ggml.c 745 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "sgemm.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_METAL
  29. #include <unistd.h>
  30. #endif
  31. #ifdef __ARM_FEATURE_MATMUL_INT8
  32. #undef GGML_USE_LLAMAFILE
  33. #endif
  34. #if defined(_MSC_VER)
  35. // disable "possible loss of data" to avoid hundreds of casts
  36. // we should just be careful :)
  37. #pragma warning(disable: 4244 4267)
  38. // disable POSIX deprecation warnings
  39. // these functions are never going away, anyway
  40. #pragma warning(disable: 4996)
  41. #endif
  42. #if defined(_WIN32)
  43. #define WIN32_LEAN_AND_MEAN
  44. #ifndef NOMINMAX
  45. #define NOMINMAX
  46. #endif
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. int ret = (int) WaitForSingleObject(thread, INFINITE);
  77. CloseHandle(thread);
  78. return ret;
  79. }
  80. static int sched_yield (void) {
  81. Sleep (0);
  82. return 0;
  83. }
  84. #else
  85. #include <pthread.h>
  86. #include <stdatomic.h>
  87. typedef void * thread_ret_t;
  88. #include <sys/types.h>
  89. #include <sys/stat.h>
  90. #include <unistd.h>
  91. #endif
  92. #ifdef GGML_USE_CPU_HBM
  93. #include <hbwmalloc.h>
  94. #endif
  95. #if defined(__APPLE__)
  96. #include <TargetConditionals.h>
  97. #endif
  98. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  99. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  100. #include <sys/wait.h>
  101. void ggml_print_backtrace(void) {
  102. /*
  103. #include <execinfo.h>
  104. #include <dlfcn.h>
  105. void * trace[100];
  106. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  107. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  108. */
  109. // backtrack_symbols does not show line numbers, use gdb instead
  110. char attach[32];
  111. snprintf(attach, sizeof(attach), "attach %d", getpid());
  112. int pid = fork();
  113. if (pid == 0) {
  114. execlp("gdb", "gdb", "--batch",
  115. "-ex", "set style enabled on",
  116. "-ex", attach,
  117. "-ex", "bt -frame-info source-and-location",
  118. "-ex", "detach",
  119. "-ex", "quit",
  120. (char *) NULL);
  121. } else {
  122. waitpid(pid, NULL, 0);
  123. }
  124. }
  125. #else
  126. void ggml_print_backtrace(void) {
  127. // platform not supported
  128. }
  129. #endif
  130. /*#define GGML_PERF*/
  131. #define GGML_DEBUG 0
  132. #define GGML_GELU_FP16
  133. #define GGML_GELU_QUICK_FP16
  134. #define GGML_SILU_FP16
  135. // #define GGML_CROSS_ENTROPY_EXP_FP16
  136. // #define GGML_FLASH_ATTN_EXP_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed silu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  267. // precomputed exp table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  269. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  270. float ggml_table_f32_f16[1 << 16];
  271. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  272. switch (status) {
  273. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  274. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  275. case GGML_STATUS_SUCCESS: return "GGML status: success";
  276. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  277. }
  278. return "GGML status: unknown";
  279. }
  280. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  281. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  282. return GGML_FP16_TO_FP32(x);
  283. }
  284. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  285. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  286. return GGML_FP32_TO_FP16(x);
  287. }
  288. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  289. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  290. return GGML_BF16_TO_FP32(x); // it just left shifts
  291. }
  292. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  293. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  294. return GGML_FP32_TO_BF16(x);
  295. }
  296. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  297. for (int64_t i = 0; i < n; i++) {
  298. y[i] = GGML_FP16_TO_FP32(x[i]);
  299. }
  300. }
  301. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  302. int64_t i = 0;
  303. #if defined(__F16C__)
  304. for (; i + 7 < n; i += 8) {
  305. __m256 x_vec = _mm256_loadu_ps(x + i);
  306. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  307. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  308. }
  309. for(; i + 3 < n; i += 4) {
  310. __m128 x_vec = _mm_loadu_ps(x + i);
  311. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  312. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  313. }
  314. #endif
  315. for (; i < n; i++) {
  316. y[i] = GGML_FP32_TO_FP16(x[i]);
  317. }
  318. }
  319. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  320. int64_t i = 0;
  321. #if defined(__AVX512F__)
  322. for (; i + 16 <= n; i += 16) {
  323. _mm512_storeu_ps(y + i,
  324. _mm512_castsi512_ps(
  325. _mm512_slli_epi32(
  326. _mm512_cvtepu16_epi32(
  327. _mm256_loadu_si256(
  328. (const __m256i *)(x + i))),
  329. 16)));
  330. }
  331. #elif defined(__AVX2__)
  332. for (; i + 8 <= n; i += 8) {
  333. _mm256_storeu_ps(y + i,
  334. _mm256_castsi256_ps(
  335. _mm256_slli_epi32(
  336. _mm256_cvtepu16_epi32(
  337. _mm_loadu_si128(
  338. (const __m128i *)(x + i))),
  339. 16)));
  340. }
  341. #endif
  342. for (; i < n; i++) {
  343. y[i] = GGML_BF16_TO_FP32(x[i]);
  344. }
  345. }
  346. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  347. int i = 0;
  348. #if defined(__AVX512BF16__)
  349. for (; i + 32 <= n; i += 32) {
  350. _mm512_storeu_ps(
  351. (__m512 *)(y + i),
  352. (__m512)_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  353. _mm512_loadu_ps(x + i)));
  354. }
  355. #endif
  356. for (; i < n; i++) {
  357. y[i] = GGML_FP32_TO_BF16(x[i]);
  358. }
  359. }
  360. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  361. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  362. }
  363. //
  364. // timing
  365. //
  366. #if defined(_MSC_VER) || defined(__MINGW32__)
  367. static int64_t timer_freq, timer_start;
  368. void ggml_time_init(void) {
  369. LARGE_INTEGER t;
  370. QueryPerformanceFrequency(&t);
  371. timer_freq = t.QuadPart;
  372. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  373. // and the uptime is high enough.
  374. // We subtract the program start time to reduce the likelihood of that happening.
  375. QueryPerformanceCounter(&t);
  376. timer_start = t.QuadPart;
  377. }
  378. int64_t ggml_time_ms(void) {
  379. LARGE_INTEGER t;
  380. QueryPerformanceCounter(&t);
  381. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  382. }
  383. int64_t ggml_time_us(void) {
  384. LARGE_INTEGER t;
  385. QueryPerformanceCounter(&t);
  386. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  387. }
  388. #else
  389. void ggml_time_init(void) {}
  390. int64_t ggml_time_ms(void) {
  391. struct timespec ts;
  392. clock_gettime(CLOCK_MONOTONIC, &ts);
  393. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  394. }
  395. int64_t ggml_time_us(void) {
  396. struct timespec ts;
  397. clock_gettime(CLOCK_MONOTONIC, &ts);
  398. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  399. }
  400. #endif
  401. int64_t ggml_cycles(void) {
  402. return clock();
  403. }
  404. int64_t ggml_cycles_per_ms(void) {
  405. return CLOCKS_PER_SEC/1000;
  406. }
  407. #ifdef GGML_PERF
  408. #define ggml_perf_time_ms() ggml_time_ms()
  409. #define ggml_perf_time_us() ggml_time_us()
  410. #define ggml_perf_cycles() ggml_cycles()
  411. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  412. #else
  413. #define ggml_perf_time_ms() 0
  414. #define ggml_perf_time_us() 0
  415. #define ggml_perf_cycles() 0
  416. #define ggml_perf_cycles_per_ms() 0
  417. #endif
  418. //
  419. // cross-platform UTF-8 file paths
  420. //
  421. #ifdef _WIN32
  422. static wchar_t * ggml_mbstowcs(const char * mbs) {
  423. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  424. if (!wlen) {
  425. errno = EINVAL;
  426. return NULL;
  427. }
  428. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  429. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  430. if (!wlen) {
  431. GGML_FREE(wbuf);
  432. errno = EINVAL;
  433. return NULL;
  434. }
  435. return wbuf;
  436. }
  437. #endif
  438. FILE * ggml_fopen(const char * fname, const char * mode) {
  439. #ifdef _WIN32
  440. FILE * file = NULL;
  441. // convert fname (UTF-8)
  442. wchar_t * wfname = ggml_mbstowcs(fname);
  443. if (wfname) {
  444. // convert mode (ANSI)
  445. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  446. wchar_t * wmode_p = wmode;
  447. do {
  448. *wmode_p++ = (wchar_t)*mode;
  449. } while (*mode++);
  450. // open file
  451. file = _wfopen(wfname, wmode);
  452. GGML_FREE(wfname);
  453. GGML_FREE(wmode);
  454. }
  455. return file;
  456. #else
  457. return fopen(fname, mode);
  458. #endif
  459. }
  460. //
  461. // cache line
  462. //
  463. #if defined(__cpp_lib_hardware_interference_size)
  464. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  465. #else
  466. #if defined(__POWER9_VECTOR__)
  467. #define CACHE_LINE_SIZE 128
  468. #else
  469. #define CACHE_LINE_SIZE 64
  470. #endif
  471. #endif
  472. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  473. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  474. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  475. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  476. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  477. [GGML_TYPE_I8] = {
  478. .type_name = "i8",
  479. .blck_size = 1,
  480. .type_size = sizeof(int8_t),
  481. .is_quantized = false,
  482. },
  483. [GGML_TYPE_I16] = {
  484. .type_name = "i16",
  485. .blck_size = 1,
  486. .type_size = sizeof(int16_t),
  487. .is_quantized = false,
  488. },
  489. [GGML_TYPE_I32] = {
  490. .type_name = "i32",
  491. .blck_size = 1,
  492. .type_size = sizeof(int32_t),
  493. .is_quantized = false,
  494. },
  495. [GGML_TYPE_I64] = {
  496. .type_name = "i64",
  497. .blck_size = 1,
  498. .type_size = sizeof(int64_t),
  499. .is_quantized = false,
  500. },
  501. [GGML_TYPE_F64] = {
  502. .type_name = "f64",
  503. .blck_size = 1,
  504. .type_size = sizeof(double),
  505. .is_quantized = false,
  506. .nrows = 1,
  507. },
  508. [GGML_TYPE_F32] = {
  509. .type_name = "f32",
  510. .blck_size = 1,
  511. .type_size = sizeof(float),
  512. .is_quantized = false,
  513. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  514. .vec_dot_type = GGML_TYPE_F32,
  515. .nrows = 1,
  516. },
  517. [GGML_TYPE_F16] = {
  518. .type_name = "f16",
  519. .blck_size = 1,
  520. .type_size = sizeof(ggml_fp16_t),
  521. .is_quantized = false,
  522. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  523. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  524. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  525. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  526. .vec_dot_type = GGML_TYPE_F16,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_Q4_0] = {
  530. .type_name = "q4_0",
  531. .blck_size = QK4_0,
  532. .type_size = sizeof(block_q4_0),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  535. .from_float = quantize_row_q4_0,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  537. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  538. .vec_dot_type = GGML_TYPE_Q8_0,
  539. #if defined (__ARM_FEATURE_MATMUL_INT8)
  540. .nrows = 2,
  541. #else
  542. .nrows = 1,
  543. #endif
  544. },
  545. [GGML_TYPE_Q4_1] = {
  546. .type_name = "q4_1",
  547. .blck_size = QK4_1,
  548. .type_size = sizeof(block_q4_1),
  549. .is_quantized = true,
  550. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  551. .from_float = quantize_row_q4_1,
  552. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  553. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  554. .vec_dot_type = GGML_TYPE_Q8_1,
  555. #if defined (__ARM_FEATURE_MATMUL_INT8)
  556. .nrows = 2,
  557. #else
  558. .nrows = 1,
  559. #endif
  560. },
  561. [4] = { // GGML_TYPE_Q4_2
  562. .type_name = "DEPRECATED",
  563. .blck_size = 0,
  564. .type_size = 0,
  565. .is_quantized = false,
  566. .to_float = NULL,
  567. .from_float = NULL,
  568. .from_float_reference = NULL,
  569. .vec_dot = NULL,
  570. .vec_dot_type = GGML_TYPE_COUNT,
  571. .nrows = 1,
  572. },
  573. [5] = { // GGML_TYPE_Q4_3
  574. .type_name = "DEPRECATED",
  575. .blck_size = 0,
  576. .type_size = 0,
  577. .is_quantized = false,
  578. .to_float = NULL,
  579. .from_float = NULL,
  580. .from_float_reference = NULL,
  581. .vec_dot = NULL,
  582. .vec_dot_type = GGML_TYPE_COUNT,
  583. .nrows = 1,
  584. },
  585. [GGML_TYPE_Q5_0] = {
  586. .type_name = "q5_0",
  587. .blck_size = QK5_0,
  588. .type_size = sizeof(block_q5_0),
  589. .is_quantized = true,
  590. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  591. .from_float = quantize_row_q5_0,
  592. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  593. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  594. .vec_dot_type = GGML_TYPE_Q8_0,
  595. .nrows = 1,
  596. },
  597. [GGML_TYPE_Q5_1] = {
  598. .type_name = "q5_1",
  599. .blck_size = QK5_1,
  600. .type_size = sizeof(block_q5_1),
  601. .is_quantized = true,
  602. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  603. .from_float = quantize_row_q5_1,
  604. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  605. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  606. .vec_dot_type = GGML_TYPE_Q8_1,
  607. .nrows = 1,
  608. },
  609. [GGML_TYPE_Q8_0] = {
  610. .type_name = "q8_0",
  611. .blck_size = QK8_0,
  612. .type_size = sizeof(block_q8_0),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  615. .from_float = quantize_row_q8_0,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  617. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  618. .vec_dot_type = GGML_TYPE_Q8_0,
  619. #if defined (__ARM_FEATURE_MATMUL_INT8)
  620. .nrows = 2,
  621. #else
  622. .nrows = 1,
  623. #endif
  624. },
  625. [GGML_TYPE_Q8_1] = {
  626. .type_name = "q8_1",
  627. .blck_size = QK8_1,
  628. .type_size = sizeof(block_q8_1),
  629. .is_quantized = true,
  630. .from_float = quantize_row_q8_1,
  631. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  632. .vec_dot_type = GGML_TYPE_Q8_1,
  633. .nrows = 1,
  634. },
  635. [GGML_TYPE_Q2_K] = {
  636. .type_name = "q2_K",
  637. .blck_size = QK_K,
  638. .type_size = sizeof(block_q2_K),
  639. .is_quantized = true,
  640. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  641. .from_float = quantize_row_q2_K,
  642. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  643. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  644. .vec_dot_type = GGML_TYPE_Q8_K,
  645. .nrows = 1,
  646. },
  647. [GGML_TYPE_Q3_K] = {
  648. .type_name = "q3_K",
  649. .blck_size = QK_K,
  650. .type_size = sizeof(block_q3_K),
  651. .is_quantized = true,
  652. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  653. .from_float = quantize_row_q3_K,
  654. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  655. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  656. .vec_dot_type = GGML_TYPE_Q8_K,
  657. .nrows = 1,
  658. },
  659. [GGML_TYPE_Q4_K] = {
  660. .type_name = "q4_K",
  661. .blck_size = QK_K,
  662. .type_size = sizeof(block_q4_K),
  663. .is_quantized = true,
  664. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  665. .from_float = quantize_row_q4_K,
  666. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  667. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  668. .vec_dot_type = GGML_TYPE_Q8_K,
  669. .nrows = 1,
  670. },
  671. [GGML_TYPE_Q5_K] = {
  672. .type_name = "q5_K",
  673. .blck_size = QK_K,
  674. .type_size = sizeof(block_q5_K),
  675. .is_quantized = true,
  676. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  677. .from_float = quantize_row_q5_K,
  678. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  679. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  680. .vec_dot_type = GGML_TYPE_Q8_K,
  681. .nrows = 1,
  682. },
  683. [GGML_TYPE_Q6_K] = {
  684. .type_name = "q6_K",
  685. .blck_size = QK_K,
  686. .type_size = sizeof(block_q6_K),
  687. .is_quantized = true,
  688. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  689. .from_float = quantize_row_q6_K,
  690. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  691. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  692. .vec_dot_type = GGML_TYPE_Q8_K,
  693. .nrows = 1,
  694. },
  695. [GGML_TYPE_IQ2_XXS] = {
  696. .type_name = "iq2_xxs",
  697. .blck_size = QK_K,
  698. .type_size = sizeof(block_iq2_xxs),
  699. .is_quantized = true,
  700. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  701. .from_float = NULL,
  702. .from_float_reference = NULL,
  703. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  704. .vec_dot_type = GGML_TYPE_Q8_K,
  705. .nrows = 1,
  706. },
  707. [GGML_TYPE_IQ2_XS] = {
  708. .type_name = "iq2_xs",
  709. .blck_size = QK_K,
  710. .type_size = sizeof(block_iq2_xs),
  711. .is_quantized = true,
  712. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  713. .from_float = NULL,
  714. .from_float_reference = NULL,
  715. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  716. .vec_dot_type = GGML_TYPE_Q8_K,
  717. .nrows = 1,
  718. },
  719. [GGML_TYPE_IQ3_XXS] = {
  720. .type_name = "iq3_xxs",
  721. .blck_size = QK_K,
  722. .type_size = sizeof(block_iq3_xxs),
  723. .is_quantized = true,
  724. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  725. .from_float = quantize_row_iq3_xxs,
  726. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  727. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  728. .vec_dot_type = GGML_TYPE_Q8_K,
  729. .nrows = 1,
  730. },
  731. [GGML_TYPE_IQ3_S] = {
  732. .type_name = "iq3_s",
  733. .blck_size = QK_K,
  734. .type_size = sizeof(block_iq3_s),
  735. .is_quantized = true,
  736. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  737. .from_float = quantize_row_iq3_s,
  738. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  739. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  740. .vec_dot_type = GGML_TYPE_Q8_K,
  741. .nrows = 1,
  742. },
  743. [GGML_TYPE_IQ2_S] = {
  744. .type_name = "iq2_s",
  745. .blck_size = QK_K,
  746. .type_size = sizeof(block_iq2_s),
  747. .is_quantized = true,
  748. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  749. .from_float = quantize_row_iq2_s,
  750. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  751. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  752. .vec_dot_type = GGML_TYPE_Q8_K,
  753. .nrows = 1,
  754. },
  755. [GGML_TYPE_IQ1_S] = {
  756. .type_name = "iq1_s",
  757. .blck_size = QK_K,
  758. .type_size = sizeof(block_iq1_s),
  759. .is_quantized = true,
  760. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  761. .from_float = NULL,
  762. .from_float_reference = NULL,
  763. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  764. .vec_dot_type = GGML_TYPE_Q8_K,
  765. .nrows = 1,
  766. },
  767. [GGML_TYPE_IQ1_M] = {
  768. .type_name = "iq1_m",
  769. .blck_size = QK_K,
  770. .type_size = sizeof(block_iq1_m),
  771. .is_quantized = true,
  772. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  773. .from_float = NULL,
  774. .from_float_reference = NULL,
  775. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  776. .vec_dot_type = GGML_TYPE_Q8_K,
  777. .nrows = 1,
  778. },
  779. [GGML_TYPE_IQ4_NL] = {
  780. .type_name = "iq4_nl",
  781. .blck_size = QK4_NL,
  782. .type_size = sizeof(block_iq4_nl),
  783. .is_quantized = true,
  784. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  785. .from_float = quantize_row_iq4_nl,
  786. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  787. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  788. .vec_dot_type = GGML_TYPE_Q8_0,
  789. .nrows = 1,
  790. },
  791. [GGML_TYPE_IQ4_XS] = {
  792. .type_name = "iq4_xs",
  793. #if QK_K == 64
  794. .blck_size = QK4_NL,
  795. #else
  796. .blck_size = QK_K,
  797. #endif
  798. .type_size = sizeof(block_iq4_xs),
  799. .is_quantized = true,
  800. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  801. .from_float = quantize_row_iq4_xs,
  802. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  803. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  804. #if QK_K == 64
  805. .vec_dot_type = GGML_TYPE_Q8_0,
  806. #else
  807. .vec_dot_type = GGML_TYPE_Q8_K,
  808. #endif
  809. .nrows = 1,
  810. },
  811. [GGML_TYPE_Q8_K] = {
  812. .type_name = "q8_K",
  813. .blck_size = QK_K,
  814. .type_size = sizeof(block_q8_K),
  815. .is_quantized = true,
  816. .from_float = quantize_row_q8_K,
  817. },
  818. [GGML_TYPE_BF16] = {
  819. .type_name = "bf16",
  820. .blck_size = 1,
  821. .type_size = sizeof(ggml_bf16_t),
  822. .is_quantized = false,
  823. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  824. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  825. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  826. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  827. .vec_dot_type = GGML_TYPE_BF16,
  828. .nrows = 1,
  829. }
  830. };
  831. // For internal test use
  832. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  833. GGML_ASSERT(type < GGML_TYPE_COUNT);
  834. return type_traits[type];
  835. }
  836. //
  837. // simd mappings
  838. //
  839. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  840. // we then implement the fundamental computation operations below using only these macros
  841. // adding support for new architectures requires to define the corresponding SIMD macros
  842. //
  843. // GGML_F32_STEP / GGML_F16_STEP
  844. // number of elements to process in a single step
  845. //
  846. // GGML_F32_EPR / GGML_F16_EPR
  847. // number of elements to fit in a single register
  848. //
  849. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  850. #define GGML_SIMD
  851. // F32 NEON
  852. #define GGML_F32_STEP 16
  853. #define GGML_F32_EPR 4
  854. #define GGML_F32x4 float32x4_t
  855. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  856. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  857. #define GGML_F32x4_LOAD vld1q_f32
  858. #define GGML_F32x4_STORE vst1q_f32
  859. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  860. #define GGML_F32x4_ADD vaddq_f32
  861. #define GGML_F32x4_MUL vmulq_f32
  862. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  863. #define GGML_F32x4_REDUCE(res, x) \
  864. { \
  865. int offset = GGML_F32_ARR >> 1; \
  866. for (int i = 0; i < offset; ++i) { \
  867. x[i] = vaddq_f32(x[i], x[offset+i]); \
  868. } \
  869. offset >>= 1; \
  870. for (int i = 0; i < offset; ++i) { \
  871. x[i] = vaddq_f32(x[i], x[offset+i]); \
  872. } \
  873. offset >>= 1; \
  874. for (int i = 0; i < offset; ++i) { \
  875. x[i] = vaddq_f32(x[i], x[offset+i]); \
  876. } \
  877. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  878. }
  879. #define GGML_F32_VEC GGML_F32x4
  880. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  881. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  882. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  883. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  884. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  885. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  886. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  887. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  888. // F16 NEON
  889. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  890. #define GGML_F16_STEP 32
  891. #define GGML_F16_EPR 8
  892. #define GGML_F16x8 float16x8_t
  893. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  894. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  895. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  896. #define GGML_F16x8_STORE vst1q_f16
  897. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  898. #define GGML_F16x8_ADD vaddq_f16
  899. #define GGML_F16x8_MUL vmulq_f16
  900. #define GGML_F16x8_REDUCE(res, x) \
  901. do { \
  902. int offset = GGML_F16_ARR >> 1; \
  903. for (int i = 0; i < offset; ++i) { \
  904. x[i] = vaddq_f16(x[i], x[offset+i]); \
  905. } \
  906. offset >>= 1; \
  907. for (int i = 0; i < offset; ++i) { \
  908. x[i] = vaddq_f16(x[i], x[offset+i]); \
  909. } \
  910. offset >>= 1; \
  911. for (int i = 0; i < offset; ++i) { \
  912. x[i] = vaddq_f16(x[i], x[offset+i]); \
  913. } \
  914. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  915. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  916. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  917. } while (0)
  918. #define GGML_F16_VEC GGML_F16x8
  919. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  920. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  921. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  922. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  923. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  924. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  925. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  926. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  927. #else
  928. // if FP16 vector arithmetic is not supported, we use FP32 instead
  929. // and take advantage of the vcvt_ functions to convert to/from FP16
  930. #define GGML_F16_STEP 16
  931. #define GGML_F16_EPR 4
  932. #define GGML_F32Cx4 float32x4_t
  933. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  934. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  935. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  936. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  937. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  938. #define GGML_F32Cx4_ADD vaddq_f32
  939. #define GGML_F32Cx4_MUL vmulq_f32
  940. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  941. #define GGML_F16_VEC GGML_F32Cx4
  942. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  943. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  944. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  945. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  946. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  947. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  948. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  949. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  950. #endif
  951. #elif defined(__AVX512F__)
  952. #define GGML_SIMD
  953. // F32 AVX512
  954. #define GGML_F32_STEP 64
  955. #define GGML_F32_EPR 16
  956. #define GGML_F32x16 __m512
  957. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  958. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  959. #define GGML_F32x16_LOAD _mm512_loadu_ps
  960. #define GGML_F32x16_STORE _mm512_storeu_ps
  961. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  962. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  963. #define GGML_F32x16_ADD _mm512_add_ps
  964. #define GGML_F32x16_MUL _mm512_mul_ps
  965. #define GGML_F32x16_REDUCE(res, x) \
  966. do { \
  967. int offset = GGML_F32_ARR >> 1; \
  968. for (int i = 0; i < offset; ++i) { \
  969. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  970. } \
  971. offset >>= 1; \
  972. for (int i = 0; i < offset; ++i) { \
  973. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  974. } \
  975. offset >>= 1; \
  976. for (int i = 0; i < offset; ++i) { \
  977. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  978. } \
  979. res = _mm512_reduce_add_ps(x[0]); \
  980. } while (0)
  981. // TODO: is this optimal ?
