ggml.c 695 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #if defined(_MSC_VER)
  31. // disable "possible loss of data" to avoid hundreds of casts
  32. // we should just be careful :)
  33. #pragma warning(disable: 4244 4267)
  34. // disable POSIX deprecation warnings
  35. // these functions are never going away, anyway
  36. #pragma warning(disable: 4996)
  37. #endif
  38. #if defined(_WIN32)
  39. #define WIN32_LEAN_AND_MEAN
  40. #ifndef NOMINMAX
  41. #define NOMINMAX
  42. #endif
  43. #include <windows.h>
  44. typedef volatile LONG atomic_int;
  45. typedef atomic_int atomic_bool;
  46. static void atomic_store(atomic_int * ptr, LONG val) {
  47. InterlockedExchange(ptr, val);
  48. }
  49. static LONG atomic_load(atomic_int * ptr) {
  50. return InterlockedCompareExchange(ptr, 0, 0);
  51. }
  52. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  53. return InterlockedExchangeAdd(ptr, inc);
  54. }
  55. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  56. return atomic_fetch_add(ptr, -(dec));
  57. }
  58. typedef HANDLE pthread_t;
  59. typedef DWORD thread_ret_t;
  60. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  61. (void) unused;
  62. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  63. if (handle == NULL)
  64. {
  65. return EAGAIN;
  66. }
  67. *out = handle;
  68. return 0;
  69. }
  70. static int pthread_join(pthread_t thread, void * unused) {
  71. (void) unused;
  72. int ret = (int) WaitForSingleObject(thread, INFINITE);
  73. CloseHandle(thread);
  74. return ret;
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. #ifdef GGML_USE_CPU_HBM
  89. #include <hbwmalloc.h>
  90. #endif
  91. #if defined(__APPLE__)
  92. #include <TargetConditionals.h>
  93. #endif
  94. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  95. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  96. #include <sys/wait.h>
  97. void ggml_print_backtrace(void) {
  98. /*
  99. #include <execinfo.h>
  100. #include <dlfcn.h>
  101. void * trace[100];
  102. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  103. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  104. */
  105. // backtrack_symbols does not show line numbers, use gdb instead
  106. char attach[32];
  107. snprintf(attach, sizeof(attach), "attach %d", getpid());
  108. int pid = fork();
  109. if (pid == 0) {
  110. execlp("gdb", "gdb", "--batch",
  111. "-ex", "set style enabled on",
  112. "-ex", attach,
  113. "-ex", "bt -frame-info source-and-location",
  114. "-ex", "detach",
  115. "-ex", "quit",
  116. (char *) NULL);
  117. } else {
  118. waitpid(pid, NULL, 0);
  119. }
  120. }
  121. #else
  122. void ggml_print_backtrace(void) {
  123. // platform not supported
  124. }
  125. #endif
  126. /*#define GGML_PERF*/
  127. #define GGML_DEBUG 0
  128. #define GGML_GELU_FP16
  129. #define GGML_GELU_QUICK_FP16
  130. #define GGML_SILU_FP16
  131. // #define GGML_CROSS_ENTROPY_EXP_FP16
  132. // #define GGML_FLASH_ATTN_EXP_FP16
  133. #define GGML_SOFT_MAX_UNROLL 4
  134. #define GGML_VEC_DOT_UNROLL 2
  135. #define GGML_VEC_MAD_UNROLL 32
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #ifdef GGML_USE_ACCELERATE
  159. // uncomment to use vDSP for soft max computation
  160. // note: not sure if it is actually faster
  161. //#define GGML_SOFT_MAX_ACCELERATE
  162. #endif
  163. #if defined(_MSC_VER) || defined(__MINGW32__)
  164. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  165. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  166. #else
  167. inline static void * ggml_aligned_malloc(size_t size) {
  168. if (size == 0) {
  169. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  170. return NULL;
  171. }
  172. void * aligned_memory = NULL;
  173. #ifdef GGML_USE_CPU_HBM
  174. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  175. #elif GGML_USE_METAL
  176. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  177. #else
  178. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  179. #endif
  180. if (result != 0) {
  181. // Handle allocation failure
  182. const char *error_desc = "unknown allocation error";
  183. switch (result) {
  184. case EINVAL:
  185. error_desc = "invalid alignment value";
  186. break;
  187. case ENOMEM:
  188. error_desc = "insufficient memory";
  189. break;
  190. }
  191. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  192. GGML_ASSERT(false);
  193. return NULL;
  194. }
  195. return aligned_memory;
  196. }
  197. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  198. #ifdef GGML_USE_CPU_HBM
  199. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  200. #else
  201. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  202. #endif
  203. #endif
  204. inline static void * ggml_malloc(size_t size) {
  205. if (size == 0) {
  206. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  207. return NULL;
  208. }
  209. void * result = malloc(size);
  210. if (result == NULL) {
  211. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  212. GGML_ASSERT(false);
  213. }
  214. return result;
  215. }
  216. // calloc
  217. inline static void * ggml_calloc(size_t num, size_t size) {
  218. if (num == 0 || size == 0) {
  219. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  220. return NULL;
  221. }
  222. void * result = calloc(num, size);
  223. if (result == NULL) {
  224. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  225. GGML_ASSERT(false);
  226. }
  227. return result;
  228. }
  229. #define GGML_MALLOC(size) ggml_malloc(size)
  230. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  231. #define GGML_FREE(ptr) free(ptr)
  232. #define UNUSED GGML_UNUSED
  233. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  234. #if defined(GGML_USE_ACCELERATE)
  235. #include <Accelerate/Accelerate.h>
  236. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  237. #include "ggml-opencl.h"
  238. #endif
  239. #elif defined(GGML_USE_OPENBLAS)
  240. #if defined(GGML_BLAS_USE_MKL)
  241. #include <mkl.h>
  242. #else
  243. #include <cblas.h>
  244. #endif
  245. #elif defined(GGML_USE_CLBLAST)
  246. #include "ggml-opencl.h"
  247. #endif
  248. // floating point type used to accumulate sums
  249. typedef double ggml_float;
  250. #undef MIN
  251. #undef MAX
  252. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  253. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  254. //
  255. // global data
  256. //
  257. // precomputed gelu table for f16 (128 KB)
  258. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  259. // precomputed quick gelu table for f16 (128 KB)
  260. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  261. // precomputed silu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  263. // precomputed exp table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  265. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  266. float ggml_table_f32_f16[1 << 16];
  267. const char * ggml_status_to_string(enum ggml_status status) {
  268. switch (status) {
  269. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  270. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  271. case GGML_STATUS_SUCCESS: return "GGML status: success";
  272. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  273. }
  274. return "GGML status: unknown";
  275. }
  276. // note: do not use these inside ggml.c
  277. // these are meant to be used via the ggml.h API
  278. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  279. return GGML_FP16_TO_FP32(x);
  280. }
  281. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  285. for (int i = 0; i < n; i++) {
  286. y[i] = GGML_FP16_TO_FP32(x[i]);
  287. }
  288. }
  289. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  290. int i = 0;
  291. #if defined(__F16C__)
  292. for (; i + 7 < n; i += 8) {
  293. __m256 x_vec = _mm256_loadu_ps(x + i);
  294. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  295. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  296. }
  297. for(; i + 3 < n; i += 4) {
  298. __m128 x_vec = _mm_loadu_ps(x + i);
  299. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  300. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  301. }
  302. #endif
  303. for (; i < n; i++) {
  304. y[i] = GGML_FP32_TO_FP16(x[i]);
  305. }
  306. }
  307. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  308. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  309. }
  310. //
  311. // timing
  312. //
  313. #if defined(_MSC_VER) || defined(__MINGW32__)
  314. static int64_t timer_freq, timer_start;
  315. void ggml_time_init(void) {
  316. LARGE_INTEGER t;
  317. QueryPerformanceFrequency(&t);
  318. timer_freq = t.QuadPart;
  319. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  320. // and the uptime is high enough.
  321. // We subtract the program start time to reduce the likelihood of that happening.
  322. QueryPerformanceCounter(&t);
  323. timer_start = t.QuadPart;
  324. }
  325. int64_t ggml_time_ms(void) {
  326. LARGE_INTEGER t;
  327. QueryPerformanceCounter(&t);
  328. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  329. }
  330. int64_t ggml_time_us(void) {
  331. LARGE_INTEGER t;
  332. QueryPerformanceCounter(&t);
  333. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  334. }
  335. #else
  336. void ggml_time_init(void) {}
  337. int64_t ggml_time_ms(void) {
  338. struct timespec ts;
  339. clock_gettime(CLOCK_MONOTONIC, &ts);
  340. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  341. }
  342. int64_t ggml_time_us(void) {
  343. struct timespec ts;
  344. clock_gettime(CLOCK_MONOTONIC, &ts);
  345. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  346. }
  347. #endif
  348. int64_t ggml_cycles(void) {
  349. return clock();
  350. }
  351. int64_t ggml_cycles_per_ms(void) {
  352. return CLOCKS_PER_SEC/1000;
  353. }
  354. #ifdef GGML_PERF
  355. #define ggml_perf_time_ms() ggml_time_ms()
  356. #define ggml_perf_time_us() ggml_time_us()
  357. #define ggml_perf_cycles() ggml_cycles()
  358. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  359. #else
  360. #define ggml_perf_time_ms() 0
  361. #define ggml_perf_time_us() 0
  362. #define ggml_perf_cycles() 0
  363. #define ggml_perf_cycles_per_ms() 0
  364. #endif
  365. //
  366. // cross-platform UTF-8 file paths
  367. //
  368. #ifdef _WIN32
  369. static wchar_t * ggml_mbstowcs(const char * mbs) {
  370. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  371. if (!wlen) {
  372. errno = EINVAL;
  373. return NULL;
  374. }
  375. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  376. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  377. if (!wlen) {
  378. GGML_FREE(wbuf);
  379. errno = EINVAL;
  380. return NULL;
  381. }
  382. return wbuf;
  383. }
  384. #endif
  385. FILE * ggml_fopen(const char * fname, const char * mode) {
  386. #ifdef _WIN32
  387. FILE * file = NULL;
  388. // convert fname (UTF-8)
  389. wchar_t * wfname = ggml_mbstowcs(fname);
  390. if (wfname) {
  391. // convert mode (ANSI)
  392. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  393. wchar_t * wmode_p = wmode;
  394. do {
  395. *wmode_p++ = (wchar_t)*mode;
  396. } while (*mode++);
  397. // open file
  398. file = _wfopen(wfname, wmode);
  399. GGML_FREE(wfname);
  400. GGML_FREE(wmode);
  401. }
  402. return file;
  403. #else
  404. return fopen(fname, mode);
  405. #endif
  406. }
  407. //
  408. // cache line
  409. //
  410. #if defined(__cpp_lib_hardware_interference_size)
  411. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  412. #else
  413. #if defined(__POWER9_VECTOR__)
  414. #define CACHE_LINE_SIZE 128
  415. #else
  416. #define CACHE_LINE_SIZE 64
  417. #endif
  418. #endif
  419. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  420. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  421. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  422. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  423. [GGML_TYPE_I8] = {
  424. .type_name = "i8",
  425. .blck_size = 1,
  426. .type_size = sizeof(int8_t),
  427. .is_quantized = false,
  428. },
  429. [GGML_TYPE_I16] = {
  430. .type_name = "i16",
  431. .blck_size = 1,
  432. .type_size = sizeof(int16_t),
  433. .is_quantized = false,
  434. },
  435. [GGML_TYPE_I32] = {
  436. .type_name = "i32",
  437. .blck_size = 1,
  438. .type_size = sizeof(int32_t),
  439. .is_quantized = false,
  440. },
  441. [GGML_TYPE_I64] = {
  442. .type_name = "i64",
  443. .blck_size = 1,
  444. .type_size = sizeof(int64_t),
  445. .is_quantized = false,
  446. },
  447. [GGML_TYPE_F64] = {
  448. .type_name = "f64",
  449. .blck_size = 1,
  450. .type_size = sizeof(double),
  451. .is_quantized = false,
  452. .nrows = 1,
  453. },
  454. [GGML_TYPE_F32] = {
  455. .type_name = "f32",
  456. .blck_size = 1,
  457. .type_size = sizeof(float),
  458. .is_quantized = false,
  459. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  460. .vec_dot_type = GGML_TYPE_F32,
  461. .nrows = 1,
  462. },
  463. [GGML_TYPE_F16] = {
  464. .type_name = "f16",
  465. .blck_size = 1,
  466. .type_size = sizeof(ggml_fp16_t),
  467. .is_quantized = false,
  468. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  469. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  470. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  471. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  472. .vec_dot_type = GGML_TYPE_F16,
  473. .nrows = 1,
  474. },
  475. [GGML_TYPE_Q4_0] = {
  476. .type_name = "q4_0",
  477. .blck_size = QK4_0,
  478. .type_size = sizeof(block_q4_0),
  479. .is_quantized = true,
  480. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  481. .from_float = quantize_row_q4_0,
  482. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  483. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  484. .vec_dot_type = GGML_TYPE_Q8_0,
  485. #if defined (__ARM_FEATURE_MATMUL_INT8)
  486. .nrows = 2,
  487. #else
  488. .nrows = 1,
  489. #endif
  490. },
  491. [GGML_TYPE_Q4_1] = {
  492. .type_name = "q4_1",
  493. .blck_size = QK4_1,
  494. .type_size = sizeof(block_q4_1),
  495. .is_quantized = true,
  496. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  497. .from_float = quantize_row_q4_1,
  498. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  499. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  500. .vec_dot_type = GGML_TYPE_Q8_1,
  501. #if defined (__ARM_FEATURE_MATMUL_INT8)
  502. .nrows = 2,
  503. #else
  504. .nrows = 1,
  505. #endif
  506. },
  507. [4] = { // GGML_TYPE_Q4_2
  508. .type_name = "DEPRECATED",
  509. .blck_size = 0,
  510. .type_size = 0,
  511. .is_quantized = false,
  512. .to_float = NULL,
  513. .from_float = NULL,
  514. .from_float_reference = NULL,
  515. .vec_dot = NULL,
  516. .vec_dot_type = GGML_TYPE_COUNT,
  517. .nrows = 1,
  518. },
  519. [5] = { // GGML_TYPE_Q4_3
  520. .type_name = "DEPRECATED",
  521. .blck_size = 0,
  522. .type_size = 0,
  523. .is_quantized = false,
  524. .to_float = NULL,
  525. .from_float = NULL,
  526. .from_float_reference = NULL,
  527. .vec_dot = NULL,
  528. .vec_dot_type = GGML_TYPE_COUNT,
  529. .nrows = 1,
  530. },
  531. [GGML_TYPE_Q5_0] = {
  532. .type_name = "q5_0",
  533. .blck_size = QK5_0,
  534. .type_size = sizeof(block_q5_0),
  535. .is_quantized = true,
  536. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  537. .from_float = quantize_row_q5_0,
  538. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  539. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  540. .vec_dot_type = GGML_TYPE_Q8_0,
  541. .nrows = 1,
  542. },
  543. [GGML_TYPE_Q5_1] = {
  544. .type_name = "q5_1",
  545. .blck_size = QK5_1,
  546. .type_size = sizeof(block_q5_1),
  547. .is_quantized = true,
  548. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  549. .from_float = quantize_row_q5_1,
  550. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  551. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  552. .vec_dot_type = GGML_TYPE_Q8_1,
  553. .nrows = 1,
  554. },
  555. [GGML_TYPE_Q8_0] = {
  556. .type_name = "q8_0",
  557. .blck_size = QK8_0,
  558. .type_size = sizeof(block_q8_0),
  559. .is_quantized = true,
  560. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  561. .from_float = quantize_row_q8_0,
  562. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  563. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  564. .vec_dot_type = GGML_TYPE_Q8_0,
  565. #if defined (__ARM_FEATURE_MATMUL_INT8)
  566. .nrows = 2,
  567. #else
  568. .nrows = 1,
  569. #endif
  570. },
  571. [GGML_TYPE_Q8_1] = {
  572. .type_name = "q8_1",
  573. .blck_size = QK8_1,
  574. .type_size = sizeof(block_q8_1),
  575. .is_quantized = true,
  576. .from_float = quantize_row_q8_1,
  577. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  578. .vec_dot_type = GGML_TYPE_Q8_1,
  579. .nrows = 1,
  580. },
  581. [GGML_TYPE_Q2_K] = {
  582. .type_name = "q2_K",
  583. .blck_size = QK_K,
  584. .type_size = sizeof(block_q2_K),
  585. .is_quantized = true,
  586. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  587. .from_float = quantize_row_q2_K,
  588. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  589. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  590. .vec_dot_type = GGML_TYPE_Q8_K,
  591. .nrows = 1,
  592. },
  593. [GGML_TYPE_Q3_K] = {
  594. .type_name = "q3_K",
  595. .blck_size = QK_K,
  596. .type_size = sizeof(block_q3_K),
  597. .is_quantized = true,
  598. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  599. .from_float = quantize_row_q3_K,
  600. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  601. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  602. .vec_dot_type = GGML_TYPE_Q8_K,
  603. .nrows = 1,
  604. },
  605. [GGML_TYPE_Q4_K] = {
  606. .type_name = "q4_K",
  607. .blck_size = QK_K,
  608. .type_size = sizeof(block_q4_K),
  609. .is_quantized = true,
  610. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  611. .from_float = quantize_row_q4_K,
  612. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  613. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  614. .vec_dot_type = GGML_TYPE_Q8_K,
  615. .nrows = 1,
  616. },
  617. [GGML_TYPE_Q5_K] = {
  618. .type_name = "q5_K",
  619. .blck_size = QK_K,
  620. .type_size = sizeof(block_q5_K),
  621. .is_quantized = true,
  622. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  623. .from_float = quantize_row_q5_K,
  624. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  625. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  626. .vec_dot_type = GGML_TYPE_Q8_K,
  627. .nrows = 1,
  628. },
  629. [GGML_TYPE_Q6_K] = {
  630. .type_name = "q6_K",
  631. .blck_size = QK_K,
  632. .type_size = sizeof(block_q6_K),
  633. .is_quantized = true,
  634. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  635. .from_float = quantize_row_q6_K,
  636. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  637. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  638. .vec_dot_type = GGML_TYPE_Q8_K,
  639. .nrows = 1,
  640. },
  641. [GGML_TYPE_IQ2_XXS] = {
  642. .type_name = "iq2_xxs",
  643. .blck_size = QK_K,
  644. .type_size = sizeof(block_iq2_xxs),
  645. .is_quantized = true,
  646. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  647. .from_float = NULL,
  648. .from_float_reference = NULL,
  649. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  650. .vec_dot_type = GGML_TYPE_Q8_K,
  651. .nrows = 1,
  652. },
  653. [GGML_TYPE_IQ2_XS] = {
  654. .type_name = "iq2_xs",
  655. .blck_size = QK_K,
  656. .type_size = sizeof(block_iq2_xs),
  657. .is_quantized = true,
  658. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  659. .from_float = NULL,
  660. .from_float_reference = NULL,
  661. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  662. .vec_dot_type = GGML_TYPE_Q8_K,
  663. .nrows = 1,
  664. },
  665. [GGML_TYPE_IQ3_XXS] = {
  666. .type_name = "iq3_xxs",
  667. .blck_size = QK_K,
  668. .type_size = sizeof(block_iq3_xxs),
  669. .is_quantized = true,
  670. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  671. .from_float = quantize_row_iq3_xxs,
  672. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  673. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  674. .vec_dot_type = GGML_TYPE_Q8_K,
  675. .nrows = 1,
  676. },
  677. [GGML_TYPE_IQ3_S] = {
  678. .type_name = "iq3_s",
  679. .blck_size = QK_K,
  680. .type_size = sizeof(block_iq3_s),
  681. .is_quantized = true,
  682. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  683. .from_float = quantize_row_iq3_s,
  684. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  685. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  686. .vec_dot_type = GGML_TYPE_Q8_K,
  687. .nrows = 1,
  688. },
  689. [GGML_TYPE_IQ2_S] = {
  690. .type_name = "iq2_s",
  691. .blck_size = QK_K,
  692. .type_size = sizeof(block_iq2_s),
  693. .is_quantized = true,
  694. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  695. .from_float = quantize_row_iq2_s,
  696. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  697. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  698. .vec_dot_type = GGML_TYPE_Q8_K,
  699. .nrows = 1,
  700. },
  701. [GGML_TYPE_IQ1_S] = {
  702. .type_name = "iq1_s",
  703. .blck_size = QK_K,
  704. .type_size = sizeof(block_iq1_s),
  705. .is_quantized = true,
  706. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  707. .from_float = NULL,
  708. .from_float_reference = NULL,
  709. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  710. .vec_dot_type = GGML_TYPE_Q8_K,
  711. .nrows = 1,
  712. },
  713. [GGML_TYPE_IQ1_M] = {
  714. .type_name = "iq1_m",
  715. .blck_size = QK_K,
  716. .type_size = sizeof(block_iq1_m),
  717. .is_quantized = true,
  718. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  719. .from_float = NULL,
  720. .from_float_reference = NULL,
  721. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  722. .vec_dot_type = GGML_TYPE_Q8_K,
  723. .nrows = 1,
  724. },
  725. [GGML_TYPE_IQ4_NL] = {
  726. .type_name = "iq4_nl",
  727. .blck_size = QK4_NL,
  728. .type_size = sizeof(block_iq4_nl),
  729. .is_quantized = true,
  730. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  731. .from_float = quantize_row_iq4_nl,
  732. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  733. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  734. .vec_dot_type = GGML_TYPE_Q8_0,
  735. .nrows = 1,
  736. },
  737. [GGML_TYPE_IQ4_XS] = {
  738. .type_name = "iq4_xs",
  739. #if QK_K == 64
  740. .blck_size = QK4_NL,
  741. #else
  742. .blck_size = QK_K,
  743. #endif
  744. .type_size = sizeof(block_iq4_xs),
  745. .is_quantized = true,
  746. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  747. .from_float = quantize_row_iq4_xs,
  748. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  749. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  750. #if QK_K == 64
  751. .vec_dot_type = GGML_TYPE_Q8_0,
  752. #else
  753. .vec_dot_type = GGML_TYPE_Q8_K,
  754. #endif
  755. .nrows = 1,
  756. },
  757. [GGML_TYPE_Q8_K] = {
  758. .type_name = "q8_K",
  759. .blck_size = QK_K,
  760. .type_size = sizeof(block_q8_K),
  761. .is_quantized = true,
  762. .from_float = quantize_row_q8_K,
  763. }
  764. };
  765. // For internal test use
  766. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  767. GGML_ASSERT(type < GGML_TYPE_COUNT);
  768. return type_traits[type];
  769. }
  770. //
  771. // simd mappings
  772. //
  773. #if defined(__ARM_NEON)
  774. #if !defined(__aarch64__)
  775. // 64-bit compatibility
  776. inline static float vaddvq_f32(float32x4_t v) {
  777. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  778. }
  779. #endif
  780. #endif
  781. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  782. // we then implement the fundamental computation operations below using only these macros
  783. // adding support for new architectures requires to define the corresponding SIMD macros
  784. //
  785. // GGML_F32_STEP / GGML_F16_STEP
  786. // number of elements to process in a single step
  787. //
  788. // GGML_F32_EPR / GGML_F16_EPR
  789. // number of elements to fit in a single register
  790. //
  791. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  792. #define GGML_SIMD
  793. // F32 NEON
  794. #define GGML_F32_STEP 16
  795. #define GGML_F32_EPR 4
  796. #define GGML_F32x4 float32x4_t
  797. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  798. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  799. #define GGML_F32x4_LOAD vld1q_f32
  800. #define GGML_F32x4_STORE vst1q_f32
  801. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  802. #define GGML_F32x4_ADD vaddq_f32
  803. #define GGML_F32x4_MUL vmulq_f32
  804. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  805. #define GGML_F32x4_REDUCE(res, x) \
  806. { \
  807. int offset = GGML_F32_ARR >> 1; \
  808. for (int i = 0; i < offset; ++i) { \
  809. x[i] = vaddq_f32(x[i], x[offset+i]); \
  810. } \
  811. offset >>= 1; \
  812. for (int i = 0; i < offset; ++i) { \
  813. x[i] = vaddq_f32(x[i], x[offset+i]); \
  814. } \
  815. offset >>= 1; \
  816. for (int i = 0; i < offset; ++i) { \
  817. x[i] = vaddq_f32(x[i], x[offset+i]); \
  818. } \
  819. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  820. }
  821. #define GGML_F32_VEC GGML_F32x4
  822. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  823. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  824. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  825. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  826. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  827. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  828. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  829. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  830. // F16 NEON
  831. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  832. #define GGML_F16_STEP 32
  833. #define GGML_F16_EPR 8
  834. #define GGML_F16x8 float16x8_t
  835. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  836. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  837. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  838. #define GGML_F16x8_STORE vst1q_f16
  839. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  840. #define GGML_F16x8_ADD vaddq_f16
  841. #define GGML_F16x8_MUL vmulq_f16
  842. #define GGML_F16x8_REDUCE(res, x) \
  843. do { \
  844. int offset = GGML_F16_ARR >> 1; \
  845. for (int i = 0; i < offset; ++i) { \
  846. x[i] = vaddq_f16(x[i], x[offset+i]); \
  847. } \
  848. offset >>= 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = vaddq_f16(x[i], x[offset+i]); \
  851. } \
  852. offset >>= 1; \
  853. for (int i = 0; i < offset; ++i) { \
  854. x[i] = vaddq_f16(x[i], x[offset+i]); \
  855. } \
  856. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  857. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  858. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  859. } while (0)
  860. #define GGML_F16_VEC GGML_F16x8
  861. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  862. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  863. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  864. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  865. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  866. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  867. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  868. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  869. #else
  870. // if FP16 vector arithmetic is not supported, we use FP32 instead
  871. // and take advantage of the vcvt_ functions to convert to/from FP16
  872. #define GGML_F16_STEP 16
  873. #define GGML_F16_EPR 4
  874. #define GGML_F32Cx4 float32x4_t
  875. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  876. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  877. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  878. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  879. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  880. #define GGML_F32Cx4_ADD vaddq_f32
  881. #define GGML_F32Cx4_MUL vmulq_f32
  882. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  883. #define GGML_F16_VEC GGML_F32Cx4
  884. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  885. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  886. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  887. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  888. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  889. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  890. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  891. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  892. #endif
  893. #elif defined(__AVX512F__)
  894. #define GGML_SIMD
  895. // F32 AVX512
  896. #define GGML_F32_STEP 64
  897. #define GGML_F32_EPR 16
  898. #define GGML_F32x16 __m512
  899. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  900. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  901. #define GGML_F32x16_LOAD _mm512_loadu_ps
  902. #define GGML_F32x16_STORE _mm512_storeu_ps
  903. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  904. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  905. #define GGML_F32x16_ADD _mm512_add_ps
  906. #define GGML_F32x16_MUL _mm512_mul_ps
  907. #define GGML_F32x16_REDUCE(res, x) \
  908. do { \
  909. int offset = GGML_F32_ARR >> 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  912. } \
  913. offset >>= 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  916. } \
  917. offset >>= 1; \
  918. for (int i = 0; i < offset; ++i) { \
  919. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  920. } \
  921. res = _mm512_reduce_add_ps(x[0]); \
  922. } while (0)
  923. // TODO: is this optimal ?
  924. #define GGML_F32_VEC GGML_F32x16
  925. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  926. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  927. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  928. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  929. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  930. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  931. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  932. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  933. // F16 AVX512
  934. // F16 AVX
  935. #define GGML_F16_STEP 64
  936. #define GGML_F16_EPR 16
  937. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  938. #define GGML_F32Cx16 __m512
  939. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  940. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  941. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  942. // so F16C guard isn't required
  943. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  944. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  945. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  946. #define GGML_F32Cx16_ADD _mm512_add_ps
  947. #define GGML_F32Cx16_MUL _mm512_mul_ps
  948. #define GGML_F32Cx16_REDUCE(res, x) \
  949. do { \
  950. int offset = GGML_F32_ARR >> 1; \
  951. for (int i = 0; i < offset; ++i) { \
  952. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  953. } \
  954. offset >>= 1; \
  955. for (int i = 0; i < offset; ++i) { \
  956. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  957. } \
  958. offset >>= 1; \
  959. for (int i = 0; i < offset; ++i) { \
  960. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  961. } \
  962. res = _mm512_reduce_add_ps(x[0]); \
  963. } while (0)
  964. #define GGML_F16_VEC GGML_F32Cx16
  965. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  966. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  967. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  968. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  969. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  970. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  971. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  972. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  973. #elif defined(__AVX__)
  974. #define GGML_SIMD
  975. // F32 AVX
  976. #define GGML_F32_STEP 32
  977. #define GGML_F32_EPR 8
  978. #define GGML_F32x8 __m256
  979. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  980. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  981. #define GGML_F32x8_LOAD _mm256_loadu_ps
  982. #define GGML_F32x8_STORE _mm256_storeu_ps
  983. #if defined(__FMA__)
  984. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  985. #else
  986. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  987. #endif
  988. #define GGML_F32x8_ADD _mm256_add_ps
  989. #define GGML_F32x8_MUL _mm256_mul_ps
  990. #define GGML_F32x8_REDUCE(res, x) \
  991. do { \
  992. int offset = GGML_F32_ARR >> 1; \
  993. for (int i = 0; i < offset; ++i) { \
  994. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  995. } \
  996. offset >>= 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1005. _mm256_extractf128_ps(x[0], 1)); \
  1006. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1007. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1008. } while (0)
  1009. // TODO: is this optimal ?
  1010. #define GGML_F32_VEC GGML_F32x8
  1011. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1012. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1013. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1014. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1015. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1016. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1017. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1018. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1019. // F16 AVX
  1020. #define GGML_F16_STEP 32
  1021. #define GGML_F16_EPR 8
  1022. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1023. #define GGML_F32Cx8 __m256
  1024. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1025. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1026. #if defined(__F16C__)
  1027. // the _mm256_cvt intrinsics require F16C
  1028. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1029. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1030. #else
  1031. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1032. float tmp[8];
  1033. for (int i = 0; i < 8; i++) {
  1034. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1035. }
  1036. return _mm256_loadu_ps(tmp);
  1037. }
  1038. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1039. float arr[8];
  1040. _mm256_storeu_ps(arr, y);
  1041. for (int i = 0; i < 8; i++)
  1042. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1043. }
  1044. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1045. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1046. #endif
  1047. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1048. #define GGML_F32Cx8_ADD _mm256_add_ps
  1049. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1050. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1051. #define GGML_F16_VEC GGML_F32Cx8
  1052. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1053. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1054. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1055. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1056. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1057. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1058. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1059. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1060. #elif defined(__POWER9_VECTOR__)
  1061. #define GGML_SIMD
  1062. // F32 POWER9
  1063. #define GGML_F32_STEP 32
  1064. #define GGML_F32_EPR 4
  1065. #define GGML_F32x4 vector float
  1066. #define GGML_F32x4_ZERO 0.0f
  1067. #define GGML_F32x4_SET1 vec_splats
  1068. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1069. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1070. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1071. #define GGML_F32x4_ADD vec_add
  1072. #define GGML_F32x4_MUL vec_mul
  1073. #define GGML_F32x4_REDUCE(res, x) \
  1074. { \
  1075. int offset = GGML_F32_ARR >> 1; \
  1076. for (int i = 0; i < offset; ++i) { \
  1077. x[i] = vec_add(x[i], x[offset+i]); \
  1078. } \
  1079. offset >>= 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = vec_add(x[i], x[offset+i]); \
  1082. } \
  1083. offset >>= 1; \
  1084. for (int i = 0; i < offset; ++i) { \
  1085. x[i] = vec_add(x[i], x[offset+i]); \
  1086. } \
  1087. res = vec_extract(x[0], 0) + \
  1088. vec_extract(x[0], 1) + \
  1089. vec_extract(x[0], 2) + \
  1090. vec_extract(x[0], 3); \
  1091. }
  1092. #define GGML_F32_VEC GGML_F32x4
  1093. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1094. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1095. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1096. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1097. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1098. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1099. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1100. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1101. // F16 POWER9
  1102. #define GGML_F16_STEP GGML_F32_STEP
  1103. #define GGML_F16_EPR GGML_F32_EPR
  1104. #define GGML_F16_VEC GGML_F32x4
  1105. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1106. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1107. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1108. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1109. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1110. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1111. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1112. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1113. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1114. #define GGML_F16_VEC_STORE(p, r, i) \
  1115. if (i & 0x1) \
  1116. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1117. r[i - GGML_ENDIAN_BYTE(0)]), \
  1118. 0, p - GGML_F16_EPR)
  1119. #elif defined(__wasm_simd128__)
  1120. #define GGML_SIMD
  1121. // F32 WASM
  1122. #define GGML_F32_STEP 16
  1123. #define GGML_F32_EPR 4
  1124. #define GGML_F32x4 v128_t
  1125. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1126. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1127. #define GGML_F32x4_LOAD wasm_v128_load
  1128. #define GGML_F32x4_STORE wasm_v128_store
  1129. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1130. #define GGML_F32x4_ADD wasm_f32x4_add
  1131. #define GGML_F32x4_MUL wasm_f32x4_mul
  1132. #define GGML_F32x4_REDUCE(res, x) \
  1133. { \
  1134. int offset = GGML_F32_ARR >> 1; \
  1135. for (int i = 0; i < offset; ++i) { \
  1136. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1137. } \
  1138. offset >>= 1; \
  1139. for (int i = 0; i < offset; ++i) { \
  1140. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1141. } \
  1142. offset >>= 1; \
  1143. for (int i = 0; i < offset; ++i) { \
  1144. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1145. } \
  1146. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1147. wasm_f32x4_extract_lane(x[0], 1) + \
  1148. wasm_f32x4_extract_lane(x[0], 2) + \
  1149. wasm_f32x4_extract_lane(x[0], 3); \
  1150. }
  1151. #define GGML_F32_VEC GGML_F32x4
  1152. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1153. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1154. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1155. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1156. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1157. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1158. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1159. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1160. // F16 WASM
  1161. #define GGML_F16_STEP 16
  1162. #define GGML_F16_EPR 4
  1163. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1164. float tmp[4];
  1165. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1166. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1167. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1168. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1169. return wasm_v128_load(tmp);
  1170. }
  1171. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1172. float tmp[4];
  1173. wasm_v128_store(tmp, x);
  1174. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1175. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1176. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1177. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1178. }
  1179. #define GGML_F16x4 v128_t
  1180. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1181. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1182. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1183. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1184. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1185. #define GGML_F16x4_ADD wasm_f32x4_add
  1186. #define GGML_F16x4_MUL wasm_f32x4_mul
  1187. #define GGML_F16x4_REDUCE(res, x) \
  1188. { \
  1189. int offset = GGML_F16_ARR >> 1; \
  1190. for (int i = 0; i < offset; ++i) { \
  1191. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1192. } \
  1193. offset >>= 1; \
  1194. for (int i = 0; i < offset; ++i) { \
  1195. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1196. } \
  1197. offset >>= 1; \
  1198. for (int i = 0; i < offset; ++i) { \
  1199. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1200. } \
  1201. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1202. wasm_f32x4_extract_lane(x[0], 1) + \
  1203. wasm_f32x4_extract_lane(x[0], 2) + \
  1204. wasm_f32x4_extract_lane(x[0], 3); \
  1205. }
  1206. #define GGML_F16_VEC GGML_F16x4
  1207. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1208. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1209. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1210. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1211. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1212. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1213. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1214. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1215. #elif defined(__SSE3__)
  1216. #define GGML_SIMD
  1217. // F32 SSE
  1218. #define GGML_F32_STEP 32
  1219. #define GGML_F32_EPR 4
  1220. #define GGML_F32x4 __m128
  1221. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1222. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1223. #define GGML_F32x4_LOAD _mm_loadu_ps
  1224. #define GGML_F32x4_STORE _mm_storeu_ps
  1225. #if defined(__FMA__)
  1226. // TODO: Does this work?
  1227. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1228. #else
  1229. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1230. #endif
  1231. #define GGML_F32x4_ADD _mm_add_ps
  1232. #define GGML_F32x4_MUL _mm_mul_ps
  1233. #define GGML_F32x4_REDUCE(res, x) \
  1234. { \
  1235. int offset = GGML_F32_ARR >> 1; \
  1236. for (int i = 0; i < offset; ++i) { \
  1237. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1238. } \
  1239. offset >>= 1; \
  1240. for (int i = 0; i < offset; ++i) { \
  1241. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1242. } \
  1243. offset >>= 1; \
  1244. for (int i = 0; i < offset; ++i) { \
  1245. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1246. } \
  1247. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1248. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1249. }
  1250. // TODO: is this optimal ?
  1251. #define GGML_F32_VEC GGML_F32x4
  1252. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1253. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1254. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1255. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1256. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1257. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1258. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1259. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1260. // F16 SSE
  1261. #define GGML_F16_STEP 32
  1262. #define GGML_F16_EPR 4
  1263. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1264. float tmp[4];
  1265. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1266. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1267. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1268. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1269. return _mm_loadu_ps(tmp);
  1270. }
  1271. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1272. float arr[4];
  1273. _mm_storeu_ps(arr, y);
  1274. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1275. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1276. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1277. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1278. }
  1279. #define GGML_F32Cx4 __m128
  1280. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1281. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1282. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1283. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1284. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1285. #define GGML_F32Cx4_ADD _mm_add_ps
  1286. #define GGML_F32Cx4_MUL _mm_mul_ps
  1287. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1288. #define GGML_F16_VEC GGML_F32Cx4
  1289. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1290. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1291. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1292. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1293. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1294. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1295. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1296. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1297. #endif
  1298. // GGML_F32_ARR / GGML_F16_ARR
  1299. // number of registers to use per step
  1300. #ifdef GGML_SIMD
  1301. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1302. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1303. #endif
  1304. //
  1305. // fundamental operations
  1306. //
  1307. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1308. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1309. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1310. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1311. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1312. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1313. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1314. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1315. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1316. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1317. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1318. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1319. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1320. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1321. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1322. assert(nrc == 1);
  1323. UNUSED(nrc);
  1324. UNUSED(bx);
  1325. UNUSED(by);
  1326. UNUSED(bs);
  1327. #ifdef GGML_SIMD
  1328. float sumf = 0.0f;
  1329. const int np = (n & ~(GGML_F32_STEP - 1));
  1330. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1331. GGML_F32_VEC ax[GGML_F32_ARR];
  1332. GGML_F32_VEC ay[GGML_F32_ARR];
  1333. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1334. for (int j = 0; j < GGML_F32_ARR; j++) {
  1335. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1336. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1337. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1338. }
  1339. }
  1340. // reduce sum0..sum3 to sum0
  1341. GGML_F32_VEC_REDUCE(sumf, sum);
  1342. // leftovers
  1343. for (int i = np; i < n; ++i) {
  1344. sumf += x[i]*y[i];
  1345. }
  1346. #else
  1347. // scalar
  1348. ggml_float sumf = 0.0;
  1349. for (int i = 0; i < n; ++i) {
  1350. sumf += (ggml_float)(x[i]*y[i]);
  1351. }
  1352. #endif
  1353. *s = sumf;
  1354. }
  1355. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1356. assert(nrc == 1);
  1357. UNUSED(nrc);
  1358. UNUSED(bx);
  1359. UNUSED(by);
  1360. UNUSED(bs);
  1361. ggml_float sumf = 0.0;
  1362. #if defined(GGML_SIMD)
  1363. const int np = (n & ~(GGML_F16_STEP - 1));
  1364. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1365. GGML_F16_VEC ax[GGML_F16_ARR];
  1366. GGML_F16_VEC ay[GGML_F16_ARR];
  1367. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1368. for (int j = 0; j < GGML_F16_ARR; j++) {
  1369. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1370. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1371. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1372. }
  1373. }
  1374. // reduce sum0..sum3 to sum0
  1375. GGML_F16_VEC_REDUCE(sumf, sum);
  1376. // leftovers
  1377. for (int i = np; i < n; ++i) {
  1378. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1379. }
  1380. #else
  1381. for (int i = 0; i < n; ++i) {
  1382. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1383. }
  1384. #endif
  1385. *s = sumf;
  1386. }
  1387. // compute GGML_VEC_DOT_UNROLL dot products at once
  1388. // xs - x row stride in bytes
  1389. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1390. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1391. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1392. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1393. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1394. }
  1395. #if defined(GGML_SIMD)
  1396. const int np = (n & ~(GGML_F16_STEP - 1));
  1397. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1398. GGML_F16_VEC ax[GGML_F16_ARR];
  1399. GGML_F16_VEC ay[GGML_F16_ARR];
  1400. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1401. for (int j = 0; j < GGML_F16_ARR; j++) {
  1402. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1403. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1404. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1405. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1406. }
  1407. }
  1408. }
  1409. // reduce sum0..sum3 to sum0
  1410. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1411. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1412. }
  1413. // leftovers
  1414. for (int i = np; i < n; ++i) {
  1415. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1416. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1417. }
  1418. }
  1419. #else
  1420. for (int i = 0; i < n; ++i) {
  1421. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1422. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1423. }
  1424. }
  1425. #endif
  1426. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1427. s[i] = sumf[i];
  1428. }
  1429. }
  1430. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1431. #if defined(GGML_SIMD)
  1432. const int np = (n & ~(GGML_F32_STEP - 1));
  1433. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1434. GGML_F32_VEC ax[GGML_F32_ARR];
  1435. GGML_F32_VEC ay[GGML_F32_ARR];
  1436. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1437. for (int j = 0; j < GGML_F32_ARR; j++) {
  1438. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1439. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1440. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1441. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1442. }
  1443. }
  1444. // leftovers
  1445. for (int i = np; i < n; ++i) {
  1446. y[i] += x[i]*v;
  1447. }
  1448. #else
  1449. // scalar
  1450. for (int i = 0; i < n; ++i) {
  1451. y[i] += x[i]*v;
  1452. }
  1453. #endif
  1454. }
  1455. // xs and vs are byte strides of x and v
  1456. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1457. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1458. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1459. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1460. x[i] = (const float *) ((const char *) xv + i*xs);
  1461. v[i] = (const float *) ((const char *) vv + i*vs);
  1462. }
  1463. #if defined(GGML_SIMD)
  1464. const int np = (n & ~(GGML_F32_STEP - 1));
  1465. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1466. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1467. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1468. }
  1469. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1470. GGML_F32_VEC ay[GGML_F32_ARR];
  1471. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1472. for (int j = 0; j < GGML_F32_ARR; j++) {
  1473. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1474. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1475. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1476. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1477. }
  1478. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1479. }
  1480. }
  1481. // leftovers
  1482. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1483. for (int i = np; i < n; ++i) {
  1484. y[i] += x[k][i]*v[k][0];
  1485. }
  1486. }
  1487. #else
  1488. // scalar
  1489. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1490. for (int i = 0; i < n; ++i) {
  1491. y[i] += x[k][i]*v[k][0];
  1492. }
  1493. }
  1494. #endif
  1495. }
  1496. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1497. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1498. #if defined(GGML_USE_ACCELERATE)
  1499. vDSP_vsmul(y, 1, &v, y, 1, n);
  1500. #elif defined(GGML_SIMD)
  1501. const int np = (n & ~(GGML_F32_STEP - 1));
  1502. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1503. GGML_F32_VEC ay[GGML_F32_ARR];
  1504. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1505. for (int j = 0; j < GGML_F32_ARR; j++) {
  1506. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1507. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1508. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1509. }
  1510. }
  1511. // leftovers
  1512. for (int i = np; i < n; ++i) {
  1513. y[i] *= v;
  1514. }
  1515. #else
  1516. // scalar
  1517. for (int i = 0; i < n; ++i) {
  1518. y[i] *= v;
  1519. }
  1520. #endif
  1521. }
  1522. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1523. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1524. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1525. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1526. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1527. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1528. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1529. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1530. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1531. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1532. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1533. // TODO: optimize performance
  1534. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1535. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1536. static const float GELU_COEF_A = 0.044715f;
  1537. static const float GELU_QUICK_COEF = -1.702f;
  1538. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1539. inline static float ggml_gelu_f32(float x) {
  1540. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1541. }
  1542. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1543. const uint16_t * i16 = (const uint16_t *) x;
  1544. for (int i = 0; i < n; ++i) {
  1545. y[i] = ggml_table_gelu_f16[i16[i]];
  1546. }
  1547. }
  1548. #ifdef GGML_GELU_FP16
  1549. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1550. uint16_t t;
  1551. for (int i = 0; i < n; ++i) {
  1552. if (x[i] <= -10.0f) {
  1553. y[i] = 0.0f;
  1554. } else if (x[i] >= 10.0f) {
  1555. y[i] = x[i];
  1556. } else {
  1557. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1558. memcpy(&t, &fp16, sizeof(uint16_t));
  1559. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1560. }
  1561. }
  1562. }
  1563. #else
  1564. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1565. for (int i = 0; i < n; ++i) {
  1566. y[i] = ggml_gelu_f32(x[i]);
  1567. }
  1568. }
  1569. #endif
  1570. inline static float ggml_gelu_quick_f32(float x) {
  1571. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1572. }
  1573. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1574. // const uint16_t * i16 = (const uint16_t *) x;
  1575. // for (int i = 0; i < n; ++i) {
  1576. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1577. // }
  1578. //}
  1579. #ifdef GGML_GELU_QUICK_FP16
  1580. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1581. uint16_t t;
  1582. for (int i = 0; i < n; ++i) {
  1583. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1584. memcpy(&t, &fp16, sizeof(uint16_t));
  1585. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1586. }
  1587. }
  1588. #else
  1589. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1590. for (int i = 0; i < n; ++i) {
  1591. y[i] = ggml_gelu_quick_f32(x[i]);
  1592. }
  1593. }
  1594. #endif
  1595. // Sigmoid Linear Unit (SiLU) function
  1596. inline static float ggml_silu_f32(float x) {
  1597. return x/(1.0f + expf(-x));
  1598. }
  1599. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1600. // const uint16_t * i16 = (const uint16_t *) x;
  1601. // for (int i = 0; i < n; ++i) {
  1602. // y[i] = ggml_table_silu_f16[i16[i]];
  1603. // }
  1604. //}
  1605. #ifdef GGML_SILU_FP16
  1606. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1607. uint16_t t;
  1608. for (int i = 0; i < n; ++i) {
  1609. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1610. memcpy(&t, &fp16, sizeof(uint16_t));
  1611. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1612. }
  1613. }
  1614. #else
  1615. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1616. for (int i = 0; i < n; ++i) {
  1617. y[i] = ggml_silu_f32(x[i]);
  1618. }
  1619. }
  1620. #endif
  1621. inline static float ggml_silu_backward_f32(float x, float dy) {
  1622. const float s = 1.0f/(1.0f + expf(-x));
  1623. return dy*s*(1.0f + x*(1.0f - s));
  1624. }
  1625. #ifdef GGML_SILU_FP16
  1626. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1627. for (int i = 0; i < n; ++i) {
  1628. // we did not use x[i] to compute forward silu but its f16 equivalent
  1629. // take derivative at f16 of x[i]:
  1630. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1631. float usedx = GGML_FP16_TO_FP32(fp16);
  1632. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1633. }
  1634. }
  1635. #else
  1636. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1637. for (int i = 0; i < n; ++i) {
  1638. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1639. }
  1640. }
  1641. #endif
  1642. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1643. #ifndef GGML_USE_ACCELERATE
  1644. ggml_float sum = 0.0;
  1645. for (int i = 0; i < n; ++i) {
  1646. sum += (ggml_float)x[i];
  1647. }
  1648. *s = sum;
  1649. #else
  1650. vDSP_sve(x, 1, s, n);
  1651. #endif
  1652. }
  1653. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1654. ggml_float sum = 0.0;
  1655. for (int i = 0; i < n; ++i) {
  1656. sum += (ggml_float)x[i];
  1657. }
  1658. *s = sum;
  1659. }
  1660. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1661. float sum = 0.0f;
  1662. for (int i = 0; i < n; ++i) {
  1663. sum += GGML_FP16_TO_FP32(x[i]);
  1664. }
  1665. *s = sum;
  1666. }
  1667. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1668. #ifndef GGML_USE_ACCELERATE
  1669. float max = -INFINITY;
  1670. for (int i = 0; i < n; ++i) {
  1671. max = MAX(max, x[i]);
  1672. }
  1673. *s = max;
  1674. #else
  1675. vDSP_maxv(x, 1, s, n);
  1676. #endif
  1677. }
  1678. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1679. ggml_vec_norm_f32(n, s, x);
  1680. *s = 1.f/(*s);
  1681. }
  1682. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1683. float max = -INFINITY;
  1684. int idx = 0;
  1685. for (int i = 0; i < n; ++i) {
  1686. max = MAX(max, x[i]);
  1687. if (max == x[i]) { idx = i; }
  1688. }
  1689. *s = idx;
  1690. }
  1691. //
  1692. // data types
  1693. //
  1694. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1695. "NONE",
  1696. "DUP",
  1697. "ADD",
  1698. "ADD1",
  1699. "ACC",
  1700. "SUB",
  1701. "MUL",
  1702. "DIV",
  1703. "SQR",
  1704. "SQRT",
  1705. "LOG",
  1706. "SUM",
  1707. "SUM_ROWS",
  1708. "MEAN",
  1709. "ARGMAX",
  1710. "REPEAT",
  1711. "REPEAT_BACK",
  1712. "CONCAT",
  1713. "SILU_BACK",
  1714. "NORM",
  1715. "RMS_NORM",
  1716. "RMS_NORM_BACK",
  1717. "GROUP_NORM",
  1718. "MUL_MAT",
  1719. "MUL_MAT_ID",
  1720. "OUT_PROD",
  1721. "SCALE",
  1722. "SET",
  1723. "CPY",
  1724. "CONT",
  1725. "RESHAPE",
  1726. "VIEW",
  1727. "PERMUTE",
  1728. "TRANSPOSE",
  1729. "GET_ROWS",
  1730. "GET_ROWS_BACK",
  1731. "DIAG",
  1732. "DIAG_MASK_INF",
  1733. "DIAG_MASK_ZERO",
  1734. "SOFT_MAX",
  1735. "SOFT_MAX_BACK",
  1736. "ROPE",
  1737. "ROPE_BACK",
  1738. "ALIBI",
  1739. "CLAMP",
  1740. "CONV_TRANSPOSE_1D",
  1741. "IM2COL",
  1742. "CONV_TRANSPOSE_2D",
  1743. "POOL_1D",
  1744. "POOL_2D",
  1745. "UPSCALE",
  1746. "PAD",
  1747. "ARANGE",
  1748. "TIMESTEP_EMBEDDING",
  1749. "ARGSORT",
  1750. "LEAKY_RELU",
  1751. "FLASH_ATTN",
  1752. "FLASH_FF",
  1753. "FLASH_ATTN_BACK",
  1754. "SSM_CONV",
  1755. "SSM_SCAN",
  1756. "WIN_PART",
  1757. "WIN_UNPART",
  1758. "GET_REL_POS",
  1759. "ADD_REL_POS",
  1760. "UNARY",
  1761. "MAP_UNARY",
  1762. "MAP_BINARY",
  1763. "MAP_CUSTOM1_F32",
  1764. "MAP_CUSTOM2_F32",
  1765. "MAP_CUSTOM3_F32",
  1766. "MAP_CUSTOM1",
  1767. "MAP_CUSTOM2",
  1768. "MAP_CUSTOM3",
  1769. "CROSS_ENTROPY_LOSS",
  1770. "CROSS_ENTROPY_LOSS_BACK",
  1771. };
  1772. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1773. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1774. "none",
  1775. "x",
  1776. "x+y",
  1777. "x+y",
  1778. "view(x,nb,offset)+=y->x",
  1779. "x-y",
  1780. "x*y",
  1781. "x/y",
  1782. "x^2",
  1783. "√x",
  1784. "log(x)",
  1785. "Σx",
  1786. "Σx_k",
  1787. "Σx/n",
  1788. "argmax(x)",
  1789. "repeat(x)",
  1790. "repeat_back(x)",
  1791. "concat(x, y)",
  1792. "silu_back(x)",
  1793. "norm(x)",
  1794. "rms_norm(x)",
  1795. "rms_norm_back(x)",
  1796. "group_norm(x)",
  1797. "X*Y",
  1798. "X[i]*Y",
  1799. "X*Y",
  1800. "x*v",
  1801. "y-\\>view(x)",
  1802. "x-\\>y",
  1803. "cont(x)",
  1804. "reshape(x)",
  1805. "view(x)",
  1806. "permute(x)",
  1807. "transpose(x)",
  1808. "get_rows(x)",
  1809. "get_rows_back(x)",
  1810. "diag(x)",
  1811. "diag_mask_inf(x)",
  1812. "diag_mask_zero(x)",
  1813. "soft_max(x)",
  1814. "soft_max_back(x)",
  1815. "rope(x)",
  1816. "rope_back(x)",
  1817. "alibi(x)",
  1818. "clamp(x)",
  1819. "conv_transpose_1d(x)",
  1820. "im2col(x)",
  1821. "conv_transpose_2d(x)",
  1822. "pool_1d(x)",
  1823. "pool_2d(x)",
  1824. "upscale(x)",
  1825. "pad(x)",
  1826. "arange(start, stop, step)",
  1827. "timestep_embedding(timesteps, dim, max_period)",
  1828. "argsort(x)",
  1829. "leaky_relu(x)",
  1830. "flash_attn(x)",
  1831. "flash_ff(x)",
  1832. "flash_attn_back(x)",
  1833. "ssm_conv(x)",
  1834. "ssm_scan(x)",
  1835. "win_part(x)",
  1836. "win_unpart(x)",
  1837. "get_rel_pos(x)",
  1838. "add_rel_pos(x)",
  1839. "unary(x)",
  1840. "f(x)",
  1841. "f(x,y)",
  1842. "custom_f32(x)",
  1843. "custom_f32(x,y)",
  1844. "custom_f32(x,y,z)",
  1845. "custom(x)",
  1846. "custom(x,y)",
  1847. "custom(x,y,z)",
  1848. "cross_entropy_loss(x,y)",
  1849. "cross_entropy_loss_back(x,y)",
  1850. };
  1851. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1852. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1853. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1854. "ABS",
  1855. "SGN",
  1856. "NEG",
  1857. "STEP",
  1858. "TANH",
  1859. "ELU",
  1860. "RELU",
  1861. "GELU",
  1862. "GELU_QUICK",
  1863. "SILU",
  1864. "HARDSWISH",
  1865. "HARDSIGMOID",
  1866. };
  1867. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1868. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1869. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1870. // WARN:
  1871. // Mis-configuration can lead to problem that's hard to reason about:
  1872. // * At best it crash or talks nosense.
  1873. // * At worst it talks slightly difference but hard to perceive.
  1874. //
  1875. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1876. // Take care about compile options (e.g., GGML_USE_xxx).
