "rwkv.ln_out", # rwkv
  76. "backbone.final_layer_norm", # wavtokenizer
  77. ),
  78. # Rope frequencies
  79. MODEL_TENSOR.ROPE_FREQS: (
  80. "rope.freqs", # llama-pth
  81. "rotary_pos_emb.inv_freq", # chatglm
  82. ),
  83. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  84. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  85. MODEL_TENSOR.CONV1D: (
  86. "backbone.embed", # roberta
  87. ),
  88. }
  89. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  90. # Attention norm
  91. MODEL_TENSOR.ATTN_NORM: (
  92. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  93. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  94. "transformer.blocks.{bid}.norm_1", # mpt
  95. "transformer.h.{bid}.input_layernorm", # falcon7b
  96. "h.{bid}.input_layernorm", # bloom
  97. "transformer.h.{bid}.ln_mlp", # falcon40b
  98. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe
  99. "layers.{bid}.attention_norm", # llama-pth
  100. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  101. "model.layers.{bid}.ln1", # yi
  102. "h.{bid}.ln_1", # gpt2
  103. "transformer.h.{bid}.ln", # phi2
  104. "model.layers.layers.{bid}.norm", # plamo
  105. "model.layers.{bid}.attention_norm", # internlm2
  106. "model.layers.{bid}.norm", # mamba-qbert
  107. "backbone.layers.{bid}.norm", # mamba
  108. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  109. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  110. "encoder.layers.{bid}.input_layernorm", # chatglm
  111. "transformer.layers.{bid}.attn_norm", # openelm
  112. "rwkv.blocks.{bid}.ln1", # rwkv
  113. ),
  114. # Attention norm 2
  115. MODEL_TENSOR.ATTN_NORM_2: (
  116. "transformer.h.{bid}.ln_attn", # falcon40b
  117. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  118. "rwkv.blocks.{bid}.ln2", # rwkv
  119. ),
  120. # Attention query-key-value
  121. MODEL_TENSOR.ATTN_QKV: (
  122. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  123. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  124. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  125. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  126. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  127. "h.{bid}.self_attention.query_key_value", # bloom
  128. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  129. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  130. "h.{bid}.attn.c_attn", # gpt2
  131. "transformer.h.{bid}.mixer.Wqkv", # phi2
  132. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  133. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  134. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  135. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  136. ),
  137. # Attention query
  138. MODEL_TENSOR.ATTN_Q: (
  139. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2
  140. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  141. "layers.{bid}.attention.wq", # llama-pth
  142. "encoder.layer.{bid}.attention.self.query", # bert
  143. "transformer.h.{bid}.attn.q_proj", # gpt-j
  144. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  145. "model.layers.{bid}.attention.wq", # internlm2
  146. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  147. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  148. ),
  149. # Attention key
  150. MODEL_TENSOR.ATTN_K: (
  151. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2
  152. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  153. "layers.{bid}.attention.wk", # llama-pth
  154. "encoder.layer.{bid}.attention.self.key", # bert
  155. "transformer.h.{bid}.attn.k_proj", # gpt-j
  156. "transformer.h.{bid}.attn.k", # refact
  157. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  158. "model.layers.{bid}.attention.wk", # internlm2
  159. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  160. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  161. ),
  162. # Attention value
  163. MODEL_TENSOR.ATTN_V: (
  164. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2
  165. "layers.{bid}.attention.wv", # llama-pth
  166. "encoder.layer.{bid}.attention.self.value", # bert
  167. "transformer.h.{bid}.attn.v_proj", # gpt-j
  168. "transformer.h.{bid}.attn.v", # refact
  169. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  170. "model.layers.{bid}.attention.wv", # internlm2
  171. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  172. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  173. ),
  174. # Attention output
  175. MODEL_TENSOR.ATTN_OUT: (
  176. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  177. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  178. "transformer.blocks.{bid}.attn.out_proj", # mpt
  179. "transformer.h.{bid}.self_attention.dense", # falcon
  180. "h.{bid}.self_attention.dense", # bloom
  181. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2
  182. "model.layers.{bid}.self_attn.linear_attn", # deci
  183. "layers.{bid}.attention.wo", # llama-pth
  184. "encoder.layer.{bid}.attention.output.dense", # bert
  185. "transformer.h.{bid}.attn.out_proj", # gpt-j
  186. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  187. "model.layers.{bid}.self_attn.dense", # persimmon
  188. "h.{bid}.attn.c_proj", # gpt2