  982. #define GGML_F32_VEC GGML_F32x16
  983. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  984. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  985. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  986. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  987. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  988. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  989. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  990. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  991. // F16 AVX512
  992. // F16 AVX
  993. #define GGML_F16_STEP 64
  994. #define GGML_F16_EPR 16
  995. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  996. #define GGML_F32Cx16 __m512
  997. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  998. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  999. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1000. // so F16C guard isn't required
  1001. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1002. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1003. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1004. #define GGML_F32Cx16_ADD _mm512_add_ps
  1005. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1006. #define GGML_F32Cx16_REDUCE(res, x) \
  1007. do { \
  1008. int offset = GGML_F32_ARR >> 1; \
  1009. for (int i = 0; i < offset; ++i) { \
  1010. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1011. } \
  1012. offset >>= 1; \
  1013. for (int i = 0; i < offset; ++i) { \
  1014. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1015. } \
  1016. offset >>= 1; \
  1017. for (int i = 0; i < offset; ++i) { \
  1018. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1019. } \
  1020. res = _mm512_reduce_add_ps(x[0]); \
  1021. } while (0)
  1022. #define GGML_F16_VEC GGML_F32Cx16
  1023. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1024. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1025. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1026. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1027. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1028. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1029. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1030. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1031. #elif defined(__AVX__)
  1032. #define GGML_SIMD
  1033. // F32 AVX
  1034. #define GGML_F32_STEP 32
  1035. #define GGML_F32_EPR 8
  1036. #define GGML_F32x8 __m256
  1037. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1038. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1039. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1040. #define GGML_F32x8_STORE _mm256_storeu_ps
  1041. #if defined(__FMA__)
  1042. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1043. #else
  1044. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1045. #endif
  1046. #define GGML_F32x8_ADD _mm256_add_ps
  1047. #define GGML_F32x8_MUL _mm256_mul_ps
  1048. #define GGML_F32x8_REDUCE(res, x) \
  1049. do { \
  1050. int offset = GGML_F32_ARR >> 1; \
  1051. for (int i = 0; i < offset; ++i) { \
  1052. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1053. } \
  1054. offset >>= 1; \
  1055. for (int i = 0; i < offset; ++i) { \
  1056. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1057. } \
  1058. offset >>= 1; \
  1059. for (int i = 0; i < offset; ++i) { \
  1060. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1061. } \
  1062. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1063. _mm256_extractf128_ps(x[0], 1)); \
  1064. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1065. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1066. } while (0)
  1067. // TODO: is this optimal ?
  1068. #define GGML_F32_VEC GGML_F32x8
  1069. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1070. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1071. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1072. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1073. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1074. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1075. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1076. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1077. // F16 AVX
  1078. #define GGML_F16_STEP 32
  1079. #define GGML_F16_EPR 8
  1080. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1081. #define GGML_F32Cx8 __m256
  1082. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1083. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1084. #if defined(__F16C__)
  1085. // the _mm256_cvt intrinsics require F16C
  1086. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1087. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1088. #else
  1089. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1090. float tmp[8];
  1091. for (int i = 0; i < 8; i++) {
  1092. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1093. }
  1094. return _mm256_loadu_ps(tmp);
  1095. }
  1096. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1097. float arr[8];
  1098. _mm256_storeu_ps(arr, y);
  1099. for (int i = 0; i < 8; i++)
  1100. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1101. }
  1102. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1103. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1104. #endif
  1105. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1106. #define GGML_F32Cx8_ADD _mm256_add_ps
  1107. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1108. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1109. #define GGML_F16_VEC GGML_F32Cx8
  1110. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1111. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1112. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1113. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1114. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1115. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1116. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1117. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1118. #elif defined(__POWER9_VECTOR__)
  1119. #define GGML_SIMD
  1120. // F32 POWER9
  1121. #define GGML_F32_STEP 32
  1122. #define GGML_F32_EPR 4
  1123. #define GGML_F32x4 vector float
  1124. #define GGML_F32x4_ZERO 0.0f
  1125. #define GGML_F32x4_SET1 vec_splats
  1126. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1127. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1128. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1129. #define GGML_F32x4_ADD vec_add
  1130. #define GGML_F32x4_MUL vec_mul
  1131. #define GGML_F32x4_REDUCE(res, x) \
  1132. { \
  1133. int offset = GGML_F32_ARR >> 1; \
  1134. for (int i = 0; i < offset; ++i) { \
  1135. x[i] = vec_add(x[i], x[offset+i]); \
  1136. } \
  1137. offset >>= 1; \
  1138. for (int i = 0; i < offset; ++i) { \
  1139. x[i] = vec_add(x[i], x[offset+i]); \
  1140. } \
  1141. offset >>= 1; \
  1142. for (int i = 0; i < offset; ++i) { \
  1143. x[i] = vec_add(x[i], x[offset+i]); \
  1144. } \
  1145. res = vec_extract(x[0], 0) + \
  1146. vec_extract(x[0], 1) + \
  1147. vec_extract(x[0], 2) + \
  1148. vec_extract(x[0], 3); \
  1149. }
  1150. #define GGML_F32_VEC GGML_F32x4
  1151. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1152. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1153. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1154. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1155. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1156. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1157. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1158. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1159. // F16 POWER9
  1160. #define GGML_F16_STEP GGML_F32_STEP
  1161. #define GGML_F16_EPR GGML_F32_EPR
  1162. #define GGML_F16_VEC GGML_F32x4
  1163. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1164. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1165. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1166. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1167. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1168. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1169. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1170. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1171. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1172. #define GGML_F16_VEC_STORE(p, r, i) \
  1173. if (i & 0x1) \
  1174. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1175. r[i - GGML_ENDIAN_BYTE(0)]), \
  1176. 0, p - GGML_F16_EPR)
  1177. #elif defined(__wasm_simd128__)
  1178. #define GGML_SIMD
  1179. // F32 WASM
  1180. #define GGML_F32_STEP 16
  1181. #define GGML_F32_EPR 4
  1182. #define GGML_F32x4 v128_t
  1183. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1184. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1185. #define GGML_F32x4_LOAD wasm_v128_load
  1186. #define GGML_F32x4_STORE wasm_v128_store
  1187. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1188. #define GGML_F32x4_ADD wasm_f32x4_add
  1189. #define GGML_F32x4_MUL wasm_f32x4_mul
  1190. #define GGML_F32x4_REDUCE(res, x) \
  1191. { \
  1192. int offset = GGML_F32_ARR >> 1; \
  1193. for (int i = 0; i < offset; ++i) { \
  1194. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1195. } \
  1196. offset >>= 1; \
  1197. for (int i = 0; i < offset; ++i) { \
  1198. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1199. } \
  1200. offset >>= 1; \
  1201. for (int i = 0; i < offset; ++i) { \
  1202. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1203. } \
  1204. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1205. wasm_f32x4_extract_lane(x[0], 1) + \
  1206. wasm_f32x4_extract_lane(x[0], 2) + \
  1207. wasm_f32x4_extract_lane(x[0], 3); \
  1208. }
  1209. #define GGML_F32_VEC GGML_F32x4
  1210. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1211. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1212. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1213. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1214. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1215. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1216. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1217. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1218. // F16 WASM
  1219. #define GGML_F16_STEP 16
  1220. #define GGML_F16_EPR 4
  1221. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1222. float tmp[4];
  1223. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1224. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1225. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1226. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1227. return wasm_v128_load(tmp);
  1228. }
  1229. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1230. float tmp[4];
  1231. wasm_v128_store(tmp, x);
  1232. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1233. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1234. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1235. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1236. }
  1237. #define GGML_F16x4 v128_t
  1238. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1239. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1240. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1241. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1242. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1243. #define GGML_F16x4_ADD wasm_f32x4_add
  1244. #define GGML_F16x4_MUL wasm_f32x4_mul
  1245. #define GGML_F16x4_REDUCE(res, x) \
  1246. { \
  1247. int offset = GGML_F16_ARR >> 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1250. } \
  1251. offset >>= 1; \
  1252. for (int i = 0; i < offset; ++i) { \
  1253. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1254. } \
  1255. offset >>= 1; \
  1256. for (int i = 0; i < offset; ++i) { \
  1257. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1258. } \
  1259. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1260. wasm_f32x4_extract_lane(x[0], 1) + \
  1261. wasm_f32x4_extract_lane(x[0], 2) + \
  1262. wasm_f32x4_extract_lane(x[0], 3); \
  1263. }
  1264. #define GGML_F16_VEC GGML_F16x4
  1265. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1266. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1267. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1268. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1269. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1270. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1271. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1272. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1273. #elif defined(__SSE3__)
  1274. #define GGML_SIMD
  1275. // F32 SSE
  1276. #define GGML_F32_STEP 32
  1277. #define GGML_F32_EPR 4
  1278. #define GGML_F32x4 __m128
  1279. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1280. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1281. #define GGML_F32x4_LOAD _mm_loadu_ps
  1282. #define GGML_F32x4_STORE _mm_storeu_ps
  1283. #if defined(__FMA__)
  1284. // TODO: Does this work?
  1285. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1286. #else
  1287. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1288. #endif
  1289. #define GGML_F32x4_ADD _mm_add_ps
  1290. #define GGML_F32x4_MUL _mm_mul_ps
  1291. #define GGML_F32x4_REDUCE(res, x) \
  1292. { \
  1293. int offset = GGML_F32_ARR >> 1; \
  1294. for (int i = 0; i < offset; ++i) { \
  1295. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1296. } \
  1297. offset >>= 1; \
  1298. for (int i = 0; i < offset; ++i) { \
  1299. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1300. } \
  1301. offset >>= 1; \
  1302. for (int i = 0; i < offset; ++i) { \
  1303. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1304. } \
  1305. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1306. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1307. }
  1308. // TODO: is this optimal ?
  1309. #define GGML_F32_VEC GGML_F32x4
  1310. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1311. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1312. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1313. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1314. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1315. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1316. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1317. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1318. // F16 SSE
  1319. #define GGML_F16_STEP 32
  1320. #define GGML_F16_EPR 4
  1321. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1322. float tmp[4];
  1323. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1324. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1325. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1326. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1327. return _mm_loadu_ps(tmp);
  1328. }
  1329. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1330. float arr[4];
  1331. _mm_storeu_ps(arr, y);
  1332. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1333. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1334. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1335. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1336. }
  1337. #define GGML_F32Cx4 __m128
  1338. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1339. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1340. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1341. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1342. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1343. #define GGML_F32Cx4_ADD _mm_add_ps
  1344. #define GGML_F32Cx4_MUL _mm_mul_ps
  1345. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1346. #define GGML_F16_VEC GGML_F32Cx4
  1347. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1348. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1349. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1350. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1351. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1352. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1353. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1354. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1355. #endif
  1356. // GGML_F32_ARR / GGML_F16_ARR
  1357. // number of registers to use per step
  1358. #ifdef GGML_SIMD
  1359. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1360. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1361. #endif
  1362. //
  1363. // fundamental operations
  1364. //
  1365. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1366. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1367. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1368. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1369. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1370. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1371. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1372. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1373. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1374. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1375. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1376. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1377. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1378. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1379. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1380. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1381. assert(nrc == 1);
  1382. UNUSED(nrc);
  1383. UNUSED(bx);
  1384. UNUSED(by);
  1385. UNUSED(bs);
  1386. #if defined(GGML_SIMD)
  1387. float sumf = 0.0f;
  1388. const int np = (n & ~(GGML_F32_STEP - 1));
  1389. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1390. GGML_F32_VEC ax[GGML_F32_ARR];
  1391. GGML_F32_VEC ay[GGML_F32_ARR];
  1392. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1393. for (int j = 0; j < GGML_F32_ARR; j++) {
  1394. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1395. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1396. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1397. }
  1398. }
  1399. // reduce sum0..sum3 to sum0
  1400. GGML_F32_VEC_REDUCE(sumf, sum);
  1401. // leftovers
  1402. for (int i = np; i < n; ++i) {
  1403. sumf += x[i]*y[i];
  1404. }
  1405. #else
  1406. // scalar
  1407. ggml_float sumf = 0.0;
  1408. for (int i = 0; i < n; ++i) {
  1409. sumf += (ggml_float)(x[i]*y[i]);
  1410. }
  1411. #endif
  1412. *s = sumf;
  1413. }
  1414. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1415. assert(nrc == 1);
  1416. UNUSED(nrc);
  1417. UNUSED(bx);
  1418. UNUSED(by);
  1419. UNUSED(bs);
  1420. int i = 0;
  1421. ggml_float sumf = 0;
  1422. #if defined(__AVX512BF16__)
  1423. __m512 c1 = _mm512_setzero_ps();
  1424. __m512 c2 = _mm512_setzero_ps();
  1425. for (; i + 64 <= n; i += 64) {
  1426. c1 = _mm512_dpbf16_ps(c1, (__m512bh)_mm512_loadu_ps((const float *)(x + i)),
  1427. (__m512bh)_mm512_loadu_ps((const float *)(y + i)));
  1428. c2 = _mm512_dpbf16_ps(c2, (__m512bh)_mm512_loadu_ps((const float *)(x + i + 32)),
  1429. (__m512bh)_mm512_loadu_ps((const float *)(y + i + 32)));
  1430. }
  1431. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1432. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1433. #elif defined(__AVX512F__)
  1434. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1435. __m512 c1 = _mm512_setzero_ps();
  1436. __m512 c2 = _mm512_setzero_ps();
  1437. for (; i + 32 <= n; i += 32) {
  1438. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1439. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1440. }
  1441. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1442. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1443. #undef LOAD
  1444. #elif defined(__AVX2__)
  1445. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1446. __m256 c1 = _mm256_setzero_ps();
  1447. __m256 c2 = _mm256_setzero_ps();
  1448. __m256 c3 = _mm256_setzero_ps();
  1449. __m256 c4 = _mm256_setzero_ps();
  1450. for (; i + 32 <= n; i += 32) {
  1451. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1452. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1453. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1454. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1455. }
  1456. __m128 g;
  1457. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1458. _mm256_add_ps(c2, c4));
  1459. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1460. _mm256_castps256_ps128(c1));
  1461. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1462. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1463. sumf += (ggml_float)_mm_cvtss_f32(g);
  1464. #undef LOAD
  1465. #endif
  1466. for (; i < n; ++i) {
  1467. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1468. GGML_BF16_TO_FP32(y[i]));
  1469. }
  1470. *s = sumf;
  1471. }
  1472. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1473. assert(nrc == 1);
  1474. UNUSED(nrc);
  1475. UNUSED(bx);
  1476. UNUSED(by);
  1477. UNUSED(bs);
  1478. ggml_float sumf = 0.0;
  1479. #if defined(GGML_SIMD)
  1480. const int np = (n & ~(GGML_F16_STEP - 1));
  1481. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1482. GGML_F16_VEC ax[GGML_F16_ARR];
  1483. GGML_F16_VEC ay[GGML_F16_ARR];
  1484. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1485. for (int j = 0; j < GGML_F16_ARR; j++) {
  1486. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1487. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1488. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1489. }
  1490. }
  1491. // reduce sum0..sum3 to sum0
  1492. GGML_F16_VEC_REDUCE(sumf, sum);
  1493. // leftovers
  1494. for (int i = np; i < n; ++i) {
  1495. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1496. }
  1497. #else
  1498. for (int i = 0; i < n; ++i) {
  1499. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1500. }
  1501. #endif
  1502. *s = sumf;
  1503. }
  1504. // compute GGML_VEC_DOT_UNROLL dot products at once
  1505. // xs - x row stride in bytes
  1506. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1507. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1508. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1509. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1510. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1511. }
  1512. #if defined(GGML_SIMD)
  1513. const int np = (n & ~(GGML_F16_STEP - 1));
  1514. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1515. GGML_F16_VEC ax[GGML_F16_ARR];
  1516. GGML_F16_VEC ay[GGML_F16_ARR];
  1517. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1518. for (int j = 0; j < GGML_F16_ARR; j++) {
  1519. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1520. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1521. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1522. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1523. }
  1524. }
  1525. }
  1526. // reduce sum0..sum3 to sum0
  1527. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1528. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1529. }
  1530. // leftovers
  1531. for (int i = np; i < n; ++i) {
  1532. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1533. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1534. }
  1535. }
  1536. #else
  1537. for (int i = 0; i < n; ++i) {
  1538. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1539. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1540. }
  1541. }
  1542. #endif
  1543. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1544. s[i] = sumf[i];
  1545. }
  1546. }
  1547. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1548. #if defined(GGML_SIMD)
  1549. const int np = (n & ~(GGML_F32_STEP - 1));
  1550. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1551. GGML_F32_VEC ax[GGML_F32_ARR];
  1552. GGML_F32_VEC ay[GGML_F32_ARR];
  1553. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1554. for (int j = 0; j < GGML_F32_ARR; j++) {
  1555. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1556. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1557. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1558. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1559. }
  1560. }
  1561. // leftovers
  1562. for (int i = np; i < n; ++i) {
  1563. y[i] += x[i]*v;
  1564. }
  1565. #else
  1566. // scalar
  1567. for (int i = 0; i < n; ++i) {
  1568. y[i] += x[i]*v;
  1569. }
  1570. #endif
  1571. }
  1572. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1573. #if defined(GGML_SIMD)
  1574. const int np = (n & ~(GGML_F16_STEP - 1));
  1575. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1576. GGML_F16_VEC ax[GGML_F16_ARR];
  1577. GGML_F16_VEC ay[GGML_F16_ARR];
  1578. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1579. for (int j = 0; j < GGML_F16_ARR; j++) {
  1580. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1581. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1582. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1583. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1584. }
  1585. }
  1586. // leftovers
  1587. for (int i = np; i < n; ++i) {
  1588. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1589. }
  1590. #else
  1591. // scalar
  1592. for (int i = 0; i < n; ++i) {
  1593. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1594. }
  1595. #endif
  1596. }
  1597. // xs and vs are byte strides of x and v
  1598. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1599. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1600. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1601. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1602. x[i] = (const float *) ((const char *) xv + i*xs);
  1603. v[i] = (const float *) ((const char *) vv + i*vs);
  1604. }
  1605. #if defined(GGML_SIMD)
  1606. const int np = (n & ~(GGML_F32_STEP - 1));
  1607. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1608. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1609. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1610. }
  1611. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1612. GGML_F32_VEC ay[GGML_F32_ARR];
  1613. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1614. for (int j = 0; j < GGML_F32_ARR; j++) {
  1615. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1616. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1617. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1618. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1619. }
  1620. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1621. }
  1622. }
  1623. // leftovers
  1624. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1625. for (int i = np; i < n; ++i) {
  1626. y[i] += x[k][i]*v[k][0];
  1627. }
  1628. }
  1629. #else
  1630. // scalar
  1631. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1632. for (int i = 0; i < n; ++i) {
  1633. y[i] += x[k][i]*v[k][0];
  1634. }
  1635. }
  1636. #endif
  1637. }
  1638. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1639. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1640. #if defined(GGML_USE_ACCELERATE)
  1641. vDSP_vsmul(y, 1, &v, y, 1, n);
  1642. #elif defined(GGML_SIMD)
  1643. const int np = (n & ~(GGML_F32_STEP - 1));
  1644. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1645. GGML_F32_VEC ay[GGML_F32_ARR];
  1646. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1647. for (int j = 0; j < GGML_F32_ARR; j++) {
  1648. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1649. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1650. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1651. }
  1652. }
  1653. // leftovers
  1654. for (int i = np; i < n; ++i) {
  1655. y[i] *= v;
  1656. }
  1657. #else
  1658. // scalar
  1659. for (int i = 0; i < n; ++i) {
  1660. y[i] *= v;
  1661. }
  1662. #endif
  1663. }
  1664. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1665. #if defined(GGML_SIMD)
  1666. const int np = (n & ~(GGML_F16_STEP - 1));
  1667. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1668. GGML_F16_VEC ay[GGML_F16_ARR];
  1669. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1670. for (int j = 0; j < GGML_F16_ARR; j++) {
  1671. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1672. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1673. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1674. }
  1675. }
  1676. // leftovers
  1677. for (int i = np; i < n; ++i) {
  1678. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1679. }
  1680. #else
  1681. // scalar
  1682. for (int i = 0; i < n; ++i) {
  1683. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1684. }
  1685. #endif
  1686. }
  1687. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1688. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1689. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1690. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1691. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1692. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1693. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1694. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1695. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1696. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1697. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1698. // TODO: optimize performance
  1699. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1700. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1701. static const float GELU_COEF_A = 0.044715f;
  1702. static const float GELU_QUICK_COEF = -1.702f;
  1703. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1704. inline static float ggml_gelu_f32(float x) {
  1705. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1706. }
  1707. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1708. const uint16_t * i16 = (const uint16_t *) x;
  1709. for (int i = 0; i < n; ++i) {
  1710. y[i] = ggml_table_gelu_f16[i16[i]];
  1711. }
  1712. }
  1713. #ifdef GGML_GELU_FP16
  1714. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1715. uint16_t t;
  1716. for (int i = 0; i < n; ++i) {
  1717. if (x[i] <= -10.0f) {
  1718. y[i] = 0.0f;
  1719. } else if (x[i] >= 10.0f) {
  1720. y[i] = x[i];
  1721. } else {
  1722. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1723. memcpy(&t, &fp16, sizeof(uint16_t));
  1724. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1725. }
  1726. }
  1727. }
  1728. #else
  1729. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1730. for (int i = 0; i < n; ++i) {
  1731. y[i] = ggml_gelu_f32(x[i]);
  1732. }
  1733. }
  1734. #endif
  1735. inline static float ggml_gelu_quick_f32(float x) {
  1736. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1737. }
  1738. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1739. // const uint16_t * i16 = (const uint16_t *) x;
  1740. // for (int i = 0; i < n; ++i) {
  1741. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1742. // }
  1743. //}
  1744. #ifdef GGML_GELU_QUICK_FP16
  1745. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1746. uint16_t t;
  1747. for (int i = 0; i < n; ++i) {
  1748. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1749. memcpy(&t, &fp16, sizeof(uint16_t));
  1750. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1751. }
  1752. }
  1753. #else
  1754. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1755. for (int i = 0; i < n; ++i) {
  1756. y[i] = ggml_gelu_quick_f32(x[i]);
  1757. }
  1758. }
  1759. #endif
  1760. // Sigmoid Linear Unit (SiLU) function
  1761. inline static float ggml_silu_f32(float x) {
  1762. return x/(1.0f + expf(-x));
  1763. }
  1764. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1765. // const uint16_t * i16 = (const uint16_t *) x;
  1766. // for (int i = 0; i < n; ++i) {
  1767. // y[i] = ggml_table_silu_f16[i16[i]];
  1768. // }
  1769. //}
  1770. #ifdef GGML_SILU_FP16
  1771. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1772. uint16_t t;
  1773. for (int i = 0; i < n; ++i) {
  1774. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1775. memcpy(&t, &fp16, sizeof(uint16_t));
  1776. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1777. }
  1778. }
  1779. #else
  1780. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1781. for (int i = 0; i < n; ++i) {
  1782. y[i] = ggml_silu_f32(x[i]);
  1783. }
  1784. }
  1785. #endif
  1786. inline static float ggml_silu_backward_f32(float x, float dy) {
  1787. const float s = 1.0f/(1.0f + expf(-x));
  1788. return dy*s*(1.0f + x*(1.0f - s));
  1789. }
  1790. #ifdef GGML_SILU_FP16
  1791. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1792. for (int i = 0; i < n; ++i) {
  1793. // we did not use x[i] to compute forward silu but its f16 equivalent
  1794. // take derivative at f16 of x[i]:
  1795. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1796. float usedx = GGML_FP16_TO_FP32(fp16);
  1797. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1798. }
  1799. }
  1800. #else
  1801. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1802. for (int i = 0; i < n; ++i) {
  1803. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1804. }
  1805. }
  1806. #endif
  1807. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1808. #ifndef GGML_USE_ACCELERATE
  1809. ggml_float sum = 0.0;
  1810. for (int i = 0; i < n; ++i) {
  1811. sum += (ggml_float)x[i];
  1812. }
  1813. *s = sum;
  1814. #else
  1815. vDSP_sve(x, 1, s, n);
  1816. #endif
  1817. }
  1818. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1819. ggml_float sum = 0.0;
  1820. for (int i = 0; i < n; ++i) {
  1821. sum += (ggml_float)x[i];
  1822. }
  1823. *s = sum;
  1824. }
  1825. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1826. float sum = 0.0f;
  1827. for (int i = 0; i < n; ++i) {
  1828. sum += GGML_FP16_TO_FP32(x[i]);
  1829. }
  1830. *s = sum;
  1831. }
  1832. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  1833. float sum = 0.0f;
  1834. for (int i = 0; i < n; ++i) {
  1835. sum += GGML_BF16_TO_FP32(x[i]);
  1836. }
  1837. *s = sum;
  1838. }
  1839. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1840. #ifndef GGML_USE_ACCELERATE
  1841. float max = -INFINITY;
  1842. for (int i = 0; i < n; ++i) {
  1843. max = MAX(max, x[i]);
  1844. }
  1845. *s = max;
  1846. #else
  1847. vDSP_maxv(x, 1, s, n);
  1848. #endif
  1849. }
  1850. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1851. ggml_vec_norm_f32(n, s, x);
  1852. *s = 1.f/(*s);
  1853. }
  1854. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1855. float max = -INFINITY;
  1856. int idx = 0;
  1857. for (int i = 0; i < n; ++i) {
  1858. max = MAX(max, x[i]);
  1859. if (max == x[i]) { idx = i; }
  1860. }
  1861. *s = idx;
  1862. }
  1863. //
  1864. // data types
  1865. //
  1866. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1867. "NONE",
  1868. "DUP",
  1869. "ADD",
  1870. "ADD1",
  1871. "ACC",
  1872. "SUB",
  1873. "MUL",
  1874. "DIV",
  1875. "SQR",
  1876. "SQRT",
  1877. "LOG",
  1878. "SUM",
  1879. "SUM_ROWS",
  1880. "MEAN",
  1881. "ARGMAX",
  1882. "REPEAT",
  1883. "REPEAT_BACK",
  1884. "CONCAT",
  1885. "SILU_BACK",
  1886. "NORM",
  1887. "RMS_NORM",
  1888. "RMS_NORM_BACK",
  1889. "GROUP_NORM",
  1890. "MUL_MAT",
  1891. "MUL_MAT_ID",
  1892. "OUT_PROD",
  1893. "SCALE",
  1894. "SET",
  1895. "CPY",
  1896. "CONT",
  1897. "RESHAPE",
  1898. "VIEW",
  1899. "PERMUTE",
  1900. "TRANSPOSE",
  1901. "GET_ROWS",
  1902. "GET_ROWS_BACK",
  1903. "DIAG",
  1904. "DIAG_MASK_INF",
  1905. "DIAG_MASK_ZERO",
  1906. "SOFT_MAX",
  1907. "SOFT_MAX_BACK",
  1908. "ROPE",
  1909. "ROPE_BACK",
  1910. "ALIBI",
  1911. "CLAMP",
  1912. "CONV_TRANSPOSE_1D",
  1913. "IM2COL",
  1914. "CONV_TRANSPOSE_2D",
  1915. "POOL_1D",
  1916. "POOL_2D",
  1917. "UPSCALE",
  1918. "PAD",
  1919. "ARANGE",
  1920. "TIMESTEP_EMBEDDING",
  1921. "ARGSORT",
  1922. "LEAKY_RELU",
  1923. "FLASH_ATTN",
  1924. "FLASH_ATTN_EXT",
  1925. "FLASH_FF",
  1926. "FLASH_ATTN_BACK",
  1927. "SSM_CONV",
  1928. "SSM_SCAN",
  1929. "WIN_PART",
  1930. "WIN_UNPART",
  1931. "GET_REL_POS",
  1932. "ADD_REL_POS",
  1933. "UNARY",
  1934. "MAP_UNARY",
  1935. "MAP_BINARY",
  1936. "MAP_CUSTOM1_F32",
  1937. "MAP_CUSTOM2_F32",
  1938. "MAP_CUSTOM3_F32",
  1939. "MAP_CUSTOM1",
  1940. "MAP_CUSTOM2",
  1941. "MAP_CUSTOM3",
  1942. "CROSS_ENTROPY_LOSS",
  1943. "CROSS_ENTROPY_LOSS_BACK",
  1944. };
  1945. static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77");
  1946. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1947. "none",
  1948. "x",
  1949. "x+y",
  1950. "x+y",
  1951. "view(x,nb,offset)+=y->x",
  1952. "x-y",
  1953. "x*y",
  1954. "x/y",
  1955. "x^2",
  1956. "√x",
  1957. "log(x)",
  1958. "Σx",
  1959. "Σx_k",
  1960. "Σx/n",
  1961. "argmax(x)",
  1962. "repeat(x)",
  1963. "repeat_back(x)",
  1964. "concat(x, y)",
  1965. "silu_back(x)",
  1966. "norm(x)",
  1967. "rms_norm(x)",
  1968. "rms_norm_back(x)",
  1969. "group_norm(x)",
  1970. "X*Y",
  1971. "X[i]*Y",
  1972. "X*Y",
  1973. "x*v",
  1974. "y-\\>view(x)",
  1975. "x-\\>y",
  1976. "cont(x)",
  1977. "reshape(x)",
  1978. "view(x)",
  1979. "permute(x)",
  1980. "transpose(x)",
  1981. "get_rows(x)",
  1982. "get_rows_back(x)",
  1983. "diag(x)",
  1984. "diag_mask_inf(x)",
  1985. "diag_mask_zero(x)",
  1986. "soft_max(x)",
  1987. "soft_max_back(x)",
  1988. "rope(x)",
  1989. "rope_back(x)",
  1990. "alibi(x)",
  1991. "clamp(x)",
  1992. "conv_transpose_1d(x)",
  1993. "im2col(x)",
  1994. "conv_transpose_2d(x)",
  1995. "pool_1d(x)",
  1996. "pool_2d(x)",
  1997. "upscale(x)",
  1998. "pad(x)",
  1999. "arange(start, stop, step)",
  2000. "timestep_embedding(timesteps, dim, max_period)",
  2001. "argsort(x)",
  2002. "leaky_relu(x)",
  2003. "flash_attn(x)",
  2004. "flash_attn_ext(x)",
  2005. "flash_ff(x)",
  2006. "flash_attn_back(x)",
  2007. "ssm_conv(x)",
  2008. "ssm_scan(x)",
  2009. "win_part(x)",
  2010. "win_unpart(x)",
  2011. "get_rel_pos(x)",
  2012. "add_rel_pos(x)",
  2013. "unary(x)",
  2014. "f(x)",
  2015. "f(x,y)",
  2016. "custom_f32(x)",
  2017. "custom_f32(x,y)",
  2018. "custom_f32(x,y,z)",
  2019. "custom(x)",
  2020. "custom(x,y)",
  2021. "custom(x,y,z)",
  2022. "cross_entropy_loss(x,y)",
  2023. "cross_entropy_loss_back(x,y)",
  2024. };
  2025. static_assert(GGML_OP_COUNT == 77, "GGML_OP_COUNT != 77");
  2026. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2027. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2028. "ABS",
  2029. "SGN",
  2030. "NEG",
  2031. "STEP",
  2032. "TANH",
  2033. "ELU",
  2034. "RELU",
  2035. "GELU",
  2036. "GELU_QUICK",
  2037. "SILU",
  2038. "HARDSWISH",
  2039. "HARDSIGMOID",
  2040. };
  2041. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  2042. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2043. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2044. // WARN:
  2045. // Mis-configuration can lead to problem that's hard to reason about:
  2046. // * At best it crash or talks nosense.