  1877. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1878. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1879. static void ggml_setup_op_has_task_pass(void) {
  1880. { // INIT
  1881. bool * p = GGML_OP_HAS_INIT;
  1882. p[GGML_OP_ACC ] = true;
  1883. p[GGML_OP_MUL_MAT ] = true;
  1884. p[GGML_OP_MUL_MAT_ID ] = true;
  1885. p[GGML_OP_OUT_PROD ] = true;
  1886. p[GGML_OP_SET ] = true;
  1887. p[GGML_OP_GET_ROWS_BACK ] = true;
  1888. p[GGML_OP_DIAG_MASK_INF ] = true;
  1889. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1890. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1891. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1892. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1893. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1894. p[GGML_OP_ADD_REL_POS ] = true;
  1895. }
  1896. { // FINALIZE
  1897. bool * p = GGML_OP_HAS_FINALIZE;
  1898. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1899. }
  1900. }
  1901. //
  1902. // ggml context
  1903. //
  1904. struct ggml_context {
  1905. size_t mem_size;
  1906. void * mem_buffer;
  1907. bool mem_buffer_owned;
  1908. bool no_alloc;
  1909. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1910. int n_objects;
  1911. struct ggml_object * objects_begin;
  1912. struct ggml_object * objects_end;
  1913. struct ggml_scratch scratch;
  1914. struct ggml_scratch scratch_save;
  1915. };
  1916. struct ggml_context_container {
  1917. bool used;
  1918. struct ggml_context context;
  1919. };
  1920. //
  1921. // NUMA support
  1922. //
  1923. #define GGML_NUMA_MAX_NODES 8
  1924. #define GGML_NUMA_MAX_CPUS 512
  1925. struct ggml_numa_node {
  1926. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1927. uint32_t n_cpus;
  1928. };
  1929. struct ggml_numa_nodes {
  1930. enum ggml_numa_strategy numa_strategy;
  1931. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1932. uint32_t n_nodes;
  1933. uint32_t total_cpus; // hardware threads on system
  1934. uint32_t current_node; // node on which main process is execting
  1935. #if defined(__gnu_linux__)
  1936. cpu_set_t cpuset; // cpuset from numactl
  1937. #else
  1938. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1939. #endif
  1940. };
  1941. //
  1942. // ggml state
  1943. //
  1944. struct ggml_state {
  1945. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1946. struct ggml_numa_nodes numa;
  1947. };
  1948. // global state
  1949. static struct ggml_state g_state;
  1950. static atomic_int g_state_barrier = 0;
  1951. // barrier via spin lock
  1952. inline static void ggml_critical_section_start(void) {
  1953. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1954. while (processing > 0) {
  1955. // wait for other threads to finish
  1956. atomic_fetch_sub(&g_state_barrier, 1);
  1957. sched_yield(); // TODO: reconsider this
  1958. processing = atomic_fetch_add(&g_state_barrier, 1);
  1959. }
  1960. }
  1961. // TODO: make this somehow automatically executed
  1962. // some sort of "sentry" mechanism
  1963. inline static void ggml_critical_section_end(void) {
  1964. atomic_fetch_sub(&g_state_barrier, 1);
  1965. }
  1966. #if defined(__gnu_linux__)
  1967. static cpu_set_t ggml_get_numa_affinity(void) {
  1968. cpu_set_t cpuset;
  1969. pthread_t thread;
  1970. thread = pthread_self();
  1971. CPU_ZERO(&cpuset);
  1972. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1973. return cpuset;
  1974. }
  1975. #else
  1976. static uint32_t ggml_get_numa_affinity(void) {
  1977. return 0; // no NUMA support
  1978. }
  1979. #endif
  1980. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1981. if (g_state.numa.n_nodes > 0) {
  1982. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1983. return;
  1984. }
  1985. #if defined(__gnu_linux__)
  1986. struct stat st;
  1987. char path[256];
  1988. int rv;
  1989. // set numa scheme
  1990. g_state.numa.numa_strategy = numa_flag;
  1991. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1992. g_state.numa.cpuset = ggml_get_numa_affinity();
  1993. // enumerate nodes
  1994. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1995. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1996. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1997. if (stat(path, &st) != 0) { break; }
  1998. ++g_state.numa.n_nodes;
  1999. }
  2000. // enumerate CPUs
  2001. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2002. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2003. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2004. if (stat(path, &st) != 0) { break; }
  2005. ++g_state.numa.total_cpus;
  2006. }
  2007. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2008. // figure out which node we're on
  2009. uint current_cpu;
  2010. int getcpu_ret = 0;
  2011. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2012. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2013. #else
  2014. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2015. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2016. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2017. # endif
  2018. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2019. #endif
  2020. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2021. g_state.numa.n_nodes = 0;
  2022. return;
  2023. }
  2024. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2025. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2026. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2027. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2028. node->n_cpus = 0;
  2029. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2030. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2031. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2032. if (stat(path, &st) == 0) {
  2033. node->cpus[node->n_cpus++] = c;
  2034. GGML_PRINT_DEBUG(" %u", c);
  2035. }
  2036. }
  2037. GGML_PRINT_DEBUG("\n");
  2038. }
  2039. if (ggml_is_numa()) {
  2040. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2041. if (fptr != NULL) {
  2042. char buf[42];
  2043. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2044. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2045. }
  2046. fclose(fptr);
  2047. }
  2048. }
  2049. #else
  2050. GGML_UNUSED(numa_flag);
  2051. // TODO
  2052. #endif
  2053. }
  2054. bool ggml_is_numa(void) {
  2055. return g_state.numa.n_nodes > 1;
  2056. }
  2057. ////////////////////////////////////////////////////////////////////////////////
  2058. void ggml_print_object(const struct ggml_object * obj) {
  2059. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2060. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2061. }
  2062. void ggml_print_objects(const struct ggml_context * ctx) {
  2063. struct ggml_object * obj = ctx->objects_begin;
  2064. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2065. while (obj != NULL) {
  2066. ggml_print_object(obj);
  2067. obj = obj->next;
  2068. }
  2069. GGML_PRINT("%s: --- end ---\n", __func__);
  2070. }
  2071. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2072. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2073. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2074. }
  2075. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2076. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2077. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2078. }
  2079. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2080. size_t nbytes;
  2081. size_t blck_size = ggml_blck_size(tensor->type);
  2082. if (blck_size == 1) {
  2083. nbytes = ggml_type_size(tensor->type);
  2084. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2085. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2086. }
  2087. }
  2088. else {
  2089. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2090. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2091. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2092. }
  2093. }
  2094. return nbytes;
  2095. }
  2096. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2097. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2098. }
  2099. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2100. return type_traits[type].blck_size;
  2101. }
  2102. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2103. return type_traits[type].type_size;
  2104. }
  2105. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2106. assert(ne % ggml_blck_size(type) == 0);
  2107. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2108. }
  2109. double ggml_type_sizef(enum ggml_type type) {
  2110. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2111. }
  2112. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2113. return type_traits[type].type_name;
  2114. }
  2115. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2116. return type_traits[type].is_quantized;
  2117. }
  2118. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2119. return GGML_OP_NAME[op];
  2120. }
  2121. const char * ggml_op_symbol(enum ggml_op op) {
  2122. return GGML_OP_SYMBOL[op];
  2123. }
  2124. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2125. return GGML_UNARY_OP_NAME[op];
  2126. }
  2127. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2128. if (t->op == GGML_OP_UNARY) {
  2129. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2130. return ggml_unary_op_name(uop);
  2131. }
  2132. else {
  2133. return ggml_op_name(t->op);
  2134. }
  2135. }
  2136. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2137. return ggml_type_size(tensor->type);
  2138. }
  2139. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2140. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2141. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2142. }
  2143. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2144. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2145. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2146. }
  2147. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2148. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2149. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2150. }
  2151. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2152. return tensor->ne[3] == 1;
  2153. }
  2154. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2155. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2156. if (tensor->ne[i] > 1) {
  2157. return i + 1;
  2158. }
  2159. }
  2160. return 1;
  2161. }
  2162. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2163. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2164. return (t0->ne[0] == t1->ne[0]) &&
  2165. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2166. (t1->ne[3]%t0->ne[3] == 0);
  2167. }
  2168. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2169. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2170. return (t0->ne[1] == t1->ne[1]) &&
  2171. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2172. (t1->ne[3]%t0->ne[3] == 0);
  2173. }
  2174. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2175. enum ggml_type wtype = GGML_TYPE_COUNT;
  2176. switch (ftype) {
  2177. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2178. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2179. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2180. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2181. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2182. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2183. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2184. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2185. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2186. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2187. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2188. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2189. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2190. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2191. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2192. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2193. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2194. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2195. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2196. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2197. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2198. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2199. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2200. }
  2201. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2202. return wtype;
  2203. }
  2204. size_t ggml_tensor_overhead(void) {
  2205. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2206. }
  2207. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2208. return tensor->nb[0] > tensor->nb[1];
  2209. }
  2210. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2211. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2212. return
  2213. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2214. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2215. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2216. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2217. }
  2218. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2219. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2220. return
  2221. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2222. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2223. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2224. }
  2225. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2226. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2227. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2228. }
  2229. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2230. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2231. return
  2232. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2233. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2234. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2235. }
  2236. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2237. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2238. if (tensor->ne[i] == 0) {
  2239. // empty if any dimension has no elements
  2240. return true;
  2241. }
  2242. }
  2243. return false;
  2244. }
  2245. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2246. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2247. return
  2248. (t0->ne[0] == t1->ne[0] ) &&
  2249. (t0->ne[1] == t1->ne[1] ) &&
  2250. (t0->ne[2] == t1->ne[2] ) &&
  2251. (t0->ne[3] == t1->ne[3] );
  2252. }
  2253. // check if t1 can be represented as a repeatition of t0
  2254. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2255. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2256. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2257. (t1->ne[0]%t0->ne[0] == 0) &&
  2258. (t1->ne[1]%t0->ne[1] == 0) &&
  2259. (t1->ne[2]%t0->ne[2] == 0) &&
  2260. (t1->ne[3]%t0->ne[3] == 0);
  2261. }
  2262. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2263. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2264. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2265. }
  2266. static inline int ggml_up32(int n) {
  2267. return (n + 31) & ~31;
  2268. }
  2269. //static inline int ggml_up64(int n) {
  2270. // return (n + 63) & ~63;
  2271. //}
  2272. static inline int ggml_up(int n, int m) {
  2273. // assert m is a power of 2
  2274. GGML_ASSERT((m & (m - 1)) == 0);
  2275. return (n + m - 1) & ~(m - 1);
  2276. }
  2277. // assert that pointer is aligned to GGML_MEM_ALIGN
  2278. #define ggml_assert_aligned(ptr) \
  2279. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2280. ////////////////////////////////////////////////////////////////////////////////
  2281. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2282. // make this function thread safe
  2283. ggml_critical_section_start();
  2284. static bool is_first_call = true;
  2285. if (is_first_call) {
  2286. // initialize time system (required on Windows)
  2287. ggml_time_init();
  2288. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2289. {
  2290. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2291. ggml_fp16_t ii;
  2292. for (int i = 0; i < (1 << 16); ++i) {
  2293. uint16_t ui = i;
  2294. memcpy(&ii, &ui, sizeof(ii));
  2295. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2296. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2297. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2298. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2299. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2300. }
  2301. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2302. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2303. }
  2304. // initialize g_state
  2305. {
  2306. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2307. g_state = (struct ggml_state) {
  2308. /*.contexts =*/ { { 0 } },
  2309. /*.numa =*/ {
  2310. .n_nodes = 0,
  2311. .total_cpus = 0,
  2312. },
  2313. };
  2314. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2315. g_state.contexts[i].used = false;
  2316. }
  2317. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2318. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2319. }
  2320. #if defined(GGML_USE_CLBLAST)
  2321. ggml_cl_init();
  2322. #endif
  2323. ggml_setup_op_has_task_pass();
  2324. is_first_call = false;
  2325. }
  2326. // find non-used context in g_state
  2327. struct ggml_context * ctx = NULL;
  2328. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2329. if (!g_state.contexts[i].used) {
  2330. g_state.contexts[i].used = true;
  2331. ctx = &g_state.contexts[i].context;
  2332. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2333. break;
  2334. }
  2335. }
  2336. if (ctx == NULL) {
  2337. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2338. ggml_critical_section_end();
  2339. return NULL;
  2340. }
  2341. // allow to call ggml_init with 0 size
  2342. if (params.mem_size == 0) {
  2343. params.mem_size = GGML_MEM_ALIGN;
  2344. }
  2345. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2346. *ctx = (struct ggml_context) {
  2347. /*.mem_size =*/ mem_size,
  2348. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2349. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2350. /*.no_alloc =*/ params.no_alloc,
  2351. /*.no_alloc_save =*/ params.no_alloc,
  2352. /*.n_objects =*/ 0,
  2353. /*.objects_begin =*/ NULL,
  2354. /*.objects_end =*/ NULL,
  2355. /*.scratch =*/ { 0, 0, NULL, },
  2356. /*.scratch_save =*/ { 0, 0, NULL, },
  2357. };
  2358. GGML_ASSERT(ctx->mem_buffer != NULL);
  2359. ggml_assert_aligned(ctx->mem_buffer);
  2360. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2361. ggml_critical_section_end();
  2362. return ctx;
  2363. }
  2364. void ggml_free(struct ggml_context * ctx) {
  2365. if (ctx == NULL) {
  2366. return;
  2367. }
  2368. // make this function thread safe
  2369. ggml_critical_section_start();
  2370. bool found = false;
  2371. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2372. if (&g_state.contexts[i].context == ctx) {
  2373. g_state.contexts[i].used = false;
  2374. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2375. __func__, i, ggml_used_mem(ctx));
  2376. if (ctx->mem_buffer_owned) {
  2377. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2378. }
  2379. found = true;
  2380. break;
  2381. }
  2382. }
  2383. if (!found) {
  2384. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2385. }
  2386. ggml_critical_section_end();
  2387. }
  2388. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2389. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2390. }
  2391. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2392. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2393. ctx->scratch = scratch;
  2394. return result;
  2395. }
  2396. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2397. return ctx->no_alloc;
  2398. }
  2399. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2400. ctx->no_alloc = no_alloc;
  2401. }
  2402. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2403. return ctx->mem_buffer;
  2404. }
  2405. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2406. return ctx->mem_size;
  2407. }
  2408. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2409. size_t max_size = 0;
  2410. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2411. size_t bytes = ggml_nbytes(tensor);
  2412. max_size = MAX(max_size, bytes);
  2413. }
  2414. return max_size;
  2415. }
  2416. // IMPORTANT:
  2417. // when creating "opt" tensors, always save and load the scratch buffer
  2418. // this is an error prone process, but it is necessary to support inplace
  2419. // operators when using scratch buffers
  2420. // TODO: implement a better way
  2421. static void ggml_scratch_save(struct ggml_context * ctx) {
  2422. // this is needed to allow opt tensors to store their data
  2423. // TODO: again, need to find a better way
  2424. ctx->no_alloc_save = ctx->no_alloc;
  2425. ctx->no_alloc = false;
  2426. ctx->scratch_save = ctx->scratch;
  2427. ctx->scratch.data = NULL;
  2428. }
  2429. static void ggml_scratch_load(struct ggml_context * ctx) {
  2430. ctx->no_alloc = ctx->no_alloc_save;
  2431. ctx->scratch = ctx->scratch_save;
  2432. }
  2433. ////////////////////////////////////////////////////////////////////////////////
  2434. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2435. // always insert objects at the end of the context's memory pool
  2436. struct ggml_object * obj_cur = ctx->objects_end;
  2437. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2438. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2439. const size_t cur_end = cur_offs + cur_size;
  2440. // align to GGML_MEM_ALIGN
  2441. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2442. char * const mem_buffer = ctx->mem_buffer;
  2443. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2444. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2445. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2446. __func__, cur_end + size_needed, ctx->mem_size);
  2447. assert(false);
  2448. return NULL;
  2449. }
  2450. *obj_new = (struct ggml_object) {
  2451. .offs = cur_end + GGML_OBJECT_SIZE,
  2452. .size = size_needed,
  2453. .next = NULL,
  2454. .type = type,
  2455. };
  2456. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2457. if (obj_cur != NULL) {
  2458. obj_cur->next = obj_new;
  2459. } else {
  2460. // this is the first object in this context
  2461. ctx->objects_begin = obj_new;
  2462. }
  2463. ctx->objects_end = obj_new;
  2464. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2465. return obj_new;
  2466. }
  2467. static struct ggml_tensor * ggml_new_tensor_impl(
  2468. struct ggml_context * ctx,
  2469. enum ggml_type type,
  2470. int n_dims,
  2471. const int64_t * ne,
  2472. struct ggml_tensor * view_src,
  2473. size_t view_offs) {
  2474. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2475. // find the base tensor and absolute offset
  2476. if (view_src != NULL && view_src->view_src != NULL) {
  2477. view_offs += view_src->view_offs;
  2478. view_src = view_src->view_src;
  2479. }
  2480. size_t data_size = ggml_row_size(type, ne[0]);
  2481. for (int i = 1; i < n_dims; i++) {
  2482. data_size *= ne[i];
  2483. }
  2484. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2485. void * data = view_src != NULL ? view_src->data : NULL;
  2486. if (data != NULL) {
  2487. data = (char *) data + view_offs;
  2488. }
  2489. size_t obj_alloc_size = 0;
  2490. if (view_src == NULL && !ctx->no_alloc) {
  2491. if (ctx->scratch.data != NULL) {
  2492. // allocate tensor data in the scratch buffer
  2493. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2494. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2495. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2496. assert(false);
  2497. return NULL;
  2498. }
  2499. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2500. ctx->scratch.offs += data_size;
  2501. } else {
  2502. // allocate tensor data in the context's memory pool
  2503. obj_alloc_size = data_size;
  2504. }
  2505. }
  2506. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2507. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2508. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2509. *result = (struct ggml_tensor) {
  2510. /*.type =*/ type,
  2511. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2512. /*.buffer =*/ NULL,
  2513. /*.ne =*/ { 1, 1, 1, 1 },
  2514. /*.nb =*/ { 0, 0, 0, 0 },
  2515. /*.op =*/ GGML_OP_NONE,
  2516. /*.op_params =*/ { 0 },
  2517. /*.flags =*/ 0,
  2518. /*.grad =*/ NULL,
  2519. /*.src =*/ { NULL },
  2520. /*.perf_runs =*/ 0,
  2521. /*.perf_cycles =*/ 0,
  2522. /*.perf_time_us =*/ 0,
  2523. /*.view_src =*/ view_src,
  2524. /*.view_offs =*/ view_offs,
  2525. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2526. /*.name =*/ { 0 },
  2527. /*.extra =*/ NULL,
  2528. /*.padding =*/ { 0 },
  2529. };
  2530. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2531. //ggml_assert_aligned(result->data);
  2532. for (int i = 0; i < n_dims; i++) {
  2533. result->ne[i] = ne[i];
  2534. }
  2535. result->nb[0] = ggml_type_size(type);
  2536. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2537. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2538. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2539. }
  2540. ctx->n_objects++;
  2541. return result;
  2542. }
  2543. struct ggml_tensor * ggml_new_tensor(
  2544. struct ggml_context * ctx,
  2545. enum ggml_type type,
  2546. int n_dims,
  2547. const int64_t * ne) {
  2548. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2549. }
  2550. struct ggml_tensor * ggml_new_tensor_1d(
  2551. struct ggml_context * ctx,
  2552. enum ggml_type type,
  2553. int64_t ne0) {
  2554. return ggml_new_tensor(ctx, type, 1, &ne0);
  2555. }
  2556. struct ggml_tensor * ggml_new_tensor_2d(
  2557. struct ggml_context * ctx,
  2558. enum ggml_type type,
  2559. int64_t ne0,
  2560. int64_t ne1) {
  2561. const int64_t ne[2] = { ne0, ne1 };
  2562. return ggml_new_tensor(ctx, type, 2, ne);
  2563. }
  2564. struct ggml_tensor * ggml_new_tensor_3d(
  2565. struct ggml_context * ctx,
  2566. enum ggml_type type,
  2567. int64_t ne0,
  2568. int64_t ne1,
  2569. int64_t ne2) {
  2570. const int64_t ne[3] = { ne0, ne1, ne2 };
  2571. return ggml_new_tensor(ctx, type, 3, ne);
  2572. }
  2573. struct ggml_tensor * ggml_new_tensor_4d(
  2574. struct ggml_context * ctx,
  2575. enum ggml_type type,
  2576. int64_t ne0,
  2577. int64_t ne1,
  2578. int64_t ne2,
  2579. int64_t ne3) {
  2580. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2581. return ggml_new_tensor(ctx, type, 4, ne);
  2582. }
  2583. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2584. ggml_scratch_save(ctx);
  2585. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2586. ggml_scratch_load(ctx);
  2587. ggml_set_i32(result, value);
  2588. return result;
  2589. }
  2590. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2591. ggml_scratch_save(ctx);
  2592. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2593. ggml_scratch_load(ctx);
  2594. ggml_set_f32(result, value);
  2595. return result;
  2596. }
  2597. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2598. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2599. }
  2600. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2601. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2602. assert(params_size <= GGML_MAX_OP_PARAMS);
  2603. memcpy(tensor->op_params, params, params_size);
  2604. }
  2605. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2606. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2607. return ((const int32_t *)(tensor->op_params))[i];
  2608. }
  2609. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2610. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2611. return ((const float *)(tensor->op_params))[i];
  2612. }
  2613. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2614. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2615. ((int32_t *)(tensor->op_params))[i] = value;
  2616. }
  2617. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2618. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2619. ((float *)(tensor->op_params))[i] = value;
  2620. }
  2621. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2622. memset(tensor->data, 0, ggml_nbytes(tensor));
  2623. return tensor;
  2624. }
  2625. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2626. const int n = ggml_nrows(tensor);
  2627. const int nc = tensor->ne[0];
  2628. const size_t n1 = tensor->nb[1];
  2629. char * const data = tensor->data;
  2630. switch (tensor->type) {
  2631. case GGML_TYPE_I8:
  2632. {
  2633. assert(tensor->nb[0] == sizeof(int8_t));
  2634. for (int i = 0; i < n; i++) {
  2635. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2636. }
  2637. } break;
  2638. case GGML_TYPE_I16:
  2639. {
  2640. assert(tensor->nb[0] == sizeof(int16_t));
  2641. for (int i = 0; i < n; i++) {
  2642. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2643. }
  2644. } break;
  2645. case GGML_TYPE_I32:
  2646. {
  2647. assert(tensor->nb[0] == sizeof(int32_t));
  2648. for (int i = 0; i < n; i++) {
  2649. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2650. }
  2651. } break;
  2652. case GGML_TYPE_F16:
  2653. {
  2654. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2655. for (int i = 0; i < n; i++) {
  2656. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2657. }
  2658. } break;
  2659. case GGML_TYPE_F32:
  2660. {
  2661. assert(tensor->nb[0] == sizeof(float));
  2662. for (int i = 0; i < n; i++) {
  2663. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2664. }
  2665. } break;
  2666. default:
  2667. {
  2668. GGML_ASSERT(false);
  2669. } break;
  2670. }
  2671. return tensor;
  2672. }
  2673. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2674. const int n = ggml_nrows(tensor);
  2675. const int nc = tensor->ne[0];
  2676. const size_t n1 = tensor->nb[1];
  2677. char * const data = tensor->data;
  2678. switch (tensor->type) {
  2679. case GGML_TYPE_I8:
  2680. {
  2681. assert(tensor->nb[0] == sizeof(int8_t));
  2682. for (int i = 0; i < n; i++) {
  2683. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2684. }
  2685. } break;
  2686. case GGML_TYPE_I16:
  2687. {
  2688. assert(tensor->nb[0] == sizeof(int16_t));
  2689. for (int i = 0; i < n; i++) {
  2690. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2691. }
  2692. } break;
  2693. case GGML_TYPE_I32:
  2694. {
  2695. assert(tensor->nb[0] == sizeof(int32_t));
  2696. for (int i = 0; i < n; i++) {
  2697. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2698. }
  2699. } break;
  2700. case GGML_TYPE_F16:
  2701. {
  2702. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2703. for (int i = 0; i < n; i++) {
  2704. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2705. }
  2706. } break;
  2707. case GGML_TYPE_F32:
  2708. {
  2709. assert(tensor->nb[0] == sizeof(float));
  2710. for (int i = 0; i < n; i++) {
  2711. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2712. }
  2713. } break;
  2714. default:
  2715. {
  2716. GGML_ASSERT(false);
  2717. } break;
  2718. }
  2719. return tensor;
  2720. }
  2721. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2722. const int64_t ne2 = tensor->ne[2];
  2723. const int64_t ne1 = tensor->ne[1];
  2724. const int64_t ne0 = tensor->ne[0];
  2725. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2726. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2727. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2728. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2729. if (i0) {
  2730. * i0 = i0_;
  2731. }
  2732. if (i1) {
  2733. * i1 = i1_;
  2734. }
  2735. if (i2) {
  2736. * i2 = i2_;
  2737. }
  2738. if (i3) {
  2739. * i3 = i3_;
  2740. }
  2741. }
  2742. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2743. if (!ggml_is_contiguous(tensor)) {
  2744. int64_t id[4] = { 0, 0, 0, 0 };
  2745. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2746. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2747. }
  2748. switch (tensor->type) {
  2749. case GGML_TYPE_I8:
  2750. {
  2751. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2752. return ((int8_t *)(tensor->data))[i];
  2753. }
  2754. case GGML_TYPE_I16:
  2755. {
  2756. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2757. return ((int16_t *)(tensor->data))[i];
  2758. }
  2759. case GGML_TYPE_I32:
  2760. {
  2761. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2762. return ((int32_t *)(tensor->data))[i];
  2763. }
  2764. case GGML_TYPE_F16:
  2765. {
  2766. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2767. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2768. }
  2769. case GGML_TYPE_F32:
  2770. {
  2771. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2772. return ((float *)(tensor->data))[i];
  2773. }
  2774. default:
  2775. {
  2776. GGML_ASSERT(false);
  2777. }
  2778. }
  2779. return 0.0f;
  2780. }
  2781. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2782. if (!ggml_is_contiguous(tensor)) {
  2783. int64_t id[4] = { 0, 0, 0, 0 };
  2784. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2785. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2786. return;
  2787. }
  2788. switch (tensor->type) {
  2789. case GGML_TYPE_I8:
  2790. {
  2791. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2792. ((int8_t *)(tensor->data))[i] = value;
  2793. } break;
  2794. case GGML_TYPE_I16:
  2795. {
  2796. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2797. ((int16_t *)(tensor->data))[i] = value;
  2798. } break;
  2799. case GGML_TYPE_I32:
  2800. {
  2801. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2802. ((int32_t *)(tensor->data))[i] = value;
  2803. } break;
  2804. case GGML_TYPE_F16:
  2805. {
  2806. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2807. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2808. } break;
  2809. case GGML_TYPE_F32:
  2810. {
  2811. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2812. ((float *)(tensor->data))[i] = value;
  2813. } break;
  2814. default:
  2815. {
  2816. GGML_ASSERT(false);
  2817. } break;
  2818. }
  2819. }
  2820. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2821. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2822. switch (tensor->type) {
  2823. case GGML_TYPE_I8:
  2824. return ((int8_t *) data)[0];
  2825. case GGML_TYPE_I16:
  2826. return ((int16_t *) data)[0];
  2827. case GGML_TYPE_I32:
  2828. return ((int32_t *) data)[0];
  2829. case GGML_TYPE_F16:
  2830. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2831. case GGML_TYPE_F32:
  2832. return ((float *) data)[0];
  2833. default:
  2834. GGML_ASSERT(false);
  2835. }
  2836. return 0.0f;
  2837. }
  2838. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2839. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2840. switch (tensor->type) {
  2841. case GGML_TYPE_I8:
  2842. {
  2843. ((int8_t *)(data))[0] = value;
  2844. } break;
  2845. case GGML_TYPE_I16:
  2846. {
  2847. ((int16_t *)(data))[0] = value;
  2848. } break;
  2849. case GGML_TYPE_I32:
  2850. {
  2851. ((int32_t *)(data))[0] = value;
  2852. } break;
  2853. case GGML_TYPE_F16:
  2854. {
  2855. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2856. } break;
  2857. case GGML_TYPE_F32:
  2858. {
  2859. ((float *)(data))[0] = value;
  2860. } break;
  2861. default:
  2862. {
  2863. GGML_ASSERT(false);
  2864. } break;
  2865. }
  2866. }
  2867. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2868. if (!ggml_is_contiguous(tensor)) {
  2869. int64_t id[4] = { 0, 0, 0, 0 };
  2870. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2871. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2872. }
  2873. switch (tensor->type) {
  2874. case GGML_TYPE_I8:
  2875. {
  2876. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2877. return ((int8_t *)(tensor->data))[i];
  2878. }
  2879. case GGML_TYPE_I16:
  2880. {
  2881. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2882. return ((int16_t *)(tensor->data))[i];
  2883. }
  2884. case GGML_TYPE_I32:
  2885. {
  2886. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2887. return ((int32_t *)(tensor->data))[i];
  2888. }
  2889. case GGML_TYPE_F16:
  2890. {
  2891. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2892. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2893. }
  2894. case GGML_TYPE_F32:
  2895. {
  2896. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2897. return ((float *)(tensor->data))[i];
  2898. }
  2899. default:
  2900. {
  2901. GGML_ASSERT(false);
  2902. }
  2903. }
  2904. return 0.0f;
  2905. }
  2906. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2907. if (!ggml_is_contiguous(tensor)) {
  2908. int64_t id[4] = { 0, 0, 0, 0 };
  2909. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2910. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2911. return;
  2912. }
  2913. switch (tensor->type) {
  2914. case GGML_TYPE_I8:
  2915. {
  2916. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2917. ((int8_t *)(tensor->data))[i] = value;
  2918. } break;
  2919. case GGML_TYPE_I16:
  2920. {
  2921. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2922. ((int16_t *)(tensor->data))[i] = value;
  2923. } break;
  2924. case GGML_TYPE_I32:
  2925. {
  2926. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2927. ((int32_t *)(tensor->data))[i] = value;
  2928. } break;
  2929. case GGML_TYPE_F16:
  2930. {
  2931. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2932. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2933. } break;
  2934. case GGML_TYPE_F32:
  2935. {
  2936. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2937. ((float *)(tensor->data))[i] = value;
  2938. } break;
  2939. default:
  2940. {
  2941. GGML_ASSERT(false);
  2942. } break;
  2943. }
  2944. }
  2945. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2946. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2947. switch (tensor->type) {
  2948. case GGML_TYPE_I8:
  2949. return ((int8_t *) data)[0];
  2950. case GGML_TYPE_I16:
  2951. return ((int16_t *) data)[0];
  2952. case GGML_TYPE_I32:
  2953. return ((int32_t *) data)[0];
  2954. case GGML_TYPE_F16:
  2955. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2956. case GGML_TYPE_F32:
  2957. return ((float *) data)[0];
  2958. default:
  2959. GGML_ASSERT(false);
  2960. }
  2961. return 0.0f;
  2962. }
  2963. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2964. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2965. switch (tensor->type) {
  2966. case GGML_TYPE_I8:
  2967. {
  2968. ((int8_t *)(data))[0] = value;
  2969. } break;
  2970. case GGML_TYPE_I16:
  2971. {
  2972. ((int16_t *)(data))[0] = value;
  2973. } break;
  2974. case GGML_TYPE_I32:
  2975. {
  2976. ((int32_t *)(data))[0] = value;
  2977. } break;
  2978. case GGML_TYPE_F16:
  2979. {
  2980. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2981. } break;
  2982. case GGML_TYPE_F32:
  2983. {
  2984. ((float *)(data))[0] = value;
  2985. } break;
  2986. default:
  2987. {
  2988. GGML_ASSERT(false);
  2989. } break;
  2990. }
  2991. }
  2992. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2993. return tensor->data;
  2994. }
  2995. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2996. assert(tensor->type == GGML_TYPE_F32);
  2997. return (float *)(tensor->data);
  2998. }
  2999. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3000. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3001. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3002. }
  3003. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3004. return tensor->name;
  3005. }
  3006. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3007. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3008. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3009. return tensor;
  3010. }
  3011. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3012. va_list args;
  3013. va_start(args, fmt);
  3014. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3015. va_end(args);
  3016. return tensor;
  3017. }
  3018. struct ggml_tensor * ggml_view_tensor(
  3019. struct ggml_context * ctx,
  3020. struct ggml_tensor * src) {
  3021. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3022. ggml_format_name(result, "%s (view)", src->name);
  3023. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3024. result->nb[i] = src->nb[i];
  3025. }
  3026. return result;
  3027. }
  3028. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3029. struct ggml_object * obj = ctx->objects_begin;
  3030. char * const mem_buffer = ctx->mem_buffer;
  3031. while (obj != NULL) {
  3032. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3033. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3034. }
  3035. obj = obj->next;
  3036. }
  3037. return NULL;
  3038. }
  3039. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3040. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3041. obj = obj->next;
  3042. char * const mem_buffer = ctx->mem_buffer;
  3043. while (obj != NULL) {
  3044. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3045. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3046. }
  3047. obj = obj->next;
  3048. }
  3049. return NULL;
  3050. }
  3051. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3052. struct ggml_object * obj = ctx->objects_begin;
  3053. char * const mem_buffer = ctx->mem_buffer;
  3054. while (obj != NULL) {
  3055. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3056. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3057. if (strcmp(cur->name, name) == 0) {
  3058. return cur;
  3059. }
  3060. }
  3061. obj = obj->next;
  3062. }
  3063. return NULL;
  3064. }
  3065. ////////////////////////////////////////////////////////////////////////////////
  3066. // ggml_dup
  3067. static struct ggml_tensor * ggml_dup_impl(
  3068. struct ggml_context * ctx,
  3069. struct ggml_tensor * a,
  3070. bool inplace) {
  3071. bool is_node = false;
  3072. if (!inplace && (a->grad)) {
  3073. is_node = true;
  3074. }
  3075. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3076. result->op = GGML_OP_DUP;
  3077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3078. result->src[0] = a;
  3079. return result;
  3080. }
  3081. struct ggml_tensor * ggml_dup(
  3082. struct ggml_context * ctx,
  3083. struct ggml_tensor * a) {
  3084. return ggml_dup_impl(ctx, a, false);
  3085. }
  3086. struct ggml_tensor * ggml_dup_inplace(
  3087. struct ggml_context * ctx,
  3088. struct ggml_tensor * a) {
  3089. return ggml_dup_impl(ctx, a, true);
  3090. }
  3091. // ggml_add
  3092. static struct ggml_tensor * ggml_add_impl(
  3093. struct ggml_context * ctx,
  3094. struct ggml_tensor * a,
  3095. struct ggml_tensor * b,
  3096. bool inplace) {
  3097. GGML_ASSERT(ggml_can_repeat(b, a));
  3098. bool is_node = false;
  3099. if (!inplace && (a->grad || b->grad)) {
  3100. // TODO: support backward pass for broadcasting
  3101. GGML_ASSERT(ggml_are_same_shape(a, b));
  3102. is_node = true;
  3103. }
  3104. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3105. result->op = GGML_OP_ADD;
  3106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3107. result->src[0] = a;
  3108. result->src[1] = b;
  3109. return result;
  3110. }
  3111. struct ggml_tensor * ggml_add(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a,
  3114. struct ggml_tensor * b) {
  3115. return ggml_add_impl(ctx, a, b, false);
  3116. }
  3117. struct ggml_tensor * ggml_add_inplace(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a,
  3120. struct ggml_tensor * b) {
  3121. return ggml_add_impl(ctx, a, b, true);
  3122. }
  3123. // ggml_add_cast
  3124. static struct ggml_tensor * ggml_add_cast_impl(
  3125. struct ggml_context * ctx,
  3126. struct ggml_tensor * a,
  3127. struct ggml_tensor * b,
  3128. enum ggml_type type) {
  3129. // TODO: support less-strict constraint
  3130. // GGML_ASSERT(ggml_can_repeat(b, a));
  3131. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3132. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3133. bool is_node = false;
  3134. if (a->grad || b->grad) {
  3135. // TODO: support backward pass for broadcasting
  3136. GGML_ASSERT(ggml_are_same_shape(a, b));
  3137. is_node = true;
  3138. }
  3139. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3140. result->op = GGML_OP_ADD;
  3141. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3142. result->src[0] = a;
  3143. result->src[1] = b;
  3144. return result;
  3145. }
  3146. struct ggml_tensor * ggml_add_cast(
  3147. struct ggml_context * ctx,
  3148. struct ggml_tensor * a,
  3149. struct ggml_tensor * b,
  3150. enum ggml_type type) {
  3151. return ggml_add_cast_impl(ctx, a, b, type);
  3152. }
  3153. // ggml_add1
  3154. static struct ggml_tensor * ggml_add1_impl(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a,
  3157. struct ggml_tensor * b,
  3158. bool inplace) {
  3159. GGML_ASSERT(ggml_is_scalar(b));
  3160. GGML_ASSERT(ggml_is_padded_1d(a));
  3161. bool is_node = false;
  3162. if (a->grad || b->grad) {
  3163. is_node = true;
  3164. }
  3165. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3166. result->op = GGML_OP_ADD1;
  3167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3168. result->src[0] = a;
  3169. result->src[1] = b;
  3170. return result;
  3171. }
  3172. struct ggml_tensor * ggml_add1(
  3173. struct ggml_context * ctx,
  3174. struct ggml_tensor * a,
  3175. struct ggml_tensor * b) {
  3176. return ggml_add1_impl(ctx, a, b, false);
  3177. }
  3178. struct ggml_tensor * ggml_add1_inplace(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a,
  3181. struct ggml_tensor * b) {
  3182. return ggml_add1_impl(ctx, a, b, true);
  3183. }
  3184. // ggml_acc
  3185. static struct ggml_tensor * ggml_acc_impl(
  3186. struct ggml_context * ctx,
  3187. struct ggml_tensor * a,
  3188. struct ggml_tensor * b,
  3189. size_t nb1,
  3190. size_t nb2,
  3191. size_t nb3,
  3192. size_t offset,
  3193. bool inplace) {
  3194. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3195. GGML_ASSERT(ggml_is_contiguous(a));
  3196. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3197. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3198. bool is_node = false;
  3199. if (!inplace && (a->grad || b->grad)) {
  3200. is_node = true;
  3201. }
  3202. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3203. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3204. ggml_set_op_params(result, params, sizeof(params));
  3205. result->op = GGML_OP_ACC;
  3206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3207. result->src[0] = a;
  3208. result->src[1] = b;
  3209. return result;
  3210. }
  3211. struct ggml_tensor * ggml_acc(
  3212. struct ggml_context * ctx,
  3213. struct ggml_tensor * a,
  3214. struct ggml_tensor * b,
  3215. size_t nb1,
  3216. size_t nb2,
  3217. size_t nb3,
  3218. size_t offset) {
  3219. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3220. }
  3221. struct ggml_tensor * ggml_acc_inplace(
  3222. struct ggml_context * ctx,
  3223. struct ggml_tensor * a,
  3224. struct ggml_tensor * b,
  3225. size_t nb1,
  3226. size_t nb2,
  3227. size_t nb3,
  3228. size_t offset) {
  3229. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3230. }
  3231. // ggml_sub
  3232. static struct ggml_tensor * ggml_sub_impl(
  3233. struct ggml_context * ctx,
  3234. struct ggml_tensor * a,
  3235. struct ggml_tensor * b,
  3236. bool inplace) {
  3237. GGML_ASSERT(ggml_are_same_shape(a, b));
  3238. bool is_node = false;
  3239. if (!inplace && (a->grad || b->grad)) {
  3240. is_node = true;
  3241. }
  3242. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3243. result->op = GGML_OP_SUB;
  3244. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3245. result->src[0] = a;
  3246. result->src[1] = b;
  3247. return result;
  3248. }
  3249. struct ggml_tensor * ggml_sub(
  3250. struct ggml_context * ctx,
  3251. struct ggml_tensor * a,
  3252. struct ggml_tensor * b) {
  3253. return ggml_sub_impl(ctx, a, b, false);
  3254. }
  3255. struct ggml_tensor * ggml_sub_inplace(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a,
  3258. struct ggml_tensor * b) {
  3259. return ggml_sub_impl(ctx, a, b, true);
  3260. }
  3261. // ggml_mul
  3262. static struct ggml_tensor * ggml_mul_impl(
  3263. struct ggml_context * ctx,
  3264. struct ggml_tensor * a,
  3265. struct ggml_tensor * b,
  3266. bool inplace) {
  3267. GGML_ASSERT(ggml_can_repeat(b, a));
  3268. bool is_node = false;
  3269. if (!inplace && (a->grad || b->grad)) {
  3270. // TODO: support backward pass for broadcasting
  3271. GGML_ASSERT(ggml_are_same_shape(a, b));
  3272. is_node = true;
  3273. }
  3274. if (inplace) {
  3275. GGML_ASSERT(!is_node);
  3276. }
  3277. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3278. result->op = GGML_OP_MUL;
  3279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3280. result->src[0] = a;
  3281. result->src[1] = b;
  3282. return result;
  3283. }
  3284. struct ggml_tensor * ggml_mul(
  3285. struct ggml_context * ctx,
  3286. struct ggml_tensor * a,
  3287. struct ggml_tensor * b) {
  3288. return ggml_mul_impl(ctx, a, b, false);
  3289. }
  3290. struct ggml_tensor * ggml_mul_inplace(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a,
  3293. struct ggml_tensor * b) {
  3294. return ggml_mul_impl(ctx, a, b, true);
  3295. }
  3296. // ggml_div
  3297. static struct ggml_tensor * ggml_div_impl(
  3298. struct ggml_context * ctx,
  3299. struct ggml_tensor * a,
  3300. struct ggml_tensor * b,
  3301. bool inplace) {
  3302. GGML_ASSERT(ggml_can_repeat(b, a));
  3303. bool is_node = false;
  3304. if (!inplace && (a->grad || b->grad)) {
  3305. is_node = true;
  3306. }
  3307. if (inplace) {
  3308. GGML_ASSERT(!is_node);
  3309. }
  3310. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3311. result->op = GGML_OP_DIV;
  3312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3313. result->src[0] = a;
  3314. result->src[1] = b;
  3315. return result;
  3316. }
  3317. struct ggml_tensor * ggml_div(
  3318. struct ggml_context * ctx,
  3319. struct ggml_tensor * a,
  3320. struct ggml_tensor * b) {
  3321. return ggml_div_impl(ctx, a, b, false);
  3322. }
  3323. struct ggml_tensor * ggml_div_inplace(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a,
  3326. struct ggml_tensor * b) {
  3327. return ggml_div_impl(ctx, a, b, true);
  3328. }
  3329. // ggml_sqr
  3330. static struct ggml_tensor * ggml_sqr_impl(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a,
  3333. bool inplace) {
  3334. bool is_node = false;
  3335. if (!inplace && (a->grad)) {
  3336. is_node = true;
  3337. }
  3338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3339. result->op = GGML_OP_SQR;
  3340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3341. result->src[0] = a;
  3342. return result;
  3343. }
  3344. struct ggml_tensor * ggml_sqr(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a) {
  3347. return ggml_sqr_impl(ctx, a, false);
  3348. }
  3349. struct ggml_tensor * ggml_sqr_inplace(
  3350. struct ggml_context * ctx,
  3351. struct ggml_tensor * a) {
  3352. return ggml_sqr_impl(ctx, a, true);
  3353. }
  3354. // ggml_sqrt
  3355. static struct ggml_tensor * ggml_sqrt_impl(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a,
  3358. bool inplace) {
  3359. bool is_node = false;
  3360. if (!inplace && (a->grad)) {
  3361. is_node = true;
  3362. }
  3363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3364. result->op = GGML_OP_SQRT;
  3365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3366. result->src[0] = a;
  3367. return result;
  3368. }
  3369. struct ggml_tensor * ggml_sqrt(
  3370. struct ggml_context * ctx,
  3371. struct ggml_tensor * a) {
  3372. return ggml_sqrt_impl(ctx, a, false);
  3373. }
  3374. struct ggml_tensor * ggml_sqrt_inplace(
  3375. struct ggml_context * ctx,
  3376. struct ggml_tensor * a) {
  3377. return ggml_sqrt_impl(ctx, a, true);
  3378. }
  3379. // ggml_log
  3380. static struct ggml_tensor * ggml_log_impl(
  3381. struct ggml_context * ctx,
  3382. struct ggml_tensor * a,
  3383. bool inplace) {
  3384. bool is_node = false;
  3385. if (!inplace && (a->grad)) {
  3386. is_node = true;
  3387. }
  3388. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3389. result->op = GGML_OP_LOG;
  3390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3391. result->src[0] = a;
  3392. return result;
  3393. }
  3394. struct ggml_tensor * ggml_log(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a) {
  3397. return ggml_log_impl(ctx, a, false);
  3398. }
  3399. struct ggml_tensor * ggml_log_inplace(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a) {
  3402. return ggml_log_impl(ctx, a, true);
  3403. }
  3404. // ggml_sum
  3405. struct ggml_tensor * ggml_sum(
  3406. struct ggml_context * ctx,
  3407. struct ggml_tensor * a) {
  3408. bool is_node = false;
  3409. if (a->grad) {
  3410. is_node = true;
  3411. }
  3412. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3413. result->op = GGML_OP_SUM;
  3414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3415. result->src[0] = a;
  3416. return result;
  3417. }
  3418. // ggml_sum_rows
  3419. struct ggml_tensor * ggml_sum_rows(
  3420. struct ggml_context * ctx,
  3421. struct ggml_tensor * a) {
  3422. bool is_node = false;
  3423. if (a->grad) {
  3424. is_node = true;
  3425. }
  3426. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3427. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3428. ne[i] = a->ne[i];
  3429. }
  3430. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3431. result->op = GGML_OP_SUM_ROWS;
  3432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3433. result->src[0] = a;
  3434. return result;
  3435. }
  3436. // ggml_mean
  3437. struct ggml_tensor * ggml_mean(
  3438. struct ggml_context * ctx,
  3439. struct ggml_tensor * a) {
  3440. bool is_node = false;
  3441. if (a->grad) {
  3442. GGML_ASSERT(false); // TODO: implement
  3443. is_node = true;
  3444. }
  3445. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3446. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3447. result->op = GGML_OP_MEAN;
  3448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3449. result->src[0] = a;
  3450. return result;
  3451. }
  3452. // ggml_argmax
  3453. struct ggml_tensor * ggml_argmax(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a) {
  3456. GGML_ASSERT(ggml_is_matrix(a));
  3457. bool is_node = false;
  3458. if (a->grad) {
  3459. GGML_ASSERT(false);
  3460. is_node = true;
  3461. }
  3462. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3463. result->op = GGML_OP_ARGMAX;
  3464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3465. result->src[0] = a;
  3466. return result;
  3467. }
  3468. // ggml_repeat
  3469. struct ggml_tensor * ggml_repeat(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * a,
  3472. struct ggml_tensor * b) {
  3473. GGML_ASSERT(ggml_can_repeat(a, b));
  3474. bool is_node = false;
  3475. if (a->grad) {
  3476. is_node = true;
  3477. }
  3478. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3479. result->op = GGML_OP_REPEAT;
  3480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3481. result->src[0] = a;
  3482. return result;
  3483. }
  3484. // ggml_repeat_back
  3485. struct ggml_tensor * ggml_repeat_back(
  3486. struct ggml_context * ctx,
  3487. struct ggml_tensor * a,
  3488. struct ggml_tensor * b) {
  3489. GGML_ASSERT(ggml_can_repeat(b, a));
  3490. bool is_node = false;
  3491. if (a->grad) {
  3492. is_node = true;
  3493. }
  3494. if (ggml_are_same_shape(a, b) && !is_node) {
  3495. return a;
  3496. }
  3497. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3498. result->op = GGML_OP_REPEAT_BACK;
  3499. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3500. result->src[0] = a;
  3501. return result;
  3502. }
  3503. // ggml_concat
  3504. struct ggml_tensor * ggml_concat(
  3505. struct ggml_context* ctx,
  3506. struct ggml_tensor* a,
  3507. struct ggml_tensor* b) {
  3508. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3509. bool is_node = false;
  3510. if (a->grad || b->grad) {
  3511. is_node = true;
  3512. }
  3513. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3514. result->op = GGML_OP_CONCAT;
  3515. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3516. result->src[0] = a;
  3517. result->src[1] = b;
  3518. return result;
  3519. }
  3520. // ggml_abs
  3521. struct ggml_tensor * ggml_abs(
  3522. struct ggml_context * ctx,
  3523. struct ggml_tensor * a) {
  3524. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3525. }
  3526. struct ggml_tensor * ggml_abs_inplace(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a) {
  3529. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3530. }
  3531. // ggml_sgn
  3532. struct ggml_tensor * ggml_sgn(
  3533. struct ggml_context * ctx,
  3534. struct ggml_tensor * a) {
  3535. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3536. }
  3537. struct ggml_tensor * ggml_sgn_inplace(
  3538. struct ggml_context * ctx,
  3539. struct ggml_tensor * a) {
  3540. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3541. }
  3542. // ggml_neg
  3543. struct ggml_tensor * ggml_neg(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a) {
  3546. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3547. }
  3548. struct ggml_tensor * ggml_neg_inplace(
  3549. struct ggml_context * ctx,
  3550. struct ggml_tensor * a) {
  3551. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3552. }
  3553. // ggml_step
  3554. struct ggml_tensor * ggml_step(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a) {
  3557. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3558. }
  3559. struct ggml_tensor * ggml_step_inplace(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a) {
  3562. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3563. }
  3564. // ggml_tanh
  3565. struct ggml_tensor * ggml_tanh(
  3566. struct ggml_context * ctx,
  3567. struct ggml_tensor * a) {
  3568. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3569. }
  3570. struct ggml_tensor * ggml_tanh_inplace(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a) {
  3573. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3574. }
  3575. // ggml_elu
  3576. struct ggml_tensor * ggml_elu(
  3577. struct ggml_context * ctx,
  3578. struct ggml_tensor * a) {
  3579. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3580. }
  3581. struct ggml_tensor * ggml_elu_inplace(
  3582. struct ggml_context * ctx,
  3583. struct ggml_tensor * a) {
  3584. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3585. }
  3586. // ggml_relu
  3587. struct ggml_tensor * ggml_relu(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a) {
  3590. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3591. }
  3592. struct ggml_tensor * ggml_relu_inplace(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a) {
  3595. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3596. }
  3597. // ggml_leaky_relu
  3598. struct ggml_tensor * ggml_leaky_relu(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3601. bool is_node = false;
  3602. if (!inplace && (a->grad)) {
  3603. is_node = true;
  3604. }
  3605. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3606. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3607. result->op = GGML_OP_LEAKY_RELU;
  3608. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3609. result->src[0] = a;
  3610. return result;
  3611. }
  3612. // ggml_gelu
  3613. struct ggml_tensor * ggml_gelu(
  3614. struct ggml_context * ctx,
  3615. struct ggml_tensor * a) {
  3616. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3617. }
  3618. struct ggml_tensor * ggml_gelu_inplace(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a) {
  3621. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3622. }
  3623. // ggml_gelu_quick
  3624. struct ggml_tensor * ggml_gelu_quick(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a) {
  3627. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3628. }
  3629. struct ggml_tensor * ggml_gelu_quick_inplace(
  3630. struct ggml_context * ctx,
  3631. struct ggml_tensor * a) {
  3632. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3633. }
  3634. // ggml_silu
  3635. struct ggml_tensor * ggml_silu(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a) {
  3638. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3639. }
  3640. struct ggml_tensor * ggml_silu_inplace(
  3641. struct ggml_context * ctx,
  3642. struct ggml_tensor * a) {
  3643. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3644. }
  3645. // ggml_silu_back
  3646. struct ggml_tensor * ggml_silu_back(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * a,
  3649. struct ggml_tensor * b) {
  3650. bool is_node = false;
  3651. if (a->grad || b->grad) {
  3652. // TODO: implement backward
  3653. is_node = true;
  3654. }
  3655. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3656. result->op = GGML_OP_SILU_BACK;
  3657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3658. result->src[0] = a;
  3659. result->src[1] = b;
  3660. return result;
  3661. }
  3662. // ggml hardswish
  3663. struct ggml_tensor * ggml_hardswish(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a) {
  3666. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3667. }
  3668. // ggml hardsigmoid
  3669. struct ggml_tensor * ggml_hardsigmoid(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a) {
  3672. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3673. }
  3674. // ggml_norm
  3675. static struct ggml_tensor * ggml_norm_impl(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. float eps,
  3679. bool inplace) {
  3680. bool is_node = false;
  3681. if (!inplace && (a->grad)) {
  3682. GGML_ASSERT(false); // TODO: implement backward
  3683. is_node = true;
  3684. }
  3685. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3686. ggml_set_op_params(result, &eps, sizeof(eps));
  3687. result->op = GGML_OP_NORM;
  3688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3689. result->src[0] = a;
  3690. return result;
  3691. }
  3692. struct ggml_tensor * ggml_norm(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a,
  3695. float eps) {
  3696. return ggml_norm_impl(ctx, a, eps, false);
  3697. }
  3698. struct ggml_tensor * ggml_norm_inplace(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a,
  3701. float eps) {
  3702. return ggml_norm_impl(ctx, a, eps, true);
  3703. }
  3704. // ggml_rms_norm
  3705. static struct ggml_tensor * ggml_rms_norm_impl(
  3706. struct ggml_context * ctx,
  3707. struct ggml_tensor * a,
  3708. float eps,
  3709. bool inplace) {
  3710. bool is_node = false;
  3711. if (!inplace && (a->grad)) {
  3712. is_node = true;
  3713. }
  3714. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3715. ggml_set_op_params(result, &eps, sizeof(eps));
  3716. result->op = GGML_OP_RMS_NORM;
  3717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3718. result->src[0] = a;
  3719. return result;
  3720. }
  3721. struct ggml_tensor * ggml_rms_norm(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a,
  3724. float eps) {
  3725. return ggml_rms_norm_impl(ctx, a, eps, false);
  3726. }
  3727. struct ggml_tensor * ggml_rms_norm_inplace(
  3728. struct ggml_context * ctx,
  3729. struct ggml_tensor * a,
  3730. float eps) {
  3731. return ggml_rms_norm_impl(ctx, a, eps, true);
  3732. }
  3733. // ggml_rms_norm_back
  3734. struct ggml_tensor * ggml_rms_norm_back(
  3735. struct ggml_context * ctx,
  3736. struct ggml_tensor * a,
  3737. struct ggml_tensor * b,
  3738. float eps) {
  3739. bool is_node = false;
  3740. if (a->grad) {
  3741. // TODO: implement backward
  3742. is_node = true;
  3743. }
  3744. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3745. ggml_set_op_params(result, &eps, sizeof(eps));
  3746. result->op = GGML_OP_RMS_NORM_BACK;
  3747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3748. result->src[0] = a;
  3749. result->src[1] = b;
  3750. return result;
  3751. }
  3752. // ggml_group_norm
  3753. static struct ggml_tensor * ggml_group_norm_impl(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. int n_groups,
  3757. bool inplace) {
  3758. bool is_node = false;
  3759. if (!inplace && (a->grad)) {
  3760. GGML_ASSERT(false); // TODO: implement backward
  3761. is_node = true;
  3762. }
  3763. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3764. result->op_params[0] = n_groups;
  3765. result->op = GGML_OP_GROUP_NORM;
  3766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3767. result->src[0] = a;
  3768. return result;
  3769. }
  3770. struct ggml_tensor * ggml_group_norm(
  3771. struct ggml_context * ctx,
  3772. struct ggml_tensor * a,
  3773. int n_groups) {
  3774. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3775. }
  3776. struct ggml_tensor * ggml_group_norm_inplace(
  3777. struct ggml_context * ctx,
  3778. struct ggml_tensor * a,
  3779. int n_groups) {
  3780. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3781. }
  3782. // ggml_mul_mat
  3783. struct ggml_tensor * ggml_mul_mat(
  3784. struct ggml_context * ctx,
  3785. struct ggml_tensor * a,
  3786. struct ggml_tensor * b) {
  3787. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3788. GGML_ASSERT(!ggml_is_transposed(a));
  3789. bool is_node = false;
  3790. if (a->grad || b->grad) {
  3791. is_node = true;
  3792. }
  3793. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3794. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3795. result->op = GGML_OP_MUL_MAT;
  3796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3797. result->src[0] = a;
  3798. result->src[1] = b;
  3799. return result;
  3800. }
  3801. void ggml_mul_mat_set_prec(
  3802. struct ggml_tensor * a,
  3803. enum ggml_prec prec) {
  3804. const int32_t prec_i32 = (int32_t) prec;
  3805. ggml_set_op_params_i32(a, 0, prec_i32);
  3806. }
  3807. // ggml_mul_mat_id
  3808. struct ggml_tensor * ggml_mul_mat_id(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * const as[],
  3811. int n_as,
  3812. struct ggml_tensor * ids,
  3813. int id,
  3814. struct ggml_tensor * b) {
  3815. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3816. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3817. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3818. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3819. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3820. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3821. bool is_node = false;
  3822. if (as[0]->grad || b->grad) {
  3823. is_node = true;
  3824. }
  3825. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3826. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3827. ggml_set_op_params_i32(result, 0, id);
  3828. ggml_set_op_params_i32(result, 1, n_as);
  3829. result->op = GGML_OP_MUL_MAT_ID;
  3830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3831. result->src[0] = ids;
  3832. result->src[1] = b;
  3833. for (int i = 0; i < n_as; i++) {
  3834. struct ggml_tensor * a = as[i];
  3835. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3836. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3837. GGML_ASSERT(!ggml_is_transposed(a));
  3838. result->src[i + 2] = a;
  3839. }
  3840. return result;
  3841. }
  3842. // ggml_out_prod
  3843. struct ggml_tensor * ggml_out_prod(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. struct ggml_tensor * b) {
  3847. GGML_ASSERT(ggml_can_out_prod(a, b));
  3848. GGML_ASSERT(!ggml_is_transposed(a));
  3849. bool is_node = false;
  3850. if (a->grad || b->grad) {
  3851. is_node = true;
  3852. }
  3853. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3854. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3855. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3856. result->op = GGML_OP_OUT_PROD;
  3857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3858. result->src[0] = a;
  3859. result->src[1] = b;
  3860. return result;
  3861. }
  3862. // ggml_scale
  3863. static struct ggml_tensor * ggml_scale_impl(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a,
  3866. float s,
  3867. bool inplace) {
  3868. GGML_ASSERT(ggml_is_padded_1d(a));
  3869. bool is_node = false;
  3870. if (a->grad) {
  3871. is_node = true;
  3872. }
  3873. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3874. ggml_set_op_params(result, &s, sizeof(s));
  3875. result->op = GGML_OP_SCALE;
  3876. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3877. result->src[0] = a;
  3878. return result;
  3879. }
  3880. struct ggml_tensor * ggml_scale(
  3881. struct ggml_context * ctx,
  3882. struct ggml_tensor * a,
  3883. float s) {
  3884. return ggml_scale_impl(ctx, a, s, false);
  3885. }
  3886. struct ggml_tensor * ggml_scale_inplace(
  3887. struct ggml_context * ctx,
  3888. struct ggml_tensor * a,
  3889. float s) {
  3890. return ggml_scale_impl(ctx, a, s, true);
  3891. }
  3892. // ggml_set
  3893. static struct ggml_tensor * ggml_set_impl(
  3894. struct ggml_context * ctx,
  3895. struct ggml_tensor * a,
  3896. struct ggml_tensor * b,
  3897. size_t nb1,
  3898. size_t nb2,
  3899. size_t nb3,
  3900. size_t offset,
  3901. bool inplace) {
  3902. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3903. bool is_node = false;
  3904. if (a->grad || b->grad) {
  3905. is_node = true;
  3906. }
  3907. // make a view of the destination
  3908. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3909. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3910. ggml_set_op_params(result, params, sizeof(params));
  3911. result->op = GGML_OP_SET;
  3912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3913. result->src[0] = a;
  3914. result->src[1] = b;
  3915. return result;
  3916. }
  3917. struct ggml_tensor * ggml_set(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. struct ggml_tensor * b,
  3921. size_t nb1,
  3922. size_t nb2,
  3923. size_t nb3,
  3924. size_t offset) {
  3925. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3926. }
  3927. struct ggml_tensor * ggml_set_inplace(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. struct ggml_tensor * b,
  3931. size_t nb1,
  3932. size_t nb2,
  3933. size_t nb3,
  3934. size_t offset) {
  3935. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3936. }
  3937. struct ggml_tensor * ggml_set_1d(
  3938. struct ggml_context * ctx,
  3939. struct ggml_tensor * a,
  3940. struct ggml_tensor * b,
  3941. size_t offset) {
  3942. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3943. }
  3944. struct ggml_tensor * ggml_set_1d_inplace(
  3945. struct ggml_context * ctx,
  3946. struct ggml_tensor * a,
  3947. struct ggml_tensor * b,
  3948. size_t offset) {
  3949. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3950. }
  3951. struct ggml_tensor * ggml_set_2d(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a,
  3954. struct ggml_tensor * b,
  3955. size_t nb1,
  3956. size_t offset) {
  3957. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3958. }
  3959. struct ggml_tensor * ggml_set_2d_inplace(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a,
  3962. struct ggml_tensor * b,
  3963. size_t nb1,
  3964. size_t offset) {
  3965. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3966. }
  3967. // ggml_cpy
  3968. static struct ggml_tensor * ggml_cpy_impl(
  3969. struct ggml_context * ctx,
  3970. struct ggml_tensor * a,
  3971. struct ggml_tensor * b) {
  3972. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3973. bool is_node = false;
  3974. if (a->grad || b->grad) {
  3975. // inplace is false and either one have a grad
  3976. is_node = true;
  3977. }
  3978. // make a view of the destination
  3979. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3980. if (strlen(b->name) > 0) {
  3981. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3982. } else {
  3983. ggml_format_name(result, "%s (copy)", a->name);
  3984. }
  3985. result->op = GGML_OP_CPY;
  3986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3987. result->src[0] = a;
  3988. result->src[1] = b;
  3989. return result;
  3990. }
  3991. struct ggml_tensor * ggml_cpy(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. struct ggml_tensor * b) {
  3995. return ggml_cpy_impl(ctx, a, b);
  3996. }
  3997. struct ggml_tensor * ggml_cast(
  3998. struct ggml_context * ctx,
  3999. struct ggml_tensor * a,
  4000. enum ggml_type type) {
  4001. bool is_node = false;
  4002. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4003. ggml_format_name(result, "%s (copy)", a->name);
  4004. result->op = GGML_OP_CPY;
  4005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4006. result->src[0] = a;
  4007. result->src[1] = result;
  4008. return result;
  4009. }
  4010. // ggml_cont
  4011. static struct ggml_tensor * ggml_cont_impl(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a) {
  4014. bool is_node = false;
  4015. if (a->grad) {
  4016. is_node = true;
  4017. }
  4018. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4019. ggml_format_name(result, "%s (cont)", a->name);
  4020. result->op = GGML_OP_CONT;
  4021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4022. result->src[0] = a;
  4023. return result;
  4024. }
  4025. struct ggml_tensor * ggml_cont(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a) {
  4028. return ggml_cont_impl(ctx, a);
  4029. }
  4030. // make contiguous, with new shape
  4031. GGML_API struct ggml_tensor * ggml_cont_1d(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a,
  4034. int64_t ne0) {
  4035. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4036. }
  4037. GGML_API struct ggml_tensor * ggml_cont_2d(
  4038. struct ggml_context * ctx,
  4039. struct ggml_tensor * a,
  4040. int64_t ne0,
  4041. int64_t ne1) {
  4042. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4043. }
  4044. GGML_API struct ggml_tensor * ggml_cont_3d(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a,
  4047. int64_t ne0,
  4048. int64_t ne1,
  4049. int64_t ne2) {
  4050. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4051. }
  4052. struct ggml_tensor * ggml_cont_4d(
  4053. struct ggml_context * ctx,
  4054. struct ggml_tensor * a,
  4055. int64_t ne0,
  4056. int64_t ne1,
  4057. int64_t ne2,
  4058. int64_t ne3) {
  4059. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4060. bool is_node = false;
  4061. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4062. ggml_format_name(result, "%s (cont)", a->name);
  4063. result->op = GGML_OP_CONT;
  4064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4065. result->src[0] = a;
  4066. return result;
  4067. }
  4068. // ggml_reshape
  4069. struct ggml_tensor * ggml_reshape(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a,
  4072. struct ggml_tensor * b) {
  4073. GGML_ASSERT(ggml_is_contiguous(a));
  4074. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4075. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4076. bool is_node = false;
  4077. if (a->grad) {
  4078. is_node = true;
  4079. }
  4080. if (b->grad) {
  4081. // gradient propagation is not supported
  4082. //GGML_ASSERT(false);
  4083. }
  4084. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4085. ggml_format_name(result, "%s (reshaped)", a->name);
  4086. result->op = GGML_OP_RESHAPE;
  4087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4088. result->src[0] = a;
  4089. return result;
  4090. }
  4091. struct ggml_tensor * ggml_reshape_1d(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a,
  4094. int64_t ne0) {
  4095. GGML_ASSERT(ggml_is_contiguous(a));
  4096. GGML_ASSERT(ggml_nelements(a) == ne0);
  4097. bool is_node = false;
  4098. if (a->grad) {
  4099. is_node = true;
  4100. }
  4101. const int64_t ne[1] = { ne0 };
  4102. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4103. ggml_format_name(result, "%s (reshaped)", a->name);
  4104. result->op = GGML_OP_RESHAPE;
  4105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4106. result->src[0] = a;
  4107. return result;
  4108. }
  4109. struct ggml_tensor * ggml_reshape_2d(
  4110. struct ggml_context * ctx,
  4111. struct ggml_tensor * a,
  4112. int64_t ne0,
  4113. int64_t ne1) {
  4114. GGML_ASSERT(ggml_is_contiguous(a));
  4115. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4116. bool is_node = false;
  4117. if (a->grad) {
  4118. is_node = true;
  4119. }
  4120. const int64_t ne[2] = { ne0, ne1 };
  4121. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4122. ggml_format_name(result, "%s (reshaped)", a->name);
  4123. result->op = GGML_OP_RESHAPE;
  4124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4125. result->src[0] = a;
  4126. return result;
  4127. }
  4128. struct ggml_tensor * ggml_reshape_3d(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a,
  4131. int64_t ne0,
  4132. int64_t ne1,
  4133. int64_t ne2) {
  4134. GGML_ASSERT(ggml_is_contiguous(a));
  4135. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4136. bool is_node = false;
  4137. if (a->grad) {
  4138. is_node = true;
  4139. }
  4140. const int64_t ne[3] = { ne0, ne1, ne2 };
  4141. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4142. ggml_format_name(result, "%s (reshaped)", a->name);
  4143. result->op = GGML_OP_RESHAPE;
  4144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4145. result->src[0] = a;
  4146. return result;
  4147. }
  4148. struct ggml_tensor * ggml_reshape_4d(
  4149. struct ggml_context * ctx,
  4150. struct ggml_tensor * a,
  4151. int64_t ne0,
  4152. int64_t ne1,
  4153. int64_t ne2,
  4154. int64_t ne3) {
  4155. GGML_ASSERT(ggml_is_contiguous(a));
  4156. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4157. bool is_node = false;
  4158. if (a->grad) {
  4159. is_node = true;
  4160. }
  4161. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4162. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4163. ggml_format_name(result, "%s (reshaped)", a->name);
  4164. result->op = GGML_OP_RESHAPE;
  4165. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4166. result->src[0] = a;
  4167. return result;
  4168. }
  4169. static struct ggml_tensor * ggml_view_impl(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a,
  4172. int n_dims,
  4173. const int64_t * ne,
  4174. size_t offset) {
  4175. bool is_node = false;
  4176. if (a->grad) {
  4177. is_node = true;
  4178. }
  4179. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4180. ggml_format_name(result, "%s (view)", a->name);
  4181. ggml_set_op_params(result, &offset, sizeof(offset));
  4182. result->op = GGML_OP_VIEW;
  4183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4184. result->src[0] = a;
  4185. return result;
  4186. }
  4187. // ggml_view_1d
  4188. struct ggml_tensor * ggml_view_1d(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. int64_t ne0,
  4192. size_t offset) {
  4193. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4194. return result;
  4195. }
  4196. // ggml_view_2d
  4197. struct ggml_tensor * ggml_view_2d(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a,
  4200. int64_t ne0,
  4201. int64_t ne1,
  4202. size_t nb1,
  4203. size_t offset) {
  4204. const int64_t ne[2] = { ne0, ne1 };
  4205. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4206. result->nb[1] = nb1;
  4207. result->nb[2] = result->nb[1]*ne1;
  4208. result->nb[3] = result->nb[2];
  4209. return result;
  4210. }
  4211. // ggml_view_3d
  4212. struct ggml_tensor * ggml_view_3d(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. int64_t ne0,
  4216. int64_t ne1,
  4217. int64_t ne2,
  4218. size_t nb1,
  4219. size_t nb2,
  4220. size_t offset) {
  4221. const int64_t ne[3] = { ne0, ne1, ne2 };
  4222. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4223. result->nb[1] = nb1;
  4224. result->nb[2] = nb2;
  4225. result->nb[3] = result->nb[2]*ne2;
  4226. return result;
  4227. }
  4228. // ggml_view_4d
  4229. struct ggml_tensor * ggml_view_4d(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a,
  4232. int64_t ne0,
  4233. int64_t ne1,
  4234. int64_t ne2,
  4235. int64_t ne3,
  4236. size_t nb1,
  4237. size_t nb2,
  4238. size_t nb3,
  4239. size_t offset) {
  4240. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4241. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4242. result->nb[1] = nb1;
  4243. result->nb[2] = nb2;
  4244. result->nb[3] = nb3;
  4245. return result;
  4246. }
  4247. // ggml_permute
  4248. struct ggml_tensor * ggml_permute(
  4249. struct ggml_context * ctx,
  4250. struct ggml_tensor * a,
  4251. int axis0,
  4252. int axis1,
  4253. int axis2,
  4254. int axis3) {
  4255. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4256. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4257. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4258. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4259. GGML_ASSERT(axis0 != axis1);
  4260. GGML_ASSERT(axis0 != axis2);
  4261. GGML_ASSERT(axis0 != axis3);
  4262. GGML_ASSERT(axis1 != axis2);
  4263. GGML_ASSERT(axis1 != axis3);
  4264. GGML_ASSERT(axis2 != axis3);
  4265. bool is_node = false;
  4266. if (a->grad) {
  4267. is_node = true;
  4268. }
  4269. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4270. ggml_format_name(result, "%s (permuted)", a->name);
  4271. int ne[GGML_MAX_DIMS];
  4272. int nb[GGML_MAX_DIMS];
  4273. ne[axis0] = a->ne[0];
  4274. ne[axis1] = a->ne[1];
  4275. ne[axis2] = a->ne[2];
  4276. ne[axis3] = a->ne[3];
  4277. nb[axis0] = a->nb[0];
  4278. nb[axis1] = a->nb[1];
  4279. nb[axis2] = a->nb[2];
  4280. nb[axis3] = a->nb[3];
  4281. result->ne[0] = ne[0];
  4282. result->ne[1] = ne[1];
  4283. result->ne[2] = ne[2];
  4284. result->ne[3] = ne[3];
  4285. result->nb[0] = nb[0];
  4286. result->nb[1] = nb[1];
  4287. result->nb[2] = nb[2];
  4288. result->nb[3] = nb[3];
  4289. result->op = GGML_OP_PERMUTE;
  4290. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4291. result->src[0] = a;
  4292. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4293. ggml_set_op_params(result, params, sizeof(params));
  4294. return result;
  4295. }
  4296. // ggml_transpose
  4297. struct ggml_tensor * ggml_transpose(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a) {
  4300. bool is_node = false;
  4301. if (a->grad) {
  4302. is_node = true;
  4303. }
  4304. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4305. ggml_format_name(result, "%s (transposed)", a->name);
  4306. result->ne[0] = a->ne[1];
  4307. result->ne[1] = a->ne[0];
  4308. result->nb[0] = a->nb[1];
  4309. result->nb[1] = a->nb[0];
  4310. result->op = GGML_OP_TRANSPOSE;
  4311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4312. result->src[0] = a;
  4313. return result;
  4314. }
  4315. // ggml_get_rows
  4316. struct ggml_tensor * ggml_get_rows(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b) {
  4320. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4321. GGML_ASSERT(b->ne[3] == 1);
  4322. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4323. bool is_node = false;
  4324. if (a->grad || b->grad) {
  4325. is_node = true;
  4326. }
  4327. // TODO: implement non F32 return
  4328. enum ggml_type type = GGML_TYPE_F32;
  4329. if (a->type == GGML_TYPE_I32) {
  4330. type = a->type;
  4331. }
  4332. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4333. result->op = GGML_OP_GET_ROWS;
  4334. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4335. result->src[0] = a;
  4336. result->src[1] = b;
  4337. return result;
  4338. }
  4339. // ggml_get_rows_back
  4340. struct ggml_tensor * ggml_get_rows_back(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a,
  4343. struct ggml_tensor * b,
  4344. struct ggml_tensor * c) {
  4345. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4346. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4347. bool is_node = false;
  4348. if (a->grad || b->grad) {
  4349. is_node = true;
  4350. }
  4351. // TODO: implement non F32 return
  4352. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4353. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4354. result->op = GGML_OP_GET_ROWS_BACK;
  4355. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4356. result->src[0] = a;
  4357. result->src[1] = b;
  4358. return result;
  4359. }
  4360. // ggml_diag
  4361. struct ggml_tensor * ggml_diag(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a) {
  4364. GGML_ASSERT(a->ne[1] == 1);
  4365. bool is_node = false;
  4366. if (a->grad) {
  4367. is_node = true;
  4368. }
  4369. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4370. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4371. result->op = GGML_OP_DIAG;
  4372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4373. result->src[0] = a;
  4374. return result;
  4375. }
  4376. // ggml_diag_mask_inf
  4377. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a,
  4380. int n_past,
  4381. bool inplace) {
  4382. bool is_node = false;
  4383. if (a->grad) {
  4384. is_node = true;
  4385. }
  4386. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4387. int32_t params[] = { n_past };
  4388. ggml_set_op_params(result, params, sizeof(params));
  4389. result->op = GGML_OP_DIAG_MASK_INF;
  4390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4391. result->src[0] = a;
  4392. return result;
  4393. }
  4394. struct ggml_tensor * ggml_diag_mask_inf(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a,
  4397. int n_past) {
  4398. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4399. }
  4400. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a,
  4403. int n_past) {
  4404. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4405. }
  4406. // ggml_diag_mask_zero
  4407. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a,
  4410. int n_past,
  4411. bool inplace) {
  4412. bool is_node = false;
  4413. if (a->grad) {
  4414. is_node = true;
  4415. }
  4416. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4417. int32_t params[] = { n_past };
  4418. ggml_set_op_params(result, params, sizeof(params));
  4419. result->op = GGML_OP_DIAG_MASK_ZERO;
  4420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4421. result->src[0] = a;
  4422. return result;
  4423. }
  4424. struct ggml_tensor * ggml_diag_mask_zero(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a,
  4427. int n_past) {
  4428. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4429. }
  4430. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. int n_past) {
  4434. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4435. }
  4436. // ggml_soft_max
  4437. static struct ggml_tensor * ggml_soft_max_impl(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a,
  4440. struct ggml_tensor * mask,
  4441. struct ggml_tensor * pos,
  4442. float scale,
  4443. float max_bias,
  4444. bool inplace) {
  4445. GGML_ASSERT(ggml_is_contiguous(a));
  4446. if (mask) {
  4447. GGML_ASSERT(ggml_is_contiguous(mask));
  4448. GGML_ASSERT(ggml_is_matrix(mask));
  4449. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4450. }
  4451. if (pos) {
  4452. GGML_ASSERT(ggml_is_vector(pos));
  4453. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4454. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4455. }
  4456. if (max_bias > 0.0f) {
  4457. GGML_ASSERT(pos);
  4458. }
  4459. bool is_node = false;
  4460. if (a->grad) {
  4461. is_node = true;
  4462. }
  4463. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4464. float params[] = { scale, max_bias };
  4465. ggml_set_op_params(result, params, sizeof(params));
  4466. result->op = GGML_OP_SOFT_MAX;
  4467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4468. result->src[0] = a;
  4469. result->src[1] = mask;
  4470. result->src[2] = pos;
  4471. return result;
  4472. }
  4473. struct ggml_tensor * ggml_soft_max(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a) {
  4476. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4477. }
  4478. struct ggml_tensor * ggml_soft_max_inplace(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a) {
  4481. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4482. }
  4483. struct ggml_tensor * ggml_soft_max_ext(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a,
  4486. struct ggml_tensor * mask,
  4487. struct ggml_tensor * pos,
  4488. float scale,
  4489. float max_bias) {
  4490. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4491. }
  4492. // ggml_soft_max_back
  4493. static struct ggml_tensor * ggml_soft_max_back_impl(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b,
  4497. bool inplace) {
  4498. bool is_node = false;
  4499. if (a->grad || b->grad) {
  4500. is_node = true; // TODO : implement backward pass
  4501. }
  4502. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4503. result->op = GGML_OP_SOFT_MAX_BACK;
  4504. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4505. result->src[0] = a;
  4506. result->src[1] = b;
  4507. return result;
  4508. }
  4509. struct ggml_tensor * ggml_soft_max_back(
  4510. struct ggml_context * ctx,
  4511. struct ggml_tensor * a,
  4512. struct ggml_tensor * b) {
  4513. return ggml_soft_max_back_impl(ctx, a, b, false);
  4514. }
  4515. struct ggml_tensor * ggml_soft_max_back_inplace(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. struct ggml_tensor * b) {
  4519. return ggml_soft_max_back_impl(ctx, a, b, true);
  4520. }
  4521. // ggml_rope
  4522. static struct ggml_tensor * ggml_rope_impl(
  4523. struct ggml_context * ctx,
  4524. struct ggml_tensor * a,
  4525. struct ggml_tensor * b,
  4526. int n_dims,
  4527. int mode,
  4528. int n_ctx,
  4529. int n_orig_ctx,
  4530. float freq_base,
  4531. float freq_scale,
  4532. float ext_factor,
  4533. float attn_factor,
  4534. float beta_fast,
  4535. float beta_slow,
  4536. float xpos_base,
  4537. bool xpos_down,
  4538. bool inplace) {
  4539. GGML_ASSERT(ggml_is_vector(b));
  4540. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4541. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4542. bool is_node = false;
  4543. if (a->grad) {
  4544. is_node = true;
  4545. }
  4546. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4547. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4548. memcpy(params + 5, &freq_base, sizeof(float));
  4549. memcpy(params + 6, &freq_scale, sizeof(float));
  4550. memcpy(params + 7, &ext_factor, sizeof(float));
  4551. memcpy(params + 8, &attn_factor, sizeof(float));
  4552. memcpy(params + 9, &beta_fast, sizeof(float));
  4553. memcpy(params + 10, &beta_slow, sizeof(float));
  4554. memcpy(params + 11, &xpos_base, sizeof(float));
  4555. memcpy(params + 12, &xpos_down, sizeof(bool));
  4556. ggml_set_op_params(result, params, sizeof(params));
  4557. result->op = GGML_OP_ROPE;
  4558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4559. result->src[0] = a;
  4560. result->src[1] = b;
  4561. return result;
  4562. }
  4563. struct ggml_tensor * ggml_rope(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. struct ggml_tensor * b,
  4567. int n_dims,
  4568. int mode,
  4569. int n_ctx) {
  4570. return ggml_rope_impl(
  4571. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4572. );
  4573. }
  4574. struct ggml_tensor * ggml_rope_inplace(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a,
  4577. struct ggml_tensor * b,
  4578. int n_dims,
  4579. int mode,
  4580. int n_ctx) {
  4581. return ggml_rope_impl(
  4582. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4583. );
  4584. }
  4585. struct ggml_tensor * ggml_rope_custom(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a,
  4588. struct ggml_tensor * b,
  4589. int n_dims,
  4590. int mode,
  4591. int n_ctx,
  4592. int n_orig_ctx,
  4593. float freq_base,
  4594. float freq_scale,
  4595. float ext_factor,
  4596. float attn_factor,
  4597. float beta_fast,
  4598. float beta_slow) {
  4599. return ggml_rope_impl(
  4600. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4601. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4602. );
  4603. }
  4604. struct ggml_tensor * ggml_rope_custom_inplace(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a,
  4607. struct ggml_tensor * b,
  4608. int n_dims,
  4609. int mode,
  4610. int n_ctx,
  4611. int n_orig_ctx,
  4612. float freq_base,
  4613. float freq_scale,
  4614. float ext_factor,
  4615. float attn_factor,
  4616. float beta_fast,
  4617. float beta_slow) {
  4618. return ggml_rope_impl(
  4619. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4620. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4621. );
  4622. }
  4623. struct ggml_tensor * ggml_rope_xpos_inplace(
  4624. struct ggml_context * ctx,
  4625. struct ggml_tensor * a,
  4626. struct ggml_tensor * b,
  4627. int n_dims,
  4628. float base,
  4629. bool down) {
  4630. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4631. }
  4632. // ggml_rope_back
  4633. struct ggml_tensor * ggml_rope_back(
  4634. struct ggml_context * ctx,
  4635. struct ggml_tensor * a,
  4636. struct ggml_tensor * b,
  4637. int n_dims,
  4638. int mode,
  4639. int n_ctx,
  4640. int n_orig_ctx,
  4641. float freq_base,
  4642. float freq_scale,
  4643. float ext_factor,
  4644. float attn_factor,
  4645. float beta_fast,
  4646. float beta_slow,
  4647. float xpos_base,
  4648. bool xpos_down) {
  4649. GGML_ASSERT(ggml_is_vector(b));
  4650. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4651. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4652. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4653. bool is_node = false;
  4654. if (a->grad) {
  4655. is_node = false; // TODO: implement backward
  4656. }
  4657. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4658. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4659. memcpy(params + 5, &freq_base, sizeof(float));
  4660. memcpy(params + 6, &freq_scale, sizeof(float));
  4661. memcpy(params + 7, &ext_factor, sizeof(float));
  4662. memcpy(params + 8, &attn_factor, sizeof(float));
  4663. memcpy(params + 9, &beta_fast, sizeof(float));
  4664. memcpy(params + 10, &beta_slow, sizeof(float));
  4665. memcpy(params + 11, &xpos_base, sizeof(float));
  4666. memcpy(params + 12, &xpos_down, sizeof(bool));
  4667. ggml_set_op_params(result, params, sizeof(params));
  4668. result->op = GGML_OP_ROPE_BACK;
  4669. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4670. result->src[0] = a;
  4671. result->src[1] = b;
  4672. return result;
  4673. }
  4674. // ggml_alibi
  4675. struct ggml_tensor * ggml_alibi(
  4676. struct ggml_context * ctx,
  4677. struct ggml_tensor * a,
  4678. int n_past,
  4679. int n_head,
  4680. float bias_max) {
  4681. GGML_ASSERT(n_past >= 0);
  4682. bool is_node = false;
  4683. if (a->grad) {
  4684. GGML_ASSERT(false); // TODO: implement backward
  4685. is_node = true;
  4686. }
  4687. // TODO: when implement backward, fix this:
  4688. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4689. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4690. int32_t op_params[3] = { n_past, n_head };
  4691. memcpy(op_params + 2, &bias_max, sizeof(float));
  4692. ggml_set_op_params(result, op_params, sizeof(op_params));
  4693. result->op = GGML_OP_ALIBI;
  4694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4695. result->src[0] = a;
  4696. return result;
  4697. }
  4698. // ggml_clamp
  4699. struct ggml_tensor * ggml_clamp(
  4700. struct ggml_context * ctx,
  4701. struct ggml_tensor * a,
  4702. float min,
  4703. float max) {
  4704. bool is_node = false;
  4705. if (a->grad) {
  4706. GGML_ASSERT(false); // TODO: implement backward
  4707. is_node = true;
  4708. }
  4709. // TODO: when implement backward, fix this:
  4710. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4711. float params[] = { min, max };
  4712. ggml_set_op_params(result, params, sizeof(params));
  4713. result->op = GGML_OP_CLAMP;
  4714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4715. result->src[0] = a;
  4716. return result;
  4717. }
  4718. // ggml_conv_1d
  4719. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4720. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4721. }
  4722. GGML_API struct ggml_tensor * ggml_conv_1d(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a,
  4725. struct ggml_tensor * b,
  4726. int s0,
  4727. int p0,
  4728. int d0) {
  4729. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4730. struct ggml_tensor * result =
  4731. ggml_mul_mat(ctx,
  4732. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4733. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4734. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4735. return result;
  4736. }
  4737. // ggml_conv_1d_ph
  4738. struct ggml_tensor* ggml_conv_1d_ph(
  4739. struct ggml_context * ctx,
  4740. struct ggml_tensor * a,
  4741. struct ggml_tensor * b,
  4742. int s,
  4743. int d) {
  4744. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4745. }
  4746. // ggml_conv_transpose_1d
  4747. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4748. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4749. }
  4750. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. struct ggml_tensor * b,
  4754. int s0,
  4755. int p0,
  4756. int d0) {
  4757. GGML_ASSERT(ggml_is_matrix(b));
  4758. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4759. GGML_ASSERT(a->ne[3] == 1);
  4760. GGML_ASSERT(p0 == 0);
  4761. GGML_ASSERT(d0 == 1);
  4762. bool is_node = false;
  4763. if (a->grad || b->grad) {
  4764. GGML_ASSERT(false); // TODO: implement backward
  4765. is_node = true;
  4766. }
  4767. const int64_t ne[4] = {
  4768. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4769. a->ne[1], b->ne[2], 1,
  4770. };
  4771. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4772. int32_t params[] = { s0, p0, d0 };
  4773. ggml_set_op_params(result, params, sizeof(params));
  4774. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4776. result->src[0] = a;
  4777. result->src[1] = b;
  4778. return result;
  4779. }
  4780. // ggml_conv_depthwise
  4781. struct ggml_tensor * ggml_conv_depthwise_2d(
  4782. struct ggml_context * ctx,
  4783. struct ggml_tensor * a,
  4784. struct ggml_tensor * b,
  4785. int s0,
  4786. int s1,
  4787. int p0,
  4788. int p1,
  4789. int d0,
  4790. int d1) {
  4791. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4792. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4793. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4794. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4795. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4796. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4797. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4798. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4799. return result;
  4800. }
  4801. // ggml_conv_2d
  4802. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4803. // a: [OC,IC, KH, KW]
  4804. // b: [N, IC, IH, IW]
  4805. // result: [N, OH, OW, IC*KH*KW]
  4806. struct ggml_tensor * ggml_im2col(
  4807. struct ggml_context * ctx,
  4808. struct ggml_tensor * a,
  4809. struct ggml_tensor * b,
  4810. int s0,
  4811. int s1,
  4812. int p0,
  4813. int p1,
  4814. int d0,
  4815. int d1,
  4816. bool is_2D,
  4817. enum ggml_type dst_type) {
  4818. if(is_2D) {
  4819. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4820. } else {
  4821. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4822. }
  4823. bool is_node = false;
  4824. if (a->grad || b->grad) {
  4825. GGML_ASSERT(false); // TODO: implement backward
  4826. is_node = true;
  4827. }
  4828. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4829. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4830. const int64_t ne[4] = {
  4831. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4832. OW,
  4833. is_2D ? OH : b->ne[2],
  4834. is_2D ? b->ne[3] : 1,
  4835. };
  4836. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4837. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4838. ggml_set_op_params(result, params, sizeof(params));
  4839. result->op = GGML_OP_IM2COL;
  4840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4841. result->src[0] = a;
  4842. result->src[1] = b;
  4843. return result;
  4844. }
  4845. // a: [OC,IC, KH, KW]
  4846. // b: [N, IC, IH, IW]
  4847. // result: [N, OC, OH, OW]
  4848. struct ggml_tensor * ggml_conv_2d(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. struct ggml_tensor * b,
  4852. int s0,
  4853. int s1,
  4854. int p0,
  4855. int p1,
  4856. int d0,
  4857. int d1) {
  4858. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4859. struct ggml_tensor * result =
  4860. ggml_mul_mat(ctx,
  4861. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4862. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4863. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4864. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4865. return result;
  4866. }
  4867. // ggml_conv_2d_sk_p0
  4868. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4869. struct ggml_context * ctx,
  4870. struct ggml_tensor * a,
  4871. struct ggml_tensor * b) {
  4872. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4873. }
  4874. // ggml_conv_2d_s1_ph
  4875. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4876. struct ggml_context * ctx,
  4877. struct ggml_tensor * a,
  4878. struct ggml_tensor * b) {
  4879. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4880. }
  4881. // ggml_conv_transpose_2d_p0
  4882. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4883. return (ins - 1) * s - 2 * p + ks;
  4884. }
  4885. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a,
  4888. struct ggml_tensor * b,
  4889. int stride) {
  4890. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4891. bool is_node = false;
  4892. if (a->grad || b->grad) {
  4893. GGML_ASSERT(false); // TODO: implement backward
  4894. is_node = true;
  4895. }
  4896. const int64_t ne[4] = {
  4897. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4898. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4899. a->ne[2], b->ne[3],
  4900. };
  4901. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4902. ggml_set_op_params_i32(result, 0, stride);
  4903. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4904. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4905. result->src[0] = a;
  4906. result->src[1] = b;
  4907. return result;
  4908. }
  4909. // ggml_pool_*
  4910. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4911. return (ins + 2 * p - ks) / s + 1;
  4912. }
  4913. // ggml_pool_1d
  4914. struct ggml_tensor * ggml_pool_1d(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. enum ggml_op_pool op,
  4918. int k0,
  4919. int s0,
  4920. int p0) {
  4921. bool is_node = false;
  4922. if (a->grad) {
  4923. GGML_ASSERT(false); // TODO: implement backward
  4924. is_node = true;
  4925. }
  4926. const int64_t ne[4] = {
  4927. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4928. a->ne[1],
  4929. a->ne[2],
  4930. a->ne[3],
  4931. };
  4932. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4933. int32_t params[] = { op, k0, s0, p0 };
  4934. ggml_set_op_params(result, params, sizeof(params));
  4935. result->op = GGML_OP_POOL_1D;
  4936. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4937. result->src[0] = a;
  4938. return result;
  4939. }
  4940. // ggml_pool_2d
  4941. struct ggml_tensor * ggml_pool_2d(
  4942. struct ggml_context * ctx,
  4943. struct ggml_tensor * a,
  4944. enum ggml_op_pool op,
  4945. int k0,
  4946. int k1,
  4947. int s0,
  4948. int s1,
  4949. float p0,
  4950. float p1) {
  4951. bool is_node = false;
  4952. if (a->grad) {
  4953. GGML_ASSERT(false); // TODO: implement backward
  4954. is_node = true;
  4955. }
  4956. struct ggml_tensor * result;
  4957. const int64_t ne[3] = {
  4958. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4959. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4960. a->ne[2],
  4961. };
  4962. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4963. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4964. ggml_set_op_params(result, params, sizeof(params));
  4965. result->op = GGML_OP_POOL_2D;
  4966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4967. result->src[0] = a;
  4968. return result;
  4969. }
  4970. // ggml_upscale
  4971. static struct ggml_tensor * ggml_upscale_impl(
  4972. struct ggml_context * ctx,
  4973. struct ggml_tensor * a,
  4974. int scale_factor) {
  4975. bool is_node = false;
  4976. if (a->grad) {
  4977. GGML_ASSERT(false); // TODO: implement backward
  4978. is_node = true;
  4979. }
  4980. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4981. a->ne[0] * scale_factor,
  4982. a->ne[1] * scale_factor,
  4983. a->ne[2], a->ne[3]);
  4984. result->op = GGML_OP_UPSCALE;
  4985. result->op_params[0] = scale_factor;
  4986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4987. result->src[0] = a;
  4988. return result;
  4989. }
  4990. struct ggml_tensor * ggml_pad(
  4991. struct ggml_context * ctx,
  4992. struct ggml_tensor * a,
  4993. int p0, int p1, int p2, int p3) {
  4994. bool is_node = false;
  4995. if (a->grad) {
  4996. GGML_ASSERT(false); // TODO: implement backward
  4997. is_node = true;
  4998. }
  4999. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5000. a->ne[0] + p0,
  5001. a->ne[1] + p1,
  5002. a->ne[2] + p2,
  5003. a->ne[3] + p3);
  5004. result->op = GGML_OP_PAD;
  5005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5006. result->src[0] = a;
  5007. return result;
  5008. }
  5009. struct ggml_tensor * ggml_upscale(
  5010. struct ggml_context * ctx,
  5011. struct ggml_tensor * a,
  5012. int scale_factor) {
  5013. return ggml_upscale_impl(ctx, a, scale_factor);
  5014. }
  5015. struct ggml_tensor * ggml_arange(
  5016. struct ggml_context * ctx,
  5017. float start,
  5018. float stop,
  5019. float step) {
  5020. GGML_ASSERT(stop > start);
  5021. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5022. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5023. result->op = GGML_OP_ARANGE;
  5024. ggml_set_op_params_f32(result, 0, start);
  5025. ggml_set_op_params_f32(result, 1, stop);
  5026. ggml_set_op_params_f32(result, 2, step);
  5027. return result;
  5028. }
  5029. struct ggml_tensor * ggml_timestep_embedding(
  5030. struct ggml_context * ctx,
  5031. struct ggml_tensor * timesteps,
  5032. int dim,
  5033. int max_period) {
  5034. bool is_node = false;
  5035. if (timesteps->grad) {
  5036. GGML_ASSERT(false); // TODO: implement backward
  5037. is_node = true;
  5038. }
  5039. int actual_dim = dim;
  5040. if (dim % 2 != 0) {
  5041. actual_dim = dim + 1;
  5042. }
  5043. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5044. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5045. ggml_set_op_params_i32(result, 0, dim);
  5046. ggml_set_op_params_i32(result, 1, max_period);
  5047. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5048. result->src[0] = timesteps;
  5049. return result;
  5050. }
  5051. // ggml_argsort
  5052. struct ggml_tensor * ggml_argsort(
  5053. struct ggml_context * ctx,
  5054. struct ggml_tensor * a,
  5055. enum ggml_sort_order order) {
  5056. bool is_node = false;
  5057. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5058. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5059. result->op = GGML_OP_ARGSORT;
  5060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5061. result->src[0] = a;
  5062. return result;
  5063. }
  5064. // ggml_top_k
  5065. struct ggml_tensor * ggml_top_k(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. int k) {
  5069. GGML_ASSERT(a->ne[0] >= k);
  5070. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5071. result = ggml_view_4d(ctx, result,
  5072. k, result->ne[1], result->ne[2], result->ne[3],
  5073. result->nb[1], result->nb[2], result->nb[3],
  5074. 0);
  5075. return result;
  5076. }
  5077. // ggml_flash_attn
  5078. struct ggml_tensor * ggml_flash_attn(
  5079. struct ggml_context * ctx,
  5080. struct ggml_tensor * q,
  5081. struct ggml_tensor * k,
  5082. struct ggml_tensor * v,
  5083. bool masked) {
  5084. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5085. // TODO: check if vT can be multiplied by (k*qT)
  5086. bool is_node = false;
  5087. if (q->grad || k->grad || v->grad) {
  5088. is_node = true;
  5089. }
  5090. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5091. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5092. int32_t t = masked ? 1 : 0;
  5093. ggml_set_op_params(result, &t, sizeof(t));
  5094. result->op = GGML_OP_FLASH_ATTN;
  5095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5096. result->src[0] = q;
  5097. result->src[1] = k;
  5098. result->src[2] = v;
  5099. return result;
  5100. }
  5101. // ggml_flash_ff
  5102. struct ggml_tensor * ggml_flash_ff(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. struct ggml_tensor * b0,
  5106. struct ggml_tensor * b1,
  5107. struct ggml_tensor * c0,
  5108. struct ggml_tensor * c1) {
  5109. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5110. // TODO: more checks
  5111. bool is_node = false;
  5112. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5113. is_node = true;
  5114. }
  5115. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5116. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5117. result->op = GGML_OP_FLASH_FF;
  5118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5119. result->src[0] = a;
  5120. result->src[1] = b0;
  5121. result->src[2] = b1;
  5122. result->src[3] = c0;
  5123. result->src[4] = c1;
  5124. return result;
  5125. }
  5126. // ggml_flash_attn_back
  5127. struct ggml_tensor * ggml_flash_attn_back(
  5128. struct ggml_context * ctx,
  5129. struct ggml_tensor * q,
  5130. struct ggml_tensor * k,
  5131. struct ggml_tensor * v,
  5132. struct ggml_tensor * d,
  5133. bool masked) {
  5134. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5135. // TODO: check if vT can be multiplied by (k*qT)
  5136. // d shape [D,N,ne2,ne3]
  5137. // q shape [D,N,ne2,ne3]
  5138. // k shape [D,M,kvne2,ne3]
  5139. // v shape [M,D,kvne2,ne3]
  5140. const int64_t D = q->ne[0];
  5141. const int64_t N = q->ne[1];
  5142. const int64_t M = k->ne[1];
  5143. const int64_t ne2 = q->ne[2];
  5144. const int64_t ne3 = q->ne[3];
  5145. const int64_t kvne2 = k->ne[2];
  5146. GGML_ASSERT(k->ne[0] == D);
  5147. GGML_ASSERT(v->ne[0] == M);
  5148. GGML_ASSERT(v->ne[1] == D);
  5149. GGML_ASSERT(d->ne[0] == D);
  5150. GGML_ASSERT(d->ne[1] == N);
  5151. GGML_ASSERT(k->ne[2] == kvne2);
  5152. GGML_ASSERT(k->ne[3] == ne3);
  5153. GGML_ASSERT(v->ne[2] == kvne2);
  5154. GGML_ASSERT(v->ne[3] == ne3);
  5155. GGML_ASSERT(d->ne[2] == ne2);
  5156. GGML_ASSERT(d->ne[3] == ne3);
  5157. GGML_ASSERT(ne2 % kvne2 == 0);
  5158. bool is_node = false;
  5159. if (q->grad || k->grad || v->grad) {
  5160. // when using this operation (in backwards pass) these grads are set.