  189. "transformer.h.{bid}.mixer.out_proj", # phi2
  190. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  191. "model.layers.{bid}.attention.wo", # internlm2
  192. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  193. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  194. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  195. "encoder.layers.{bid}.self_attention.dense", # chatglm
  196. "transformer.layers.{bid}.attn.out_proj", # openelm
  197. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  198. ),
  199. # Attention output norm
  200. MODEL_TENSOR.ATTN_OUT_NORM: (
  201. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  202. "encoder.layers.{bid}.norm1", # nomic-bert
  203. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  204. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  205. ),
  206. MODEL_TENSOR.ATTN_POST_NORM: (
  207. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2
  208. ),
  209. # Rotary embeddings
  210. MODEL_TENSOR.ATTN_ROT_EMBD: (
  211. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  212. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  213. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  214. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  215. ),
  216. # Feed-forward norm
  217. MODEL_TENSOR.FFN_NORM: (
  218. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  219. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  220. "h.{bid}.post_attention_layernorm", # bloom
  221. "transformer.blocks.{bid}.norm_2", # mpt
  222. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe
  223. "layers.{bid}.ffn_norm", # llama-pth
  224. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  225. "model.layers.{bid}.ln2", # yi
  226. "h.{bid}.ln_2", # gpt2
  227. "model.layers.{bid}.ffn_norm", # internlm2
  228. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  229. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  230. "transformer.layers.{bid}.ffn_norm", # openelm
  231. ),
  232. # Post feed-forward norm
  233. MODEL_TENSOR.FFN_PRE_NORM: (
  234. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  235. ),
  236. # Post feed-forward norm
  237. MODEL_TENSOR.FFN_POST_NORM: (
  238. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  239. ),
  240. MODEL_TENSOR.FFN_GATE_INP: (
  241. "layers.{bid}.feed_forward.gate", # mixtral
  242. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  243. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  244. "transformer.decoder_layer.{bid}.router", # Grok
  245. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  246. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  247. ),
  248. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  249. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  250. ),
  251. # Feed-forward up
  252. MODEL_TENSOR.FFN_UP: (
  253. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  254. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  255. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  256. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  257. "h.{bid}.mlp.dense_h_to_4h", # bloom
  258. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  259. "layers.{bid}.feed_forward.w3", # llama-pth
  260. "encoder.layer.{bid}.intermediate.dense", # bert
  261. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  262. "transformer.h.{bid}.mlp.linear_3", # refact
  263. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  264. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  265. "transformer.h.{bid}.mlp.w1", # qwen
  266. "h.{bid}.mlp.c_fc", # gpt2
  267. "transformer.h.{bid}.mlp.fc1", # phi2
  268. "model.layers.{bid}.mlp.fc1", # phi2
  269. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  270. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  271. "model.layers.{bid}.feed_forward.w3", # internlm2
  272. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  273. "model.layers.{bid}.mlp.c_fc", # starcoder2
  274. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  275. "model.layers.{bid}.residual_mlp.w3", # arctic
  276. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  277. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  278. ),
  279. MODEL_TENSOR.FFN_UP_EXP: (
  280. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  281. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  282. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  283. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  284. ),
  285. MODEL_TENSOR.FFN_UP_SHEXP: (
  286. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  287. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  288. ),
  289. # AWQ-activation gate
  290. MODEL_TENSOR.FFN_ACT: (
  291. "transformer.blocks.{bid}.ffn.act", # mpt
  292. ),
  293. # Feed-forward gate
  294. MODEL_TENSOR.FFN_GATE: (
  295. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  296. "layers.{bid}.feed_forward.w1", # llama-pth
  297. "transformer.h.{bid}.mlp.w2", # qwen
  298. "transformer.h.{bid}.mlp.c_fc2", # jais
  299. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  300. "model.layers.{bid}.feed_forward.w1", # internlm2