  2047. // * At worst it talks slightly difference but hard to perceive.
  2048. //
  2049. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2050. // Take care about compile options (e.g., GGML_USE_xxx).
  2051. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2052. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2053. static void ggml_setup_op_has_task_pass(void) {
  2054. { // INIT
  2055. bool * p = GGML_OP_HAS_INIT;
  2056. p[GGML_OP_ACC ] = true;
  2057. p[GGML_OP_MUL_MAT ] = true;
  2058. p[GGML_OP_MUL_MAT_ID ] = true;
  2059. p[GGML_OP_OUT_PROD ] = true;
  2060. p[GGML_OP_SET ] = true;
  2061. p[GGML_OP_GET_ROWS_BACK ] = true;
  2062. p[GGML_OP_DIAG_MASK_INF ] = true;
  2063. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2064. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2065. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2066. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2067. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2068. p[GGML_OP_ADD_REL_POS ] = true;
  2069. }
  2070. { // FINALIZE
  2071. bool * p = GGML_OP_HAS_FINALIZE;
  2072. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2073. }
  2074. }
  2075. //
  2076. // ggml context
  2077. //
  2078. struct ggml_context {
  2079. size_t mem_size;
  2080. void * mem_buffer;
  2081. bool mem_buffer_owned;
  2082. bool no_alloc;
  2083. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  2084. int n_objects;
  2085. struct ggml_object * objects_begin;
  2086. struct ggml_object * objects_end;
  2087. struct ggml_scratch scratch;
  2088. struct ggml_scratch scratch_save;
  2089. };
  2090. struct ggml_context_container {
  2091. bool used;
  2092. struct ggml_context context;
  2093. };
  2094. //
  2095. // NUMA support
  2096. //
  2097. #define GGML_NUMA_MAX_NODES 8
  2098. #define GGML_NUMA_MAX_CPUS 512
  2099. struct ggml_numa_node {
  2100. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2101. uint32_t n_cpus;
  2102. };
  2103. struct ggml_numa_nodes {
  2104. enum ggml_numa_strategy numa_strategy;
  2105. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2106. uint32_t n_nodes;
  2107. uint32_t total_cpus; // hardware threads on system
  2108. uint32_t current_node; // node on which main process is execting
  2109. #if defined(__gnu_linux__)
  2110. cpu_set_t cpuset; // cpuset from numactl
  2111. #else
  2112. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2113. #endif
  2114. };
  2115. //
  2116. // ggml state
  2117. //
  2118. struct ggml_state {
  2119. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2120. struct ggml_numa_nodes numa;
  2121. };
  2122. // global state
  2123. static struct ggml_state g_state;
  2124. static atomic_int g_state_barrier = 0;
  2125. // barrier via spin lock
  2126. inline static void ggml_critical_section_start(void) {
  2127. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2128. while (processing > 0) {
  2129. // wait for other threads to finish
  2130. atomic_fetch_sub(&g_state_barrier, 1);
  2131. sched_yield(); // TODO: reconsider this
  2132. processing = atomic_fetch_add(&g_state_barrier, 1);
  2133. }
  2134. }
  2135. // TODO: make this somehow automatically executed
  2136. // some sort of "sentry" mechanism
  2137. inline static void ggml_critical_section_end(void) {
  2138. atomic_fetch_sub(&g_state_barrier, 1);
  2139. }
  2140. #if defined(__gnu_linux__)
  2141. static cpu_set_t ggml_get_numa_affinity(void) {
  2142. cpu_set_t cpuset;
  2143. pthread_t thread;
  2144. thread = pthread_self();
  2145. CPU_ZERO(&cpuset);
  2146. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2147. return cpuset;
  2148. }
  2149. #else
  2150. static uint32_t ggml_get_numa_affinity(void) {
  2151. return 0; // no NUMA support
  2152. }
  2153. #endif
  2154. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2155. if (g_state.numa.n_nodes > 0) {
  2156. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2157. return;
  2158. }
  2159. #if defined(__gnu_linux__)
  2160. struct stat st;
  2161. char path[256];
  2162. int rv;
  2163. // set numa scheme
  2164. g_state.numa.numa_strategy = numa_flag;
  2165. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2166. g_state.numa.cpuset = ggml_get_numa_affinity();
  2167. // enumerate nodes
  2168. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2169. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2170. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2171. if (stat(path, &st) != 0) { break; }
  2172. ++g_state.numa.n_nodes;
  2173. }
  2174. // enumerate CPUs
  2175. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2176. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2177. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2178. if (stat(path, &st) != 0) { break; }
  2179. ++g_state.numa.total_cpus;
  2180. }
  2181. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2182. // figure out which node we're on
  2183. uint current_cpu;
  2184. int getcpu_ret = 0;
  2185. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2186. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2187. #else
  2188. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2189. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2190. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2191. # endif
  2192. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2193. #endif
  2194. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2195. g_state.numa.n_nodes = 0;
  2196. return;
  2197. }
  2198. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2199. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2200. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2201. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2202. node->n_cpus = 0;
  2203. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2204. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2205. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2206. if (stat(path, &st) == 0) {
  2207. node->cpus[node->n_cpus++] = c;
  2208. GGML_PRINT_DEBUG(" %u", c);
  2209. }
  2210. }
  2211. GGML_PRINT_DEBUG("\n");
  2212. }
  2213. if (ggml_is_numa()) {
  2214. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2215. if (fptr != NULL) {
  2216. char buf[42];
  2217. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2218. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2219. }
  2220. fclose(fptr);
  2221. }
  2222. }
  2223. #else
  2224. GGML_UNUSED(numa_flag);
  2225. // TODO
  2226. #endif
  2227. }
  2228. bool ggml_is_numa(void) {
  2229. return g_state.numa.n_nodes > 1;
  2230. }
  2231. ////////////////////////////////////////////////////////////////////////////////
  2232. void ggml_print_object(const struct ggml_object * obj) {
  2233. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2234. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2235. }
  2236. void ggml_print_objects(const struct ggml_context * ctx) {
  2237. struct ggml_object * obj = ctx->objects_begin;
  2238. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2239. while (obj != NULL) {
  2240. ggml_print_object(obj);
  2241. obj = obj->next;
  2242. }
  2243. GGML_PRINT("%s: --- end ---\n", __func__);
  2244. }
  2245. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2246. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2247. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2248. }
  2249. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2250. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2251. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2252. }
  2253. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2254. size_t nbytes;
  2255. size_t blck_size = ggml_blck_size(tensor->type);
  2256. if (blck_size == 1) {
  2257. nbytes = ggml_type_size(tensor->type);
  2258. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2259. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2260. }
  2261. }
  2262. else {
  2263. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2264. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2265. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2266. }
  2267. }
  2268. return nbytes;
  2269. }
  2270. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2271. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2272. }
  2273. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2274. return type_traits[type].blck_size;
  2275. }
  2276. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2277. return type_traits[type].type_size;
  2278. }
  2279. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2280. assert(ne % ggml_blck_size(type) == 0);
  2281. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2282. }
  2283. double ggml_type_sizef(enum ggml_type type) {
  2284. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2285. }
  2286. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2287. return type_traits[type].type_name;
  2288. }
  2289. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2290. return type_traits[type].is_quantized;
  2291. }
  2292. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2293. return GGML_OP_NAME[op];
  2294. }
  2295. const char * ggml_op_symbol(enum ggml_op op) {
  2296. return GGML_OP_SYMBOL[op];
  2297. }
  2298. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2299. return GGML_UNARY_OP_NAME[op];
  2300. }
  2301. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2302. if (t->op == GGML_OP_UNARY) {
  2303. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2304. return ggml_unary_op_name(uop);
  2305. }
  2306. else {
  2307. return ggml_op_name(t->op);
  2308. }
  2309. }
  2310. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2311. return ggml_type_size(tensor->type);
  2312. }
  2313. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2314. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2315. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2316. }
  2317. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2318. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2319. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2320. }
  2321. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2322. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2323. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2324. }
  2325. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2326. return tensor->ne[3] == 1;
  2327. }
  2328. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2329. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2330. if (tensor->ne[i] > 1) {
  2331. return i + 1;
  2332. }
  2333. }
  2334. return 1;
  2335. }
  2336. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2337. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2338. return (t0->ne[0] == t1->ne[0]) &&
  2339. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2340. (t1->ne[3]%t0->ne[3] == 0);
  2341. }
  2342. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2343. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2344. return (t0->ne[1] == t1->ne[1]) &&
  2345. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2346. (t1->ne[3]%t0->ne[3] == 0);
  2347. }
  2348. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2349. enum ggml_type wtype = GGML_TYPE_COUNT;
  2350. switch (ftype) {
  2351. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2352. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2353. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2354. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2355. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2356. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2357. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2358. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2359. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2360. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2361. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2362. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2363. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2364. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2365. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2366. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2367. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2368. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2369. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2370. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2371. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2372. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2373. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2374. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2375. }
  2376. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2377. return wtype;
  2378. }
  2379. size_t ggml_tensor_overhead(void) {
  2380. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2381. }
  2382. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2383. return tensor->nb[0] > tensor->nb[1];
  2384. }
  2385. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2386. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2387. return
  2388. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2389. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2390. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2391. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2392. }
  2393. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2394. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2395. return
  2396. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2397. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2398. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2399. }
  2400. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2401. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2402. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2403. }
  2404. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2405. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2406. return
  2407. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2408. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2409. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2410. }
  2411. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2412. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2413. if (tensor->ne[i] == 0) {
  2414. // empty if any dimension has no elements
  2415. return true;
  2416. }
  2417. }
  2418. return false;
  2419. }
  2420. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2421. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2422. return
  2423. (t0->ne[0] == t1->ne[0] ) &&
  2424. (t0->ne[1] == t1->ne[1] ) &&
  2425. (t0->ne[2] == t1->ne[2] ) &&
  2426. (t0->ne[3] == t1->ne[3] );
  2427. }
  2428. // check if t1 can be represented as a repeatition of t0
  2429. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2430. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2431. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2432. (t1->ne[0]%t0->ne[0] == 0) &&
  2433. (t1->ne[1]%t0->ne[1] == 0) &&
  2434. (t1->ne[2]%t0->ne[2] == 0) &&
  2435. (t1->ne[3]%t0->ne[3] == 0);
  2436. }
  2437. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2438. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2439. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2440. }
  2441. static inline int ggml_up32(int n) {
  2442. return (n + 31) & ~31;
  2443. }
  2444. //static inline int ggml_up64(int n) {
  2445. // return (n + 63) & ~63;
  2446. //}
  2447. static inline int ggml_up(int n, int m) {
  2448. // assert m is a power of 2
  2449. GGML_ASSERT((m & (m - 1)) == 0);
  2450. return (n + m - 1) & ~(m - 1);
  2451. }
  2452. // assert that pointer is aligned to GGML_MEM_ALIGN
  2453. #define ggml_assert_aligned(ptr) \
  2454. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2455. ////////////////////////////////////////////////////////////////////////////////
  2456. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2457. // make this function thread safe
  2458. ggml_critical_section_start();
  2459. static bool is_first_call = true;
  2460. if (is_first_call) {
  2461. // initialize time system (required on Windows)
  2462. ggml_time_init();
  2463. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2464. {
  2465. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2466. for (int i = 0; i < (1 << 16); ++i) {
  2467. union {
  2468. uint16_t u16;
  2469. ggml_fp16_t fp16;
  2470. } u = {i};
  2471. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2472. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2473. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2474. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2475. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2476. }
  2477. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2478. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2479. }
  2480. // initialize g_state
  2481. {
  2482. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2483. g_state = (struct ggml_state) {
  2484. /*.contexts =*/ { { 0 } },
  2485. /*.numa =*/ {
  2486. .n_nodes = 0,
  2487. .total_cpus = 0,
  2488. },
  2489. };
  2490. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2491. g_state.contexts[i].used = false;
  2492. }
  2493. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2494. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2495. }
  2496. #if defined(GGML_USE_CLBLAST)
  2497. ggml_cl_init();
  2498. #endif
  2499. ggml_setup_op_has_task_pass();
  2500. is_first_call = false;
  2501. }
  2502. // find non-used context in g_state
  2503. struct ggml_context * ctx = NULL;
  2504. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2505. if (!g_state.contexts[i].used) {
  2506. g_state.contexts[i].used = true;
  2507. ctx = &g_state.contexts[i].context;
  2508. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2509. break;
  2510. }
  2511. }
  2512. if (ctx == NULL) {
  2513. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2514. ggml_critical_section_end();
  2515. return NULL;
  2516. }
  2517. // allow to call ggml_init with 0 size
  2518. if (params.mem_size == 0) {
  2519. params.mem_size = GGML_MEM_ALIGN;
  2520. }
  2521. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2522. *ctx = (struct ggml_context) {
  2523. /*.mem_size =*/ mem_size,
  2524. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2525. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2526. /*.no_alloc =*/ params.no_alloc,
  2527. /*.no_alloc_save =*/ params.no_alloc,
  2528. /*.n_objects =*/ 0,
  2529. /*.objects_begin =*/ NULL,
  2530. /*.objects_end =*/ NULL,
  2531. /*.scratch =*/ { 0, 0, NULL, },
  2532. /*.scratch_save =*/ { 0, 0, NULL, },
  2533. };
  2534. GGML_ASSERT(ctx->mem_buffer != NULL);
  2535. ggml_assert_aligned(ctx->mem_buffer);
  2536. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2537. ggml_critical_section_end();
  2538. return ctx;
  2539. }
  2540. void ggml_free(struct ggml_context * ctx) {
  2541. if (ctx == NULL) {
  2542. return;
  2543. }
  2544. // make this function thread safe
  2545. ggml_critical_section_start();
  2546. bool found = false;
  2547. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2548. if (&g_state.contexts[i].context == ctx) {
  2549. g_state.contexts[i].used = false;
  2550. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2551. __func__, i, ggml_used_mem(ctx));
  2552. if (ctx->mem_buffer_owned) {
  2553. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2554. }
  2555. found = true;
  2556. break;
  2557. }
  2558. }
  2559. if (!found) {
  2560. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2561. }
  2562. ggml_critical_section_end();
  2563. }
  2564. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2565. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2566. }
  2567. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2568. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2569. ctx->scratch = scratch;
  2570. return result;
  2571. }
  2572. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2573. return ctx->no_alloc;
  2574. }
  2575. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2576. ctx->no_alloc = no_alloc;
  2577. }
  2578. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2579. return ctx->mem_buffer;
  2580. }
  2581. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2582. return ctx->mem_size;
  2583. }
  2584. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2585. size_t max_size = 0;
  2586. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2587. size_t bytes = ggml_nbytes(tensor);
  2588. max_size = MAX(max_size, bytes);
  2589. }
  2590. return max_size;
  2591. }
  2592. // IMPORTANT:
  2593. // when creating "opt" tensors, always save and load the scratch buffer
  2594. // this is an error prone process, but it is necessary to support inplace
  2595. // operators when using scratch buffers
  2596. // TODO: implement a better way
  2597. static void ggml_scratch_save(struct ggml_context * ctx) {
  2598. // this is needed to allow opt tensors to store their data
  2599. // TODO: again, need to find a better way
  2600. ctx->no_alloc_save = ctx->no_alloc;
  2601. ctx->no_alloc = false;
  2602. ctx->scratch_save = ctx->scratch;
  2603. ctx->scratch.data = NULL;
  2604. }
  2605. static void ggml_scratch_load(struct ggml_context * ctx) {
  2606. ctx->no_alloc = ctx->no_alloc_save;
  2607. ctx->scratch = ctx->scratch_save;
  2608. }
  2609. ////////////////////////////////////////////////////////////////////////////////
  2610. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2611. // always insert objects at the end of the context's memory pool
  2612. struct ggml_object * obj_cur = ctx->objects_end;
  2613. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2614. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2615. const size_t cur_end = cur_offs + cur_size;
  2616. // align to GGML_MEM_ALIGN
  2617. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2618. char * const mem_buffer = ctx->mem_buffer;
  2619. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2620. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2621. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2622. __func__, cur_end + size_needed, ctx->mem_size);
  2623. assert(false);
  2624. return NULL;
  2625. }
  2626. *obj_new = (struct ggml_object) {
  2627. .offs = cur_end + GGML_OBJECT_SIZE,
  2628. .size = size_needed,
  2629. .next = NULL,
  2630. .type = type,
  2631. };
  2632. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2633. if (obj_cur != NULL) {
  2634. obj_cur->next = obj_new;
  2635. } else {
  2636. // this is the first object in this context
  2637. ctx->objects_begin = obj_new;
  2638. }
  2639. ctx->objects_end = obj_new;
  2640. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2641. return obj_new;
  2642. }
  2643. static struct ggml_tensor * ggml_new_tensor_impl(
  2644. struct ggml_context * ctx,
  2645. enum ggml_type type,
  2646. int n_dims,
  2647. const int64_t * ne,
  2648. struct ggml_tensor * view_src,
  2649. size_t view_offs) {
  2650. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2651. // find the base tensor and absolute offset
  2652. if (view_src != NULL && view_src->view_src != NULL) {
  2653. view_offs += view_src->view_offs;
  2654. view_src = view_src->view_src;
  2655. }
  2656. size_t data_size = ggml_row_size(type, ne[0]);
  2657. for (int i = 1; i < n_dims; i++) {
  2658. data_size *= ne[i];
  2659. }
  2660. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2661. void * data = view_src != NULL ? view_src->data : NULL;
  2662. if (data != NULL) {
  2663. data = (char *) data + view_offs;
  2664. }
  2665. size_t obj_alloc_size = 0;
  2666. if (view_src == NULL && !ctx->no_alloc) {
  2667. if (ctx->scratch.data != NULL) {
  2668. // allocate tensor data in the scratch buffer
  2669. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2670. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2671. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2672. assert(false);
  2673. return NULL;
  2674. }
  2675. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2676. ctx->scratch.offs += data_size;
  2677. } else {
  2678. // allocate tensor data in the context's memory pool
  2679. obj_alloc_size = data_size;
  2680. }
  2681. }
  2682. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2683. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2684. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2685. *result = (struct ggml_tensor) {
  2686. /*.type =*/ type,
  2687. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2688. /*.buffer =*/ NULL,
  2689. /*.ne =*/ { 1, 1, 1, 1 },
  2690. /*.nb =*/ { 0, 0, 0, 0 },
  2691. /*.op =*/ GGML_OP_NONE,
  2692. /*.op_params =*/ { 0 },
  2693. /*.flags =*/ 0,
  2694. /*.grad =*/ NULL,
  2695. /*.src =*/ { NULL },
  2696. /*.perf_runs =*/ 0,
  2697. /*.perf_cycles =*/ 0,
  2698. /*.perf_time_us =*/ 0,
  2699. /*.view_src =*/ view_src,
  2700. /*.view_offs =*/ view_offs,
  2701. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2702. /*.name =*/ { 0 },
  2703. /*.extra =*/ NULL,
  2704. /*.padding =*/ { 0 },
  2705. };
  2706. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2707. //ggml_assert_aligned(result->data);
  2708. for (int i = 0; i < n_dims; i++) {
  2709. result->ne[i] = ne[i];
  2710. }
  2711. result->nb[0] = ggml_type_size(type);
  2712. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2713. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2714. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2715. }
  2716. ctx->n_objects++;
  2717. return result;
  2718. }
  2719. struct ggml_tensor * ggml_new_tensor(
  2720. struct ggml_context * ctx,
  2721. enum ggml_type type,
  2722. int n_dims,
  2723. const int64_t * ne) {
  2724. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2725. }
  2726. struct ggml_tensor * ggml_new_tensor_1d(
  2727. struct ggml_context * ctx,
  2728. enum ggml_type type,
  2729. int64_t ne0) {
  2730. return ggml_new_tensor(ctx, type, 1, &ne0);
  2731. }
  2732. struct ggml_tensor * ggml_new_tensor_2d(
  2733. struct ggml_context * ctx,
  2734. enum ggml_type type,
  2735. int64_t ne0,
  2736. int64_t ne1) {
  2737. const int64_t ne[2] = { ne0, ne1 };
  2738. return ggml_new_tensor(ctx, type, 2, ne);
  2739. }