  5161. // we don't want to create (big) grad of our result, so is_node is false.
  5162. is_node = false;
  5163. }
  5164. // store gradients of q, k and v as continuous tensors concatenated in result.
  5165. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5166. const int64_t elem_q = ggml_nelements(q);
  5167. const int64_t elem_k = ggml_nelements(k);
  5168. const int64_t elem_v = ggml_nelements(v);
  5169. enum ggml_type result_type = GGML_TYPE_F32;
  5170. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5171. const size_t tsize = ggml_type_size(result_type);
  5172. const size_t offs_q = 0;
  5173. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5174. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5175. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5176. const size_t nelements = (end + tsize - 1)/tsize;
  5177. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5178. int32_t masked_i = masked ? 1 : 0;
  5179. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5180. result->op = GGML_OP_FLASH_ATTN_BACK;
  5181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5182. result->src[0] = q;
  5183. result->src[1] = k;
  5184. result->src[2] = v;
  5185. result->src[3] = d;
  5186. return result;
  5187. }
  5188. // ggml_ssm_conv
  5189. struct ggml_tensor * ggml_ssm_conv(
  5190. struct ggml_context * ctx,
  5191. struct ggml_tensor * s,
  5192. struct ggml_tensor * x,
  5193. struct ggml_tensor * c,
  5194. struct ggml_tensor * sq) {
  5195. GGML_ASSERT(ggml_is_3d(s));
  5196. GGML_ASSERT(ggml_is_matrix(x));
  5197. GGML_ASSERT(ggml_is_matrix(c));
  5198. GGML_ASSERT(ggml_is_matrix(sq));
  5199. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5200. const int64_t d_conv = c->ne[0];
  5201. const int64_t d_inner = c->ne[1];
  5202. const int64_t n_tokens = x->ne[1];
  5203. const int64_t n_kv = s->ne[2];
  5204. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5205. GGML_ASSERT( s->ne[1] == d_inner);
  5206. GGML_ASSERT( x->ne[0] == d_inner);
  5207. GGML_ASSERT(sq->ne[0] == n_kv);
  5208. GGML_ASSERT(sq->ne[1] == n_tokens);
  5209. bool is_node = false;
  5210. if (s->grad || x->grad || c->grad || sq->grad) {
  5211. GGML_ASSERT(false); // TODO: implement
  5212. is_node = true;
  5213. }
  5214. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5215. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5216. result->op = GGML_OP_SSM_CONV;
  5217. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5218. result->src[0] = s;
  5219. result->src[1] = x;
  5220. result->src[2] = c;
  5221. result->src[3] = sq;
  5222. return result;
  5223. }
  5224. // ggml_ssm_scan
  5225. struct ggml_tensor * ggml_ssm_scan(
  5226. struct ggml_context * ctx,
  5227. struct ggml_tensor * s,
  5228. struct ggml_tensor * x,
  5229. struct ggml_tensor * dt,
  5230. struct ggml_tensor * A,
  5231. struct ggml_tensor * B,
  5232. struct ggml_tensor * C,
  5233. struct ggml_tensor * sq) {
  5234. GGML_ASSERT(ggml_is_contiguous(s));
  5235. GGML_ASSERT(ggml_is_contiguous(x));
  5236. GGML_ASSERT(ggml_is_contiguous(dt));
  5237. GGML_ASSERT(ggml_is_contiguous(A));
  5238. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5239. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5240. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5241. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5242. {
  5243. const int64_t d_state = s->ne[0];
  5244. const int64_t d_inner = s->ne[1];
  5245. const int64_t n_tokens = x->ne[1];
  5246. GGML_ASSERT(x->ne[0] == d_inner);
  5247. GGML_ASSERT(A->ne[0] == d_state);
  5248. GGML_ASSERT(A->ne[1] == d_inner);
  5249. GGML_ASSERT(B->ne[0] == d_state);
  5250. GGML_ASSERT(B->ne[1] == n_tokens);
  5251. GGML_ASSERT(C->ne[0] == d_state);
  5252. GGML_ASSERT(C->ne[1] == n_tokens);
  5253. }
  5254. bool is_node = false;
  5255. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5256. GGML_ASSERT(false); // TODO: implement
  5257. is_node = true;
  5258. }
  5259. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5260. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5261. result->op = GGML_OP_SSM_SCAN;
  5262. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5263. result->src[0] = s;
  5264. result->src[1] = x;
  5265. result->src[2] = dt;
  5266. result->src[3] = A;
  5267. result->src[4] = B;
  5268. result->src[5] = C;
  5269. result->src[6] = sq;
  5270. return result;
  5271. }
  5272. // ggml_win_part
  5273. struct ggml_tensor * ggml_win_part(
  5274. struct ggml_context * ctx,
  5275. struct ggml_tensor * a,
  5276. int w) {
  5277. GGML_ASSERT(a->ne[3] == 1);
  5278. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5279. bool is_node = false;
  5280. if (a->grad) {
  5281. GGML_ASSERT(false); // TODO: implement backward
  5282. is_node = true;
  5283. }
  5284. // padding
  5285. const int px = (w - a->ne[1]%w)%w;
  5286. const int py = (w - a->ne[2]%w)%w;
  5287. const int npx = (px + a->ne[1])/w;
  5288. const int npy = (py + a->ne[2])/w;
  5289. const int np = npx*npy;
  5290. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5291. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5292. int32_t params[] = { npx, npy, w };
  5293. ggml_set_op_params(result, params, sizeof(params));
  5294. result->op = GGML_OP_WIN_PART;
  5295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5296. result->src[0] = a;
  5297. return result;
  5298. }
  5299. // ggml_win_unpart
  5300. struct ggml_tensor * ggml_win_unpart(
  5301. struct ggml_context * ctx,
  5302. struct ggml_tensor * a,
  5303. int w0,
  5304. int h0,
  5305. int w) {
  5306. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5307. bool is_node = false;
  5308. if (a->grad) {
  5309. GGML_ASSERT(false); // TODO: implement backward
  5310. is_node = true;
  5311. }
  5312. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5313. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5314. int32_t params[] = { w };
  5315. ggml_set_op_params(result, params, sizeof(params));
  5316. result->op = GGML_OP_WIN_UNPART;
  5317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5318. result->src[0] = a;
  5319. return result;
  5320. }
  5321. // ggml_get_rel_pos
  5322. struct ggml_tensor * ggml_get_rel_pos(
  5323. struct ggml_context * ctx,
  5324. struct ggml_tensor * a,
  5325. int qh,
  5326. int kh) {
  5327. GGML_ASSERT(qh == kh);
  5328. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5329. bool is_node = false;
  5330. if (a->grad) {
  5331. GGML_ASSERT(false); // TODO: implement backward
  5332. is_node = true;
  5333. }
  5334. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5335. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5336. result->op = GGML_OP_GET_REL_POS;
  5337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5338. result->src[0] = a;
  5339. return result;
  5340. }
  5341. // ggml_add_rel_pos
  5342. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5343. struct ggml_context * ctx,
  5344. struct ggml_tensor * a,
  5345. struct ggml_tensor * pw,
  5346. struct ggml_tensor * ph,
  5347. bool inplace) {
  5348. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5349. GGML_ASSERT(ggml_is_contiguous(a));
  5350. GGML_ASSERT(ggml_is_contiguous(pw));
  5351. GGML_ASSERT(ggml_is_contiguous(ph));
  5352. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5353. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5354. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5355. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5356. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5357. bool is_node = false;
  5358. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5359. is_node = true;
  5360. }
  5361. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5362. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5363. result->op = GGML_OP_ADD_REL_POS;
  5364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5365. result->src[0] = a;
  5366. result->src[1] = pw;
  5367. result->src[2] = ph;
  5368. return result;
  5369. }
  5370. struct ggml_tensor * ggml_add_rel_pos(
  5371. struct ggml_context * ctx,
  5372. struct ggml_tensor * a,
  5373. struct ggml_tensor * pw,
  5374. struct ggml_tensor * ph) {
  5375. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5376. }
  5377. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5378. struct ggml_context * ctx,
  5379. struct ggml_tensor * a,
  5380. struct ggml_tensor * pw,
  5381. struct ggml_tensor * ph) {
  5382. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5383. }
  5384. // gmml_unary
  5385. static struct ggml_tensor * ggml_unary_impl(
  5386. struct ggml_context * ctx,
  5387. struct ggml_tensor * a,
  5388. enum ggml_unary_op op,
  5389. bool inplace) {
  5390. bool is_node = false;
  5391. if (!inplace && (a->grad)) {
  5392. is_node = true;
  5393. }
  5394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5395. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5396. result->op = GGML_OP_UNARY;
  5397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5398. result->src[0] = a;
  5399. return result;
  5400. }
  5401. struct ggml_tensor * ggml_unary(
  5402. struct ggml_context * ctx,
  5403. struct ggml_tensor * a,
  5404. enum ggml_unary_op op) {
  5405. return ggml_unary_impl(ctx, a, op, false);
  5406. }
  5407. struct ggml_tensor * ggml_unary_inplace(
  5408. struct ggml_context * ctx,
  5409. struct ggml_tensor * a,
  5410. enum ggml_unary_op op) {
  5411. return ggml_unary_impl(ctx, a, op, true);
  5412. }
  5413. // ggml_map_unary
  5414. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5415. struct ggml_context * ctx,
  5416. struct ggml_tensor * a,
  5417. const ggml_unary_op_f32_t fun,
  5418. bool inplace) {
  5419. bool is_node = false;
  5420. if (!inplace && a->grad) {
  5421. is_node = true;
  5422. }
  5423. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5424. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5425. result->op = GGML_OP_MAP_UNARY;
  5426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5427. result->src[0] = a;
  5428. return result;
  5429. }
  5430. struct ggml_tensor * ggml_map_unary_f32(
  5431. struct ggml_context * ctx,
  5432. struct ggml_tensor * a,
  5433. const ggml_unary_op_f32_t fun) {
  5434. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5435. }
  5436. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5437. struct ggml_context * ctx,
  5438. struct ggml_tensor * a,
  5439. const ggml_unary_op_f32_t fun) {
  5440. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5441. }
  5442. // ggml_map_binary
  5443. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5444. struct ggml_context * ctx,
  5445. struct ggml_tensor * a,
  5446. struct ggml_tensor * b,
  5447. const ggml_binary_op_f32_t fun,
  5448. bool inplace) {
  5449. GGML_ASSERT(ggml_are_same_shape(a, b));
  5450. bool is_node = false;
  5451. if (!inplace && (a->grad || b->grad)) {
  5452. is_node = true;
  5453. }
  5454. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5455. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5456. result->op = GGML_OP_MAP_BINARY;
  5457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5458. result->src[0] = a;
  5459. result->src[1] = b;
  5460. return result;
  5461. }
  5462. struct ggml_tensor * ggml_map_binary_f32(
  5463. struct ggml_context * ctx,
  5464. struct ggml_tensor * a,
  5465. struct ggml_tensor * b,
  5466. const ggml_binary_op_f32_t fun) {
  5467. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5468. }
  5469. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5470. struct ggml_context * ctx,
  5471. struct ggml_tensor * a,
  5472. struct ggml_tensor * b,
  5473. const ggml_binary_op_f32_t fun) {
  5474. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5475. }
  5476. // ggml_map_custom1_f32
  5477. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5478. struct ggml_context * ctx,
  5479. struct ggml_tensor * a,
  5480. const ggml_custom1_op_f32_t fun,
  5481. bool inplace) {
  5482. bool is_node = false;
  5483. if (!inplace && a->grad) {
  5484. is_node = true;
  5485. }
  5486. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5487. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5488. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5490. result->src[0] = a;
  5491. return result;
  5492. }
  5493. struct ggml_tensor * ggml_map_custom1_f32(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a,
  5496. const ggml_custom1_op_f32_t fun) {
  5497. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5498. }
  5499. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5500. struct ggml_context * ctx,
  5501. struct ggml_tensor * a,
  5502. const ggml_custom1_op_f32_t fun) {
  5503. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5504. }
  5505. // ggml_map_custom2_f32
  5506. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5507. struct ggml_context * ctx,
  5508. struct ggml_tensor * a,
  5509. struct ggml_tensor * b,
  5510. const ggml_custom2_op_f32_t fun,
  5511. bool inplace) {
  5512. bool is_node = false;
  5513. if (!inplace && (a->grad || b->grad)) {
  5514. is_node = true;
  5515. }
  5516. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5517. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5518. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5520. result->src[0] = a;
  5521. result->src[1] = b;
  5522. return result;
  5523. }
  5524. struct ggml_tensor * ggml_map_custom2_f32(
  5525. struct ggml_context * ctx,
  5526. struct ggml_tensor * a,
  5527. struct ggml_tensor * b,
  5528. const ggml_custom2_op_f32_t fun) {
  5529. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5530. }
  5531. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5532. struct ggml_context * ctx,
  5533. struct ggml_tensor * a,
  5534. struct ggml_tensor * b,
  5535. const ggml_custom2_op_f32_t fun) {
  5536. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5537. }
  5538. // ggml_map_custom3_f32
  5539. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5540. struct ggml_context * ctx,
  5541. struct ggml_tensor * a,
  5542. struct ggml_tensor * b,
  5543. struct ggml_tensor * c,
  5544. const ggml_custom3_op_f32_t fun,
  5545. bool inplace) {
  5546. bool is_node = false;
  5547. if (!inplace && (a->grad || b->grad || c->grad)) {
  5548. is_node = true;
  5549. }
  5550. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5551. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5552. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5554. result->src[0] = a;
  5555. result->src[1] = b;
  5556. result->src[2] = c;
  5557. return result;
  5558. }
  5559. struct ggml_tensor * ggml_map_custom3_f32(
  5560. struct ggml_context * ctx,
  5561. struct ggml_tensor * a,
  5562. struct ggml_tensor * b,
  5563. struct ggml_tensor * c,
  5564. const ggml_custom3_op_f32_t fun) {
  5565. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5566. }
  5567. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5568. struct ggml_context * ctx,
  5569. struct ggml_tensor * a,
  5570. struct ggml_tensor * b,
  5571. struct ggml_tensor * c,
  5572. const ggml_custom3_op_f32_t fun) {
  5573. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5574. }
  5575. // ggml_map_custom1
  5576. struct ggml_map_custom1_op_params {
  5577. ggml_custom1_op_t fun;
  5578. int n_tasks;
  5579. void * userdata;
  5580. };
  5581. static struct ggml_tensor * ggml_map_custom1_impl(
  5582. struct ggml_context * ctx,
  5583. struct ggml_tensor * a,
  5584. const ggml_custom1_op_t fun,
  5585. int n_tasks,
  5586. void * userdata,
  5587. bool inplace) {
  5588. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5589. bool is_node = false;
  5590. if (!inplace && a->grad) {
  5591. is_node = true;
  5592. }
  5593. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5594. struct ggml_map_custom1_op_params params = {
  5595. /*.fun =*/ fun,
  5596. /*.n_tasks =*/ n_tasks,
  5597. /*.userdata =*/ userdata
  5598. };
  5599. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5600. result->op = GGML_OP_MAP_CUSTOM1;
  5601. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5602. result->src[0] = a;
  5603. return result;
  5604. }
  5605. struct ggml_tensor * ggml_map_custom1(
  5606. struct ggml_context * ctx,
  5607. struct ggml_tensor * a,
  5608. const ggml_custom1_op_t fun,
  5609. int n_tasks,
  5610. void * userdata) {
  5611. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5612. }
  5613. struct ggml_tensor * ggml_map_custom1_inplace(
  5614. struct ggml_context * ctx,
  5615. struct ggml_tensor * a,
  5616. const ggml_custom1_op_t fun,
  5617. int n_tasks,
  5618. void * userdata) {
  5619. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5620. }
  5621. // ggml_map_custom2
  5622. struct ggml_map_custom2_op_params {
  5623. ggml_custom2_op_t fun;
  5624. int n_tasks;
  5625. void * userdata;
  5626. };
  5627. static struct ggml_tensor * ggml_map_custom2_impl(
  5628. struct ggml_context * ctx,
  5629. struct ggml_tensor * a,
  5630. struct ggml_tensor * b,
  5631. const ggml_custom2_op_t fun,
  5632. int n_tasks,
  5633. void * userdata,
  5634. bool inplace) {
  5635. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5636. bool is_node = false;
  5637. if (!inplace && (a->grad || b->grad)) {
  5638. is_node = true;
  5639. }
  5640. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5641. struct ggml_map_custom2_op_params params = {
  5642. /*.fun =*/ fun,
  5643. /*.n_tasks =*/ n_tasks,
  5644. /*.userdata =*/ userdata
  5645. };
  5646. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5647. result->op = GGML_OP_MAP_CUSTOM2;
  5648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5649. result->src[0] = a;
  5650. result->src[1] = b;
  5651. return result;
  5652. }
  5653. struct ggml_tensor * ggml_map_custom2(
  5654. struct ggml_context * ctx,
  5655. struct ggml_tensor * a,
  5656. struct ggml_tensor * b,
  5657. const ggml_custom2_op_t fun,
  5658. int n_tasks,
  5659. void * userdata) {
  5660. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5661. }
  5662. struct ggml_tensor * ggml_map_custom2_inplace(
  5663. struct ggml_context * ctx,
  5664. struct ggml_tensor * a,
  5665. struct ggml_tensor * b,
  5666. const ggml_custom2_op_t fun,
  5667. int n_tasks,
  5668. void * userdata) {
  5669. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5670. }
  5671. // ggml_map_custom3
  5672. struct ggml_map_custom3_op_params {
  5673. ggml_custom3_op_t fun;
  5674. int n_tasks;
  5675. void * userdata;
  5676. };
  5677. static struct ggml_tensor * ggml_map_custom3_impl(
  5678. struct ggml_context * ctx,
  5679. struct ggml_tensor * a,
  5680. struct ggml_tensor * b,
  5681. struct ggml_tensor * c,
  5682. const ggml_custom3_op_t fun,
  5683. int n_tasks,
  5684. void * userdata,
  5685. bool inplace) {
  5686. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5687. bool is_node = false;
  5688. if (!inplace && (a->grad || b->grad || c->grad)) {
  5689. is_node = true;
  5690. }
  5691. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5692. struct ggml_map_custom3_op_params params = {
  5693. /*.fun =*/ fun,
  5694. /*.n_tasks =*/ n_tasks,
  5695. /*.userdata =*/ userdata
  5696. };
  5697. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5698. result->op = GGML_OP_MAP_CUSTOM3;
  5699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5700. result->src[0] = a;
  5701. result->src[1] = b;
  5702. result->src[2] = c;
  5703. return result;
  5704. }
  5705. struct ggml_tensor * ggml_map_custom3(
  5706. struct ggml_context * ctx,
  5707. struct ggml_tensor * a,
  5708. struct ggml_tensor * b,
  5709. struct ggml_tensor * c,
  5710. const ggml_custom3_op_t fun,
  5711. int n_tasks,
  5712. void * userdata) {
  5713. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5714. }
  5715. struct ggml_tensor * ggml_map_custom3_inplace(
  5716. struct ggml_context * ctx,
  5717. struct ggml_tensor * a,
  5718. struct ggml_tensor * b,
  5719. struct ggml_tensor * c,
  5720. const ggml_custom3_op_t fun,
  5721. int n_tasks,
  5722. void * userdata) {
  5723. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5724. }
  5725. // ggml_cross_entropy_loss
  5726. struct ggml_tensor * ggml_cross_entropy_loss(
  5727. struct ggml_context * ctx,
  5728. struct ggml_tensor * a,
  5729. struct ggml_tensor * b) {
  5730. GGML_ASSERT(ggml_are_same_shape(a, b));
  5731. bool is_node = false;
  5732. if (a->grad || b->grad) {
  5733. is_node = true;
  5734. }
  5735. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5736. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5738. result->src[0] = a;
  5739. result->src[1] = b;
  5740. return result;
  5741. }
  5742. // ggml_cross_entropy_loss_back
  5743. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5744. struct ggml_context * ctx,
  5745. struct ggml_tensor * a,
  5746. struct ggml_tensor * b,
  5747. struct ggml_tensor * c) {
  5748. GGML_ASSERT(ggml_are_same_shape(a, b));
  5749. GGML_ASSERT(ggml_is_scalar(c));
  5750. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5751. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5752. result->grad = NULL;
  5753. result->src[0] = a;
  5754. result->src[1] = b;
  5755. result->src[2] = c;
  5756. return result;
  5757. }
  5758. ////////////////////////////////////////////////////////////////////////////////
  5759. void ggml_set_param(
  5760. struct ggml_context * ctx,
  5761. struct ggml_tensor * tensor) {
  5762. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5763. GGML_ASSERT(tensor->grad == NULL);
  5764. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5765. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5766. }
  5767. // ggml_compute_forward_dup
  5768. static void ggml_compute_forward_dup_same_cont(
  5769. const struct ggml_compute_params * params,
  5770. struct ggml_tensor * dst) {
  5771. const struct ggml_tensor * src0 = dst->src[0];
  5772. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5773. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5774. GGML_ASSERT(src0->type == dst->type);
  5775. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5776. return;
  5777. }
  5778. const size_t nb00 = src0->nb[0];
  5779. const size_t nb0 = dst->nb[0];
  5780. const int ith = params->ith; // thread index
  5781. const int nth = params->nth; // number of threads
  5782. // parallelize by elements
  5783. const int ne = ggml_nelements(dst);
  5784. const int dr = (ne + nth - 1) / nth;
  5785. const int ie0 = dr * ith;
  5786. const int ie1 = MIN(ie0 + dr, ne);
  5787. if (ie0 < ie1) {
  5788. memcpy(
  5789. ((char *) dst->data + ie0*nb0),
  5790. ((char *) src0->data + ie0*nb00),
  5791. (ie1 - ie0) * ggml_type_size(src0->type));
  5792. }
  5793. }
  5794. static void ggml_compute_forward_dup_f16(
  5795. const struct ggml_compute_params * params,
  5796. struct ggml_tensor * dst) {
  5797. const struct ggml_tensor * src0 = dst->src[0];
  5798. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5799. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5800. return;
  5801. }
  5802. GGML_TENSOR_UNARY_OP_LOCALS
  5803. const int ith = params->ith; // thread index
  5804. const int nth = params->nth; // number of threads
  5805. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5806. ggml_compute_forward_dup_same_cont(params, dst);
  5807. return;
  5808. }
  5809. // parallelize by rows
  5810. const int nr = ne01;
  5811. // number of rows per thread
  5812. const int dr = (nr + nth - 1) / nth;
  5813. // row range for this thread
  5814. const int ir0 = dr * ith;
  5815. const int ir1 = MIN(ir0 + dr, nr);
  5816. if (src0->type == dst->type &&
  5817. ne00 == ne0 &&
  5818. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5819. // copy by rows
  5820. const size_t rs = ne00*nb00;
  5821. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5822. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5823. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5824. memcpy(
  5825. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5826. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5827. rs);
  5828. }
  5829. }
  5830. }
  5831. return;
  5832. }
  5833. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5834. if (ggml_is_contiguous(dst)) {
  5835. if (nb00 == sizeof(ggml_fp16_t)) {
  5836. if (dst->type == GGML_TYPE_F16) {
  5837. size_t id = 0;
  5838. const size_t rs = ne00 * nb00;
  5839. char * dst_ptr = (char *) dst->data;
  5840. for (int i03 = 0; i03 < ne03; i03++) {
  5841. for (int i02 = 0; i02 < ne02; i02++) {
  5842. id += rs * ir0;
  5843. for (int i01 = ir0; i01 < ir1; i01++) {
  5844. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5845. memcpy(dst_ptr + id, src0_ptr, rs);
  5846. id += rs;
  5847. }
  5848. id += rs * (ne01 - ir1);
  5849. }
  5850. }
  5851. } else if (dst->type == GGML_TYPE_F32) {
  5852. size_t id = 0;
  5853. float * dst_ptr = (float *) dst->data;
  5854. for (int i03 = 0; i03 < ne03; i03++) {
  5855. for (int i02 = 0; i02 < ne02; i02++) {
  5856. id += ne00 * ir0;
  5857. for (int i01 = ir0; i01 < ir1; i01++) {
  5858. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5859. for (int i00 = 0; i00 < ne00; i00++) {
  5860. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5861. id++;
  5862. }
  5863. }
  5864. id += ne00 * (ne01 - ir1);
  5865. }
  5866. }
  5867. } else if (type_traits[dst->type].from_float) {
  5868. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5869. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5870. size_t id = 0;
  5871. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5872. char * dst_ptr = (char *) dst->data;
  5873. for (int i03 = 0; i03 < ne03; i03++) {
  5874. for (int i02 = 0; i02 < ne02; i02++) {
  5875. id += rs * ir0;
  5876. for (int i01 = ir0; i01 < ir1; i01++) {
  5877. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5878. for (int i00 = 0; i00 < ne00; i00++) {
  5879. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5880. }
  5881. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5882. id += rs;
  5883. }
  5884. id += rs * (ne01 - ir1);
  5885. }
  5886. }
  5887. } else {
  5888. GGML_ASSERT(false); // TODO: implement
  5889. }
  5890. } else {
  5891. //printf("%s: this is not optimal - fix me\n", __func__);
  5892. if (dst->type == GGML_TYPE_F32) {
  5893. size_t id = 0;
  5894. float * dst_ptr = (float *) dst->data;
  5895. for (int i03 = 0; i03 < ne03; i03++) {
  5896. for (int i02 = 0; i02 < ne02; i02++) {
  5897. id += ne00 * ir0;
  5898. for (int i01 = ir0; i01 < ir1; i01++) {
  5899. for (int i00 = 0; i00 < ne00; i00++) {
  5900. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5901. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5902. id++;
  5903. }
  5904. }
  5905. id += ne00 * (ne01 - ir1);
  5906. }
  5907. }
  5908. } else if (dst->type == GGML_TYPE_F16) {
  5909. size_t id = 0;
  5910. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5911. for (int i03 = 0; i03 < ne03; i03++) {
  5912. for (int i02 = 0; i02 < ne02; i02++) {
  5913. id += ne00 * ir0;
  5914. for (int i01 = ir0; i01 < ir1; i01++) {
  5915. for (int i00 = 0; i00 < ne00; i00++) {
  5916. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5917. dst_ptr[id] = *src0_ptr;
  5918. id++;
  5919. }
  5920. }
  5921. id += ne00 * (ne01 - ir1);
  5922. }
  5923. }
  5924. } else {
  5925. GGML_ASSERT(false); // TODO: implement
  5926. }
  5927. }
  5928. return;
  5929. }
  5930. // dst counters
  5931. int64_t i10 = 0;
  5932. int64_t i11 = 0;
  5933. int64_t i12 = 0;
  5934. int64_t i13 = 0;
  5935. if (dst->type == GGML_TYPE_F16) {
  5936. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5937. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5938. i10 += ne00 * ir0;
  5939. while (i10 >= ne0) {
  5940. i10 -= ne0;
  5941. if (++i11 == ne1) {
  5942. i11 = 0;
  5943. if (++i12 == ne2) {
  5944. i12 = 0;
  5945. if (++i13 == ne3) {
  5946. i13 = 0;
  5947. }
  5948. }
  5949. }
  5950. }
  5951. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5952. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5953. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5954. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5955. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5956. if (++i10 == ne00) {
  5957. i10 = 0;
  5958. if (++i11 == ne01) {
  5959. i11 = 0;
  5960. if (++i12 == ne02) {
  5961. i12 = 0;
  5962. if (++i13 == ne03) {
  5963. i13 = 0;
  5964. }
  5965. }
  5966. }
  5967. }
  5968. }
  5969. }
  5970. i10 += ne00 * (ne01 - ir1);
  5971. while (i10 >= ne0) {
  5972. i10 -= ne0;
  5973. if (++i11 == ne1) {
  5974. i11 = 0;
  5975. if (++i12 == ne2) {
  5976. i12 = 0;
  5977. if (++i13 == ne3) {
  5978. i13 = 0;
  5979. }
  5980. }
  5981. }
  5982. }
  5983. }
  5984. }
  5985. } else if (dst->type == GGML_TYPE_F32) {
  5986. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5987. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5988. i10 += ne00 * ir0;
  5989. while (i10 >= ne0) {
  5990. i10 -= ne0;
  5991. if (++i11 == ne1) {
  5992. i11 = 0;
  5993. if (++i12 == ne2) {
  5994. i12 = 0;
  5995. if (++i13 == ne3) {
  5996. i13 = 0;
  5997. }
  5998. }
  5999. }
  6000. }
  6001. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6002. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6003. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6004. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6005. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6006. if (++i10 == ne0) {
  6007. i10 = 0;
  6008. if (++i11 == ne1) {
  6009. i11 = 0;
  6010. if (++i12 == ne2) {
  6011. i12 = 0;
  6012. if (++i13 == ne3) {
  6013. i13 = 0;
  6014. }
  6015. }
  6016. }
  6017. }
  6018. }
  6019. }
  6020. i10 += ne00 * (ne01 - ir1);
  6021. while (i10 >= ne0) {
  6022. i10 -= ne0;
  6023. if (++i11 == ne1) {
  6024. i11 = 0;
  6025. if (++i12 == ne2) {
  6026. i12 = 0;
  6027. if (++i13 == ne3) {
  6028. i13 = 0;
  6029. }
  6030. }
  6031. }
  6032. }
  6033. }
  6034. }
  6035. } else {
  6036. GGML_ASSERT(false); // TODO: implement
  6037. }
  6038. }
  6039. static void ggml_compute_forward_dup_f32(
  6040. const struct ggml_compute_params * params,
  6041. struct ggml_tensor * dst) {
  6042. const struct ggml_tensor * src0 = dst->src[0];
  6043. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6044. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6045. return;
  6046. }
  6047. GGML_TENSOR_UNARY_OP_LOCALS
  6048. const int ith = params->ith; // thread index
  6049. const int nth = params->nth; // number of threads
  6050. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6051. ggml_compute_forward_dup_same_cont(params, dst);
  6052. return;
  6053. }
  6054. // parallelize by rows
  6055. const int nr = ne01;
  6056. // number of rows per thread
  6057. const int dr = (nr + nth - 1) / nth;
  6058. // row range for this thread
  6059. const int ir0 = dr * ith;
  6060. const int ir1 = MIN(ir0 + dr, nr);
  6061. if (src0->type == dst->type &&
  6062. ne00 == ne0 &&
  6063. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6064. // copy by rows
  6065. const size_t rs = ne00*nb00;
  6066. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6067. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6068. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6069. memcpy(
  6070. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6071. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6072. rs);
  6073. }
  6074. }
  6075. }
  6076. return;
  6077. }
  6078. if (ggml_is_contiguous(dst)) {
  6079. // TODO: simplify
  6080. if (nb00 == sizeof(float)) {
  6081. if (dst->type == GGML_TYPE_F32) {
  6082. size_t id = 0;
  6083. const size_t rs = ne00 * nb00;
  6084. char * dst_ptr = (char *) dst->data;
  6085. for (int i03 = 0; i03 < ne03; i03++) {
  6086. for (int i02 = 0; i02 < ne02; i02++) {
  6087. id += rs * ir0;
  6088. for (int i01 = ir0; i01 < ir1; i01++) {
  6089. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6090. memcpy(dst_ptr + id, src0_ptr, rs);
  6091. id += rs;
  6092. }
  6093. id += rs * (ne01 - ir1);
  6094. }
  6095. }
  6096. } else if (type_traits[dst->type].from_float) {
  6097. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6098. size_t id = 0;
  6099. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6100. char * dst_ptr = (char *) dst->data;
  6101. for (int i03 = 0; i03 < ne03; i03++) {
  6102. for (int i02 = 0; i02 < ne02; i02++) {
  6103. id += rs * ir0;
  6104. for (int i01 = ir0; i01 < ir1; i01++) {
  6105. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6106. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6107. id += rs;
  6108. }
  6109. id += rs * (ne01 - ir1);
  6110. }
  6111. }
  6112. } else {
  6113. GGML_ASSERT(false); // TODO: implement
  6114. }
  6115. } else {
  6116. //printf("%s: this is not optimal - fix me\n", __func__);
  6117. if (dst->type == GGML_TYPE_F32) {
  6118. size_t id = 0;
  6119. float * dst_ptr = (float *) dst->data;
  6120. for (int i03 = 0; i03 < ne03; i03++) {
  6121. for (int i02 = 0; i02 < ne02; i02++) {
  6122. id += ne00 * ir0;
  6123. for (int i01 = ir0; i01 < ir1; i01++) {
  6124. for (int i00 = 0; i00 < ne00; i00++) {
  6125. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6126. dst_ptr[id] = *src0_ptr;
  6127. id++;
  6128. }
  6129. }
  6130. id += ne00 * (ne01 - ir1);
  6131. }
  6132. }
  6133. } else if (dst->type == GGML_TYPE_F16) {
  6134. size_t id = 0;
  6135. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6136. for (int i03 = 0; i03 < ne03; i03++) {
  6137. for (int i02 = 0; i02 < ne02; i02++) {
  6138. id += ne00 * ir0;
  6139. for (int i01 = ir0; i01 < ir1; i01++) {
  6140. for (int i00 = 0; i00 < ne00; i00++) {
  6141. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6142. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6143. id++;
  6144. }
  6145. }
  6146. id += ne00 * (ne01 - ir1);
  6147. }
  6148. }
  6149. } else {
  6150. GGML_ASSERT(false); // TODO: implement
  6151. }
  6152. }
  6153. return;
  6154. }
  6155. // dst counters
  6156. int64_t i10 = 0;
  6157. int64_t i11 = 0;
  6158. int64_t i12 = 0;
  6159. int64_t i13 = 0;
  6160. if (dst->type == GGML_TYPE_F32) {
  6161. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6162. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6163. i10 += ne00 * ir0;
  6164. while (i10 >= ne0) {
  6165. i10 -= ne0;
  6166. if (++i11 == ne1) {
  6167. i11 = 0;
  6168. if (++i12 == ne2) {
  6169. i12 = 0;
  6170. if (++i13 == ne3) {
  6171. i13 = 0;
  6172. }
  6173. }
  6174. }
  6175. }
  6176. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6177. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6178. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6179. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6180. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6181. if (++i10 == ne0) {
  6182. i10 = 0;
  6183. if (++i11 == ne1) {
  6184. i11 = 0;
  6185. if (++i12 == ne2) {
  6186. i12 = 0;
  6187. if (++i13 == ne3) {
  6188. i13 = 0;
  6189. }
  6190. }
  6191. }
  6192. }
  6193. }
  6194. }
  6195. i10 += ne00 * (ne01 - ir1);
  6196. while (i10 >= ne0) {
  6197. i10 -= ne0;
  6198. if (++i11 == ne1) {
  6199. i11 = 0;
  6200. if (++i12 == ne2) {
  6201. i12 = 0;
  6202. if (++i13 == ne3) {
  6203. i13 = 0;
  6204. }
  6205. }
  6206. }
  6207. }
  6208. }
  6209. }
  6210. } else if (dst->type == GGML_TYPE_F16) {
  6211. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6212. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6213. i10 += ne00 * ir0;
  6214. while (i10 >= ne0) {
  6215. i10 -= ne0;
  6216. if (++i11 == ne1) {
  6217. i11 = 0;
  6218. if (++i12 == ne2) {
  6219. i12 = 0;
  6220. if (++i13 == ne3) {
  6221. i13 = 0;
  6222. }
  6223. }
  6224. }
  6225. }
  6226. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6227. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6228. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6229. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6230. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6231. if (++i10 == ne0) {
  6232. i10 = 0;
  6233. if (++i11 == ne1) {
  6234. i11 = 0;
  6235. if (++i12 == ne2) {
  6236. i12 = 0;
  6237. if (++i13 == ne3) {
  6238. i13 = 0;
  6239. }
  6240. }
  6241. }
  6242. }
  6243. }
  6244. }
  6245. i10 += ne00 * (ne01 - ir1);
  6246. while (i10 >= ne0) {
  6247. i10 -= ne0;
  6248. if (++i11 == ne1) {
  6249. i11 = 0;
  6250. if (++i12 == ne2) {
  6251. i12 = 0;
  6252. if (++i13 == ne3) {
  6253. i13 = 0;
  6254. }
  6255. }
  6256. }
  6257. }
  6258. }
  6259. }
  6260. } else {
  6261. GGML_ASSERT(false); // TODO: implement
  6262. }
  6263. }
  6264. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6265. static void ggml_compute_forward_dup_bytes(
  6266. const struct ggml_compute_params * params,
  6267. struct ggml_tensor * dst) {
  6268. const struct ggml_tensor * src0 = dst->src[0];
  6269. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6270. GGML_ASSERT(src0->type == dst->type);
  6271. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6272. return;
  6273. }
  6274. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6275. ggml_compute_forward_dup_same_cont(params, dst);
  6276. return;
  6277. }
  6278. GGML_TENSOR_UNARY_OP_LOCALS;
  6279. const size_t type_size = ggml_type_size(src0->type);
  6280. const int ith = params->ith; // thread index
  6281. const int nth = params->nth; // number of threads
  6282. // parallelize by rows
  6283. const int nr = ne01;
  6284. // number of rows per thread
  6285. const int dr = (nr + nth - 1) / nth;
  6286. // row range for this thread
  6287. const int ir0 = dr * ith;
  6288. const int ir1 = MIN(ir0 + dr, nr);
  6289. if (src0->type == dst->type &&
  6290. ne00 == ne0 &&
  6291. nb00 == type_size && nb0 == type_size) {
  6292. // copy by rows
  6293. const size_t rs = ne00 * type_size;
  6294. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6295. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6296. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6297. memcpy(
  6298. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6299. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6300. rs);
  6301. }
  6302. }
  6303. }
  6304. return;
  6305. }
  6306. if (ggml_is_contiguous(dst)) {
  6307. size_t id = 0;
  6308. char * dst_ptr = (char *) dst->data;
  6309. const size_t rs = ne00 * type_size;
  6310. if (nb00 == type_size) {
  6311. // src0 is contigous on first dimension, copy by rows
  6312. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6313. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6314. id += rs * ir0;
  6315. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6316. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6317. memcpy(dst_ptr + id, src0_ptr, rs);
  6318. id += rs;
  6319. }
  6320. id += rs * (ne01 - ir1);
  6321. }
  6322. }
  6323. } else {
  6324. //printf("%s: this is not optimal - fix me\n", __func__);
  6325. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6326. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6327. id += rs * ir0;
  6328. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6329. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6330. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6331. memcpy(dst_ptr + id, src0_ptr, type_size);
  6332. id += type_size;
  6333. }
  6334. }
  6335. id += rs * (ne01 - ir1);
  6336. }
  6337. }
  6338. }
  6339. return;
  6340. }
  6341. // dst counters
  6342. int64_t i10 = 0;
  6343. int64_t i11 = 0;
  6344. int64_t i12 = 0;
  6345. int64_t i13 = 0;
  6346. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6347. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6348. i10 += ne00 * ir0;
  6349. while (i10 >= ne0) {
  6350. i10 -= ne0;
  6351. if (++i11 == ne1) {
  6352. i11 = 0;
  6353. if (++i12 == ne2) {
  6354. i12 = 0;
  6355. if (++i13 == ne3) {
  6356. i13 = 0;
  6357. }
  6358. }
  6359. }
  6360. }
  6361. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6362. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6363. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6364. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6365. memcpy(dst_ptr, src0_ptr, type_size);
  6366. if (++i10 == ne0) {
  6367. i10 = 0;
  6368. if (++i11 == ne1) {
  6369. i11 = 0;
  6370. if (++i12 == ne2) {
  6371. i12 = 0;
  6372. if (++i13 == ne3) {
  6373. i13 = 0;
  6374. }
  6375. }
  6376. }
  6377. }
  6378. }
  6379. }
  6380. i10 += ne00 * (ne01 - ir1);
  6381. while (i10 >= ne0) {
  6382. i10 -= ne0;
  6383. if (++i11 == ne1) {
  6384. i11 = 0;
  6385. if (++i12 == ne2) {
  6386. i12 = 0;
  6387. if (++i13 == ne3) {
  6388. i13 = 0;
  6389. }
  6390. }
  6391. }
  6392. }
  6393. }
  6394. }
  6395. }
  6396. static void ggml_compute_forward_dup(
  6397. const struct ggml_compute_params * params,
  6398. struct ggml_tensor * dst) {
  6399. const struct ggml_tensor * src0 = dst->src[0];
  6400. if (src0->type == dst->type) {
  6401. ggml_compute_forward_dup_bytes(params, dst);
  6402. return;
  6403. }
  6404. switch (src0->type) {
  6405. case GGML_TYPE_F16:
  6406. {
  6407. ggml_compute_forward_dup_f16(params, dst);
  6408. } break;
  6409. case GGML_TYPE_F32:
  6410. {
  6411. ggml_compute_forward_dup_f32(params, dst);
  6412. } break;
  6413. default:
  6414. {
  6415. GGML_ASSERT(false);
  6416. } break;
  6417. }
  6418. }
  6419. // ggml_compute_forward_add
  6420. static void ggml_compute_forward_add_f32(
  6421. const struct ggml_compute_params * params,
  6422. struct ggml_tensor * dst) {
  6423. const struct ggml_tensor * src0 = dst->src[0];
  6424. const struct ggml_tensor * src1 = dst->src[1];
  6425. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6426. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6427. return;
  6428. }
  6429. const int ith = params->ith;
  6430. const int nth = params->nth;
  6431. #ifdef GGML_USE_CLBLAST
  6432. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6433. // TODO: OpenCL kernel support full broadcast
  6434. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6435. if (ith == 0) {
  6436. ggml_cl_add(src0, src1, dst);
  6437. }
  6438. return;
  6439. }
  6440. #endif
  6441. const int nr = ggml_nrows(src0);
  6442. GGML_TENSOR_BINARY_OP_LOCALS
  6443. GGML_ASSERT( nb0 == sizeof(float));
  6444. GGML_ASSERT(nb00 == sizeof(float));
  6445. // rows per thread
  6446. const int dr = (nr + nth - 1)/nth;
  6447. // row range for this thread
  6448. const int ir0 = dr*ith;
  6449. const int ir1 = MIN(ir0 + dr, nr);
  6450. if (nb10 == sizeof(float)) {
  6451. for (int ir = ir0; ir < ir1; ++ir) {
  6452. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6453. const int64_t i03 = ir/(ne02*ne01);
  6454. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6455. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6456. const int64_t i13 = i03 % ne13;
  6457. const int64_t i12 = i02 % ne12;
  6458. const int64_t i11 = i01 % ne11;
  6459. const int64_t nr0 = ne00 / ne10;
  6460. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6461. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6462. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6463. for (int64_t r = 0; r < nr0; ++r) {
  6464. #ifdef GGML_USE_ACCELERATE
  6465. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6466. #else
  6467. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6468. #endif
  6469. }
  6470. }
  6471. } else {
  6472. // src1 is not contiguous
  6473. for (int ir = ir0; ir < ir1; ++ir) {
  6474. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6475. const int64_t i03 = ir/(ne02*ne01);
  6476. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6477. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6478. const int64_t i13 = i03 % ne13;
  6479. const int64_t i12 = i02 % ne12;
  6480. const int64_t i11 = i01 % ne11;
  6481. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6482. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6483. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6484. const int64_t i10 = i0 % ne10;
  6485. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6486. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6487. }
  6488. }
  6489. }
  6490. }
  6491. static void ggml_compute_forward_add_f16_f32(
  6492. const struct ggml_compute_params * params,
  6493. struct ggml_tensor * dst) {
  6494. const struct ggml_tensor * src0 = dst->src[0];
  6495. const struct ggml_tensor * src1 = dst->src[1];
  6496. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6497. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6498. return;
  6499. }
  6500. const int ith = params->ith;
  6501. const int nth = params->nth;
  6502. const int nr = ggml_nrows(src0);
  6503. GGML_TENSOR_BINARY_OP_LOCALS
  6504. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6505. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6506. if (dst->type == GGML_TYPE_F32) {
  6507. GGML_ASSERT( nb0 == sizeof(float));
  6508. }
  6509. else {
  6510. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6511. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6512. }
  6513. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6514. // rows per thread
  6515. const int dr = (nr + nth - 1)/nth;
  6516. // row range for this thread
  6517. const int ir0 = dr*ith;
  6518. const int ir1 = MIN(ir0 + dr, nr);
  6519. if (nb10 == sizeof(float)) {
  6520. if (dst->type == GGML_TYPE_F16) {
  6521. for (int ir = ir0; ir < ir1; ++ir) {
  6522. // src0, src1 and dst are same shape => same indices
  6523. const int i3 = ir/(ne2*ne1);
  6524. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6525. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6526. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6527. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6528. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6529. for (int i = 0; i < ne0; i++) {
  6530. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6531. }
  6532. }
  6533. } else {
  6534. for (int ir = ir0; ir < ir1; ++ir) {
  6535. // src0, src1 and dst are same shape => same indices
  6536. const int i3 = ir/(ne2*ne1);
  6537. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6538. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6539. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6540. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6541. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6542. for (int i = 0; i < ne0; i++) {
  6543. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6544. }
  6545. }
  6546. }
  6547. }
  6548. else {
  6549. // src1 is not contiguous
  6550. GGML_ASSERT(false);
  6551. }
  6552. }
  6553. static void ggml_compute_forward_add_f16_f16(
  6554. const struct ggml_compute_params * params,
  6555. struct ggml_tensor * dst) {
  6556. const struct ggml_tensor * src0 = dst->src[0];
  6557. const struct ggml_tensor * src1 = dst->src[1];
  6558. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6559. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6560. return;
  6561. }
  6562. const int ith = params->ith;
  6563. const int nth = params->nth;
  6564. const int nr = ggml_nrows(src0);
  6565. GGML_TENSOR_BINARY_OP_LOCALS
  6566. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6567. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6568. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6569. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6570. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6571. // rows per thread
  6572. const int dr = (nr + nth - 1)/nth;
  6573. // row range for this thread
  6574. const int ir0 = dr*ith;
  6575. const int ir1 = MIN(ir0 + dr, nr);
  6576. if (nb10 == sizeof(ggml_fp16_t)) {
  6577. for (int ir = ir0; ir < ir1; ++ir) {
  6578. // src0, src1 and dst are same shape => same indices
  6579. const int i3 = ir/(ne2*ne1);
  6580. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6581. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6582. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6583. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6584. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6585. for (int i = 0; i < ne0; i++) {
  6586. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6587. }
  6588. }
  6589. }
  6590. else {
  6591. // src1 is not contiguous
  6592. GGML_ASSERT(false);
  6593. }
  6594. }
  6595. static void ggml_compute_forward_add_q_f32(
  6596. const struct ggml_compute_params * params,
  6597. struct ggml_tensor * dst) {
  6598. const struct ggml_tensor * src0 = dst->src[0];
  6599. const struct ggml_tensor * src1 = dst->src[1];
  6600. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6601. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6602. return;
  6603. }
  6604. const int nr = ggml_nrows(src0);
  6605. GGML_TENSOR_BINARY_OP_LOCALS
  6606. const int ith = params->ith;
  6607. const int nth = params->nth;
  6608. const enum ggml_type type = src0->type;
  6609. const enum ggml_type dtype = dst->type;
  6610. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6611. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6612. // we don't support permuted src0 or src1
  6613. GGML_ASSERT(nb00 == ggml_type_size(type));
  6614. GGML_ASSERT(nb10 == sizeof(float));
  6615. // dst cannot be transposed or permuted
  6616. GGML_ASSERT(nb0 <= nb1);
  6617. GGML_ASSERT(nb1 <= nb2);
  6618. GGML_ASSERT(nb2 <= nb3);
  6619. GGML_ASSERT(ggml_is_quantized(src0->type));
  6620. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6621. // rows per thread
  6622. const int dr = (nr + nth - 1)/nth;
  6623. // row range for this thread
  6624. const int ir0 = dr*ith;
  6625. const int ir1 = MIN(ir0 + dr, nr);
  6626. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6627. for (int ir = ir0; ir < ir1; ++ir) {
  6628. // src0 indices
  6629. const int i03 = ir/(ne02*ne01);
  6630. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6631. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6632. // src1 and dst are same shape as src0 => same indices
  6633. const int i13 = i03;
  6634. const int i12 = i02;
  6635. const int i11 = i01;
  6636. const int i3 = i03;
  6637. const int i2 = i02;
  6638. const int i1 = i01;
  6639. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6640. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6641. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6642. assert(ne00 % 32 == 0);
  6643. // unquantize row from src0 to temp buffer
  6644. dequantize_row_q(src0_row, wdata, ne00);
  6645. // add src1
  6646. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6647. // quantize row to dst
  6648. if (quantize_row_q != NULL) {
  6649. quantize_row_q(wdata, dst_row, ne00);
  6650. } else {
  6651. memcpy(dst_row, wdata, ne0*nb0);
  6652. }
  6653. }
  6654. }
  6655. static void ggml_compute_forward_add(
  6656. const struct ggml_compute_params * params,
  6657. struct ggml_tensor * dst) {
  6658. const struct ggml_tensor * src0 = dst->src[0];
  6659. const struct ggml_tensor * src1 = dst->src[1];
  6660. switch (src0->type) {
  6661. case GGML_TYPE_F32:
  6662. {
  6663. if (src1->type == GGML_TYPE_F32) {
  6664. ggml_compute_forward_add_f32(params, dst);
  6665. }
  6666. else {
  6667. GGML_ASSERT(false);
  6668. }
  6669. } break;
  6670. case GGML_TYPE_F16:
  6671. {
  6672. if (src1->type == GGML_TYPE_F16) {
  6673. ggml_compute_forward_add_f16_f16(params, dst);
  6674. }
  6675. else if (src1->type == GGML_TYPE_F32) {
  6676. ggml_compute_forward_add_f16_f32(params, dst);
  6677. }
  6678. else {
  6679. GGML_ASSERT(false);
  6680. }
  6681. } break;
  6682. case GGML_TYPE_Q4_0:
  6683. case GGML_TYPE_Q4_1:
  6684. case GGML_TYPE_Q5_0:
  6685. case GGML_TYPE_Q5_1:
  6686. case GGML_TYPE_Q8_0:
  6687. case GGML_TYPE_Q2_K:
  6688. case GGML_TYPE_Q3_K:
  6689. case GGML_TYPE_Q4_K:
  6690. case GGML_TYPE_Q5_K:
  6691. case GGML_TYPE_Q6_K:
  6692. case GGML_TYPE_IQ2_XXS:
  6693. case GGML_TYPE_IQ2_XS:
  6694. case GGML_TYPE_IQ3_XXS:
  6695. case GGML_TYPE_IQ1_S:
  6696. case GGML_TYPE_IQ1_M:
  6697. case GGML_TYPE_IQ4_NL:
  6698. case GGML_TYPE_IQ4_XS:
  6699. case GGML_TYPE_IQ3_S:
  6700. case GGML_TYPE_IQ2_S:
  6701. {
  6702. ggml_compute_forward_add_q_f32(params, dst);
  6703. } break;
  6704. default:
  6705. {
  6706. GGML_ASSERT(false);
  6707. } break;
  6708. }
  6709. }
  6710. // ggml_compute_forward_add1
  6711. static void ggml_compute_forward_add1_f32(
  6712. const struct ggml_compute_params * params,
  6713. struct ggml_tensor * dst) {
  6714. const struct ggml_tensor * src0 = dst->src[0];
  6715. const struct ggml_tensor * src1 = dst->src[1];
  6716. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6717. GGML_ASSERT(ggml_is_scalar(src1));
  6718. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6719. return;
  6720. }
  6721. const int ith = params->ith;
  6722. const int nth = params->nth;
  6723. const int nr = ggml_nrows(src0);
  6724. GGML_TENSOR_UNARY_OP_LOCALS
  6725. GGML_ASSERT( nb0 == sizeof(float));
  6726. GGML_ASSERT(nb00 == sizeof(float));
  6727. // rows per thread
  6728. const int dr = (nr + nth - 1)/nth;
  6729. // row range for this thread
  6730. const int ir0 = dr*ith;
  6731. const int ir1 = MIN(ir0 + dr, nr);
  6732. for (int ir = ir0; ir < ir1; ++ir) {
  6733. // src0 and dst are same shape => same indices
  6734. const int i3 = ir/(ne2*ne1);
  6735. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6736. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6737. #ifdef GGML_USE_ACCELERATE
  6738. UNUSED(ggml_vec_add1_f32);
  6739. vDSP_vadd(
  6740. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6741. (float *) ((char *) src1->data), 0,
  6742. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6743. ne0);
  6744. #else
  6745. ggml_vec_add1_f32(ne0,
  6746. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6747. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6748. *(float *) src1->data);
  6749. #endif
  6750. }
  6751. }
  6752. static void ggml_compute_forward_add1_f16_f32(
  6753. const struct ggml_compute_params * params,
  6754. struct ggml_tensor * dst) {
  6755. const struct ggml_tensor * src0 = dst->src[0];
  6756. const struct ggml_tensor * src1 = dst->src[1];
  6757. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6758. GGML_ASSERT(ggml_is_scalar(src1));
  6759. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6760. return;
  6761. }
  6762. // scalar to add
  6763. const float v = *(float *) src1->data;
  6764. const int ith = params->ith;
  6765. const int nth = params->nth;
  6766. const int nr = ggml_nrows(src0);
  6767. GGML_TENSOR_UNARY_OP_LOCALS
  6768. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6769. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6770. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6771. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6772. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6773. // rows per thread
  6774. const int dr = (nr + nth - 1)/nth;
  6775. // row range for this thread
  6776. const int ir0 = dr*ith;
  6777. const int ir1 = MIN(ir0 + dr, nr);
  6778. for (int ir = ir0; ir < ir1; ++ir) {
  6779. // src0 and dst are same shape => same indices
  6780. const int i3 = ir/(ne2*ne1);
  6781. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6782. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6783. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6784. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6785. for (int i = 0; i < ne0; i++) {
  6786. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6787. }
  6788. }
  6789. }
  6790. static void ggml_compute_forward_add1_f16_f16(
  6791. const struct ggml_compute_params * params,
  6792. struct ggml_tensor * dst) {
  6793. const struct ggml_tensor * src0 = dst->src[0];
  6794. const struct ggml_tensor * src1 = dst->src[1];
  6795. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6796. GGML_ASSERT(ggml_is_scalar(src1));
  6797. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6798. return;
  6799. }
  6800. // scalar to add
  6801. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6802. const int ith = params->ith;
  6803. const int nth = params->nth;
  6804. const int nr = ggml_nrows(src0);
  6805. GGML_TENSOR_UNARY_OP_LOCALS
  6806. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6807. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6808. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6809. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6810. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6811. // rows per thread
  6812. const int dr = (nr + nth - 1)/nth;
  6813. // row range for this thread
  6814. const int ir0 = dr*ith;
  6815. const int ir1 = MIN(ir0 + dr, nr);
  6816. for (int ir = ir0; ir < ir1; ++ir) {
  6817. // src0 and dst are same shape => same indices
  6818. const int i3 = ir/(ne2*ne1);
  6819. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6820. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6821. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6822. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6823. for (int i = 0; i < ne0; i++) {
  6824. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6825. }
  6826. }
  6827. }
  6828. static void ggml_compute_forward_add1_q_f32(
  6829. const struct ggml_compute_params * params,
  6830. struct ggml_tensor * dst) {
  6831. const struct ggml_tensor * src0 = dst->src[0];
  6832. const struct ggml_tensor * src1 = dst->src[1];
  6833. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6834. GGML_ASSERT(ggml_is_scalar(src1));
  6835. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6836. return;
  6837. }
  6838. // scalar to add
  6839. const float v = *(float *) src1->data;
  6840. const int ith = params->ith;
  6841. const int nth = params->nth;
  6842. const int nr = ggml_nrows(src0);
  6843. GGML_TENSOR_UNARY_OP_LOCALS
  6844. const enum ggml_type type = src0->type;
  6845. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6846. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6847. // we don't support permuted src0
  6848. GGML_ASSERT(nb00 == ggml_type_size(type));
  6849. // dst cannot be transposed or permuted
  6850. GGML_ASSERT(nb0 <= nb1);
  6851. GGML_ASSERT(nb1 <= nb2);
  6852. GGML_ASSERT(nb2 <= nb3);
  6853. GGML_ASSERT(ggml_is_quantized(src0->type));
  6854. GGML_ASSERT(dst->type == src0->type);
  6855. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6856. // rows per thread
  6857. const int dr = (nr + nth - 1)/nth;
  6858. // row range for this thread
  6859. const int ir0 = dr*ith;
  6860. const int ir1 = MIN(ir0 + dr, nr);
  6861. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6862. for (int ir = ir0; ir < ir1; ++ir) {
  6863. // src0 and dst are same shape => same indices
  6864. const int i3 = ir/(ne2*ne1);
  6865. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6866. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6867. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6868. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6869. assert(ne0 % 32 == 0);
  6870. // unquantize row from src0 to temp buffer
  6871. dequantize_row_q(src0_row, wdata, ne0);
  6872. // add src1
  6873. ggml_vec_acc1_f32(ne0, wdata, v);
  6874. // quantize row to dst
  6875. quantize_row_q(wdata, dst_row, ne0);
  6876. }
  6877. }
  6878. static void ggml_compute_forward_add1(
  6879. const struct ggml_compute_params * params,
  6880. struct ggml_tensor * dst) {
  6881. const struct ggml_tensor * src0 = dst->src[0];
  6882. const struct ggml_tensor * src1 = dst->src[1];
  6883. switch (src0->type) {
  6884. case GGML_TYPE_F32:
  6885. {
  6886. ggml_compute_forward_add1_f32(params, dst);
  6887. } break;
  6888. case GGML_TYPE_F16:
  6889. {
  6890. if (src1->type == GGML_TYPE_F16) {
  6891. ggml_compute_forward_add1_f16_f16(params, dst);
  6892. }
  6893. else if (src1->type == GGML_TYPE_F32) {
  6894. ggml_compute_forward_add1_f16_f32(params, dst);
  6895. }
  6896. else {
  6897. GGML_ASSERT(false);
  6898. }
  6899. } break;
  6900. case GGML_TYPE_Q4_0:
  6901. case GGML_TYPE_Q4_1:
  6902. case GGML_TYPE_Q5_0:
  6903. case GGML_TYPE_Q5_1:
  6904. case GGML_TYPE_Q8_0:
  6905. case GGML_TYPE_Q8_1:
  6906. case GGML_TYPE_Q2_K:
  6907. case GGML_TYPE_Q3_K:
  6908. case GGML_TYPE_Q4_K:
  6909. case GGML_TYPE_Q5_K:
  6910. case GGML_TYPE_Q6_K:
  6911. case GGML_TYPE_IQ2_XXS:
  6912. case GGML_TYPE_IQ2_XS:
  6913. case GGML_TYPE_IQ3_XXS:
  6914. case GGML_TYPE_IQ1_S:
  6915. case GGML_TYPE_IQ1_M:
  6916. case GGML_TYPE_IQ4_NL:
  6917. case GGML_TYPE_IQ4_XS:
  6918. case GGML_TYPE_IQ3_S:
  6919. case GGML_TYPE_IQ2_S:
  6920. {
  6921. ggml_compute_forward_add1_q_f32(params, dst);
  6922. } break;
  6923. default:
  6924. {
  6925. GGML_ASSERT(false);
  6926. } break;
  6927. }
  6928. }
  6929. // ggml_compute_forward_acc
  6930. static void ggml_compute_forward_acc_f32(
  6931. const struct ggml_compute_params * params,
  6932. struct ggml_tensor * dst) {
  6933. const struct ggml_tensor * src0 = dst->src[0];
  6934. const struct ggml_tensor * src1 = dst->src[1];
  6935. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6936. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6937. // view src0 and dst with these strides and data offset inbytes during acc
  6938. // nb0 is implicitly element_size because src0 and dst are contiguous
  6939. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6940. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6941. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6942. size_t offset = ((int32_t *) dst->op_params)[3];
  6943. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6944. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6945. if (params->ith != 0) {
  6946. return;
  6947. }
  6948. // memcpy needs to be synchronized across threads to avoid race conditions.