  301. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  302. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  303. "transformer.h.{bid}.mlp.linear_1", # refact
  304. "model.layers.{bid}.residual_mlp.w1", # arctic
  305. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  306. ),
  307. MODEL_TENSOR.FFN_GATE_EXP: (
  308. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  309. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  310. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  311. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  312. ),
  313. MODEL_TENSOR.FFN_GATE_SHEXP: (
  314. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  315. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  316. ),
  317. # Feed-forward down
  318. MODEL_TENSOR.FFN_DOWN: (
  319. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  320. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  321. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  322. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  323. "h.{bid}.mlp.dense_4h_to_h", # bloom
  324. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  325. "layers.{bid}.feed_forward.w2", # llama-pth
  326. "encoder.layer.{bid}.output.dense", # bert
  327. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  328. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  329. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  330. "h.{bid}.mlp.c_proj", # gpt2
  331. "transformer.h.{bid}.mlp.fc2", # phi2
  332. "model.layers.{bid}.mlp.fc2", # phi2
  333. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  334. "model.layers.{bid}.feed_forward.w2", # internlm2
  335. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  336. "model.layers.{bid}.mlp.c_proj", # starcoder2
  337. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  338. "transformer.layers.{bid}.ffn.proj_2", # openelm
  339. "model.layers.{bid}.residual_mlp.w2", # arctic
  340. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  341. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  342. "model.layers.h.{bid}.mlp.c_proj", # exaone
  343. ),
  344. MODEL_TENSOR.FFN_DOWN_EXP: (
  345. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  346. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  347. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  348. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  349. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  350. ),
  351. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  352. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  353. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  354. ),
  355. MODEL_TENSOR.ATTN_Q_NORM: (
  356. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  357. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  358. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  359. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  360. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  361. "transformer.layers.{bid}.attn.q_norm", # openelm
  362. ),
  363. MODEL_TENSOR.ATTN_K_NORM: (
  364. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  365. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  366. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  367. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  368. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  369. "transformer.layers.{bid}.attn.k_norm", # openelm
  370. ),
  371. MODEL_TENSOR.ROPE_FREQS: (
  372. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  373. ),
  374. MODEL_TENSOR.LAYER_OUT_NORM: (
  375. "encoder.layer.{bid}.output.LayerNorm", # bert
  376. "encoder.layers.{bid}.norm2", # nomic-bert
  377. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  378. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  379. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  380. ),
  381. MODEL_TENSOR.SSM_IN: (
  382. "model.layers.{bid}.in_proj",
  383. "backbone.layers.{bid}.mixer.in_proj",
  384. ),
  385. MODEL_TENSOR.SSM_CONV1D: (
  386. "model.layers.{bid}.conv1d",
  387. "backbone.layers.{bid}.mixer.conv1d",
  388. ),
  389. MODEL_TENSOR.SSM_X: (
  390. "model.layers.{bid}.x_proj",
  391. "backbone.layers.{bid}.mixer.x_proj",
  392. ),
  393. MODEL_TENSOR.SSM_DT: (
  394. "model.layers.{bid}.dt_proj",
  395. "backbone.layers.{bid}.mixer.dt_proj",
  396. ),
  397. MODEL_TENSOR.SSM_A: (
  398. "model.layers.{bid}.A_log",
  399. "backbone.layers.{bid}.mixer.A_log",
  400. ),
  401. MODEL_TENSOR.SSM_D: (
  402. "model.layers.{bid}.D",
  403. "backbone.layers.{bid}.mixer.D",
  404. ),
  405. MODEL_TENSOR.SSM_OUT: (
  406. "model.layers.{bid}.out_proj",
  407. "backbone.layers.{bid}.mixer.out_proj",
  408. ),
  409. MODEL_TENSOR.TIME_MIX_W1: (
  410. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6
  411. ),
  412. MODEL_TENSOR.TIME_MIX_W2: (
  413. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6
  414. ),
  415. MODEL_TENSOR.TIME_MIX_LERP_X: (
  416. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6
  417. ),
  418. MODEL_TENSOR.TIME_MIX_LERP_K: (
  419. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6
  420. ),
  421. MODEL_TENSOR.TIME_MIX_LERP_V: (
  422. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6
  423. ),