  2740. struct ggml_tensor * ggml_new_tensor_3d(
  2741. struct ggml_context * ctx,
  2742. enum ggml_type type,
  2743. int64_t ne0,
  2744. int64_t ne1,
  2745. int64_t ne2) {
  2746. const int64_t ne[3] = { ne0, ne1, ne2 };
  2747. return ggml_new_tensor(ctx, type, 3, ne);
  2748. }
  2749. struct ggml_tensor * ggml_new_tensor_4d(
  2750. struct ggml_context * ctx,
  2751. enum ggml_type type,
  2752. int64_t ne0,
  2753. int64_t ne1,
  2754. int64_t ne2,
  2755. int64_t ne3) {
  2756. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2757. return ggml_new_tensor(ctx, type, 4, ne);
  2758. }
  2759. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2760. ggml_scratch_save(ctx);
  2761. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2762. ggml_scratch_load(ctx);
  2763. ggml_set_i32(result, value);
  2764. return result;
  2765. }
  2766. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2767. ggml_scratch_save(ctx);
  2768. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2769. ggml_scratch_load(ctx);
  2770. ggml_set_f32(result, value);
  2771. return result;
  2772. }
  2773. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2774. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2775. }
  2776. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2777. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2778. assert(params_size <= GGML_MAX_OP_PARAMS);
  2779. memcpy(tensor->op_params, params, params_size);
  2780. }
  2781. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2782. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2783. return ((const int32_t *)(tensor->op_params))[i];
  2784. }
  2785. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2786. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2787. return ((const float *)(tensor->op_params))[i];
  2788. }
  2789. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2790. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2791. ((int32_t *)(tensor->op_params))[i] = value;
  2792. }
  2793. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2794. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2795. ((float *)(tensor->op_params))[i] = value;
  2796. }
  2797. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2798. memset(tensor->data, 0, ggml_nbytes(tensor));
  2799. return tensor;
  2800. }
  2801. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2802. const int n = ggml_nrows(tensor);
  2803. const int nc = tensor->ne[0];
  2804. const size_t n1 = tensor->nb[1];
  2805. char * const data = tensor->data;
  2806. switch (tensor->type) {
  2807. case GGML_TYPE_I8:
  2808. {
  2809. assert(tensor->nb[0] == sizeof(int8_t));
  2810. for (int i = 0; i < n; i++) {
  2811. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2812. }
  2813. } break;
  2814. case GGML_TYPE_I16:
  2815. {
  2816. assert(tensor->nb[0] == sizeof(int16_t));
  2817. for (int i = 0; i < n; i++) {
  2818. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2819. }
  2820. } break;
  2821. case GGML_TYPE_I32:
  2822. {
  2823. assert(tensor->nb[0] == sizeof(int32_t));
  2824. for (int i = 0; i < n; i++) {
  2825. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2826. }
  2827. } break;
  2828. case GGML_TYPE_F16:
  2829. {
  2830. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2831. for (int i = 0; i < n; i++) {
  2832. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2833. }
  2834. } break;
  2835. case GGML_TYPE_BF16:
  2836. {
  2837. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2838. for (int i = 0; i < n; i++) {
  2839. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2840. }
  2841. } break;
  2842. case GGML_TYPE_F32:
  2843. {
  2844. assert(tensor->nb[0] == sizeof(float));
  2845. for (int i = 0; i < n; i++) {
  2846. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2847. }
  2848. } break;
  2849. default:
  2850. {
  2851. GGML_ASSERT(false);
  2852. } break;
  2853. }
  2854. return tensor;
  2855. }
  2856. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2857. const int n = ggml_nrows(tensor);
  2858. const int nc = tensor->ne[0];
  2859. const size_t n1 = tensor->nb[1];
  2860. char * const data = tensor->data;
  2861. switch (tensor->type) {
  2862. case GGML_TYPE_I8:
  2863. {
  2864. assert(tensor->nb[0] == sizeof(int8_t));
  2865. for (int i = 0; i < n; i++) {
  2866. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2867. }
  2868. } break;
  2869. case GGML_TYPE_I16:
  2870. {
  2871. assert(tensor->nb[0] == sizeof(int16_t));
  2872. for (int i = 0; i < n; i++) {
  2873. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2874. }
  2875. } break;
  2876. case GGML_TYPE_I32:
  2877. {
  2878. assert(tensor->nb[0] == sizeof(int32_t));
  2879. for (int i = 0; i < n; i++) {
  2880. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2881. }
  2882. } break;
  2883. case GGML_TYPE_F16:
  2884. {
  2885. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2886. for (int i = 0; i < n; i++) {
  2887. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2888. }
  2889. } break;
  2890. case GGML_TYPE_BF16:
  2891. {
  2892. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  2893. for (int i = 0; i < n; i++) {
  2894. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2895. }
  2896. } break;
  2897. case GGML_TYPE_F32:
  2898. {
  2899. assert(tensor->nb[0] == sizeof(float));
  2900. for (int i = 0; i < n; i++) {
  2901. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2902. }
  2903. } break;
  2904. default:
  2905. {
  2906. GGML_ASSERT(false);
  2907. } break;
  2908. }
  2909. return tensor;
  2910. }
  2911. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2912. const int64_t ne2 = tensor->ne[2];
  2913. const int64_t ne1 = tensor->ne[1];
  2914. const int64_t ne0 = tensor->ne[0];
  2915. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2916. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2917. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2918. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2919. if (i0) {
  2920. * i0 = i0_;
  2921. }
  2922. if (i1) {
  2923. * i1 = i1_;
  2924. }
  2925. if (i2) {
  2926. * i2 = i2_;
  2927. }
  2928. if (i3) {
  2929. * i3 = i3_;
  2930. }
  2931. }
  2932. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2933. if (!ggml_is_contiguous(tensor)) {
  2934. int64_t id[4] = { 0, 0, 0, 0 };
  2935. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2936. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2937. }
  2938. switch (tensor->type) {
  2939. case GGML_TYPE_I8:
  2940. {
  2941. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2942. return ((int8_t *)(tensor->data))[i];
  2943. }
  2944. case GGML_TYPE_I16:
  2945. {
  2946. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2947. return ((int16_t *)(tensor->data))[i];
  2948. }
  2949. case GGML_TYPE_I32:
  2950. {
  2951. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2952. return ((int32_t *)(tensor->data))[i];
  2953. }
  2954. case GGML_TYPE_F16:
  2955. {
  2956. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2957. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2958. }
  2959. case GGML_TYPE_BF16:
  2960. {
  2961. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  2962. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  2963. }
  2964. case GGML_TYPE_F32:
  2965. {
  2966. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2967. return ((float *)(tensor->data))[i];
  2968. }
  2969. default:
  2970. {
  2971. GGML_ASSERT(false);
  2972. }
  2973. }
  2974. return 0.0f;
  2975. }
  2976. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2977. if (!ggml_is_contiguous(tensor)) {
  2978. int64_t id[4] = { 0, 0, 0, 0 };
  2979. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2980. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2981. return;
  2982. }
  2983. switch (tensor->type) {
  2984. case GGML_TYPE_I8:
  2985. {
  2986. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2987. ((int8_t *)(tensor->data))[i] = value;
  2988. } break;
  2989. case GGML_TYPE_I16:
  2990. {
  2991. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2992. ((int16_t *)(tensor->data))[i] = value;
  2993. } break;
  2994. case GGML_TYPE_I32:
  2995. {
  2996. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2997. ((int32_t *)(tensor->data))[i] = value;
  2998. } break;
  2999. case GGML_TYPE_F16:
  3000. {
  3001. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3002. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3003. } break;
  3004. case GGML_TYPE_BF16:
  3005. {
  3006. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3007. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3008. } break;
  3009. case GGML_TYPE_F32:
  3010. {
  3011. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3012. ((float *)(tensor->data))[i] = value;
  3013. } break;
  3014. default:
  3015. {
  3016. GGML_ASSERT(false);
  3017. } break;
  3018. }
  3019. }
  3020. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3021. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3022. switch (tensor->type) {
  3023. case GGML_TYPE_I8:
  3024. return ((int8_t *) data)[0];
  3025. case GGML_TYPE_I16:
  3026. return ((int16_t *) data)[0];
  3027. case GGML_TYPE_I32:
  3028. return ((int32_t *) data)[0];
  3029. case GGML_TYPE_F16:
  3030. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3031. case GGML_TYPE_BF16:
  3032. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3033. case GGML_TYPE_F32:
  3034. return ((float *) data)[0];
  3035. default:
  3036. GGML_ASSERT(false);
  3037. }
  3038. return 0.0f;
  3039. }
  3040. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3041. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3042. switch (tensor->type) {
  3043. case GGML_TYPE_I8:
  3044. {
  3045. ((int8_t *)(data))[0] = value;
  3046. } break;
  3047. case GGML_TYPE_I16:
  3048. {
  3049. ((int16_t *)(data))[0] = value;
  3050. } break;
  3051. case GGML_TYPE_I32:
  3052. {
  3053. ((int32_t *)(data))[0] = value;
  3054. } break;
  3055. case GGML_TYPE_F16:
  3056. {
  3057. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3058. } break;
  3059. case GGML_TYPE_BF16:
  3060. {
  3061. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3062. } break;
  3063. case GGML_TYPE_F32:
  3064. {
  3065. ((float *)(data))[0] = value;
  3066. } break;
  3067. default:
  3068. {
  3069. GGML_ASSERT(false);
  3070. } break;
  3071. }
  3072. }
  3073. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3074. if (!ggml_is_contiguous(tensor)) {
  3075. int64_t id[4] = { 0, 0, 0, 0 };
  3076. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3077. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3078. }
  3079. switch (tensor->type) {
  3080. case GGML_TYPE_I8:
  3081. {
  3082. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3083. return ((int8_t *)(tensor->data))[i];
  3084. }
  3085. case GGML_TYPE_I16:
  3086. {
  3087. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3088. return ((int16_t *)(tensor->data))[i];
  3089. }
  3090. case GGML_TYPE_I32:
  3091. {
  3092. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3093. return ((int32_t *)(tensor->data))[i];
  3094. }
  3095. case GGML_TYPE_F16:
  3096. {
  3097. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3098. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3099. }
  3100. case GGML_TYPE_BF16:
  3101. {
  3102. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3103. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3104. }
  3105. case GGML_TYPE_F32:
  3106. {
  3107. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3108. return ((float *)(tensor->data))[i];
  3109. }
  3110. default:
  3111. {
  3112. GGML_ASSERT(false);
  3113. }
  3114. }
  3115. return 0.0f;
  3116. }
  3117. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3118. if (!ggml_is_contiguous(tensor)) {
  3119. int64_t id[4] = { 0, 0, 0, 0 };
  3120. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3121. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3122. return;
  3123. }
  3124. switch (tensor->type) {
  3125. case GGML_TYPE_I8:
  3126. {
  3127. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3128. ((int8_t *)(tensor->data))[i] = value;
  3129. } break;
  3130. case GGML_TYPE_I16:
  3131. {
  3132. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3133. ((int16_t *)(tensor->data))[i] = value;
  3134. } break;
  3135. case GGML_TYPE_I32:
  3136. {
  3137. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3138. ((int32_t *)(tensor->data))[i] = value;
  3139. } break;
  3140. case GGML_TYPE_F16:
  3141. {
  3142. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3143. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3144. } break;
  3145. case GGML_TYPE_BF16:
  3146. {
  3147. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3148. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3149. } break;
  3150. case GGML_TYPE_F32:
  3151. {
  3152. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3153. ((float *)(tensor->data))[i] = value;
  3154. } break;
  3155. default:
  3156. {
  3157. GGML_ASSERT(false);
  3158. } break;
  3159. }
  3160. }
  3161. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3162. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3163. switch (tensor->type) {
  3164. case GGML_TYPE_I8:
  3165. return ((int8_t *) data)[0];
  3166. case GGML_TYPE_I16:
  3167. return ((int16_t *) data)[0];
  3168. case GGML_TYPE_I32:
  3169. return ((int32_t *) data)[0];
  3170. case GGML_TYPE_F16:
  3171. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3172. case GGML_TYPE_BF16:
  3173. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3174. case GGML_TYPE_F32:
  3175. return ((float *) data)[0];
  3176. default:
  3177. GGML_ASSERT(false);
  3178. }
  3179. return 0.0f;
  3180. }
  3181. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3182. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3183. switch (tensor->type) {
  3184. case GGML_TYPE_I8:
  3185. {
  3186. ((int8_t *)(data))[0] = value;
  3187. } break;
  3188. case GGML_TYPE_I16:
  3189. {
  3190. ((int16_t *)(data))[0] = value;
  3191. } break;
  3192. case GGML_TYPE_I32:
  3193. {
  3194. ((int32_t *)(data))[0] = value;
  3195. } break;
  3196. case GGML_TYPE_F16:
  3197. {
  3198. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3199. } break;
  3200. case GGML_TYPE_BF16:
  3201. {
  3202. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3203. } break;
  3204. case GGML_TYPE_F32:
  3205. {
  3206. ((float *)(data))[0] = value;
  3207. } break;
  3208. default:
  3209. {
  3210. GGML_ASSERT(false);
  3211. } break;
  3212. }
  3213. }
  3214. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3215. return tensor->data;
  3216. }
  3217. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3218. assert(tensor->type == GGML_TYPE_F32);
  3219. return (float *)(tensor->data);
  3220. }
  3221. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3222. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3223. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3224. }
  3225. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3226. return tensor->name;
  3227. }
  3228. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3229. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3230. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3231. return tensor;
  3232. }
  3233. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3234. va_list args;
  3235. va_start(args, fmt);
  3236. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3237. va_end(args);
  3238. return tensor;
  3239. }
  3240. struct ggml_tensor * ggml_view_tensor(
  3241. struct ggml_context * ctx,
  3242. struct ggml_tensor * src) {
  3243. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3244. ggml_format_name(result, "%s (view)", src->name);
  3245. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3246. result->nb[i] = src->nb[i];
  3247. }
  3248. return result;
  3249. }
  3250. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3251. struct ggml_object * obj = ctx->objects_begin;
  3252. char * const mem_buffer = ctx->mem_buffer;
  3253. while (obj != NULL) {
  3254. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3255. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3256. }
  3257. obj = obj->next;
  3258. }
  3259. return NULL;
  3260. }
  3261. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3262. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3263. obj = obj->next;
  3264. char * const mem_buffer = ctx->mem_buffer;
  3265. while (obj != NULL) {
  3266. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3267. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3268. }
  3269. obj = obj->next;
  3270. }
  3271. return NULL;
  3272. }
  3273. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3274. struct ggml_object * obj = ctx->objects_begin;
  3275. char * const mem_buffer = ctx->mem_buffer;
  3276. while (obj != NULL) {
  3277. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3278. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3279. if (strcmp(cur->name, name) == 0) {
  3280. return cur;
  3281. }
  3282. }
  3283. obj = obj->next;
  3284. }
  3285. return NULL;
  3286. }
  3287. ////////////////////////////////////////////////////////////////////////////////
  3288. // ggml_dup
  3289. static struct ggml_tensor * ggml_dup_impl(
  3290. struct ggml_context * ctx,
  3291. struct ggml_tensor * a,
  3292. bool inplace) {
  3293. bool is_node = false;
  3294. if (!inplace && (a->grad)) {
  3295. is_node = true;
  3296. }
  3297. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3298. result->op = GGML_OP_DUP;
  3299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3300. result->src[0] = a;
  3301. return result;
  3302. }
  3303. struct ggml_tensor * ggml_dup(
  3304. struct ggml_context * ctx,
  3305. struct ggml_tensor * a) {
  3306. return ggml_dup_impl(ctx, a, false);
  3307. }
  3308. struct ggml_tensor * ggml_dup_inplace(
  3309. struct ggml_context * ctx,
  3310. struct ggml_tensor * a) {
  3311. return ggml_dup_impl(ctx, a, true);
  3312. }
  3313. // ggml_add
  3314. static struct ggml_tensor * ggml_add_impl(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a,
  3317. struct ggml_tensor * b,
  3318. bool inplace) {
  3319. GGML_ASSERT(ggml_can_repeat(b, a));
  3320. bool is_node = false;
  3321. if (!inplace && (a->grad || b->grad)) {
  3322. // TODO: support backward pass for broadcasting
  3323. GGML_ASSERT(ggml_are_same_shape(a, b));
  3324. is_node = true;
  3325. }
  3326. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3327. result->op = GGML_OP_ADD;
  3328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3329. result->src[0] = a;
  3330. result->src[1] = b;
  3331. return result;
  3332. }
  3333. struct ggml_tensor * ggml_add(
  3334. struct ggml_context * ctx,
  3335. struct ggml_tensor * a,
  3336. struct ggml_tensor * b) {
  3337. return ggml_add_impl(ctx, a, b, false);
  3338. }
  3339. struct ggml_tensor * ggml_add_inplace(
  3340. struct ggml_context * ctx,
  3341. struct ggml_tensor * a,
  3342. struct ggml_tensor * b) {
  3343. return ggml_add_impl(ctx, a, b, true);
  3344. }
  3345. // ggml_add_cast
  3346. static struct ggml_tensor * ggml_add_cast_impl(
  3347. struct ggml_context * ctx,
  3348. struct ggml_tensor * a,
  3349. struct ggml_tensor * b,
  3350. enum ggml_type type) {
  3351. // TODO: support less-strict constraint
  3352. // GGML_ASSERT(ggml_can_repeat(b, a));
  3353. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3354. // currently only supported for quantized input and f16
  3355. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3356. a->type == GGML_TYPE_F16 ||
  3357. a->type == GGML_TYPE_BF16);
  3358. bool is_node = false;
  3359. if (a->grad || b->grad) {
  3360. // TODO: support backward pass for broadcasting
  3361. GGML_ASSERT(ggml_are_same_shape(a, b));
  3362. is_node = true;
  3363. }
  3364. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3365. result->op = GGML_OP_ADD;
  3366. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3367. result->src[0] = a;
  3368. result->src[1] = b;
  3369. return result;
  3370. }
  3371. struct ggml_tensor * ggml_add_cast(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a,
  3374. struct ggml_tensor * b,
  3375. enum ggml_type type) {
  3376. return ggml_add_cast_impl(ctx, a, b, type);
  3377. }
  3378. // ggml_add1
  3379. static struct ggml_tensor * ggml_add1_impl(
  3380. struct ggml_context * ctx,
  3381. struct ggml_tensor * a,
  3382. struct ggml_tensor * b,
  3383. bool inplace) {
  3384. GGML_ASSERT(ggml_is_scalar(b));
  3385. GGML_ASSERT(ggml_is_padded_1d(a));
  3386. bool is_node = false;
  3387. if (a->grad || b->grad) {
  3388. is_node = true;
  3389. }
  3390. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3391. result->op = GGML_OP_ADD1;
  3392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3393. result->src[0] = a;
  3394. result->src[1] = b;
  3395. return result;
  3396. }
  3397. struct ggml_tensor * ggml_add1(
  3398. struct ggml_context * ctx,
  3399. struct ggml_tensor * a,
  3400. struct ggml_tensor * b) {
  3401. return ggml_add1_impl(ctx, a, b, false);
  3402. }
  3403. struct ggml_tensor * ggml_add1_inplace(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * a,
  3406. struct ggml_tensor * b) {
  3407. return ggml_add1_impl(ctx, a, b, true);
  3408. }
  3409. // ggml_acc
  3410. static struct ggml_tensor * ggml_acc_impl(
  3411. struct ggml_context * ctx,
  3412. struct ggml_tensor * a,
  3413. struct ggml_tensor * b,
  3414. size_t nb1,
  3415. size_t nb2,
  3416. size_t nb3,
  3417. size_t offset,
  3418. bool inplace) {
  3419. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3420. GGML_ASSERT(ggml_is_contiguous(a));
  3421. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3422. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3423. bool is_node = false;
  3424. if (!inplace && (a->grad || b->grad)) {
  3425. is_node = true;
  3426. }
  3427. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3428. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3429. ggml_set_op_params(result, params, sizeof(params));
  3430. result->op = GGML_OP_ACC;
  3431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3432. result->src[0] = a;
  3433. result->src[1] = b;
  3434. return result;
  3435. }
  3436. struct ggml_tensor * ggml_acc(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a,
  3439. struct ggml_tensor * b,
  3440. size_t nb1,
  3441. size_t nb2,
  3442. size_t nb3,
  3443. size_t offset) {
  3444. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3445. }
  3446. struct ggml_tensor * ggml_acc_inplace(
  3447. struct ggml_context * ctx,
  3448. struct ggml_tensor * a,
  3449. struct ggml_tensor * b,
  3450. size_t nb1,
  3451. size_t nb2,
  3452. size_t nb3,
  3453. size_t offset) {
  3454. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3455. }
  3456. // ggml_sub
  3457. static struct ggml_tensor * ggml_sub_impl(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a,
  3460. struct ggml_tensor * b,
  3461. bool inplace) {
  3462. GGML_ASSERT(ggml_are_same_shape(a, b));
  3463. bool is_node = false;
  3464. if (!inplace && (a->grad || b->grad)) {
  3465. is_node = true;
  3466. }
  3467. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3468. result->op = GGML_OP_SUB;
  3469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3470. result->src[0] = a;
  3471. result->src[1] = b;
  3472. return result;
  3473. }
  3474. struct ggml_tensor * ggml_sub(
  3475. struct ggml_context * ctx,
  3476. struct ggml_tensor * a,
  3477. struct ggml_tensor * b) {
  3478. return ggml_sub_impl(ctx, a, b, false);
  3479. }
  3480. struct ggml_tensor * ggml_sub_inplace(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a,
  3483. struct ggml_tensor * b) {
  3484. return ggml_sub_impl(ctx, a, b, true);
  3485. }
  3486. // ggml_mul
  3487. static struct ggml_tensor * ggml_mul_impl(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. struct ggml_tensor * b,
  3491. bool inplace) {
  3492. GGML_ASSERT(ggml_can_repeat(b, a));
  3493. bool is_node = false;
  3494. if (!inplace && (a->grad || b->grad)) {
  3495. // TODO: support backward pass for broadcasting
  3496. GGML_ASSERT(ggml_are_same_shape(a, b));
  3497. is_node = true;
  3498. }
  3499. if (inplace) {
  3500. GGML_ASSERT(!is_node);
  3501. }
  3502. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3503. result->op = GGML_OP_MUL;
  3504. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3505. result->src[0] = a;
  3506. result->src[1] = b;
  3507. return result;
  3508. }
  3509. struct ggml_tensor * ggml_mul(
  3510. struct ggml_context * ctx,
  3511. struct ggml_tensor * a,
  3512. struct ggml_tensor * b) {
  3513. return ggml_mul_impl(ctx, a, b, false);
  3514. }
  3515. struct ggml_tensor * ggml_mul_inplace(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. struct ggml_tensor * b) {
  3519. return ggml_mul_impl(ctx, a, b, true);
  3520. }
  3521. // ggml_div
  3522. static struct ggml_tensor * ggml_div_impl(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * a,
  3525. struct ggml_tensor * b,
  3526. bool inplace) {
  3527. GGML_ASSERT(ggml_can_repeat(b, a));
  3528. bool is_node = false;
  3529. if (!inplace && (a->grad || b->grad)) {
  3530. is_node = true;
  3531. }
  3532. if (inplace) {
  3533. GGML_ASSERT(!is_node);
  3534. }
  3535. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3536. result->op = GGML_OP_DIV;
  3537. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3538. result->src[0] = a;
  3539. result->src[1] = b;
  3540. return result;
  3541. }
  3542. struct ggml_tensor * ggml_div(
  3543. struct ggml_context * ctx,
  3544. struct ggml_tensor * a,
  3545. struct ggml_tensor * b) {
  3546. return ggml_div_impl(ctx, a, b, false);
  3547. }
  3548. struct ggml_tensor * ggml_div_inplace(
  3549. struct ggml_context * ctx,
  3550. struct ggml_tensor * a,
  3551. struct ggml_tensor * b) {
  3552. return ggml_div_impl(ctx, a, b, true);
  3553. }
  3554. // ggml_sqr
  3555. static struct ggml_tensor * ggml_sqr_impl(
  3556. struct ggml_context * ctx,
  3557. struct ggml_tensor * a,
  3558. bool inplace) {
  3559. bool is_node = false;