  6949. // => do it in INIT phase
  6950. memcpy(
  6951. ((char *) dst->data),
  6952. ((char *) src0->data),
  6953. ggml_nbytes(dst));
  6954. }
  6955. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6956. return;
  6957. }
  6958. const int ith = params->ith;
  6959. const int nth = params->nth;
  6960. const int nr = ggml_nrows(src1);
  6961. const int nc = src1->ne[0];
  6962. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6963. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6964. // src0 and dst as viewed during acc
  6965. const size_t nb0 = ggml_element_size(src0);
  6966. const size_t nb00 = nb0;
  6967. const size_t nb01 = nb1;
  6968. const size_t nb02 = nb2;
  6969. const size_t nb03 = nb3;
  6970. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6971. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6972. GGML_ASSERT(nb10 == sizeof(float));
  6973. // rows per thread
  6974. const int dr = (nr + nth - 1)/nth;
  6975. // row range for this thread
  6976. const int ir0 = dr*ith;
  6977. const int ir1 = MIN(ir0 + dr, nr);
  6978. for (int ir = ir0; ir < ir1; ++ir) {
  6979. // src0 and dst are viewed with shape of src1 and offset
  6980. // => same indices
  6981. const int i3 = ir/(ne12*ne11);
  6982. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6983. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6984. #ifdef GGML_USE_ACCELERATE
  6985. vDSP_vadd(
  6986. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6987. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6988. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6989. #else
  6990. ggml_vec_add_f32(nc,
  6991. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6992. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6993. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6994. #endif
  6995. }
  6996. }
  6997. static void ggml_compute_forward_acc(
  6998. const struct ggml_compute_params * params,
  6999. struct ggml_tensor * dst) {
  7000. const struct ggml_tensor * src0 = dst->src[0];
  7001. switch (src0->type) {
  7002. case GGML_TYPE_F32:
  7003. {
  7004. ggml_compute_forward_acc_f32(params, dst);
  7005. } break;
  7006. case GGML_TYPE_F16:
  7007. case GGML_TYPE_Q4_0:
  7008. case GGML_TYPE_Q4_1:
  7009. case GGML_TYPE_Q5_0:
  7010. case GGML_TYPE_Q5_1:
  7011. case GGML_TYPE_Q8_0:
  7012. case GGML_TYPE_Q8_1:
  7013. case GGML_TYPE_Q2_K:
  7014. case GGML_TYPE_Q3_K:
  7015. case GGML_TYPE_Q4_K:
  7016. case GGML_TYPE_Q5_K:
  7017. case GGML_TYPE_Q6_K:
  7018. case GGML_TYPE_IQ2_XXS:
  7019. case GGML_TYPE_IQ2_XS:
  7020. case GGML_TYPE_IQ3_XXS:
  7021. case GGML_TYPE_IQ1_S:
  7022. case GGML_TYPE_IQ1_M:
  7023. case GGML_TYPE_IQ4_NL:
  7024. case GGML_TYPE_IQ4_XS:
  7025. case GGML_TYPE_IQ3_S:
  7026. case GGML_TYPE_IQ2_S:
  7027. default:
  7028. {
  7029. GGML_ASSERT(false);
  7030. } break;
  7031. }
  7032. }
  7033. // ggml_compute_forward_sub
  7034. static void ggml_compute_forward_sub_f32(
  7035. const struct ggml_compute_params * params,
  7036. struct ggml_tensor * dst) {
  7037. const struct ggml_tensor * src0 = dst->src[0];
  7038. const struct ggml_tensor * src1 = dst->src[1];
  7039. assert(params->ith == 0);
  7040. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7041. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7042. return;
  7043. }
  7044. const int nr = ggml_nrows(src0);
  7045. GGML_TENSOR_BINARY_OP_LOCALS
  7046. GGML_ASSERT( nb0 == sizeof(float));
  7047. GGML_ASSERT(nb00 == sizeof(float));
  7048. if (nb10 == sizeof(float)) {
  7049. for (int ir = 0; ir < nr; ++ir) {
  7050. // src0, src1 and dst are same shape => same indices
  7051. const int i3 = ir/(ne2*ne1);
  7052. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7053. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7054. #ifdef GGML_USE_ACCELERATE
  7055. vDSP_vsub(
  7056. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7057. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7058. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7059. ne0);
  7060. #else
  7061. ggml_vec_sub_f32(ne0,
  7062. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7063. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7064. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7065. #endif
  7066. // }
  7067. // }
  7068. }
  7069. } else {
  7070. // src1 is not contiguous
  7071. for (int ir = 0; ir < nr; ++ir) {
  7072. // src0, src1 and dst are same shape => same indices
  7073. const int i3 = ir/(ne2*ne1);
  7074. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7075. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7076. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7077. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7078. for (int i0 = 0; i0 < ne0; i0++) {
  7079. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7080. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7081. }
  7082. }
  7083. }
  7084. }
  7085. static void ggml_compute_forward_sub(
  7086. const struct ggml_compute_params * params,
  7087. struct ggml_tensor * dst) {
  7088. const struct ggml_tensor * src0 = dst->src[0];
  7089. switch (src0->type) {
  7090. case GGML_TYPE_F32:
  7091. {
  7092. ggml_compute_forward_sub_f32(params, dst);
  7093. } break;
  7094. default:
  7095. {
  7096. GGML_ASSERT(false);
  7097. } break;
  7098. }
  7099. }
  7100. // ggml_compute_forward_mul
  7101. static void ggml_compute_forward_mul_f32(
  7102. const struct ggml_compute_params * params,
  7103. struct ggml_tensor * dst) {
  7104. const struct ggml_tensor * src0 = dst->src[0];
  7105. const struct ggml_tensor * src1 = dst->src[1];
  7106. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7107. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7108. return;
  7109. }
  7110. const int ith = params->ith;
  7111. const int nth = params->nth;
  7112. #if defined(GGML_USE_CLBLAST)
  7113. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7114. // TODO: OpenCL kernel support full broadcast
  7115. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7116. if (ith == 0) {
  7117. ggml_cl_mul(src0, src1, dst);
  7118. }
  7119. return;
  7120. }
  7121. #endif
  7122. const int64_t nr = ggml_nrows(src0);
  7123. GGML_TENSOR_BINARY_OP_LOCALS
  7124. GGML_ASSERT( nb0 == sizeof(float));
  7125. GGML_ASSERT(nb00 == sizeof(float));
  7126. if (nb10 == sizeof(float)) {
  7127. for (int64_t ir = ith; ir < nr; ir += nth) {
  7128. // src0 and dst are same shape => same indices
  7129. const int64_t i03 = ir/(ne02*ne01);
  7130. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7131. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7132. const int64_t i13 = i03 % ne13;
  7133. const int64_t i12 = i02 % ne12;
  7134. const int64_t i11 = i01 % ne11;
  7135. const int64_t nr0 = ne00 / ne10;
  7136. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7137. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7138. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7139. for (int64_t r = 0 ; r < nr0; ++r) {
  7140. #ifdef GGML_USE_ACCELERATE
  7141. UNUSED(ggml_vec_mul_f32);
  7142. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7143. #else
  7144. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7145. #endif
  7146. }
  7147. }
  7148. } else {
  7149. // src1 is not contiguous
  7150. for (int64_t ir = ith; ir < nr; ir += nth) {
  7151. // src0 and dst are same shape => same indices
  7152. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7153. const int64_t i03 = ir/(ne02*ne01);
  7154. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7155. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7156. const int64_t i13 = i03 % ne13;
  7157. const int64_t i12 = i02 % ne12;
  7158. const int64_t i11 = i01 % ne11;
  7159. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7160. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7161. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7162. const int64_t i10 = i0 % ne10;
  7163. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7164. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7165. }
  7166. }
  7167. }
  7168. }
  7169. static void ggml_compute_forward_mul(
  7170. const struct ggml_compute_params * params,
  7171. struct ggml_tensor * dst) {
  7172. const struct ggml_tensor * src0 = dst->src[0];
  7173. const struct ggml_tensor * src1 = dst->src[1];
  7174. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7175. switch (src0->type) {
  7176. case GGML_TYPE_F32:
  7177. {
  7178. ggml_compute_forward_mul_f32(params, dst);
  7179. } break;
  7180. default:
  7181. {
  7182. GGML_ASSERT(false);
  7183. } break;
  7184. }
  7185. }
  7186. // ggml_compute_forward_div
  7187. static void ggml_compute_forward_div_f32(
  7188. const struct ggml_compute_params * params,
  7189. struct ggml_tensor * dst) {
  7190. const struct ggml_tensor * src0 = dst->src[0];
  7191. const struct ggml_tensor * src1 = dst->src[1];
  7192. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7193. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7194. return;
  7195. }
  7196. const int ith = params->ith;
  7197. const int nth = params->nth;
  7198. const int64_t nr = ggml_nrows(src0);
  7199. GGML_TENSOR_BINARY_OP_LOCALS
  7200. GGML_ASSERT( nb0 == sizeof(float));
  7201. GGML_ASSERT(nb00 == sizeof(float));
  7202. if (nb10 == sizeof(float)) {
  7203. for (int64_t ir = ith; ir < nr; ir += nth) {
  7204. // src0 and dst are same shape => same indices
  7205. const int64_t i03 = ir/(ne02*ne01);
  7206. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7207. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7208. const int64_t i13 = i03 % ne13;
  7209. const int64_t i12 = i02 % ne12;
  7210. const int64_t i11 = i01 % ne11;
  7211. const int64_t nr0 = ne00 / ne10;
  7212. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7213. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7214. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7215. for (int64_t r = 0; r < nr0; ++r) {
  7216. #ifdef GGML_USE_ACCELERATE
  7217. UNUSED(ggml_vec_div_f32);
  7218. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7219. #else
  7220. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7221. #endif
  7222. }
  7223. }
  7224. } else {
  7225. // src1 is not contiguous
  7226. for (int64_t ir = ith; ir < nr; ir += nth) {
  7227. // src0 and dst are same shape => same indices
  7228. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7229. const int64_t i03 = ir/(ne02*ne01);
  7230. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7231. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7232. const int64_t i13 = i03 % ne13;
  7233. const int64_t i12 = i02 % ne12;
  7234. const int64_t i11 = i01 % ne11;
  7235. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7236. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7237. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7238. const int64_t i10 = i0 % ne10;
  7239. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7240. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7241. }
  7242. }
  7243. }
  7244. }
  7245. static void ggml_compute_forward_div(
  7246. const struct ggml_compute_params * params,
  7247. struct ggml_tensor * dst) {
  7248. const struct ggml_tensor * src0 = dst->src[0];
  7249. switch (src0->type) {
  7250. case GGML_TYPE_F32:
  7251. {
  7252. ggml_compute_forward_div_f32(params, dst);
  7253. } break;
  7254. default:
  7255. {
  7256. GGML_ASSERT(false);
  7257. } break;
  7258. }
  7259. }
  7260. // ggml_compute_forward_sqr
  7261. static void ggml_compute_forward_sqr_f32(
  7262. const struct ggml_compute_params * params,
  7263. struct ggml_tensor * dst) {
  7264. const struct ggml_tensor * src0 = dst->src[0];
  7265. assert(params->ith == 0);
  7266. assert(ggml_are_same_shape(src0, dst));
  7267. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7268. return;
  7269. }
  7270. const int n = ggml_nrows(src0);
  7271. const int nc = src0->ne[0];
  7272. assert( dst->nb[0] == sizeof(float));
  7273. assert(src0->nb[0] == sizeof(float));
  7274. for (int i = 0; i < n; i++) {
  7275. ggml_vec_sqr_f32(nc,
  7276. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7277. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7278. }
  7279. }
  7280. static void ggml_compute_forward_sqr(
  7281. const struct ggml_compute_params * params,
  7282. struct ggml_tensor * dst) {
  7283. const struct ggml_tensor * src0 = dst->src[0];
  7284. switch (src0->type) {
  7285. case GGML_TYPE_F32:
  7286. {
  7287. ggml_compute_forward_sqr_f32(params, dst);
  7288. } break;
  7289. default:
  7290. {
  7291. GGML_ASSERT(false);
  7292. } break;
  7293. }
  7294. }
  7295. // ggml_compute_forward_sqrt
  7296. static void ggml_compute_forward_sqrt_f32(
  7297. const struct ggml_compute_params * params,
  7298. struct ggml_tensor * dst) {
  7299. const struct ggml_tensor * src0 = dst->src[0];
  7300. assert(params->ith == 0);
  7301. assert(ggml_are_same_shape(src0, dst));
  7302. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7303. return;
  7304. }
  7305. const int n = ggml_nrows(src0);
  7306. const int nc = src0->ne[0];
  7307. assert( dst->nb[0] == sizeof(float));
  7308. assert(src0->nb[0] == sizeof(float));
  7309. for (int i = 0; i < n; i++) {
  7310. ggml_vec_sqrt_f32(nc,
  7311. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7312. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7313. }
  7314. }
  7315. static void ggml_compute_forward_sqrt(
  7316. const struct ggml_compute_params * params,
  7317. struct ggml_tensor * dst) {
  7318. const struct ggml_tensor * src0 = dst->src[0];
  7319. switch (src0->type) {
  7320. case GGML_TYPE_F32:
  7321. {
  7322. ggml_compute_forward_sqrt_f32(params, dst);
  7323. } break;
  7324. default:
  7325. {
  7326. GGML_ASSERT(false);
  7327. } break;
  7328. }
  7329. }
  7330. // ggml_compute_forward_log
  7331. static void ggml_compute_forward_log_f32(
  7332. const struct ggml_compute_params * params,
  7333. struct ggml_tensor * dst) {
  7334. const struct ggml_tensor * src0 = dst->src[0];
  7335. GGML_ASSERT(params->ith == 0);
  7336. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7337. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7338. return;
  7339. }
  7340. const int n = ggml_nrows(src0);
  7341. const int nc = src0->ne[0];
  7342. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7343. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7344. for (int i = 0; i < n; i++) {
  7345. ggml_vec_log_f32(nc,
  7346. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7347. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7348. }
  7349. }
  7350. static void ggml_compute_forward_log(
  7351. const struct ggml_compute_params * params,
  7352. struct ggml_tensor * dst) {
  7353. const struct ggml_tensor * src0 = dst->src[0];
  7354. switch (src0->type) {
  7355. case GGML_TYPE_F32:
  7356. {
  7357. ggml_compute_forward_log_f32(params, dst);
  7358. } break;
  7359. default:
  7360. {
  7361. GGML_ASSERT(false);
  7362. } break;
  7363. }
  7364. }
  7365. // ggml_compute_forward_sum
  7366. static void ggml_compute_forward_sum_f32(
  7367. const struct ggml_compute_params * params,
  7368. struct ggml_tensor * dst) {
  7369. const struct ggml_tensor * src0 = dst->src[0];
  7370. assert(params->ith == 0);
  7371. assert(ggml_is_scalar(dst));
  7372. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7373. return;
  7374. }
  7375. assert(ggml_is_scalar(dst));
  7376. assert(src0->nb[0] == sizeof(float));
  7377. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7378. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7379. ggml_float sum = 0;
  7380. ggml_float row_sum = 0;
  7381. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7382. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7383. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7384. ggml_vec_sum_f32_ggf(ne00,
  7385. &row_sum,
  7386. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7387. sum += row_sum;
  7388. }
  7389. }
  7390. }
  7391. ((float *) dst->data)[0] = sum;
  7392. }
  7393. static void ggml_compute_forward_sum_f16(
  7394. const struct ggml_compute_params * params,
  7395. struct ggml_tensor * dst) {
  7396. const struct ggml_tensor * src0 = dst->src[0];
  7397. assert(params->ith == 0);
  7398. assert(ggml_is_scalar(dst));
  7399. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7400. return;
  7401. }
  7402. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7403. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7404. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7405. float sum = 0;
  7406. float row_sum = 0;
  7407. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7408. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7409. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7410. ggml_vec_sum_f16_ggf(ne00,
  7411. &row_sum,
  7412. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7413. sum += row_sum;
  7414. }
  7415. }
  7416. }
  7417. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7418. }
  7419. static void ggml_compute_forward_sum(
  7420. const struct ggml_compute_params * params,
  7421. struct ggml_tensor * dst) {
  7422. const struct ggml_tensor * src0 = dst->src[0];
  7423. switch (src0->type) {
  7424. case GGML_TYPE_F32:
  7425. {
  7426. ggml_compute_forward_sum_f32(params, dst);
  7427. } break;
  7428. case GGML_TYPE_F16:
  7429. {
  7430. ggml_compute_forward_sum_f16(params, dst);
  7431. } break;
  7432. default:
  7433. {
  7434. GGML_ASSERT(false);
  7435. } break;
  7436. }
  7437. }
  7438. // ggml_compute_forward_sum_rows
  7439. static void ggml_compute_forward_sum_rows_f32(
  7440. const struct ggml_compute_params * params,
  7441. struct ggml_tensor * dst) {
  7442. const struct ggml_tensor * src0 = dst->src[0];
  7443. GGML_ASSERT(params->ith == 0);
  7444. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7445. return;
  7446. }
  7447. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7448. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7449. GGML_TENSOR_UNARY_OP_LOCALS
  7450. GGML_ASSERT(ne0 == 1);
  7451. GGML_ASSERT(ne1 == ne01);
  7452. GGML_ASSERT(ne2 == ne02);
  7453. GGML_ASSERT(ne3 == ne03);
  7454. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7455. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7456. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7457. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7458. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7459. float row_sum = 0;
  7460. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7461. dst_row[0] = row_sum;
  7462. }
  7463. }
  7464. }
  7465. }
  7466. static void ggml_compute_forward_sum_rows(
  7467. const struct ggml_compute_params * params,
  7468. struct ggml_tensor * dst) {
  7469. const struct ggml_tensor * src0 = dst->src[0];
  7470. switch (src0->type) {
  7471. case GGML_TYPE_F32:
  7472. {
  7473. ggml_compute_forward_sum_rows_f32(params, dst);
  7474. } break;
  7475. default:
  7476. {
  7477. GGML_ASSERT(false);
  7478. } break;
  7479. }
  7480. }
  7481. // ggml_compute_forward_mean
  7482. static void ggml_compute_forward_mean_f32(
  7483. const struct ggml_compute_params * params,
  7484. struct ggml_tensor * dst) {
  7485. const struct ggml_tensor * src0 = dst->src[0];
  7486. assert(params->ith == 0);
  7487. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7488. return;
  7489. }
  7490. assert(src0->nb[0] == sizeof(float));
  7491. GGML_TENSOR_UNARY_OP_LOCALS
  7492. assert(ne0 == 1);
  7493. assert(ne1 == ne01);
  7494. assert(ne2 == ne02);
  7495. assert(ne3 == ne03);
  7496. UNUSED(ne0);
  7497. UNUSED(ne1);
  7498. UNUSED(ne2);
  7499. UNUSED(ne3);
  7500. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7501. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7502. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7503. ggml_vec_sum_f32(ne00,
  7504. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7505. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7506. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7507. }
  7508. }
  7509. }
  7510. }
  7511. static void ggml_compute_forward_mean(
  7512. const struct ggml_compute_params * params,
  7513. struct ggml_tensor * dst) {
  7514. const struct ggml_tensor * src0 = dst->src[0];
  7515. switch (src0->type) {
  7516. case GGML_TYPE_F32:
  7517. {
  7518. ggml_compute_forward_mean_f32(params, dst);
  7519. } break;
  7520. default:
  7521. {
  7522. GGML_ASSERT(false);
  7523. } break;
  7524. }
  7525. }
  7526. // ggml_compute_forward_argmax
  7527. static void ggml_compute_forward_argmax_f32(
  7528. const struct ggml_compute_params * params,
  7529. struct ggml_tensor * dst) {
  7530. const struct ggml_tensor * src0 = dst->src[0];
  7531. assert(params->ith == 0);
  7532. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7533. return;
  7534. }
  7535. assert(src0->nb[0] == sizeof(float));
  7536. assert(dst->nb[0] == sizeof(float));
  7537. const int64_t ne00 = src0->ne[0];
  7538. const int64_t ne01 = src0->ne[1];
  7539. const size_t nb01 = src0->nb[1];
  7540. const size_t nb0 = dst->nb[0];
  7541. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7542. float * src = (float *) ((char *) src0->data + i1*nb01);
  7543. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7544. int v = 0;
  7545. ggml_vec_argmax_f32(ne00, &v, src);
  7546. dst_[0] = v;
  7547. }
  7548. }
  7549. static void ggml_compute_forward_argmax(
  7550. const struct ggml_compute_params * params,
  7551. struct ggml_tensor * dst) {
  7552. const struct ggml_tensor * src0 = dst->src[0];
  7553. switch (src0->type) {
  7554. case GGML_TYPE_F32:
  7555. {
  7556. ggml_compute_forward_argmax_f32(params, dst);
  7557. } break;
  7558. default:
  7559. {
  7560. GGML_ASSERT(false);
  7561. } break;
  7562. }
  7563. }
  7564. // ggml_compute_forward_repeat
  7565. static void ggml_compute_forward_repeat_f32(
  7566. const struct ggml_compute_params * params,
  7567. struct ggml_tensor * dst) {
  7568. const struct ggml_tensor * src0 = dst->src[0];
  7569. GGML_ASSERT(params->ith == 0);
  7570. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7571. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7572. return;
  7573. }
  7574. GGML_TENSOR_UNARY_OP_LOCALS
  7575. // guaranteed to be an integer due to the check in ggml_can_repeat
  7576. const int nr0 = (int)(ne0/ne00);
  7577. const int nr1 = (int)(ne1/ne01);
  7578. const int nr2 = (int)(ne2/ne02);
  7579. const int nr3 = (int)(ne3/ne03);
  7580. // TODO: support for transposed / permuted tensors
  7581. GGML_ASSERT(nb0 == sizeof(float));
  7582. GGML_ASSERT(nb00 == sizeof(float));
  7583. // TODO: maybe this is not optimal?
  7584. for (int i3 = 0; i3 < nr3; i3++) {
  7585. for (int k3 = 0; k3 < ne03; k3++) {
  7586. for (int i2 = 0; i2 < nr2; i2++) {
  7587. for (int k2 = 0; k2 < ne02; k2++) {
  7588. for (int i1 = 0; i1 < nr1; i1++) {
  7589. for (int k1 = 0; k1 < ne01; k1++) {
  7590. for (int i0 = 0; i0 < nr0; i0++) {
  7591. ggml_vec_cpy_f32(ne00,
  7592. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7593. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7594. }
  7595. }
  7596. }
  7597. }
  7598. }
  7599. }
  7600. }
  7601. }
  7602. static void ggml_compute_forward_repeat_f16(
  7603. const struct ggml_compute_params * params,
  7604. struct ggml_tensor * dst) {
  7605. const struct ggml_tensor * src0 = dst->src[0];
  7606. GGML_ASSERT(params->ith == 0);
  7607. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7608. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7609. return;
  7610. }
  7611. GGML_TENSOR_UNARY_OP_LOCALS
  7612. // guaranteed to be an integer due to the check in ggml_can_repeat
  7613. const int nr0 = (int)(ne0/ne00);
  7614. const int nr1 = (int)(ne1/ne01);
  7615. const int nr2 = (int)(ne2/ne02);
  7616. const int nr3 = (int)(ne3/ne03);
  7617. // TODO: support for transposed / permuted tensors
  7618. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7619. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7620. // TODO: maybe this is not optimal?
  7621. for (int i3 = 0; i3 < nr3; i3++) {
  7622. for (int k3 = 0; k3 < ne03; k3++) {
  7623. for (int i2 = 0; i2 < nr2; i2++) {
  7624. for (int k2 = 0; k2 < ne02; k2++) {
  7625. for (int i1 = 0; i1 < nr1; i1++) {
  7626. for (int k1 = 0; k1 < ne01; k1++) {
  7627. for (int i0 = 0; i0 < nr0; i0++) {
  7628. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7629. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7630. // ggml_vec_cpy_f16(ne00, y, x)
  7631. for (int i = 0; i < ne00; ++i) {
  7632. y[i] = x[i];
  7633. }
  7634. }
  7635. }
  7636. }
  7637. }
  7638. }
  7639. }
  7640. }
  7641. }
  7642. static void ggml_compute_forward_repeat(
  7643. const struct ggml_compute_params * params,
  7644. struct ggml_tensor * dst) {
  7645. const struct ggml_tensor * src0 = dst->src[0];
  7646. switch (src0->type) {
  7647. case GGML_TYPE_F16:
  7648. case GGML_TYPE_I16:
  7649. {
  7650. ggml_compute_forward_repeat_f16(params, dst);
  7651. } break;
  7652. case GGML_TYPE_F32:
  7653. case GGML_TYPE_I32:
  7654. {
  7655. ggml_compute_forward_repeat_f32(params, dst);
  7656. } break;
  7657. default:
  7658. {
  7659. GGML_ASSERT(false);
  7660. } break;
  7661. }
  7662. }
  7663. // ggml_compute_forward_repeat_back
  7664. static void ggml_compute_forward_repeat_back_f32(
  7665. const struct ggml_compute_params * params,
  7666. struct ggml_tensor * dst) {
  7667. const struct ggml_tensor * src0 = dst->src[0];
  7668. GGML_ASSERT(params->ith == 0);
  7669. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7670. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7671. return;
  7672. }
  7673. GGML_TENSOR_UNARY_OP_LOCALS
  7674. // guaranteed to be an integer due to the check in ggml_can_repeat
  7675. const int nr0 = (int)(ne00/ne0);
  7676. const int nr1 = (int)(ne01/ne1);
  7677. const int nr2 = (int)(ne02/ne2);
  7678. const int nr3 = (int)(ne03/ne3);
  7679. // TODO: support for transposed / permuted tensors
  7680. GGML_ASSERT(nb0 == sizeof(float));
  7681. GGML_ASSERT(nb00 == sizeof(float));
  7682. if (ggml_is_contiguous(dst)) {
  7683. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7684. } else {
  7685. for (int k3 = 0; k3 < ne3; k3++) {
  7686. for (int k2 = 0; k2 < ne2; k2++) {
  7687. for (int k1 = 0; k1 < ne1; k1++) {
  7688. ggml_vec_set_f32(ne0,
  7689. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7690. 0);
  7691. }
  7692. }
  7693. }
  7694. }
  7695. // TODO: maybe this is not optimal?
  7696. for (int i3 = 0; i3 < nr3; i3++) {
  7697. for (int k3 = 0; k3 < ne3; k3++) {
  7698. for (int i2 = 0; i2 < nr2; i2++) {
  7699. for (int k2 = 0; k2 < ne2; k2++) {
  7700. for (int i1 = 0; i1 < nr1; i1++) {
  7701. for (int k1 = 0; k1 < ne1; k1++) {
  7702. for (int i0 = 0; i0 < nr0; i0++) {
  7703. ggml_vec_acc_f32(ne0,
  7704. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7705. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7706. }
  7707. }
  7708. }
  7709. }
  7710. }
  7711. }
  7712. }
  7713. }
  7714. static void ggml_compute_forward_repeat_back(
  7715. const struct ggml_compute_params * params,
  7716. struct ggml_tensor * dst) {
  7717. const struct ggml_tensor * src0 = dst->src[0];
  7718. switch (src0->type) {
  7719. case GGML_TYPE_F32:
  7720. {
  7721. ggml_compute_forward_repeat_back_f32(params, dst);
  7722. } break;
  7723. default:
  7724. {
  7725. GGML_ASSERT(false);
  7726. } break;
  7727. }
  7728. }
  7729. // ggml_compute_forward_concat
  7730. static void ggml_compute_forward_concat_f32(
  7731. const struct ggml_compute_params * params,
  7732. struct ggml_tensor * dst) {
  7733. const struct ggml_tensor * src0 = dst->src[0];
  7734. const struct ggml_tensor * src1 = dst->src[1];
  7735. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7736. return;
  7737. }
  7738. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7739. const int ith = params->ith;
  7740. const int nth = params->nth;
  7741. GGML_TENSOR_BINARY_OP_LOCALS
  7742. // TODO: support for transposed / permuted tensors
  7743. GGML_ASSERT(nb0 == sizeof(float));
  7744. GGML_ASSERT(nb00 == sizeof(float));
  7745. GGML_ASSERT(nb10 == sizeof(float));
  7746. for (int i3 = 0; i3 < ne3; i3++) {
  7747. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7748. if (i2 < ne02) { // src0
  7749. for (int i1 = 0; i1 < ne1; i1++) {
  7750. for (int i0 = 0; i0 < ne0; i0++) {
  7751. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7752. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7753. *y = *x;
  7754. }
  7755. }
  7756. } // src1
  7757. else {
  7758. for (int i1 = 0; i1 < ne1; i1++) {
  7759. for (int i0 = 0; i0 < ne0; i0++) {
  7760. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7761. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7762. *y = *x;
  7763. }
  7764. }
  7765. }
  7766. }
  7767. }
  7768. }
  7769. static void ggml_compute_forward_concat(
  7770. const struct ggml_compute_params* params,
  7771. struct ggml_tensor* dst) {
  7772. const struct ggml_tensor * src0 = dst->src[0];
  7773. switch (src0->type) {
  7774. case GGML_TYPE_F32:
  7775. case GGML_TYPE_I32:
  7776. {
  7777. ggml_compute_forward_concat_f32(params, dst);
  7778. } break;
  7779. default:
  7780. {
  7781. GGML_ASSERT(false);
  7782. } break;
  7783. }
  7784. }
  7785. // ggml_compute_forward_abs
  7786. static void ggml_compute_forward_abs_f32(
  7787. const struct ggml_compute_params * params,
  7788. struct ggml_tensor * dst) {
  7789. const struct ggml_tensor * src0 = dst->src[0];
  7790. assert(params->ith == 0);
  7791. assert(ggml_are_same_shape(src0, dst));
  7792. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7793. return;
  7794. }
  7795. const int n = ggml_nrows(src0);
  7796. const int nc = src0->ne[0];
  7797. assert(dst->nb[0] == sizeof(float));
  7798. assert(src0->nb[0] == sizeof(float));
  7799. for (int i = 0; i < n; i++) {
  7800. ggml_vec_abs_f32(nc,
  7801. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7802. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7803. }
  7804. }
  7805. static void ggml_compute_forward_abs(
  7806. const struct ggml_compute_params * params,
  7807. struct ggml_tensor * dst) {
  7808. const struct ggml_tensor * src0 = dst->src[0];
  7809. switch (src0->type) {
  7810. case GGML_TYPE_F32:
  7811. {
  7812. ggml_compute_forward_abs_f32(params, dst);
  7813. } break;
  7814. default:
  7815. {
  7816. GGML_ASSERT(false);
  7817. } break;
  7818. }
  7819. }
  7820. // ggml_compute_forward_sgn
  7821. static void ggml_compute_forward_sgn_f32(
  7822. const struct ggml_compute_params * params,
  7823. struct ggml_tensor * dst) {
  7824. const struct ggml_tensor * src0 = dst->src[0];
  7825. assert(params->ith == 0);
  7826. assert(ggml_are_same_shape(src0, dst));
  7827. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7828. return;
  7829. }
  7830. const int n = ggml_nrows(src0);
  7831. const int nc = src0->ne[0];
  7832. assert(dst->nb[0] == sizeof(float));
  7833. assert(src0->nb[0] == sizeof(float));
  7834. for (int i = 0; i < n; i++) {
  7835. ggml_vec_sgn_f32(nc,
  7836. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7837. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7838. }
  7839. }
  7840. static void ggml_compute_forward_sgn(
  7841. const struct ggml_compute_params * params,
  7842. struct ggml_tensor * dst) {
  7843. const struct ggml_tensor * src0 = dst->src[0];
  7844. switch (src0->type) {
  7845. case GGML_TYPE_F32:
  7846. {
  7847. ggml_compute_forward_sgn_f32(params, dst);
  7848. } break;
  7849. default:
  7850. {
  7851. GGML_ASSERT(false);
  7852. } break;
  7853. }
  7854. }
  7855. // ggml_compute_forward_neg
  7856. static void ggml_compute_forward_neg_f32(
  7857. const struct ggml_compute_params * params,
  7858. struct ggml_tensor * dst) {
  7859. const struct ggml_tensor * src0 = dst->src[0];
  7860. assert(params->ith == 0);
  7861. assert(ggml_are_same_shape(src0, dst));
  7862. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7863. return;
  7864. }
  7865. const int n = ggml_nrows(src0);
  7866. const int nc = src0->ne[0];
  7867. assert(dst->nb[0] == sizeof(float));
  7868. assert(src0->nb[0] == sizeof(float));
  7869. for (int i = 0; i < n; i++) {
  7870. ggml_vec_neg_f32(nc,
  7871. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7872. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7873. }
  7874. }
  7875. static void ggml_compute_forward_neg(
  7876. const struct ggml_compute_params * params,
  7877. struct ggml_tensor * dst) {
  7878. const struct ggml_tensor * src0 = dst->src[0];
  7879. switch (src0->type) {
  7880. case GGML_TYPE_F32:
  7881. {
  7882. ggml_compute_forward_neg_f32(params, dst);
  7883. } break;
  7884. default:
  7885. {
  7886. GGML_ASSERT(false);
  7887. } break;
  7888. }
  7889. }
  7890. // ggml_compute_forward_step
  7891. static void ggml_compute_forward_step_f32(
  7892. const struct ggml_compute_params * params,
  7893. struct ggml_tensor * dst) {
  7894. const struct ggml_tensor * src0 = dst->src[0];
  7895. assert(params->ith == 0);
  7896. assert(ggml_are_same_shape(src0, dst));
  7897. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7898. return;
  7899. }
  7900. const int n = ggml_nrows(src0);
  7901. const int nc = src0->ne[0];
  7902. assert(dst->nb[0] == sizeof(float));
  7903. assert(src0->nb[0] == sizeof(float));
  7904. for (int i = 0; i < n; i++) {
  7905. ggml_vec_step_f32(nc,
  7906. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7907. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7908. }
  7909. }
  7910. static void ggml_compute_forward_step(
  7911. const struct ggml_compute_params * params,
  7912. struct ggml_tensor * dst) {
  7913. const struct ggml_tensor * src0 = dst->src[0];
  7914. switch (src0->type) {
  7915. case GGML_TYPE_F32:
  7916. {
  7917. ggml_compute_forward_step_f32(params, dst);
  7918. } break;
  7919. default:
  7920. {
  7921. GGML_ASSERT(false);
  7922. } break;
  7923. }
  7924. }
  7925. // ggml_compute_forward_tanh
  7926. static void ggml_compute_forward_tanh_f32(
  7927. const struct ggml_compute_params * params,
  7928. struct ggml_tensor * dst) {
  7929. const struct ggml_tensor * src0 = dst->src[0];
  7930. assert(params->ith == 0);
  7931. assert(ggml_are_same_shape(src0, dst));
  7932. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7933. return;
  7934. }
  7935. const int n = ggml_nrows(src0);
  7936. const int nc = src0->ne[0];
  7937. assert(dst->nb[0] == sizeof(float));
  7938. assert(src0->nb[0] == sizeof(float));
  7939. for (int i = 0; i < n; i++) {
  7940. ggml_vec_tanh_f32(nc,
  7941. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7942. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7943. }
  7944. }
  7945. static void ggml_compute_forward_tanh(
  7946. const struct ggml_compute_params * params,
  7947. struct ggml_tensor * dst) {
  7948. const struct ggml_tensor * src0 = dst->src[0];
  7949. switch (src0->type) {
  7950. case GGML_TYPE_F32:
  7951. {
  7952. ggml_compute_forward_tanh_f32(params, dst);
  7953. } break;
  7954. default:
  7955. {
  7956. GGML_ASSERT(false);
  7957. } break;
  7958. }
  7959. }
  7960. // ggml_compute_forward_elu
  7961. static void ggml_compute_forward_elu_f32(
  7962. const struct ggml_compute_params * params,
  7963. struct ggml_tensor * dst) {
  7964. const struct ggml_tensor * src0 = dst->src[0];
  7965. assert(params->ith == 0);
  7966. assert(ggml_are_same_shape(src0, dst));
  7967. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7968. return;
  7969. }
  7970. const int n = ggml_nrows(src0);
  7971. const int nc = src0->ne[0];
  7972. assert(dst->nb[0] == sizeof(float));
  7973. assert(src0->nb[0] == sizeof(float));
  7974. for (int i = 0; i < n; i++) {
  7975. ggml_vec_elu_f32(nc,
  7976. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7977. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7978. }
  7979. }
  7980. static void ggml_compute_forward_elu(
  7981. const struct ggml_compute_params * params,
  7982. struct ggml_tensor * dst) {
  7983. const struct ggml_tensor * src0 = dst->src[0];
  7984. switch (src0->type) {
  7985. case GGML_TYPE_F32:
  7986. {
  7987. ggml_compute_forward_elu_f32(params, dst);
  7988. } break;
  7989. default:
  7990. {
  7991. GGML_ASSERT(false);
  7992. } break;
  7993. }
  7994. }
  7995. // ggml_compute_forward_relu
  7996. static void ggml_compute_forward_relu_f32(
  7997. const struct ggml_compute_params * params,
  7998. struct ggml_tensor * dst) {
  7999. const struct ggml_tensor * src0 = dst->src[0];
  8000. assert(params->ith == 0);
  8001. assert(ggml_are_same_shape(src0, dst));
  8002. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8003. return;
  8004. }
  8005. const int n = ggml_nrows(src0);
  8006. const int nc = src0->ne[0];
  8007. assert(dst->nb[0] == sizeof(float));
  8008. assert(src0->nb[0] == sizeof(float));
  8009. for (int i = 0; i < n; i++) {
  8010. ggml_vec_relu_f32(nc,
  8011. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8012. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8013. }
  8014. }
  8015. static void ggml_compute_forward_relu(
  8016. const struct ggml_compute_params * params,
  8017. struct ggml_tensor * dst) {
  8018. const struct ggml_tensor * src0 = dst->src[0];
  8019. switch (src0->type) {
  8020. case GGML_TYPE_F32:
  8021. {
  8022. ggml_compute_forward_relu_f32(params, dst);
  8023. } break;
  8024. default:
  8025. {
  8026. GGML_ASSERT(false);
  8027. } break;
  8028. }
  8029. }
  8030. // ggml_compute_forward_gelu
  8031. static void ggml_compute_forward_gelu_f32(
  8032. const struct ggml_compute_params * params,
  8033. struct ggml_tensor * dst) {
  8034. const struct ggml_tensor * src0 = dst->src[0];
  8035. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8036. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8037. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8038. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8039. return;
  8040. }
  8041. const int ith = params->ith;
  8042. const int nth = params->nth;
  8043. const int nc = src0->ne[0];
  8044. const int nr = ggml_nrows(src0);
  8045. // rows per thread
  8046. const int dr = (nr + nth - 1)/nth;
  8047. // row range for this thread
  8048. const int ir0 = dr*ith;
  8049. const int ir1 = MIN(ir0 + dr, nr);
  8050. for (int i1 = ir0; i1 < ir1; i1++) {
  8051. ggml_vec_gelu_f32(nc,
  8052. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8053. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8054. #ifndef NDEBUG
  8055. for (int k = 0; k < nc; k++) {
  8056. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8057. UNUSED(x);
  8058. assert(!isnan(x));
  8059. assert(!isinf(x));
  8060. }
  8061. #endif
  8062. }
  8063. }
  8064. static void ggml_compute_forward_gelu(
  8065. const struct ggml_compute_params * params,
  8066. struct ggml_tensor * dst) {
  8067. const struct ggml_tensor * src0 = dst->src[0];
  8068. switch (src0->type) {
  8069. case GGML_TYPE_F32:
  8070. {
  8071. ggml_compute_forward_gelu_f32(params, dst);
  8072. } break;
  8073. default:
  8074. {
  8075. GGML_ASSERT(false);
  8076. } break;
  8077. }
  8078. }
  8079. // ggml_compute_forward_gelu_quick
  8080. static void ggml_compute_forward_gelu_quick_f32(
  8081. const struct ggml_compute_params * params,
  8082. struct ggml_tensor * dst) {
  8083. const struct ggml_tensor * src0 = dst->src[0];
  8084. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8085. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8086. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8087. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8088. return;
  8089. }
  8090. const int ith = params->ith;
  8091. const int nth = params->nth;
  8092. const int nc = src0->ne[0];
  8093. const int nr = ggml_nrows(src0);
  8094. // rows per thread
  8095. const int dr = (nr + nth - 1)/nth;
  8096. // row range for this thread
  8097. const int ir0 = dr*ith;
  8098. const int ir1 = MIN(ir0 + dr, nr);
  8099. for (int i1 = ir0; i1 < ir1; i1++) {
  8100. ggml_vec_gelu_quick_f32(nc,
  8101. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8102. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8103. #ifndef NDEBUG
  8104. for (int k = 0; k < nc; k++) {
  8105. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8106. UNUSED(x);
  8107. assert(!isnan(x));
  8108. assert(!isinf(x));
  8109. }
  8110. #endif
  8111. }
  8112. }
  8113. static void ggml_compute_forward_gelu_quick(
  8114. const struct ggml_compute_params * params,
  8115. struct ggml_tensor * dst) {
  8116. const struct ggml_tensor * src0 = dst->src[0];
  8117. switch (src0->type) {
  8118. case GGML_TYPE_F32:
  8119. {
  8120. ggml_compute_forward_gelu_quick_f32(params, dst);
  8121. } break;
  8122. default:
  8123. {
  8124. GGML_ASSERT(false);
  8125. } break;
  8126. }
  8127. }
  8128. // ggml_compute_forward_silu
  8129. static void ggml_compute_forward_silu_f32(
  8130. const struct ggml_compute_params * params,
  8131. struct ggml_tensor * dst) {
  8132. const struct ggml_tensor * src0 = dst->src[0];
  8133. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8134. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8135. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8136. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8137. return;
  8138. }
  8139. const int ith = params->ith;
  8140. const int nth = params->nth;
  8141. const int nc = src0->ne[0];
  8142. const int nr = ggml_nrows(src0);
  8143. // rows per thread
  8144. const int dr = (nr + nth - 1)/nth;
  8145. // row range for this thread
  8146. const int ir0 = dr*ith;
  8147. const int ir1 = MIN(ir0 + dr, nr);
  8148. for (int i1 = ir0; i1 < ir1; i1++) {
  8149. ggml_vec_silu_f32(nc,
  8150. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8151. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8152. #ifndef NDEBUG
  8153. for (int k = 0; k < nc; k++) {
  8154. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8155. UNUSED(x);
  8156. assert(!isnan(x));
  8157. assert(!isinf(x));
  8158. }
  8159. #endif
  8160. }
  8161. }
  8162. static void ggml_compute_forward_silu(
  8163. const struct ggml_compute_params * params,
  8164. struct ggml_tensor * dst) {
  8165. const struct ggml_tensor * src0 = dst->src[0];
  8166. switch (src0->type) {
  8167. case GGML_TYPE_F32:
  8168. {
  8169. ggml_compute_forward_silu_f32(params, dst);
  8170. } break;
  8171. default:
  8172. {
  8173. GGML_ASSERT(false);
  8174. } break;
  8175. }
  8176. }
  8177. // ggml_compute_forward_leaky_relu
  8178. static void ggml_compute_forward_leaky_relu_f32(
  8179. const struct ggml_compute_params * params,
  8180. struct ggml_tensor * dst) {
  8181. const struct ggml_tensor * src0 = dst->src[0];
  8182. assert(params->ith == 0);
  8183. assert(ggml_are_same_shape(src0, dst));
  8184. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8185. return;
  8186. }
  8187. const int n = ggml_nrows(src0);
  8188. const int nc = src0->ne[0];
  8189. float negative_slope;
  8190. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8191. assert(dst->nb[0] == sizeof(float));
  8192. assert(src0->nb[0] == sizeof(float));
  8193. for (int i = 0; i < n; i++) {
  8194. ggml_vec_leaky_relu_f32(nc,
  8195. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8196. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8197. }
  8198. }
  8199. static void ggml_compute_forward_leaky_relu(
  8200. const struct ggml_compute_params * params,
  8201. struct ggml_tensor * dst) {
  8202. const struct ggml_tensor * src0 = dst->src[0];
  8203. switch (src0->type) {
  8204. case GGML_TYPE_F32:
  8205. {
  8206. ggml_compute_forward_leaky_relu_f32(params, dst);
  8207. } break;
  8208. default:
  8209. {
  8210. GGML_ASSERT(false);
  8211. } break;
  8212. }
  8213. }
  8214. // ggml_compute_forward_silu_back
  8215. static void ggml_compute_forward_silu_back_f32(
  8216. const struct ggml_compute_params * params,
  8217. struct ggml_tensor * dst) {
  8218. const struct ggml_tensor * src0 = dst->src[0];
  8219. const struct ggml_tensor * grad = dst->src[1];
  8220. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8221. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8222. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8223. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8224. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8225. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8226. return;
  8227. }
  8228. const int ith = params->ith;
  8229. const int nth = params->nth;
  8230. const int nc = src0->ne[0];
  8231. const int nr = ggml_nrows(src0);
  8232. // rows per thread
  8233. const int dr = (nr + nth - 1)/nth;
  8234. // row range for this thread
  8235. const int ir0 = dr*ith;
  8236. const int ir1 = MIN(ir0 + dr, nr);
  8237. for (int i1 = ir0; i1 < ir1; i1++) {
  8238. ggml_vec_silu_backward_f32(nc,
  8239. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8240. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8241. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8242. #ifndef NDEBUG
  8243. for (int k = 0; k < nc; k++) {
  8244. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8245. UNUSED(x);
  8246. assert(!isnan(x));
  8247. assert(!isinf(x));
  8248. }
  8249. #endif
  8250. }
  8251. }
  8252. static void ggml_compute_forward_silu_back(
  8253. const struct ggml_compute_params * params,
  8254. struct ggml_tensor * dst) {
  8255. const struct ggml_tensor * src0 = dst->src[0];
  8256. switch (src0->type) {
  8257. case GGML_TYPE_F32:
  8258. {
  8259. ggml_compute_forward_silu_back_f32(params, dst);
  8260. } break;
  8261. default:
  8262. {
  8263. GGML_ASSERT(false);
  8264. } break;
  8265. }
  8266. }
  8267. static void ggml_compute_forward_hardswish_f32(
  8268. const struct ggml_compute_params * params,
  8269. struct ggml_tensor * dst) {
  8270. const struct ggml_tensor * src0 = dst->src[0];
  8271. assert(params->ith == 0);
  8272. assert(ggml_are_same_shape(src0, dst));
  8273. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8274. return;
  8275. }
  8276. const int n = ggml_nrows(src0);
  8277. const int nc = src0->ne[0];
  8278. assert(dst->nb[0] == sizeof(float));
  8279. assert(src0->nb[0] == sizeof(float));
  8280. for (int i = 0; i < n; i++) {
  8281. ggml_vec_hardswish_f32(nc,
  8282. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8283. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8284. }
  8285. }
  8286. static void ggml_compute_forward_hardswish(
  8287. const struct ggml_compute_params * params,
  8288. struct ggml_tensor * dst) {
  8289. const struct ggml_tensor * src0 = dst->src[0];
  8290. switch (src0->type) {
  8291. case GGML_TYPE_F32:
  8292. {
  8293. ggml_compute_forward_hardswish_f32(params, dst);
  8294. } break;
  8295. default:
  8296. {
  8297. GGML_ASSERT(false);
  8298. } break;
  8299. }
  8300. }
  8301. static void ggml_compute_forward_hardsigmoid_f32(
  8302. const struct ggml_compute_params * params,
  8303. struct ggml_tensor * dst) {
  8304. const struct ggml_tensor * src0 = dst->src[0];
  8305. assert(params->ith == 0);
  8306. assert(ggml_are_same_shape(src0, dst));
  8307. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8308. return;
  8309. }
  8310. const int n = ggml_nrows(src0);
  8311. const int nc = src0->ne[0];
  8312. assert(dst->nb[0] == sizeof(float));
  8313. assert(src0->nb[0] == sizeof(float));
  8314. for (int i = 0; i < n; i++) {
  8315. ggml_vec_hardsigmoid_f32(nc,
  8316. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8317. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8318. }
  8319. }
  8320. static void ggml_compute_forward_hardsigmoid(
  8321. const struct ggml_compute_params * params,
  8322. struct ggml_tensor * dst) {
  8323. const struct ggml_tensor * src0 = dst->src[0];
  8324. switch (src0->type) {
  8325. case GGML_TYPE_F32:
  8326. {
  8327. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8328. } break;
  8329. default:
  8330. {
  8331. GGML_ASSERT(false);
  8332. } break;
  8333. }
  8334. }
  8335. // ggml_compute_forward_norm
  8336. static void ggml_compute_forward_norm_f32(
  8337. const struct ggml_compute_params * params,
  8338. struct ggml_tensor * dst) {
  8339. const struct ggml_tensor * src0 = dst->src[0];
  8340. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8341. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8342. return;
  8343. }
  8344. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8345. const int ith = params->ith;
  8346. const int nth = params->nth;
  8347. GGML_TENSOR_UNARY_OP_LOCALS
  8348. float eps;
  8349. memcpy(&eps, dst->op_params, sizeof(float));
  8350. GGML_ASSERT(eps > 0.0f);
  8351. // TODO: optimize
  8352. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8353. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8354. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8355. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8356. ggml_float sum = 0.0;
  8357. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8358. sum += (ggml_float)x[i00];
  8359. }
  8360. float mean = sum/ne00;
  8361. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8362. ggml_float sum2 = 0.0;
  8363. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8364. float v = x[i00] - mean;
  8365. y[i00] = v;
  8366. sum2 += (ggml_float)(v*v);
  8367. }
  8368. float variance = sum2/ne00;
  8369. const float scale = 1.0f/sqrtf(variance + eps);
  8370. ggml_vec_scale_f32(ne00, y, scale);
  8371. }
  8372. }
  8373. }
  8374. }
  8375. static void ggml_compute_forward_norm(
  8376. const struct ggml_compute_params * params,
  8377. struct ggml_tensor * dst) {
  8378. const struct ggml_tensor * src0 = dst->src[0];
  8379. switch (src0->type) {
  8380. case GGML_TYPE_F32:
  8381. {
  8382. ggml_compute_forward_norm_f32(params, dst);
  8383. } break;
  8384. default:
  8385. {
  8386. GGML_ASSERT(false);
  8387. } break;
  8388. }
  8389. }
  8390. // ggml_compute_forward_group_rms_norm
  8391. static void ggml_compute_forward_rms_norm_f32(
  8392. const struct ggml_compute_params * params,
  8393. struct ggml_tensor * dst) {
  8394. const struct ggml_tensor * src0 = dst->src[0];
  8395. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8396. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8397. return;
  8398. }
  8399. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8400. const int ith = params->ith;
  8401. const int nth = params->nth;
  8402. GGML_TENSOR_UNARY_OP_LOCALS
  8403. float eps;
  8404. memcpy(&eps, dst->op_params, sizeof(float));
  8405. GGML_ASSERT(eps > 0.0f);
  8406. // TODO: optimize
  8407. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8408. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8409. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8410. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8411. ggml_float sum = 0.0;
  8412. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8413. sum += (ggml_float)(x[i00] * x[i00]);
  8414. }
  8415. const float mean = sum/ne00;
  8416. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8417. memcpy(y, x, ne00 * sizeof(float));
  8418. // for (int i00 = 0; i00 < ne00; i00++) {
  8419. // y[i00] = x[i00];
  8420. // }
  8421. const float scale = 1.0f/sqrtf(mean + eps);
  8422. ggml_vec_scale_f32(ne00, y, scale);
  8423. }
  8424. }
  8425. }
  8426. }
  8427. static void ggml_compute_forward_rms_norm(
  8428. const struct ggml_compute_params * params,
  8429. struct ggml_tensor * dst) {
  8430. const struct ggml_tensor * src0 = dst->src[0];
  8431. switch (src0->type) {
  8432. case GGML_TYPE_F32:
  8433. {
  8434. ggml_compute_forward_rms_norm_f32(params, dst);
  8435. } break;
  8436. default:
  8437. {
  8438. GGML_ASSERT(false);
  8439. } break;
  8440. }
  8441. }
  8442. static void ggml_compute_forward_rms_norm_back_f32(
  8443. const struct ggml_compute_params * params,
  8444. struct ggml_tensor * dst) {
  8445. const struct ggml_tensor * src0 = dst->src[0];
  8446. const struct ggml_tensor * src1 = dst->src[1];
  8447. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8448. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8449. return;
  8450. }
  8451. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8452. const int ith = params->ith;
  8453. const int nth = params->nth;
  8454. GGML_TENSOR_BINARY_OP_LOCALS
  8455. float eps;
  8456. memcpy(&eps, dst->op_params, sizeof(float));
  8457. // TODO: optimize
  8458. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8459. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8460. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8461. // src1 is same shape as src0 => same indices
  8462. const int64_t i11 = i01;
  8463. const int64_t i12 = i02;
  8464. const int64_t i13 = i03;
  8465. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8466. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8467. ggml_float sum_xx = 0.0;
  8468. ggml_float sum_xdz = 0.0;
  8469. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8470. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8471. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8472. }
  8473. //const float mean = (float)(sum_xx)/ne00;
  8474. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8475. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8476. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8477. // we could cache rms from forward pass to improve performance.
  8478. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8479. //const float rms = sqrtf(mean_eps);
  8480. const float rrms = 1.0f / sqrtf(mean_eps);
  8481. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8482. {
  8483. // z = rms_norm(x)
  8484. //
  8485. // rms_norm(src0) =
  8486. // scale(
  8487. // src0,
  8488. // div(
  8489. // 1,
  8490. // sqrt(
  8491. // add(
  8492. // scale(
  8493. // sum(
  8494. // sqr(
  8495. // src0)),
  8496. // (1.0/N)),
  8497. // eps))));
  8498. // postorder:
  8499. // ## op args grad
  8500. // 00 param src0 grad[#00]
  8501. // 01 const 1
  8502. // 02 sqr (#00) grad[#02]
  8503. // 03 sum (#02) grad[#03]
  8504. // 04 const 1/N
  8505. // 05 scale (#03, #04) grad[#05]
  8506. // 06 const eps
  8507. // 07 add (#05, #06) grad[#07]
  8508. // 08 sqrt (#07) grad[#08]
  8509. // 09 div (#01,#08) grad[#09]
  8510. // 10 scale (#00,#09) grad[#10]
  8511. //
  8512. // backward pass, given grad[#10]
  8513. // #10: scale
  8514. // grad[#00] += scale(grad[#10],#09)
  8515. // grad[#09] += sum(mul(grad[#10],#00))
  8516. // #09: div
  8517. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8518. // #08: sqrt
  8519. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8520. // #07: add
  8521. // grad[#05] += grad[#07]
  8522. // #05: scale
  8523. // grad[#03] += scale(grad[#05],#04)
  8524. // #03: sum
  8525. // grad[#02] += repeat(grad[#03], #02)
  8526. // #02:
  8527. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8528. //
  8529. // substitute and simplify:
  8530. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8531. // grad[#02] = repeat(grad[#03], #02)
  8532. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8533. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8534. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8535. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8536. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8537. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8538. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8539. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8540. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8541. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8542. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8543. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8544. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8545. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8546. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8547. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8548. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8549. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8550. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8551. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8552. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8553. // a = b*c + d*e
  8554. // a = b*c*f/f + d*e*f/f
  8555. // a = (b*c*f + d*e*f)*(1/f)
  8556. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8557. // a = (b + d*e/c)*c
  8558. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8559. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8560. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8561. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8562. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8563. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8564. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8565. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8566. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8567. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8568. }
  8569. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8570. // post-order:
  8571. // dx := x
  8572. // dx := scale(dx,-mean_xdz/mean_eps)
  8573. // dx := add(dx, dz)
  8574. // dx := scale(dx, rrms)
  8575. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8576. ggml_vec_cpy_f32 (ne00, dx, x);
  8577. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8578. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8579. ggml_vec_acc_f32 (ne00, dx, dz);
  8580. ggml_vec_scale_f32(ne00, dx, rrms);
  8581. }
  8582. }
  8583. }
  8584. }
  8585. static void ggml_compute_forward_rms_norm_back(
  8586. const struct ggml_compute_params * params,
  8587. struct ggml_tensor * dst) {
  8588. const struct ggml_tensor * src0 = dst->src[0];
  8589. switch (src0->type) {
  8590. case GGML_TYPE_F32:
  8591. {
  8592. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8593. } break;
  8594. default:
  8595. {
  8596. GGML_ASSERT(false);
  8597. } break;
  8598. }
  8599. }
  8600. // ggml_compute_forward_group_norm
  8601. static void ggml_compute_forward_group_norm_f32(
  8602. const struct ggml_compute_params * params,
  8603. struct ggml_tensor * dst) {
  8604. const struct ggml_tensor * src0 = dst->src[0];
  8605. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8606. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8607. return;
  8608. }
  8609. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8610. const int ith = params->ith;
  8611. const int nth = params->nth;
  8612. GGML_TENSOR_UNARY_OP_LOCALS
  8613. const float eps = 1e-6f; // TODO: make this a parameter
  8614. // TODO: optimize
  8615. int n_channels = src0->ne[2];
  8616. int n_groups = dst->op_params[0];
  8617. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8618. for (int i = ith; i < n_groups; i += nth) {
  8619. int start = i * n_channels_per_group;
  8620. int end = start + n_channels_per_group;
  8621. if (end > n_channels) {
  8622. end = n_channels;
  8623. }
  8624. int step = end - start;
  8625. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8626. ggml_float sum = 0.0;
  8627. for (int64_t i02 = start; i02 < end; i02++) {
  8628. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8629. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8630. ggml_float sumr = 0.0;
  8631. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8632. sumr += (ggml_float)x[i00];
  8633. }
  8634. sum += sumr;
  8635. }
  8636. }
  8637. const float mean = sum / (ne00 * ne01 * step);
  8638. ggml_float sum2 = 0.0;
  8639. for (int64_t i02 = start; i02 < end; i02++) {
  8640. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8641. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8642. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8643. ggml_float sumr = 0.0;
  8644. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8645. float v = x[i00] - mean;
  8646. y[i00] = v;
  8647. sumr += (ggml_float)(v * v);
  8648. }
  8649. sum2 += sumr;
  8650. }
  8651. }
  8652. const float variance = sum2 / (ne00 * ne01 * step);
  8653. const float scale = 1.0f / sqrtf(variance + eps);
  8654. for (int64_t i02 = start; i02 < end; i02++) {
  8655. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8656. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8657. ggml_vec_scale_f32(ne00, y, scale);
  8658. }
  8659. }
  8660. }
  8661. }
  8662. }
  8663. static void ggml_compute_forward_group_norm(
  8664. const struct ggml_compute_params * params,
  8665. struct ggml_tensor * dst) {
  8666. const struct ggml_tensor * src0 = dst->src[0];
  8667. switch (src0->type) {
  8668. case GGML_TYPE_F32:
  8669. {
  8670. ggml_compute_forward_group_norm_f32(params, dst);
  8671. } break;
  8672. default:
  8673. {
  8674. GGML_ASSERT(false);
  8675. } break;
  8676. }
  8677. }
  8678. // ggml_compute_forward_mul_mat
  8679. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8680. // helper function to determine if it is better to use BLAS or not
  8681. // for large matrices, BLAS is faster
  8682. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8683. const struct ggml_tensor * src0 = dst->src[0];
  8684. const struct ggml_tensor * src1 = dst->src[1];
  8685. //const int64_t ne00 = src0->ne[0];
  8686. //const int64_t ne01 = src0->ne[1];
  8687. const int64_t ne10 = src1->ne[0];
  8688. const int64_t ne0 = dst->ne[0];
  8689. const int64_t ne1 = dst->ne[1];
  8690. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8691. // all the experts for each batch element and the processing would become incredibly slow
  8692. // TODO: find the optimal values for these
  8693. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8694. ggml_is_contiguous(src0) &&
  8695. ggml_is_contiguous(src1) &&
  8696. //src0->type == GGML_TYPE_F32 &&
  8697. src1->type == GGML_TYPE_F32 &&
  8698. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8699. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8700. return true;
  8701. }
  8702. return false;
  8703. }
  8704. #endif
  8705. static void ggml_compute_forward_mul_mat(
  8706. const struct ggml_compute_params * params,
  8707. struct ggml_tensor * dst) {
  8708. const struct ggml_tensor * src0 = dst->src[0];
  8709. const struct ggml_tensor * src1 = dst->src[1];
  8710. int64_t t0 = ggml_perf_time_us();
  8711. UNUSED(t0);
  8712. GGML_TENSOR_BINARY_OP_LOCALS
  8713. const int ith = params->ith;
  8714. const int nth = params->nth;
  8715. const enum ggml_type type = src0->type;
  8716. const bool src1_cont = ggml_is_contiguous(src1);
  8717. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8718. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8719. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8720. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8721. GGML_ASSERT(ne0 == ne01);
  8722. GGML_ASSERT(ne1 == ne11);
  8723. GGML_ASSERT(ne2 == ne12);
  8724. GGML_ASSERT(ne3 == ne13);
  8725. // we don't support permuted src0 or src1
  8726. GGML_ASSERT(nb00 == ggml_type_size(type));
  8727. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8728. // dst cannot be transposed or permuted
  8729. GGML_ASSERT(nb0 == sizeof(float));
  8730. GGML_ASSERT(nb0 <= nb1);
  8731. GGML_ASSERT(nb1 <= nb2);
  8732. GGML_ASSERT(nb2 <= nb3);
  8733. // broadcast factors
  8734. const int64_t r2 = ne12/ne02;
  8735. const int64_t r3 = ne13/ne03;
  8736. // nb01 >= nb00 - src0 is not transposed
  8737. // compute by src0 rows
  8738. #if defined(GGML_USE_CLBLAST)
  8739. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8740. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8741. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8742. }
  8743. return;
  8744. }
  8745. #endif
  8746. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8747. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8748. const int64_t ne_plane = ne01*ne00;
  8749. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8750. UNUSED(desired_wsize);
  8751. if (params->type == GGML_TASK_TYPE_INIT) {
  8752. if (type != GGML_TYPE_F32) {
  8753. assert(params->wsize >= desired_wsize);
  8754. // parallelize by src0 rows
  8755. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8756. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8757. // broadcast src0 into src1 across 2nd,3rd dimension
  8758. const int64_t i03 = i13/r3;
  8759. const int64_t i02 = i12/r2;
  8760. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8761. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8762. ggml_to_float_t const to_float = type_traits[type].to_float;
  8763. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8764. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8765. }
  8766. }
  8767. }
  8768. }
  8769. return;
  8770. }
  8771. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8772. return;
  8773. }
  8774. // perform sgemm, parallelization controlled by blas lib
  8775. if (ith != 0) {
  8776. return;
  8777. }
  8778. //const int64_t tgemm0 = ggml_perf_time_us();
  8779. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8780. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8781. const int64_t i03 = i13/r3;
  8782. const int64_t i02 = i12/r2;
  8783. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8784. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8785. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8786. if (type != GGML_TYPE_F32) {
  8787. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8788. }
  8789. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8790. ne1, ne01, ne10,
  8791. 1.0f, y, ne10,
  8792. x, ne00,
  8793. 0.0f, d, ne01);
  8794. }
  8795. }
  8796. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8797. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8798. return;
  8799. }
  8800. #endif
  8801. if (params->type == GGML_TASK_TYPE_INIT) {
  8802. if (ith != 0) {
  8803. return;
  8804. }
  8805. if (src1->type != vec_dot_type) {
  8806. char * wdata = params->wdata;
  8807. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8808. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8809. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8810. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8811. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8812. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8813. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8814. wdata += row_size;
  8815. }
  8816. }
  8817. }
  8818. }
  8819. return;
  8820. }
  8821. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8822. return;
  8823. }
  8824. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8825. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8826. const int64_t nr0 = ne01; // src0 rows
  8827. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8828. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8829. // distribute the thread work across the inner or outer loop based on which one is larger
  8830. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8831. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8832. const int64_t ith0 = ith % nth0;
  8833. const int64_t ith1 = ith / nth0;
  8834. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8835. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8836. const int64_t ir010 = dr0*ith0;
  8837. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8838. const int64_t ir110 = dr1*ith1;
  8839. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8840. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8841. // threads with no work simply yield (not sure if it helps)
  8842. if (ir010 >= ir011 || ir110 >= ir111) {
  8843. sched_yield();
  8844. return;
  8845. }
  8846. assert(ne12 % ne02 == 0);
  8847. assert(ne13 % ne03 == 0);
  8848. // block-tiling attempt
  8849. const int64_t blck_0 = 16;
  8850. const int64_t blck_1 = 16;
  8851. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8852. int64_t nrc = vec_dot_num_rows;
  8853. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8854. // this check can be removed once they are extended to support odd numbered rows/cols too
  8855. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8856. nrc = 1;
  8857. }
  8858. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8859. // attempt to reduce false-sharing (does not seem to make a difference)
  8860. // 16 * 2, accounting for mmla kernels
  8861. float tmp[32];
  8862. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8863. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8864. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8865. const int64_t i13 = (ir1/(ne12*ne1));
  8866. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8867. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8868. // broadcast src0 into src1
  8869. const int64_t i03 = i13/r3;
  8870. const int64_t i02 = i12/r2;
  8871. const int64_t i1 = i11;
  8872. const int64_t i2 = i12;
  8873. const int64_t i3 = i13;
  8874. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8875. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8876. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8877. // the original src1 data pointer, so we should index using the indices directly
  8878. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8879. const char * src1_col = (const char *) wdata +
  8880. (src1_cont || src1->type != vec_dot_type
  8881. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8882. : (i11*nb11 + i12*nb12 + i13*nb13));
  8883. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8884. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8885. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8886. //}
  8887. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8888. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8889. }
  8890. for (int cn = 0; cn < nrc; ++cn) {
  8891. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8892. }
  8893. }
  8894. }
  8895. }
  8896. }
  8897. // ggml_compute_forward_mul_mat_id
  8898. static void ggml_compute_forward_mul_mat_id(
  8899. const struct ggml_compute_params * params,
  8900. struct ggml_tensor * dst) {
  8901. const struct ggml_tensor * ids = dst->src[0];
  8902. const struct ggml_tensor * src1 = dst->src[1];
  8903. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8904. GGML_TENSOR_BINARY_OP_LOCALS
  8905. const int ith = params->ith;
  8906. const int nth = params->nth;
  8907. const enum ggml_type type = src0->type;
  8908. const bool src1_cont = ggml_is_contiguous(src1);
  8909. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8910. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8911. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8912. GGML_ASSERT(ne0 == ne01);
  8913. GGML_ASSERT(ne1 == ne11);
  8914. GGML_ASSERT(ne2 == ne12);
  8915. GGML_ASSERT(ne3 == ne13);
  8916. // we don't support permuted src0 or src1
  8917. GGML_ASSERT(nb00 == ggml_type_size(type));
  8918. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8919. // dst cannot be transposed or permuted
  8920. GGML_ASSERT(nb0 == sizeof(float));
  8921. GGML_ASSERT(nb0 <= nb1);
  8922. GGML_ASSERT(nb1 <= nb2);
  8923. GGML_ASSERT(nb2 <= nb3);
  8924. // broadcast factors
  8925. const int64_t r2 = ne12/ne02;
  8926. const int64_t r3 = ne13/ne03;
  8927. // row groups
  8928. const int id = ggml_get_op_params_i32(dst, 0);
  8929. const int n_as = ggml_get_op_params_i32(dst, 1);
  8930. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8931. (char *) params->wdata :
  8932. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8933. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8934. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8935. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8936. if (params->type == GGML_TASK_TYPE_INIT) {
  8937. if (ith != 0) {
  8938. return;
  8939. }
  8940. char * wdata = params->wdata;
  8941. if (src1->type != vec_dot_type) {
  8942. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8943. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8944. assert(src1->type == GGML_TYPE_F32);
  8945. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8946. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8947. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8948. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8949. wdata += row_size;
  8950. }
  8951. }
  8952. }
  8953. }
  8954. // initialize matrix_row_counts
  8955. GGML_ASSERT(wdata == wdata_src1_end);
  8956. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8957. // group rows by src0 matrix
  8958. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8959. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8960. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8961. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8962. matrix_row_counts[row_id] += 1;
  8963. }
  8964. return;
  8965. }
  8966. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8967. return;
  8968. }
  8969. // compute each matrix multiplication in sequence
  8970. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8971. const int64_t cne1 = matrix_row_counts[cur_a];
  8972. if (cne1 == 0) {
  8973. continue;
  8974. }
  8975. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8976. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8977. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8978. const int64_t nr0 = ne01; // src0 rows
  8979. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8980. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8981. // distribute the thread work across the inner or outer loop based on which one is larger
  8982. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8983. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8984. const int64_t ith0 = ith % nth0;
  8985. const int64_t ith1 = ith / nth0;
  8986. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8987. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8988. const int64_t ir010 = dr0*ith0;
  8989. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8990. const int64_t ir110 = dr1*ith1;
  8991. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8992. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8993. // threads with no work simply yield (not sure if it helps)
  8994. if (ir010 >= ir011 || ir110 >= ir111) {
  8995. sched_yield();
  8996. continue;
  8997. }
  8998. assert(ne12 % ne02 == 0);
  8999. assert(ne13 % ne03 == 0);
  9000. // block-tiling attempt
  9001. const int64_t blck_0 = 16;
  9002. const int64_t blck_1 = 16;
  9003. // attempt to reduce false-sharing (does not seem to make a difference)
  9004. float tmp[16];
  9005. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9006. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9007. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9008. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  9009. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  9010. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  9011. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  9012. // broadcast src0 into src1
  9013. const int64_t i03 = i13/r3;
  9014. const int64_t i02 = i12/r2;
  9015. const int64_t i1 = i11;
  9016. const int64_t i2 = i12;
  9017. const int64_t i3 = i13;
  9018. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  9019. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9020. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9021. // the original src1 data pointer, so we should index using the indices directly
  9022. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9023. const char * src1_col = (const char *) wdata +
  9024. (src1_cont || src1->type != vec_dot_type
  9025. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9026. : (i11*nb11 + i12*nb12 + i13*nb13));
  9027. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9028. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9029. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9030. //}
  9031. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9032. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  9033. }
  9034. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9035. }
  9036. }
  9037. }
  9038. }
  9039. #undef MMID_MATRIX_ROW
  9040. }
  9041. // ggml_compute_forward_out_prod
  9042. static void ggml_compute_forward_out_prod_f32(
  9043. const struct ggml_compute_params * params,
  9044. struct ggml_tensor * dst) {
  9045. const struct ggml_tensor * src0 = dst->src[0];
  9046. const struct ggml_tensor * src1 = dst->src[1];
  9047. // int64_t t0 = ggml_perf_time_us();
  9048. // UNUSED(t0);
  9049. GGML_TENSOR_BINARY_OP_LOCALS
  9050. const int ith = params->ith;
  9051. const int nth = params->nth;
  9052. GGML_ASSERT(ne0 == ne00);
  9053. GGML_ASSERT(ne1 == ne10);
  9054. GGML_ASSERT(ne2 == ne02);
  9055. GGML_ASSERT(ne02 == ne12);
  9056. GGML_ASSERT(ne3 == ne13);
  9057. GGML_ASSERT(ne03 == ne13);
  9058. // we don't support permuted src0 or src1
  9059. GGML_ASSERT(nb00 == sizeof(float));
  9060. // dst cannot be transposed or permuted
  9061. GGML_ASSERT(nb0 == sizeof(float));
  9062. // GGML_ASSERT(nb0 <= nb1);
  9063. // GGML_ASSERT(nb1 <= nb2);
  9064. // GGML_ASSERT(nb2 <= nb3);
  9065. // nb01 >= nb00 - src0 is not transposed
  9066. // compute by src0 rows
  9067. // TODO: #if defined(GGML_USE_CLBLAST)
  9068. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9069. bool use_blas = ggml_is_matrix(src0) &&
  9070. ggml_is_matrix(src1) &&
  9071. ggml_is_contiguous(src0) &&
  9072. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9073. #endif
  9074. if (params->type == GGML_TASK_TYPE_INIT) {
  9075. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9076. if (use_blas) {
  9077. return;
  9078. }
  9079. #endif
  9080. if (ith != 0) {
  9081. return;
  9082. }
  9083. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9084. return;
  9085. }
  9086. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9087. return;
  9088. }
  9089. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9090. if (use_blas) {
  9091. if (params->ith != 0) { // All threads other than the first do no work.
  9092. return;
  9093. }
  9094. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9095. // src0: (k,n)
  9096. // src1: (k,m)
  9097. // dst: (m,n)
  9098. //
  9099. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9100. // Also expressed as (major,minor)
  9101. // a: (m,k): so src1 transposed
  9102. // b: (k,n): so src0
  9103. // c: (m,n)
  9104. //
  9105. // However, if ggml_is_transposed(src1) is true, then
  9106. // src1->data already contains a transposed version, so sgemm mustn't
  9107. // transpose it further.