  424. MODEL_TENSOR.TIME_MIX_LERP_R: (
  425. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6
  426. ),
  427. MODEL_TENSOR.TIME_MIX_LERP_G: (
  428. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6
  429. ),
  430. MODEL_TENSOR.TIME_MIX_LERP_W: (
  431. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6
  432. ),
  433. MODEL_TENSOR.TIME_MIX_FIRST: (
  434. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv v6
  435. ),
  436. MODEL_TENSOR.TIME_MIX_DECAY: (
  437. "rwkv.blocks.{bid}.attention.time_decay", # rwkv v6
  438. ),
  439. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  440. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6
  441. ),
  442. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  443. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6
  444. ),
  445. MODEL_TENSOR.TIME_MIX_KEY: (
  446. "rwkv.blocks.{bid}.attention.key", # rwkv
  447. ),
  448. MODEL_TENSOR.TIME_MIX_VALUE: (
  449. "rwkv.blocks.{bid}.attention.value", # rwkv
  450. ),
  451. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  452. "rwkv.blocks.{bid}.attention.receptance", # rwkv
  453. ),
  454. MODEL_TENSOR.TIME_MIX_GATE: (
  455. "rwkv.blocks.{bid}.attention.gate", # rwkv
  456. ),
  457. MODEL_TENSOR.TIME_MIX_LN: (
  458. "rwkv.blocks.{bid}.attention.ln_x", # rwkv
  459. ),
  460. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  461. "rwkv.blocks.{bid}.attention.output", # rwkv
  462. ),
  463. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  464. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv v6
  465. ),
  466. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  467. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv v6
  468. ),
  469. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  470. "rwkv.blocks.{bid}.feed_forward.key", # rwkv
  471. ),
  472. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  473. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv
  474. ),
  475. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  476. "rwkv.blocks.{bid}.feed_forward.value", # rwkv
  477. ),
  478. MODEL_TENSOR.ATTN_Q_A: (
  479. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  480. ),
  481. MODEL_TENSOR.ATTN_Q_B: (
  482. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  483. ),
  484. MODEL_TENSOR.ATTN_KV_A_MQA: (
  485. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  486. ),
  487. MODEL_TENSOR.ATTN_KV_B: (
  488. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  489. ),
  490. MODEL_TENSOR.ATTN_Q_A_NORM: (
  491. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  492. ),
  493. MODEL_TENSOR.ATTN_KV_A_NORM: (
  494. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  495. ),
  496. MODEL_TENSOR.ATTN_SUB_NORM: (
  497. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  498. ),
  499. MODEL_TENSOR.FFN_SUB_NORM: (
  500. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  501. ),
  502. MODEL_TENSOR.DEC_ATTN_NORM: (
  503. "decoder.block.{bid}.layer.0.layer_norm", # t5
  504. ),
  505. MODEL_TENSOR.DEC_ATTN_Q: (
  506. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  507. ),
  508. MODEL_TENSOR.DEC_ATTN_K: (
  509. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  510. ),
  511. MODEL_TENSOR.DEC_ATTN_V: (
  512. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  513. ),
  514. MODEL_TENSOR.DEC_ATTN_OUT: (
  515. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  516. ),
  517. MODEL_TENSOR.DEC_ATTN_REL_B: (
  518. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  519. ),
  520. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  521. "decoder.block.{bid}.layer.1.layer_norm", # t5
  522. ),
  523. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  524. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  525. ),
  526. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  527. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  528. ),
  529. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  530. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  531. ),
  532. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  533. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  534. ),
  535. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  536. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  537. ),
  538. MODEL_TENSOR.DEC_FFN_NORM: (
  539. "decoder.block.{bid}.layer.2.layer_norm", # t5
  540. ),
  541. MODEL_TENSOR.DEC_FFN_GATE: (
  542. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  543. ),
  544. MODEL_TENSOR.DEC_FFN_UP: (
  545. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  546. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  547. ),
  548. MODEL_TENSOR.DEC_FFN_DOWN: (
  549. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  550. ),
  551. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  552. "decoder.final_layer_norm", # t5
  553. ),
  554. MODEL_TENSOR.ENC_ATTN_NORM: (
  555. "encoder.block.{bid}.layer.0.layer_norm", # t5
  556. ),
  557. MODEL_TENSOR.ENC_ATTN_Q: (
  558. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  559. ),
  560. MODEL_TENSOR.ENC_ATTN_K: (
  561. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  562. ),