  3560. if (!inplace && (a->grad)) {
  3561. is_node = true;
  3562. }
  3563. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3564. result->op = GGML_OP_SQR;
  3565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3566. result->src[0] = a;
  3567. return result;
  3568. }
  3569. struct ggml_tensor * ggml_sqr(
  3570. struct ggml_context * ctx,
  3571. struct ggml_tensor * a) {
  3572. return ggml_sqr_impl(ctx, a, false);
  3573. }
  3574. struct ggml_tensor * ggml_sqr_inplace(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a) {
  3577. return ggml_sqr_impl(ctx, a, true);
  3578. }
  3579. // ggml_sqrt
  3580. static struct ggml_tensor * ggml_sqrt_impl(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a,
  3583. bool inplace) {
  3584. bool is_node = false;
  3585. if (!inplace && (a->grad)) {
  3586. is_node = true;
  3587. }
  3588. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3589. result->op = GGML_OP_SQRT;
  3590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3591. result->src[0] = a;
  3592. return result;
  3593. }
  3594. struct ggml_tensor * ggml_sqrt(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a) {
  3597. return ggml_sqrt_impl(ctx, a, false);
  3598. }
  3599. struct ggml_tensor * ggml_sqrt_inplace(
  3600. struct ggml_context * ctx,
  3601. struct ggml_tensor * a) {
  3602. return ggml_sqrt_impl(ctx, a, true);
  3603. }
  3604. // ggml_log
  3605. static struct ggml_tensor * ggml_log_impl(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a,
  3608. bool inplace) {
  3609. bool is_node = false;
  3610. if (!inplace && (a->grad)) {
  3611. is_node = true;
  3612. }
  3613. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3614. result->op = GGML_OP_LOG;
  3615. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3616. result->src[0] = a;
  3617. return result;
  3618. }
  3619. struct ggml_tensor * ggml_log(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a) {
  3622. return ggml_log_impl(ctx, a, false);
  3623. }
  3624. struct ggml_tensor * ggml_log_inplace(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a) {
  3627. return ggml_log_impl(ctx, a, true);
  3628. }
  3629. // ggml_sum
  3630. struct ggml_tensor * ggml_sum(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a) {
  3633. bool is_node = false;
  3634. if (a->grad) {
  3635. is_node = true;
  3636. }
  3637. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3638. result->op = GGML_OP_SUM;
  3639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3640. result->src[0] = a;
  3641. return result;
  3642. }
  3643. // ggml_sum_rows
  3644. struct ggml_tensor * ggml_sum_rows(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * a) {
  3647. bool is_node = false;
  3648. if (a->grad) {
  3649. is_node = true;
  3650. }
  3651. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3652. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3653. ne[i] = a->ne[i];
  3654. }
  3655. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3656. result->op = GGML_OP_SUM_ROWS;
  3657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3658. result->src[0] = a;
  3659. return result;
  3660. }
  3661. // ggml_mean
  3662. struct ggml_tensor * ggml_mean(
  3663. struct ggml_context * ctx,
  3664. struct ggml_tensor * a) {
  3665. bool is_node = false;
  3666. if (a->grad) {
  3667. GGML_ASSERT(false); // TODO: implement
  3668. is_node = true;
  3669. }
  3670. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3671. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3672. result->op = GGML_OP_MEAN;
  3673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3674. result->src[0] = a;
  3675. return result;
  3676. }
  3677. // ggml_argmax
  3678. struct ggml_tensor * ggml_argmax(
  3679. struct ggml_context * ctx,
  3680. struct ggml_tensor * a) {
  3681. GGML_ASSERT(ggml_is_matrix(a));
  3682. bool is_node = false;
  3683. if (a->grad) {
  3684. GGML_ASSERT(false);
  3685. is_node = true;
  3686. }
  3687. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3688. result->op = GGML_OP_ARGMAX;
  3689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3690. result->src[0] = a;
  3691. return result;
  3692. }
  3693. // ggml_repeat
  3694. struct ggml_tensor * ggml_repeat(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. struct ggml_tensor * b) {
  3698. GGML_ASSERT(ggml_can_repeat(a, b));
  3699. bool is_node = false;
  3700. if (a->grad) {
  3701. is_node = true;
  3702. }
  3703. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3704. result->op = GGML_OP_REPEAT;
  3705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3706. result->src[0] = a;
  3707. return result;
  3708. }
  3709. // ggml_repeat_back
  3710. struct ggml_tensor * ggml_repeat_back(
  3711. struct ggml_context * ctx,
  3712. struct ggml_tensor * a,
  3713. struct ggml_tensor * b) {
  3714. GGML_ASSERT(ggml_can_repeat(b, a));
  3715. bool is_node = false;
  3716. if (a->grad) {
  3717. is_node = true;
  3718. }
  3719. if (ggml_are_same_shape(a, b) && !is_node) {
  3720. return a;
  3721. }
  3722. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3723. result->op = GGML_OP_REPEAT_BACK;
  3724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3725. result->src[0] = a;
  3726. return result;
  3727. }
  3728. // ggml_concat
  3729. struct ggml_tensor * ggml_concat(
  3730. struct ggml_context* ctx,
  3731. struct ggml_tensor* a,
  3732. struct ggml_tensor* b) {
  3733. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3734. bool is_node = false;
  3735. if (a->grad || b->grad) {
  3736. is_node = true;
  3737. }
  3738. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3739. result->op = GGML_OP_CONCAT;
  3740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3741. result->src[0] = a;
  3742. result->src[1] = b;
  3743. return result;
  3744. }
  3745. // ggml_abs
  3746. struct ggml_tensor * ggml_abs(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a) {
  3749. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3750. }
  3751. struct ggml_tensor * ggml_abs_inplace(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a) {
  3754. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3755. }
  3756. // ggml_sgn
  3757. struct ggml_tensor * ggml_sgn(
  3758. struct ggml_context * ctx,
  3759. struct ggml_tensor * a) {
  3760. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3761. }
  3762. struct ggml_tensor * ggml_sgn_inplace(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a) {
  3765. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3766. }
  3767. // ggml_neg
  3768. struct ggml_tensor * ggml_neg(
  3769. struct ggml_context * ctx,
  3770. struct ggml_tensor * a) {
  3771. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3772. }
  3773. struct ggml_tensor * ggml_neg_inplace(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a) {
  3776. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3777. }
  3778. // ggml_step
  3779. struct ggml_tensor * ggml_step(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a) {
  3782. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3783. }
  3784. struct ggml_tensor * ggml_step_inplace(
  3785. struct ggml_context * ctx,
  3786. struct ggml_tensor * a) {
  3787. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3788. }
  3789. // ggml_tanh
  3790. struct ggml_tensor * ggml_tanh(
  3791. struct ggml_context * ctx,
  3792. struct ggml_tensor * a) {
  3793. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3794. }
  3795. struct ggml_tensor * ggml_tanh_inplace(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a) {
  3798. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3799. }
  3800. // ggml_elu
  3801. struct ggml_tensor * ggml_elu(
  3802. struct ggml_context * ctx,
  3803. struct ggml_tensor * a) {
  3804. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3805. }
  3806. struct ggml_tensor * ggml_elu_inplace(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a) {
  3809. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3810. }
  3811. // ggml_relu
  3812. struct ggml_tensor * ggml_relu(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a) {
  3815. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3816. }
  3817. struct ggml_tensor * ggml_relu_inplace(
  3818. struct ggml_context * ctx,
  3819. struct ggml_tensor * a) {
  3820. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3821. }
  3822. // ggml_leaky_relu
  3823. struct ggml_tensor * ggml_leaky_relu(
  3824. struct ggml_context * ctx,
  3825. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3826. bool is_node = false;
  3827. if (!inplace && (a->grad)) {
  3828. is_node = true;
  3829. }
  3830. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3831. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3832. result->op = GGML_OP_LEAKY_RELU;
  3833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3834. result->src[0] = a;
  3835. return result;
  3836. }
  3837. // ggml_gelu
  3838. struct ggml_tensor * ggml_gelu(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a) {
  3841. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3842. }
  3843. struct ggml_tensor * ggml_gelu_inplace(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a) {
  3846. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3847. }
  3848. // ggml_gelu_quick
  3849. struct ggml_tensor * ggml_gelu_quick(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a) {
  3852. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3853. }
  3854. struct ggml_tensor * ggml_gelu_quick_inplace(
  3855. struct ggml_context * ctx,
  3856. struct ggml_tensor * a) {
  3857. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3858. }
  3859. // ggml_silu
  3860. struct ggml_tensor * ggml_silu(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a) {
  3863. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3864. }
  3865. struct ggml_tensor * ggml_silu_inplace(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a) {
  3868. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3869. }
  3870. // ggml_silu_back
  3871. struct ggml_tensor * ggml_silu_back(
  3872. struct ggml_context * ctx,
  3873. struct ggml_tensor * a,
  3874. struct ggml_tensor * b) {
  3875. bool is_node = false;
  3876. if (a->grad || b->grad) {
  3877. // TODO: implement backward
  3878. is_node = true;
  3879. }
  3880. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3881. result->op = GGML_OP_SILU_BACK;
  3882. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3883. result->src[0] = a;
  3884. result->src[1] = b;
  3885. return result;
  3886. }
  3887. // ggml hardswish
  3888. struct ggml_tensor * ggml_hardswish(
  3889. struct ggml_context * ctx,
  3890. struct ggml_tensor * a) {
  3891. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3892. }
  3893. // ggml hardsigmoid
  3894. struct ggml_tensor * ggml_hardsigmoid(
  3895. struct ggml_context * ctx,
  3896. struct ggml_tensor * a) {
  3897. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3898. }
  3899. // ggml_norm
  3900. static struct ggml_tensor * ggml_norm_impl(
  3901. struct ggml_context * ctx,
  3902. struct ggml_tensor * a,
  3903. float eps,
  3904. bool inplace) {
  3905. bool is_node = false;
  3906. if (!inplace && (a->grad)) {
  3907. GGML_ASSERT(false); // TODO: implement backward
  3908. is_node = true;
  3909. }
  3910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3911. ggml_set_op_params(result, &eps, sizeof(eps));
  3912. result->op = GGML_OP_NORM;
  3913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3914. result->src[0] = a;
  3915. return result;
  3916. }
  3917. struct ggml_tensor * ggml_norm(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. float eps) {
  3921. return ggml_norm_impl(ctx, a, eps, false);
  3922. }
  3923. struct ggml_tensor * ggml_norm_inplace(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a,
  3926. float eps) {
  3927. return ggml_norm_impl(ctx, a, eps, true);
  3928. }
  3929. // ggml_rms_norm
  3930. static struct ggml_tensor * ggml_rms_norm_impl(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a,
  3933. float eps,
  3934. bool inplace) {
  3935. bool is_node = false;
  3936. if (!inplace && (a->grad)) {
  3937. is_node = true;
  3938. }
  3939. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3940. ggml_set_op_params(result, &eps, sizeof(eps));
  3941. result->op = GGML_OP_RMS_NORM;
  3942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3943. result->src[0] = a;
  3944. return result;
  3945. }
  3946. struct ggml_tensor * ggml_rms_norm(
  3947. struct ggml_context * ctx,
  3948. struct ggml_tensor * a,
  3949. float eps) {
  3950. return ggml_rms_norm_impl(ctx, a, eps, false);
  3951. }
  3952. struct ggml_tensor * ggml_rms_norm_inplace(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a,
  3955. float eps) {
  3956. return ggml_rms_norm_impl(ctx, a, eps, true);
  3957. }
  3958. // ggml_rms_norm_back
  3959. struct ggml_tensor * ggml_rms_norm_back(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a,
  3962. struct ggml_tensor * b,
  3963. float eps) {
  3964. bool is_node = false;
  3965. if (a->grad) {
  3966. // TODO: implement backward
  3967. is_node = true;
  3968. }
  3969. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3970. ggml_set_op_params(result, &eps, sizeof(eps));
  3971. result->op = GGML_OP_RMS_NORM_BACK;
  3972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3973. result->src[0] = a;
  3974. result->src[1] = b;
  3975. return result;
  3976. }
  3977. // ggml_group_norm
  3978. static struct ggml_tensor * ggml_group_norm_impl(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a,
  3981. int n_groups,
  3982. bool inplace) {
  3983. bool is_node = false;
  3984. if (!inplace && (a->grad)) {
  3985. GGML_ASSERT(false); // TODO: implement backward
  3986. is_node = true;
  3987. }
  3988. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3989. result->op_params[0] = n_groups;
  3990. result->op = GGML_OP_GROUP_NORM;
  3991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3992. result->src[0] = a;
  3993. return result;
  3994. }
  3995. struct ggml_tensor * ggml_group_norm(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a,
  3998. int n_groups) {
  3999. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4000. }
  4001. struct ggml_tensor * ggml_group_norm_inplace(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a,
  4004. int n_groups) {
  4005. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4006. }
  4007. // ggml_mul_mat
  4008. struct ggml_tensor * ggml_mul_mat(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a,
  4011. struct ggml_tensor * b) {
  4012. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4013. GGML_ASSERT(!ggml_is_transposed(a));
  4014. bool is_node = false;
  4015. if (a->grad || b->grad) {
  4016. is_node = true;
  4017. }
  4018. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4019. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4020. result->op = GGML_OP_MUL_MAT;
  4021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4022. result->src[0] = a;
  4023. result->src[1] = b;
  4024. return result;
  4025. }
  4026. void ggml_mul_mat_set_prec(
  4027. struct ggml_tensor * a,
  4028. enum ggml_prec prec) {
  4029. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4030. const int32_t prec_i32 = (int32_t) prec;
  4031. ggml_set_op_params_i32(a, 0, prec_i32);
  4032. }
  4033. // ggml_mul_mat_id
  4034. /*
  4035. c = ggml_mul_mat_id(ctx, as, b, ids);
  4036. as -> [cols, rows, n_expert]
  4037. ids -> [n_experts_used, n_tokens] (i32)
  4038. b -> [cols, n_expert_used, n_tokens]
  4039. c -> [cols, n_expert_used, n_tokens]
  4040. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4041. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4042. */
  4043. struct ggml_tensor * ggml_mul_mat_id(
  4044. struct ggml_context * ctx,
  4045. struct ggml_tensor * as,
  4046. struct ggml_tensor * b,
  4047. struct ggml_tensor * ids) {
  4048. GGML_ASSERT(!ggml_is_transposed(as));
  4049. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4050. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4051. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4052. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4053. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4054. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4055. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4056. bool is_node = false;
  4057. if (as->grad || b->grad) {
  4058. is_node = true;
  4059. }
  4060. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4061. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4062. result->op = GGML_OP_MUL_MAT_ID;
  4063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4064. result->src[0] = as;
  4065. result->src[1] = b;
  4066. result->src[2] = ids;
  4067. return result;
  4068. }
  4069. // ggml_out_prod
  4070. struct ggml_tensor * ggml_out_prod(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a,
  4073. struct ggml_tensor * b) {
  4074. GGML_ASSERT(ggml_can_out_prod(a, b));
  4075. GGML_ASSERT(!ggml_is_transposed(a));
  4076. bool is_node = false;
  4077. if (a->grad || b->grad) {
  4078. is_node = true;
  4079. }
  4080. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4081. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4082. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4083. result->op = GGML_OP_OUT_PROD;
  4084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4085. result->src[0] = a;
  4086. result->src[1] = b;
  4087. return result;
  4088. }
  4089. // ggml_scale
  4090. static struct ggml_tensor * ggml_scale_impl(
  4091. struct ggml_context * ctx,
  4092. struct ggml_tensor * a,
  4093. float s,
  4094. bool inplace) {
  4095. GGML_ASSERT(ggml_is_padded_1d(a));
  4096. bool is_node = false;
  4097. if (a->grad) {
  4098. is_node = true;
  4099. }
  4100. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4101. ggml_set_op_params(result, &s, sizeof(s));
  4102. result->op = GGML_OP_SCALE;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src[0] = a;
  4105. return result;
  4106. }
  4107. struct ggml_tensor * ggml_scale(
  4108. struct ggml_context * ctx,
  4109. struct ggml_tensor * a,
  4110. float s) {
  4111. return ggml_scale_impl(ctx, a, s, false);
  4112. }
  4113. struct ggml_tensor * ggml_scale_inplace(
  4114. struct ggml_context * ctx,
  4115. struct ggml_tensor * a,
  4116. float s) {
  4117. return ggml_scale_impl(ctx, a, s, true);
  4118. }
  4119. // ggml_set
  4120. static struct ggml_tensor * ggml_set_impl(
  4121. struct ggml_context * ctx,
  4122. struct ggml_tensor * a,
  4123. struct ggml_tensor * b,
  4124. size_t nb1,
  4125. size_t nb2,
  4126. size_t nb3,
  4127. size_t offset,
  4128. bool inplace) {
  4129. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4130. bool is_node = false;
  4131. if (a->grad || b->grad) {
  4132. is_node = true;
  4133. }
  4134. // make a view of the destination
  4135. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4136. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4137. ggml_set_op_params(result, params, sizeof(params));
  4138. result->op = GGML_OP_SET;
  4139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4140. result->src[0] = a;
  4141. result->src[1] = b;
  4142. return result;
  4143. }
  4144. struct ggml_tensor * ggml_set(
  4145. struct ggml_context * ctx,
  4146. struct ggml_tensor * a,
  4147. struct ggml_tensor * b,
  4148. size_t nb1,
  4149. size_t nb2,
  4150. size_t nb3,
  4151. size_t offset) {
  4152. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4153. }
  4154. struct ggml_tensor * ggml_set_inplace(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a,
  4157. struct ggml_tensor * b,
  4158. size_t nb1,
  4159. size_t nb2,
  4160. size_t nb3,
  4161. size_t offset) {
  4162. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4163. }
  4164. struct ggml_tensor * ggml_set_1d(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a,
  4167. struct ggml_tensor * b,
  4168. size_t offset) {
  4169. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4170. }
  4171. struct ggml_tensor * ggml_set_1d_inplace(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. struct ggml_tensor * b,
  4175. size_t offset) {
  4176. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4177. }
  4178. struct ggml_tensor * ggml_set_2d(
  4179. struct ggml_context * ctx,
  4180. struct ggml_tensor * a,
  4181. struct ggml_tensor * b,
  4182. size_t nb1,
  4183. size_t offset) {
  4184. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4185. }
  4186. struct ggml_tensor * ggml_set_2d_inplace(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. struct ggml_tensor * b,
  4190. size_t nb1,
  4191. size_t offset) {
  4192. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4193. }
  4194. // ggml_cpy
  4195. static struct ggml_tensor * ggml_cpy_impl(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. struct ggml_tensor * b) {
  4199. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4200. bool is_node = false;
  4201. if (a->grad || b->grad) {
  4202. // inplace is false and either one have a grad
  4203. is_node = true;
  4204. }
  4205. // make a view of the destination
  4206. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4207. if (strlen(b->name) > 0) {
  4208. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4209. } else {
  4210. ggml_format_name(result, "%s (copy)", a->name);
  4211. }
  4212. result->op = GGML_OP_CPY;
  4213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4214. result->src[0] = a;
  4215. result->src[1] = b;
  4216. return result;
  4217. }
  4218. struct ggml_tensor * ggml_cpy(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a,
  4221. struct ggml_tensor * b) {
  4222. return ggml_cpy_impl(ctx, a, b);
  4223. }
  4224. struct ggml_tensor * ggml_cast(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. enum ggml_type type) {
  4228. bool is_node = false;
  4229. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4230. ggml_format_name(result, "%s (copy)", a->name);
  4231. result->op = GGML_OP_CPY;
  4232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4233. result->src[0] = a;
  4234. result->src[1] = result;
  4235. return result;
  4236. }
  4237. // ggml_cont
  4238. static struct ggml_tensor * ggml_cont_impl(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a) {
  4241. bool is_node = false;
  4242. if (a->grad) {
  4243. is_node = true;
  4244. }
  4245. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4246. ggml_format_name(result, "%s (cont)", a->name);
  4247. result->op = GGML_OP_CONT;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src[0] = a;
  4250. return result;
  4251. }
  4252. struct ggml_tensor * ggml_cont(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a) {
  4255. return ggml_cont_impl(ctx, a);
  4256. }
  4257. // make contiguous, with new shape
  4258. GGML_API struct ggml_tensor * ggml_cont_1d(
  4259. struct ggml_context * ctx,
  4260. struct ggml_tensor * a,
  4261. int64_t ne0) {
  4262. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4263. }
  4264. GGML_API struct ggml_tensor * ggml_cont_2d(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a,
  4267. int64_t ne0,
  4268. int64_t ne1) {
  4269. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4270. }
  4271. GGML_API struct ggml_tensor * ggml_cont_3d(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a,
  4274. int64_t ne0,
  4275. int64_t ne1,
  4276. int64_t ne2) {
  4277. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4278. }
  4279. struct ggml_tensor * ggml_cont_4d(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a,
  4282. int64_t ne0,
  4283. int64_t ne1,
  4284. int64_t ne2,
  4285. int64_t ne3) {
  4286. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4287. bool is_node = false;
  4288. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4289. ggml_format_name(result, "%s (cont)", a->name);
  4290. result->op = GGML_OP_CONT;
  4291. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4292. result->src[0] = a;
  4293. return result;
  4294. }
  4295. // ggml_reshape
  4296. struct ggml_tensor * ggml_reshape(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. struct ggml_tensor * b) {
  4300. GGML_ASSERT(ggml_is_contiguous(a));
  4301. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4302. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4303. bool is_node = false;
  4304. if (a->grad) {
  4305. is_node = true;
  4306. }
  4307. if (b->grad) {
  4308. // gradient propagation is not supported
  4309. //GGML_ASSERT(false);
  4310. }
  4311. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4312. ggml_format_name(result, "%s (reshaped)", a->name);
  4313. result->op = GGML_OP_RESHAPE;
  4314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4315. result->src[0] = a;
  4316. return result;
  4317. }
  4318. struct ggml_tensor * ggml_reshape_1d(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a,
  4321. int64_t ne0) {
  4322. GGML_ASSERT(ggml_is_contiguous(a));
  4323. GGML_ASSERT(ggml_nelements(a) == ne0);
  4324. bool is_node = false;
  4325. if (a->grad) {
  4326. is_node = true;
  4327. }
  4328. const int64_t ne[1] = { ne0 };
  4329. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4330. ggml_format_name(result, "%s (reshaped)", a->name);
  4331. result->op = GGML_OP_RESHAPE;
  4332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4333. result->src[0] = a;
  4334. return result;
  4335. }
  4336. struct ggml_tensor * ggml_reshape_2d(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a,
  4339. int64_t ne0,
  4340. int64_t ne1) {
  4341. GGML_ASSERT(ggml_is_contiguous(a));
  4342. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4343. bool is_node = false;
  4344. if (a->grad) {
  4345. is_node = true;
  4346. }
  4347. const int64_t ne[2] = { ne0, ne1 };
  4348. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4349. ggml_format_name(result, "%s (reshaped)", a->name);
  4350. result->op = GGML_OP_RESHAPE;
  4351. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4352. result->src[0] = a;
  4353. return result;
  4354. }
  4355. struct ggml_tensor * ggml_reshape_3d(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. int64_t ne0,