  9108. int n = src0->ne[0];
  9109. int k = src0->ne[1];
  9110. int m = src1->ne[0];
  9111. int transposeA, lda;
  9112. if (!ggml_is_transposed(src1)) {
  9113. transposeA = CblasTrans;
  9114. lda = m;
  9115. } else {
  9116. transposeA = CblasNoTrans;
  9117. lda = k;
  9118. }
  9119. float * a = (float *) ((char *) src1->data);
  9120. float * b = (float *) ((char *) src0->data);
  9121. float * c = (float *) ((char *) dst->data);
  9122. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9123. return;
  9124. }
  9125. #endif
  9126. // dst[:,:,:,:] = 0
  9127. // for i2,i3:
  9128. // for i1:
  9129. // for i01:
  9130. // for i0:
  9131. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9132. // parallelize by last three dimensions
  9133. // total rows in dst
  9134. const int64_t nr = ne1*ne2*ne3;
  9135. // rows per thread
  9136. const int64_t dr = (nr + nth - 1)/nth;
  9137. // row range for this thread
  9138. const int64_t ir0 = dr*ith;
  9139. const int64_t ir1 = MIN(ir0 + dr, nr);
  9140. // block-tiling attempt
  9141. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9142. const int64_t blck_1 = 16;
  9143. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9144. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9145. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9146. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9147. for (int64_t ir = bir; ir < bir1; ++ir) {
  9148. // dst indices
  9149. const int64_t i3 = ir/(ne2*ne1);
  9150. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9151. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9152. const int64_t i02 = i2;
  9153. const int64_t i03 = i3;
  9154. //const int64_t i10 = i1;
  9155. const int64_t i12 = i2;
  9156. const int64_t i13 = i3;
  9157. #if GGML_VEC_MAD_UNROLL > 2
  9158. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9159. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9160. const int64_t i11 = i01;
  9161. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9162. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9163. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9164. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9165. }
  9166. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9167. const int64_t i11 = i01;
  9168. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9169. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9170. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9171. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9172. }
  9173. #else
  9174. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9175. const int64_t i11 = i01;
  9176. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9177. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9178. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9179. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9180. }
  9181. #endif
  9182. }
  9183. }
  9184. }
  9185. //int64_t t1 = ggml_perf_time_us();
  9186. //static int64_t acc = 0;
  9187. //acc += t1 - t0;
  9188. //if (t1 - t0 > 10) {
  9189. // printf("\n");
  9190. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9191. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9192. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9193. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9194. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9195. //}
  9196. }
  9197. static void ggml_compute_forward_out_prod_q_f32(
  9198. const struct ggml_compute_params * params,
  9199. struct ggml_tensor * dst) {
  9200. const struct ggml_tensor * src0 = dst->src[0];
  9201. const struct ggml_tensor * src1 = dst->src[1];
  9202. // int64_t t0 = ggml_perf_time_us();
  9203. // UNUSED(t0);
  9204. GGML_TENSOR_BINARY_OP_LOCALS;
  9205. const int ith = params->ith;
  9206. const int nth = params->nth;
  9207. const enum ggml_type type = src0->type;
  9208. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9209. GGML_ASSERT(ne02 == ne12);
  9210. GGML_ASSERT(ne03 == ne13);
  9211. GGML_ASSERT(ne2 == ne12);
  9212. GGML_ASSERT(ne3 == ne13);
  9213. // we don't support permuted src0 dim0
  9214. GGML_ASSERT(nb00 == ggml_type_size(type));
  9215. // dst dim0 cannot be transposed or permuted
  9216. GGML_ASSERT(nb0 == sizeof(float));
  9217. // GGML_ASSERT(nb0 <= nb1);
  9218. // GGML_ASSERT(nb1 <= nb2);
  9219. // GGML_ASSERT(nb2 <= nb3);
  9220. GGML_ASSERT(ne0 == ne00);
  9221. GGML_ASSERT(ne1 == ne10);
  9222. GGML_ASSERT(ne2 == ne02);
  9223. GGML_ASSERT(ne3 == ne03);
  9224. // nb01 >= nb00 - src0 is not transposed
  9225. // compute by src0 rows
  9226. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9227. if (params->type == GGML_TASK_TYPE_INIT) {
  9228. if (ith != 0) {
  9229. return;
  9230. }
  9231. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9232. return;
  9233. }
  9234. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9235. return;
  9236. }
  9237. // parallelize by last three dimensions
  9238. // total rows in dst
  9239. const int64_t nr = ne1*ne2*ne3;
  9240. // rows per thread
  9241. const int64_t dr = (nr + nth - 1)/nth;
  9242. // row range for this thread
  9243. const int64_t ir0 = dr*ith;
  9244. const int64_t ir1 = MIN(ir0 + dr, nr);
  9245. // dst[:,:,:,:] = 0
  9246. // for i2,i3:
  9247. // for i1:
  9248. // for i01:
  9249. // for i0:
  9250. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9251. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9252. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9253. // dst indices
  9254. const int64_t i3 = ir/(ne2*ne1);
  9255. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9256. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9257. const int64_t i02 = i2;
  9258. const int64_t i03 = i3;
  9259. //const int64_t i10 = i1;
  9260. const int64_t i12 = i2;
  9261. const int64_t i13 = i3;
  9262. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9263. const int64_t i11 = i01;
  9264. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9265. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9266. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9267. dequantize_row_q(s0, wdata, ne0);
  9268. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9269. }
  9270. }
  9271. //int64_t t1 = ggml_perf_time_us();
  9272. //static int64_t acc = 0;
  9273. //acc += t1 - t0;
  9274. //if (t1 - t0 > 10) {
  9275. // printf("\n");
  9276. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9277. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9278. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9279. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9280. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9281. //}
  9282. }
  9283. static void ggml_compute_forward_out_prod(
  9284. const struct ggml_compute_params * params,
  9285. struct ggml_tensor * dst) {
  9286. const struct ggml_tensor * src0 = dst->src[0];
  9287. switch (src0->type) {
  9288. case GGML_TYPE_Q4_0:
  9289. case GGML_TYPE_Q4_1:
  9290. case GGML_TYPE_Q5_0:
  9291. case GGML_TYPE_Q5_1:
  9292. case GGML_TYPE_Q8_0:
  9293. case GGML_TYPE_Q2_K:
  9294. case GGML_TYPE_Q3_K:
  9295. case GGML_TYPE_Q4_K:
  9296. case GGML_TYPE_Q5_K:
  9297. case GGML_TYPE_Q6_K:
  9298. case GGML_TYPE_IQ2_XXS:
  9299. case GGML_TYPE_IQ2_XS:
  9300. case GGML_TYPE_IQ3_XXS:
  9301. case GGML_TYPE_IQ1_S:
  9302. case GGML_TYPE_IQ1_M:
  9303. case GGML_TYPE_IQ4_NL:
  9304. case GGML_TYPE_IQ4_XS:
  9305. case GGML_TYPE_IQ3_S:
  9306. case GGML_TYPE_IQ2_S:
  9307. {
  9308. ggml_compute_forward_out_prod_q_f32(params, dst);
  9309. } break;
  9310. case GGML_TYPE_F16:
  9311. {
  9312. GGML_ASSERT(false); // todo
  9313. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9314. } break;
  9315. case GGML_TYPE_F32:
  9316. {
  9317. ggml_compute_forward_out_prod_f32(params, dst);
  9318. } break;
  9319. default:
  9320. {
  9321. GGML_ASSERT(false);
  9322. } break;
  9323. }
  9324. }
  9325. // ggml_compute_forward_scale
  9326. static void ggml_compute_forward_scale_f32(
  9327. const struct ggml_compute_params * params,
  9328. struct ggml_tensor * dst) {
  9329. const struct ggml_tensor * src0 = dst->src[0];
  9330. GGML_ASSERT(ggml_is_contiguous(src0));
  9331. GGML_ASSERT(ggml_is_contiguous(dst));
  9332. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9333. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9334. return;
  9335. }
  9336. // scale factor
  9337. float v;
  9338. memcpy(&v, dst->op_params, sizeof(float));
  9339. const int ith = params->ith;
  9340. const int nth = params->nth;
  9341. const int nc = src0->ne[0];
  9342. const int nr = ggml_nrows(src0);
  9343. // rows per thread
  9344. const int dr = (nr + nth - 1)/nth;
  9345. // row range for this thread
  9346. const int ir0 = dr*ith;
  9347. const int ir1 = MIN(ir0 + dr, nr);
  9348. const size_t nb01 = src0->nb[1];
  9349. const size_t nb1 = dst->nb[1];
  9350. for (int i1 = ir0; i1 < ir1; i1++) {
  9351. if (dst->data != src0->data) {
  9352. // src0 is same shape as dst => same indices
  9353. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9354. }
  9355. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9356. }
  9357. }
  9358. static void ggml_compute_forward_scale(
  9359. const struct ggml_compute_params * params,
  9360. struct ggml_tensor * dst) {
  9361. const struct ggml_tensor * src0 = dst->src[0];
  9362. switch (src0->type) {
  9363. case GGML_TYPE_F32:
  9364. {
  9365. ggml_compute_forward_scale_f32(params, dst);
  9366. } break;
  9367. default:
  9368. {
  9369. GGML_ASSERT(false);
  9370. } break;
  9371. }
  9372. }
  9373. // ggml_compute_forward_set
  9374. static void ggml_compute_forward_set_f32(
  9375. const struct ggml_compute_params * params,
  9376. struct ggml_tensor * dst) {
  9377. const struct ggml_tensor * src0 = dst->src[0];
  9378. const struct ggml_tensor * src1 = dst->src[1];
  9379. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9380. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9381. // view src0 and dst with these strides and data offset inbytes during set
  9382. // nb0 is implicitly element_size because src0 and dst are contiguous
  9383. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9384. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9385. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9386. size_t offset = ((int32_t *) dst->op_params)[3];
  9387. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9388. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9389. if (params->ith != 0) {
  9390. return;
  9391. }
  9392. // memcpy needs to be synchronized across threads to avoid race conditions.
  9393. // => do it in INIT phase
  9394. memcpy(
  9395. ((char *) dst->data),
  9396. ((char *) src0->data),
  9397. ggml_nbytes(dst));
  9398. }
  9399. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9400. return;
  9401. }
  9402. const int ith = params->ith;
  9403. const int nth = params->nth;
  9404. const int nr = ggml_nrows(src1);
  9405. const int nc = src1->ne[0];
  9406. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9407. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9408. // src0 and dst as viewed during set
  9409. const size_t nb0 = ggml_element_size(src0);
  9410. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9411. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9412. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9413. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9414. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9415. GGML_ASSERT(nb10 == sizeof(float));
  9416. // rows per thread
  9417. const int dr = (nr + nth - 1)/nth;
  9418. // row range for this thread
  9419. const int ir0 = dr*ith;
  9420. const int ir1 = MIN(ir0 + dr, nr);
  9421. for (int ir = ir0; ir < ir1; ++ir) {
  9422. // src0 and dst are viewed with shape of src1 and offset
  9423. // => same indices
  9424. const int i3 = ir/(ne12*ne11);
  9425. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9426. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9427. ggml_vec_cpy_f32(nc,
  9428. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9429. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9430. }
  9431. }
  9432. static void ggml_compute_forward_set(
  9433. const struct ggml_compute_params * params,
  9434. struct ggml_tensor * dst) {
  9435. const struct ggml_tensor * src0 = dst->src[0];
  9436. switch (src0->type) {
  9437. case GGML_TYPE_F32:
  9438. {
  9439. ggml_compute_forward_set_f32(params, dst);
  9440. } break;
  9441. case GGML_TYPE_F16:
  9442. case GGML_TYPE_Q4_0:
  9443. case GGML_TYPE_Q4_1:
  9444. case GGML_TYPE_Q5_0:
  9445. case GGML_TYPE_Q5_1:
  9446. case GGML_TYPE_Q8_0:
  9447. case GGML_TYPE_Q8_1:
  9448. case GGML_TYPE_Q2_K:
  9449. case GGML_TYPE_Q3_K:
  9450. case GGML_TYPE_Q4_K:
  9451. case GGML_TYPE_Q5_K:
  9452. case GGML_TYPE_Q6_K:
  9453. case GGML_TYPE_IQ2_XXS:
  9454. case GGML_TYPE_IQ2_XS:
  9455. case GGML_TYPE_IQ3_XXS:
  9456. case GGML_TYPE_IQ1_S:
  9457. case GGML_TYPE_IQ1_M:
  9458. case GGML_TYPE_IQ4_NL:
  9459. case GGML_TYPE_IQ4_XS:
  9460. case GGML_TYPE_IQ3_S:
  9461. case GGML_TYPE_IQ2_S:
  9462. default:
  9463. {
  9464. GGML_ASSERT(false);
  9465. } break;
  9466. }
  9467. }
  9468. // ggml_compute_forward_cpy
  9469. static void ggml_compute_forward_cpy(
  9470. const struct ggml_compute_params * params,
  9471. struct ggml_tensor * dst) {
  9472. ggml_compute_forward_dup(params, dst);
  9473. }
  9474. // ggml_compute_forward_cont
  9475. static void ggml_compute_forward_cont(
  9476. const struct ggml_compute_params * params,
  9477. struct ggml_tensor * dst) {
  9478. ggml_compute_forward_dup(params, dst);
  9479. }
  9480. // ggml_compute_forward_reshape
  9481. static void ggml_compute_forward_reshape(
  9482. const struct ggml_compute_params * params,
  9483. struct ggml_tensor * dst) {
  9484. // NOP
  9485. UNUSED(params);
  9486. UNUSED(dst);
  9487. }
  9488. // ggml_compute_forward_view
  9489. static void ggml_compute_forward_view(
  9490. const struct ggml_compute_params * params,
  9491. const struct ggml_tensor * dst) {
  9492. // NOP
  9493. UNUSED(params);
  9494. UNUSED(dst);
  9495. }
  9496. // ggml_compute_forward_permute
  9497. static void ggml_compute_forward_permute(
  9498. const struct ggml_compute_params * params,
  9499. const struct ggml_tensor * dst) {
  9500. // NOP
  9501. UNUSED(params);
  9502. UNUSED(dst);
  9503. }
  9504. // ggml_compute_forward_transpose
  9505. static void ggml_compute_forward_transpose(
  9506. const struct ggml_compute_params * params,
  9507. const struct ggml_tensor * dst) {
  9508. // NOP
  9509. UNUSED(params);
  9510. UNUSED(dst);
  9511. }
  9512. // ggml_compute_forward_get_rows
  9513. static void ggml_compute_forward_get_rows_q(
  9514. const struct ggml_compute_params * params,
  9515. struct ggml_tensor * dst) {
  9516. const struct ggml_tensor * src0 = dst->src[0];
  9517. const struct ggml_tensor * src1 = dst->src[1];
  9518. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9519. return;
  9520. }
  9521. GGML_TENSOR_BINARY_OP_LOCALS
  9522. const int64_t nc = ne00;
  9523. const int64_t nr = ggml_nelements(src1);
  9524. const enum ggml_type type = src0->type;
  9525. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9526. assert(ne0 == nc);
  9527. assert(ne02 == ne11);
  9528. assert(nb00 == ggml_type_size(type));
  9529. assert(ggml_nrows(dst) == nr);
  9530. const int ith = params->ith;
  9531. const int nth = params->nth;
  9532. // rows per thread
  9533. const int dr = (nr + nth - 1)/nth;
  9534. // row range for this thread
  9535. const int ir0 = dr*ith;
  9536. const int ir1 = MIN(ir0 + dr, nr);
  9537. for (int64_t i = ir0; i < ir1; ++i) {
  9538. const int64_t i12 = i/(ne11*ne10);
  9539. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9540. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9541. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9542. dequantize_row_q(
  9543. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9544. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9545. }
  9546. }
  9547. static void ggml_compute_forward_get_rows_f16(
  9548. const struct ggml_compute_params * params,
  9549. struct ggml_tensor * dst) {
  9550. const struct ggml_tensor * src0 = dst->src[0];
  9551. const struct ggml_tensor * src1 = dst->src[1];
  9552. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9553. return;
  9554. }
  9555. GGML_TENSOR_BINARY_OP_LOCALS
  9556. const int64_t nc = ne00;
  9557. const int64_t nr = ggml_nelements(src1);
  9558. assert(ne0 == nc);
  9559. assert(ne02 == ne11);
  9560. assert(nb00 == sizeof(ggml_fp16_t));
  9561. assert(ggml_nrows(dst) == nr);
  9562. const int ith = params->ith;
  9563. const int nth = params->nth;
  9564. // rows per thread
  9565. const int dr = (nr + nth - 1)/nth;
  9566. // row range for this thread
  9567. const int ir0 = dr*ith;
  9568. const int ir1 = MIN(ir0 + dr, nr);
  9569. for (int64_t i = ir0; i < ir1; ++i) {
  9570. const int64_t i12 = i/(ne11*ne10);
  9571. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9572. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9573. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9574. ggml_fp16_to_fp32_row(
  9575. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9576. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9577. }
  9578. }
  9579. static void ggml_compute_forward_get_rows_f32(
  9580. const struct ggml_compute_params * params,
  9581. struct ggml_tensor * dst) {
  9582. const struct ggml_tensor * src0 = dst->src[0];
  9583. const struct ggml_tensor * src1 = dst->src[1];
  9584. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9585. return;
  9586. }
  9587. GGML_TENSOR_BINARY_OP_LOCALS
  9588. const int64_t nc = ne00;
  9589. const int64_t nr = ggml_nelements(src1);
  9590. assert(ne0 == nc);
  9591. assert(ne02 == ne11);
  9592. assert(nb00 == sizeof(float));
  9593. assert(ggml_nrows(dst) == nr);
  9594. const int ith = params->ith;
  9595. const int nth = params->nth;
  9596. // rows per thread
  9597. const int dr = (nr + nth - 1)/nth;
  9598. // row range for this thread
  9599. const int ir0 = dr*ith;
  9600. const int ir1 = MIN(ir0 + dr, nr);
  9601. for (int64_t i = ir0; i < ir1; ++i) {
  9602. const int64_t i12 = i/(ne11*ne10);
  9603. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9604. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9605. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9606. ggml_vec_cpy_f32(nc,
  9607. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9608. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9609. }
  9610. }
  9611. static void ggml_compute_forward_get_rows(
  9612. const struct ggml_compute_params * params,
  9613. struct ggml_tensor * dst) {
  9614. const struct ggml_tensor * src0 = dst->src[0];
  9615. switch (src0->type) {
  9616. case GGML_TYPE_Q4_0:
  9617. case GGML_TYPE_Q4_1:
  9618. case GGML_TYPE_Q5_0:
  9619. case GGML_TYPE_Q5_1:
  9620. case GGML_TYPE_Q8_0:
  9621. case GGML_TYPE_Q8_1:
  9622. case GGML_TYPE_Q2_K:
  9623. case GGML_TYPE_Q3_K:
  9624. case GGML_TYPE_Q4_K:
  9625. case GGML_TYPE_Q5_K:
  9626. case GGML_TYPE_Q6_K:
  9627. case GGML_TYPE_IQ2_XXS:
  9628. case GGML_TYPE_IQ2_XS:
  9629. case GGML_TYPE_IQ3_XXS:
  9630. case GGML_TYPE_IQ1_S:
  9631. case GGML_TYPE_IQ1_M:
  9632. case GGML_TYPE_IQ4_NL:
  9633. case GGML_TYPE_IQ4_XS:
  9634. case GGML_TYPE_IQ3_S:
  9635. case GGML_TYPE_IQ2_S:
  9636. {
  9637. ggml_compute_forward_get_rows_q(params, dst);
  9638. } break;
  9639. case GGML_TYPE_F16:
  9640. {
  9641. ggml_compute_forward_get_rows_f16(params, dst);
  9642. } break;
  9643. case GGML_TYPE_F32:
  9644. case GGML_TYPE_I32:
  9645. {
  9646. ggml_compute_forward_get_rows_f32(params, dst);
  9647. } break;
  9648. default:
  9649. {
  9650. GGML_ASSERT(false);
  9651. } break;
  9652. }
  9653. //static bool first = true;
  9654. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9655. //if (first) {
  9656. // first = false;
  9657. //} else {
  9658. // for (int k = 0; k < dst->ne[1]; ++k) {
  9659. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9660. // for (int i = 0; i < 16; ++i) {
  9661. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9662. // }
  9663. // printf("\n");
  9664. // }
  9665. // printf("\n");
  9666. // }
  9667. // printf("\n");
  9668. // exit(0);
  9669. //}
  9670. }
  9671. // ggml_compute_forward_get_rows_back
  9672. static void ggml_compute_forward_get_rows_back_f32_f16(
  9673. const struct ggml_compute_params * params,
  9674. struct ggml_tensor * dst) {
  9675. const struct ggml_tensor * src0 = dst->src[0];
  9676. const struct ggml_tensor * src1 = dst->src[1];
  9677. GGML_ASSERT(params->ith == 0);
  9678. GGML_ASSERT(ggml_is_contiguous(dst));
  9679. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9680. if (params->type == GGML_TASK_TYPE_INIT) {
  9681. if (params->ith != 0) {
  9682. return;
  9683. }
  9684. memset(dst->data, 0, ggml_nbytes(dst));
  9685. }
  9686. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9687. return;
  9688. }
  9689. const int nc = src0->ne[0];
  9690. const int nr = ggml_nelements(src1);
  9691. GGML_ASSERT( dst->ne[0] == nc);
  9692. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9693. for (int i = 0; i < nr; ++i) {
  9694. const int r = ((int32_t *) src1->data)[i];
  9695. for (int j = 0; j < nc; ++j) {
  9696. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9697. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9698. }
  9699. }
  9700. }
  9701. static void ggml_compute_forward_get_rows_back_f32(
  9702. const struct ggml_compute_params * params,
  9703. struct ggml_tensor * dst) {
  9704. const struct ggml_tensor * src0 = dst->src[0];
  9705. const struct ggml_tensor * src1 = dst->src[1];
  9706. GGML_ASSERT(params->ith == 0);
  9707. GGML_ASSERT(ggml_is_contiguous(dst));
  9708. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9709. if (params->type == GGML_TASK_TYPE_INIT) {
  9710. if (params->ith != 0) {
  9711. return;
  9712. }
  9713. memset(dst->data, 0, ggml_nbytes(dst));
  9714. }
  9715. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9716. return;
  9717. }
  9718. const int nc = src0->ne[0];
  9719. const int nr = ggml_nelements(src1);
  9720. GGML_ASSERT( dst->ne[0] == nc);
  9721. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9722. for (int i = 0; i < nr; ++i) {
  9723. const int r = ((int32_t *) src1->data)[i];
  9724. ggml_vec_add_f32(nc,
  9725. (float *) ((char *) dst->data + r*dst->nb[1]),
  9726. (float *) ((char *) dst->data + r*dst->nb[1]),
  9727. (float *) ((char *) src0->data + i*src0->nb[1]));
  9728. }
  9729. }
  9730. static void ggml_compute_forward_get_rows_back(
  9731. const struct ggml_compute_params * params,
  9732. struct ggml_tensor * dst) {
  9733. const struct ggml_tensor * src0 = dst->src[0];
  9734. switch (src0->type) {
  9735. case GGML_TYPE_F16:
  9736. {
  9737. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9738. } break;
  9739. case GGML_TYPE_F32:
  9740. {
  9741. ggml_compute_forward_get_rows_back_f32(params, dst);
  9742. } break;
  9743. default:
  9744. {
  9745. GGML_ASSERT(false);
  9746. } break;
  9747. }
  9748. //static bool first = true;
  9749. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9750. //if (first) {
  9751. // first = false;
  9752. //} else {
  9753. // for (int k = 0; k < dst->ne[1]; ++k) {
  9754. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9755. // for (int i = 0; i < 16; ++i) {
  9756. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9757. // }
  9758. // printf("\n");
  9759. // }
  9760. // printf("\n");
  9761. // }
  9762. // printf("\n");
  9763. // exit(0);
  9764. //}
  9765. }
  9766. // ggml_compute_forward_diag
  9767. static void ggml_compute_forward_diag_f32(
  9768. const struct ggml_compute_params * params,
  9769. struct ggml_tensor * dst) {
  9770. const struct ggml_tensor * src0 = dst->src[0];
  9771. GGML_ASSERT(params->ith == 0);
  9772. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9773. return;
  9774. }
  9775. // TODO: handle transposed/permuted matrices
  9776. GGML_TENSOR_UNARY_OP_LOCALS
  9777. GGML_ASSERT(ne00 == ne0);
  9778. GGML_ASSERT(ne00 == ne1);
  9779. GGML_ASSERT(ne01 == 1);
  9780. GGML_ASSERT(ne02 == ne2);
  9781. GGML_ASSERT(ne03 == ne3);
  9782. GGML_ASSERT(nb00 == sizeof(float));
  9783. GGML_ASSERT(nb0 == sizeof(float));
  9784. for (int i3 = 0; i3 < ne3; i3++) {
  9785. for (int i2 = 0; i2 < ne2; i2++) {
  9786. for (int i1 = 0; i1 < ne1; i1++) {
  9787. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9788. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9789. for (int i0 = 0; i0 < i1; i0++) {
  9790. d[i0] = 0;
  9791. }
  9792. d[i1] = s[i1];
  9793. for (int i0 = i1+1; i0 < ne0; i0++) {
  9794. d[i0] = 0;
  9795. }
  9796. }
  9797. }
  9798. }
  9799. }
  9800. static void ggml_compute_forward_diag(
  9801. const struct ggml_compute_params * params,
  9802. struct ggml_tensor * dst) {
  9803. const struct ggml_tensor * src0 = dst->src[0];
  9804. switch (src0->type) {
  9805. case GGML_TYPE_F32:
  9806. {
  9807. ggml_compute_forward_diag_f32(params, dst);
  9808. } break;
  9809. default:
  9810. {
  9811. GGML_ASSERT(false);
  9812. } break;
  9813. }
  9814. }
  9815. // ggml_compute_forward_diag_mask_inf
  9816. static void ggml_compute_forward_diag_mask_f32(
  9817. const struct ggml_compute_params * params,
  9818. struct ggml_tensor * dst,
  9819. const float value) {
  9820. const struct ggml_tensor * src0 = dst->src[0];
  9821. const int ith = params->ith;
  9822. const int nth = params->nth;
  9823. const int n_past = ((int32_t *) dst->op_params)[0];
  9824. const bool inplace = src0->data == dst->data;
  9825. GGML_ASSERT(n_past >= 0);
  9826. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9827. if (ith != 0) {
  9828. return;
  9829. }
  9830. // memcpy needs to be synchronized across threads to avoid race conditions.
  9831. // => do it in INIT phase
  9832. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9833. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9834. memcpy(
  9835. ((char *) dst->data),
  9836. ((char *) src0->data),
  9837. ggml_nbytes(dst));
  9838. }
  9839. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9840. return;
  9841. }
  9842. // TODO: handle transposed/permuted matrices
  9843. const int n = ggml_nrows(src0);
  9844. const int nc = src0->ne[0];
  9845. const int nr = src0->ne[1];
  9846. const int nz = n/nr;
  9847. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9848. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9849. for (int k = 0; k < nz; k++) {
  9850. for (int j = ith; j < nr; j += nth) {
  9851. for (int i = n_past; i < nc; i++) {
  9852. if (i > n_past + j) {
  9853. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9854. }
  9855. }
  9856. }
  9857. }
  9858. }
  9859. static void ggml_compute_forward_diag_mask_inf(
  9860. const struct ggml_compute_params * params,
  9861. struct ggml_tensor * dst) {
  9862. const struct ggml_tensor * src0 = dst->src[0];
  9863. switch (src0->type) {
  9864. case GGML_TYPE_F32:
  9865. {
  9866. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9867. } break;
  9868. default:
  9869. {
  9870. GGML_ASSERT(false);
  9871. } break;
  9872. }
  9873. }
  9874. static void ggml_compute_forward_diag_mask_zero(
  9875. const struct ggml_compute_params * params,
  9876. struct ggml_tensor * dst) {
  9877. const struct ggml_tensor * src0 = dst->src[0];
  9878. switch (src0->type) {
  9879. case GGML_TYPE_F32:
  9880. {
  9881. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9882. } break;
  9883. default:
  9884. {
  9885. GGML_ASSERT(false);
  9886. } break;
  9887. }
  9888. }
  9889. // ggml_compute_forward_soft_max
  9890. static void ggml_compute_forward_soft_max_f32(
  9891. const struct ggml_compute_params * params,
  9892. struct ggml_tensor * dst) {
  9893. const struct ggml_tensor * src0 = dst->src[0];
  9894. const struct ggml_tensor * src1 = dst->src[1];
  9895. const struct ggml_tensor * src2 = dst->src[2];
  9896. assert(ggml_is_contiguous(dst));
  9897. assert(ggml_are_same_shape(src0, dst));
  9898. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9899. return;
  9900. }
  9901. float scale = 1.0f;
  9902. float max_bias = 0.0f;
  9903. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9904. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9905. // TODO: handle transposed/permuted matrices
  9906. const int ith = params->ith;
  9907. const int nth = params->nth;
  9908. GGML_TENSOR_UNARY_OP_LOCALS
  9909. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9910. // TODO: is this supposed to be ceil instead of floor?
  9911. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9912. const uint32_t n_head_kv = ne02;
  9913. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9914. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9915. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9916. const int nc = src0->ne[0];
  9917. const int nr = ggml_nrows(src0);
  9918. // rows per thread
  9919. const int dr = (nr + nth - 1)/nth;
  9920. // row range for this thread
  9921. const int ir0 = dr*ith;
  9922. const int ir1 = MIN(ir0 + dr, nr);
  9923. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9924. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9925. float * pos = src2 ? (float *) src2->data : src0->data;
  9926. for (int i1 = ir0; i1 < ir1; i1++) {
  9927. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9928. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9929. // broadcast the mask across rows
  9930. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9931. ggml_vec_cpy_f32 (nc, wp, sp);
  9932. ggml_vec_scale_f32(nc, wp, scale);
  9933. if (mp) {
  9934. ggml_vec_acc_f32(nc, wp, mp);
  9935. }
  9936. // ALiBi bias
  9937. if (max_bias > 0.0f) {
  9938. const uint32_t h = (i1/ne01)%ne02; // head
  9939. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9940. for (int i = 0; i < nc; i++) {
  9941. wp[i] = wp[i] + slope*pos[i];
  9942. }
  9943. }
  9944. #ifndef NDEBUG
  9945. for (int i = 0; i < nc; ++i) {
  9946. //printf("p[%d] = %f\n", i, p[i]);
  9947. assert(!isnan(wp[i]));
  9948. }
  9949. #endif
  9950. float max = -INFINITY;
  9951. ggml_vec_max_f32(nc, &max, wp);
  9952. ggml_float sum = 0.0;
  9953. uint16_t scvt;
  9954. for (int i = 0; i < nc; i++) {
  9955. if (wp[i] == -INFINITY) {
  9956. dp[i] = 0.0f;
  9957. } else {
  9958. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9959. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9960. memcpy(&scvt, &s, sizeof(scvt));
  9961. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9962. sum += (ggml_float)val;
  9963. dp[i] = val;
  9964. }
  9965. }
  9966. assert(sum > 0.0);
  9967. sum = 1.0/sum;
  9968. ggml_vec_scale_f32(nc, dp, sum);
  9969. #ifndef NDEBUG
  9970. for (int i = 0; i < nc; ++i) {
  9971. assert(!isnan(dp[i]));
  9972. assert(!isinf(dp[i]));
  9973. }
  9974. #endif
  9975. }
  9976. }
  9977. static void ggml_compute_forward_soft_max(
  9978. const struct ggml_compute_params * params,
  9979. struct ggml_tensor * dst) {
  9980. const struct ggml_tensor * src0 = dst->src[0];
  9981. switch (src0->type) {
  9982. case GGML_TYPE_F32:
  9983. {
  9984. ggml_compute_forward_soft_max_f32(params, dst);
  9985. } break;
  9986. default:
  9987. {
  9988. GGML_ASSERT(false);
  9989. } break;
  9990. }
  9991. }
  9992. // ggml_compute_forward_soft_max_back
  9993. static void ggml_compute_forward_soft_max_back_f32(
  9994. const struct ggml_compute_params * params,
  9995. struct ggml_tensor * dst) {
  9996. const struct ggml_tensor * src0 = dst->src[0];
  9997. const struct ggml_tensor * src1 = dst->src[1];
  9998. GGML_ASSERT(ggml_is_contiguous(src0));
  9999. GGML_ASSERT(ggml_is_contiguous(src1));
  10000. GGML_ASSERT(ggml_is_contiguous(dst));
  10001. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10002. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10003. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10004. return;
  10005. }
  10006. // TODO: handle transposed/permuted matrices
  10007. const int ith = params->ith;
  10008. const int nth = params->nth;
  10009. const int nc = src0->ne[0];
  10010. const int nr = ggml_nrows(src0);
  10011. // rows per thread
  10012. const int dr = (nr + nth - 1)/nth;
  10013. // row range for this thread
  10014. const int ir0 = dr*ith;
  10015. const int ir1 = MIN(ir0 + dr, nr);
  10016. for (int i1 = ir0; i1 < ir1; i1++) {
  10017. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10018. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10019. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10020. #ifndef NDEBUG
  10021. for (int i = 0; i < nc; ++i) {
  10022. //printf("p[%d] = %f\n", i, p[i]);
  10023. assert(!isnan(dy[i]));
  10024. assert(!isnan(y[i]));
  10025. }
  10026. #endif
  10027. // Jii = yi - yi*yi
  10028. // Jij = -yi*yj
  10029. // J = diag(y)-y.T*y
  10030. // dx = J * dy
  10031. // dxk = sum_i(Jki * dyi)
  10032. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10033. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10034. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10035. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10036. // dxk = -yk * dot(y, dy) + yk*dyk
  10037. // dxk = yk * (- dot(y, dy) + dyk)
  10038. // dxk = yk * (dyk - dot(y, dy))
  10039. //
  10040. // post-order:
  10041. // dot_y_dy := dot(y, dy)
  10042. // dx := dy
  10043. // dx := dx - dot_y_dy
  10044. // dx := dx * y
  10045. // linear runtime, no additional memory
  10046. float dot_y_dy = 0;
  10047. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10048. ggml_vec_cpy_f32 (nc, dx, dy);
  10049. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10050. ggml_vec_mul_f32 (nc, dx, dx, y);
  10051. #ifndef NDEBUG
  10052. for (int i = 0; i < nc; ++i) {
  10053. assert(!isnan(dx[i]));
  10054. assert(!isinf(dx[i]));
  10055. }
  10056. #endif
  10057. }
  10058. }
  10059. static void ggml_compute_forward_soft_max_back(
  10060. const struct ggml_compute_params * params,
  10061. struct ggml_tensor * dst) {
  10062. const struct ggml_tensor * src0 = dst->src[0];
  10063. switch (src0->type) {
  10064. case GGML_TYPE_F32:
  10065. {
  10066. ggml_compute_forward_soft_max_back_f32(params, dst);
  10067. } break;
  10068. default:
  10069. {
  10070. GGML_ASSERT(false);
  10071. } break;
  10072. }
  10073. }
  10074. // ggml_compute_forward_alibi
  10075. static void ggml_compute_forward_alibi_f32(
  10076. const struct ggml_compute_params * params,
  10077. struct ggml_tensor * dst) {
  10078. const struct ggml_tensor * src0 = dst->src[0];
  10079. assert(params->ith == 0);
  10080. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10081. return;
  10082. }
  10083. //const int n_past = ((int32_t *) dst->op_params)[0];
  10084. const int n_head = ((int32_t *) dst->op_params)[1];
  10085. float max_bias;
  10086. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10087. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10088. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10089. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10090. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10091. const int64_t n = ggml_nrows(src0);
  10092. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10093. const size_t nb0 = src0->nb[0];
  10094. const size_t nb1 = src0->nb[1];
  10095. const size_t nb2 = src0->nb[2];
  10096. //const int nb3 = src0->nb[3];
  10097. GGML_ASSERT(nb0 == sizeof(float));
  10098. GGML_ASSERT(n_head == ne2);
  10099. // add alibi to src0 (KQ_scaled)
  10100. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10101. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10102. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10103. for (int64_t k = 0; k < ne2_ne3; k++) {
  10104. // TODO: k*nb2 or k*nb3
  10105. float m_k;
  10106. if (k < n_heads_log2_floor) {
  10107. m_k = powf(m0, k + 1);
  10108. } else {
  10109. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10110. }
  10111. for (int64_t i = 0; i < ne0; i++) {
  10112. for (int64_t j = 0; j < ne1; j++) {
  10113. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10114. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10115. pdst[0] = i * m_k + src[0];
  10116. }
  10117. }
  10118. }
  10119. }
  10120. static void ggml_compute_forward_alibi_f16(
  10121. const struct ggml_compute_params * params,
  10122. struct ggml_tensor * dst) {
  10123. const struct ggml_tensor * src0 = dst->src[0];
  10124. assert(params->ith == 0);
  10125. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10126. return;
  10127. }
  10128. //const int n_past = ((int32_t *) dst->op_params)[0];
  10129. const int n_head = ((int32_t *) dst->op_params)[1];
  10130. float max_bias;
  10131. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10132. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10133. const int ne1 = src0->ne[1]; // seq_len_without_past
  10134. const int ne2 = src0->ne[2]; // n_head -> this is k
  10135. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10136. const int n = ggml_nrows(src0);
  10137. const int ne2_ne3 = n/ne1; // ne2*ne3
  10138. const int nb0 = src0->nb[0];
  10139. const int nb1 = src0->nb[1];
  10140. const int nb2 = src0->nb[2];
  10141. //const int nb3 = src0->nb[3];
  10142. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10143. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10144. GGML_ASSERT(n_head == ne2);
  10145. // add alibi to src0 (KQ_scaled)
  10146. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10147. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10148. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10149. for (int k = 0; k < ne2_ne3; k++) {
  10150. // TODO: k*nb2 or k*nb3
  10151. float m_k;
  10152. if (k < n_heads_log2_floor) {
  10153. m_k = powf(m0, k + 1);
  10154. } else {
  10155. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10156. }
  10157. for (int i = 0; i < ne0; i++) {
  10158. for (int j = 0; j < ne1; j++) {
  10159. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10160. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10161. // we return F32
  10162. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10163. }
  10164. }
  10165. }
  10166. }
  10167. static void ggml_compute_forward_alibi(
  10168. const struct ggml_compute_params * params,
  10169. struct ggml_tensor * dst) {
  10170. const struct ggml_tensor * src0 = dst->src[0];
  10171. switch (src0->type) {
  10172. case GGML_TYPE_F16:
  10173. {
  10174. ggml_compute_forward_alibi_f16(params, dst);
  10175. } break;
  10176. case GGML_TYPE_F32:
  10177. {
  10178. ggml_compute_forward_alibi_f32(params, dst);
  10179. } break;
  10180. case GGML_TYPE_Q4_0:
  10181. case GGML_TYPE_Q4_1:
  10182. case GGML_TYPE_Q5_0:
  10183. case GGML_TYPE_Q5_1:
  10184. case GGML_TYPE_Q8_0:
  10185. case GGML_TYPE_Q8_1:
  10186. case GGML_TYPE_Q2_K:
  10187. case GGML_TYPE_Q3_K:
  10188. case GGML_TYPE_Q4_K:
  10189. case GGML_TYPE_Q5_K:
  10190. case GGML_TYPE_Q6_K:
  10191. case GGML_TYPE_IQ2_XXS:
  10192. case GGML_TYPE_IQ2_XS:
  10193. case GGML_TYPE_IQ3_XXS:
  10194. case GGML_TYPE_IQ1_S:
  10195. case GGML_TYPE_IQ1_M:
  10196. case GGML_TYPE_IQ4_NL:
  10197. case GGML_TYPE_IQ4_XS:
  10198. case GGML_TYPE_IQ3_S:
  10199. case GGML_TYPE_IQ2_S:
  10200. case GGML_TYPE_Q8_K:
  10201. case GGML_TYPE_I8:
  10202. case GGML_TYPE_I16:
  10203. case GGML_TYPE_I32:
  10204. case GGML_TYPE_I64:
  10205. case GGML_TYPE_F64:
  10206. case GGML_TYPE_COUNT:
  10207. {
  10208. GGML_ASSERT(false);
  10209. } break;
  10210. }
  10211. }
  10212. // ggml_compute_forward_clamp
  10213. static void ggml_compute_forward_clamp_f32(
  10214. const struct ggml_compute_params * params,
  10215. struct ggml_tensor * dst) {
  10216. const struct ggml_tensor * src0 = dst->src[0];
  10217. assert(params->ith == 0);
  10218. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10219. return;
  10220. }
  10221. float min;
  10222. float max;
  10223. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10224. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10225. const int ith = params->ith;
  10226. const int nth = params->nth;
  10227. const int n = ggml_nrows(src0);
  10228. const int nc = src0->ne[0];
  10229. const size_t nb00 = src0->nb[0];
  10230. const size_t nb01 = src0->nb[1];
  10231. const size_t nb0 = dst->nb[0];
  10232. const size_t nb1 = dst->nb[1];
  10233. GGML_ASSERT( nb0 == sizeof(float));
  10234. GGML_ASSERT(nb00 == sizeof(float));
  10235. for (int j = ith; j < n; j += nth) {
  10236. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10237. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10238. for (int i = 0; i < nc; i++) {
  10239. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10240. }
  10241. }
  10242. }
  10243. static void ggml_compute_forward_clamp(
  10244. const struct ggml_compute_params * params,
  10245. struct ggml_tensor * dst) {
  10246. const struct ggml_tensor * src0 = dst->src[0];
  10247. switch (src0->type) {
  10248. case GGML_TYPE_F32:
  10249. {
  10250. ggml_compute_forward_clamp_f32(params, dst);
  10251. } break;
  10252. case GGML_TYPE_F16:
  10253. case GGML_TYPE_Q4_0:
  10254. case GGML_TYPE_Q4_1:
  10255. case GGML_TYPE_Q5_0:
  10256. case GGML_TYPE_Q5_1:
  10257. case GGML_TYPE_Q8_0:
  10258. case GGML_TYPE_Q8_1:
  10259. case GGML_TYPE_Q2_K:
  10260. case GGML_TYPE_Q3_K:
  10261. case GGML_TYPE_Q4_K:
  10262. case GGML_TYPE_Q5_K:
  10263. case GGML_TYPE_Q6_K:
  10264. case GGML_TYPE_IQ2_XXS:
  10265. case GGML_TYPE_IQ2_XS:
  10266. case GGML_TYPE_IQ3_XXS:
  10267. case GGML_TYPE_IQ1_S:
  10268. case GGML_TYPE_IQ1_M:
  10269. case GGML_TYPE_IQ4_NL:
  10270. case GGML_TYPE_IQ4_XS:
  10271. case GGML_TYPE_IQ3_S:
  10272. case GGML_TYPE_IQ2_S:
  10273. case GGML_TYPE_Q8_K:
  10274. case GGML_TYPE_I8:
  10275. case GGML_TYPE_I16:
  10276. case GGML_TYPE_I32:
  10277. case GGML_TYPE_I64:
  10278. case GGML_TYPE_F64:
  10279. case GGML_TYPE_COUNT:
  10280. {
  10281. GGML_ASSERT(false);
  10282. } break;
  10283. }
  10284. }
  10285. // ggml_compute_forward_rope
  10286. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10287. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10288. return 1 - MIN(1, MAX(0, y));
  10289. }
  10290. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10291. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10292. static void rope_yarn(
  10293. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10294. float * cos_theta, float * sin_theta
  10295. ) {
  10296. // Get n-d rotational scaling corrected for extrapolation
  10297. float theta_interp = freq_scale * theta_extrap;
  10298. float theta = theta_interp;
  10299. if (ext_factor != 0.0f) {
  10300. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10301. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10302. // Get n-d magnitude scaling corrected for interpolation
  10303. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10304. }
  10305. *cos_theta = cosf(theta) * mscale;
  10306. *sin_theta = sinf(theta) * mscale;
  10307. }
  10308. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10309. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10310. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10311. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10312. }
  10313. static void ggml_rope_cache_init(
  10314. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10315. float * cache, float sin_sign, float theta_scale
  10316. ) {
  10317. float theta = theta_base;
  10318. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10319. rope_yarn(
  10320. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10321. );
  10322. cache[i0 + 1] *= sin_sign;
  10323. theta *= theta_scale;
  10324. }
  10325. }
  10326. GGML_CALL void ggml_rope_yarn_corr_dims(
  10327. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10328. ) {
  10329. // start and end correction dims
  10330. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10331. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10332. dims[0] = MAX(0, start);
  10333. dims[1] = MIN(n_dims - 1, end);
  10334. }
  10335. static void ggml_compute_forward_rope_f32(
  10336. const struct ggml_compute_params * params,
  10337. struct ggml_tensor * dst,
  10338. const bool forward) {
  10339. const struct ggml_tensor * src0 = dst->src[0];
  10340. const struct ggml_tensor * src1 = dst->src[1];
  10341. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10342. return;
  10343. }
  10344. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10345. // these two only relevant for xPos RoPE:
  10346. float xpos_base;
  10347. bool xpos_down;
  10348. //const int n_past = ((int32_t *) dst->op_params)[0];
  10349. const int n_dims = ((int32_t *) dst->op_params)[1];
  10350. const int mode = ((int32_t *) dst->op_params)[2];
  10351. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10352. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10353. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10354. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10355. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10356. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10357. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10358. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10359. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10360. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10361. GGML_TENSOR_UNARY_OP_LOCALS
  10362. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10363. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10364. GGML_ASSERT(nb00 == sizeof(float));
  10365. const int ith = params->ith;
  10366. const int nth = params->nth;
  10367. const int nr = ggml_nrows(dst);
  10368. GGML_ASSERT(n_dims <= ne0);
  10369. GGML_ASSERT(n_dims % 2 == 0);
  10370. // rows per thread
  10371. const int dr = (nr + nth - 1)/nth;
  10372. // row range for this thread
  10373. const int ir0 = dr*ith;
  10374. const int ir1 = MIN(ir0 + dr, nr);
  10375. // row index used to determine which thread to use
  10376. int ir = 0;
  10377. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10378. const float inv_ndims = -1.f/n_dims;
  10379. float corr_dims[2];
  10380. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10381. const bool is_neox = mode & 2;
  10382. const bool is_glm = mode & 4;
  10383. // backward process uses inverse rotation by cos and sin.
  10384. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10385. // this essentially just switches the sign of sin.
  10386. const float sin_sign = forward ? 1.0f : -1.0f;
  10387. const int32_t * pos = (const int32_t *) src1->data;
  10388. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10389. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10390. const int64_t p = pos[i2];
  10391. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10392. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10393. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10394. }
  10395. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10396. if (ir++ < ir0) continue;
  10397. if (ir > ir1) break;
  10398. float theta_base = (float)p;
  10399. if (is_glm) {
  10400. theta_base = MIN(p, n_ctx - 2);
  10401. float block_theta = MAX(p - (n_ctx - 2), 0);
  10402. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10403. const float cos_theta = cosf(theta_base);
  10404. const float sin_theta = sinf(theta_base) * sin_sign;
  10405. const float cos_block_theta = cosf(block_theta);
  10406. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10407. theta_base *= theta_scale;
  10408. block_theta *= theta_scale;
  10409. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10410. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10411. const float x0 = src[0];
  10412. const float x1 = src[n_dims/2];
  10413. const float x2 = src[n_dims];
  10414. const float x3 = src[n_dims/2*3];
  10415. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10416. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10417. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10418. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10419. }
  10420. } else if (!is_neox) {
  10421. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10422. const float cos_theta = cache[i0 + 0];
  10423. const float sin_theta = cache[i0 + 1];
  10424. // zeta scaling for xPos only:
  10425. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10426. if (xpos_down) zeta = 1.0f / zeta;
  10427. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10428. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10429. const float x0 = src[0];
  10430. const float x1 = src[1];
  10431. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10432. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10433. }
  10434. } else {
  10435. // TODO: this might be wrong for ne0 != n_dims - need double check
  10436. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10437. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10438. theta_base *= freq_scale;
  10439. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10440. if (ic < n_dims) {
  10441. const int64_t ib = 0;
  10442. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10443. float cur_rot = inv_ndims * ic - ib;
  10444. float cos_theta, sin_theta;
  10445. rope_yarn(
  10446. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10447. &cos_theta, &sin_theta
  10448. );
  10449. sin_theta *= sin_sign;
  10450. theta_base *= theta_scale;
  10451. const int64_t i0 = ib*n_dims + ic/2;
  10452. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10453. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10454. const float x0 = src[0];
  10455. const float x1 = src[n_dims/2];
  10456. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10457. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10458. } else {
  10459. const int64_t i0 = ic;
  10460. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10461. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10462. dst_data[0] = src[0];
  10463. dst_data[1] = src[1];
  10464. }
  10465. }
  10466. }
  10467. }
  10468. }
  10469. }
  10470. }
  10471. static void ggml_compute_forward_rope_f16(
  10472. const struct ggml_compute_params * params,
  10473. struct ggml_tensor * dst,
  10474. const bool forward) {
  10475. const struct ggml_tensor * src0 = dst->src[0];
  10476. const struct ggml_tensor * src1 = dst->src[1];
  10477. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10478. return;
  10479. }
  10480. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10481. //const int n_past = ((int32_t *) dst->op_params)[0];
  10482. const int n_dims = ((int32_t *) dst->op_params)[1];
  10483. const int mode = ((int32_t *) dst->op_params)[2];
  10484. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10485. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10486. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10487. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10488. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10489. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10490. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10491. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10492. GGML_TENSOR_UNARY_OP_LOCALS
  10493. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10494. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10495. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10496. const int ith = params->ith;
  10497. const int nth = params->nth;
  10498. const int nr = ggml_nrows(dst);
  10499. GGML_ASSERT(n_dims <= ne0);
  10500. GGML_ASSERT(n_dims % 2 == 0);
  10501. // rows per thread
  10502. const int dr = (nr + nth - 1)/nth;
  10503. // row range for this thread
  10504. const int ir0 = dr*ith;
  10505. const int ir1 = MIN(ir0 + dr, nr);
  10506. // row index used to determine which thread to use
  10507. int ir = 0;
  10508. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10509. const float inv_ndims = -1.f/n_dims;
  10510. float corr_dims[2];
  10511. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10512. const bool is_neox = mode & 2;
  10513. const bool is_glm = mode & 4;
  10514. // backward process uses inverse rotation by cos and sin.
  10515. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10516. // this essentially just switches the sign of sin.