  563. MODEL_TENSOR.ENC_ATTN_V: (
  564. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  565. ),
  566. MODEL_TENSOR.ENC_ATTN_OUT: (
  567. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  568. ),
  569. MODEL_TENSOR.ENC_ATTN_REL_B: (
  570. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  571. ),
  572. MODEL_TENSOR.ENC_FFN_NORM: (
  573. "encoder.block.{bid}.layer.1.layer_norm", # t5
  574. ),
  575. MODEL_TENSOR.ENC_FFN_GATE: (
  576. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  577. ),
  578. MODEL_TENSOR.ENC_FFN_UP: (
  579. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  580. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  581. ),
  582. MODEL_TENSOR.ENC_FFN_DOWN: (
  583. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  584. ),
  585. ############################################################################
  586. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  587. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  588. "encoder.final_layer_norm", # t5
  589. ),
  590. MODEL_TENSOR.CLS: (
  591. "classifier", # jina
  592. "classifier.dense", # roberta
  593. ),
  594. MODEL_TENSOR.CLS_OUT: (
  595. "classifier.out_proj", # roberta
  596. ),
  597. #############################################################################
  598. MODEL_TENSOR.CONVNEXT_DW: (
  599. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  600. ),
  601. MODEL_TENSOR.CONVNEXT_NORM: (
  602. "backbone.convnext.{bid}.norm", # wavtokenizer
  603. ),
  604. MODEL_TENSOR.CONVNEXT_PW1: (
  605. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  606. ),
  607. MODEL_TENSOR.CONVNEXT_PW2: (
  608. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  609. ),
  610. MODEL_TENSOR.CONVNEXT_GAMMA: (
  611. "backbone.convnext.{bid}.gamma", # wavtokenizer
  612. ),
  613. MODEL_TENSOR.POSNET_CONV1: (
  614. "backbone.posnet.{bid}.conv1", # wavtokenizer
  615. ),
  616. MODEL_TENSOR.POSNET_CONV2: (
  617. "backbone.posnet.{bid}.conv2", # wavtokenizer
  618. ),
  619. MODEL_TENSOR.POSNET_NORM: (
  620. "backbone.posnet.{bid}.norm", # wavtokenizer
  621. ),
  622. MODEL_TENSOR.POSNET_NORM1: (
  623. "backbone.posnet.{bid}.norm1", # wavtokenizer
  624. ),
  625. MODEL_TENSOR.POSNET_NORM2: (
  626. "backbone.posnet.{bid}.norm2", # wavtokenizer
  627. ),
  628. MODEL_TENSOR.POSNET_ATTN_NORM: (
  629. "backbone.posnet.{bid}.norm", # wavtokenizer
  630. ),
  631. MODEL_TENSOR.POSNET_ATTN_Q: (
  632. "backbone.posnet.{bid}.q", # wavtokenizer
  633. ),
  634. MODEL_TENSOR.POSNET_ATTN_K: (
  635. "backbone.posnet.{bid}.k", # wavtokenizer
  636. ),
  637. MODEL_TENSOR.POSNET_ATTN_V: (
  638. "backbone.posnet.{bid}.v", # wavtokenizer
  639. ),
  640. MODEL_TENSOR.POSNET_ATTN_OUT: (
  641. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  642. ),
  643. }
  644. # architecture-specific block mappings
  645. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  646. MODEL_ARCH.ARCTIC: {
  647. MODEL_TENSOR.FFN_NORM: (
  648. "model.layers.{bid}.residual_layernorm",
  649. ),
  650. MODEL_TENSOR.FFN_NORM_EXP: (
  651. "model.layers.{bid}.post_attention_layernorm",
  652. ),
  653. },
  654. }
  655. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  656. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  657. self.mapping = {}
  658. for tensor, keys in self.mappings_cfg.items():
  659. if tensor not in MODEL_TENSORS[arch]:
  660. continue
  661. tensor_name = TENSOR_NAMES[tensor]
  662. self.mapping[tensor_name] = (tensor, tensor_name)
  663. for key in keys:
  664. self.mapping[key] = (tensor, tensor_name)
  665. if arch in self.arch_block_mappings_cfg:
  666. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  667. for bid in range(n_blocks):
  668. for tensor, keys in self.block_mappings_cfg.items():
  669. if tensor not in MODEL_TENSORS[arch]:
  670. continue
  671. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  672. self.mapping[tensor_name] = (tensor, tensor_name)
  673. for key in keys:
  674. key = key.format(bid = bid)
  675. self.mapping[key] = (tensor, tensor_name)
  676. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  677. result = self.mapping.get(key)
  678. if result is not None:
  679. return result
  680. for suffix in try_suffixes:
  681. if key.endswith(suffix):
  682. result = self.mapping.get(key[:-len(suffix)])
  683. if result is not None:
  684. return result[0], result[1] + suffix
  685. return None
  686. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  687. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  688. if result is None:
  689. return None
  690. return result[1]
  691. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  692. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  693. if result is None:
  694. return None
  695. return result[0]
  696. def __getitem__(self, key: str) -> str:
  697. try:
  698. return self.mapping[key][1]
  699. except KeyError:
  700. raise KeyError(key)
  701. def __contains__(self, key: str) -> bool:
  702. return key in self.mapping
  703. def __repr__(self) -> str:
  704. return repr(self.mapping)
  705. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  706. return TensorNameMap(arch, n_blocks)