  4359. int64_t ne1,
  4360. int64_t ne2) {
  4361. GGML_ASSERT(ggml_is_contiguous(a));
  4362. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4363. bool is_node = false;
  4364. if (a->grad) {
  4365. is_node = true;
  4366. }
  4367. const int64_t ne[3] = { ne0, ne1, ne2 };
  4368. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4369. ggml_format_name(result, "%s (reshaped)", a->name);
  4370. result->op = GGML_OP_RESHAPE;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src[0] = a;
  4373. return result;
  4374. }
  4375. struct ggml_tensor * ggml_reshape_4d(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. int64_t ne0,
  4379. int64_t ne1,
  4380. int64_t ne2,
  4381. int64_t ne3) {
  4382. GGML_ASSERT(ggml_is_contiguous(a));
  4383. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4384. bool is_node = false;
  4385. if (a->grad) {
  4386. is_node = true;
  4387. }
  4388. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4389. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4390. ggml_format_name(result, "%s (reshaped)", a->name);
  4391. result->op = GGML_OP_RESHAPE;
  4392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4393. result->src[0] = a;
  4394. return result;
  4395. }
  4396. static struct ggml_tensor * ggml_view_impl(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a,
  4399. int n_dims,
  4400. const int64_t * ne,
  4401. size_t offset) {
  4402. bool is_node = false;
  4403. if (a->grad) {
  4404. is_node = true;
  4405. }
  4406. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4407. ggml_format_name(result, "%s (view)", a->name);
  4408. ggml_set_op_params(result, &offset, sizeof(offset));
  4409. result->op = GGML_OP_VIEW;
  4410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4411. result->src[0] = a;
  4412. return result;
  4413. }
  4414. // ggml_view_1d
  4415. struct ggml_tensor * ggml_view_1d(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. int64_t ne0,
  4419. size_t offset) {
  4420. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4421. return result;
  4422. }
  4423. // ggml_view_2d
  4424. struct ggml_tensor * ggml_view_2d(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a,
  4427. int64_t ne0,
  4428. int64_t ne1,
  4429. size_t nb1,
  4430. size_t offset) {
  4431. const int64_t ne[2] = { ne0, ne1 };
  4432. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4433. result->nb[1] = nb1;
  4434. result->nb[2] = result->nb[1]*ne1;
  4435. result->nb[3] = result->nb[2];
  4436. return result;
  4437. }
  4438. // ggml_view_3d
  4439. struct ggml_tensor * ggml_view_3d(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. int64_t ne0,
  4443. int64_t ne1,
  4444. int64_t ne2,
  4445. size_t nb1,
  4446. size_t nb2,
  4447. size_t offset) {
  4448. const int64_t ne[3] = { ne0, ne1, ne2 };
  4449. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4450. result->nb[1] = nb1;
  4451. result->nb[2] = nb2;
  4452. result->nb[3] = result->nb[2]*ne2;
  4453. return result;
  4454. }
  4455. // ggml_view_4d
  4456. struct ggml_tensor * ggml_view_4d(
  4457. struct ggml_context * ctx,
  4458. struct ggml_tensor * a,
  4459. int64_t ne0,
  4460. int64_t ne1,
  4461. int64_t ne2,
  4462. int64_t ne3,
  4463. size_t nb1,
  4464. size_t nb2,
  4465. size_t nb3,
  4466. size_t offset) {
  4467. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4468. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4469. result->nb[1] = nb1;
  4470. result->nb[2] = nb2;
  4471. result->nb[3] = nb3;
  4472. return result;
  4473. }
  4474. // ggml_permute
  4475. struct ggml_tensor * ggml_permute(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. int axis0,
  4479. int axis1,
  4480. int axis2,
  4481. int axis3) {
  4482. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4483. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4484. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4485. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4486. GGML_ASSERT(axis0 != axis1);
  4487. GGML_ASSERT(axis0 != axis2);
  4488. GGML_ASSERT(axis0 != axis3);
  4489. GGML_ASSERT(axis1 != axis2);
  4490. GGML_ASSERT(axis1 != axis3);
  4491. GGML_ASSERT(axis2 != axis3);
  4492. bool is_node = false;
  4493. if (a->grad) {
  4494. is_node = true;
  4495. }
  4496. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4497. ggml_format_name(result, "%s (permuted)", a->name);
  4498. int ne[GGML_MAX_DIMS];
  4499. int nb[GGML_MAX_DIMS];
  4500. ne[axis0] = a->ne[0];
  4501. ne[axis1] = a->ne[1];
  4502. ne[axis2] = a->ne[2];
  4503. ne[axis3] = a->ne[3];
  4504. nb[axis0] = a->nb[0];
  4505. nb[axis1] = a->nb[1];
  4506. nb[axis2] = a->nb[2];
  4507. nb[axis3] = a->nb[3];
  4508. result->ne[0] = ne[0];
  4509. result->ne[1] = ne[1];
  4510. result->ne[2] = ne[2];
  4511. result->ne[3] = ne[3];
  4512. result->nb[0] = nb[0];
  4513. result->nb[1] = nb[1];
  4514. result->nb[2] = nb[2];
  4515. result->nb[3] = nb[3];
  4516. result->op = GGML_OP_PERMUTE;
  4517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4518. result->src[0] = a;
  4519. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4520. ggml_set_op_params(result, params, sizeof(params));
  4521. return result;
  4522. }
  4523. // ggml_transpose
  4524. struct ggml_tensor * ggml_transpose(
  4525. struct ggml_context * ctx,
  4526. struct ggml_tensor * a) {
  4527. bool is_node = false;
  4528. if (a->grad) {
  4529. is_node = true;
  4530. }
  4531. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4532. ggml_format_name(result, "%s (transposed)", a->name);
  4533. result->ne[0] = a->ne[1];
  4534. result->ne[1] = a->ne[0];
  4535. result->nb[0] = a->nb[1];
  4536. result->nb[1] = a->nb[0];
  4537. result->op = GGML_OP_TRANSPOSE;
  4538. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4539. result->src[0] = a;
  4540. return result;
  4541. }
  4542. // ggml_get_rows
  4543. struct ggml_tensor * ggml_get_rows(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a,
  4546. struct ggml_tensor * b) {
  4547. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4548. GGML_ASSERT(b->ne[3] == 1);
  4549. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4550. bool is_node = false;
  4551. if (a->grad || b->grad) {
  4552. is_node = true;
  4553. }
  4554. // TODO: implement non F32 return
  4555. enum ggml_type type = GGML_TYPE_F32;
  4556. if (a->type == GGML_TYPE_I32) {
  4557. type = a->type;
  4558. }
  4559. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4560. result->op = GGML_OP_GET_ROWS;
  4561. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4562. result->src[0] = a;
  4563. result->src[1] = b;
  4564. return result;
  4565. }
  4566. // ggml_get_rows_back
  4567. struct ggml_tensor * ggml_get_rows_back(
  4568. struct ggml_context * ctx,
  4569. struct ggml_tensor * a,
  4570. struct ggml_tensor * b,
  4571. struct ggml_tensor * c) {
  4572. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4573. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4574. bool is_node = false;
  4575. if (a->grad || b->grad) {
  4576. is_node = true;
  4577. }
  4578. // TODO: implement non F32 return
  4579. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4580. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4581. result->op = GGML_OP_GET_ROWS_BACK;
  4582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4583. result->src[0] = a;
  4584. result->src[1] = b;
  4585. return result;
  4586. }
  4587. // ggml_diag
  4588. struct ggml_tensor * ggml_diag(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a) {
  4591. GGML_ASSERT(a->ne[1] == 1);
  4592. bool is_node = false;
  4593. if (a->grad) {
  4594. is_node = true;
  4595. }
  4596. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4597. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4598. result->op = GGML_OP_DIAG;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src[0] = a;
  4601. return result;
  4602. }
  4603. // ggml_diag_mask_inf
  4604. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a,
  4607. int n_past,
  4608. bool inplace) {
  4609. bool is_node = false;
  4610. if (a->grad) {
  4611. is_node = true;
  4612. }
  4613. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4614. int32_t params[] = { n_past };
  4615. ggml_set_op_params(result, params, sizeof(params));
  4616. result->op = GGML_OP_DIAG_MASK_INF;
  4617. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4618. result->src[0] = a;
  4619. return result;
  4620. }
  4621. struct ggml_tensor * ggml_diag_mask_inf(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a,
  4624. int n_past) {
  4625. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4626. }
  4627. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. int n_past) {
  4631. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4632. }
  4633. // ggml_diag_mask_zero
  4634. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4635. struct ggml_context * ctx,
  4636. struct ggml_tensor * a,
  4637. int n_past,
  4638. bool inplace) {
  4639. bool is_node = false;
  4640. if (a->grad) {
  4641. is_node = true;
  4642. }
  4643. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4644. int32_t params[] = { n_past };
  4645. ggml_set_op_params(result, params, sizeof(params));
  4646. result->op = GGML_OP_DIAG_MASK_ZERO;
  4647. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4648. result->src[0] = a;
  4649. return result;
  4650. }
  4651. struct ggml_tensor * ggml_diag_mask_zero(
  4652. struct ggml_context * ctx,
  4653. struct ggml_tensor * a,
  4654. int n_past) {
  4655. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4656. }
  4657. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. int n_past) {
  4661. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4662. }
  4663. // ggml_soft_max
  4664. static struct ggml_tensor * ggml_soft_max_impl(
  4665. struct ggml_context * ctx,
  4666. struct ggml_tensor * a,
  4667. struct ggml_tensor * mask,
  4668. struct ggml_tensor * pos,
  4669. float scale,
  4670. float max_bias,
  4671. bool inplace) {
  4672. GGML_ASSERT(ggml_is_contiguous(a));
  4673. if (mask) {
  4674. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  4675. GGML_ASSERT(ggml_is_contiguous(mask));
  4676. GGML_ASSERT(ggml_is_matrix(mask));
  4677. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  4678. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  4679. }
  4680. if (pos) {
  4681. GGML_ASSERT(ggml_is_vector(pos));
  4682. GGML_ASSERT(pos->type == GGML_TYPE_F16 || pos->type == GGML_TYPE_F32);
  4683. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4684. }
  4685. if (pos && mask) {
  4686. GGML_ASSERT(pos->type == mask->type);
  4687. }
  4688. if (max_bias > 0.0f) {
  4689. GGML_ASSERT(pos);
  4690. }
  4691. bool is_node = false;
  4692. if (a->grad) {
  4693. is_node = true;
  4694. }
  4695. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4696. float params[] = { scale, max_bias };
  4697. ggml_set_op_params(result, params, sizeof(params));
  4698. result->op = GGML_OP_SOFT_MAX;
  4699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4700. result->src[0] = a;
  4701. result->src[1] = mask;
  4702. result->src[2] = pos;
  4703. return result;
  4704. }
  4705. struct ggml_tensor * ggml_soft_max(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a) {
  4708. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4709. }
  4710. struct ggml_tensor * ggml_soft_max_inplace(
  4711. struct ggml_context * ctx,
  4712. struct ggml_tensor * a) {
  4713. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4714. }
  4715. struct ggml_tensor * ggml_soft_max_ext(
  4716. struct ggml_context * ctx,
  4717. struct ggml_tensor * a,
  4718. struct ggml_tensor * mask,
  4719. struct ggml_tensor * pos,
  4720. float scale,
  4721. float max_bias) {
  4722. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4723. }
  4724. // ggml_soft_max_back
  4725. static struct ggml_tensor * ggml_soft_max_back_impl(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a,
  4728. struct ggml_tensor * b,
  4729. bool inplace) {
  4730. bool is_node = false;
  4731. if (a->grad || b->grad) {
  4732. is_node = true; // TODO : implement backward pass
  4733. }
  4734. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4735. result->op = GGML_OP_SOFT_MAX_BACK;
  4736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4737. result->src[0] = a;
  4738. result->src[1] = b;
  4739. return result;
  4740. }
  4741. struct ggml_tensor * ggml_soft_max_back(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. struct ggml_tensor * b) {
  4745. return ggml_soft_max_back_impl(ctx, a, b, false);
  4746. }
  4747. struct ggml_tensor * ggml_soft_max_back_inplace(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a,
  4750. struct ggml_tensor * b) {
  4751. return ggml_soft_max_back_impl(ctx, a, b, true);
  4752. }
  4753. // ggml_rope
  4754. static struct ggml_tensor * ggml_rope_impl(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. struct ggml_tensor * b,
  4758. int n_dims,
  4759. int mode,
  4760. int n_ctx,
  4761. int n_orig_ctx,
  4762. float freq_base,
  4763. float freq_scale,
  4764. float ext_factor,
  4765. float attn_factor,
  4766. float beta_fast,
  4767. float beta_slow,
  4768. float xpos_base,
  4769. bool xpos_down,
  4770. bool inplace) {
  4771. GGML_ASSERT(ggml_is_vector(b));
  4772. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4773. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4774. bool is_node = false;
  4775. if (a->grad) {
  4776. is_node = true;
  4777. }
  4778. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4779. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4780. memcpy(params + 5, &freq_base, sizeof(float));
  4781. memcpy(params + 6, &freq_scale, sizeof(float));
  4782. memcpy(params + 7, &ext_factor, sizeof(float));
  4783. memcpy(params + 8, &attn_factor, sizeof(float));
  4784. memcpy(params + 9, &beta_fast, sizeof(float));
  4785. memcpy(params + 10, &beta_slow, sizeof(float));
  4786. memcpy(params + 11, &xpos_base, sizeof(float));
  4787. memcpy(params + 12, &xpos_down, sizeof(bool));
  4788. ggml_set_op_params(result, params, sizeof(params));
  4789. result->op = GGML_OP_ROPE;
  4790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4791. result->src[0] = a;
  4792. result->src[1] = b;
  4793. return result;
  4794. }
  4795. struct ggml_tensor * ggml_rope(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. struct ggml_tensor * b,
  4799. int n_dims,
  4800. int mode,
  4801. int n_ctx) {
  4802. return ggml_rope_impl(
  4803. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4804. );
  4805. }
  4806. struct ggml_tensor * ggml_rope_inplace(
  4807. struct ggml_context * ctx,
  4808. struct ggml_tensor * a,
  4809. struct ggml_tensor * b,
  4810. int n_dims,
  4811. int mode,
  4812. int n_ctx) {
  4813. return ggml_rope_impl(
  4814. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4815. );
  4816. }
  4817. struct ggml_tensor * ggml_rope_custom(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. struct ggml_tensor * b,
  4821. int n_dims,
  4822. int mode,
  4823. int n_ctx,
  4824. int n_orig_ctx,
  4825. float freq_base,
  4826. float freq_scale,
  4827. float ext_factor,
  4828. float attn_factor,
  4829. float beta_fast,
  4830. float beta_slow) {
  4831. return ggml_rope_impl(
  4832. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4833. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4834. );
  4835. }
  4836. struct ggml_tensor * ggml_rope_custom_inplace(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. struct ggml_tensor * b,
  4840. int n_dims,
  4841. int mode,
  4842. int n_ctx,
  4843. int n_orig_ctx,
  4844. float freq_base,
  4845. float freq_scale,
  4846. float ext_factor,
  4847. float attn_factor,
  4848. float beta_fast,
  4849. float beta_slow) {
  4850. return ggml_rope_impl(
  4851. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4852. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4853. );
  4854. }
  4855. struct ggml_tensor * ggml_rope_xpos_inplace(
  4856. struct ggml_context * ctx,
  4857. struct ggml_tensor * a,
  4858. struct ggml_tensor * b,
  4859. int n_dims,
  4860. float base,
  4861. bool down) {
  4862. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4863. }
  4864. // ggml_rope_back
  4865. struct ggml_tensor * ggml_rope_back(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * a,
  4868. struct ggml_tensor * b,
  4869. int n_dims,
  4870. int mode,
  4871. int n_ctx,
  4872. int n_orig_ctx,
  4873. float freq_base,
  4874. float freq_scale,
  4875. float ext_factor,
  4876. float attn_factor,
  4877. float beta_fast,
  4878. float beta_slow,
  4879. float xpos_base,
  4880. bool xpos_down) {
  4881. GGML_ASSERT(ggml_is_vector(b));
  4882. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4883. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4884. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4885. bool is_node = false;
  4886. if (a->grad) {
  4887. is_node = false; // TODO: implement backward
  4888. }
  4889. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4890. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4891. memcpy(params + 5, &freq_base, sizeof(float));
  4892. memcpy(params + 6, &freq_scale, sizeof(float));
  4893. memcpy(params + 7, &ext_factor, sizeof(float));
  4894. memcpy(params + 8, &attn_factor, sizeof(float));
  4895. memcpy(params + 9, &beta_fast, sizeof(float));
  4896. memcpy(params + 10, &beta_slow, sizeof(float));
  4897. memcpy(params + 11, &xpos_base, sizeof(float));
  4898. memcpy(params + 12, &xpos_down, sizeof(bool));
  4899. ggml_set_op_params(result, params, sizeof(params));
  4900. result->op = GGML_OP_ROPE_BACK;
  4901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4902. result->src[0] = a;
  4903. result->src[1] = b;
  4904. return result;
  4905. }
  4906. // ggml_alibi
  4907. struct ggml_tensor * ggml_alibi(
  4908. struct ggml_context * ctx,
  4909. struct ggml_tensor * a,
  4910. int n_past,
  4911. int n_head,
  4912. float bias_max) {
  4913. GGML_ASSERT(n_past >= 0);
  4914. bool is_node = false;
  4915. if (a->grad) {
  4916. GGML_ASSERT(false); // TODO: implement backward
  4917. is_node = true;
  4918. }
  4919. // TODO: when implement backward, fix this:
  4920. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4921. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4922. int32_t op_params[3] = { n_past, n_head };
  4923. memcpy(op_params + 2, &bias_max, sizeof(float));
  4924. ggml_set_op_params(result, op_params, sizeof(op_params));
  4925. result->op = GGML_OP_ALIBI;
  4926. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4927. result->src[0] = a;
  4928. return result;
  4929. }
  4930. // ggml_clamp
  4931. struct ggml_tensor * ggml_clamp(
  4932. struct ggml_context * ctx,
  4933. struct ggml_tensor * a,
  4934. float min,
  4935. float max) {
  4936. bool is_node = false;
  4937. if (a->grad) {
  4938. GGML_ASSERT(false); // TODO: implement backward
  4939. is_node = true;
  4940. }
  4941. // TODO: when implement backward, fix this:
  4942. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4943. float params[] = { min, max };
  4944. ggml_set_op_params(result, params, sizeof(params));
  4945. result->op = GGML_OP_CLAMP;
  4946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4947. result->src[0] = a;
  4948. return result;
  4949. }
  4950. // ggml_conv_1d
  4951. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4952. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4953. }
  4954. GGML_API struct ggml_tensor * ggml_conv_1d(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. struct ggml_tensor * b,
  4958. int s0,
  4959. int p0,
  4960. int d0) {
  4961. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4962. struct ggml_tensor * result =
  4963. ggml_mul_mat(ctx,
  4964. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4965. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4966. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4967. return result;
  4968. }
  4969. // ggml_conv_1d_ph
  4970. struct ggml_tensor* ggml_conv_1d_ph(
  4971. struct ggml_context * ctx,
  4972. struct ggml_tensor * a,
  4973. struct ggml_tensor * b,
  4974. int s,
  4975. int d) {
  4976. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4977. }
  4978. // ggml_conv_transpose_1d
  4979. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4980. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4981. }
  4982. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. struct ggml_tensor * b,
  4986. int s0,
  4987. int p0,
  4988. int d0) {
  4989. GGML_ASSERT(ggml_is_matrix(b));
  4990. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4991. GGML_ASSERT(a->ne[3] == 1);
  4992. GGML_ASSERT(p0 == 0);
  4993. GGML_ASSERT(d0 == 1);
  4994. bool is_node = false;
  4995. if (a->grad || b->grad) {
  4996. GGML_ASSERT(false); // TODO: implement backward
  4997. is_node = true;
  4998. }
  4999. const int64_t ne[4] = {
  5000. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5001. a->ne[1], b->ne[2], 1,
  5002. };
  5003. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5004. int32_t params[] = { s0, p0, d0 };
  5005. ggml_set_op_params(result, params, sizeof(params));
  5006. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5007. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5008. result->src[0] = a;
  5009. result->src[1] = b;
  5010. return result;
  5011. }
  5012. // ggml_conv_depthwise
  5013. struct ggml_tensor * ggml_conv_depthwise_2d(
  5014. struct ggml_context * ctx,
  5015. struct ggml_tensor * a,
  5016. struct ggml_tensor * b,
  5017. int s0,
  5018. int s1,
  5019. int p0,
  5020. int p1,
  5021. int d0,
  5022. int d1) {
  5023. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5024. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5025. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5026. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5027. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5028. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5029. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5030. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5031. return result;
  5032. }
  5033. // ggml_conv_2d
  5034. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5035. // a: [OC,IC, KH, KW]
  5036. // b: [N, IC, IH, IW]
  5037. // result: [N, OH, OW, IC*KH*KW]
  5038. struct ggml_tensor * ggml_im2col(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a,
  5041. struct ggml_tensor * b,
  5042. int s0,
  5043. int s1,
  5044. int p0,
  5045. int p1,
  5046. int d0,
  5047. int d1,
  5048. bool is_2D,
  5049. enum ggml_type dst_type) {
  5050. if(is_2D) {
  5051. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5052. } else {
  5053. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5054. }
  5055. bool is_node = false;
  5056. if (a->grad || b->grad) {
  5057. GGML_ASSERT(false); // TODO: implement backward
  5058. is_node = true;
  5059. }
  5060. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5061. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5062. const int64_t ne[4] = {
  5063. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5064. OW,
  5065. is_2D ? OH : b->ne[2],
  5066. is_2D ? b->ne[3] : 1,
  5067. };
  5068. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5069. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5070. ggml_set_op_params(result, params, sizeof(params));
  5071. result->op = GGML_OP_IM2COL;
  5072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5073. result->src[0] = a;
  5074. result->src[1] = b;
  5075. return result;
  5076. }
  5077. // a: [OC,IC, KH, KW]
  5078. // b: [N, IC, IH, IW]
  5079. // result: [N, OC, OH, OW]
  5080. struct ggml_tensor * ggml_conv_2d(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. struct ggml_tensor * b,
  5084. int s0,
  5085. int s1,
  5086. int p0,
  5087. int p1,
  5088. int d0,
  5089. int d1) {
  5090. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5091. struct ggml_tensor * result =
  5092. ggml_mul_mat(ctx,
  5093. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5094. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5095. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5096. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5097. return result;
  5098. }
  5099. // ggml_conv_2d_sk_p0
  5100. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5101. struct ggml_context * ctx,
  5102. struct ggml_tensor * a,
  5103. struct ggml_tensor * b) {
  5104. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5105. }
  5106. // ggml_conv_2d_s1_ph
  5107. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5108. struct ggml_context * ctx,
  5109. struct ggml_tensor * a,
  5110. struct ggml_tensor * b) {
  5111. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5112. }
  5113. // ggml_conv_transpose_2d_p0
  5114. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5115. return (ins - 1) * s - 2 * p + ks;
  5116. }
  5117. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5118. struct ggml_context * ctx,
  5119. struct ggml_tensor * a,
  5120. struct ggml_tensor * b,
  5121. int stride) {
  5122. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5123. bool is_node = false;
  5124. if (a->grad || b->grad) {
  5125. GGML_ASSERT(false); // TODO: implement backward
  5126. is_node = true;
  5127. }
  5128. const int64_t ne[4] = {
  5129. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5130. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5131. a->ne[2], b->ne[3],
  5132. };
  5133. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5134. ggml_set_op_params_i32(result, 0, stride);
  5135. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5137. result->src[0] = a;
  5138. result->src[1] = b;
  5139. return result;
  5140. }
  5141. // ggml_pool_*
  5142. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5143. return (ins + 2 * p - ks) / s + 1;
  5144. }
  5145. // ggml_pool_1d
  5146. struct ggml_tensor * ggml_pool_1d(
  5147. struct ggml_context * ctx,
  5148. struct ggml_tensor * a,
  5149. enum ggml_op_pool op,
  5150. int k0,
  5151. int s0,
  5152. int p0) {
  5153. bool is_node = false;
  5154. if (a->grad) {
  5155. GGML_ASSERT(false); // TODO: implement backward