  10517. const float sin_sign = forward ? 1.0f : -1.0f;
  10518. const int32_t * pos = (const int32_t *) src1->data;
  10519. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10520. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10521. const int64_t p = pos[i2];
  10522. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10523. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10524. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10525. }
  10526. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10527. if (ir++ < ir0) continue;
  10528. if (ir > ir1) break;
  10529. float theta_base = (float)p;
  10530. if (is_glm) {
  10531. theta_base = MIN(p, n_ctx - 2);
  10532. float block_theta = MAX(p - (n_ctx - 2), 0);
  10533. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10534. const float cos_theta = cosf(theta_base);
  10535. const float sin_theta = sinf(theta_base) * sin_sign;
  10536. const float cos_block_theta = cosf(block_theta);
  10537. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10538. theta_base *= theta_scale;
  10539. block_theta *= theta_scale;
  10540. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10541. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10542. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10543. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10544. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10545. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10546. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10547. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10548. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10549. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10550. }
  10551. } else if (!is_neox) {
  10552. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10553. const float cos_theta = cache[i0 + 0];
  10554. const float sin_theta = cache[i0 + 1];
  10555. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10556. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10557. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10558. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10559. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10560. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10561. }
  10562. } else {
  10563. // TODO: this might be wrong for ne0 != n_dims - need double check
  10564. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10565. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10566. theta_base *= freq_scale;
  10567. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10568. if (ic < n_dims) {
  10569. const int64_t ib = 0;
  10570. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10571. float cur_rot = inv_ndims * ic - ib;
  10572. float cos_theta, sin_theta;
  10573. rope_yarn(
  10574. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10575. &cos_theta, &sin_theta
  10576. );
  10577. sin_theta *= sin_sign;
  10578. theta_base *= theta_scale;
  10579. const int64_t i0 = ib*n_dims + ic/2;
  10580. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10581. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10582. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10583. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10584. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10585. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10586. } else {
  10587. const int64_t i0 = ic;
  10588. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10589. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10590. dst_data[0] = src[0];
  10591. dst_data[1] = src[1];
  10592. }
  10593. }
  10594. }
  10595. }
  10596. }
  10597. }
  10598. }
  10599. static void ggml_compute_forward_rope(
  10600. const struct ggml_compute_params * params,
  10601. struct ggml_tensor * dst) {
  10602. const struct ggml_tensor * src0 = dst->src[0];
  10603. switch (src0->type) {
  10604. case GGML_TYPE_F16:
  10605. {
  10606. ggml_compute_forward_rope_f16(params, dst, true);
  10607. } break;
  10608. case GGML_TYPE_F32:
  10609. {
  10610. ggml_compute_forward_rope_f32(params, dst, true);
  10611. } break;
  10612. default:
  10613. {
  10614. GGML_ASSERT(false);
  10615. } break;
  10616. }
  10617. }
  10618. // ggml_compute_forward_rope_back
  10619. static void ggml_compute_forward_rope_back(
  10620. const struct ggml_compute_params * params,
  10621. struct ggml_tensor * dst) {
  10622. const struct ggml_tensor * src0 = dst->src[0];
  10623. switch (src0->type) {
  10624. case GGML_TYPE_F16:
  10625. {
  10626. ggml_compute_forward_rope_f16(params, dst, false);
  10627. } break;
  10628. case GGML_TYPE_F32:
  10629. {
  10630. ggml_compute_forward_rope_f32(params, dst, false);
  10631. } break;
  10632. default:
  10633. {
  10634. GGML_ASSERT(false);
  10635. } break;
  10636. }
  10637. }
  10638. // ggml_compute_forward_conv_transpose_1d
  10639. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10640. const struct ggml_compute_params * params,
  10641. struct ggml_tensor * dst) {
  10642. const struct ggml_tensor * src0 = dst->src[0];
  10643. const struct ggml_tensor * src1 = dst->src[1];
  10644. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10645. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10646. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10647. int64_t t0 = ggml_perf_time_us();
  10648. UNUSED(t0);
  10649. GGML_TENSOR_BINARY_OP_LOCALS
  10650. const int ith = params->ith;
  10651. const int nth = params->nth;
  10652. const int nk = ne00*ne01*ne02;
  10653. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10654. GGML_ASSERT(nb10 == sizeof(float));
  10655. if (params->type == GGML_TASK_TYPE_INIT) {
  10656. if (ith != 0) {
  10657. return;
  10658. }
  10659. memset(params->wdata, 0, params->wsize);
  10660. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10661. {
  10662. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10663. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10664. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10665. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10666. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10667. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10668. dst_data[i00*ne02 + i02] = src[i00];
  10669. }
  10670. }
  10671. }
  10672. }
  10673. // permute source data (src1) from (L x Cin) to (Cin x L)
  10674. {
  10675. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10676. ggml_fp16_t * dst_data = wdata;
  10677. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10678. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10679. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10680. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10681. }
  10682. }
  10683. }
  10684. // need to zero dst since we are accumulating into it
  10685. memset(dst->data, 0, ggml_nbytes(dst));
  10686. return;
  10687. }
  10688. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10689. return;
  10690. }
  10691. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10692. // total rows in dst
  10693. const int nr = ne1;
  10694. // rows per thread
  10695. const int dr = (nr + nth - 1)/nth;
  10696. // row range for this thread
  10697. const int ir0 = dr*ith;
  10698. const int ir1 = MIN(ir0 + dr, nr);
  10699. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10700. ggml_fp16_t * const wdata_src = wdata + nk;
  10701. for (int i1 = ir0; i1 < ir1; i1++) {
  10702. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10703. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10704. for (int i10 = 0; i10 < ne10; i10++) {
  10705. const int i1n = i10*ne11;
  10706. for (int i00 = 0; i00 < ne00; i00++) {
  10707. float v = 0;
  10708. ggml_vec_dot_f16(ne02, &v, 0,
  10709. (ggml_fp16_t *) wdata_src + i1n, 0,
  10710. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10711. dst_data[i10*s0 + i00] += v;
  10712. }
  10713. }
  10714. }
  10715. }
  10716. static void ggml_compute_forward_conv_transpose_1d_f32(
  10717. const struct ggml_compute_params * params,
  10718. struct ggml_tensor * dst) {
  10719. const struct ggml_tensor * src0 = dst->src[0];
  10720. const struct ggml_tensor * src1 = dst->src[1];
  10721. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10722. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10723. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10724. int64_t t0 = ggml_perf_time_us();
  10725. UNUSED(t0);
  10726. GGML_TENSOR_BINARY_OP_LOCALS
  10727. const int ith = params->ith;
  10728. const int nth = params->nth;
  10729. const int nk = ne00*ne01*ne02;
  10730. GGML_ASSERT(nb00 == sizeof(float));
  10731. GGML_ASSERT(nb10 == sizeof(float));
  10732. if (params->type == GGML_TASK_TYPE_INIT) {
  10733. if (ith != 0) {
  10734. return;
  10735. }
  10736. memset(params->wdata, 0, params->wsize);
  10737. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10738. {
  10739. float * const wdata = (float *) params->wdata + 0;
  10740. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10741. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10742. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10743. float * dst_data = wdata + i01*ne00*ne02;
  10744. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10745. dst_data[i00*ne02 + i02] = src[i00];
  10746. }
  10747. }
  10748. }
  10749. }
  10750. // prepare source data (src1)
  10751. {
  10752. float * const wdata = (float *) params->wdata + nk;
  10753. float * dst_data = wdata;
  10754. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10755. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10756. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10757. dst_data[i10*ne11 + i11] = src[i10];
  10758. }
  10759. }
  10760. }
  10761. // need to zero dst since we are accumulating into it
  10762. memset(dst->data, 0, ggml_nbytes(dst));
  10763. return;
  10764. }
  10765. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10766. return;
  10767. }
  10768. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10769. // total rows in dst
  10770. const int nr = ne1;
  10771. // rows per thread
  10772. const int dr = (nr + nth - 1)/nth;
  10773. // row range for this thread
  10774. const int ir0 = dr*ith;
  10775. const int ir1 = MIN(ir0 + dr, nr);
  10776. float * const wdata = (float *) params->wdata + 0;
  10777. float * const wdata_src = wdata + nk;
  10778. for (int i1 = ir0; i1 < ir1; i1++) {
  10779. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10780. float * wdata_kernel = wdata + i1*ne02*ne00;
  10781. for (int i10 = 0; i10 < ne10; i10++) {
  10782. const int i1n = i10*ne11;
  10783. for (int i00 = 0; i00 < ne00; i00++) {
  10784. float v = 0;
  10785. ggml_vec_dot_f32(ne02, &v, 0,
  10786. wdata_src + i1n, 0,
  10787. wdata_kernel + i00*ne02, 0, 1);
  10788. dst_data[i10*s0 + i00] += v;
  10789. }
  10790. }
  10791. }
  10792. }
  10793. static void ggml_compute_forward_conv_transpose_1d(
  10794. const struct ggml_compute_params * params,
  10795. struct ggml_tensor * dst) {
  10796. const struct ggml_tensor * src0 = dst->src[0];
  10797. switch (src0->type) {
  10798. case GGML_TYPE_F16:
  10799. {
  10800. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10801. } break;
  10802. case GGML_TYPE_F32:
  10803. {
  10804. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10805. } break;
  10806. default:
  10807. {
  10808. GGML_ASSERT(false);
  10809. } break;
  10810. }
  10811. }
  10812. // src0: kernel [OC, IC, KH, KW]
  10813. // src1: image [N, IC, IH, IW]
  10814. // dst: result [N, OH, OW, IC*KH*KW]
  10815. static void ggml_compute_forward_im2col_f32(
  10816. const struct ggml_compute_params * params,
  10817. struct ggml_tensor * dst) {
  10818. const struct ggml_tensor * src0 = dst->src[0];
  10819. const struct ggml_tensor * src1 = dst->src[1];
  10820. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10821. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10822. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10823. int64_t t0 = ggml_perf_time_us();
  10824. UNUSED(t0);
  10825. GGML_TENSOR_BINARY_OP_LOCALS;
  10826. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10827. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10828. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10829. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10830. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10831. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10832. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10833. const int ith = params->ith;
  10834. const int nth = params->nth;
  10835. const int64_t N = is_2D ? ne13 : ne12;
  10836. const int64_t IC = is_2D ? ne12 : ne11;
  10837. const int64_t IH = is_2D ? ne11 : 1;
  10838. const int64_t IW = ne10;
  10839. const int64_t KH = is_2D ? ne01 : 1;
  10840. const int64_t KW = ne00;
  10841. const int64_t OH = is_2D ? ne2 : 1;
  10842. const int64_t OW = ne1;
  10843. int ofs0 = is_2D ? nb13 : nb12;
  10844. int ofs1 = is_2D ? nb12 : nb11;
  10845. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10846. GGML_ASSERT(nb10 == sizeof(float));
  10847. if (params->type == GGML_TASK_TYPE_INIT) {
  10848. return;
  10849. }
  10850. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10851. return;
  10852. }
  10853. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10854. {
  10855. float * const wdata = (float *) dst->data;
  10856. for (int64_t in = 0; in < N; in++) {
  10857. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10858. for (int64_t iow = 0; iow < OW; iow++) {
  10859. for (int64_t iic = ith; iic < IC; iic += nth) {
  10860. // micro kernel
  10861. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10862. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10863. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10864. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10865. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10866. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10867. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10868. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10869. } else {
  10870. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10871. }
  10872. }
  10873. }
  10874. }
  10875. }
  10876. }
  10877. }
  10878. }
  10879. }
  10880. // src0: kernel [OC, IC, KH, KW]
  10881. // src1: image [N, IC, IH, IW]
  10882. // dst: result [N, OH, OW, IC*KH*KW]
  10883. static void ggml_compute_forward_im2col_f16(
  10884. const struct ggml_compute_params * params,
  10885. struct ggml_tensor * dst) {
  10886. const struct ggml_tensor * src0 = dst->src[0];
  10887. const struct ggml_tensor * src1 = dst->src[1];
  10888. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10889. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10890. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10891. int64_t t0 = ggml_perf_time_us();
  10892. UNUSED(t0);
  10893. GGML_TENSOR_BINARY_OP_LOCALS;
  10894. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10895. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10896. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10897. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10898. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10899. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10900. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10901. const int ith = params->ith;
  10902. const int nth = params->nth;
  10903. const int64_t N = is_2D ? ne13 : ne12;
  10904. const int64_t IC = is_2D ? ne12 : ne11;
  10905. const int64_t IH = is_2D ? ne11 : 1;
  10906. const int64_t IW = ne10;
  10907. const int64_t KH = is_2D ? ne01 : 1;
  10908. const int64_t KW = ne00;
  10909. const int64_t OH = is_2D ? ne2 : 1;
  10910. const int64_t OW = ne1;
  10911. int ofs0 = is_2D ? nb13 : nb12;
  10912. int ofs1 = is_2D ? nb12 : nb11;
  10913. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10914. GGML_ASSERT(nb10 == sizeof(float));
  10915. if (params->type == GGML_TASK_TYPE_INIT) {
  10916. return;
  10917. }
  10918. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10919. return;
  10920. }
  10921. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10922. {
  10923. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10924. for (int64_t in = 0; in < N; in++) {
  10925. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10926. for (int64_t iow = 0; iow < OW; iow++) {
  10927. for (int64_t iic = ith; iic < IC; iic += nth) {
  10928. // micro kernel
  10929. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10930. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10931. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10932. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10933. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10934. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10935. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10936. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10937. } else {
  10938. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10939. }
  10940. }
  10941. }
  10942. }
  10943. }
  10944. }
  10945. }
  10946. }
  10947. }
  10948. static void ggml_compute_forward_im2col(
  10949. const struct ggml_compute_params * params,
  10950. struct ggml_tensor * dst) {
  10951. switch (dst->type) {
  10952. case GGML_TYPE_F16:
  10953. {
  10954. ggml_compute_forward_im2col_f16(params, dst);
  10955. } break;
  10956. case GGML_TYPE_F32:
  10957. {
  10958. ggml_compute_forward_im2col_f32(params, dst);
  10959. } break;
  10960. default:
  10961. {
  10962. GGML_ASSERT(false);
  10963. } break;
  10964. }
  10965. }
  10966. // ggml_compute_forward_conv_transpose_2d
  10967. static void ggml_compute_forward_conv_transpose_2d(
  10968. const struct ggml_compute_params * params,
  10969. struct ggml_tensor * dst) {
  10970. const struct ggml_tensor * src0 = dst->src[0];
  10971. const struct ggml_tensor * src1 = dst->src[1];
  10972. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10973. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10974. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10975. int64_t t0 = ggml_perf_time_us();
  10976. UNUSED(t0);
  10977. GGML_TENSOR_BINARY_OP_LOCALS
  10978. const int ith = params->ith;
  10979. const int nth = params->nth;
  10980. const int nk = ne00*ne01*ne02*ne03;
  10981. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10982. GGML_ASSERT(nb10 == sizeof(float));
  10983. if (params->type == GGML_TASK_TYPE_INIT) {
  10984. if (ith != 0) {
  10985. return;
  10986. }
  10987. memset(params->wdata, 0, params->wsize);
  10988. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10989. {
  10990. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10991. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10992. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10993. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10994. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10995. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10996. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10997. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10998. }
  10999. }
  11000. }
  11001. }
  11002. }
  11003. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11004. {
  11005. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11006. for (int i12 = 0; i12 < ne12; i12++) {
  11007. for (int i11 = 0; i11 < ne11; i11++) {
  11008. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11009. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11010. for (int i10 = 0; i10 < ne10; i10++) {
  11011. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11012. }
  11013. }
  11014. }
  11015. }
  11016. memset(dst->data, 0, ggml_nbytes(dst));
  11017. return;
  11018. }
  11019. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11020. return;
  11021. }
  11022. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11023. // total patches in dst
  11024. const int np = ne2;
  11025. // patches per thread
  11026. const int dp = (np + nth - 1)/nth;
  11027. // patch range for this thread
  11028. const int ip0 = dp*ith;
  11029. const int ip1 = MIN(ip0 + dp, np);
  11030. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11031. ggml_fp16_t * const wdata_src = wdata + nk;
  11032. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11033. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11034. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11035. for (int i11 = 0; i11 < ne11; i11++) {
  11036. for (int i10 = 0; i10 < ne10; i10++) {
  11037. const int i1n = i11*ne10*ne12 + i10*ne12;
  11038. for (int i01 = 0; i01 < ne01; i01++) {
  11039. for (int i00 = 0; i00 < ne00; i00++) {
  11040. float v = 0;
  11041. ggml_vec_dot_f16(ne03, &v, 0,
  11042. wdata_src + i1n, 0,
  11043. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11044. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11045. }
  11046. }
  11047. }
  11048. }
  11049. }
  11050. }
  11051. // ggml_compute_forward_pool_1d_sk_p0
  11052. static void ggml_compute_forward_pool_1d_sk_p0(
  11053. const struct ggml_compute_params * params,
  11054. const enum ggml_op_pool op,
  11055. const int k,
  11056. struct ggml_tensor * dst) {
  11057. const struct ggml_tensor * src = dst->src[0];
  11058. assert(src->type == GGML_TYPE_F32);
  11059. assert(params->ith == 0);
  11060. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11061. return;
  11062. }
  11063. const char * cdata = (const char *)src->data;
  11064. const char * const data_end = cdata + ggml_nbytes(src);
  11065. float * drow = (float *)dst->data;
  11066. const int64_t rs = dst->ne[0];
  11067. while (cdata < data_end) {
  11068. const float * const srow = (const float *)cdata;
  11069. int j = 0;
  11070. for (int64_t i = 0; i < rs; ++i) {
  11071. switch (op) {
  11072. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11073. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11074. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11075. }
  11076. for (int ki = 0; ki < k; ++ki) {
  11077. switch (op) {
  11078. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11079. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11080. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11081. }
  11082. ++j;
  11083. }
  11084. switch (op) {
  11085. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11086. case GGML_OP_POOL_MAX: break;
  11087. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11088. }
  11089. }
  11090. cdata += src->nb[1];
  11091. drow += rs;
  11092. }
  11093. }
  11094. // ggml_compute_forward_pool_1d
  11095. static void ggml_compute_forward_pool_1d(
  11096. const struct ggml_compute_params * params,
  11097. struct ggml_tensor * dst) {
  11098. const int32_t * opts = (const int32_t *)dst->op_params;
  11099. enum ggml_op_pool op = opts[0];
  11100. const int k0 = opts[1];
  11101. const int s0 = opts[2];
  11102. const int p0 = opts[3];
  11103. GGML_ASSERT(p0 == 0); // padding not supported
  11104. GGML_ASSERT(k0 == s0); // only s = k supported
  11105. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11106. }
  11107. // ggml_compute_forward_pool_2d
  11108. static void ggml_compute_forward_pool_2d(
  11109. const struct ggml_compute_params * params,
  11110. struct ggml_tensor * dst) {
  11111. const struct ggml_tensor * src = dst->src[0];
  11112. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11113. GGML_ASSERT(params->ith == 0);
  11114. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11115. return;
  11116. }
  11117. const int32_t * opts = (const int32_t *)dst->op_params;
  11118. enum ggml_op_pool op = opts[0];
  11119. const int k0 = opts[1];
  11120. const int k1 = opts[2];
  11121. const int s0 = opts[3];
  11122. const int s1 = opts[4];
  11123. const int p0 = opts[5];
  11124. const int p1 = opts[6];
  11125. const char * cdata = (const char*)src->data;
  11126. const char * const data_end = cdata + ggml_nbytes(src);
  11127. const int64_t px = dst->ne[0];
  11128. const int64_t py = dst->ne[1];
  11129. const int64_t pa = px * py;
  11130. float * dplane = (float *)dst->data;
  11131. const int ka = k0 * k1;
  11132. const int offset0 = -p0;
  11133. const int offset1 = -p1;
  11134. while (cdata < data_end) {
  11135. for (int oy = 0; oy < py; ++oy) {
  11136. float * const drow = dplane + oy * px;
  11137. for (int ox = 0; ox < px; ++ox) {
  11138. float * const out = drow + ox;
  11139. switch (op) {
  11140. case GGML_OP_POOL_AVG: *out = 0; break;
  11141. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11142. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11143. }
  11144. const int ix = offset0 + ox * s0;
  11145. const int iy = offset1 + oy * s1;
  11146. for (int ky = 0; ky < k1; ++ky) {
  11147. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11148. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11149. for (int kx = 0; kx < k0; ++kx) {
  11150. int j = ix + kx;
  11151. if (j < 0 || j >= src->ne[0]) continue;
  11152. switch (op) {
  11153. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11154. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11155. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11156. }
  11157. }
  11158. }
  11159. switch (op) {
  11160. case GGML_OP_POOL_AVG: *out /= ka; break;
  11161. case GGML_OP_POOL_MAX: break;
  11162. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11163. }
  11164. }
  11165. }
  11166. cdata += src->nb[2];
  11167. dplane += pa;
  11168. }
  11169. }
  11170. // ggml_compute_forward_upscale
  11171. static void ggml_compute_forward_upscale_f32(
  11172. const struct ggml_compute_params * params,
  11173. struct ggml_tensor * dst) {
  11174. const struct ggml_tensor * src0 = dst->src[0];
  11175. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11176. return;
  11177. }
  11178. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11179. const int ith = params->ith;
  11180. const int nth = params->nth;
  11181. GGML_TENSOR_UNARY_OP_LOCALS
  11182. const int scale_factor = dst->op_params[0];
  11183. // TODO: optimize
  11184. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11185. const int64_t i03 = i3;
  11186. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11187. const int64_t i02 = i2;
  11188. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11189. const int64_t i01 = i1 / scale_factor;
  11190. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11191. const int64_t i00 = i0 / scale_factor;
  11192. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11193. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11194. *y = *x;
  11195. }
  11196. }
  11197. }
  11198. }
  11199. }
  11200. static void ggml_compute_forward_upscale(
  11201. const struct ggml_compute_params * params,
  11202. struct ggml_tensor * dst) {
  11203. const struct ggml_tensor * src0 = dst->src[0];
  11204. switch (src0->type) {
  11205. case GGML_TYPE_F32:
  11206. {
  11207. ggml_compute_forward_upscale_f32(params, dst);
  11208. } break;
  11209. default:
  11210. {
  11211. GGML_ASSERT(false);
  11212. } break;
  11213. }
  11214. }
  11215. // ggml_compute_forward_pad
  11216. static void ggml_compute_forward_pad_f32(
  11217. const struct ggml_compute_params * params,
  11218. struct ggml_tensor * dst) {
  11219. const struct ggml_tensor * src0 = dst->src[0];
  11220. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11221. return;
  11222. }
  11223. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11224. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11225. const int ith = params->ith;
  11226. const int nth = params->nth;
  11227. GGML_TENSOR_UNARY_OP_LOCALS
  11228. float * dst_ptr = (float *) dst->data;
  11229. // TODO: optimize
  11230. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11231. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11232. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11233. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11234. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11235. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11236. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11237. dst_ptr[dst_idx] = *src_ptr;
  11238. } else {
  11239. dst_ptr[dst_idx] = 0;
  11240. }
  11241. }
  11242. }
  11243. }
  11244. }
  11245. }
  11246. static void ggml_compute_forward_pad(
  11247. const struct ggml_compute_params * params,
  11248. struct ggml_tensor * dst) {
  11249. const struct ggml_tensor * src0 = dst->src[0];
  11250. switch (src0->type) {
  11251. case GGML_TYPE_F32:
  11252. {
  11253. ggml_compute_forward_pad_f32(params, dst);
  11254. } break;
  11255. default:
  11256. {
  11257. GGML_ASSERT(false);
  11258. } break;
  11259. }
  11260. }
  11261. // ggml_compute_forward_arange
  11262. static void ggml_compute_forward_arange_f32(
  11263. const struct ggml_compute_params * params,
  11264. struct ggml_tensor * dst) {
  11265. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11266. return;
  11267. }
  11268. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11269. const int ith = params->ith;
  11270. const int nth = params->nth;
  11271. const float start = ggml_get_op_params_f32(dst, 0);
  11272. const float stop = ggml_get_op_params_f32(dst, 1);
  11273. const float step = ggml_get_op_params_f32(dst, 2);
  11274. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11275. GGML_ASSERT(ggml_nelements(dst) == steps);
  11276. for (int64_t i = ith; i < steps; i+= nth) {
  11277. float value = start + step * i;
  11278. ((float *)dst->data)[i] = value;
  11279. }
  11280. }
  11281. static void ggml_compute_forward_arange(
  11282. const struct ggml_compute_params * params,
  11283. struct ggml_tensor * dst) {
  11284. switch (dst->type) {
  11285. case GGML_TYPE_F32:
  11286. {
  11287. ggml_compute_forward_arange_f32(params, dst);
  11288. } break;
  11289. default:
  11290. {
  11291. GGML_ASSERT(false);
  11292. } break;
  11293. }
  11294. }
  11295. static void ggml_compute_forward_timestep_embedding_f32(
  11296. const struct ggml_compute_params * params,
  11297. struct ggml_tensor * dst) {
  11298. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11299. return;
  11300. }
  11301. const struct ggml_tensor * src0 = dst->src[0];
  11302. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11303. const int ith = params->ith;
  11304. const int nth = params->nth;
  11305. GGML_TENSOR_UNARY_OP_LOCALS
  11306. const int dim = ggml_get_op_params_i32(dst, 0);
  11307. const int max_period = ggml_get_op_params_i32(dst, 1);
  11308. int half = dim / 2;
  11309. for (int64_t i = 0; i < ne00; i++) {
  11310. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11311. for (int64_t j = ith; j < half; j += nth) {
  11312. float timestep = ((float *)src0->data)[i];
  11313. float freq = (float)expf(-logf(max_period) * j / half);
  11314. float arg = timestep * freq;
  11315. embed_data[j] = cosf(arg);
  11316. embed_data[j + half] = sinf(arg);
  11317. }
  11318. if (dim % 2 != 0 && ith == 0) {
  11319. embed_data[dim] = 0.f;
  11320. }
  11321. }
  11322. }
  11323. static void ggml_compute_forward_timestep_embedding(
  11324. const struct ggml_compute_params * params,
  11325. struct ggml_tensor * dst) {
  11326. const struct ggml_tensor * src0 = dst->src[0];
  11327. switch (src0->type) {
  11328. case GGML_TYPE_F32:
  11329. {
  11330. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11331. } break;
  11332. default:
  11333. {
  11334. GGML_ASSERT(false);
  11335. } break;
  11336. }
  11337. }
  11338. // ggml_compute_forward_argsort
  11339. static void ggml_compute_forward_argsort_f32(
  11340. const struct ggml_compute_params * params,
  11341. struct ggml_tensor * dst) {
  11342. const struct ggml_tensor * src0 = dst->src[0];
  11343. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11344. return;
  11345. }
  11346. GGML_TENSOR_UNARY_OP_LOCALS
  11347. GGML_ASSERT(nb0 == sizeof(float));
  11348. const int ith = params->ith;
  11349. const int nth = params->nth;
  11350. const int64_t nr = ggml_nrows(src0);
  11351. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11352. for (int64_t i = ith; i < nr; i += nth) {
  11353. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11354. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11355. for (int64_t j = 0; j < ne0; j++) {
  11356. dst_data[j] = j;
  11357. }
  11358. // C doesn't have a functional sort, so we do a bubble sort instead
  11359. for (int64_t j = 0; j < ne0; j++) {
  11360. for (int64_t k = j + 1; k < ne0; k++) {
  11361. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11362. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11363. int32_t tmp = dst_data[j];
  11364. dst_data[j] = dst_data[k];
  11365. dst_data[k] = tmp;
  11366. }
  11367. }
  11368. }
  11369. }
  11370. }
  11371. static void ggml_compute_forward_argsort(
  11372. const struct ggml_compute_params * params,
  11373. struct ggml_tensor * dst) {
  11374. const struct ggml_tensor * src0 = dst->src[0];
  11375. switch (src0->type) {
  11376. case GGML_TYPE_F32:
  11377. {
  11378. ggml_compute_forward_argsort_f32(params, dst);
  11379. } break;
  11380. default:
  11381. {
  11382. GGML_ASSERT(false);
  11383. } break;
  11384. }
  11385. }
  11386. // ggml_compute_forward_flash_attn
  11387. static void ggml_compute_forward_flash_attn_f32(
  11388. const struct ggml_compute_params * params,
  11389. const bool masked,
  11390. struct ggml_tensor * dst) {
  11391. const struct ggml_tensor * q = dst->src[0];
  11392. const struct ggml_tensor * k = dst->src[1];
  11393. const struct ggml_tensor * v = dst->src[2];
  11394. int64_t t0 = ggml_perf_time_us();
  11395. UNUSED(t0);
  11396. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11397. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11398. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11399. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11400. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11401. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11402. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11403. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11404. const int ith = params->ith;
  11405. const int nth = params->nth;
  11406. const int64_t D = neq0;
  11407. const int64_t N = neq1;
  11408. const int64_t P = nek1 - N;
  11409. const int64_t M = P + N;
  11410. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11411. GGML_ASSERT(ne0 == D);
  11412. GGML_ASSERT(ne1 == N);
  11413. GGML_ASSERT(P >= 0);
  11414. GGML_ASSERT(nbq0 == sizeof(float));
  11415. GGML_ASSERT(nbk0 == sizeof(float));
  11416. GGML_ASSERT(nbv0 == sizeof(float));
  11417. GGML_ASSERT(neq0 == D);
  11418. GGML_ASSERT(nek0 == D);
  11419. GGML_ASSERT(nev1 == D);
  11420. GGML_ASSERT(neq1 == N);
  11421. GGML_ASSERT(nek1 == N + P);
  11422. GGML_ASSERT(nev1 == D);
  11423. // dst cannot be transposed or permuted
  11424. GGML_ASSERT(nb0 == sizeof(float));
  11425. GGML_ASSERT(nb0 <= nb1);
  11426. GGML_ASSERT(nb1 <= nb2);
  11427. GGML_ASSERT(nb2 <= nb3);
  11428. if (params->type == GGML_TASK_TYPE_INIT) {
  11429. return;
  11430. }
  11431. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11432. return;
  11433. }
  11434. // parallelize by q rows using ggml_vec_dot_f32
  11435. // total rows in q
  11436. const int nr = neq1*neq2*neq3;
  11437. // rows per thread
  11438. const int dr = (nr + nth - 1)/nth;
  11439. // row range for this thread
  11440. const int ir0 = dr*ith;
  11441. const int ir1 = MIN(ir0 + dr, nr);
  11442. const float scale = 1.0f/sqrtf(D);
  11443. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11444. for (int ir = ir0; ir < ir1; ++ir) {
  11445. // q indices
  11446. const int iq3 = ir/(neq2*neq1);
  11447. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11448. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11449. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11450. for (int i = M; i < Mup; ++i) {
  11451. S[i] = -INFINITY;
  11452. }
  11453. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11454. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11455. // k indices
  11456. const int ik3 = iq3;
  11457. const int ik2 = iq2 % nek2;
  11458. const int ik1 = ic;
  11459. // S indices
  11460. const int i1 = ik1;
  11461. ggml_vec_dot_f32(neq0,
  11462. S + i1, 0,
  11463. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11464. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11465. }
  11466. // scale
  11467. ggml_vec_scale_f32(masked_begin, S, scale);
  11468. for (int64_t i = masked_begin; i < M; i++) {
  11469. S[i] = -INFINITY;
  11470. }
  11471. // softmax
  11472. // exclude known -INF S[..] values from max and loop
  11473. // dont forget to set their SW values to zero
  11474. {
  11475. float max = -INFINITY;
  11476. ggml_vec_max_f32(masked_begin, &max, S);
  11477. ggml_float sum = 0.0;
  11478. {
  11479. #ifdef GGML_SOFT_MAX_ACCELERATE
  11480. max = -max;
  11481. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11482. vvexpf(S, S, &Mup);
  11483. ggml_vec_sum_f32(Mup, &sum, S);
  11484. #else
  11485. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11486. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11487. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11488. if (i >= masked_begin) {
  11489. break;
  11490. }
  11491. float * SS = S + i;
  11492. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11493. if (i + j >= masked_begin) {
  11494. break;
  11495. } else if (SS[j] == -INFINITY) {
  11496. SS[j] = 0.0f;
  11497. } else {
  11498. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11499. const float val = expf(SS[j] - max);
  11500. #else
  11501. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11502. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11503. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11504. #endif
  11505. sump[j] += (ggml_float)val;
  11506. SS[j] = val;
  11507. }
  11508. }
  11509. }
  11510. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11511. sum += sump[i];
  11512. }
  11513. #endif
  11514. }
  11515. assert(sum > 0.0);
  11516. sum = 1.0/sum;
  11517. ggml_vec_scale_f32(masked_begin, S, sum);
  11518. #ifndef NDEBUG
  11519. for (int i = 0; i < masked_begin; ++i) {
  11520. assert(!isnan(S[i]));
  11521. assert(!isinf(S[i]));
  11522. }
  11523. #endif
  11524. }
  11525. for (int64_t ic = 0; ic < nev1; ++ic) {
  11526. // dst indices
  11527. const int i1 = iq1;
  11528. const int i2 = iq2;
  11529. const int i3 = iq3;
  11530. // v indices
  11531. const int iv2 = iq2 % nev2;
  11532. const int iv3 = iq3;
  11533. ggml_vec_dot_f32(masked_begin,
  11534. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11535. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11536. S, 0, 1);
  11537. }
  11538. }
  11539. }
  11540. static void ggml_compute_forward_flash_attn_f16(
  11541. const struct ggml_compute_params * params,
  11542. const bool masked,
  11543. struct ggml_tensor * dst) {
  11544. const struct ggml_tensor * q = dst->src[0];
  11545. const struct ggml_tensor * k = dst->src[1];
  11546. const struct ggml_tensor * v = dst->src[2];
  11547. int64_t t0 = ggml_perf_time_us();
  11548. UNUSED(t0);
  11549. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11550. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11551. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11552. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11553. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11554. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11555. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11556. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11557. const int ith = params->ith;
  11558. const int nth = params->nth;
  11559. const int64_t D = neq0;
  11560. const int64_t N = neq1;
  11561. const int64_t P = nek1 - N;
  11562. const int64_t M = P + N;
  11563. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11564. GGML_ASSERT(ne0 == D);
  11565. GGML_ASSERT(ne1 == N);
  11566. GGML_ASSERT(P >= 0);
  11567. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11568. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11569. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11570. GGML_ASSERT(neq0 == D);
  11571. GGML_ASSERT(nek0 == D);
  11572. GGML_ASSERT(nev1 == D);
  11573. GGML_ASSERT(neq1 == N);
  11574. GGML_ASSERT(nek1 == N + P);
  11575. GGML_ASSERT(nev1 == D);
  11576. // dst cannot be transposed or permuted
  11577. GGML_ASSERT(nb0 == sizeof(float));
  11578. GGML_ASSERT(nb0 <= nb1);
  11579. GGML_ASSERT(nb1 <= nb2);
  11580. GGML_ASSERT(nb2 <= nb3);
  11581. if (params->type == GGML_TASK_TYPE_INIT) {
  11582. return;
  11583. }
  11584. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11585. return;
  11586. }
  11587. // parallelize by q rows using ggml_vec_dot_f32
  11588. // total rows in q
  11589. const int nr = neq1*neq2*neq3;
  11590. // rows per thread
  11591. const int dr = (nr + nth - 1)/nth;
  11592. // row range for this thread
  11593. const int ir0 = dr*ith;
  11594. const int ir1 = MIN(ir0 + dr, nr);
  11595. const float scale = 1.0f/sqrtf(D);
  11596. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11597. for (int ir = ir0; ir < ir1; ++ir) {
  11598. // q indices
  11599. const int iq3 = ir/(neq2*neq1);
  11600. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11601. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11602. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11603. for (int i = M; i < Mup; ++i) {
  11604. S[i] = -INFINITY;
  11605. }
  11606. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11607. for (int64_t ic = 0; ic < nek1; ++ic) {
  11608. // k indices
  11609. const int ik3 = iq3;
  11610. const int ik2 = iq2 % nek2;
  11611. const int ik1 = ic;
  11612. // S indices
  11613. const int i1 = ik1;
  11614. ggml_vec_dot_f16(neq0,
  11615. S + i1, 0,
  11616. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11617. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11618. }
  11619. } else {
  11620. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11621. // k indices
  11622. const int ik3 = iq3;
  11623. const int ik2 = iq2 % nek2;
  11624. const int ik1 = ic;
  11625. // S indices
  11626. const int i1 = ik1;
  11627. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11628. S + i1,
  11629. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11630. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11631. }
  11632. }
  11633. // scale
  11634. ggml_vec_scale_f32(nek1, S, scale);
  11635. if (masked) {
  11636. for (int64_t i = P; i < M; i++) {
  11637. if (i > P + iq1) {
  11638. S[i] = -INFINITY;
  11639. }
  11640. }
  11641. }
  11642. // softmax
  11643. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11644. // dont forget to set their S values to zero
  11645. {
  11646. float max = -INFINITY;
  11647. ggml_vec_max_f32(M, &max, S);
  11648. ggml_float sum = 0.0;
  11649. {
  11650. #ifdef GGML_SOFT_MAX_ACCELERATE
  11651. max = -max;
  11652. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11653. vvexpf(S, S, &Mup);
  11654. ggml_vec_sum_f32(Mup, &sum, S);
  11655. #else
  11656. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11657. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11658. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11659. float * SS = S + i;
  11660. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11661. if (SS[j] == -INFINITY) {
  11662. SS[j] = 0.0f;
  11663. } else {
  11664. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11665. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11666. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11667. sump[j] += (ggml_float)val;
  11668. SS[j] = val;
  11669. }
  11670. }
  11671. }
  11672. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11673. sum += sump[i];
  11674. }
  11675. #endif
  11676. }
  11677. assert(sum > 0.0);
  11678. sum = 1.0/sum;
  11679. ggml_vec_scale_f32(M, S, sum);
  11680. #ifndef NDEBUG
  11681. for (int i = 0; i < M; ++i) {
  11682. assert(!isnan(S[i]));
  11683. assert(!isinf(S[i]));
  11684. }
  11685. #endif
  11686. }
  11687. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11688. for (int64_t i = 0; i < M; i++) {
  11689. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11690. }
  11691. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11692. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11693. for (int64_t ic = 0; ic < nev1; ++ic) {
  11694. // dst indices
  11695. const int i1 = iq1;
  11696. const int i2 = iq2;
  11697. const int i3 = iq3;
  11698. // v indices
  11699. const int iv2 = iq2 % nev2;
  11700. const int iv3 = iq3;
  11701. ggml_vec_dot_f16(nev0,
  11702. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11703. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11704. S16, 0, 1);
  11705. }
  11706. } else {
  11707. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11708. // dst indices
  11709. const int i1 = iq1;
  11710. const int i2 = iq2;
  11711. const int i3 = iq3;
  11712. // v indices
  11713. const int iv2 = iq2 % nev2;
  11714. const int iv3 = iq3;
  11715. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11716. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11717. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11718. S16);
  11719. }
  11720. }
  11721. }
  11722. }
  11723. static void ggml_compute_forward_flash_attn(
  11724. const struct ggml_compute_params * params,
  11725. const bool masked,
  11726. struct ggml_tensor * dst) {
  11727. const struct ggml_tensor * q = dst->src[0];
  11728. switch (q->type) {
  11729. case GGML_TYPE_F16:
  11730. {
  11731. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11732. } break;
  11733. case GGML_TYPE_F32:
  11734. {
  11735. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11736. } break;
  11737. default:
  11738. {
  11739. GGML_ASSERT(false);
  11740. } break;
  11741. }
  11742. }
  11743. // ggml_compute_forward_flash_ff
  11744. static void ggml_compute_forward_flash_ff_f16(
  11745. const struct ggml_compute_params * params,
  11746. struct ggml_tensor * dst) {
  11747. const struct ggml_tensor * a = dst->src[0]; // F16
  11748. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11749. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11750. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11751. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11752. int64_t t0 = ggml_perf_time_us();
  11753. UNUSED(t0);
  11754. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11755. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11756. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11757. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11758. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11759. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11760. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11761. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11762. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11763. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11764. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11765. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11766. const int ith = params->ith;
  11767. const int nth = params->nth;
  11768. const int64_t D = nea0;
  11769. //const int64_t N = nea1;
  11770. const int64_t M = neb01;
  11771. GGML_ASSERT(ne0 == nea0);
  11772. GGML_ASSERT(ne1 == nea1);
  11773. GGML_ASSERT(ne2 == nea2);
  11774. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11775. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11776. GGML_ASSERT(nbb10 == sizeof(float));
  11777. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11778. GGML_ASSERT(nbc10 == sizeof(float));
  11779. GGML_ASSERT(neb00 == D);
  11780. GGML_ASSERT(neb01 == M);
  11781. GGML_ASSERT(neb10 == M);
  11782. GGML_ASSERT(neb11 == 1);
  11783. GGML_ASSERT(nec00 == M);
  11784. GGML_ASSERT(nec01 == D);
  11785. GGML_ASSERT(nec10 == D);
  11786. GGML_ASSERT(nec11 == 1);
  11787. // dst cannot be transposed or permuted
  11788. GGML_ASSERT(nb0 == sizeof(float));
  11789. GGML_ASSERT(nb0 <= nb1);
  11790. GGML_ASSERT(nb1 <= nb2);
  11791. GGML_ASSERT(nb2 <= nb3);
  11792. if (params->type == GGML_TASK_TYPE_INIT) {
  11793. return;
  11794. }
  11795. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11796. return;
  11797. }
  11798. // parallelize by a rows using ggml_vec_dot_f32
  11799. // total rows in a
  11800. const int nr = nea1*nea2*nea3;
  11801. // rows per thread
  11802. const int dr = (nr + nth - 1)/nth;
  11803. // row range for this thread
  11804. const int ir0 = dr*ith;
  11805. const int ir1 = MIN(ir0 + dr, nr);
  11806. for (int ir = ir0; ir < ir1; ++ir) {
  11807. // a indices
  11808. const int ia3 = ir/(nea2*nea1);
  11809. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11810. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11811. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11812. for (int64_t ic = 0; ic < neb01; ++ic) {
  11813. // b0 indices
  11814. const int ib03 = ia3;
  11815. const int ib02 = ia2;
  11816. const int ib01 = ic;
  11817. // S indices
  11818. const int i1 = ib01;
  11819. ggml_vec_dot_f16(nea0,
  11820. S + i1, 0,
  11821. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11822. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11823. }
  11824. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11825. //ggml_vec_gelu_f32(neb01, S, S);
  11826. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11827. for (int64_t i = 0; i < M; i++) {
  11828. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11829. }
  11830. ggml_vec_gelu_f16(neb01, S16, S16);
  11831. {
  11832. // dst indices
  11833. const int i1 = ia1;
  11834. const int i2 = ia2;
  11835. const int i3 = ia3;
  11836. for (int64_t ic = 0; ic < nec01; ++ic) {
  11837. ggml_vec_dot_f16(neb01,
  11838. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11839. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11840. S16, 0, 1);
  11841. }
  11842. ggml_vec_add_f32(nec01,
  11843. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11844. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11845. (float *) c1->data);
  11846. }
  11847. }
  11848. }
  11849. static void ggml_compute_forward_flash_ff(
  11850. const struct ggml_compute_params * params,
  11851. struct ggml_tensor * dst) {
  11852. const struct ggml_tensor * b0 = dst->src[1];
  11853. switch (b0->type) {
  11854. case GGML_TYPE_F16:
  11855. {
  11856. ggml_compute_forward_flash_ff_f16(params, dst);
  11857. } break;
  11858. case GGML_TYPE_F32:
  11859. {
  11860. GGML_ASSERT(false); // TODO
  11861. } break;
  11862. default:
  11863. {
  11864. GGML_ASSERT(false);
  11865. } break;
  11866. }
  11867. }
  11868. // ggml_compute_forward_flash_attn_back
  11869. static void ggml_compute_forward_flash_attn_back_f32(
  11870. const struct ggml_compute_params * params,
  11871. const bool masked,
  11872. struct ggml_tensor * dst) {
  11873. const struct ggml_tensor * q = dst->src[0];
  11874. const struct ggml_tensor * k = dst->src[1];
  11875. const struct ggml_tensor * v = dst->src[2];
  11876. const struct ggml_tensor * d = dst->src[3];
  11877. int64_t t0 = ggml_perf_time_us();
  11878. UNUSED(t0);
  11879. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11880. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11881. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11882. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11883. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11884. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11885. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11886. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11887. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11888. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11889. const int ith = params->ith;
  11890. const int nth = params->nth;
  11891. const int64_t D = neq0;
  11892. const int64_t N = neq1;
  11893. const int64_t P = nek1 - N;
  11894. const int64_t M = P + N;
  11895. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11896. const int mxDM = MAX(D, Mup);
  11897. // GGML_ASSERT(ne0 == D);
  11898. // GGML_ASSERT(ne1 == N);
  11899. GGML_ASSERT(P >= 0);
  11900. GGML_ASSERT(nbq0 == sizeof(float));
  11901. GGML_ASSERT(nbk0 == sizeof(float));
  11902. GGML_ASSERT(nbv0 == sizeof(float));
  11903. GGML_ASSERT(neq0 == D);
  11904. GGML_ASSERT(nek0 == D);
  11905. GGML_ASSERT(nev1 == D);
  11906. GGML_ASSERT(ned0 == D);
  11907. GGML_ASSERT(neq1 == N);
  11908. GGML_ASSERT(nek1 == N + P);
  11909. GGML_ASSERT(nev1 == D);
  11910. GGML_ASSERT(ned1 == N);
  11911. // dst cannot be transposed or permuted
  11912. GGML_ASSERT(nb0 == sizeof(float));
  11913. GGML_ASSERT(nb0 <= nb1);
  11914. GGML_ASSERT(nb1 <= nb2);
  11915. GGML_ASSERT(nb2 <= nb3);
  11916. if (params->type == GGML_TASK_TYPE_INIT) {
  11917. if (ith == 0) {
  11918. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11919. }
  11920. return;
  11921. }
  11922. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11923. return;
  11924. }
  11925. const int64_t elem_q = ggml_nelements(q);
  11926. const int64_t elem_k = ggml_nelements(k);
  11927. enum ggml_type result_type = dst->type;
  11928. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11929. const size_t tsize = ggml_type_size(result_type);
  11930. const size_t offs_q = 0;
  11931. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11932. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11933. void * grad_q = (char *) dst->data;
  11934. void * grad_k = (char *) dst->data + offs_k;
  11935. void * grad_v = (char *) dst->data + offs_v;
  11936. const size_t nbgq1 = nb0*neq0;
  11937. const size_t nbgq2 = nb0*neq0*neq1;
  11938. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11939. const size_t nbgk1 = nb0*nek0;
  11940. const size_t nbgk2 = nb0*nek0*nek1;
  11941. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11942. const size_t nbgv1 = nb0*nev0;
  11943. const size_t nbgv2 = nb0*nev0*nev1;
  11944. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11945. // parallelize by k rows using ggml_vec_dot_f32
  11946. // total rows in k
  11947. const int nr = nek2*nek3;
  11948. // rows per thread
  11949. const int dr = (nr + nth - 1)/nth;
  11950. // row range for this thread
  11951. const int ir0 = dr*ith;
  11952. const int ir1 = MIN(ir0 + dr, nr);
  11953. const float scale = 1.0f/sqrtf(D);
  11954. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11955. // how often k2 (and v2) is repeated in q2
  11956. int nrep = neq2/nek2;
  11957. for (int ir = ir0; ir < ir1; ++ir) {
  11958. // q indices
  11959. const int ik3 = ir/(nek2);
  11960. const int ik2 = ir - ik3*nek2;
  11961. const int iq3 = ik3;
  11962. const int id3 = ik3;
  11963. const int iv3 = ik3;
  11964. const int iv2 = ik2;
  11965. for (int irep = 0; irep < nrep; ++irep) {
  11966. const int iq2 = ik2 + irep*nek2;
  11967. const int id2 = iq2;
  11968. // (ik2 + irep*nek2) % nek2 == ik2
  11969. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11970. const int id1 = iq1;
  11971. // not sure about CACHE_LINE_SIZE_F32..
  11972. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11973. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11974. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11975. for (int i = M; i < Mup; ++i) {
  11976. S[i] = -INFINITY;
  11977. }
  11978. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11979. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11980. // k indices
  11981. const int ik1 = ic;
  11982. // S indices
  11983. const int i1 = ik1;
  11984. ggml_vec_dot_f32(neq0,
  11985. S + i1, 0,
  11986. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11987. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11988. }
  11989. // scale
  11990. ggml_vec_scale_f32(masked_begin, S, scale);
  11991. for (int64_t i = masked_begin; i < M; i++) {
  11992. S[i] = -INFINITY;
  11993. }
  11994. // softmax
  11995. // exclude known -INF S[..] values from max and loop
  11996. // dont forget to set their SM values to zero
  11997. {
  11998. float max = -INFINITY;
  11999. ggml_vec_max_f32(masked_begin, &max, S);
  12000. ggml_float sum = 0.0;
  12001. {
  12002. #ifdef GGML_SOFT_MAX_ACCELERATE
  12003. max = -max;
  12004. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12005. vvexpf(SM, SM, &Mup);
  12006. ggml_vec_sum_f32(Mup, &sum, SM);
  12007. #else
  12008. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12009. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12010. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12011. if (i >= masked_begin) {
  12012. break;
  12013. }
  12014. float * SR = S + i;
  12015. float * SW = SM + i;
  12016. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12017. if (i + j >= masked_begin) {
  12018. break;
  12019. } else if (SR[j] == -INFINITY) {
  12020. SW[j] = 0.0f;
  12021. } else {
  12022. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12023. const float val = expf(SR[j] - max);
  12024. #else
  12025. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12026. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12027. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12028. #endif
  12029. sump[j] += (ggml_float)val;
  12030. SW[j] = val;
  12031. }
  12032. }
  12033. }
  12034. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12035. sum += sump[i];
  12036. }
  12037. #endif
  12038. }
  12039. assert(sum > 0.0);
  12040. sum = 1.0/sum;
  12041. ggml_vec_scale_f32(masked_begin, SM, sum);
  12042. }
  12043. // step-by-step explanation
  12044. {
  12045. // forward-process shape grads from backward process
  12046. // parallel_for ik2,ik3:
  12047. // for irep:
  12048. // iq2 = ik2 + irep*nek2
  12049. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12050. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12051. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12052. // for iq1:
  12053. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12054. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12055. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12056. // S0 = -Inf [D,1,1,1]
  12057. // ~S1[i] = dot(kcur[:D,i], qcur)
  12058. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12059. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12060. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12061. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12062. // ~S5[i] = dot(vcur[:,i], S4)
  12063. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12064. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12065. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12066. // dst backward-/ grad[dst] = d
  12067. //
  12068. // output gradients with their dependencies:
  12069. //
  12070. // grad[kcur] = grad[S1].T @ qcur
  12071. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12072. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12073. // grad[S4] = grad[S5] @ vcur
  12074. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12075. // grad[qcur] = grad[S1] @ kcur
  12076. // grad[vcur] = grad[S5].T @ S4
  12077. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12078. //
  12079. // in post-order:
  12080. //
  12081. // S1 = qcur @ kcur.T
  12082. // S2 = S1 * scale
  12083. // S3 = diag_mask_inf(S2, P)
  12084. // S4 = softmax(S3)
  12085. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12086. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12087. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12088. // grad[qcur] = grad[S1] @ kcur
  12089. // grad[kcur] = grad[S1].T @ qcur
  12090. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12091. //
  12092. // using less variables (SM=S4):
  12093. //
  12094. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12095. // SM = softmax(S)
  12096. // S = d[:D,iq1,iq2,iq3] @ vcur
  12097. // dot_SM_gradSM = dot(SM, S)
  12098. // S = SM * (S - dot(SM, S))
  12099. // S = diag_mask_zero(S, P) * scale
  12100. //
  12101. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12102. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12103. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12104. }
  12105. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12106. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12107. // for ic:
  12108. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12109. // exclude known future zero S[..] values from operation
  12110. ggml_vec_set_f32(masked_begin, S, 0);
  12111. for (int64_t ic = 0; ic < D; ++ic) {
  12112. ggml_vec_mad_f32(masked_begin,
  12113. S,
  12114. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12115. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12116. }
  12117. // S = SM * (S - dot(SM, S))
  12118. float dot_SM_gradSM = 0;
  12119. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12120. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12121. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12122. // S = diag_mask_zero(S, P) * scale
  12123. // already done by above ggml_vec_set_f32
  12124. // exclude known zero S[..] values from operation
  12125. ggml_vec_scale_f32(masked_begin, S, scale);
  12126. // S shape [M,1]
  12127. // SM shape [M,1]
  12128. // kcur shape [D,M]
  12129. // qcur shape [D,1]
  12130. // vcur shape [M,D]
  12131. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12132. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12133. // for ic:
  12134. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12135. // exclude known zero S[..] values from loop
  12136. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12137. ggml_vec_mad_f32(D,
  12138. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12139. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12140. S[ic]);
  12141. }
  12142. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12143. // for ic:
  12144. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12145. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12146. // exclude known zero S[..] values from loop
  12147. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12148. ggml_vec_mad_f32(D,
  12149. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12150. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12151. S[ic]);
  12152. }
  12153. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12154. // for ic:
  12155. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12156. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12157. // exclude known zero SM[..] values from mad
  12158. for (int64_t ic = 0; ic < D; ++ic) {
  12159. ggml_vec_mad_f32(masked_begin,
  12160. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12161. SM,
  12162. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12163. }
  12164. }
  12165. }
  12166. }
  12167. }
  12168. static void ggml_compute_forward_flash_attn_back(
  12169. const struct ggml_compute_params * params,
  12170. const bool masked,
  12171. struct ggml_tensor * dst) {
  12172. const struct ggml_tensor * q = dst->src[0];
  12173. switch (q->type) {
  12174. case GGML_TYPE_F32:
  12175. {
  12176. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12177. } break;
  12178. default:
  12179. {
  12180. GGML_ASSERT(false);
  12181. } break;
  12182. }
  12183. }
  12184. // ggml_compute_forward_ssm_conv
  12185. static void ggml_compute_forward_ssm_conv_f32(
  12186. const struct ggml_compute_params * params,
  12187. struct ggml_tensor * dst) {
  12188. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12189. return;
  12190. }
  12191. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12192. const struct ggml_tensor * src1 = dst->src[1]; // x
  12193. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12194. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12195. const int ith = params->ith;
  12196. const int nth = params->nth;
  12197. const int nc = src2->ne[0]; // d_conv
  12198. const int nr = src0->ne[1]; // d_inner
  12199. const int n_t = src1->ne[1]; // n_tokens
  12200. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12201. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12202. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12203. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12204. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12205. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12206. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12207. // for use with the destination state offset between sequences
  12208. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12209. // rows per thread
  12210. const int dr = (nr + nth - 1)/nth;
  12211. // row range for this thread
  12212. const int ir0 = dr*ith;
  12213. const int ir1 = MIN(ir0 + dr, nr);
  12214. const int ir = ir1 - ir0;
  12215. if (n_kv > 1) {
  12216. // multiple sequences means it's hard to know when it's the first time a state is read,
  12217. // so copy them all over to the destination, just to be sure.
  12218. for (int i3 = 0; i3 < n_kv; ++i3) {
  12219. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12220. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12221. // can't use memcpy because of d_conv vs d_conv - 1
  12222. for (int i1 = 0; i1 < ir; ++i1) {
  12223. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12224. // copy s0 to last (d_conv - 1) columns of s
  12225. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12226. }
  12227. }
  12228. }
  12229. }
  12230. for (int i2 = 0; i2 < n_t; ++i2) {
  12231. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12232. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12233. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12234. float * s0; // {d_conv - 1, d_inner, n_kv}
  12235. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12236. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12237. int ne0s0;
  12238. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12239. // avoid needing to copy the state for the first token
  12240. if (i2 == 0) {
  12241. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12242. ne0s0 = src0->ne[0];
  12243. } else {
  12244. // the source is the last (d_conv - 1) columns of the destination
  12245. s0 = s + 1;
  12246. ne0s0 = nc;
  12247. }
  12248. // d_inner
  12249. for (int i1 = 0; i1 < ir; ++i1) {
  12250. // shift state left
  12251. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12252. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12253. }
  12254. // insert x on the last column
  12255. s[(nc - 1) + i1*nc] = x0[i1];
  12256. }
  12257. // handle copies when there are multiple output states
  12258. for (int i3 = 1; i3 < n_kv; ++i3) {
  12259. int32_t seq = sq[i3];
  12260. if (0 <= seq && seq < n_kv) {
  12261. float * s1 = s + (seq - sq[0])*nc*nr;
  12262. memcpy(s1, s, nc*ir*sizeof(float));
  12263. } else {
  12264. // stop at negative or too big seq_ids
  12265. break;
  12266. }
  12267. }
  12268. // it seems a little faster when this is separate from the state shift
  12269. for (int i1 = 0; i1 < ir; ++i1) {
  12270. // rowwise dot product
  12271. float sumf = 0.0f;
  12272. for (int i0 = 0; i0 < nc; ++i0) {
  12273. int i = i0 + i1*nc;
  12274. sumf += s[i] * c[i];
  12275. }
  12276. x[i1] = sumf;
  12277. }
  12278. }
  12279. }
  12280. static void ggml_compute_forward_ssm_conv(
  12281. const struct ggml_compute_params * params,
  12282. struct ggml_tensor * dst) {
  12283. switch (dst->src[0]->type) {
  12284. case GGML_TYPE_F32:
  12285. {
  12286. ggml_compute_forward_ssm_conv_f32(params, dst);
  12287. } break;
  12288. default:
  12289. {
  12290. GGML_ASSERT(false);
  12291. } break;
  12292. }
  12293. }
  12294. // ggml_compute_forward_ssm_scan
  12295. static void ggml_compute_forward_ssm_scan_f32(
  12296. const struct ggml_compute_params * params,
  12297. struct ggml_tensor * dst) {
  12298. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12299. return;
  12300. }
  12301. const struct ggml_tensor * src0 = dst->src[0]; // s
  12302. const struct ggml_tensor * src1 = dst->src[1]; // x
  12303. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12304. const struct ggml_tensor * src3 = dst->src[3]; // A
  12305. const struct ggml_tensor * src4 = dst->src[4]; // B
  12306. const struct ggml_tensor * src5 = dst->src[5]; // C
  12307. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12308. const int ith = params->ith;
  12309. const int nth = params->nth;
  12310. const int64_t nc = src0->ne[0]; // d_state
  12311. const int64_t nr = src0->ne[1]; // d_inner
  12312. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12313. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12314. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12315. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12316. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12317. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12318. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12319. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12320. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12321. // required for the dot product between s and C, and when copying the states
  12322. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12323. // required for per-sequence offsets for states
  12324. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12325. // required to get correct offset for state destination (i.e. src1->nb[2])
  12326. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12327. // rows per thread
  12328. const int dr = (nr + nth - 1)/nth;
  12329. // row range for this thread
  12330. const int ir0 = dr*ith;
  12331. const int ir1 = MIN(ir0 + dr, nr);
  12332. const int ir = ir1 - ir0;
  12333. if (n_kv > 1) {
  12334. // it's hard to know if the source states have already been copied
  12335. // when there are multiple, so copy them already.
  12336. for (int i3 = 0; i3 < n_kv; ++i3) {
  12337. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12338. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12339. memcpy(s, s0, nc*ir*sizeof(float));
  12340. }
  12341. }
  12342. for (int i2 = 0; i2 < n_t; ++i2) {
  12343. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12344. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12345. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12346. float * s0;
  12347. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12348. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12349. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12350. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12351. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12352. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12353. // avoid needing to copy the state for the first token
  12354. if (i2 == 0) {
  12355. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12356. } else {
  12357. // otherwise the source is the same as the destination
  12358. s0 = s;
  12359. }
  12360. // d_inner
  12361. for (int i1 = 0; i1 < ir; ++i1) {
  12362. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12363. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12364. float x_dt = x[i1] * dt_soft_plus;
  12365. float sumf = 0.0f;
  12366. // d_state
  12367. for (int i0 = 0; i0 < nc; ++i0) {
  12368. int i = i0 + i1*nc;
  12369. // state = prev_state * dA + dB * x
  12370. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12371. // y = rowwise_dotprod(state, C)
  12372. sumf += state * C[i0];
  12373. s[i] = state;
  12374. }
  12375. y[i1] = sumf;
  12376. }
  12377. // handle copies when there are multiple output states
  12378. for (int i3 = 1; i3 < n_kv; ++i3) {
  12379. int32_t seq = sq[i3];
  12380. if (0 <= seq && seq < n_kv) {
  12381. float * s1 = s + (seq - sq[0])*nc*nr;
  12382. memcpy(s1, s, nc*ir*sizeof(float));
  12383. } else {
  12384. // stop at negative or too big seq_ids
  12385. break;
  12386. }
  12387. }
  12388. }
  12389. }
  12390. static void ggml_compute_forward_ssm_scan(
  12391. const struct ggml_compute_params * params,
  12392. struct ggml_tensor * dst) {
  12393. switch (dst->src[0]->type) {
  12394. case GGML_TYPE_F32:
  12395. {
  12396. ggml_compute_forward_ssm_scan_f32(params, dst);
  12397. } break;
  12398. default:
  12399. {
  12400. GGML_ASSERT(false);
  12401. } break;
  12402. }
  12403. }
  12404. // ggml_compute_forward_win_part
  12405. static void ggml_compute_forward_win_part_f32(
  12406. const struct ggml_compute_params * params,
  12407. struct ggml_tensor * dst) {
  12408. const struct ggml_tensor * src0 = dst->src[0];
  12409. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12410. return;
  12411. }
  12412. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12413. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12414. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12415. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12416. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12417. assert(ne00 == ne0);
  12418. assert(ne3 == nep0*nep1);
  12419. // TODO: optimize / multi-thread
  12420. for (int py = 0; py < nep1; ++py) {
  12421. for (int px = 0; px < nep0; ++px) {
  12422. const int64_t i3 = py*nep0 + px;
  12423. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12424. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12425. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12426. const int64_t i02 = py*w + i2;
  12427. const int64_t i01 = px*w + i1;
  12428. const int64_t i00 = i0;
  12429. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12430. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12431. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12432. ((float *) dst->data)[i] = 0.0f;
  12433. } else {
  12434. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12435. }
  12436. }
  12437. }
  12438. }
  12439. }
  12440. }
  12441. }
  12442. static void ggml_compute_forward_win_part(
  12443. const struct ggml_compute_params * params,
  12444. struct ggml_tensor * dst) {
  12445. const struct ggml_tensor * src0 = dst->src[0];
  12446. switch (src0->type) {
  12447. case GGML_TYPE_F32:
  12448. {
  12449. ggml_compute_forward_win_part_f32(params, dst);
  12450. } break;
  12451. default:
  12452. {
  12453. GGML_ASSERT(false);
  12454. } break;
  12455. }
  12456. }
  12457. // ggml_compute_forward_win_unpart
  12458. static void ggml_compute_forward_win_unpart_f32(
  12459. const struct ggml_compute_params * params,
  12460. struct ggml_tensor * dst) {
  12461. const struct ggml_tensor * src0 = dst->src[0];
  12462. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12463. return;
  12464. }
  12465. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12466. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12467. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12468. // padding
  12469. const int px = (w - ne1%w)%w;
  12470. //const int py = (w - ne2%w)%w;
  12471. const int npx = (px + ne1)/w;
  12472. //const int npy = (py + ne2)/w;
  12473. assert(ne0 == ne00);
  12474. // TODO: optimize / multi-thread
  12475. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12476. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12477. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12478. const int ip2 = i2/w;
  12479. const int ip1 = i1/w;
  12480. const int64_t i02 = i2%w;
  12481. const int64_t i01 = i1%w;
  12482. const int64_t i00 = i0;
  12483. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12484. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12485. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12486. }
  12487. }
  12488. }
  12489. }
  12490. static void ggml_compute_forward_win_unpart(
  12491. const struct ggml_compute_params * params,
  12492. struct ggml_tensor * dst) {
  12493. const struct ggml_tensor * src0 = dst->src[0];
  12494. switch (src0->type) {
  12495. case GGML_TYPE_F32:
  12496. {
  12497. ggml_compute_forward_win_unpart_f32(params, dst);
  12498. } break;
  12499. default:
  12500. {
  12501. GGML_ASSERT(false);
  12502. } break;
  12503. }
  12504. }
  12505. //gmml_compute_forward_unary
  12506. static void ggml_compute_forward_unary(
  12507. const struct ggml_compute_params * params,
  12508. struct ggml_tensor * dst) {
  12509. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12510. switch (op) {
  12511. case GGML_UNARY_OP_ABS:
  12512. {
  12513. ggml_compute_forward_abs(params, dst);
  12514. } break;
  12515. case GGML_UNARY_OP_SGN:
  12516. {
  12517. ggml_compute_forward_sgn(params, dst);
  12518. } break;
  12519. case GGML_UNARY_OP_NEG:
  12520. {
  12521. ggml_compute_forward_neg(params, dst);
  12522. } break;
  12523. case GGML_UNARY_OP_STEP:
  12524. {
  12525. ggml_compute_forward_step(params, dst);
  12526. } break;
  12527. case GGML_UNARY_OP_TANH:
  12528. {
  12529. ggml_compute_forward_tanh(params, dst);
  12530. } break;
  12531. case GGML_UNARY_OP_ELU:
  12532. {
  12533. ggml_compute_forward_elu(params, dst);
  12534. } break;
  12535. case GGML_UNARY_OP_RELU:
  12536. {
  12537. ggml_compute_forward_relu(params, dst);
  12538. } break;
  12539. case GGML_UNARY_OP_GELU:
  12540. {
  12541. ggml_compute_forward_gelu(params, dst);
  12542. } break;
  12543. case GGML_UNARY_OP_GELU_QUICK:
  12544. {
  12545. ggml_compute_forward_gelu_quick(params, dst);
  12546. } break;
  12547. case GGML_UNARY_OP_SILU:
  12548. {
  12549. ggml_compute_forward_silu(params, dst);
  12550. } break;
  12551. case GGML_UNARY_OP_HARDSWISH:
  12552. {
  12553. ggml_compute_forward_hardswish(params, dst);
  12554. } break;
  12555. case GGML_UNARY_OP_HARDSIGMOID:
  12556. {
  12557. ggml_compute_forward_hardsigmoid(params, dst);
  12558. } break;
  12559. default:
  12560. {
  12561. GGML_ASSERT(false);
  12562. } break;
  12563. }
  12564. }
  12565. // ggml_compute_forward_get_rel_pos
  12566. static void ggml_compute_forward_get_rel_pos_f16(
  12567. const struct ggml_compute_params * params,
  12568. struct ggml_tensor * dst) {
  12569. const struct ggml_tensor * src0 = dst->src[0];
  12570. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12571. return;
  12572. }
  12573. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12574. GGML_TENSOR_UNARY_OP_LOCALS
  12575. const int64_t w = ne1;
  12576. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12577. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12578. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12579. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12580. const int64_t pos = (w - i1 - 1) + i2;
  12581. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12582. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12583. }
  12584. }
  12585. }
  12586. }
  12587. static void ggml_compute_forward_get_rel_pos(
  12588. const struct ggml_compute_params * params,
  12589. struct ggml_tensor * dst) {
  12590. const struct ggml_tensor * src0 = dst->src[0];
  12591. switch (src0->type) {
  12592. case GGML_TYPE_F16:
  12593. {
  12594. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12595. } break;
  12596. default:
  12597. {
  12598. GGML_ASSERT(false);
  12599. } break;
  12600. }
  12601. }
  12602. // ggml_compute_forward_add_rel_pos
  12603. static void ggml_compute_forward_add_rel_pos_f32(
  12604. const struct ggml_compute_params * params,
  12605. struct ggml_tensor * dst) {
  12606. const struct ggml_tensor * src0 = dst->src[0];
  12607. const struct ggml_tensor * src1 = dst->src[1];
  12608. const struct ggml_tensor * src2 = dst->src[2];
  12609. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12610. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12611. if (params->ith != 0) {
  12612. return;
  12613. }
  12614. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12615. return;
  12616. }
  12617. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12618. return;
  12619. }
  12620. int64_t t0 = ggml_perf_time_us();
  12621. UNUSED(t0);
  12622. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12623. float * src1_data = (float *) src1->data;
  12624. float * src2_data = (float *) src2->data;
  12625. float * dst_data = (float *) dst->data;
  12626. const int64_t ne10 = src1->ne[0];
  12627. const int64_t ne11 = src1->ne[1];
  12628. const int64_t ne12 = src1->ne[2];
  12629. const int64_t ne13 = src1->ne[3];
  12630. const int ith = params->ith;
  12631. const int nth = params->nth;
  12632. // total patches in dst
  12633. const int np = ne13;
  12634. // patches per thread
  12635. const int dp = (np + nth - 1)/nth;
  12636. // patch range for this thread
  12637. const int ip0 = dp*ith;
  12638. const int ip1 = MIN(ip0 + dp, np);
  12639. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12640. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12641. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12642. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12643. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12644. const int64_t jp0 = jp1 + i10;
  12645. const float src1_e = src1_data[jp0];
  12646. const float src2_e = src2_data[jp0];
  12647. const int64_t jdh = jp0 * ne10;
  12648. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12649. for (int64_t j = 0; j < ne10; ++j) {
  12650. dst_data[jdh + j ] += src2_e;
  12651. dst_data[jdw + j*ne10] += src1_e;
  12652. }
  12653. }
  12654. }
  12655. }
  12656. }
  12657. }
  12658. static void ggml_compute_forward_add_rel_pos(
  12659. const struct ggml_compute_params * params,
  12660. struct ggml_tensor * dst) {
  12661. const struct ggml_tensor * src0 = dst->src[0];
  12662. switch (src0->type) {
  12663. case GGML_TYPE_F32:
  12664. {
  12665. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12666. } break;
  12667. default:
  12668. {
  12669. GGML_ASSERT(false);
  12670. } break;
  12671. }
  12672. }
  12673. // ggml_compute_forward_map_unary
  12674. static void ggml_compute_forward_map_unary_f32(
  12675. const struct ggml_compute_params * params,
  12676. struct ggml_tensor * dst,
  12677. const ggml_unary_op_f32_t fun) {
  12678. const struct ggml_tensor * src0 = dst->src[0];
  12679. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12680. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12681. return;
  12682. }
  12683. const int n = ggml_nrows(src0);
  12684. const int nc = src0->ne[0];
  12685. assert( dst->nb[0] == sizeof(float));
  12686. assert(src0->nb[0] == sizeof(float));
  12687. for (int i = 0; i < n; i++) {
  12688. fun(nc,
  12689. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12690. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12691. }
  12692. }
  12693. static void ggml_compute_forward_map_unary(
  12694. const struct ggml_compute_params * params,
  12695. struct ggml_tensor * dst,
  12696. const ggml_unary_op_f32_t fun) {
  12697. const struct ggml_tensor * src0 = dst->src[0];
  12698. switch (src0->type) {
  12699. case GGML_TYPE_F32:
  12700. {
  12701. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12702. } break;
  12703. default:
  12704. {
  12705. GGML_ASSERT(false);
  12706. } break;
  12707. }
  12708. }
  12709. // ggml_compute_forward_map_binary
  12710. static void ggml_compute_forward_map_binary_f32(
  12711. const struct ggml_compute_params * params,
  12712. struct ggml_tensor * dst,
  12713. const ggml_binary_op_f32_t fun) {
  12714. const struct ggml_tensor * src0 = dst->src[0];
  12715. const struct ggml_tensor * src1 = dst->src[1];
  12716. assert(params->ith == 0);
  12717. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12718. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12719. return;
  12720. }
  12721. const int n = ggml_nrows(src0);
  12722. const int nc = src0->ne[0];
  12723. assert( dst->nb[0] == sizeof(float));
  12724. assert(src0->nb[0] == sizeof(float));
  12725. assert(src1->nb[0] == sizeof(float));
  12726. for (int i = 0; i < n; i++) {
  12727. fun(nc,
  12728. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12729. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12730. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12731. }
  12732. }
  12733. static void ggml_compute_forward_map_binary(
  12734. const struct ggml_compute_params * params,
  12735. struct ggml_tensor * dst,
  12736. const ggml_binary_op_f32_t fun) {
  12737. const struct ggml_tensor * src0 = dst->src[0];
  12738. switch (src0->type) {
  12739. case GGML_TYPE_F32:
  12740. {
  12741. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12742. } break;
  12743. default:
  12744. {
  12745. GGML_ASSERT(false);
  12746. } break;
  12747. }
  12748. }
  12749. // ggml_compute_forward_map_custom1
  12750. static void ggml_compute_forward_map_custom1_f32(
  12751. const struct ggml_compute_params * params,
  12752. struct ggml_tensor * dst,
  12753. const ggml_custom1_op_f32_t fun) {
  12754. const struct ggml_tensor * a = dst->src[0];
  12755. assert(params->ith == 0);
  12756. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12757. return;
  12758. }
  12759. fun(dst, a);
  12760. }
  12761. // ggml_compute_forward_map_custom2
  12762. static void ggml_compute_forward_map_custom2_f32(
  12763. const struct ggml_compute_params * params,
  12764. struct ggml_tensor * dst,
  12765. const ggml_custom2_op_f32_t fun) {
  12766. const struct ggml_tensor * a = dst->src[0];
  12767. const struct ggml_tensor * b = dst->src[1];
  12768. assert(params->ith == 0);
  12769. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12770. return;
  12771. }
  12772. fun(dst, a, b);
  12773. }
  12774. // ggml_compute_forward_map_custom3
  12775. static void ggml_compute_forward_map_custom3_f32(
  12776. const struct ggml_compute_params * params,
  12777. struct ggml_tensor * dst,
  12778. const ggml_custom3_op_f32_t fun) {
  12779. const struct ggml_tensor * a = dst->src[0];
  12780. const struct ggml_tensor * b = dst->src[1];
  12781. const struct ggml_tensor * c = dst->src[1];
  12782. assert(params->ith == 0);
  12783. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12784. return;
  12785. }
  12786. fun(dst, a, b, c);
  12787. }
  12788. // ggml_compute_forward_map_custom1
  12789. static void ggml_compute_forward_map_custom1(
  12790. const struct ggml_compute_params * params,
  12791. struct ggml_tensor * dst) {
  12792. const struct ggml_tensor * a = dst->src[0];
  12793. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12794. return;
  12795. }
  12796. struct ggml_map_custom1_op_params p;
  12797. memcpy(&p, dst->op_params, sizeof(p));
  12798. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12799. }
  12800. // ggml_compute_forward_map_custom2
  12801. static void ggml_compute_forward_map_custom2(
  12802. const struct ggml_compute_params * params,
  12803. struct ggml_tensor * dst) {
  12804. const struct ggml_tensor * a = dst->src[0];
  12805. const struct ggml_tensor * b = dst->src[1];
  12806. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12807. return;