  5156. is_node = true;
  5157. }
  5158. const int64_t ne[4] = {
  5159. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5160. a->ne[1],
  5161. a->ne[2],
  5162. a->ne[3],
  5163. };
  5164. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5165. int32_t params[] = { op, k0, s0, p0 };
  5166. ggml_set_op_params(result, params, sizeof(params));
  5167. result->op = GGML_OP_POOL_1D;
  5168. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5169. result->src[0] = a;
  5170. return result;
  5171. }
  5172. // ggml_pool_2d
  5173. struct ggml_tensor * ggml_pool_2d(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. enum ggml_op_pool op,
  5177. int k0,
  5178. int k1,
  5179. int s0,
  5180. int s1,
  5181. float p0,
  5182. float p1) {
  5183. bool is_node = false;
  5184. if (a->grad) {
  5185. GGML_ASSERT(false); // TODO: implement backward
  5186. is_node = true;
  5187. }
  5188. struct ggml_tensor * result;
  5189. const int64_t ne[3] = {
  5190. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5191. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5192. a->ne[2],
  5193. };
  5194. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5195. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5196. ggml_set_op_params(result, params, sizeof(params));
  5197. result->op = GGML_OP_POOL_2D;
  5198. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5199. result->src[0] = a;
  5200. return result;
  5201. }
  5202. // ggml_upscale
  5203. static struct ggml_tensor * ggml_upscale_impl(
  5204. struct ggml_context * ctx,
  5205. struct ggml_tensor * a,
  5206. int scale_factor) {
  5207. bool is_node = false;
  5208. if (a->grad) {
  5209. GGML_ASSERT(false); // TODO: implement backward
  5210. is_node = true;
  5211. }
  5212. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5213. a->ne[0] * scale_factor,
  5214. a->ne[1] * scale_factor,
  5215. a->ne[2], a->ne[3]);
  5216. result->op = GGML_OP_UPSCALE;
  5217. result->op_params[0] = scale_factor;
  5218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5219. result->src[0] = a;
  5220. return result;
  5221. }
  5222. struct ggml_tensor * ggml_pad(
  5223. struct ggml_context * ctx,
  5224. struct ggml_tensor * a,
  5225. int p0, int p1, int p2, int p3) {
  5226. bool is_node = false;
  5227. if (a->grad) {
  5228. GGML_ASSERT(false); // TODO: implement backward
  5229. is_node = true;
  5230. }
  5231. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5232. a->ne[0] + p0,
  5233. a->ne[1] + p1,
  5234. a->ne[2] + p2,
  5235. a->ne[3] + p3);
  5236. result->op = GGML_OP_PAD;
  5237. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5238. result->src[0] = a;
  5239. return result;
  5240. }
  5241. struct ggml_tensor * ggml_upscale(
  5242. struct ggml_context * ctx,
  5243. struct ggml_tensor * a,
  5244. int scale_factor) {
  5245. return ggml_upscale_impl(ctx, a, scale_factor);
  5246. }
  5247. struct ggml_tensor * ggml_arange(
  5248. struct ggml_context * ctx,
  5249. float start,
  5250. float stop,
  5251. float step) {
  5252. GGML_ASSERT(stop > start);
  5253. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5254. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5255. result->op = GGML_OP_ARANGE;
  5256. ggml_set_op_params_f32(result, 0, start);
  5257. ggml_set_op_params_f32(result, 1, stop);
  5258. ggml_set_op_params_f32(result, 2, step);
  5259. return result;
  5260. }
  5261. struct ggml_tensor * ggml_timestep_embedding(
  5262. struct ggml_context * ctx,
  5263. struct ggml_tensor * timesteps,
  5264. int dim,
  5265. int max_period) {
  5266. bool is_node = false;
  5267. if (timesteps->grad) {
  5268. GGML_ASSERT(false); // TODO: implement backward
  5269. is_node = true;
  5270. }
  5271. int actual_dim = dim;
  5272. if (dim % 2 != 0) {
  5273. actual_dim = dim + 1;
  5274. }
  5275. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5276. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5277. ggml_set_op_params_i32(result, 0, dim);
  5278. ggml_set_op_params_i32(result, 1, max_period);
  5279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5280. result->src[0] = timesteps;
  5281. return result;
  5282. }
  5283. // ggml_argsort
  5284. struct ggml_tensor * ggml_argsort(
  5285. struct ggml_context * ctx,
  5286. struct ggml_tensor * a,
  5287. enum ggml_sort_order order) {
  5288. bool is_node = false;
  5289. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5290. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5291. result->op = GGML_OP_ARGSORT;
  5292. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5293. result->src[0] = a;
  5294. return result;
  5295. }
  5296. // ggml_top_k
  5297. struct ggml_tensor * ggml_top_k(
  5298. struct ggml_context * ctx,
  5299. struct ggml_tensor * a,
  5300. int k) {
  5301. GGML_ASSERT(a->ne[0] >= k);
  5302. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5303. result = ggml_view_4d(ctx, result,
  5304. k, result->ne[1], result->ne[2], result->ne[3],
  5305. result->nb[1], result->nb[2], result->nb[3],
  5306. 0);
  5307. return result;
  5308. }
  5309. // ggml_flash_attn
  5310. struct ggml_tensor * ggml_flash_attn(
  5311. struct ggml_context * ctx,
  5312. struct ggml_tensor * q,
  5313. struct ggml_tensor * k,
  5314. struct ggml_tensor * v,
  5315. bool masked) {
  5316. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5317. // TODO: check if vT can be multiplied by (k*qT)
  5318. bool is_node = false;
  5319. if (q->grad || k->grad || v->grad) {
  5320. is_node = true;
  5321. }
  5322. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5323. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5324. int32_t t = masked ? 1 : 0;
  5325. ggml_set_op_params(result, &t, sizeof(t));
  5326. result->op = GGML_OP_FLASH_ATTN;
  5327. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5328. result->src[0] = q;
  5329. result->src[1] = k;
  5330. result->src[2] = v;
  5331. return result;
  5332. }
  5333. // ggml_flash_attn_ext
  5334. struct ggml_tensor * ggml_flash_attn_ext(
  5335. struct ggml_context * ctx,
  5336. struct ggml_tensor * q,
  5337. struct ggml_tensor * k,
  5338. struct ggml_tensor * v,
  5339. struct ggml_tensor * mask,
  5340. float scale) {
  5341. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5342. // TODO: check if vT can be multiplied by (k*qT)
  5343. if (mask) {
  5344. GGML_ASSERT(ggml_is_contiguous(mask));
  5345. GGML_ASSERT(mask->ne[2] == 1);
  5346. GGML_ASSERT(mask->ne[3] == 1);
  5347. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5348. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5349. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5350. }
  5351. bool is_node = false;
  5352. if (q->grad || k->grad || v->grad) {
  5353. is_node = true;
  5354. }
  5355. // permute(0, 2, 1, 3)
  5356. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5357. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5358. float params[] = { scale };
  5359. ggml_set_op_params(result, params, sizeof(params));
  5360. result->op = GGML_OP_FLASH_ATTN_EXT;
  5361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5362. result->src[0] = q;
  5363. result->src[1] = k;
  5364. result->src[2] = v;
  5365. result->src[3] = mask;
  5366. return result;
  5367. }
  5368. void ggml_flash_attn_ext_set_prec(
  5369. struct ggml_tensor * a,
  5370. enum ggml_prec prec) {
  5371. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5372. const int32_t prec_i32 = (int32_t) prec;
  5373. ggml_set_op_params_i32(a, 1, prec_i32); // scale is on first pos
  5374. }
  5375. // ggml_flash_ff
  5376. struct ggml_tensor * ggml_flash_ff(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. struct ggml_tensor * b0,
  5380. struct ggml_tensor * b1,
  5381. struct ggml_tensor * c0,
  5382. struct ggml_tensor * c1) {
  5383. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5384. // TODO: more checks
  5385. bool is_node = false;
  5386. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5387. is_node = true;
  5388. }
  5389. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5390. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5391. result->op = GGML_OP_FLASH_FF;
  5392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5393. result->src[0] = a;
  5394. result->src[1] = b0;
  5395. result->src[2] = b1;
  5396. result->src[3] = c0;
  5397. result->src[4] = c1;
  5398. return result;
  5399. }
  5400. // ggml_flash_attn_back
  5401. struct ggml_tensor * ggml_flash_attn_back(
  5402. struct ggml_context * ctx,
  5403. struct ggml_tensor * q,
  5404. struct ggml_tensor * k,
  5405. struct ggml_tensor * v,
  5406. struct ggml_tensor * d,
  5407. bool masked) {
  5408. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5409. // TODO: check if vT can be multiplied by (k*qT)
  5410. // d shape [D,N,ne2,ne3]
  5411. // q shape [D,N,ne2,ne3]
  5412. // k shape [D,M,kvne2,ne3]
  5413. // v shape [M,D,kvne2,ne3]
  5414. const int64_t D = q->ne[0];
  5415. const int64_t N = q->ne[1];
  5416. const int64_t M = k->ne[1];
  5417. const int64_t ne2 = q->ne[2];
  5418. const int64_t ne3 = q->ne[3];
  5419. const int64_t kvne2 = k->ne[2];
  5420. GGML_ASSERT(k->ne[0] == D);
  5421. GGML_ASSERT(v->ne[0] == M);
  5422. GGML_ASSERT(v->ne[1] == D);
  5423. GGML_ASSERT(d->ne[0] == D);
  5424. GGML_ASSERT(d->ne[1] == N);
  5425. GGML_ASSERT(k->ne[2] == kvne2);
  5426. GGML_ASSERT(k->ne[3] == ne3);
  5427. GGML_ASSERT(v->ne[2] == kvne2);
  5428. GGML_ASSERT(v->ne[3] == ne3);
  5429. GGML_ASSERT(d->ne[2] == ne2);
  5430. GGML_ASSERT(d->ne[3] == ne3);
  5431. GGML_ASSERT(ne2 % kvne2 == 0);
  5432. bool is_node = false;
  5433. if (q->grad || k->grad || v->grad) {
  5434. // when using this operation (in backwards pass) these grads are set.
  5435. // we don't want to create (big) grad of our result, so is_node is false.
  5436. is_node = false;
  5437. }
  5438. // store gradients of q, k and v as continuous tensors concatenated in result.
  5439. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5440. const int64_t elem_q = ggml_nelements(q);
  5441. const int64_t elem_k = ggml_nelements(k);
  5442. const int64_t elem_v = ggml_nelements(v);
  5443. enum ggml_type result_type = GGML_TYPE_F32;
  5444. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5445. const size_t tsize = ggml_type_size(result_type);
  5446. const size_t offs_q = 0;
  5447. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5448. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5449. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5450. const size_t nelements = (end + tsize - 1)/tsize;
  5451. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5452. int32_t masked_i = masked ? 1 : 0;
  5453. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5454. result->op = GGML_OP_FLASH_ATTN_BACK;
  5455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5456. result->src[0] = q;
  5457. result->src[1] = k;
  5458. result->src[2] = v;
  5459. result->src[3] = d;
  5460. return result;
  5461. }
  5462. // ggml_ssm_conv
  5463. struct ggml_tensor * ggml_ssm_conv(
  5464. struct ggml_context * ctx,
  5465. struct ggml_tensor * s,
  5466. struct ggml_tensor * x,
  5467. struct ggml_tensor * c,
  5468. struct ggml_tensor * sq) {
  5469. GGML_ASSERT(ggml_is_3d(s));
  5470. GGML_ASSERT(ggml_is_matrix(x));
  5471. GGML_ASSERT(ggml_is_matrix(c));
  5472. GGML_ASSERT(ggml_is_matrix(sq));
  5473. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5474. const int64_t d_conv = c->ne[0];
  5475. const int64_t d_inner = c->ne[1];
  5476. const int64_t n_tokens = x->ne[1];
  5477. const int64_t n_kv = s->ne[2];
  5478. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5479. GGML_ASSERT( s->ne[1] == d_inner);
  5480. GGML_ASSERT( x->ne[0] == d_inner);
  5481. GGML_ASSERT(sq->ne[0] == n_kv);
  5482. GGML_ASSERT(sq->ne[1] == n_tokens);
  5483. bool is_node = false;
  5484. if (s->grad || x->grad || c->grad || sq->grad) {
  5485. GGML_ASSERT(false); // TODO: implement
  5486. is_node = true;
  5487. }
  5488. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5489. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5490. result->op = GGML_OP_SSM_CONV;
  5491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5492. result->src[0] = s;
  5493. result->src[1] = x;
  5494. result->src[2] = c;
  5495. result->src[3] = sq;
  5496. return result;
  5497. }
  5498. // ggml_ssm_scan
  5499. struct ggml_tensor * ggml_ssm_scan(
  5500. struct ggml_context * ctx,
  5501. struct ggml_tensor * s,
  5502. struct ggml_tensor * x,
  5503. struct ggml_tensor * dt,
  5504. struct ggml_tensor * A,
  5505. struct ggml_tensor * B,
  5506. struct ggml_tensor * C,
  5507. struct ggml_tensor * sq) {
  5508. GGML_ASSERT(ggml_is_contiguous(s));
  5509. GGML_ASSERT(ggml_is_contiguous(x));
  5510. GGML_ASSERT(ggml_is_contiguous(dt));
  5511. GGML_ASSERT(ggml_is_contiguous(A));
  5512. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5513. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5514. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5515. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5516. {
  5517. const int64_t d_state = s->ne[0];
  5518. const int64_t d_inner = s->ne[1];
  5519. const int64_t n_tokens = x->ne[1];
  5520. GGML_ASSERT(x->ne[0] == d_inner);
  5521. GGML_ASSERT(A->ne[0] == d_state);
  5522. GGML_ASSERT(A->ne[1] == d_inner);
  5523. GGML_ASSERT(B->ne[0] == d_state);
  5524. GGML_ASSERT(B->ne[1] == n_tokens);
  5525. GGML_ASSERT(C->ne[0] == d_state);
  5526. GGML_ASSERT(C->ne[1] == n_tokens);
  5527. }
  5528. bool is_node = false;
  5529. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5530. GGML_ASSERT(false); // TODO: implement
  5531. is_node = true;
  5532. }
  5533. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5534. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5535. result->op = GGML_OP_SSM_SCAN;
  5536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5537. result->src[0] = s;
  5538. result->src[1] = x;
  5539. result->src[2] = dt;
  5540. result->src[3] = A;
  5541. result->src[4] = B;
  5542. result->src[5] = C;
  5543. result->src[6] = sq;
  5544. return result;
  5545. }
  5546. // ggml_win_part
  5547. struct ggml_tensor * ggml_win_part(
  5548. struct ggml_context * ctx,
  5549. struct ggml_tensor * a,
  5550. int w) {
  5551. GGML_ASSERT(a->ne[3] == 1);
  5552. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5553. bool is_node = false;
  5554. if (a->grad) {
  5555. GGML_ASSERT(false); // TODO: implement backward
  5556. is_node = true;
  5557. }
  5558. // padding
  5559. const int px = (w - a->ne[1]%w)%w;
  5560. const int py = (w - a->ne[2]%w)%w;
  5561. const int npx = (px + a->ne[1])/w;
  5562. const int npy = (py + a->ne[2])/w;
  5563. const int np = npx*npy;
  5564. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5565. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5566. int32_t params[] = { npx, npy, w };
  5567. ggml_set_op_params(result, params, sizeof(params));
  5568. result->op = GGML_OP_WIN_PART;
  5569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5570. result->src[0] = a;
  5571. return result;
  5572. }
  5573. // ggml_win_unpart
  5574. struct ggml_tensor * ggml_win_unpart(
  5575. struct ggml_context * ctx,
  5576. struct ggml_tensor * a,
  5577. int w0,
  5578. int h0,
  5579. int w) {
  5580. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5581. bool is_node = false;
  5582. if (a->grad) {
  5583. GGML_ASSERT(false); // TODO: implement backward
  5584. is_node = true;
  5585. }
  5586. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5587. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5588. int32_t params[] = { w };
  5589. ggml_set_op_params(result, params, sizeof(params));
  5590. result->op = GGML_OP_WIN_UNPART;
  5591. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5592. result->src[0] = a;
  5593. return result;
  5594. }
  5595. // ggml_get_rel_pos
  5596. struct ggml_tensor * ggml_get_rel_pos(
  5597. struct ggml_context * ctx,
  5598. struct ggml_tensor * a,
  5599. int qh,
  5600. int kh) {
  5601. GGML_ASSERT(qh == kh);
  5602. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5603. bool is_node = false;
  5604. if (a->grad) {
  5605. GGML_ASSERT(false); // TODO: implement backward
  5606. is_node = true;
  5607. }
  5608. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5609. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5610. result->op = GGML_OP_GET_REL_POS;
  5611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5612. result->src[0] = a;
  5613. return result;
  5614. }
  5615. // ggml_add_rel_pos
  5616. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5617. struct ggml_context * ctx,
  5618. struct ggml_tensor * a,
  5619. struct ggml_tensor * pw,
  5620. struct ggml_tensor * ph,
  5621. bool inplace) {
  5622. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5623. GGML_ASSERT(ggml_is_contiguous(a));
  5624. GGML_ASSERT(ggml_is_contiguous(pw));
  5625. GGML_ASSERT(ggml_is_contiguous(ph));
  5626. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5627. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5628. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5629. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5630. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5631. bool is_node = false;
  5632. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5633. is_node = true;
  5634. }
  5635. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5636. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5637. result->op = GGML_OP_ADD_REL_POS;
  5638. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5639. result->src[0] = a;
  5640. result->src[1] = pw;
  5641. result->src[2] = ph;
  5642. return result;
  5643. }
  5644. struct ggml_tensor * ggml_add_rel_pos(
  5645. struct ggml_context * ctx,
  5646. struct ggml_tensor * a,
  5647. struct ggml_tensor * pw,
  5648. struct ggml_tensor * ph) {
  5649. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5650. }
  5651. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5652. struct ggml_context * ctx,
  5653. struct ggml_tensor * a,
  5654. struct ggml_tensor * pw,
  5655. struct ggml_tensor * ph) {
  5656. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5657. }
  5658. // gmml_unary
  5659. static struct ggml_tensor * ggml_unary_impl(
  5660. struct ggml_context * ctx,
  5661. struct ggml_tensor * a,
  5662. enum ggml_unary_op op,
  5663. bool inplace) {
  5664. bool is_node = false;
  5665. if (!inplace && (a->grad)) {
  5666. is_node = true;
  5667. }
  5668. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5669. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5670. result->op = GGML_OP_UNARY;
  5671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5672. result->src[0] = a;
  5673. return result;
  5674. }
  5675. struct ggml_tensor * ggml_unary(
  5676. struct ggml_context * ctx,
  5677. struct ggml_tensor * a,
  5678. enum ggml_unary_op op) {
  5679. return ggml_unary_impl(ctx, a, op, false);
  5680. }
  5681. struct ggml_tensor * ggml_unary_inplace(
  5682. struct ggml_context * ctx,
  5683. struct ggml_tensor * a,
  5684. enum ggml_unary_op op) {
  5685. return ggml_unary_impl(ctx, a, op, true);
  5686. }
  5687. // ggml_map_unary
  5688. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5689. struct ggml_context * ctx,
  5690. struct ggml_tensor * a,
  5691. const ggml_unary_op_f32_t fun,
  5692. bool inplace) {
  5693. bool is_node = false;
  5694. if (!inplace && a->grad) {
  5695. is_node = true;
  5696. }
  5697. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5698. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5699. result->op = GGML_OP_MAP_UNARY;
  5700. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5701. result->src[0] = a;
  5702. return result;
  5703. }
  5704. struct ggml_tensor * ggml_map_unary_f32(
  5705. struct ggml_context * ctx,
  5706. struct ggml_tensor * a,
  5707. const ggml_unary_op_f32_t fun) {
  5708. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5709. }
  5710. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5711. struct ggml_context * ctx,
  5712. struct ggml_tensor * a,
  5713. const ggml_unary_op_f32_t fun) {
  5714. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5715. }
  5716. // ggml_map_binary
  5717. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5718. struct ggml_context * ctx,
  5719. struct ggml_tensor * a,
  5720. struct ggml_tensor * b,
  5721. const ggml_binary_op_f32_t fun,
  5722. bool inplace) {
  5723. GGML_ASSERT(ggml_are_same_shape(a, b));
  5724. bool is_node = false;
  5725. if (!inplace && (a->grad || b->grad)) {
  5726. is_node = true;
  5727. }
  5728. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5729. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5730. result->op = GGML_OP_MAP_BINARY;
  5731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5732. result->src[0] = a;
  5733. result->src[1] = b;
  5734. return result;
  5735. }
  5736. struct ggml_tensor * ggml_map_binary_f32(
  5737. struct ggml_context * ctx,
  5738. struct ggml_tensor * a,
  5739. struct ggml_tensor * b,
  5740. const ggml_binary_op_f32_t fun) {
  5741. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5742. }
  5743. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5744. struct ggml_context * ctx,
  5745. struct ggml_tensor * a,
  5746. struct ggml_tensor * b,
  5747. const ggml_binary_op_f32_t fun) {
  5748. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5749. }
  5750. // ggml_map_custom1_f32
  5751. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5752. struct ggml_context * ctx,
  5753. struct ggml_tensor * a,
  5754. const ggml_custom1_op_f32_t fun,
  5755. bool inplace) {
  5756. bool is_node = false;
  5757. if (!inplace && a->grad) {
  5758. is_node = true;
  5759. }
  5760. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5761. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5762. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5764. result->src[0] = a;
  5765. return result;
  5766. }
  5767. struct ggml_tensor * ggml_map_custom1_f32(
  5768. struct ggml_context * ctx,
  5769. struct ggml_tensor * a,
  5770. const ggml_custom1_op_f32_t fun) {
  5771. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5772. }
  5773. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5774. struct ggml_context * ctx,
  5775. struct ggml_tensor * a,
  5776. const ggml_custom1_op_f32_t fun) {
  5777. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5778. }
  5779. // ggml_map_custom2_f32
  5780. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5781. struct ggml_context * ctx,
  5782. struct ggml_tensor * a,
  5783. struct ggml_tensor * b,
  5784. const ggml_custom2_op_f32_t fun,
  5785. bool inplace) {
  5786. bool is_node = false;
  5787. if (!inplace && (a->grad || b->grad)) {
  5788. is_node = true;
  5789. }
  5790. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5791. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5792. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5793. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5794. result->src[0] = a;
  5795. result->src[1] = b;
  5796. return result;
  5797. }
  5798. struct ggml_tensor * ggml_map_custom2_f32(
  5799. struct ggml_context * ctx,
  5800. struct ggml_tensor * a,
  5801. struct ggml_tensor * b,
  5802. const ggml_custom2_op_f32_t fun) {
  5803. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5804. }
  5805. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5806. struct ggml_context * ctx,
  5807. struct ggml_tensor * a,
  5808. struct ggml_tensor * b,
  5809. const ggml_custom2_op_f32_t fun) {
  5810. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5811. }
  5812. // ggml_map_custom3_f32
  5813. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5814. struct ggml_context * ctx,
  5815. struct ggml_tensor * a,
  5816. struct ggml_tensor * b,
  5817. struct ggml_tensor * c,
  5818. const ggml_custom3_op_f32_t fun,
  5819. bool inplace) {
  5820. bool is_node = false;
  5821. if (!inplace && (a->grad || b->grad || c->grad)) {
  5822. is_node = true;
  5823. }
  5824. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5825. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5826. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5828. result->src[0] = a;
  5829. result->src[1] = b;
  5830. result->src[2] = c;
  5831. return result;
  5832. }
  5833. struct ggml_tensor * ggml_map_custom3_f32(
  5834. struct ggml_context * ctx,
  5835. struct ggml_tensor * a,
  5836. struct ggml_tensor * b,
  5837. struct ggml_tensor * c,
  5838. const ggml_custom3_op_f32_t fun) {
  5839. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5840. }
  5841. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5842. struct ggml_context * ctx,
  5843. struct ggml_tensor * a,
  5844. struct ggml_tensor * b,
  5845. struct ggml_tensor * c,
  5846. const ggml_custom3_op_f32_t fun) {
  5847. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5848. }
  5849. // ggml_map_custom1
  5850. struct ggml_map_custom1_op_params {
  5851. ggml_custom1_op_t fun;
  5852. int n_tasks;
  5853. void * userdata;
  5854. };
  5855. static struct ggml_tensor * ggml_map_custom1_impl(
  5856. struct ggml_context * ctx,
  5857. struct ggml_tensor * a,
  5858. const ggml_custom1_op_t fun,
  5859. int n_tasks,
  5860. void * userdata,
  5861. bool inplace) {
  5862. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5863. bool is_node = false;
  5864. if (!inplace && a->grad) {
  5865. is_node = true;
  5866. }
  5867. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5868. struct ggml_map_custom1_op_params params = {
  5869. /*.fun =*/ fun,
  5870. /*.n_tasks =*/ n_tasks,
  5871. /*.userdata =*/ userdata
  5872. };
  5873. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5874. result->op = GGML_OP_MAP_CUSTOM1;
  5875. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5876. result->src[0] = a;
  5877. return result;
  5878. }
  5879. struct ggml_tensor * ggml_map_custom1(
  5880. struct ggml_context * ctx,
  5881. struct ggml_tensor * a,
  5882. const ggml_custom1_op_t fun,
  5883. int n_tasks,
  5884. void * userdata) {
  5885. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5886. }