  12808. }
  12809. struct ggml_map_custom2_op_params p;
  12810. memcpy(&p, dst->op_params, sizeof(p));
  12811. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12812. }
  12813. // ggml_compute_forward_map_custom3
  12814. static void ggml_compute_forward_map_custom3(
  12815. const struct ggml_compute_params * params,
  12816. struct ggml_tensor * dst) {
  12817. const struct ggml_tensor * a = dst->src[0];
  12818. const struct ggml_tensor * b = dst->src[1];
  12819. const struct ggml_tensor * c = dst->src[2];
  12820. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12821. return;
  12822. }
  12823. struct ggml_map_custom3_op_params p;
  12824. memcpy(&p, dst->op_params, sizeof(p));
  12825. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12826. }
  12827. // ggml_compute_forward_cross_entropy_loss
  12828. static void ggml_compute_forward_cross_entropy_loss_f32(
  12829. const struct ggml_compute_params * params,
  12830. struct ggml_tensor * dst) {
  12831. const struct ggml_tensor * src0 = dst->src[0];
  12832. const struct ggml_tensor * src1 = dst->src[1];
  12833. GGML_ASSERT(ggml_is_contiguous(src0));
  12834. GGML_ASSERT(ggml_is_contiguous(src1));
  12835. GGML_ASSERT(ggml_is_scalar(dst));
  12836. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12837. const int ith = params->ith;
  12838. const int nth = params->nth;
  12839. float * sums = (float *) params->wdata;
  12840. // TODO: handle transposed/permuted matrices
  12841. const int nc = src0->ne[0];
  12842. const int nr = ggml_nrows(src0);
  12843. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12844. if (params->type == GGML_TASK_TYPE_INIT) {
  12845. if (ith == 0) {
  12846. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12847. }
  12848. return;
  12849. }
  12850. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12851. if (ith == 0) {
  12852. float * dp = (float *) dst->data;
  12853. ggml_vec_sum_f32(nth, dp, sums);
  12854. dp[0] *= -1.0f / (float) nr;
  12855. }
  12856. return;
  12857. }
  12858. const double eps = 1e-9;
  12859. // rows per thread
  12860. const int dr = (nr + nth - 1)/nth;
  12861. // row range for this thread
  12862. const int ir0 = dr*ith;
  12863. const int ir1 = MIN(ir0 + dr, nr);
  12864. for (int i1 = ir0; i1 < ir1; i1++) {
  12865. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12866. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12867. float * st = ((float *) params->wdata) + nth + ith*nc;
  12868. #ifndef NDEBUG
  12869. for (int i = 0; i < nc; ++i) {
  12870. //printf("p[%d] = %f\n", i, p[i]);
  12871. assert(!isnan(s0[i]));
  12872. assert(!isnan(s1[i]));
  12873. }
  12874. #endif
  12875. // soft_max
  12876. ggml_float sum = 0.0;
  12877. {
  12878. float max = -INFINITY;
  12879. ggml_vec_max_f32(nc, &max, s0);
  12880. uint16_t scvt; UNUSED(scvt);
  12881. for (int i = 0; i < nc; i++) {
  12882. if (s0[i] == -INFINITY) {
  12883. st[i] = 0.0f;
  12884. } else {
  12885. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12886. const float s = s0[i] - max;
  12887. const float val = expf(s);
  12888. #else
  12889. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12890. memcpy(&scvt, &s, sizeof(scvt));
  12891. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12892. #endif
  12893. sum += (ggml_float)val;
  12894. st[i] = val;
  12895. }
  12896. }
  12897. assert(sum > 0.0);
  12898. // sum = 1.0/sum;
  12899. }
  12900. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12901. sum = (1.0 - eps) / sum;
  12902. ggml_vec_scale_f32(nc, st, sum);
  12903. ggml_vec_add1_f32(nc, st, st, eps);
  12904. ggml_vec_log_f32(nc, st, st);
  12905. ggml_vec_mul_f32(nc, st, st, s1);
  12906. float st_sum = 0;
  12907. ggml_vec_sum_f32(nc, &st_sum, st);
  12908. sums[ith] += st_sum;
  12909. #ifndef NDEBUG
  12910. for (int i = 0; i < nc; ++i) {
  12911. assert(!isnan(st[i]));
  12912. assert(!isinf(st[i]));
  12913. }
  12914. #endif
  12915. }
  12916. }
  12917. static void ggml_compute_forward_cross_entropy_loss(
  12918. const struct ggml_compute_params * params,
  12919. struct ggml_tensor * dst) {
  12920. const struct ggml_tensor * src0 = dst->src[0];
  12921. switch (src0->type) {
  12922. case GGML_TYPE_F32:
  12923. {
  12924. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12925. } break;
  12926. default:
  12927. {
  12928. GGML_ASSERT(false);
  12929. } break;
  12930. }
  12931. }
  12932. // ggml_compute_forward_cross_entropy_loss_back
  12933. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12934. const struct ggml_compute_params * params,
  12935. struct ggml_tensor * dst) {
  12936. const struct ggml_tensor * src0 = dst->src[0];
  12937. const struct ggml_tensor * src1 = dst->src[1];
  12938. const struct ggml_tensor * opt0 = dst->src[2];
  12939. GGML_ASSERT(ggml_is_contiguous(dst));
  12940. GGML_ASSERT(ggml_is_contiguous(src0));
  12941. GGML_ASSERT(ggml_is_contiguous(src1));
  12942. GGML_ASSERT(ggml_is_contiguous(opt0));
  12943. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12944. const int64_t ith = params->ith;
  12945. const int64_t nth = params->nth;
  12946. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12947. return;
  12948. }
  12949. const double eps = 1e-9;
  12950. // TODO: handle transposed/permuted matrices
  12951. const int64_t nc = src0->ne[0];
  12952. const int64_t nr = ggml_nrows(src0);
  12953. // rows per thread
  12954. const int64_t dr = (nr + nth - 1)/nth;
  12955. // row range for this thread
  12956. const int64_t ir0 = dr*ith;
  12957. const int64_t ir1 = MIN(ir0 + dr, nr);
  12958. float * d = (float *) opt0->data;
  12959. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12960. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12961. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12962. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12963. #ifndef NDEBUG
  12964. for (int i = 0; i < nc; ++i) {
  12965. //printf("p[%d] = %f\n", i, p[i]);
  12966. assert(!isnan(s0[i]));
  12967. assert(!isnan(s1[i]));
  12968. }
  12969. #endif
  12970. // soft_max
  12971. ggml_float sum = 0.0;
  12972. {
  12973. float max = -INFINITY;
  12974. ggml_vec_max_f32(nc, &max, s0);
  12975. uint16_t scvt; UNUSED(scvt);
  12976. for (int i = 0; i < nc; i++) {
  12977. if (s0[i] == -INFINITY) {
  12978. ds0[i] = 0.0f;
  12979. } else {
  12980. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12981. const float s = s0[i] - max;
  12982. const float val = expf(s);
  12983. #else
  12984. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12985. memcpy(&scvt, &s, sizeof(scvt));
  12986. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12987. #endif
  12988. sum += (ggml_float)val;
  12989. ds0[i] = val;
  12990. }
  12991. }
  12992. assert(sum > 0.0);
  12993. sum = (1.0 - eps)/sum;
  12994. }
  12995. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12996. ggml_vec_scale_f32(nc, ds0, sum);
  12997. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12998. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12999. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13000. #ifndef NDEBUG
  13001. for (int i = 0; i < nc; ++i) {
  13002. assert(!isnan(ds0[i]));
  13003. assert(!isinf(ds0[i]));
  13004. }
  13005. #endif
  13006. }
  13007. }
  13008. static void ggml_compute_forward_cross_entropy_loss_back(
  13009. const struct ggml_compute_params * params,
  13010. struct ggml_tensor * dst) {
  13011. const struct ggml_tensor * src0 = dst->src[0];
  13012. switch (src0->type) {
  13013. case GGML_TYPE_F32:
  13014. {
  13015. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13016. } break;
  13017. default:
  13018. {
  13019. GGML_ASSERT(false);
  13020. } break;
  13021. }
  13022. }
  13023. /////////////////////////////////
  13024. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13025. GGML_ASSERT(params);
  13026. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13027. return;
  13028. }
  13029. switch (tensor->op) {
  13030. case GGML_OP_DUP:
  13031. {
  13032. ggml_compute_forward_dup(params, tensor);
  13033. } break;
  13034. case GGML_OP_ADD:
  13035. {
  13036. ggml_compute_forward_add(params, tensor);
  13037. } break;
  13038. case GGML_OP_ADD1:
  13039. {
  13040. ggml_compute_forward_add1(params, tensor);
  13041. } break;
  13042. case GGML_OP_ACC:
  13043. {
  13044. ggml_compute_forward_acc(params, tensor);
  13045. } break;
  13046. case GGML_OP_SUB:
  13047. {
  13048. ggml_compute_forward_sub(params, tensor);
  13049. } break;
  13050. case GGML_OP_MUL:
  13051. {
  13052. ggml_compute_forward_mul(params, tensor);
  13053. } break;
  13054. case GGML_OP_DIV:
  13055. {
  13056. ggml_compute_forward_div(params, tensor);
  13057. } break;
  13058. case GGML_OP_SQR:
  13059. {
  13060. ggml_compute_forward_sqr(params, tensor);
  13061. } break;
  13062. case GGML_OP_SQRT:
  13063. {
  13064. ggml_compute_forward_sqrt(params, tensor);
  13065. } break;
  13066. case GGML_OP_LOG:
  13067. {
  13068. ggml_compute_forward_log(params, tensor);
  13069. } break;
  13070. case GGML_OP_SUM:
  13071. {
  13072. ggml_compute_forward_sum(params, tensor);
  13073. } break;
  13074. case GGML_OP_SUM_ROWS:
  13075. {
  13076. ggml_compute_forward_sum_rows(params, tensor);
  13077. } break;
  13078. case GGML_OP_MEAN:
  13079. {
  13080. ggml_compute_forward_mean(params, tensor);
  13081. } break;
  13082. case GGML_OP_ARGMAX:
  13083. {
  13084. ggml_compute_forward_argmax(params, tensor);
  13085. } break;
  13086. case GGML_OP_REPEAT:
  13087. {
  13088. ggml_compute_forward_repeat(params, tensor);
  13089. } break;
  13090. case GGML_OP_REPEAT_BACK:
  13091. {
  13092. ggml_compute_forward_repeat_back(params, tensor);
  13093. } break;
  13094. case GGML_OP_CONCAT:
  13095. {
  13096. ggml_compute_forward_concat(params, tensor);
  13097. } break;
  13098. case GGML_OP_SILU_BACK:
  13099. {
  13100. ggml_compute_forward_silu_back(params, tensor);
  13101. } break;
  13102. case GGML_OP_NORM:
  13103. {
  13104. ggml_compute_forward_norm(params, tensor);
  13105. } break;
  13106. case GGML_OP_RMS_NORM:
  13107. {
  13108. ggml_compute_forward_rms_norm(params, tensor);
  13109. } break;
  13110. case GGML_OP_RMS_NORM_BACK:
  13111. {
  13112. ggml_compute_forward_rms_norm_back(params, tensor);
  13113. } break;
  13114. case GGML_OP_GROUP_NORM:
  13115. {
  13116. ggml_compute_forward_group_norm(params, tensor);
  13117. } break;
  13118. case GGML_OP_MUL_MAT:
  13119. {
  13120. ggml_compute_forward_mul_mat(params, tensor);
  13121. } break;
  13122. case GGML_OP_MUL_MAT_ID:
  13123. {
  13124. ggml_compute_forward_mul_mat_id(params, tensor);
  13125. } break;
  13126. case GGML_OP_OUT_PROD:
  13127. {
  13128. ggml_compute_forward_out_prod(params, tensor);
  13129. } break;
  13130. case GGML_OP_SCALE:
  13131. {
  13132. ggml_compute_forward_scale(params, tensor);
  13133. } break;
  13134. case GGML_OP_SET:
  13135. {
  13136. ggml_compute_forward_set(params, tensor);
  13137. } break;
  13138. case GGML_OP_CPY:
  13139. {
  13140. ggml_compute_forward_cpy(params, tensor);
  13141. } break;
  13142. case GGML_OP_CONT:
  13143. {
  13144. ggml_compute_forward_cont(params, tensor);
  13145. } break;
  13146. case GGML_OP_RESHAPE:
  13147. {
  13148. ggml_compute_forward_reshape(params, tensor);
  13149. } break;
  13150. case GGML_OP_VIEW:
  13151. {
  13152. ggml_compute_forward_view(params, tensor);
  13153. } break;
  13154. case GGML_OP_PERMUTE:
  13155. {
  13156. ggml_compute_forward_permute(params, tensor);
  13157. } break;
  13158. case GGML_OP_TRANSPOSE:
  13159. {
  13160. ggml_compute_forward_transpose(params, tensor);
  13161. } break;
  13162. case GGML_OP_GET_ROWS:
  13163. {
  13164. ggml_compute_forward_get_rows(params, tensor);
  13165. } break;
  13166. case GGML_OP_GET_ROWS_BACK:
  13167. {
  13168. ggml_compute_forward_get_rows_back(params, tensor);
  13169. } break;
  13170. case GGML_OP_DIAG:
  13171. {
  13172. ggml_compute_forward_diag(params, tensor);
  13173. } break;
  13174. case GGML_OP_DIAG_MASK_INF:
  13175. {
  13176. ggml_compute_forward_diag_mask_inf(params, tensor);
  13177. } break;
  13178. case GGML_OP_DIAG_MASK_ZERO:
  13179. {
  13180. ggml_compute_forward_diag_mask_zero(params, tensor);
  13181. } break;
  13182. case GGML_OP_SOFT_MAX:
  13183. {
  13184. ggml_compute_forward_soft_max(params, tensor);
  13185. } break;
  13186. case GGML_OP_SOFT_MAX_BACK:
  13187. {
  13188. ggml_compute_forward_soft_max_back(params, tensor);
  13189. } break;
  13190. case GGML_OP_ROPE:
  13191. {
  13192. ggml_compute_forward_rope(params, tensor);
  13193. } break;
  13194. case GGML_OP_ROPE_BACK:
  13195. {
  13196. ggml_compute_forward_rope_back(params, tensor);
  13197. } break;
  13198. case GGML_OP_ALIBI:
  13199. {
  13200. ggml_compute_forward_alibi(params, tensor);
  13201. } break;
  13202. case GGML_OP_CLAMP:
  13203. {
  13204. ggml_compute_forward_clamp(params, tensor);
  13205. } break;
  13206. case GGML_OP_CONV_TRANSPOSE_1D:
  13207. {
  13208. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13209. } break;
  13210. case GGML_OP_IM2COL:
  13211. {
  13212. ggml_compute_forward_im2col(params, tensor);
  13213. } break;
  13214. case GGML_OP_CONV_TRANSPOSE_2D:
  13215. {
  13216. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13217. } break;
  13218. case GGML_OP_POOL_1D:
  13219. {
  13220. ggml_compute_forward_pool_1d(params, tensor);
  13221. } break;
  13222. case GGML_OP_POOL_2D:
  13223. {
  13224. ggml_compute_forward_pool_2d(params, tensor);
  13225. } break;
  13226. case GGML_OP_UPSCALE:
  13227. {
  13228. ggml_compute_forward_upscale(params, tensor);
  13229. } break;
  13230. case GGML_OP_PAD:
  13231. {
  13232. ggml_compute_forward_pad(params, tensor);
  13233. } break;
  13234. case GGML_OP_ARANGE:
  13235. {
  13236. ggml_compute_forward_arange(params, tensor);
  13237. } break;
  13238. case GGML_OP_TIMESTEP_EMBEDDING:
  13239. {
  13240. ggml_compute_forward_timestep_embedding(params, tensor);
  13241. } break;
  13242. case GGML_OP_ARGSORT:
  13243. {
  13244. ggml_compute_forward_argsort(params, tensor);
  13245. } break;
  13246. case GGML_OP_LEAKY_RELU:
  13247. {
  13248. ggml_compute_forward_leaky_relu(params, tensor);
  13249. } break;
  13250. case GGML_OP_FLASH_ATTN:
  13251. {
  13252. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13253. GGML_ASSERT(t == 0 || t == 1);
  13254. const bool masked = t != 0;
  13255. ggml_compute_forward_flash_attn(params, masked, tensor);
  13256. } break;
  13257. case GGML_OP_FLASH_FF:
  13258. {
  13259. ggml_compute_forward_flash_ff(params, tensor);
  13260. } break;
  13261. case GGML_OP_FLASH_ATTN_BACK:
  13262. {
  13263. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13264. GGML_ASSERT(t == 0 || t == 1);
  13265. bool masked = t != 0;
  13266. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13267. } break;
  13268. case GGML_OP_SSM_CONV:
  13269. {
  13270. ggml_compute_forward_ssm_conv(params, tensor);
  13271. } break;
  13272. case GGML_OP_SSM_SCAN:
  13273. {
  13274. ggml_compute_forward_ssm_scan(params, tensor);
  13275. } break;
  13276. case GGML_OP_WIN_PART:
  13277. {
  13278. ggml_compute_forward_win_part(params, tensor);
  13279. } break;
  13280. case GGML_OP_WIN_UNPART:
  13281. {
  13282. ggml_compute_forward_win_unpart(params, tensor);
  13283. } break;
  13284. case GGML_OP_UNARY:
  13285. {
  13286. ggml_compute_forward_unary(params, tensor);
  13287. } break;
  13288. case GGML_OP_GET_REL_POS:
  13289. {
  13290. ggml_compute_forward_get_rel_pos(params, tensor);
  13291. } break;
  13292. case GGML_OP_ADD_REL_POS:
  13293. {
  13294. ggml_compute_forward_add_rel_pos(params, tensor);
  13295. } break;
  13296. case GGML_OP_MAP_UNARY:
  13297. {
  13298. ggml_unary_op_f32_t fun;
  13299. memcpy(&fun, tensor->op_params, sizeof(fun));
  13300. ggml_compute_forward_map_unary(params, tensor, fun);
  13301. }
  13302. break;
  13303. case GGML_OP_MAP_BINARY:
  13304. {
  13305. ggml_binary_op_f32_t fun;
  13306. memcpy(&fun, tensor->op_params, sizeof(fun));
  13307. ggml_compute_forward_map_binary(params, tensor, fun);
  13308. }
  13309. break;
  13310. case GGML_OP_MAP_CUSTOM1_F32:
  13311. {
  13312. ggml_custom1_op_f32_t fun;
  13313. memcpy(&fun, tensor->op_params, sizeof(fun));
  13314. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13315. }
  13316. break;
  13317. case GGML_OP_MAP_CUSTOM2_F32:
  13318. {
  13319. ggml_custom2_op_f32_t fun;
  13320. memcpy(&fun, tensor->op_params, sizeof(fun));
  13321. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13322. }
  13323. break;
  13324. case GGML_OP_MAP_CUSTOM3_F32:
  13325. {
  13326. ggml_custom3_op_f32_t fun;
  13327. memcpy(&fun, tensor->op_params, sizeof(fun));
  13328. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13329. }
  13330. break;
  13331. case GGML_OP_MAP_CUSTOM1:
  13332. {
  13333. ggml_compute_forward_map_custom1(params, tensor);
  13334. }
  13335. break;
  13336. case GGML_OP_MAP_CUSTOM2:
  13337. {
  13338. ggml_compute_forward_map_custom2(params, tensor);
  13339. }
  13340. break;
  13341. case GGML_OP_MAP_CUSTOM3:
  13342. {
  13343. ggml_compute_forward_map_custom3(params, tensor);
  13344. }
  13345. break;
  13346. case GGML_OP_CROSS_ENTROPY_LOSS:
  13347. {
  13348. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13349. }
  13350. break;
  13351. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13352. {
  13353. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13354. }
  13355. break;
  13356. case GGML_OP_NONE:
  13357. {
  13358. // nop
  13359. } break;
  13360. case GGML_OP_COUNT:
  13361. {
  13362. GGML_ASSERT(false);
  13363. } break;
  13364. }
  13365. }
  13366. ////////////////////////////////////////////////////////////////////////////////
  13367. static size_t ggml_hash_size(size_t min_sz) {
  13368. // next primes after powers of two
  13369. static const size_t primes[] = {
  13370. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13371. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13372. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13373. 16777259, 33554467, 67108879, 134217757, 268435459,
  13374. 536870923, 1073741827, 2147483659
  13375. };
  13376. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13377. // find the smallest prime that is larger or equal to min_sz
  13378. size_t l = 0;
  13379. size_t r = n_primes;
  13380. while (l < r) {
  13381. size_t m = (l + r)/2;
  13382. if (primes[m] < min_sz) {
  13383. l = m + 1;
  13384. } else {
  13385. r = m;
  13386. }
  13387. }
  13388. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13389. return sz;
  13390. }
  13391. static size_t ggml_hash(const void * p) {
  13392. return (size_t)p;
  13393. }
  13394. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13395. size_t h = ggml_hash(key) % hash_set.size;
  13396. // linear probing
  13397. size_t i = h;
  13398. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13399. i = (i + 1) % hash_set.size;
  13400. if (i == h) {
  13401. // visited all hash table entries -> not found
  13402. return GGML_HASHTABLE_FULL;
  13403. }
  13404. }
  13405. return i;
  13406. }
  13407. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13408. size_t i = ggml_hash_find(hash_set, key);
  13409. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13410. }
  13411. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13412. size_t i = ggml_hash_find(hash_set, key);
  13413. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13414. if (hash_set.keys[i] == key) {
  13415. return GGML_HASHTABLE_ALREADY_EXISTS;
  13416. }
  13417. // insert
  13418. GGML_ASSERT(hash_set.keys[i] == NULL);
  13419. hash_set.keys[i] = key;
  13420. return i;
  13421. }
  13422. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13423. size_t i = ggml_hash_find(hash_set, key);
  13424. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13425. hash_set.keys[i] = key;
  13426. return i;
  13427. }
  13428. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13429. size = ggml_hash_size(size);
  13430. struct ggml_hash_set result;
  13431. result.size = size;
  13432. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13433. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13434. return result;
  13435. }
  13436. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13437. GGML_FREE(hash_set.keys);
  13438. }
  13439. struct hash_map {
  13440. struct ggml_hash_set set;
  13441. struct ggml_tensor ** vals;
  13442. };
  13443. static struct hash_map * ggml_new_hash_map(size_t size) {
  13444. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13445. result->set = ggml_hash_set_new(size);
  13446. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13447. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13448. return result;
  13449. }
  13450. static void ggml_hash_map_free(struct hash_map * map) {
  13451. ggml_hash_set_free(map->set);
  13452. GGML_FREE(map->vals);
  13453. GGML_FREE(map);
  13454. }
  13455. // gradient checkpointing
  13456. static struct ggml_tensor * ggml_recompute_graph_node(
  13457. struct ggml_context * ctx,
  13458. struct ggml_cgraph * graph,
  13459. struct hash_map * replacements,
  13460. struct ggml_tensor * node) {
  13461. if (node == NULL) {
  13462. return NULL;
  13463. }
  13464. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13465. return node;
  13466. }
  13467. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13468. return node;
  13469. }
  13470. int count_children = 0;
  13471. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13472. if (node->src[k]) {
  13473. ++count_children;
  13474. }
  13475. }
  13476. if (count_children == 0) {
  13477. return node;
  13478. }
  13479. size_t i = ggml_hash_find(replacements->set, node);
  13480. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13481. if (replacements->set.keys[i] == node) {
  13482. return replacements->vals[i];
  13483. }
  13484. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13485. // insert clone into replacements
  13486. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13487. replacements->set.keys[i] = node;
  13488. replacements->vals[i] = clone;
  13489. clone->op = node->op;
  13490. clone->grad = node->grad;
  13491. clone->flags = node->flags;
  13492. clone->extra = node->extra;
  13493. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13494. clone->nb[k] = node->nb[k];
  13495. }
  13496. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13497. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13498. }
  13499. if (node->view_src != NULL) {
  13500. clone->data = (node->view_src->data == NULL)
  13501. ? NULL // view_src not yet allocated
  13502. : (char *) node->view_src->data // view_src already allocated
  13503. + node->view_offs;
  13504. clone->view_src = node->view_src;
  13505. clone->view_offs = node->view_offs;
  13506. }
  13507. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13508. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13509. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13510. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13511. return clone;
  13512. }
  13513. void ggml_build_backward_gradient_checkpointing(
  13514. struct ggml_context * ctx,
  13515. struct ggml_cgraph * gf,
  13516. struct ggml_cgraph * gb,
  13517. struct ggml_cgraph * gb_tmp,
  13518. struct ggml_tensor * * checkpoints,
  13519. int n_checkpoints) {
  13520. ggml_graph_cpy(gf, gb_tmp);
  13521. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13522. if (n_checkpoints <= 0) {
  13523. ggml_graph_cpy(gb_tmp, gb);
  13524. return;
  13525. }
  13526. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13527. // insert checkpoints in replacements
  13528. for (int i = 0; i < n_checkpoints; ++i) {
  13529. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13530. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13531. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13532. replacements->set.keys[k] = checkpoints[i];
  13533. replacements->vals[k] = checkpoints[i];
  13534. }
  13535. ggml_graph_cpy(gf, gb);
  13536. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13537. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13538. // by recomputing them from checkpoints
  13539. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13540. struct ggml_tensor * node = gb_tmp->nodes[i];
  13541. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13542. // insert new tensors recomputing src, reusing already made replacements,
  13543. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13544. // recurse for input tensors,
  13545. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13546. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13547. }
  13548. // insert rewritten backward node with replacements made into resulting backward graph gb
  13549. ggml_build_forward_expand(gb, node);
  13550. }
  13551. ggml_hash_map_free(replacements);
  13552. }
  13553. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13554. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13555. if (ggml_hash_contains(zero_table, a)) {
  13556. return b;
  13557. } else {
  13558. return ggml_add_impl(ctx, a, b, false);
  13559. }
  13560. }
  13561. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13562. if (ggml_hash_contains(zero_table, a)) {
  13563. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13564. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13565. } else {
  13566. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13567. }
  13568. }
  13569. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13570. if (ggml_hash_contains(zero_table, a)) {
  13571. return ggml_repeat(ctx, b, a);
  13572. } else {
  13573. return ggml_add1_impl(ctx, a, b, false);
  13574. }
  13575. }
  13576. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13577. if (ggml_hash_contains(zero_table, a)) {
  13578. return ggml_neg(ctx, b);
  13579. } else {
  13580. return ggml_sub_impl(ctx, a, b, false);
  13581. }
  13582. }
  13583. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13584. struct ggml_tensor * src0 = tensor->src[0];
  13585. struct ggml_tensor * src1 = tensor->src[1];
  13586. switch (tensor->op) {
  13587. case GGML_OP_DUP:
  13588. {
  13589. if (src0->grad) {
  13590. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13591. }
  13592. } break;
  13593. case GGML_OP_ADD:
  13594. {
  13595. if (src0->grad) {
  13596. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13597. }
  13598. if (src1->grad) {
  13599. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13600. }
  13601. } break;
  13602. case GGML_OP_ADD1:
  13603. {
  13604. if (src0->grad) {
  13605. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13606. }
  13607. if (src1->grad) {
  13608. src1->grad = ggml_add_or_set(ctx,
  13609. src1->grad,
  13610. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13611. zero_table);
  13612. }
  13613. } break;
  13614. case GGML_OP_ACC:
  13615. {
  13616. if (src0->grad) {
  13617. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13618. }
  13619. if (src1->grad) {
  13620. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13621. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13622. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13623. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13624. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13625. tensor->grad,
  13626. src1->grad->ne[0],
  13627. src1->grad->ne[1],
  13628. src1->grad->ne[2],
  13629. src1->grad->ne[3],
  13630. nb1, nb2, nb3, offset);
  13631. src1->grad =
  13632. ggml_add_or_set(ctx,
  13633. src1->grad,
  13634. ggml_reshape(ctx,
  13635. ggml_cont(ctx, tensor_grad_view),
  13636. src1->grad),
  13637. zero_table);
  13638. }
  13639. } break;
  13640. case GGML_OP_SUB:
  13641. {
  13642. if (src0->grad) {
  13643. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13644. }
  13645. if (src1->grad) {
  13646. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13647. }
  13648. } break;
  13649. case GGML_OP_MUL:
  13650. {
  13651. if (src0->grad) {
  13652. src0->grad =
  13653. ggml_add_or_set(ctx,
  13654. src0->grad,
  13655. ggml_mul(ctx, src1, tensor->grad),
  13656. zero_table);
  13657. }
  13658. if (src1->grad) {
  13659. src1->grad =
  13660. ggml_add_or_set(ctx,
  13661. src1->grad,
  13662. ggml_mul(ctx, src0, tensor->grad),
  13663. zero_table);
  13664. }
  13665. } break;
  13666. case GGML_OP_DIV:
  13667. {
  13668. if (src0->grad) {
  13669. src0->grad =
  13670. ggml_add_or_set(ctx,
  13671. src0->grad,
  13672. ggml_div(ctx, tensor->grad, src1),
  13673. zero_table);
  13674. }
  13675. if (src1->grad) {
  13676. src1->grad =
  13677. ggml_sub_or_set(ctx,
  13678. src1->grad,
  13679. ggml_mul(ctx,
  13680. tensor->grad,
  13681. ggml_div(ctx, tensor, src1)),
  13682. zero_table);
  13683. }
  13684. } break;
  13685. case GGML_OP_SQR:
  13686. {
  13687. if (src0->grad) {
  13688. src0->grad =
  13689. ggml_add_or_set(ctx,
  13690. src0->grad,
  13691. ggml_scale(ctx,
  13692. ggml_mul(ctx, src0, tensor->grad),
  13693. 2.0f),
  13694. zero_table);
  13695. }
  13696. } break;
  13697. case GGML_OP_SQRT:
  13698. {
  13699. if (src0->grad) {
  13700. src0->grad =
  13701. ggml_add_or_set(ctx,
  13702. src0->grad,
  13703. ggml_scale(ctx,
  13704. ggml_div(ctx,
  13705. tensor->grad,
  13706. tensor),
  13707. 0.5f),
  13708. zero_table);
  13709. }
  13710. } break;
  13711. case GGML_OP_LOG:
  13712. {
  13713. if (src0->grad) {
  13714. src0->grad =
  13715. ggml_add_or_set(ctx,
  13716. src0->grad,
  13717. ggml_div(ctx,
  13718. tensor->grad,
  13719. src0),
  13720. zero_table);
  13721. }
  13722. } break;
  13723. case GGML_OP_SUM:
  13724. {
  13725. if (src0->grad) {
  13726. src0->grad =
  13727. ggml_add1_or_set(ctx,
  13728. src0->grad,
  13729. tensor->grad,
  13730. zero_table);
  13731. }
  13732. } break;
  13733. case GGML_OP_SUM_ROWS:
  13734. {
  13735. if (src0->grad) {
  13736. src0->grad =
  13737. ggml_add_or_set(ctx,
  13738. src0->grad,
  13739. ggml_repeat(ctx,
  13740. tensor->grad,
  13741. src0->grad),
  13742. zero_table);
  13743. }
  13744. } break;
  13745. case GGML_OP_MEAN:
  13746. case GGML_OP_ARGMAX:
  13747. {
  13748. GGML_ASSERT(false); // TODO: implement
  13749. } break;
  13750. case GGML_OP_REPEAT:
  13751. {
  13752. // necessary for llama
  13753. if (src0->grad) {
  13754. src0->grad = ggml_add_or_set(ctx,
  13755. src0->grad,
  13756. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13757. zero_table);
  13758. }
  13759. } break;
  13760. case GGML_OP_REPEAT_BACK:
  13761. {
  13762. if (src0->grad) {
  13763. // TODO: test this
  13764. src0->grad = ggml_add_or_set(ctx,
  13765. src0->grad,
  13766. ggml_repeat(ctx, tensor->grad, src0->grad),
  13767. zero_table);
  13768. }
  13769. } break;
  13770. case GGML_OP_CONCAT:
  13771. {
  13772. GGML_ASSERT(false); // TODO: implement
  13773. } break;
  13774. case GGML_OP_SILU_BACK:
  13775. {
  13776. GGML_ASSERT(false); // TODO: not implemented
  13777. } break;
  13778. case GGML_OP_NORM:
  13779. {
  13780. GGML_ASSERT(false); // TODO: not implemented
  13781. } break;
  13782. case GGML_OP_RMS_NORM:
  13783. {
  13784. // necessary for llama
  13785. if (src0->grad) {
  13786. float eps;
  13787. memcpy(&eps, tensor->op_params, sizeof(float));
  13788. src0->grad = ggml_add_or_set(ctx,
  13789. src0->grad,
  13790. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13791. zero_table);
  13792. }
  13793. } break;
  13794. case GGML_OP_RMS_NORM_BACK:
  13795. {
  13796. GGML_ASSERT(false); // TODO: not implemented
  13797. } break;
  13798. case GGML_OP_GROUP_NORM:
  13799. {
  13800. GGML_ASSERT(false); // TODO: not implemented
  13801. } break;
  13802. case GGML_OP_MUL_MAT:
  13803. {
  13804. // https://cs231n.github.io/optimization-2/#staged
  13805. // # forward pass
  13806. // s0 = np.random.randn(5, 10)
  13807. // s1 = np.random.randn(10, 3)
  13808. // t = s0.dot(s1)
  13809. // # now suppose we had the gradient on t from above in the circuit
  13810. // dt = np.random.randn(*t.shape) # same shape as t
  13811. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13812. // ds1 = t.T.dot(dt)
  13813. // tensor.shape [m,p,qq,rr]
  13814. // src0.shape [n,m,q1,r1]
  13815. // src1.shape [n,p,qq,rr]
  13816. // necessary for llama
  13817. if (src0->grad) {
  13818. struct ggml_tensor * s1_tg =
  13819. ggml_out_prod(ctx, // [n,m,qq,rr]
  13820. src1, // [n,p,qq,rr]
  13821. tensor->grad); // [m,p,qq,rr]
  13822. const int64_t qq = s1_tg->ne[2];
  13823. const int64_t rr = s1_tg->ne[3];
  13824. const int64_t q1 = src0->ne[2];
  13825. const int64_t r1 = src0->ne[3];
  13826. const bool ne2_broadcasted = qq > q1;
  13827. const bool ne3_broadcasted = rr > r1;
  13828. if (ne2_broadcasted || ne3_broadcasted) {
  13829. // sum broadcast repetitions of s1_tg into shape of src0
  13830. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13831. }
  13832. src0->grad =
  13833. ggml_add_or_set(ctx,
  13834. src0->grad, // [n,m,q1,r1]
  13835. s1_tg, // [n,m,q1,r1]
  13836. zero_table);
  13837. }
  13838. if (src1->grad) {
  13839. src1->grad =
  13840. ggml_add_or_set(ctx,
  13841. src1->grad, // [n,p,qq,rr]
  13842. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13843. // ggml_cont(ctx, // [m,n,q1,r1]
  13844. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13845. // tensor->grad), // [m,p,qq,rr]
  13846. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13847. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13848. // // and then use ggml_out_prod
  13849. ggml_out_prod(ctx, // [n,p,qq,rr]
  13850. src0, // [n,m,q1,r1]
  13851. ggml_transpose(ctx, // [p,m,qq,rr]
  13852. tensor->grad)), // [m,p,qq,rr]
  13853. zero_table);
  13854. }
  13855. } break;
  13856. case GGML_OP_MUL_MAT_ID:
  13857. {
  13858. GGML_ASSERT(false); // TODO: not implemented
  13859. } break;
  13860. case GGML_OP_OUT_PROD:
  13861. {
  13862. GGML_ASSERT(false); // TODO: not implemented
  13863. } break;
  13864. case GGML_OP_SCALE:
  13865. {
  13866. // necessary for llama
  13867. if (src0->grad) {
  13868. float s;
  13869. memcpy(&s, tensor->op_params, sizeof(float));
  13870. src0->grad =
  13871. ggml_add_or_set(ctx,
  13872. src0->grad,
  13873. ggml_scale_impl(ctx, tensor->grad, s, false),
  13874. zero_table);
  13875. }
  13876. } break;
  13877. case GGML_OP_SET:
  13878. {
  13879. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13880. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13881. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13882. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13883. struct ggml_tensor * tensor_grad_view = NULL;
  13884. if (src0->grad || src1->grad) {
  13885. GGML_ASSERT(src0->type == tensor->type);
  13886. GGML_ASSERT(tensor->grad->type == tensor->type);
  13887. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13888. tensor_grad_view = ggml_view_4d(ctx,
  13889. tensor->grad,
  13890. src1->grad->ne[0],
  13891. src1->grad->ne[1],
  13892. src1->grad->ne[2],
  13893. src1->grad->ne[3],
  13894. nb1, nb2, nb3, offset);
  13895. }
  13896. if (src0->grad) {
  13897. src0->grad = ggml_add_or_set(ctx,
  13898. src0->grad,
  13899. ggml_acc_impl(ctx,
  13900. tensor->grad,
  13901. ggml_neg(ctx, tensor_grad_view),
  13902. nb1, nb2, nb3, offset, false),
  13903. zero_table);
  13904. }
  13905. if (src1->grad) {
  13906. src1->grad =
  13907. ggml_add_or_set(ctx,
  13908. src1->grad,
  13909. ggml_reshape(ctx,
  13910. ggml_cont(ctx, tensor_grad_view),
  13911. src1->grad),
  13912. zero_table);
  13913. }
  13914. } break;
  13915. case GGML_OP_CPY:
  13916. {
  13917. // necessary for llama
  13918. // cpy overwrites value of src1 by src0 and returns view(src1)
  13919. // the overwriting is mathematically equivalent to:
  13920. // tensor = src0 * 1 + src1 * 0
  13921. if (src0->grad) {
  13922. // dsrc0 = dtensor * 1
  13923. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13924. }
  13925. if (src1->grad) {
  13926. // dsrc1 = dtensor * 0 -> noop
  13927. }
  13928. } break;
  13929. case GGML_OP_CONT:
  13930. {
  13931. // same as cpy
  13932. if (src0->grad) {
  13933. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13934. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13935. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13936. }
  13937. } break;
  13938. case GGML_OP_RESHAPE:
  13939. {
  13940. // necessary for llama
  13941. if (src0->grad) {
  13942. src0->grad =
  13943. ggml_add_or_set(ctx, src0->grad,
  13944. ggml_reshape(ctx,
  13945. ggml_is_contiguous(tensor->grad)
  13946. ? tensor->grad
  13947. : ggml_cont(ctx, tensor->grad),
  13948. src0->grad),
  13949. zero_table);
  13950. }
  13951. } break;
  13952. case GGML_OP_VIEW:
  13953. {
  13954. // necessary for llama
  13955. if (src0->grad) {
  13956. size_t offset;
  13957. memcpy(&offset, tensor->op_params, sizeof(offset));
  13958. size_t nb1 = tensor->nb[1];
  13959. size_t nb2 = tensor->nb[2];
  13960. size_t nb3 = tensor->nb[3];
  13961. if (src0->type != src0->grad->type) {
  13962. // gradient is typically F32, but src0 could be other type
  13963. size_t ng = ggml_element_size(src0->grad);
  13964. size_t n0 = ggml_element_size(src0);
  13965. GGML_ASSERT(offset % n0 == 0);
  13966. GGML_ASSERT(nb1 % n0 == 0);
  13967. GGML_ASSERT(nb2 % n0 == 0);
  13968. GGML_ASSERT(nb3 % n0 == 0);
  13969. offset = (offset / n0) * ng;
  13970. nb1 = (nb1 / n0) * ng;
  13971. nb2 = (nb2 / n0) * ng;
  13972. nb3 = (nb3 / n0) * ng;
  13973. }
  13974. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13975. }
  13976. } break;
  13977. case GGML_OP_PERMUTE:
  13978. {
  13979. // necessary for llama
  13980. if (src0->grad) {
  13981. int32_t * axes = (int32_t *) tensor->op_params;
  13982. int axis0 = axes[0] & 0x3;
  13983. int axis1 = axes[1] & 0x3;
  13984. int axis2 = axes[2] & 0x3;
  13985. int axis3 = axes[3] & 0x3;
  13986. int axes_backward[4] = {0,0,0,0};
  13987. axes_backward[axis0] = 0;
  13988. axes_backward[axis1] = 1;
  13989. axes_backward[axis2] = 2;
  13990. axes_backward[axis3] = 3;
  13991. src0->grad =
  13992. ggml_add_or_set(ctx, src0->grad,
  13993. ggml_permute(ctx,
  13994. tensor->grad,
  13995. axes_backward[0],
  13996. axes_backward[1],
  13997. axes_backward[2],
  13998. axes_backward[3]),
  13999. zero_table);
  14000. }
  14001. } break;
  14002. case GGML_OP_TRANSPOSE:
  14003. {
  14004. // necessary for llama
  14005. if (src0->grad) {
  14006. src0->grad =
  14007. ggml_add_or_set(ctx, src0->grad,
  14008. ggml_transpose(ctx, tensor->grad),
  14009. zero_table);
  14010. }
  14011. } break;
  14012. case GGML_OP_GET_ROWS:
  14013. {
  14014. // necessary for llama (only for tokenizer)
  14015. if (src0->grad) {
  14016. src0->grad =
  14017. ggml_add_or_set(ctx, src0->grad,
  14018. // last ggml_get_rows_back argument src0->grad is only
  14019. // necessary to setup correct output shape
  14020. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14021. zero_table);
  14022. }
  14023. if (src1->grad) {
  14024. // noop
  14025. }
  14026. } break;
  14027. case GGML_OP_GET_ROWS_BACK:
  14028. {
  14029. GGML_ASSERT(false); // TODO: not implemented
  14030. } break;
  14031. case GGML_OP_DIAG:
  14032. {
  14033. GGML_ASSERT(false); // TODO: not implemented
  14034. } break;
  14035. case GGML_OP_DIAG_MASK_INF:
  14036. {
  14037. // necessary for llama
  14038. if (src0->grad) {
  14039. const int n_past = ((int32_t *) tensor->op_params)[0];
  14040. src0->grad =
  14041. ggml_add_or_set(ctx, src0->grad,
  14042. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14043. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14044. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14045. zero_table);
  14046. }
  14047. } break;
  14048. case GGML_OP_DIAG_MASK_ZERO:
  14049. {
  14050. // necessary for llama
  14051. if (src0->grad) {
  14052. const int n_past = ((int32_t *) tensor->op_params)[0];
  14053. src0->grad =
  14054. ggml_add_or_set(ctx, src0->grad,
  14055. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14056. zero_table);
  14057. }
  14058. } break;
  14059. case GGML_OP_SOFT_MAX:
  14060. {
  14061. // necessary for llama
  14062. if (src0->grad) {
  14063. src0->grad =
  14064. ggml_add_or_set(ctx, src0->grad,
  14065. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14066. zero_table);
  14067. }
  14068. } break;
  14069. case GGML_OP_SOFT_MAX_BACK:
  14070. {
  14071. GGML_ASSERT(false); // TODO: not implemented
  14072. } break;
  14073. case GGML_OP_ROPE:
  14074. {
  14075. // necessary for llama
  14076. if (src0->grad) {
  14077. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14078. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14079. const int mode = ((int32_t *) tensor->op_params)[2];
  14080. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14081. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14082. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14083. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14084. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14085. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14086. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14087. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14088. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14089. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14090. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14091. src0->grad = ggml_add_or_set(ctx,
  14092. src0->grad,
  14093. ggml_rope_back(ctx,
  14094. tensor->grad,
  14095. src1,
  14096. n_dims,
  14097. mode,
  14098. n_ctx,
  14099. n_orig_ctx,
  14100. freq_base,
  14101. freq_scale,
  14102. ext_factor,
  14103. attn_factor,
  14104. beta_fast,
  14105. beta_slow,
  14106. xpos_base,
  14107. xpos_down),
  14108. zero_table);
  14109. }
  14110. } break;
  14111. case GGML_OP_ROPE_BACK:
  14112. {
  14113. if (src0->grad) {
  14114. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14115. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14116. const int mode = ((int32_t *) tensor->op_params)[2];
  14117. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14118. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14119. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14120. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14121. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14122. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14123. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14124. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14125. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14126. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14127. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14128. src0->grad = ggml_add_or_set(ctx,
  14129. src0->grad,
  14130. ggml_rope_impl(ctx,
  14131. tensor->grad,
  14132. src1,
  14133. n_dims,
  14134. mode,
  14135. n_ctx,
  14136. n_orig_ctx,
  14137. freq_base,
  14138. freq_scale,
  14139. ext_factor,
  14140. attn_factor,
  14141. beta_fast,
  14142. beta_slow,
  14143. xpos_base,
  14144. xpos_down,
  14145. false),
  14146. zero_table);
  14147. }
  14148. } break;
  14149. case GGML_OP_ALIBI:
  14150. {
  14151. GGML_ASSERT(false); // TODO: not implemented
  14152. } break;
  14153. case GGML_OP_CLAMP:
  14154. {
  14155. GGML_ASSERT(false); // TODO: not implemented
  14156. } break;
  14157. case GGML_OP_CONV_TRANSPOSE_1D:
  14158. {
  14159. GGML_ASSERT(false); // TODO: not implemented
  14160. } break;
  14161. case GGML_OP_IM2COL:
  14162. {
  14163. GGML_ASSERT(false); // TODO: not implemented
  14164. } break;
  14165. case GGML_OP_CONV_TRANSPOSE_2D:
  14166. {
  14167. GGML_ASSERT(false); // TODO: not implemented
  14168. } break;
  14169. case GGML_OP_POOL_1D:
  14170. {
  14171. GGML_ASSERT(false); // TODO: not implemented
  14172. } break;
  14173. case GGML_OP_POOL_2D:
  14174. {
  14175. GGML_ASSERT(false); // TODO: not implemented
  14176. } break;
  14177. case GGML_OP_UPSCALE:
  14178. {
  14179. GGML_ASSERT(false); // TODO: not implemented
  14180. } break;
  14181. case GGML_OP_PAD:
  14182. {
  14183. GGML_ASSERT(false); // TODO: not implemented
  14184. } break;
  14185. case GGML_OP_ARANGE:
  14186. {
  14187. GGML_ASSERT(false); // TODO: not implemented
  14188. } break;
  14189. case GGML_OP_TIMESTEP_EMBEDDING:
  14190. {
  14191. GGML_ASSERT(false); // TODO: not implemented
  14192. } break;
  14193. case GGML_OP_ARGSORT:
  14194. {
  14195. GGML_ASSERT(false); // TODO: not implemented
  14196. } break;
  14197. case GGML_OP_LEAKY_RELU:
  14198. {
  14199. GGML_ASSERT(false); // TODO: not implemented
  14200. } break;
  14201. case GGML_OP_FLASH_ATTN:
  14202. {
  14203. struct ggml_tensor * flash_grad = NULL;
  14204. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14205. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14206. GGML_ASSERT(t == 0 || t == 1);
  14207. bool masked = t != 0;
  14208. flash_grad =
  14209. ggml_flash_attn_back(ctx,
  14210. src0,
  14211. src1,
  14212. tensor->src[2],
  14213. tensor->grad,
  14214. masked);
  14215. }
  14216. struct ggml_tensor * src2 = tensor->src[2];
  14217. const int64_t elem_q = ggml_nelements(src0);
  14218. const int64_t elem_k = ggml_nelements(src1);
  14219. const int64_t elem_v = ggml_nelements(src2);
  14220. enum ggml_type result_type = flash_grad->type;
  14221. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14222. const size_t tsize = ggml_type_size(result_type);
  14223. const size_t offs_q = 0;
  14224. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14225. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14226. if (src0->grad) {
  14227. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14228. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14229. src0->grad = ggml_add_or_set(ctx,
  14230. src0->grad,
  14231. grad_q,
  14232. zero_table);
  14233. }
  14234. if (src1->grad) {
  14235. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14236. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14237. src1->grad = ggml_add_or_set(ctx,
  14238. src1->grad,
  14239. grad_k,
  14240. zero_table);
  14241. }
  14242. if (src2->grad) {
  14243. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14244. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14245. src2->grad = ggml_add_or_set(ctx,
  14246. src2->grad,
  14247. grad_v,
  14248. zero_table);
  14249. }
  14250. } break;
  14251. case GGML_OP_FLASH_FF:
  14252. {
  14253. GGML_ASSERT(false); // not supported
  14254. } break;
  14255. case GGML_OP_FLASH_ATTN_BACK:
  14256. {
  14257. GGML_ASSERT(false); // not supported
  14258. } break;
  14259. case GGML_OP_SSM_CONV:
  14260. case GGML_OP_SSM_SCAN:
  14261. {
  14262. GGML_ASSERT(false); // TODO: not implemented
  14263. } break;
  14264. case GGML_OP_WIN_PART:
  14265. case GGML_OP_WIN_UNPART:
  14266. case GGML_OP_UNARY:
  14267. {
  14268. switch (ggml_get_unary_op(tensor)) {
  14269. case GGML_UNARY_OP_ABS:
  14270. {
  14271. if (src0->grad) {
  14272. src0->grad =
  14273. ggml_add_or_set(ctx,
  14274. src0->grad,
  14275. ggml_mul(ctx,
  14276. ggml_sgn(ctx, src0),
  14277. tensor->grad),
  14278. zero_table);
  14279. }
  14280. } break;
  14281. case GGML_UNARY_OP_SGN:
  14282. {
  14283. if (src0->grad) {
  14284. // noop
  14285. }
  14286. } break;
  14287. case GGML_UNARY_OP_NEG:
  14288. {
  14289. if (src0->grad) {
  14290. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14291. }
  14292. } break;
  14293. case GGML_UNARY_OP_STEP:
  14294. {
  14295. if (src0->grad) {
  14296. // noop
  14297. }
  14298. } break;
  14299. case GGML_UNARY_OP_TANH:
  14300. {
  14301. GGML_ASSERT(false); // TODO: not implemented
  14302. } break;
  14303. case GGML_UNARY_OP_ELU:
  14304. {
  14305. GGML_ASSERT(false); // TODO: not implemented
  14306. } break;
  14307. case GGML_UNARY_OP_RELU:
  14308. {
  14309. if (src0->grad) {
  14310. src0->grad = ggml_add_or_set(ctx,
  14311. src0->grad,
  14312. ggml_mul(ctx,
  14313. ggml_step(ctx, src0),
  14314. tensor->grad),
  14315. zero_table);
  14316. }
  14317. } break;
  14318. case GGML_UNARY_OP_GELU:
  14319. {
  14320. GGML_ASSERT(false); // TODO: not implemented
  14321. } break;
  14322. case GGML_UNARY_OP_GELU_QUICK:
  14323. {
  14324. GGML_ASSERT(false); // TODO: not implemented
  14325. } break;
  14326. case GGML_UNARY_OP_SILU:
  14327. {
  14328. // necessary for llama
  14329. if (src0->grad) {
  14330. src0->grad = ggml_add_or_set(ctx,
  14331. src0->grad,
  14332. ggml_silu_back(ctx, src0, tensor->grad),
  14333. zero_table);
  14334. }
  14335. } break;
  14336. default:
  14337. GGML_ASSERT(false);
  14338. }
  14339. } break;
  14340. case GGML_OP_GET_REL_POS:
  14341. case GGML_OP_ADD_REL_POS:
  14342. case GGML_OP_MAP_UNARY:
  14343. case GGML_OP_MAP_BINARY:
  14344. case GGML_OP_MAP_CUSTOM1_F32:
  14345. case GGML_OP_MAP_CUSTOM2_F32:
  14346. case GGML_OP_MAP_CUSTOM3_F32:
  14347. case GGML_OP_MAP_CUSTOM1:
  14348. case GGML_OP_MAP_CUSTOM2:
  14349. case GGML_OP_MAP_CUSTOM3:
  14350. {
  14351. GGML_ASSERT(false); // not supported
  14352. } break;
  14353. case GGML_OP_CROSS_ENTROPY_LOSS:
  14354. {
  14355. if (src0->grad) {
  14356. src0->grad = ggml_add_or_set(ctx,
  14357. src0->grad,
  14358. ggml_cross_entropy_loss_back(ctx,
  14359. src0,
  14360. src1,
  14361. tensor->grad),
  14362. zero_table);
  14363. }
  14364. } break;
  14365. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14366. {
  14367. GGML_ASSERT(false); // not supported
  14368. } break;
  14369. case GGML_OP_NONE:
  14370. {
  14371. // nop
  14372. } break;
  14373. case GGML_OP_COUNT:
  14374. {
  14375. GGML_ASSERT(false);
  14376. } break;
  14377. }
  14378. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14379. if (tensor->src[i] && tensor->src[i]->grad) {
  14380. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14381. }
  14382. }
  14383. }
  14384. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14385. if (node->grad == NULL) {
  14386. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14387. // it can also happen during forward pass, if the user performs computations with constants
  14388. if (node->op != GGML_OP_NONE) {
  14389. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14390. }
  14391. }
  14392. // check if already visited
  14393. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14394. return;
  14395. }
  14396. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14397. const int k =
  14398. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14399. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14400. /* unknown order, just fall back to using i*/ i;
  14401. if (node->src[k]) {
  14402. ggml_visit_parents(cgraph, node->src[k]);
  14403. }
  14404. }
  14405. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14406. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14407. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14408. if (strlen(node->name) == 0) {
  14409. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14410. }
  14411. cgraph->leafs[cgraph->n_leafs] = node;
  14412. cgraph->n_leafs++;
  14413. } else {
  14414. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14415. if (strlen(node->name) == 0) {
  14416. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14417. }
  14418. cgraph->nodes[cgraph->n_nodes] = node;
  14419. if (cgraph->grads) {
  14420. cgraph->grads[cgraph->n_nodes] = node->grad;
  14421. }
  14422. cgraph->n_nodes++;
  14423. }
  14424. }
  14425. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14426. if (!expand) {
  14427. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14428. ggml_graph_clear(cgraph);
  14429. }
  14430. const int n0 = cgraph->n_nodes;
  14431. UNUSED(n0);
  14432. ggml_visit_parents(cgraph, tensor);
  14433. const int n_new = cgraph->n_nodes - n0;
  14434. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14435. if (n_new > 0) {
  14436. // the last added node should always be starting point
  14437. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14438. }
  14439. }
  14440. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14441. ggml_build_forward_impl(cgraph, tensor, true);
  14442. }
  14443. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14444. GGML_ASSERT(gf->n_nodes > 0);
  14445. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14446. if (keep) {
  14447. for (int i = 0; i < gf->n_nodes; i++) {
  14448. struct ggml_tensor * node = gf->nodes[i];
  14449. if (node->grad) {
  14450. node->grad = ggml_dup_tensor(ctx, node);
  14451. gf->grads[i] = node->grad;
  14452. }
  14453. }
  14454. }
  14455. // remember original gradients which start with zero values
  14456. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14457. for (int i = 0; i < gf->n_nodes; i++) {
  14458. if (gf->grads[i]) {
  14459. ggml_hash_insert(zero_table, gf->grads[i]);
  14460. }
  14461. }
  14462. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14463. struct ggml_tensor * node = gf->nodes[i];
  14464. // inplace operations to add gradients are not created by ggml_compute_backward
  14465. // use allocator to automatically make inplace operations
  14466. if (node->grad) {
  14467. ggml_compute_backward(ctx, node, zero_table);
  14468. }
  14469. }
  14470. for (int i = 0; i < gf->n_nodes; i++) {
  14471. struct ggml_tensor * node = gf->nodes[i];
  14472. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14473. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14474. ggml_build_forward_expand(gb, node->grad);
  14475. }
  14476. }
  14477. ggml_hash_set_free(zero_table);
  14478. }
  14479. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14480. size_t nbytes = sizeof(struct ggml_cgraph);
  14481. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14482. if (grads) {
  14483. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14484. }
  14485. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14486. return nbytes;
  14487. }
  14488. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14489. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14490. }
  14491. size_t ggml_graph_overhead(void) {
  14492. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14493. }
  14494. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14495. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14496. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14497. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14498. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14499. size_t hash_size = ggml_hash_size(size * 2);
  14500. struct ggml_tensor ** nodes_ptr = data_start;
  14501. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14502. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14503. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14504. // check that we allocated the correct amount of memory
  14505. assert(obj_size == (size_t) (
  14506. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14507. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14508. *cgraph = (struct ggml_cgraph) {
  14509. /*.size =*/ size,
  14510. /*.n_nodes =*/ 0,
  14511. /*.n_leafs =*/ 0,
  14512. /*.nodes =*/ nodes_ptr,
  14513. /*.grads =*/ grads_ptr,
  14514. /*.leafs =*/ leafs_ptr,
  14515. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14516. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14517. /*.perf_runs =*/ 0,
  14518. /*.perf_cycles =*/ 0,
  14519. /*.perf_time_us =*/ 0,
  14520. };
  14521. return cgraph;
  14522. }
  14523. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14524. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14525. }
  14526. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14527. struct ggml_cgraph cgraph = {
  14528. /*.size =*/ 0,
  14529. /*.n_nodes =*/ i1 - i0,
  14530. /*.n_leafs =*/ 0,
  14531. /*.nodes =*/ cgraph0->nodes + i0,
  14532. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14533. /*.leafs =*/ NULL,
  14534. /*.hash_table =*/ { 0, NULL },
  14535. /*.order =*/ cgraph0->order,
  14536. /*.perf_runs =*/ 0,
  14537. /*.perf_cycles =*/ 0,
  14538. /*.perf_time_us =*/ 0,
  14539. };
  14540. return cgraph;
  14541. }
  14542. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14543. GGML_ASSERT(dst->size >= src->n_leafs);
  14544. GGML_ASSERT(dst->size >= src->n_nodes);
  14545. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14546. dst->n_leafs = src->n_leafs;
  14547. dst->n_nodes = src->n_nodes;
  14548. dst->order = src->order;
  14549. for (int i = 0; i < src->n_leafs; ++i) {
  14550. dst->leafs[i] = src->leafs[i];
  14551. }
  14552. for (int i = 0; i < src->n_nodes; ++i) {
  14553. dst->nodes[i] = src->nodes[i];
  14554. }
  14555. if (src->grads) {
  14556. GGML_ASSERT(dst->grads != NULL);
  14557. for (int i = 0; i < src->n_nodes; ++i) {
  14558. dst->grads[i] = src->grads[i];
  14559. }
  14560. }
  14561. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14562. if (src->visited_hash_table.keys[i]) {
  14563. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14564. }
  14565. }
  14566. }
  14567. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14568. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14569. ggml_graph_cpy(cgraph, result);
  14570. return result;
  14571. }
  14572. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14573. GGML_ASSERT(cgraph->grads != NULL);
  14574. for (int i = 0; i < cgraph->n_nodes; i++) {
  14575. struct ggml_tensor * grad = cgraph->grads[i];
  14576. if (grad) {
  14577. ggml_set_zero(grad);
  14578. }
  14579. }
  14580. }
  14581. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14582. cgraph->n_leafs = 0;
  14583. cgraph->n_nodes = 0;
  14584. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14585. }
  14586. //
  14587. // thread data
  14588. //
  14589. // synchronization is done via busy loops
  14590. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14591. //
  14592. #ifdef __APPLE__
  14593. //#include <os/lock.h>
  14594. //
  14595. //typedef os_unfair_lock ggml_lock_t;
  14596. //
  14597. //#define ggml_lock_init(x) UNUSED(x)
  14598. //#define ggml_lock_destroy(x) UNUSED(x)
  14599. //#define ggml_lock_lock os_unfair_lock_lock
  14600. //#define ggml_lock_unlock os_unfair_lock_unlock
  14601. //
  14602. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14603. typedef int ggml_lock_t;
  14604. #define ggml_lock_init(x) UNUSED(x)
  14605. #define ggml_lock_destroy(x) UNUSED(x)
  14606. #define ggml_lock_lock(x) UNUSED(x)
  14607. #define ggml_lock_unlock(x) UNUSED(x)
  14608. #define GGML_LOCK_INITIALIZER 0
  14609. typedef pthread_t ggml_thread_t;
  14610. #define ggml_thread_create pthread_create
  14611. #define ggml_thread_join pthread_join
  14612. #else
  14613. //typedef pthread_spinlock_t ggml_lock_t;
  14614. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14615. //#define ggml_lock_destroy pthread_spin_destroy
  14616. //#define ggml_lock_lock pthread_spin_lock
  14617. //#define ggml_lock_unlock pthread_spin_unlock
  14618. typedef int ggml_lock_t;
  14619. #define ggml_lock_init(x) UNUSED(x)
  14620. #define ggml_lock_destroy(x) UNUSED(x)
  14621. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14622. #define ggml_lock_lock(x) _mm_pause()
  14623. #else
  14624. #define ggml_lock_lock(x) UNUSED(x)
  14625. #endif
  14626. #define ggml_lock_unlock(x) UNUSED(x)
  14627. #define GGML_LOCK_INITIALIZER 0
  14628. typedef pthread_t ggml_thread_t;
  14629. #define ggml_thread_create pthread_create
  14630. #define ggml_thread_join pthread_join
  14631. #endif
  14632. // Android's libc implementation "bionic" does not support setting affinity
  14633. #if defined(__gnu_linux__)
  14634. static void set_numa_thread_affinity(int thread_n) {
  14635. if (!ggml_is_numa()) {
  14636. return;
  14637. }
  14638. int node_num;
  14639. int rv;
  14640. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14641. switch(g_state.numa.numa_strategy) {
  14642. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14643. // run thread on node_num thread_n / (threads per node)
  14644. node_num = thread_n % g_state.numa.n_nodes;
  14645. break;
  14646. case GGML_NUMA_STRATEGY_ISOLATE:
  14647. // run thread on current_node
  14648. node_num = g_state.numa.current_node;
  14649. break;
  14650. case GGML_NUMA_STRATEGY_NUMACTL:
  14651. // use the cpuset that numactl gave us
  14652. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14653. if (rv) {
  14654. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14655. }
  14656. return;
  14657. default:
  14658. return;
  14659. }
  14660. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14661. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14662. CPU_ZERO_S(setsize, cpus);
  14663. for (size_t i = 0; i < node->n_cpus; ++i) {
  14664. CPU_SET_S(node->cpus[i], setsize, cpus);
  14665. }
  14666. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14667. if (rv) {
  14668. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14669. }
  14670. CPU_FREE(cpus);
  14671. }
  14672. static void clear_numa_thread_affinity(void) {
  14673. if (!ggml_is_numa()) {
  14674. return;
  14675. }
  14676. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14677. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14678. CPU_ZERO_S(setsize, cpus);
  14679. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14680. CPU_SET_S(i, setsize, cpus);
  14681. }
  14682. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14683. if (rv) {
  14684. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14685. }
  14686. CPU_FREE(cpus);
  14687. }
  14688. #else
  14689. // TODO: Windows etc.
  14690. // (the linux implementation may also work on BSD, someone should test)
  14691. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14692. static void clear_numa_thread_affinity(void) {}
  14693. #endif
  14694. struct ggml_compute_state_shared {
  14695. const struct ggml_cgraph * cgraph;
  14696. const struct ggml_cplan * cplan;
  14697. int64_t perf_node_start_cycles;
  14698. int64_t perf_node_start_time_us;
  14699. const int n_threads;
  14700. // synchronization primitives
  14701. atomic_int n_active; // num active threads
  14702. atomic_int node_n; // active graph node
  14703. atomic_int node_task; // active graph node task phase
  14704. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14705. void * abort_callback_data;
  14706. };
  14707. struct ggml_compute_state {
  14708. ggml_thread_t thrd;
  14709. int ith;
  14710. struct ggml_compute_state_shared * shared;
  14711. enum ggml_status ec;
  14712. };
  14713. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14714. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14715. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14716. node->perf_runs++;
  14717. node->perf_cycles += cycles_cur;
  14718. node->perf_time_us += time_us_cur;
  14719. }
  14720. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14721. int n_tasks = 0;
  14722. if (ggml_is_empty(node)) {
  14723. // no need to multi-thread a no-op
  14724. n_tasks = 1;
  14725. return n_tasks;
  14726. }
  14727. switch (node->op) {
  14728. case GGML_OP_CPY:
  14729. case GGML_OP_DUP:
  14730. case GGML_OP_ADD:
  14731. case GGML_OP_ADD1:
  14732. case GGML_OP_ACC:
  14733. {
  14734. n_tasks = n_threads;
  14735. } break;
  14736. case GGML_OP_SUB:
  14737. case GGML_OP_SQR:
  14738. case GGML_OP_SQRT:
  14739. case GGML_OP_LOG:
  14740. case GGML_OP_SUM:
  14741. case GGML_OP_SUM_ROWS:
  14742. case GGML_OP_MEAN:
  14743. case GGML_OP_ARGMAX:
  14744. case GGML_OP_REPEAT:
  14745. case GGML_OP_REPEAT_BACK:
  14746. case GGML_OP_LEAKY_RELU:
  14747. {
  14748. n_tasks = 1;
  14749. } break;
  14750. case GGML_OP_UNARY:
  14751. switch (ggml_get_unary_op(node)) {
  14752. case GGML_UNARY_OP_ABS:
  14753. case GGML_UNARY_OP_SGN:
  14754. case GGML_UNARY_OP_NEG:
  14755. case GGML_UNARY_OP_STEP:
  14756. case GGML_UNARY_OP_TANH:
  14757. case GGML_UNARY_OP_ELU:
  14758. case GGML_UNARY_OP_RELU:
  14759. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14760. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14761. {
  14762. n_tasks = 1;
  14763. } break;
  14764. case GGML_UNARY_OP_GELU:
  14765. case GGML_UNARY_OP_GELU_QUICK:
  14766. case GGML_UNARY_OP_SILU:
  14767. {
  14768. n_tasks = n_threads;
  14769. } break;
  14770. default:
  14771. GGML_ASSERT(false);
  14772. }
  14773. break;
  14774. case GGML_OP_SILU_BACK:
  14775. case GGML_OP_MUL:
  14776. case GGML_OP_DIV:
  14777. case GGML_OP_NORM:
  14778. case GGML_OP_RMS_NORM:
  14779. case GGML_OP_RMS_NORM_BACK:
  14780. case GGML_OP_GROUP_NORM:
  14781. case GGML_OP_CONCAT:
  14782. {
  14783. n_tasks = n_threads;
  14784. } break;
  14785. case GGML_OP_MUL_MAT:
  14786. {
  14787. n_tasks = n_threads;
  14788. // TODO: use different scheduling for different matrix sizes
  14789. //const int nr0 = ggml_nrows(node->src[0]);
  14790. //const int nr1 = ggml_nrows(node->src[1]);
  14791. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14792. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14793. } break;
  14794. case GGML_OP_MUL_MAT_ID:
  14795. {
  14796. n_tasks = n_threads;
  14797. } break;
  14798. case GGML_OP_OUT_PROD:
  14799. {
  14800. n_tasks = n_threads;
  14801. } break;
  14802. case GGML_OP_GET_ROWS:
  14803. {
  14804. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14805. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14806. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14807. } break;
  14808. case GGML_OP_SCALE:
  14809. case GGML_OP_SET:
  14810. case GGML_OP_CONT:
  14811. case GGML_OP_RESHAPE:
  14812. case GGML_OP_VIEW:
  14813. case GGML_OP_PERMUTE:
  14814. case GGML_OP_TRANSPOSE:
  14815. case GGML_OP_GET_ROWS_BACK:
  14816. case GGML_OP_DIAG:
  14817. {
  14818. n_tasks = 1;
  14819. } break;
  14820. case GGML_OP_DIAG_MASK_ZERO:
  14821. case GGML_OP_DIAG_MASK_INF:
  14822. case GGML_OP_SOFT_MAX_BACK:
  14823. case GGML_OP_ROPE:
  14824. case GGML_OP_ROPE_BACK:
  14825. case GGML_OP_ADD_REL_POS:
  14826. {
  14827. n_tasks = n_threads;
  14828. } break;
  14829. case GGML_OP_ALIBI:
  14830. {
  14831. n_tasks = 1; //TODO
  14832. } break;
  14833. case GGML_OP_CLAMP:
  14834. {
  14835. n_tasks = 1; //TODO
  14836. } break;
  14837. case GGML_OP_SOFT_MAX:
  14838. {
  14839. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14840. } break;
  14841. case GGML_OP_CONV_TRANSPOSE_1D:
  14842. {
  14843. n_tasks = n_threads;
  14844. } break;
  14845. case GGML_OP_IM2COL:
  14846. {
  14847. n_tasks = n_threads;
  14848. } break;
  14849. case GGML_OP_CONV_TRANSPOSE_2D:
  14850. {
  14851. n_tasks = n_threads;
  14852. } break;
  14853. case GGML_OP_POOL_1D:
  14854. case GGML_OP_POOL_2D:
  14855. {
  14856. n_tasks = 1;
  14857. } break;
  14858. case GGML_OP_UPSCALE:
  14859. {
  14860. n_tasks = n_threads;
  14861. } break;
  14862. case GGML_OP_PAD:
  14863. {
  14864. n_tasks = n_threads;
  14865. } break;
  14866. case GGML_OP_ARANGE:
  14867. {
  14868. n_tasks = n_threads;
  14869. } break;
  14870. case GGML_OP_TIMESTEP_EMBEDDING:
  14871. {
  14872. n_tasks = n_threads;
  14873. } break;
  14874. case GGML_OP_ARGSORT:
  14875. {
  14876. n_tasks = n_threads;
  14877. } break;
  14878. case GGML_OP_FLASH_ATTN:
  14879. {
  14880. n_tasks = n_threads;
  14881. } break;
  14882. case GGML_OP_FLASH_FF:
  14883. {
  14884. n_tasks = n_threads;
  14885. } break;
  14886. case GGML_OP_FLASH_ATTN_BACK:
  14887. {
  14888. n_tasks = n_threads;
  14889. } break;
  14890. case GGML_OP_SSM_CONV:
  14891. case GGML_OP_SSM_SCAN:
  14892. {
  14893. n_tasks = n_threads;
  14894. } break;
  14895. case GGML_OP_WIN_PART:
  14896. case GGML_OP_WIN_UNPART:
  14897. case GGML_OP_GET_REL_POS:
  14898. case GGML_OP_MAP_UNARY:
  14899. case GGML_OP_MAP_BINARY:
  14900. case GGML_OP_MAP_CUSTOM1_F32:
  14901. case GGML_OP_MAP_CUSTOM2_F32:
  14902. case GGML_OP_MAP_CUSTOM3_F32:
  14903. {
  14904. n_tasks = 1;
  14905. } break;
  14906. case GGML_OP_MAP_CUSTOM1:
  14907. {
  14908. struct ggml_map_custom1_op_params p;
  14909. memcpy(&p, node->op_params, sizeof(p));
  14910. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14911. n_tasks = n_threads;
  14912. } else {
  14913. n_tasks = MIN(p.n_tasks, n_threads);
  14914. }
  14915. } break;
  14916. case GGML_OP_MAP_CUSTOM2:
  14917. {
  14918. struct ggml_map_custom2_op_params p;
  14919. memcpy(&p, node->op_params, sizeof(p));
  14920. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14921. n_tasks = n_threads;
  14922. } else {
  14923. n_tasks = MIN(p.n_tasks, n_threads);
  14924. }
  14925. } break;
  14926. case GGML_OP_MAP_CUSTOM3:
  14927. {
  14928. struct ggml_map_custom3_op_params p;
  14929. memcpy(&p, node->op_params, sizeof(p));
  14930. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14931. n_tasks = n_threads;
  14932. } else {
  14933. n_tasks = MIN(p.n_tasks, n_threads);
  14934. }
  14935. } break;
  14936. case GGML_OP_CROSS_ENTROPY_LOSS:
  14937. {
  14938. n_tasks = n_threads;
  14939. } break;
  14940. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14941. {
  14942. n_tasks = n_threads;
  14943. } break;
  14944. case GGML_OP_NONE:
  14945. {
  14946. n_tasks = 1;
  14947. } break;
  14948. case GGML_OP_COUNT:
  14949. {
  14950. GGML_ASSERT(false);
  14951. } break;
  14952. default:
  14953. {
  14954. fprintf(stderr, "%s: op not implemented: ", __func__);
  14955. if (node->op < GGML_OP_COUNT) {
  14956. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14957. } else {
  14958. fprintf(stderr, "%d\n", node->op);
  14959. }
  14960. GGML_ASSERT(false);
  14961. } break;
  14962. }
  14963. assert(n_tasks > 0);
  14964. return n_tasks;
  14965. }
  14966. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14967. // wait for other threads to finish
  14968. const int last_node_n = * node_n;
  14969. while (true) {
  14970. if (do_yield) {
  14971. sched_yield();
  14972. }
  14973. * node_n = atomic_load(&state->shared->node_n);
  14974. if (* node_n != last_node_n) break;
  14975. }
  14976. }
  14977. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14978. // wait for other threads to finish
  14979. const int last_task_phase = * task_phase;
  14980. while (true) {
  14981. if (do_yield) {
  14982. sched_yield();
  14983. }
  14984. * task_phase = atomic_load(&state->shared->node_task);
  14985. if (* task_phase != last_task_phase) break;
  14986. }
  14987. }
  14988. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14989. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14990. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14991. const struct ggml_cplan * cplan = state->shared->cplan;
  14992. const int n_threads = state->shared->n_threads;
  14993. set_numa_thread_affinity(state->ith);
  14994. int node_n = -1;
  14995. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14996. while (true) {
  14997. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14998. state->shared->node_n += 1;
  14999. state->ec = GGML_STATUS_ABORTED;
  15000. return 0;
  15001. }
  15002. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15003. // all other threads are finished and spinning
  15004. // do finalize and init here so we don't have synchronize again
  15005. struct ggml_compute_params params = {
  15006. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15007. /*.ith =*/ 0,
  15008. /*.nth =*/ 0,
  15009. /*.wsize =*/ cplan->work_size,
  15010. /*.wdata =*/ cplan->work_data,
  15011. };
  15012. if (node_n != -1) {
  15013. /* FINALIZE */
  15014. struct ggml_tensor * node = cgraph->nodes[node_n];
  15015. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15016. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15017. ggml_compute_forward(&params, node);
  15018. }
  15019. ggml_graph_compute_perf_stats_node(node, state->shared);
  15020. }
  15021. // distribute new work or execute it direct if 1T
  15022. while (++node_n < cgraph->n_nodes) {
  15023. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15024. struct ggml_tensor * node = cgraph->nodes[node_n];
  15025. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15026. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15027. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15028. params.nth = n_tasks;
  15029. if (n_tasks == 1) {
  15030. /* INIT */
  15031. if (GGML_OP_HAS_INIT[node->op]) {
  15032. params.type = GGML_TASK_TYPE_INIT;
  15033. ggml_compute_forward(&params, node);
  15034. }
  15035. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15036. // they do something more efficient than spinning (?)
  15037. params.type = GGML_TASK_TYPE_COMPUTE;
  15038. ggml_compute_forward(&params, node);
  15039. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15040. params.type = GGML_TASK_TYPE_FINALIZE;
  15041. ggml_compute_forward(&params, node);
  15042. }
  15043. ggml_graph_compute_perf_stats_node(node, state->shared);
  15044. } else {
  15045. break;
  15046. }
  15047. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15048. break;
  15049. }
  15050. }
  15051. task_phase = GGML_TASK_TYPE_INIT;
  15052. atomic_store(&state->shared->n_active, n_threads);
  15053. atomic_store(&state->shared->node_n, node_n);
  15054. atomic_store(&state->shared->node_task, task_phase);
  15055. } else {
  15056. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15057. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15058. }
  15059. // check if we should stop
  15060. if (node_n >= cgraph->n_nodes) break;
  15061. /* INIT & COMPUTE */
  15062. struct ggml_tensor * node = cgraph->nodes[node_n];
  15063. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15064. struct ggml_compute_params params = {
  15065. /*.type =*/ GGML_TASK_TYPE_INIT,
  15066. /*.ith =*/ state->ith,
  15067. /*.nth =*/ n_tasks,
  15068. /*.wsize =*/ cplan->work_size,
  15069. /*.wdata =*/ cplan->work_data,
  15070. };
  15071. if (state->ith < n_tasks) {
  15072. if (GGML_OP_HAS_INIT[node->op]) {
  15073. ggml_compute_forward(&params, node);
  15074. }
  15075. }
  15076. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15077. task_phase = GGML_TASK_TYPE_COMPUTE;
  15078. atomic_store(&state->shared->n_active, n_threads);
  15079. atomic_store(&state->shared->node_task, task_phase);
  15080. }
  15081. else {
  15082. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15083. // depending on the workload and the operating system.
  15084. // since it is not clear what is the best approach, it should potentially become user-configurable
  15085. // ref: https://github.com/ggerganov/ggml/issues/291
  15086. // UPD: adding the do_yield flag seems to resolve the issue universally
  15087. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15088. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15089. }
  15090. if (state->ith < n_tasks) {
  15091. params.type = GGML_TASK_TYPE_COMPUTE;
  15092. ggml_compute_forward(&params, node);
  15093. }
  15094. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15095. task_phase = GGML_TASK_TYPE_FINALIZE;
  15096. atomic_store(&state->shared->n_active, n_threads);
  15097. atomic_store(&state->shared->node_task, task_phase);
  15098. }
  15099. else {
  15100. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15101. }
  15102. }
  15103. return 0;
  15104. }
  15105. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15106. if (n_threads <= 0) {
  15107. n_threads = GGML_DEFAULT_N_THREADS;
  15108. }
  15109. size_t work_size = 0;
  15110. struct ggml_cplan cplan;
  15111. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15112. int max_tasks = 1;
  15113. // thread scheduling for the different operations + work buffer size estimation
  15114. for (int i = 0; i < cgraph->n_nodes; i++) {
  15115. struct ggml_tensor * node = cgraph->nodes[i];
  15116. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15117. max_tasks = MAX(max_tasks, n_tasks);
  15118. size_t cur = 0;
  15119. switch (node->op) {
  15120. case GGML_OP_CPY:
  15121. case GGML_OP_DUP:
  15122. {
  15123. if (ggml_is_quantized(node->type)) {
  15124. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15125. }
  15126. } break;
  15127. case GGML_OP_ADD:
  15128. case GGML_OP_ADD1:
  15129. {
  15130. if (ggml_is_quantized(node->src[0]->type)) {
  15131. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15132. }
  15133. } break;
  15134. case GGML_OP_ACC:
  15135. {
  15136. if (ggml_is_quantized(node->src[0]->type)) {
  15137. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15138. }
  15139. } break;
  15140. case GGML_OP_MUL_MAT:
  15141. {
  15142. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15143. #if defined(GGML_USE_CLBLAST)
  15144. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15145. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15146. } else
  15147. #endif
  15148. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15149. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15150. if (node->src[0]->type != GGML_TYPE_F32) {
  15151. // here we need memory for fully dequantized matrix from src0
  15152. // take into account that src0 can be broadcasted into src1[2,3]
  15153. cur = ggml_type_size(GGML_TYPE_F32)
  15154. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15155. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15156. }
  15157. } else
  15158. #endif
  15159. if (node->src[1]->type != vec_dot_type) {
  15160. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15161. }
  15162. } break;
  15163. case GGML_OP_MUL_MAT_ID:
  15164. {
  15165. cur = 0;
  15166. const struct ggml_tensor * src0 = node->src[2];
  15167. const struct ggml_tensor * src1 = node->src[1];
  15168. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15169. if (src1->type != vec_dot_type) {
  15170. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15171. }
  15172. const int n_as = ggml_get_op_params_i32(node, 1);
  15173. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15174. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15175. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15176. } break;
  15177. case GGML_OP_OUT_PROD:
  15178. {
  15179. if (ggml_is_quantized(node->src[0]->type)) {
  15180. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15181. }
  15182. } break;
  15183. case GGML_OP_SOFT_MAX:
  15184. case GGML_OP_ROPE:
  15185. {
  15186. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15187. } break;
  15188. case GGML_OP_CONV_TRANSPOSE_1D:
  15189. {
  15190. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15191. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15192. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15193. const int64_t ne00 = node->src[0]->ne[0]; // K
  15194. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15195. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15196. const int64_t ne10 = node->src[1]->ne[0]; // L
  15197. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15198. if (node->src[0]->type == GGML_TYPE_F16 &&
  15199. node->src[1]->type == GGML_TYPE_F32) {
  15200. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15201. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15202. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15203. node->src[1]->type == GGML_TYPE_F32) {
  15204. cur += sizeof(float)*ne00*ne01*ne02;
  15205. cur += sizeof(float)*ne10*ne11;
  15206. } else {
  15207. GGML_ASSERT(false);
  15208. }
  15209. } break;
  15210. case GGML_OP_CONV_TRANSPOSE_2D:
  15211. {
  15212. const int64_t ne00 = node->src[0]->ne[0]; // W
  15213. const int64_t ne01 = node->src[0]->ne[1]; // H
  15214. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15215. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15216. const int64_t ne10 = node->src[1]->ne[0]; // W
  15217. const int64_t ne11 = node->src[1]->ne[1]; // H
  15218. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15219. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15220. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15221. } break;
  15222. case GGML_OP_FLASH_ATTN:
  15223. {
  15224. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15225. if (node->src[1]->type == GGML_TYPE_F32) {
  15226. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15227. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15228. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15229. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15230. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15231. }
  15232. } break;
  15233. case GGML_OP_FLASH_FF:
  15234. {
  15235. if (node->src[1]->type == GGML_TYPE_F32) {
  15236. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15237. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15238. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15239. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15240. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15241. }
  15242. } break;
  15243. case GGML_OP_FLASH_ATTN_BACK:
  15244. {
  15245. const int64_t D = node->src[0]->ne[0];
  15246. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15247. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15248. if (node->src[1]->type == GGML_TYPE_F32) {
  15249. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15250. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15251. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15252. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15253. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15254. }
  15255. } break;
  15256. case GGML_OP_CROSS_ENTROPY_LOSS:
  15257. {
  15258. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15259. } break;
  15260. case GGML_OP_COUNT:
  15261. {
  15262. GGML_ASSERT(false);
  15263. } break;
  15264. default:
  15265. break;
  15266. }
  15267. work_size = MAX(work_size, cur);
  15268. }
  15269. if (work_size > 0) {
  15270. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15271. }
  15272. cplan.n_threads = MIN(max_tasks, n_threads);
  15273. cplan.work_size = work_size;
  15274. cplan.work_data = NULL;
  15275. return cplan;
  15276. }
  15277. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15278. {
  15279. GGML_ASSERT(cplan);
  15280. GGML_ASSERT(cplan->n_threads > 0);
  15281. if (cplan->work_size > 0) {
  15282. GGML_ASSERT(cplan->work_data);
  15283. }
  15284. }
  15285. const int n_threads = cplan->n_threads;
  15286. struct ggml_compute_state_shared state_shared = {
  15287. /*.cgraph =*/ cgraph,
  15288. /*.cgraph_plan =*/ cplan,
  15289. /*.perf_node_start_cycles =*/ 0,
  15290. /*.perf_node_start_time_us =*/ 0,
  15291. /*.n_threads =*/ n_threads,
  15292. /*.n_active =*/ n_threads,
  15293. /*.node_n =*/ -1,
  15294. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15295. /*.abort_callback =*/ NULL,
  15296. /*.abort_callback_data =*/ NULL,
  15297. };
  15298. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15299. // create thread pool
  15300. if (n_threads > 1) {
  15301. for (int j = 1; j < n_threads; ++j) {
  15302. workers[j] = (struct ggml_compute_state) {
  15303. .thrd = 0,
  15304. .ith = j,
  15305. .shared = &state_shared,
  15306. .ec = GGML_STATUS_SUCCESS,
  15307. };
  15308. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15309. GGML_ASSERT(rc == 0);
  15310. UNUSED(rc);
  15311. }
  15312. }
  15313. workers[0].ith = 0;
  15314. workers[0].shared = &state_shared;
  15315. workers[0].ec = GGML_STATUS_SUCCESS;
  15316. const int64_t perf_start_cycles = ggml_perf_cycles();
  15317. const int64_t perf_start_time_us = ggml_perf_time_us();
  15318. // this is a work thread too
  15319. ggml_graph_compute_thread(&workers[0]);
  15320. enum ggml_status compute_status = workers[0].ec;
  15321. // don't leave affinity set on the main thread
  15322. clear_numa_thread_affinity();
  15323. // join or kill thread pool
  15324. if (n_threads > 1) {
  15325. for (int j = 1; j < n_threads; j++) {
  15326. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15327. GGML_ASSERT(rc == 0);
  15328. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15329. compute_status = workers[j].ec;
  15330. }
  15331. }
  15332. // performance stats (graph)
  15333. {
  15334. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15335. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15336. cgraph->perf_runs++;
  15337. cgraph->perf_cycles += perf_cycles_cur;
  15338. cgraph->perf_time_us += perf_time_us_cur;
  15339. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15340. __func__, cgraph->perf_runs,
  15341. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15342. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15343. (double) perf_time_us_cur / 1000.0,
  15344. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15345. }
  15346. return compute_status;
  15347. }
  15348. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15349. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15350. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15351. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15352. return ggml_graph_compute(cgraph, &cplan);
  15353. }
  15354. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15355. for (int i = 0; i < cgraph->n_leafs; i++) {
  15356. struct ggml_tensor * leaf = cgraph->leafs[i];
  15357. if (strcmp(leaf->name, name) == 0) {
  15358. return leaf;
  15359. }
  15360. }
  15361. for (int i = 0; i < cgraph->n_nodes; i++) {
  15362. struct ggml_tensor * node = cgraph->nodes[i];
  15363. if (strcmp(node->name, name) == 0) {
  15364. return node;
  15365. }
  15366. }
  15367. return NULL;
  15368. }
  15369. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15370. const int64_t * ne = tensor->ne;
  15371. const size_t * nb = tensor->nb;
  15372. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15373. ggml_type_name(tensor->type),
  15374. ggml_op_name (tensor->op),
  15375. ggml_n_dims(tensor),
  15376. ne[0], ne[1], ne[2], ne[3],
  15377. nb[0], nb[1], nb[2], nb[3],
  15378. tensor->data,
  15379. tensor->name);
  15380. }
  15381. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15382. const int64_t * ne = tensor->ne;
  15383. const size_t * nb = tensor->nb;
  15384. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15385. arg,
  15386. ggml_type_name(tensor->type),
  15387. ggml_op_name (tensor->op),
  15388. ggml_n_dims(tensor),
  15389. ne[0], ne[1], ne[2], ne[3],
  15390. nb[0], nb[1], nb[2], nb[3],
  15391. tensor->data,
  15392. tensor->name);
  15393. }
  15394. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15395. uint64_t size_eval = 0;
  15396. // compute size of intermediate results
  15397. // TODO: does not take into account scratch buffers !!!!
  15398. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15399. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15400. }
  15401. // print
  15402. {
  15403. FILE * fout = stdout;
  15404. fprintf(fout, "\n");
  15405. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15406. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15407. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15408. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15409. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15410. // header
  15411. fprintf(fout, "\n");
  15412. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15413. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15414. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15415. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15416. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15417. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15418. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15419. }
  15420. // header
  15421. fprintf(fout, "\n");
  15422. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15423. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15424. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15425. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15426. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15427. if (cgraph->nodes[i]->src[j]) {
  15428. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15429. }
  15430. }
  15431. fprintf(fout, "\n");
  15432. }
  15433. fprintf(fout, "\n");
  15434. }
  15435. // write binary data
  15436. {
  15437. FILE * fout = ggml_fopen(fname, "wb");
  15438. if (!fout) {
  15439. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15440. return;
  15441. }
  15442. // header
  15443. {
  15444. const uint32_t magic = GGML_FILE_MAGIC;
  15445. const uint32_t version = GGML_FILE_VERSION;
  15446. const uint32_t n_leafs = cgraph->n_leafs;
  15447. const uint32_t n_nodes = cgraph->n_nodes;
  15448. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15449. fwrite(&version, sizeof(uint32_t), 1, fout);
  15450. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15451. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15452. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15453. }
  15454. // leafs
  15455. {
  15456. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15457. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15458. const uint32_t type = tensor->type;
  15459. const uint32_t op = tensor->op;
  15460. fwrite(&type, sizeof(uint32_t), 1, fout);
  15461. fwrite(&op, sizeof(uint32_t), 1, fout);
  15462. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15463. const uint64_t ne = tensor->ne[j];
  15464. const uint64_t nb = tensor->nb[j];
  15465. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15466. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15467. }
  15468. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15469. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15470. // dump the data
  15471. // TODO: pad this to 32 byte boundary
  15472. {
  15473. const size_t size = ggml_nbytes(tensor);
  15474. fwrite(tensor->data, sizeof(char), size, fout);
  15475. }
  15476. }
  15477. }
  15478. // nodes
  15479. {
  15480. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15481. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15482. const uint32_t type = tensor->type;
  15483. const uint32_t op = tensor->op;
  15484. fwrite(&type, sizeof(uint32_t), 1, fout);
  15485. fwrite(&op, sizeof(uint32_t), 1, fout);
  15486. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15487. const uint64_t ne = tensor->ne[j];
  15488. const uint64_t nb = tensor->nb[j];
  15489. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15490. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15491. }
  15492. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15493. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15494. // output the op arguments
  15495. {
  15496. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15497. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15498. args[j] = tensor->src[j];
  15499. }
  15500. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15501. if (args[j]) {
  15502. int32_t idx = -1;
  15503. // check if leaf
  15504. {
  15505. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15506. if (args[j] == cgraph->leafs[k]) {
  15507. idx = k;
  15508. break;
  15509. }
  15510. }
  15511. }
  15512. // check if node
  15513. if (idx == -1) {
  15514. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15515. if (args[j] == cgraph->nodes[k]) {
  15516. idx = cgraph->n_leafs + k;
  15517. break;
  15518. }
  15519. }
  15520. }
  15521. if (idx == -1) {
  15522. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15523. fclose(fout);
  15524. return;
  15525. }
  15526. fwrite(&idx, sizeof(int32_t), 1, fout);
  15527. } else {
  15528. const int32_t nul = -1;
  15529. fwrite(&nul, sizeof(int32_t), 1, fout);
  15530. }
  15531. }
  15532. }
  15533. }
  15534. }
  15535. fclose(fout);
  15536. }
  15537. }
  15538. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15539. assert(*ctx_data == NULL);
  15540. assert(*ctx_eval == NULL);
  15541. struct ggml_cgraph * result = NULL;
  15542. struct ggml_tensor * data = NULL;
  15543. // read file into data
  15544. {
  15545. FILE * fin = ggml_fopen(fname, "rb");
  15546. if (!fin) {
  15547. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15548. return result;
  15549. }
  15550. size_t fsize = 0;
  15551. fseek(fin, 0, SEEK_END);
  15552. fsize = ftell(fin);
  15553. fseek(fin, 0, SEEK_SET);
  15554. // create the data context
  15555. {
  15556. const size_t overhead = 1*ggml_tensor_overhead();
  15557. struct ggml_init_params params = {
  15558. .mem_size = fsize + overhead,
  15559. .mem_buffer = NULL,
  15560. .no_alloc = false,
  15561. };
  15562. *ctx_data = ggml_init(params);
  15563. if (!*ctx_data) {
  15564. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15565. fclose(fin);
  15566. return result;
  15567. }
  15568. }
  15569. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15570. {
  15571. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15572. if (ret != fsize) {
  15573. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15574. fclose(fin);
  15575. return result;
  15576. }
  15577. }
  15578. fclose(fin);
  15579. }
  15580. // populate result
  15581. {
  15582. char * ptr = (char *) data->data;
  15583. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15584. if (magic != GGML_FILE_MAGIC) {
  15585. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15586. return result;
  15587. }
  15588. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15589. if (version != GGML_FILE_VERSION) {
  15590. fprintf(stderr, "%s: invalid version number\n", __func__);
  15591. return result;
  15592. }
  15593. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15594. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15595. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15596. const int graph_size = MAX(n_leafs, n_nodes);
  15597. // create the data context
  15598. {
  15599. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15600. struct ggml_init_params params = {
  15601. .mem_size = size_eval + overhead,
  15602. .mem_buffer = NULL,
  15603. .no_alloc = true,
  15604. };
  15605. *ctx_eval = ggml_init(params);
  15606. if (!*ctx_eval) {
  15607. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15608. return result;
  15609. }
  15610. }
  15611. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15612. result->n_leafs = n_leafs;
  15613. result->n_nodes = n_nodes;
  15614. // leafs
  15615. {
  15616. uint32_t type;
  15617. uint32_t op;
  15618. for (uint32_t i = 0; i < n_leafs; ++i) {
  15619. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15620. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15621. int64_t ne[GGML_MAX_DIMS];
  15622. size_t nb[GGML_MAX_DIMS];
  15623. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15624. uint64_t ne_cur;
  15625. uint64_t nb_cur;
  15626. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15627. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15628. ne[j] = ne_cur;
  15629. nb[j] = nb_cur;
  15630. }
  15631. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15632. tensor->op = (enum ggml_op) op;
  15633. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15634. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15635. tensor->data = (void *) ptr;
  15636. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15637. tensor->nb[j] = nb[j];
  15638. }
  15639. result->leafs[i] = tensor;
  15640. ptr += ggml_nbytes(tensor);
  15641. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15642. }
  15643. }
  15644. ggml_set_no_alloc(*ctx_eval, false);
  15645. // nodes
  15646. {
  15647. uint32_t type;
  15648. uint32_t op;
  15649. for (uint32_t i = 0; i < n_nodes; ++i) {
  15650. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15651. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15652. enum ggml_op eop = (enum ggml_op) op;
  15653. int64_t ne[GGML_MAX_DIMS];
  15654. size_t nb[GGML_MAX_DIMS];
  15655. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15656. uint64_t ne_cur;
  15657. uint64_t nb_cur;
  15658. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15659. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15660. ne[j] = ne_cur;
  15661. nb[j] = nb_cur;
  15662. }
  15663. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15664. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15665. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15666. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15667. // parse args
  15668. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15669. const int32_t arg_idx = ptr_arg_idx[j];
  15670. if (arg_idx == -1) {
  15671. continue;
  15672. }
  15673. if (arg_idx < result->n_leafs) {
  15674. args[j] = result->leafs[arg_idx];
  15675. } else {
  15676. args[j] = result->nodes[arg_idx - result->n_leafs];
  15677. }
  15678. }
  15679. // create the tensor
  15680. // "view" operations are handled differently
  15681. // TODO: handle inplace ops - currently a copy is always made
  15682. struct ggml_tensor * tensor = NULL;
  15683. switch (eop) {
  15684. // TODO: implement other view ops
  15685. case GGML_OP_RESHAPE:
  15686. {
  15687. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15688. } break;
  15689. case GGML_OP_VIEW:
  15690. {
  15691. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15692. size_t offs;
  15693. memcpy(&offs, ptr_op_params, sizeof(offs));
  15694. tensor->data = ((char *) tensor->data) + offs;
  15695. } break;
  15696. case GGML_OP_TRANSPOSE:
  15697. {
  15698. tensor = ggml_transpose(*ctx_eval, args[0]);
  15699. } break;
  15700. case GGML_OP_PERMUTE:
  15701. {
  15702. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15703. } break;
  15704. default:
  15705. {
  15706. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15707. tensor->op = eop;
  15708. } break;
  15709. }
  15710. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15711. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15712. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15713. tensor->nb[j] = nb[j];
  15714. }
  15715. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15716. tensor->src[j] = args[j];
  15717. }
  15718. result->nodes[i] = tensor;
  15719. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15720. }
  15721. }
  15722. }
  15723. return result;
  15724. }
  15725. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15726. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15727. GGML_PRINT("=== GRAPH ===\n");
  15728. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15729. for (int i = 0; i < cgraph->n_nodes; i++) {
  15730. struct ggml_tensor * node = cgraph->nodes[i];
  15731. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15732. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15733. i,
  15734. node->ne[0], node->ne[1], node->ne[2],
  15735. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15736. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15737. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15738. (double) node->perf_time_us / 1000.0,
  15739. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15740. }
  15741. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15742. for (int i = 0; i < cgraph->n_leafs; i++) {
  15743. struct ggml_tensor * node = cgraph->leafs[i];
  15744. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15745. i,
  15746. node->ne[0], node->ne[1],
  15747. ggml_op_name(node->op),
  15748. ggml_get_name(node));
  15749. }
  15750. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15751. if (perf_total_per_op_us[i] == 0) {
  15752. continue;
  15753. }
  15754. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15755. }
  15756. GGML_PRINT("========================================\n");
  15757. }
  15758. // check if node is part of the graph
  15759. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15760. if (cgraph == NULL) {
  15761. return true;
  15762. }
  15763. for (int i = 0; i < cgraph->n_nodes; i++) {
  15764. if (cgraph->nodes[i] == node) {
  15765. return true;
  15766. }
  15767. }
  15768. return false;
  15769. }
  15770. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15771. for (int i = 0; i < cgraph->n_nodes; i++) {
  15772. struct ggml_tensor * parent = cgraph->nodes[i];
  15773. if (parent->grad == node) {
  15774. return parent;
  15775. }
  15776. }
  15777. return NULL;
  15778. }
  15779. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15780. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15781. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15782. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15783. gparent0 ? (void *) gparent0 : (void *) parent,
  15784. gparent0 ? "g" : "x",
  15785. gparent ? (void *) gparent : (void *) node,
  15786. gparent ? "g" : "x",
  15787. gparent ? "empty" : "vee",
  15788. gparent ? "dashed" : "solid",
  15789. label);
  15790. }
  15791. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15792. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15793. (void *) parent, "x",
  15794. (void *) node, "x",
  15795. label);
  15796. }
  15797. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15798. char color[16];
  15799. FILE * fp = ggml_fopen(filename, "w");
  15800. GGML_ASSERT(fp);
  15801. fprintf(fp, "digraph G {\n");
  15802. fprintf(fp, " newrank = true;\n");
  15803. fprintf(fp, " rankdir = LR;\n");
  15804. for (int i = 0; i < gb->n_nodes; i++) {
  15805. struct ggml_tensor * node = gb->nodes[i];
  15806. if (ggml_graph_get_parent(gb, node) != NULL) {
  15807. continue;
  15808. }
  15809. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15810. snprintf(color, sizeof(color), "yellow");
  15811. } else if (node->grad) {
  15812. if (ggml_graph_find(gf, node)) {
  15813. snprintf(color, sizeof(color), "green");
  15814. } else {
  15815. snprintf(color, sizeof(color), "lightblue");
  15816. }
  15817. } else {
  15818. snprintf(color, sizeof(color), "white");
  15819. }
  15820. fprintf(fp, " \"%p\" [ "
  15821. "style = filled; fillcolor = %s; shape = record; "
  15822. "label=\"",
  15823. (void *) node, color);
  15824. if (strlen(node->name) > 0) {
  15825. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15826. } else {
  15827. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15828. }
  15829. if (ggml_is_matrix(node)) {
  15830. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15831. } else {
  15832. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15833. }
  15834. if (node->grad) {
  15835. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15836. } else {
  15837. fprintf(fp, "\"; ]\n");
  15838. }
  15839. }
  15840. for (int i = 0; i < gb->n_leafs; i++) {
  15841. struct ggml_tensor * node = gb->leafs[i];
  15842. snprintf(color, sizeof(color), "pink");
  15843. fprintf(fp, " \"%p\" [ "
  15844. "style = filled; fillcolor = %s; shape = record; "
  15845. "label=\"<x>",
  15846. (void *) node, color);
  15847. if (strlen(node->name) > 0) {
  15848. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15849. } else {
  15850. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15851. }
  15852. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15853. if (ggml_nelements(node) < 5) {
  15854. fprintf(fp, " | (");
  15855. for (int j = 0; j < ggml_nelements(node); j++) {
  15856. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15857. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15858. }
  15859. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15860. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15861. }
  15862. else {
  15863. fprintf(fp, "#");
  15864. }
  15865. if (j < ggml_nelements(node) - 1) {
  15866. fprintf(fp, ", ");
  15867. }
  15868. }
  15869. fprintf(fp, ")");
  15870. }
  15871. fprintf(fp, "\"; ]\n");
  15872. }
  15873. for (int i = 0; i < gb->n_nodes; i++) {
  15874. struct ggml_tensor * node = gb->nodes[i];
  15875. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15876. if (node->src[j]) {
  15877. char label[16];
  15878. snprintf(label, sizeof(label), "src %d", j);
  15879. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15880. }
  15881. }
  15882. }
  15883. for (int i = 0; i < gb->n_leafs; i++) {
  15884. struct ggml_tensor * node = gb->leafs[i];
  15885. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15886. if (node->src[j]) {
  15887. char label[16];
  15888. snprintf(label, sizeof(label), "src %d", j);
  15889. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15890. }
  15891. }
  15892. }
  15893. fprintf(fp, "}\n");
  15894. fclose(fp);
  15895. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15896. }
  15897. ////////////////////////////////////////////////////////////////////////////////
  15898. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15899. int i = 0;
  15900. for (int p = 0; p < np; ++p) {
  15901. const int64_t ne = ggml_nelements(ps[p]) ;
  15902. // TODO: add function to set tensor from array
  15903. for (int64_t j = 0; j < ne; ++j) {
  15904. ggml_set_f32_1d(ps[p], j, x[i++]);
  15905. }
  15906. }
  15907. }
  15908. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15909. int i = 0;
  15910. for (int p = 0; p < np; ++p) {
  15911. const int64_t ne = ggml_nelements(ps[p]) ;
  15912. // TODO: add function to get all elements at once
  15913. for (int64_t j = 0; j < ne; ++j) {
  15914. x[i++] = ggml_get_f32_1d(ps[p], j);
  15915. }
  15916. }
  15917. }
  15918. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15919. int64_t i = 0;
  15920. for (int p = 0; p < np; ++p) {
  15921. const int64_t ne = ggml_nelements(ps[p]) ;
  15922. // TODO: add function to get all elements at once
  15923. for (int64_t j = 0; j < ne; ++j) {
  15924. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15925. }
  15926. }
  15927. }
  15928. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15929. int64_t i = 0;
  15930. for (int p = 0; p < np; ++p) {
  15931. const int64_t ne = ggml_nelements(ps[p]) ;
  15932. // TODO: add function to get all elements at once
  15933. for (int64_t j = 0; j < ne; ++j) {
  15934. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15935. }
  15936. }
  15937. }
  15938. //
  15939. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15940. //
  15941. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15942. //
  15943. static enum ggml_opt_result ggml_opt_adam(
  15944. struct ggml_context * ctx,
  15945. struct ggml_opt_context * opt,
  15946. struct ggml_opt_params params,
  15947. struct ggml_tensor * f,
  15948. struct ggml_cgraph * gf,
  15949. struct ggml_cgraph * gb,
  15950. ggml_opt_callback callback,
  15951. void * callback_data) {
  15952. GGML_ASSERT(ggml_is_scalar(f));
  15953. // these will store the parameters we want to optimize
  15954. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15955. int np = 0;
  15956. int64_t nx = 0;
  15957. for (int i = 0; i < gf->n_nodes; ++i) {
  15958. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15959. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15960. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15961. ps[np++] = gf->nodes[i];
  15962. nx += ggml_nelements(gf->nodes[i]);
  15963. }
  15964. }
  15965. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15966. int iter = opt->iter;
  15967. ggml_opt_init(opt->ctx, opt, params, nx);
  15968. opt->iter = iter;
  15969. }
  15970. // constants
  15971. float sched = params.adam.sched;
  15972. const float alpha = params.adam.alpha;
  15973. const float decay = params.adam.decay * alpha;
  15974. const float beta1 = params.adam.beta1;
  15975. const float beta2 = params.adam.beta2;
  15976. const float eps = params.adam.eps;
  15977. const float gclip = params.adam.gclip;
  15978. const int decay_min_ndim = params.adam.decay_min_ndim;
  15979. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15980. const float accum_norm = 1.0f / (float) n_accum;
  15981. float * g = opt->adam.g->data; // gradients
  15982. float * m = opt->adam.m->data; // first moment
  15983. float * v = opt->adam.v->data; // second moment
  15984. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15985. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15986. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15987. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15988. bool cancel = false;
  15989. // compute the function value
  15990. float fx = 0;
  15991. ggml_set_zero(opt->adam.g);
  15992. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15993. if (callback) {
  15994. callback(callback_data, accum_step, &sched, &cancel);
  15995. if (cancel) {
  15996. return GGML_OPT_RESULT_CANCEL;
  15997. }
  15998. }
  15999. // ggml_graph_reset (gf);
  16000. ggml_set_f32 (f->grad, 1.0f);
  16001. ggml_graph_compute(gb, &cplan);
  16002. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16003. fx += ggml_get_f32_1d(f, 0);
  16004. }
  16005. fx *= accum_norm;
  16006. opt->adam.fx_prev = fx;
  16007. opt->adam.fx_best = opt->adam.fx_prev;
  16008. if (pf) {
  16009. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16010. }
  16011. opt->loss_before = opt->adam.fx_prev;
  16012. opt->loss_after = opt->adam.fx_prev;
  16013. // initialize
  16014. if (opt->just_initialized) {
  16015. opt->adam.n_no_improvement = 0;
  16016. opt->just_initialized = false;
  16017. }
  16018. float * fx_best = &opt->adam.fx_best;
  16019. float * fx_prev = &opt->adam.fx_prev;
  16020. int * n_no_improvement = &opt->adam.n_no_improvement;
  16021. int iter0 = opt->iter;
  16022. // run the optimizer
  16023. for (int t = 0; t < params.adam.n_iter; ++t) {
  16024. opt->iter = iter0 + t + 1;
  16025. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16026. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16027. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16028. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16029. for (int i = 0; i < np; ++i) {
  16030. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16031. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16032. }
  16033. const int64_t t_start_wall = ggml_time_us();
  16034. const int64_t t_start_cpu = ggml_cycles();
  16035. UNUSED(t_start_wall);
  16036. UNUSED(t_start_cpu);
  16037. {
  16038. float gnorm = 1.0f;
  16039. if (gclip > 0.0f) {
  16040. // gradient clipping
  16041. ggml_float sum = 0.0;
  16042. for (int64_t i = 0; i < nx; ++i) {
  16043. sum += (ggml_float)(g[i]*g[i]);
  16044. }
  16045. ggml_float norm = sqrt(sum);
  16046. if (norm > (ggml_float) gclip) {
  16047. gnorm = (float) ((ggml_float) gclip / norm);
  16048. }
  16049. }
  16050. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16051. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16052. int64_t i = 0;
  16053. for (int p = 0; p < np; ++p) {
  16054. const int64_t ne = ggml_nelements(ps[p]);
  16055. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16056. for (int64_t j = 0; j < ne; ++j) {
  16057. float x = ggml_get_f32_1d(ps[p], j);
  16058. float g_ = g[i]*gnorm;
  16059. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16060. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16061. float mh = m[i]*beta1h;
  16062. float vh = v[i]*beta2h;
  16063. vh = sqrtf(vh) + eps;
  16064. x = x*(1.0f - p_decay) - mh/vh;
  16065. ggml_set_f32_1d(ps[p], j, x);
  16066. ++i;
  16067. }
  16068. }
  16069. }
  16070. fx = 0;
  16071. ggml_set_zero(opt->adam.g);
  16072. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16073. if (callback) {
  16074. callback(callback_data, accum_step, &sched, &cancel);
  16075. if (cancel) {
  16076. return GGML_OPT_RESULT_CANCEL;;
  16077. }
  16078. }
  16079. // ggml_graph_reset (gf);
  16080. ggml_set_f32 (f->grad, 1.0f);
  16081. ggml_graph_compute(gb, &cplan);
  16082. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16083. fx += ggml_get_f32_1d(f, 0);
  16084. }
  16085. fx *= accum_norm;
  16086. opt->loss_after = fx;
  16087. // check convergence
  16088. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16089. GGML_PRINT_DEBUG("converged\n");
  16090. return GGML_OPT_RESULT_OK;
  16091. }
  16092. // delta-based convergence test
  16093. if (pf != NULL) {
  16094. // need at least params.past iterations to start checking for convergence
  16095. if (params.past <= iter0 + t) {
  16096. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16097. if (fabsf(rate) < params.delta) {
  16098. return GGML_OPT_RESULT_OK;
  16099. }
  16100. }
  16101. pf[(iter0 + t)%params.past] = fx;
  16102. }
  16103. // check for improvement
  16104. if (params.max_no_improvement > 0) {
  16105. if (fx_best[0] > fx) {
  16106. fx_best[0] = fx;
  16107. n_no_improvement[0] = 0;
  16108. } else {
  16109. ++n_no_improvement[0];
  16110. if (n_no_improvement[0] >= params.max_no_improvement) {
  16111. return GGML_OPT_RESULT_OK;
  16112. }
  16113. }
  16114. }
  16115. fx_prev[0] = fx;
  16116. {
  16117. const int64_t t_end_cpu = ggml_cycles();
  16118. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16119. UNUSED(t_end_cpu);
  16120. const int64_t t_end_wall = ggml_time_us();
  16121. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16122. UNUSED(t_end_wall);
  16123. }
  16124. }
  16125. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16126. }
  16127. //
  16128. // L-BFGS
  16129. //
  16130. // the L-BFGS implementation below is based on the following implementation:
  16131. //
  16132. // https://github.com/chokkan/liblbfgs
  16133. //
  16134. struct ggml_lbfgs_iteration_data {
  16135. float alpha;
  16136. float ys;
  16137. float * s;
  16138. float * y;
  16139. };
  16140. static enum ggml_opt_result linesearch_backtracking(
  16141. const struct ggml_opt_params * params,
  16142. int nx,
  16143. float * x,
  16144. float * fx,
  16145. float * g,
  16146. float * d,
  16147. float * step,
  16148. const float * xp,
  16149. struct ggml_tensor * f,
  16150. struct ggml_cgraph * gb,
  16151. struct ggml_cplan * cplan,
  16152. const int np,
  16153. struct ggml_tensor * ps[],
  16154. bool * cancel,
  16155. ggml_opt_callback callback,
  16156. void * callback_data) {
  16157. int count = 0;
  16158. float width = 0.0f;
  16159. float dg = 0.0f;
  16160. float finit = 0.0f;
  16161. float dginit = 0.0f;
  16162. float dgtest = 0.0f;
  16163. const float dec = 0.5f;
  16164. const float inc = 2.1f;
  16165. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16166. const float accum_norm = 1.0f / (float) n_accum;
  16167. if (*step <= 0.f) {
  16168. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16169. }
  16170. // compute the initial gradient in the search direction
  16171. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16172. // make sure that d points to a descent direction
  16173. if (0 < dginit) {
  16174. return GGML_LINESEARCH_FAIL;
  16175. }
  16176. // initialize local variables
  16177. finit = *fx;
  16178. dgtest = params->lbfgs.ftol*dginit;
  16179. while (true) {
  16180. ggml_vec_cpy_f32(nx, x, xp);
  16181. ggml_vec_mad_f32(nx, x, d, *step);
  16182. // evaluate the function and gradient values
  16183. {
  16184. ggml_opt_set_params(np, ps, x);
  16185. *fx = 0;
  16186. memset(g, 0, sizeof(float)*nx);
  16187. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16188. if (callback) {
  16189. // LBFG-S does not support learning rate -> ignore learning schedule
  16190. float sched = 0;
  16191. callback(callback_data, accum_step, &sched, cancel);
  16192. if (*cancel) {
  16193. return GGML_OPT_RESULT_CANCEL;
  16194. }
  16195. }
  16196. // ggml_graph_reset (gf);
  16197. ggml_set_f32 (f->grad, 1.0f);
  16198. ggml_graph_compute(gb, cplan);
  16199. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16200. *fx += ggml_get_f32_1d(f, 0);
  16201. }
  16202. *fx *= accum_norm;
  16203. }
  16204. ++count;
  16205. if (*fx > finit + (*step)*dgtest) {
  16206. width = dec;
  16207. } else {
  16208. // Armijo condition is satisfied
  16209. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16210. return count;
  16211. }
  16212. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16213. // check the Wolfe condition
  16214. if (dg < params->lbfgs.wolfe * dginit) {
  16215. width = inc;
  16216. } else {
  16217. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16218. // regular Wolfe conditions
  16219. return count;
  16220. }
  16221. if(dg > -params->lbfgs.wolfe*dginit) {
  16222. width = dec;
  16223. } else {
  16224. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16225. return count;
  16226. }
  16227. }
  16228. }
  16229. if (*step < params->lbfgs.min_step) {
  16230. return GGML_LINESEARCH_MINIMUM_STEP;
  16231. }
  16232. if (*step > params->lbfgs.max_step) {
  16233. return GGML_LINESEARCH_MAXIMUM_STEP;
  16234. }
  16235. if (params->lbfgs.max_linesearch <= count) {
  16236. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16237. }
  16238. (*step) *= width;
  16239. }
  16240. GGML_ASSERT(false && "line search failed");
  16241. return GGML_LINESEARCH_FAIL;
  16242. }
  16243. static enum ggml_opt_result ggml_opt_lbfgs(
  16244. struct ggml_context * ctx,
  16245. struct ggml_opt_context * opt,
  16246. struct ggml_opt_params params,
  16247. struct ggml_tensor * f,
  16248. struct ggml_cgraph * gf,
  16249. struct ggml_cgraph * gb,
  16250. ggml_opt_callback callback,
  16251. void * callback_data) {
  16252. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16253. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16254. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16255. return GGML_OPT_RESULT_INVALID_WOLFE;
  16256. }
  16257. }
  16258. const int m = params.lbfgs.m;
  16259. // these will store the parameters we want to optimize
  16260. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16261. int np = 0;
  16262. int nx = 0;
  16263. for (int i = 0; i < gf->n_nodes; ++i) {
  16264. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16265. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16266. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16267. ps[np++] = gf->nodes[i];
  16268. nx += ggml_nelements(gf->nodes[i]);
  16269. }
  16270. }
  16271. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16272. int iter = opt->iter;
  16273. ggml_opt_init(ctx, opt, params, nx);
  16274. opt->iter = iter;
  16275. }
  16276. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16277. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16278. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16279. float * x = opt->lbfgs.x->data; // current parameters
  16280. float * xp = opt->lbfgs.xp->data; // previous parameters
  16281. float * g = opt->lbfgs.g->data; // current gradient
  16282. float * gp = opt->lbfgs.gp->data; // previous gradient
  16283. float * d = opt->lbfgs.d->data; // search direction
  16284. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16285. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16286. const float accum_norm = 1.0f / (float) n_accum;
  16287. float fx = 0.0f; // cost function value
  16288. float xnorm = 0.0f; // ||x||
  16289. float gnorm = 0.0f; // ||g||
  16290. // initialize x from the graph nodes
  16291. ggml_opt_get_params(np, ps, x);
  16292. // the L-BFGS memory
  16293. float * lm_alpha = opt->lbfgs.lmal->data;
  16294. float * lm_ys = opt->lbfgs.lmys->data;
  16295. float * lm_s = opt->lbfgs.lms->data;
  16296. float * lm_y = opt->lbfgs.lmy->data;
  16297. bool cancel = false;
  16298. // evaluate the function value and its gradient
  16299. {
  16300. ggml_opt_set_params(np, ps, x);
  16301. fx = 0;
  16302. memset(g, 0, sizeof(float)*nx);
  16303. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16304. if (callback) {
  16305. // LBFG-S does not support learning rate -> ignore learning schedule
  16306. float sched = 0;
  16307. callback(callback_data, accum_step, &sched, &cancel);
  16308. if (cancel) {
  16309. return GGML_OPT_RESULT_CANCEL;
  16310. }
  16311. }
  16312. // ggml_graph_reset (gf);
  16313. ggml_set_f32 (f->grad, 1.0f);
  16314. ggml_graph_compute(gb, &cplan);
  16315. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16316. fx += ggml_get_f32_1d(f, 0);
  16317. }
  16318. fx *= accum_norm;
  16319. opt->loss_before = fx;
  16320. opt->loss_after = fx;
  16321. }
  16322. // search direction = -gradient
  16323. ggml_vec_neg_f32(nx, d, g);
  16324. // ||x||, ||g||
  16325. ggml_vec_norm_f32(nx, &xnorm, x);
  16326. ggml_vec_norm_f32(nx, &gnorm, g);
  16327. if (xnorm < 1.0f) {
  16328. xnorm = 1.0f;
  16329. }
  16330. // already optimized
  16331. if (gnorm/xnorm <= params.lbfgs.eps) {
  16332. return GGML_OPT_RESULT_OK;
  16333. }
  16334. if (opt->just_initialized) {
  16335. if (pf) {
  16336. pf[0] = fx;
  16337. }
  16338. opt->lbfgs.fx_best = fx;
  16339. // initial step
  16340. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16341. opt->lbfgs.j = 0;
  16342. opt->lbfgs.k = 1;
  16343. opt->lbfgs.end = 0;
  16344. opt->lbfgs.n_no_improvement = 0;
  16345. opt->just_initialized = false;
  16346. }
  16347. float * fx_best = &opt->lbfgs.fx_best;
  16348. float * step = &opt->lbfgs.step;
  16349. int * j = &opt->lbfgs.j;
  16350. int * k = &opt->lbfgs.k;
  16351. int * end = &opt->lbfgs.end;
  16352. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16353. int ls = 0;
  16354. int bound = 0;
  16355. float ys = 0.0f;
  16356. float yy = 0.0f;
  16357. float beta = 0.0f;
  16358. int it = 0;
  16359. while (true) {
  16360. // store the current position and gradient vectors
  16361. ggml_vec_cpy_f32(nx, xp, x);
  16362. ggml_vec_cpy_f32(nx, gp, g);
  16363. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16364. // to determine if the optimization should be cancelled
  16365. // this is a simple change, but not doing this atm, since I don't have a nice
  16366. // way to test and don't want to break something with so many changes lined up
  16367. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16368. if (cancel) {
  16369. return GGML_OPT_RESULT_CANCEL;
  16370. }
  16371. if (ls < 0) {
  16372. // linesearch failed - go back to the previous point and return
  16373. ggml_vec_cpy_f32(nx, x, xp);
  16374. ggml_vec_cpy_f32(nx, g, gp);
  16375. return ls;
  16376. }
  16377. opt->loss_after = fx;
  16378. ggml_vec_norm_f32(nx, &xnorm, x);
  16379. ggml_vec_norm_f32(nx, &gnorm, g);
  16380. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16381. if (xnorm < 1.0f) {
  16382. xnorm = 1.0f;
  16383. }
  16384. if (gnorm/xnorm <= params.lbfgs.eps) {
  16385. // converged
  16386. return GGML_OPT_RESULT_OK;
  16387. }
  16388. // delta-based convergence test
  16389. if (pf != NULL) {
  16390. // need at least params.past iterations to start checking for convergence
  16391. if (params.past <= k[0]) {
  16392. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16393. if (fabsf(rate) < params.delta) {
  16394. return GGML_OPT_RESULT_OK;
  16395. }
  16396. }
  16397. pf[k[0]%params.past] = fx;
  16398. }
  16399. // check for improvement
  16400. if (params.max_no_improvement > 0) {
  16401. if (fx < fx_best[0]) {
  16402. fx_best[0] = fx;
  16403. n_no_improvement[0] = 0;
  16404. } else {
  16405. n_no_improvement[0]++;
  16406. if (n_no_improvement[0] >= params.max_no_improvement) {
  16407. return GGML_OPT_RESULT_OK;
  16408. }
  16409. }
  16410. }
  16411. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16412. // reached the maximum number of iterations
  16413. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16414. }
  16415. // update vectors s and y:
  16416. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16417. // y_{k+1} = g_{k+1} - g_{k}.
  16418. //
  16419. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16420. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16421. // compute scalars ys and yy:
  16422. // ys = y^t \cdot s -> 1 / \rho.
  16423. // yy = y^t \cdot y.
  16424. //
  16425. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16426. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16427. lm_ys[end[0]] = ys;
  16428. // find new search direction
  16429. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16430. bound = (m <= k[0]) ? m : k[0];
  16431. k[0]++;
  16432. it++;
  16433. end[0] = (end[0] + 1)%m;
  16434. // initialize search direction with -g
  16435. ggml_vec_neg_f32(nx, d, g);
  16436. j[0] = end[0];
  16437. for (int i = 0; i < bound; ++i) {
  16438. j[0] = (j[0] + m - 1) % m;
  16439. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16440. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16441. lm_alpha[j[0]] /= lm_ys[j[0]];
  16442. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16443. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16444. }
  16445. ggml_vec_scale_f32(nx, d, ys/yy);
  16446. for (int i = 0; i < bound; ++i) {
  16447. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16448. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16449. beta /= lm_ys[j[0]];
  16450. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16451. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16452. j[0] = (j[0] + 1)%m;
  16453. }
  16454. step[0] = 1.0;
  16455. }
  16456. GGML_ASSERT(false && "lbfgs failed");
  16457. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16458. }
  16459. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16460. struct ggml_opt_params result;
  16461. switch (type) {
  16462. case GGML_OPT_TYPE_ADAM:
  16463. {
  16464. result = (struct ggml_opt_params) {
  16465. .type = GGML_OPT_TYPE_ADAM,
  16466. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16467. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16468. .past = 0,
  16469. .delta = 1e-5f,
  16470. .max_no_improvement = 100,
  16471. .print_forward_graph = true,
  16472. .print_backward_graph = true,
  16473. .n_gradient_accumulation = 1,
  16474. .adam = {
  16475. .n_iter = 10000,
  16476. .sched = 1.000f,
  16477. .decay = 0.0f,
  16478. .decay_min_ndim = 2,
  16479. .alpha = 0.001f,
  16480. .beta1 = 0.9f,
  16481. .beta2 = 0.999f,
  16482. .eps = 1e-8f,
  16483. .eps_f = 1e-5f,
  16484. .eps_g = 1e-3f,
  16485. .gclip = 0.0f,
  16486. },
  16487. };
  16488. } break;
  16489. case GGML_OPT_TYPE_LBFGS:
  16490. {
  16491. result = (struct ggml_opt_params) {
  16492. .type = GGML_OPT_TYPE_LBFGS,
  16493. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16494. .n_threads = 1,
  16495. .past = 0,
  16496. .delta = 1e-5f,
  16497. .max_no_improvement = 0,
  16498. .print_forward_graph = true,
  16499. .print_backward_graph = true,
  16500. .n_gradient_accumulation = 1,
  16501. .lbfgs = {
  16502. .m = 6,
  16503. .n_iter = 100,
  16504. .max_linesearch = 20,
  16505. .eps = 1e-5f,
  16506. .ftol = 1e-4f,
  16507. .wolfe = 0.9f,
  16508. .min_step = 1e-20f,
  16509. .max_step = 1e+20f,
  16510. .linesearch = GGML_LINESEARCH_DEFAULT,
  16511. },
  16512. };
  16513. } break;
  16514. }
  16515. return result;
  16516. }
  16517. GGML_API void ggml_opt_init(
  16518. struct ggml_context * ctx,
  16519. struct ggml_opt_context * opt,
  16520. struct ggml_opt_params params,
  16521. int64_t nx) {
  16522. opt->ctx = ctx;
  16523. opt->params = params;
  16524. opt->iter = 0;
  16525. opt->nx = nx;
  16526. opt->just_initialized = true;
  16527. if (opt->ctx == NULL) {
  16528. struct ggml_init_params ctx_opt_params;
  16529. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16530. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16531. if (opt->params.past > 0) {
  16532. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16533. }
  16534. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16535. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16536. if (opt->params.past > 0) {
  16537. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16538. }
  16539. }
  16540. ctx_opt_params.mem_buffer = NULL;
  16541. ctx_opt_params.no_alloc = false;
  16542. opt->ctx = ggml_init(ctx_opt_params);
  16543. }
  16544. switch (opt->params.type) {
  16545. case GGML_OPT_TYPE_ADAM:
  16546. {
  16547. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16548. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16549. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16550. opt->adam.pf = params.past > 0
  16551. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16552. : NULL;
  16553. ggml_set_zero(opt->adam.m);
  16554. ggml_set_zero(opt->adam.v);
  16555. if (opt->adam.pf) {
  16556. ggml_set_zero(opt->adam.pf);
  16557. }
  16558. } break;
  16559. case GGML_OPT_TYPE_LBFGS:
  16560. {
  16561. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16562. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16563. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16564. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16565. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16566. opt->lbfgs.pf = params.past > 0
  16567. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16568. : NULL;
  16569. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16570. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16571. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16572. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16573. ggml_set_zero(opt->lbfgs.x);
  16574. ggml_set_zero(opt->lbfgs.xp);
  16575. ggml_set_zero(opt->lbfgs.g);
  16576. ggml_set_zero(opt->lbfgs.gp);
  16577. ggml_set_zero(opt->lbfgs.d);
  16578. if (opt->lbfgs.pf) {
  16579. ggml_set_zero(opt->lbfgs.pf);
  16580. }
  16581. ggml_set_zero(opt->lbfgs.lmal);
  16582. ggml_set_zero(opt->lbfgs.lmys);
  16583. ggml_set_zero(opt->lbfgs.lms);
  16584. ggml_set_zero(opt->lbfgs.lmy);
  16585. } break;
  16586. }
  16587. }
  16588. enum ggml_opt_result ggml_opt(
  16589. struct ggml_context * ctx,
  16590. struct ggml_opt_params params,
  16591. struct ggml_tensor * f) {
  16592. bool free_ctx = false;
  16593. if (ctx == NULL) {
  16594. struct ggml_init_params params_ctx = {
  16595. .mem_size = 16*1024*1024,
  16596. .mem_buffer = NULL,
  16597. .no_alloc = false,
  16598. };
  16599. ctx = ggml_init(params_ctx);
  16600. if (ctx == NULL) {
  16601. return GGML_OPT_RESULT_NO_CONTEXT;
  16602. }
  16603. free_ctx = true;
  16604. }
  16605. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16606. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16607. ggml_opt_init(ctx, opt, params, 0);
  16608. result = ggml_opt_resume(ctx, opt, f);
  16609. if (free_ctx) {
  16610. ggml_free(ctx);
  16611. }
  16612. return result;
  16613. }
  16614. enum ggml_opt_result ggml_opt_resume(
  16615. struct ggml_context * ctx,
  16616. struct ggml_opt_context * opt,
  16617. struct ggml_tensor * f) {
  16618. // build forward + backward compute graphs
  16619. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16620. ggml_build_forward_expand(gf, f);
  16621. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16622. ggml_build_backward_expand(ctx, gf, gb, true);
  16623. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16624. }
  16625. enum ggml_opt_result ggml_opt_resume_g(
  16626. struct ggml_context * ctx,
  16627. struct ggml_opt_context * opt,
  16628. struct ggml_tensor * f,
  16629. struct ggml_cgraph * gf,
  16630. struct ggml_cgraph * gb,
  16631. ggml_opt_callback callback,
  16632. void * callback_data) {
  16633. // build forward + backward compute graphs
  16634. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16635. switch (opt->params.type) {
  16636. case GGML_OPT_TYPE_ADAM:
  16637. {
  16638. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16639. } break;
  16640. case GGML_OPT_TYPE_LBFGS:
  16641. {
  16642. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16643. } break;
  16644. }
  16645. if (opt->params.print_forward_graph) {
  16646. ggml_graph_print (gf);
  16647. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16648. }
  16649. if (opt->params.print_backward_graph) {
  16650. ggml_graph_print (gb);
  16651. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16652. }
  16653. return result;
  16654. }
  16655. ////////////////////////////////////////////////////////////////////////////////
  16656. void ggml_set_input(struct ggml_tensor * tensor) {
  16657. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16658. }
  16659. void ggml_set_output(struct ggml_tensor * tensor) {
  16660. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16661. }
  16662. ////////////////////////////////////////////////////////////////////////////////
  16663. void ggml_quantize_init(enum ggml_type type) {
  16664. ggml_critical_section_start();
  16665. switch (type) {
  16666. case GGML_TYPE_IQ2_XXS:
  16667. case GGML_TYPE_IQ2_XS:
  16668. case GGML_TYPE_IQ2_S:
  16669. case GGML_TYPE_IQ1_S:
  16670. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16671. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16672. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16673. default: // nothing
  16674. break;
  16675. }
  16676. ggml_critical_section_end();
  16677. }
  16678. void ggml_quantize_free(void) {
  16679. ggml_critical_section_start();
  16680. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16681. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16682. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16683. iq3xs_free_impl(256);
  16684. ggml_critical_section_end();
  16685. }
  16686. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16687. return
  16688. type == GGML_TYPE_IQ2_XXS ||
  16689. type == GGML_TYPE_IQ2_XS ||
  16690. type == GGML_TYPE_IQ1_S;// ||
  16691. //type == GGML_TYPE_IQ1_M;
  16692. }
  16693. size_t ggml_quantize_chunk(
  16694. enum ggml_type type,
  16695. const float * src,
  16696. void * dst,
  16697. int start,
  16698. int nrows,
  16699. int n_per_row,
  16700. const float * imatrix) {
  16701. const int n = nrows * n_per_row;
  16702. if (ggml_quantize_requires_imatrix(type)) {
  16703. GGML_ASSERT(imatrix != NULL);
  16704. }
  16705. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16706. GGML_ASSERT(start % n_per_row == 0);
  16707. ggml_quantize_init(type); // this is noop if already initialized
  16708. const size_t start_row = start / n_per_row;
  16709. const size_t row_size = ggml_row_size(type, n_per_row);
  16710. size_t result = 0;
  16711. switch (type) {
  16712. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16713. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16714. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16715. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16716. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16717. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16718. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16719. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16720. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16721. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16722. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16723. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16724. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16725. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16726. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16727. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16728. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16729. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16730. #if QK_K == 64
  16731. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16732. #else
  16733. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16734. #endif
  16735. case GGML_TYPE_F16:
  16736. {
  16737. size_t elemsize = sizeof(ggml_fp16_t);
  16738. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16739. result = n * elemsize;
  16740. } break;
  16741. case GGML_TYPE_F32:
  16742. {
  16743. size_t elemsize = sizeof(float);
  16744. result = n * elemsize;
  16745. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16746. } break;
  16747. default:
  16748. assert(false);
  16749. }
  16750. GGML_ASSERT(result == nrows * row_size);
  16751. return result;
  16752. }
  16753. ////////////////////////////////////////////////////////////////////////////////
  16754. struct gguf_str {
  16755. uint64_t n; // GGUFv2
  16756. char * data;
  16757. };
  16758. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16759. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16760. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16761. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16762. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16763. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16764. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16765. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16766. [GGUF_TYPE_BOOL] = sizeof(bool),
  16767. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16768. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16769. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16770. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16771. [GGUF_TYPE_ARRAY] = 0, // undefined
  16772. };
  16773. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16774. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16775. [GGUF_TYPE_UINT8] = "u8",
  16776. [GGUF_TYPE_INT8] = "i8",
  16777. [GGUF_TYPE_UINT16] = "u16",
  16778. [GGUF_TYPE_INT16] = "i16",
  16779. [GGUF_TYPE_UINT32] = "u32",
  16780. [GGUF_TYPE_INT32] = "i32",
  16781. [GGUF_TYPE_FLOAT32] = "f32",
  16782. [GGUF_TYPE_BOOL] = "bool",
  16783. [GGUF_TYPE_STRING] = "str",
  16784. [GGUF_TYPE_ARRAY] = "arr",
  16785. [GGUF_TYPE_UINT64] = "u64",
  16786. [GGUF_TYPE_INT64] = "i64",
  16787. [GGUF_TYPE_FLOAT64] = "f64",
  16788. };
  16789. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16790. union gguf_value {
  16791. uint8_t uint8;
  16792. int8_t int8;
  16793. uint16_t uint16;
  16794. int16_t int16;
  16795. uint32_t uint32;
  16796. int32_t int32;
  16797. float float32;
  16798. uint64_t uint64;
  16799. int64_t int64;
  16800. double float64;
  16801. bool bool_;
  16802. struct gguf_str str;
  16803. struct {
  16804. enum gguf_type type;
  16805. uint64_t n; // GGUFv2
  16806. void * data;
  16807. } arr;
  16808. };
  16809. struct gguf_kv {
  16810. struct gguf_str key;
  16811. enum gguf_type type;
  16812. union gguf_value value;
  16813. };
  16814. struct gguf_header {
  16815. char magic[4];
  16816. uint32_t version;
  16817. uint64_t n_tensors; // GGUFv2
  16818. uint64_t n_kv; // GGUFv2
  16819. };
  16820. struct gguf_tensor_info {
  16821. struct gguf_str name;
  16822. uint32_t n_dims;
  16823. uint64_t ne[GGML_MAX_DIMS];
  16824. enum ggml_type type;
  16825. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16826. // for writing API
  16827. const void * data;
  16828. size_t size;
  16829. };
  16830. struct gguf_context {
  16831. struct gguf_header header;
  16832. struct gguf_kv * kv;
  16833. struct gguf_tensor_info * infos;
  16834. size_t alignment;
  16835. size_t offset; // offset of `data` from beginning of file
  16836. size_t size; // size of `data` in bytes
  16837. //uint8_t * padding;
  16838. void * data;
  16839. };
  16840. static size_t gguf_type_size(enum gguf_type type) {
  16841. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16842. return GGUF_TYPE_SIZE[type];
  16843. }
  16844. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16845. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16846. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16847. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16848. GGML_ASSERT(info->ne[i] > 0);
  16849. }
  16850. // prevent overflow for total number of elements
  16851. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16852. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16853. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16854. }
  16855. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16856. const size_t n = fread(dst, 1, size, file);
  16857. *offset += n;
  16858. return n == size;
  16859. }
  16860. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16861. p->n = 0;
  16862. p->data = NULL;
  16863. bool ok = true;
  16864. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16865. // early exit if string length is invalid, prevents from integer overflow
  16866. if (p->n == SIZE_MAX) {
  16867. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16868. return false;
  16869. }
  16870. p->data = GGML_CALLOC(p->n + 1, 1);
  16871. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16872. return ok;
  16873. }
  16874. struct gguf_context * gguf_init_empty(void) {
  16875. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16876. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16877. ctx->header.version = GGUF_VERSION;
  16878. ctx->header.n_tensors = 0;
  16879. ctx->header.n_kv = 0;
  16880. ctx->kv = NULL;
  16881. ctx->infos = NULL;
  16882. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16883. ctx->offset = 0;
  16884. ctx->size = 0;
  16885. ctx->data = NULL;
  16886. return ctx;
  16887. }
  16888. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16889. FILE * file = ggml_fopen(fname, "rb");
  16890. if (!file) {
  16891. return NULL;
  16892. }
  16893. // offset from start of file
  16894. size_t offset = 0;
  16895. char magic[4];
  16896. // check the magic before making allocations
  16897. {
  16898. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16899. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16900. if (magic[i] != GGUF_MAGIC[i]) {
  16901. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16902. fclose(file);
  16903. return NULL;
  16904. }
  16905. }
  16906. }
  16907. bool ok = true;
  16908. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16909. // read the header
  16910. {
  16911. strncpy(ctx->header.magic, magic, 4);
  16912. ctx->kv = NULL;
  16913. ctx->infos = NULL;
  16914. ctx->data = NULL;
  16915. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16916. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16917. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16918. if (ctx->header.version == 1) {
  16919. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16920. fclose(file);
  16921. gguf_free(ctx);
  16922. return NULL;
  16923. }
  16924. // sanity-checks to prevent from integer/buffer overflows
  16925. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16926. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16927. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16928. if (!ok) {
  16929. fprintf(stderr, "%s: failed to read header\n", __func__);
  16930. fclose(file);
  16931. gguf_free(ctx);
  16932. return NULL;
  16933. }
  16934. }
  16935. // read the kv pairs
  16936. {
  16937. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16938. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16939. struct gguf_kv * kv = &ctx->kv[i];
  16940. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16941. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16942. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16943. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16944. switch (kv->type) {
  16945. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16946. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16947. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16948. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16949. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16950. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16951. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16952. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16953. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16954. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16955. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16956. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16957. case GGUF_TYPE_ARRAY:
  16958. {
  16959. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16960. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16961. switch (kv->value.arr.type) {
  16962. case GGUF_TYPE_UINT8:
  16963. case GGUF_TYPE_INT8:
  16964. case GGUF_TYPE_UINT16:
  16965. case GGUF_TYPE_INT16:
  16966. case GGUF_TYPE_UINT32:
  16967. case GGUF_TYPE_INT32:
  16968. case GGUF_TYPE_FLOAT32:
  16969. case GGUF_TYPE_UINT64:
  16970. case GGUF_TYPE_INT64:
  16971. case GGUF_TYPE_FLOAT64:
  16972. case GGUF_TYPE_BOOL:
  16973. {
  16974. // prevent from integer overflow in the malloc below
  16975. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16976. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16977. fclose(file);
  16978. gguf_free(ctx);
  16979. return NULL;
  16980. }
  16981. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16982. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16983. } break;
  16984. case GGUF_TYPE_STRING:
  16985. {
  16986. // prevent from integer overflow in the malloc below
  16987. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16988. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16989. fclose(file);
  16990. gguf_free(ctx);
  16991. return NULL;
  16992. }
  16993. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16994. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16995. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16996. }
  16997. } break;
  16998. case GGUF_TYPE_ARRAY:
  16999. default: GGML_ASSERT(false && "invalid type"); break;
  17000. }
  17001. } break;
  17002. default: GGML_ASSERT(false && "invalid type");
  17003. }
  17004. if (!ok) {
  17005. break;
  17006. }
  17007. }
  17008. if (!ok) {
  17009. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17010. fclose(file);
  17011. gguf_free(ctx);
  17012. return NULL;
  17013. }
  17014. }
  17015. // read the tensor infos
  17016. {
  17017. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17018. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17019. struct gguf_tensor_info * info = &ctx->infos[i];
  17020. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17021. info->ne[j] = 1;
  17022. }
  17023. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17024. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17025. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17026. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17027. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17028. }
  17029. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17030. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17031. gguf_tensor_info_sanitize(info);
  17032. if (!ok) {
  17033. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17034. fclose(file);
  17035. gguf_free(ctx);
  17036. return NULL;
  17037. }
  17038. }
  17039. }
  17040. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17041. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17042. if (alignment_idx != -1) {
  17043. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17044. }
  17045. // we require the data section to be aligned, so take into account any padding
  17046. {
  17047. const size_t offset_pad = offset % ctx->alignment;
  17048. if (offset_pad != 0) {
  17049. offset += ctx->alignment - offset_pad;
  17050. fseek(file, offset, SEEK_SET);
  17051. }
  17052. }
  17053. // store the current file offset - this is where the data section starts
  17054. ctx->offset = offset;
  17055. // compute the total size of the data section, taking into account the alignment
  17056. {
  17057. ctx->size = 0;
  17058. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17059. struct gguf_tensor_info * info = &ctx->infos[i];
  17060. const int64_t ne =
  17061. (int64_t) info->ne[0] *
  17062. (int64_t) info->ne[1] *
  17063. (int64_t) info->ne[2] *
  17064. (int64_t) info->ne[3];
  17065. if (ne % ggml_blck_size(info->type) != 0) {
  17066. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17067. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17068. fclose(file);
  17069. gguf_free(ctx);
  17070. return NULL;
  17071. }
  17072. const size_t size_cur = ggml_row_size(info->type, ne);
  17073. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17074. }
  17075. }
  17076. // load the tensor data only if requested
  17077. if (params.ctx != NULL) {
  17078. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17079. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17080. // the ggml_tensor structs to the appropriate locations in the binary blob
  17081. // compute the exact size needed for the new ggml_context
  17082. const size_t mem_size =
  17083. params.no_alloc ?
  17084. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17085. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17086. struct ggml_init_params pdata = {
  17087. .mem_size = mem_size,
  17088. .mem_buffer = NULL,
  17089. .no_alloc = params.no_alloc,
  17090. };
  17091. *params.ctx = ggml_init(pdata);
  17092. struct ggml_context * ctx_data = *params.ctx;
  17093. struct ggml_tensor * data = NULL;
  17094. if (!params.no_alloc) {
  17095. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17096. ok = ok && data != NULL;
  17097. // read the binary blob with the tensor data
  17098. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17099. if (!ok) {
  17100. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17101. fclose(file);
  17102. ggml_free(ctx_data);
  17103. gguf_free(ctx);
  17104. return NULL;
  17105. }
  17106. ctx->data = data->data;
  17107. }
  17108. ggml_set_no_alloc(ctx_data, true);
  17109. // create the tensors
  17110. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17111. const int64_t ne[GGML_MAX_DIMS] = {
  17112. ctx->infos[i].ne[0],
  17113. ctx->infos[i].ne[1],
  17114. ctx->infos[i].ne[2],
  17115. ctx->infos[i].ne[3],
  17116. };
  17117. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17118. ok = ok && cur != NULL;
  17119. ggml_set_name(cur, ctx->infos[i].name.data);
  17120. if (!ok) {
  17121. break;
  17122. }
  17123. // point the data member to the appropriate location in the binary blob using the tensor infos
  17124. if (!params.no_alloc) {
  17125. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17126. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17127. }
  17128. }
  17129. if (!ok) {
  17130. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17131. fclose(file);
  17132. ggml_free(ctx_data);
  17133. gguf_free(ctx);
  17134. return NULL;
  17135. }
  17136. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17137. }
  17138. fclose(file);
  17139. return ctx;
  17140. }
  17141. void gguf_free(struct gguf_context * ctx) {
  17142. if (ctx == NULL) {
  17143. return;
  17144. }
  17145. if (ctx->kv) {
  17146. // free string memory - not great..
  17147. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17148. struct gguf_kv * kv = &ctx->kv[i];
  17149. if (kv->key.data) {
  17150. GGML_FREE(kv->key.data);
  17151. }
  17152. if (kv->type == GGUF_TYPE_STRING) {
  17153. if (kv->value.str.data) {
  17154. GGML_FREE(kv->value.str.data);
  17155. }
  17156. }
  17157. if (kv->type == GGUF_TYPE_ARRAY) {
  17158. if (kv->value.arr.data) {
  17159. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17160. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17161. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17162. if (str->data) {
  17163. GGML_FREE(str->data);
  17164. }
  17165. }
  17166. }
  17167. GGML_FREE(kv->value.arr.data);
  17168. }
  17169. }
  17170. }
  17171. GGML_FREE(ctx->kv);
  17172. }
  17173. if (ctx->infos) {
  17174. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17175. struct gguf_tensor_info * info = &ctx->infos[i];
  17176. if (info->name.data) {
  17177. GGML_FREE(info->name.data);
  17178. }
  17179. }
  17180. GGML_FREE(ctx->infos);
  17181. }
  17182. GGML_ALIGNED_FREE(ctx);
  17183. }
  17184. const char * gguf_type_name(enum gguf_type type) {
  17185. return GGUF_TYPE_NAME[type];
  17186. }
  17187. int gguf_get_version(const struct gguf_context * ctx) {
  17188. return ctx->header.version;
  17189. }
  17190. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17191. return ctx->alignment;
  17192. }
  17193. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17194. return ctx->offset;
  17195. }
  17196. void * gguf_get_data(const struct gguf_context * ctx) {
  17197. return ctx->data;
  17198. }
  17199. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17200. return ctx->header.n_kv;
  17201. }
  17202. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17203. // return -1 if key not found
  17204. int keyfound = -1;
  17205. const int n_kv = gguf_get_n_kv(ctx);
  17206. for (int i = 0; i < n_kv; ++i) {
  17207. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17208. keyfound = i;
  17209. break;
  17210. }
  17211. }
  17212. return keyfound;
  17213. }
  17214. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17215. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17216. return ctx->kv[key_id].key.data;
  17217. }
  17218. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17219. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17220. return ctx->kv[key_id].type;
  17221. }
  17222. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17223. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17224. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17225. return ctx->kv[key_id].value.arr.type;
  17226. }
  17227. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17228. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17229. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17230. return ctx->kv[key_id].value.arr.data;
  17231. }
  17232. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17233. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17234. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17235. struct gguf_kv * kv = &ctx->kv[key_id];
  17236. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17237. return str->data;
  17238. }
  17239. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17240. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17241. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17242. return ctx->kv[key_id].value.arr.n;
  17243. }
  17244. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17245. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17246. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17247. return ctx->kv[key_id].value.uint8;
  17248. }
  17249. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17250. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17251. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17252. return ctx->kv[key_id].value.int8;
  17253. }
  17254. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17255. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17256. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17257. return ctx->kv[key_id].value.uint16;
  17258. }
  17259. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17260. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17261. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17262. return ctx->kv[key_id].value.int16;
  17263. }
  17264. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17265. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17266. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17267. return ctx->kv[key_id].value.uint32;
  17268. }
  17269. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17270. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17271. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17272. return ctx->kv[key_id].value.int32;
  17273. }
  17274. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17275. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17276. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17277. return ctx->kv[key_id].value.float32;
  17278. }
  17279. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17280. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17281. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17282. return ctx->kv[key_id].value.uint64;
  17283. }
  17284. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17285. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17286. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17287. return ctx->kv[key_id].value.int64;
  17288. }
  17289. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17290. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17291. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17292. return ctx->kv[key_id].value.float64;
  17293. }
  17294. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17295. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17296. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17297. return ctx->kv[key_id].value.bool_;
  17298. }
  17299. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17300. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17301. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17302. return ctx->kv[key_id].value.str.data;
  17303. }
  17304. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17305. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17306. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17307. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17308. return &ctx->kv[key_id].value;
  17309. }
  17310. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17311. return ctx->header.n_tensors;
  17312. }
  17313. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17314. // return -1 if tensor not found
  17315. int tensorfound = -1;
  17316. const int n_tensors = gguf_get_n_tensors(ctx);
  17317. for (int i = 0; i < n_tensors; ++i) {
  17318. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17319. tensorfound = i;
  17320. break;
  17321. }
  17322. }
  17323. return tensorfound;
  17324. }
  17325. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17326. return ctx->infos[i].offset;
  17327. }
  17328. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17329. return ctx->infos[i].name.data;
  17330. }
  17331. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17332. return ctx->infos[i].type;
  17333. }
  17334. // returns the index
  17335. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17336. const int idx = gguf_find_key(ctx, key);
  17337. if (idx >= 0) {
  17338. return idx;
  17339. }
  17340. const int n_kv = gguf_get_n_kv(ctx);
  17341. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17342. ctx->kv[n_kv].key.n = strlen(key);
  17343. ctx->kv[n_kv].key.data = strdup(key);
  17344. ctx->header.n_kv++;
  17345. return n_kv;
  17346. }
  17347. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17348. const int idx = gguf_get_or_add_key(ctx, key);
  17349. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17350. ctx->kv[idx].value.uint8 = val;
  17351. }
  17352. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17353. const int idx = gguf_get_or_add_key(ctx, key);
  17354. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17355. ctx->kv[idx].value.int8 = val;
  17356. }
  17357. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17358. const int idx = gguf_get_or_add_key(ctx, key);
  17359. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17360. ctx->kv[idx].value.uint16 = val;
  17361. }
  17362. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17363. const int idx = gguf_get_or_add_key(ctx, key);
  17364. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17365. ctx->kv[idx].value.int16 = val;
  17366. }
  17367. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17368. const int idx = gguf_get_or_add_key(ctx, key);
  17369. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17370. ctx->kv[idx].value.uint32 = val;
  17371. }
  17372. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17373. const int idx = gguf_get_or_add_key(ctx, key);
  17374. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17375. ctx->kv[idx].value.int32 = val;
  17376. }
  17377. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17378. const int idx = gguf_get_or_add_key(ctx, key);
  17379. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17380. ctx->kv[idx].value.float32 = val;
  17381. }
  17382. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17383. const int idx = gguf_get_or_add_key(ctx, key);
  17384. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17385. ctx->kv[idx].value.uint64 = val;
  17386. }
  17387. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17388. const int idx = gguf_get_or_add_key(ctx, key);
  17389. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17390. ctx->kv[idx].value.int64 = val;
  17391. }
  17392. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17393. const int idx = gguf_get_or_add_key(ctx, key);
  17394. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17395. ctx->kv[idx].value.float64 = val;
  17396. }
  17397. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17398. const int idx = gguf_get_or_add_key(ctx, key);
  17399. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17400. ctx->kv[idx].value.bool_ = val;
  17401. }
  17402. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17403. const int idx = gguf_get_or_add_key(ctx, key);
  17404. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17405. ctx->kv[idx].value.str.n = strlen(val);
  17406. ctx->kv[idx].value.str.data = strdup(val);
  17407. }
  17408. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17409. const int idx = gguf_get_or_add_key(ctx, key);
  17410. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17411. ctx->kv[idx].value.arr.type = type;
  17412. ctx->kv[idx].value.arr.n = n;
  17413. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17414. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17415. }
  17416. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17417. const int idx = gguf_get_or_add_key(ctx, key);
  17418. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17419. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17420. ctx->kv[idx].value.arr.n = n;
  17421. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17422. for (int i = 0; i < n; i++) {
  17423. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17424. str->n = strlen(data[i]);
  17425. str->data = strdup(data[i]);
  17426. }
  17427. }
  17428. // set or add KV pairs from another context
  17429. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17430. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17431. switch (src->kv[i].type) {
  17432. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17433. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17434. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17435. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17436. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17437. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17438. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17439. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17440. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17441. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17442. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17443. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17444. case GGUF_TYPE_ARRAY:
  17445. {
  17446. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17447. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17448. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17449. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17450. }
  17451. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17452. GGML_FREE((void *)data);
  17453. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17454. GGML_ASSERT(false && "nested arrays not supported");
  17455. } else {
  17456. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17457. }
  17458. } break;
  17459. default: GGML_ASSERT(false && "invalid type"); break;
  17460. }
  17461. }
  17462. }
  17463. void gguf_add_tensor(
  17464. struct gguf_context * ctx,
  17465. const struct ggml_tensor * tensor) {
  17466. const int idx = ctx->header.n_tensors;
  17467. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17468. ctx->infos[idx].name.n = strlen(tensor->name);
  17469. ctx->infos[idx].name.data = strdup(tensor->name);
  17470. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17471. ctx->infos[idx].ne[i] = 1;
  17472. }
  17473. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17474. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17475. ctx->infos[idx].ne[i] = tensor->ne[i];
  17476. }
  17477. ctx->infos[idx].type = tensor->type;
  17478. ctx->infos[idx].offset = 0;
  17479. ctx->infos[idx].data = tensor->data;
  17480. ctx->infos[idx].size = ggml_nbytes(tensor);
  17481. if (ctx->header.n_tensors > 0) {
  17482. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17483. }
  17484. ctx->header.n_tensors++;
  17485. }
  17486. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17487. const int idx = gguf_find_tensor(ctx, name);
  17488. if (idx < 0) {
  17489. GGML_ASSERT(false && "tensor not found");
  17490. }
  17491. ctx->infos[idx].type = type;
  17492. }
  17493. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17494. const int idx = gguf_find_tensor(ctx, name);
  17495. if (idx < 0) {
  17496. GGML_ASSERT(false && "tensor not found");
  17497. }
  17498. ctx->infos[idx].data = data;
  17499. ctx->infos[idx].size = size;
  17500. // update offsets
  17501. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17502. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17503. }
  17504. }
  17505. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17506. // fwrite(&val->n, sizeof(val->n), 1, file);
  17507. // fwrite(val->data, sizeof(char), val->n, file);
  17508. //}
  17509. //
  17510. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17511. // fwrite(val, sizeof(char), size, file);
  17512. //}
  17513. struct gguf_buf {
  17514. void * data;
  17515. size_t size;
  17516. size_t offset;
  17517. };
  17518. static struct gguf_buf gguf_buf_init(size_t size) {
  17519. struct gguf_buf buf = {
  17520. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17521. /*buf.size =*/ size,
  17522. /*buf.offset =*/ 0,
  17523. };
  17524. return buf;
  17525. }
  17526. static void gguf_buf_free(struct gguf_buf buf) {
  17527. if (buf.data) {
  17528. GGML_FREE(buf.data);
  17529. }
  17530. }
  17531. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17532. if (buf->offset + size > buf->size) {
  17533. buf->size = 1.5*(buf->offset + size);
  17534. if (buf->data) {
  17535. buf->data = realloc(buf->data, buf->size);
  17536. }
  17537. }
  17538. }
  17539. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17540. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17541. if (buf->data) {
  17542. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17543. }
  17544. buf->offset += sizeof(val->n);
  17545. if (buf->data) {
  17546. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17547. }
  17548. buf->offset += val->n;
  17549. }
  17550. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17551. gguf_buf_grow(buf, el_size);
  17552. if (buf->data) {
  17553. memcpy((char *) buf->data + buf->offset, val, el_size);
  17554. }
  17555. buf->offset += el_size;
  17556. }
  17557. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17558. // write header
  17559. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17560. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17561. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17562. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17563. // write key-value pairs
  17564. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17565. struct gguf_kv * kv = &ctx->kv[i];
  17566. gguf_bwrite_str(buf, &kv->key);
  17567. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17568. switch (kv->type) {
  17569. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17570. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17571. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17572. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17573. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17574. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17575. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17576. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17577. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17578. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17579. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17580. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17581. case GGUF_TYPE_ARRAY:
  17582. {
  17583. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17584. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17585. switch (kv->value.arr.type) {
  17586. case GGUF_TYPE_UINT8:
  17587. case GGUF_TYPE_INT8:
  17588. case GGUF_TYPE_UINT16:
  17589. case GGUF_TYPE_INT16:
  17590. case GGUF_TYPE_UINT32:
  17591. case GGUF_TYPE_INT32:
  17592. case GGUF_TYPE_FLOAT32:
  17593. case GGUF_TYPE_UINT64:
  17594. case GGUF_TYPE_INT64:
  17595. case GGUF_TYPE_FLOAT64:
  17596. case GGUF_TYPE_BOOL:
  17597. {
  17598. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17599. } break;
  17600. case GGUF_TYPE_STRING:
  17601. {
  17602. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17603. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17604. }
  17605. } break;
  17606. case GGUF_TYPE_ARRAY:
  17607. default: GGML_ASSERT(false && "invalid type"); break;
  17608. }
  17609. } break;
  17610. default: GGML_ASSERT(false && "invalid type");
  17611. }
  17612. }
  17613. // write tensor infos
  17614. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17615. struct gguf_tensor_info * info = &ctx->infos[i];
  17616. gguf_bwrite_str(buf, &info->name);
  17617. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17618. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17619. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17620. }
  17621. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17622. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17623. }
  17624. // we require the data section to be aligned, so take into account any padding
  17625. {
  17626. const size_t offset = buf->offset;
  17627. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17628. if (offset_pad != offset) {
  17629. uint8_t pad = 0;
  17630. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17631. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17632. }
  17633. }
  17634. }
  17635. if (only_meta) {
  17636. return;
  17637. }
  17638. size_t offset = 0;
  17639. // write tensor data
  17640. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17641. struct gguf_tensor_info * info = &ctx->infos[i];
  17642. const size_t size = info->size;
  17643. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17644. gguf_bwrite_el(buf, info->data, size);
  17645. if (size_pad != size) {
  17646. uint8_t pad = 0;
  17647. for (size_t j = 0; j < size_pad - size; ++j) {
  17648. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17649. }
  17650. }
  17651. GGML_ASSERT(offset == info->offset);
  17652. offset += size_pad;
  17653. }
  17654. }
  17655. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17656. FILE * file = ggml_fopen(fname, "wb");
  17657. if (!file) {
  17658. GGML_ASSERT(false && "failed to open file for writing");
  17659. }
  17660. struct gguf_buf buf = gguf_buf_init(16*1024);
  17661. gguf_write_to_buf(ctx, &buf, only_meta);
  17662. fwrite(buf.data, 1, buf.offset, file);
  17663. gguf_buf_free(buf);
  17664. fclose(file);
  17665. }
  17666. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17667. // no allocs - only compute size
  17668. struct gguf_buf buf = gguf_buf_init(0);
  17669. gguf_write_to_buf(ctx, &buf, true);
  17670. return buf.offset;
  17671. }
  17672. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17673. struct gguf_buf buf = gguf_buf_init(16*1024);
  17674. gguf_write_to_buf(ctx, &buf, true);
  17675. memcpy(data, buf.data, buf.offset);
  17676. gguf_buf_free(buf);
  17677. }
  17678. ////////////////////////////////////////////////////////////////////////////////
  17679. int ggml_cpu_has_avx(void) {
  17680. #if defined(__AVX__)
  17681. return 1;
  17682. #else
  17683. return 0;
  17684. #endif
  17685. }
  17686. int ggml_cpu_has_avx_vnni(void) {
  17687. #if defined(__AVXVNNI__)
  17688. return 1;
  17689. #else
  17690. return 0;
  17691. #endif
  17692. }
  17693. int ggml_cpu_has_avx2(void) {
  17694. #if defined(__AVX2__)
  17695. return 1;
  17696. #else
  17697. return 0;
  17698. #endif
  17699. }
  17700. int ggml_cpu_has_avx512(void) {
  17701. #if defined(__AVX512F__)
  17702. return 1;
  17703. #else
  17704. return 0;
  17705. #endif
  17706. }
  17707. int ggml_cpu_has_avx512_vbmi(void) {
  17708. #if defined(__AVX512VBMI__)
  17709. return 1;
  17710. #else
  17711. return 0;
  17712. #endif
  17713. }
  17714. int ggml_cpu_has_avx512_vnni(void) {
  17715. #if defined(__AVX512VNNI__)
  17716. return 1;
  17717. #else
  17718. return 0;
  17719. #endif
  17720. }
  17721. int ggml_cpu_has_fma(void) {
  17722. #if defined(__FMA__)
  17723. return 1;
  17724. #else
  17725. return 0;
  17726. #endif
  17727. }
  17728. int ggml_cpu_has_neon(void) {
  17729. #if defined(__ARM_NEON)
  17730. return 1;
  17731. #else
  17732. return 0;
  17733. #endif
  17734. }
  17735. int ggml_cpu_has_arm_fma(void) {
  17736. #if defined(__ARM_FEATURE_FMA)
  17737. return 1;
  17738. #else
  17739. return 0;
  17740. #endif
  17741. }
  17742. int ggml_cpu_has_metal(void) {
  17743. #if defined(GGML_USE_METAL)
  17744. return 1;
  17745. #else
  17746. return 0;
  17747. #endif
  17748. }
  17749. int ggml_cpu_has_f16c(void) {
  17750. #if defined(__F16C__)
  17751. return 1;
  17752. #else
  17753. return 0;
  17754. #endif
  17755. }
  17756. int ggml_cpu_has_fp16_va(void) {
  17757. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17758. return 1;
  17759. #else
  17760. return 0;
  17761. #endif
  17762. }
  17763. int ggml_cpu_has_wasm_simd(void) {
  17764. #if defined(__wasm_simd128__)
  17765. return 1;
  17766. #else
  17767. return 0;
  17768. #endif
  17769. }
  17770. int ggml_cpu_has_blas(void) {
  17771. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17772. return 1;
  17773. #else
  17774. return 0;
  17775. #endif
  17776. }
  17777. int ggml_cpu_has_cuda(void) {
  17778. #if defined(GGML_USE_CUDA)
  17779. return 1;
  17780. #else
  17781. return 0;
  17782. #endif
  17783. }
  17784. int ggml_cpu_has_clblast(void) {
  17785. #if defined(GGML_USE_CLBLAST)
  17786. return 1;
  17787. #else
  17788. return 0;
  17789. #endif
  17790. }
  17791. int ggml_cpu_has_vulkan(void) {
  17792. #if defined(GGML_USE_VULKAN)
  17793. return 1;
  17794. #else
  17795. return 0;
  17796. #endif
  17797. }
  17798. int ggml_cpu_has_kompute(void) {
  17799. #if defined(GGML_USE_KOMPUTE)
  17800. return 1;
  17801. #else
  17802. return 0;
  17803. #endif
  17804. }
  17805. int ggml_cpu_has_sycl(void) {
  17806. #if defined(GGML_USE_SYCL)
  17807. return 1;
  17808. #else
  17809. return 0;
  17810. #endif
  17811. }
  17812. int ggml_cpu_has_gpublas(void) {
  17813. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17814. ggml_cpu_has_sycl();
  17815. }
  17816. int ggml_cpu_has_sse3(void) {
  17817. #if defined(__SSE3__)
  17818. return 1;
  17819. #else
  17820. return 0;
  17821. #endif
  17822. }
  17823. int ggml_cpu_has_ssse3(void) {
  17824. #if defined(__SSSE3__)
  17825. return 1;
  17826. #else
  17827. return 0;
  17828. #endif
  17829. }
  17830. int ggml_cpu_has_vsx(void) {
  17831. #if defined(__POWER9_VECTOR__)
  17832. return 1;
  17833. #else
  17834. return 0;
  17835. #endif
  17836. }
  17837. int ggml_cpu_has_matmul_int8(void) {
  17838. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17839. return 1;
  17840. #else
  17841. return 0;
  17842. #endif
  17843. }
  17844. ////////////////////////////////////////////////////////////////////////////////