  5887. struct ggml_tensor * ggml_map_custom1_inplace(
  5888. struct ggml_context * ctx,
  5889. struct ggml_tensor * a,
  5890. const ggml_custom1_op_t fun,
  5891. int n_tasks,
  5892. void * userdata) {
  5893. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5894. }
  5895. // ggml_map_custom2
  5896. struct ggml_map_custom2_op_params {
  5897. ggml_custom2_op_t fun;
  5898. int n_tasks;
  5899. void * userdata;
  5900. };
  5901. static struct ggml_tensor * ggml_map_custom2_impl(
  5902. struct ggml_context * ctx,
  5903. struct ggml_tensor * a,
  5904. struct ggml_tensor * b,
  5905. const ggml_custom2_op_t fun,
  5906. int n_tasks,
  5907. void * userdata,
  5908. bool inplace) {
  5909. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5910. bool is_node = false;
  5911. if (!inplace && (a->grad || b->grad)) {
  5912. is_node = true;
  5913. }
  5914. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5915. struct ggml_map_custom2_op_params params = {
  5916. /*.fun =*/ fun,
  5917. /*.n_tasks =*/ n_tasks,
  5918. /*.userdata =*/ userdata
  5919. };
  5920. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5921. result->op = GGML_OP_MAP_CUSTOM2;
  5922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5923. result->src[0] = a;
  5924. result->src[1] = b;
  5925. return result;
  5926. }
  5927. struct ggml_tensor * ggml_map_custom2(
  5928. struct ggml_context * ctx,
  5929. struct ggml_tensor * a,
  5930. struct ggml_tensor * b,
  5931. const ggml_custom2_op_t fun,
  5932. int n_tasks,
  5933. void * userdata) {
  5934. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5935. }
  5936. struct ggml_tensor * ggml_map_custom2_inplace(
  5937. struct ggml_context * ctx,
  5938. struct ggml_tensor * a,
  5939. struct ggml_tensor * b,
  5940. const ggml_custom2_op_t fun,
  5941. int n_tasks,
  5942. void * userdata) {
  5943. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5944. }
  5945. // ggml_map_custom3
  5946. struct ggml_map_custom3_op_params {
  5947. ggml_custom3_op_t fun;
  5948. int n_tasks;
  5949. void * userdata;
  5950. };
  5951. static struct ggml_tensor * ggml_map_custom3_impl(
  5952. struct ggml_context * ctx,
  5953. struct ggml_tensor * a,
  5954. struct ggml_tensor * b,
  5955. struct ggml_tensor * c,
  5956. const ggml_custom3_op_t fun,
  5957. int n_tasks,
  5958. void * userdata,
  5959. bool inplace) {
  5960. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5961. bool is_node = false;
  5962. if (!inplace && (a->grad || b->grad || c->grad)) {
  5963. is_node = true;
  5964. }
  5965. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5966. struct ggml_map_custom3_op_params params = {
  5967. /*.fun =*/ fun,
  5968. /*.n_tasks =*/ n_tasks,
  5969. /*.userdata =*/ userdata
  5970. };
  5971. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5972. result->op = GGML_OP_MAP_CUSTOM3;
  5973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5974. result->src[0] = a;
  5975. result->src[1] = b;
  5976. result->src[2] = c;
  5977. return result;
  5978. }
  5979. struct ggml_tensor * ggml_map_custom3(
  5980. struct ggml_context * ctx,
  5981. struct ggml_tensor * a,
  5982. struct ggml_tensor * b,
  5983. struct ggml_tensor * c,
  5984. const ggml_custom3_op_t fun,
  5985. int n_tasks,
  5986. void * userdata) {
  5987. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5988. }
  5989. struct ggml_tensor * ggml_map_custom3_inplace(
  5990. struct ggml_context * ctx,
  5991. struct ggml_tensor * a,
  5992. struct ggml_tensor * b,
  5993. struct ggml_tensor * c,
  5994. const ggml_custom3_op_t fun,
  5995. int n_tasks,
  5996. void * userdata) {
  5997. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5998. }
  5999. // ggml_cross_entropy_loss
  6000. struct ggml_tensor * ggml_cross_entropy_loss(
  6001. struct ggml_context * ctx,
  6002. struct ggml_tensor * a,
  6003. struct ggml_tensor * b) {
  6004. GGML_ASSERT(ggml_are_same_shape(a, b));
  6005. bool is_node = false;
  6006. if (a->grad || b->grad) {
  6007. is_node = true;
  6008. }
  6009. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6010. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6012. result->src[0] = a;
  6013. result->src[1] = b;
  6014. return result;
  6015. }
  6016. // ggml_cross_entropy_loss_back
  6017. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6018. struct ggml_context * ctx,
  6019. struct ggml_tensor * a,
  6020. struct ggml_tensor * b,
  6021. struct ggml_tensor * c) {
  6022. GGML_ASSERT(ggml_are_same_shape(a, b));
  6023. GGML_ASSERT(ggml_is_scalar(c));
  6024. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6025. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6026. result->grad = NULL;
  6027. result->src[0] = a;
  6028. result->src[1] = b;
  6029. result->src[2] = c;
  6030. return result;
  6031. }
  6032. ////////////////////////////////////////////////////////////////////////////////
  6033. void ggml_set_param(
  6034. struct ggml_context * ctx,
  6035. struct ggml_tensor * tensor) {
  6036. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6037. GGML_ASSERT(tensor->grad == NULL);
  6038. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6039. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6040. }
  6041. // ggml_compute_forward_dup
  6042. static void ggml_compute_forward_dup_same_cont(
  6043. const struct ggml_compute_params * params,
  6044. struct ggml_tensor * dst) {
  6045. const struct ggml_tensor * src0 = dst->src[0];
  6046. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6047. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6048. GGML_ASSERT(src0->type == dst->type);
  6049. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6050. return;
  6051. }
  6052. const size_t nb00 = src0->nb[0];
  6053. const size_t nb0 = dst->nb[0];
  6054. const int ith = params->ith; // thread index
  6055. const int nth = params->nth; // number of threads
  6056. // parallelize by elements
  6057. const int ne = ggml_nelements(dst);
  6058. const int dr = (ne + nth - 1) / nth;
  6059. const int ie0 = dr * ith;
  6060. const int ie1 = MIN(ie0 + dr, ne);
  6061. if (ie0 < ie1) {
  6062. memcpy(
  6063. ((char *) dst->data + ie0*nb0),
  6064. ((char *) src0->data + ie0*nb00),
  6065. (ie1 - ie0) * ggml_type_size(src0->type));
  6066. }
  6067. }
  6068. static void ggml_compute_forward_dup_f16(
  6069. const struct ggml_compute_params * params,
  6070. struct ggml_tensor * dst) {
  6071. const struct ggml_tensor * src0 = dst->src[0];
  6072. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6073. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6074. return;
  6075. }
  6076. GGML_TENSOR_UNARY_OP_LOCALS
  6077. const int ith = params->ith; // thread index
  6078. const int nth = params->nth; // number of threads
  6079. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6080. ggml_compute_forward_dup_same_cont(params, dst);
  6081. return;
  6082. }
  6083. // parallelize by rows
  6084. const int nr = ne01;
  6085. // number of rows per thread
  6086. const int dr = (nr + nth - 1) / nth;
  6087. // row range for this thread
  6088. const int ir0 = dr * ith;
  6089. const int ir1 = MIN(ir0 + dr, nr);
  6090. if (src0->type == dst->type &&
  6091. ne00 == ne0 &&
  6092. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6093. // copy by rows
  6094. const size_t rs = ne00*nb00;
  6095. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6096. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6097. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6098. memcpy(
  6099. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6100. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6101. rs);
  6102. }
  6103. }
  6104. }
  6105. return;
  6106. }
  6107. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6108. if (ggml_is_contiguous(dst)) {
  6109. if (nb00 == sizeof(ggml_fp16_t)) {
  6110. if (dst->type == GGML_TYPE_F16) {
  6111. size_t id = 0;
  6112. const size_t rs = ne00 * nb00;
  6113. char * dst_ptr = (char *) dst->data;
  6114. for (int i03 = 0; i03 < ne03; i03++) {
  6115. for (int i02 = 0; i02 < ne02; i02++) {
  6116. id += rs * ir0;
  6117. for (int i01 = ir0; i01 < ir1; i01++) {
  6118. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6119. memcpy(dst_ptr + id, src0_ptr, rs);
  6120. id += rs;
  6121. }
  6122. id += rs * (ne01 - ir1);
  6123. }
  6124. }
  6125. } else if (dst->type == GGML_TYPE_F32) {
  6126. size_t id = 0;
  6127. float * dst_ptr = (float *) dst->data;
  6128. for (int i03 = 0; i03 < ne03; i03++) {
  6129. for (int i02 = 0; i02 < ne02; i02++) {
  6130. id += ne00 * ir0;
  6131. for (int i01 = ir0; i01 < ir1; i01++) {
  6132. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6133. for (int i00 = 0; i00 < ne00; i00++) {
  6134. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6135. id++;
  6136. }
  6137. }
  6138. id += ne00 * (ne01 - ir1);
  6139. }
  6140. }
  6141. } else if (type_traits[dst->type].from_float) {
  6142. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6143. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6144. size_t id = 0;
  6145. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6146. char * dst_ptr = (char *) dst->data;
  6147. for (int i03 = 0; i03 < ne03; i03++) {
  6148. for (int i02 = 0; i02 < ne02; i02++) {
  6149. id += rs * ir0;
  6150. for (int i01 = ir0; i01 < ir1; i01++) {
  6151. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6152. for (int i00 = 0; i00 < ne00; i00++) {
  6153. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6154. }
  6155. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6156. id += rs;
  6157. }
  6158. id += rs * (ne01 - ir1);
  6159. }
  6160. }
  6161. } else {
  6162. GGML_ASSERT(false); // TODO: implement
  6163. }
  6164. } else {
  6165. //printf("%s: this is not optimal - fix me\n", __func__);
  6166. if (dst->type == GGML_TYPE_F32) {
  6167. size_t id = 0;
  6168. float * dst_ptr = (float *) dst->data;
  6169. for (int i03 = 0; i03 < ne03; i03++) {
  6170. for (int i02 = 0; i02 < ne02; i02++) {
  6171. id += ne00 * ir0;
  6172. for (int i01 = ir0; i01 < ir1; i01++) {
  6173. for (int i00 = 0; i00 < ne00; i00++) {
  6174. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6175. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6176. id++;
  6177. }
  6178. }
  6179. id += ne00 * (ne01 - ir1);
  6180. }
  6181. }
  6182. } else if (dst->type == GGML_TYPE_F16) {
  6183. size_t id = 0;
  6184. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6185. for (int i03 = 0; i03 < ne03; i03++) {
  6186. for (int i02 = 0; i02 < ne02; i02++) {
  6187. id += ne00 * ir0;
  6188. for (int i01 = ir0; i01 < ir1; i01++) {
  6189. for (int i00 = 0; i00 < ne00; i00++) {
  6190. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6191. dst_ptr[id] = *src0_ptr;
  6192. id++;
  6193. }
  6194. }
  6195. id += ne00 * (ne01 - ir1);
  6196. }
  6197. }
  6198. } else {
  6199. GGML_ASSERT(false); // TODO: implement
  6200. }
  6201. }
  6202. return;
  6203. }
  6204. // dst counters
  6205. int64_t i10 = 0;
  6206. int64_t i11 = 0;
  6207. int64_t i12 = 0;
  6208. int64_t i13 = 0;
  6209. if (dst->type == GGML_TYPE_F16) {
  6210. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6211. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6212. i10 += ne00 * ir0;
  6213. while (i10 >= ne0) {
  6214. i10 -= ne0;
  6215. if (++i11 == ne1) {
  6216. i11 = 0;
  6217. if (++i12 == ne2) {
  6218. i12 = 0;
  6219. if (++i13 == ne3) {
  6220. i13 = 0;
  6221. }
  6222. }
  6223. }
  6224. }
  6225. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6226. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6227. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6228. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6229. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6230. if (++i10 == ne00) {
  6231. i10 = 0;
  6232. if (++i11 == ne01) {
  6233. i11 = 0;
  6234. if (++i12 == ne02) {
  6235. i12 = 0;
  6236. if (++i13 == ne03) {
  6237. i13 = 0;
  6238. }
  6239. }
  6240. }
  6241. }
  6242. }
  6243. }
  6244. i10 += ne00 * (ne01 - ir1);
  6245. while (i10 >= ne0) {
  6246. i10 -= ne0;
  6247. if (++i11 == ne1) {
  6248. i11 = 0;
  6249. if (++i12 == ne2) {
  6250. i12 = 0;
  6251. if (++i13 == ne3) {
  6252. i13 = 0;
  6253. }
  6254. }
  6255. }
  6256. }
  6257. }
  6258. }
  6259. } else if (dst->type == GGML_TYPE_F32) {
  6260. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6261. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6262. i10 += ne00 * ir0;
  6263. while (i10 >= ne0) {
  6264. i10 -= ne0;
  6265. if (++i11 == ne1) {
  6266. i11 = 0;
  6267. if (++i12 == ne2) {
  6268. i12 = 0;
  6269. if (++i13 == ne3) {
  6270. i13 = 0;
  6271. }
  6272. }
  6273. }
  6274. }
  6275. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6276. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6277. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6278. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6279. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6280. if (++i10 == ne0) {
  6281. i10 = 0;
  6282. if (++i11 == ne1) {
  6283. i11 = 0;
  6284. if (++i12 == ne2) {
  6285. i12 = 0;
  6286. if (++i13 == ne3) {
  6287. i13 = 0;
  6288. }
  6289. }
  6290. }
  6291. }
  6292. }
  6293. }
  6294. i10 += ne00 * (ne01 - ir1);
  6295. while (i10 >= ne0) {
  6296. i10 -= ne0;
  6297. if (++i11 == ne1) {
  6298. i11 = 0;
  6299. if (++i12 == ne2) {
  6300. i12 = 0;
  6301. if (++i13 == ne3) {
  6302. i13 = 0;
  6303. }
  6304. }
  6305. }
  6306. }
  6307. }
  6308. }
  6309. } else {
  6310. GGML_ASSERT(false); // TODO: implement
  6311. }
  6312. }
  6313. static void ggml_compute_forward_dup_bf16(
  6314. const struct ggml_compute_params * params,
  6315. struct ggml_tensor * dst) {
  6316. const struct ggml_tensor * src0 = dst->src[0];
  6317. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6318. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6319. return;
  6320. }
  6321. GGML_TENSOR_UNARY_OP_LOCALS
  6322. const int ith = params->ith; // thread index
  6323. const int nth = params->nth; // number of threads
  6324. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6325. ggml_compute_forward_dup_same_cont(params, dst);
  6326. return;
  6327. }
  6328. // parallelize by rows
  6329. const int nr = ne01;
  6330. // number of rows per thread
  6331. const int dr = (nr + nth - 1) / nth;
  6332. // row range for this thread
  6333. const int ir0 = dr * ith;
  6334. const int ir1 = MIN(ir0 + dr, nr);
  6335. if (src0->type == dst->type &&
  6336. ne00 == ne0 &&
  6337. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6338. // copy by rows
  6339. const size_t rs = ne00*nb00;
  6340. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6341. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6342. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6343. memcpy(
  6344. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6345. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6346. rs);
  6347. }
  6348. }
  6349. }
  6350. return;
  6351. }
  6352. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6353. if (ggml_is_contiguous(dst)) {
  6354. if (nb00 == sizeof(ggml_bf16_t)) {
  6355. if (dst->type == GGML_TYPE_BF16) {
  6356. size_t id = 0;
  6357. const size_t rs = ne00 * nb00;
  6358. char * dst_ptr = (char *) dst->data;
  6359. for (int i03 = 0; i03 < ne03; i03++) {
  6360. for (int i02 = 0; i02 < ne02; i02++) {
  6361. id += rs * ir0;
  6362. for (int i01 = ir0; i01 < ir1; i01++) {
  6363. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6364. memcpy(dst_ptr + id, src0_ptr, rs);
  6365. id += rs;
  6366. }
  6367. id += rs * (ne01 - ir1);
  6368. }
  6369. }
  6370. } else if (dst->type == GGML_TYPE_F16) {
  6371. size_t id = 0;
  6372. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6373. for (int i03 = 0; i03 < ne03; i03++) {
  6374. for (int i02 = 0; i02 < ne02; i02++) {
  6375. id += ne00 * ir0;
  6376. for (int i01 = ir0; i01 < ir1; i01++) {
  6377. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6378. for (int i00 = 0; i00 < ne00; i00++) {
  6379. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6380. id++;
  6381. }
  6382. }
  6383. id += ne00 * (ne01 - ir1);
  6384. }
  6385. }
  6386. } else if (dst->type == GGML_TYPE_F32) {
  6387. size_t id = 0;
  6388. float * dst_ptr = (float *) dst->data;
  6389. for (int i03 = 0; i03 < ne03; i03++) {
  6390. for (int i02 = 0; i02 < ne02; i02++) {
  6391. id += ne00 * ir0;
  6392. for (int i01 = ir0; i01 < ir1; i01++) {
  6393. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6394. for (int i00 = 0; i00 < ne00; i00++) {
  6395. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6396. id++;
  6397. }
  6398. }
  6399. id += ne00 * (ne01 - ir1);
  6400. }
  6401. }
  6402. } else if (type_traits[dst->type].from_float) {
  6403. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6404. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6405. size_t id = 0;
  6406. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6407. char * dst_ptr = (char *) dst->data;
  6408. for (int i03 = 0; i03 < ne03; i03++) {
  6409. for (int i02 = 0; i02 < ne02; i02++) {
  6410. id += rs * ir0;
  6411. for (int i01 = ir0; i01 < ir1; i01++) {
  6412. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6413. for (int i00 = 0; i00 < ne00; i00++) {
  6414. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6415. }
  6416. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6417. id += rs;
  6418. }
  6419. id += rs * (ne01 - ir1);
  6420. }
  6421. }
  6422. } else {
  6423. GGML_ASSERT(false); // TODO: implement
  6424. }
  6425. } else {
  6426. //printf("%s: this is not optimal - fix me\n", __func__);
  6427. if (dst->type == GGML_TYPE_F32) {
  6428. size_t id = 0;
  6429. float * dst_ptr = (float *) dst->data;
  6430. for (int i03 = 0; i03 < ne03; i03++) {
  6431. for (int i02 = 0; i02 < ne02; i02++) {
  6432. id += ne00 * ir0;
  6433. for (int i01 = ir0; i01 < ir1; i01++) {
  6434. for (int i00 = 0; i00 < ne00; i00++) {
  6435. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6436. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6437. id++;
  6438. }
  6439. }
  6440. id += ne00 * (ne01 - ir1);
  6441. }
  6442. }
  6443. } else if (dst->type == GGML_TYPE_BF16) {
  6444. size_t id = 0;
  6445. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6446. for (int i03 = 0; i03 < ne03; i03++) {
  6447. for (int i02 = 0; i02 < ne02; i02++) {
  6448. id += ne00 * ir0;
  6449. for (int i01 = ir0; i01 < ir1; i01++) {
  6450. for (int i00 = 0; i00 < ne00; i00++) {
  6451. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6452. dst_ptr[id] = *src0_ptr;
  6453. id++;
  6454. }
  6455. }
  6456. id += ne00 * (ne01 - ir1);
  6457. }
  6458. }
  6459. } else if (dst->type == GGML_TYPE_F16) {
  6460. size_t id = 0;
  6461. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6462. for (int i03 = 0; i03 < ne03; i03++) {
  6463. for (int i02 = 0; i02 < ne02; i02++) {
  6464. id += ne00 * ir0;
  6465. for (int i01 = ir0; i01 < ir1; i01++) {
  6466. for (int i00 = 0; i00 < ne00; i00++) {
  6467. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6468. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6469. id++;
  6470. }
  6471. }
  6472. id += ne00 * (ne01 - ir1);
  6473. }
  6474. }
  6475. } else {
  6476. GGML_ASSERT(false); // TODO: implement
  6477. }
  6478. }
  6479. return;
  6480. }
  6481. // dst counters
  6482. int64_t i10 = 0;
  6483. int64_t i11 = 0;
  6484. int64_t i12 = 0;
  6485. int64_t i13 = 0;
  6486. if (dst->type == GGML_TYPE_BF16) {
  6487. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6488. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6489. i10 += ne00 * ir0;
  6490. while (i10 >= ne0) {
  6491. i10 -= ne0;
  6492. if (++i11 == ne1) {
  6493. i11 = 0;
  6494. if (++i12 == ne2) {
  6495. i12 = 0;
  6496. if (++i13 == ne3) {
  6497. i13 = 0;
  6498. }
  6499. }
  6500. }
  6501. }
  6502. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6503. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6504. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6505. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6506. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6507. if (++i10 == ne00) {
  6508. i10 = 0;
  6509. if (++i11 == ne01) {
  6510. i11 = 0;
  6511. if (++i12 == ne02) {
  6512. i12 = 0;
  6513. if (++i13 == ne03) {
  6514. i13 = 0;
  6515. }
  6516. }
  6517. }
  6518. }
  6519. }
  6520. }
  6521. i10 += ne00 * (ne01 - ir1);
  6522. while (i10 >= ne0) {
  6523. i10 -= ne0;
  6524. if (++i11 == ne1) {
  6525. i11 = 0;
  6526. if (++i12 == ne2) {
  6527. i12 = 0;
  6528. if (++i13 == ne3) {
  6529. i13 = 0;
  6530. }
  6531. }
  6532. }
  6533. }
  6534. }
  6535. }
  6536. } else if (dst->type == GGML_TYPE_F16) {
  6537. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6538. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6539. i10 += ne00 * ir0;
  6540. while (i10 >= ne0) {
  6541. i10 -= ne0;
  6542. if (++i11 == ne1) {
  6543. i11 = 0;
  6544. if (++i12 == ne2) {
  6545. i12 = 0;
  6546. if (++i13 == ne3) {
  6547. i13 = 0;
  6548. }
  6549. }
  6550. }
  6551. }
  6552. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6553. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6554. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6555. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6556. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6557. if (++i10 == ne0) {
  6558. i10 = 0;
  6559. if (++i11 == ne1) {
  6560. i11 = 0;
  6561. if (++i12 == ne2) {
  6562. i12 = 0;
  6563. if (++i13 == ne3) {
  6564. i13 = 0;
  6565. }
  6566. }
  6567. }
  6568. }
  6569. }
  6570. }
  6571. i10 += ne00 * (ne01 - ir1);
  6572. while (i10 >= ne0) {
  6573. i10 -= ne0;
  6574. if (++i11 == ne1) {
  6575. i11 = 0;
  6576. if (++i12 == ne2) {
  6577. i12 = 0;
  6578. if (++i13 == ne3) {
  6579. i13 = 0;
  6580. }
  6581. }
  6582. }
  6583. }
  6584. }
  6585. }
  6586. } else if (dst->type == GGML_TYPE_F32) {
  6587. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6588. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6589. i10 += ne00 * ir0;
  6590. while (i10 >= ne0) {
  6591. i10 -= ne0;
  6592. if (++i11 == ne1) {
  6593. i11 = 0;
  6594. if (++i12 == ne2) {
  6595. i12 = 0;
  6596. if (++i13 == ne3) {
  6597. i13 = 0;
  6598. }
  6599. }
  6600. }
  6601. }
  6602. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6603. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6604. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6605. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6606. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  6607. if (++i10 == ne0) {
  6608. i10 = 0;
  6609. if (++i11 == ne1) {
  6610. i11 = 0;
  6611. if (++i12 == ne2) {
  6612. i12 = 0;
  6613. if (++i13 == ne3) {
  6614. i13 = 0;
  6615. }
  6616. }
  6617. }
  6618. }
  6619. }
  6620. }
  6621. i10 += ne00 * (ne01 - ir1);
  6622. while (i10 >= ne0) {
  6623. i10 -= ne0;
  6624. if (++i11 == ne1) {
  6625. i11 = 0;
  6626. if (++i12 == ne2) {
  6627. i12 = 0;
  6628. if (++i13 == ne3) {
  6629. i13 = 0;
  6630. }
  6631. }
  6632. }
  6633. }
  6634. }
  6635. }
  6636. } else {
  6637. GGML_ASSERT(false); // TODO: implement
  6638. }
  6639. }
  6640. static void ggml_compute_forward_dup_f32(
  6641. const struct ggml_compute_params * params,
  6642. struct ggml_tensor * dst) {
  6643. const struct ggml_tensor * src0 = dst->src[0];
  6644. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6645. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6646. return;
  6647. }
  6648. GGML_TENSOR_UNARY_OP_LOCALS
  6649. const int ith = params->ith; // thread index
  6650. const int nth = params->nth; // number of threads
  6651. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6652. ggml_compute_forward_dup_same_cont(params, dst);
  6653. return;
  6654. }
  6655. // parallelize by rows
  6656. const int nr = ne01;
  6657. // number of rows per thread
  6658. const int dr = (nr + nth - 1) / nth;
  6659. // row range for this thread
  6660. const int ir0 = dr * ith;
  6661. const int ir1 = MIN(ir0 + dr, nr);
  6662. if (src0->type == dst->type &&
  6663. ne00 == ne0 &&
  6664. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6665. // copy by rows
  6666. const size_t rs = ne00*nb00;
  6667. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6668. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6669. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6670. memcpy(
  6671. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6672. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6673. rs);
  6674. }
  6675. }
  6676. }
  6677. return;
  6678. }
  6679. if (ggml_is_contiguous(dst)) {
  6680. // TODO: simplify
  6681. if (nb00 == sizeof(float)) {
  6682. if (dst->type == GGML_TYPE_F32) {
  6683. size_t id = 0;
  6684. const size_t rs = ne00 * nb00;
  6685. char * dst_ptr = (char *) dst->data;
  6686. for (int i03 = 0; i03 < ne03; i03++) {
  6687. for (int i02 = 0; i02 < ne02; i02++) {
  6688. id += rs * ir0;
  6689. for (int i01 = ir0; i01 < ir1; i01++) {
  6690. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6691. memcpy(dst_ptr + id, src0_ptr, rs);
  6692. id += rs;
  6693. }
  6694. id += rs * (ne01 - ir1);
  6695. }
  6696. }
  6697. } else if (type_traits[dst->type].from_float) {
  6698. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6699. size_t id = 0;
  6700. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6701. char * dst_ptr = (char *) dst->data;
  6702. for (int i03 = 0; i03 < ne03; i03++) {
  6703. for (int i02 = 0; i02 < ne02; i02++) {
  6704. id += rs * ir0;
  6705. for (int i01 = ir0; i01 < ir1; i01++) {
  6706. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6707. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6708. id += rs;
  6709. }
  6710. id += rs * (ne01 - ir1);
  6711. }
  6712. }
  6713. } else {
  6714. GGML_ASSERT(false); // TODO: implement
  6715. }
  6716. } else {
  6717. //printf("%s: this is not optimal - fix me\n", __func__);
  6718. if (dst->type == GGML_TYPE_F32) {
  6719. size_t id = 0;
  6720. float * dst_ptr = (float *) dst->data;
  6721. for (int i03 = 0; i03 < ne03; i03++) {
  6722. for (int i02 = 0; i02 < ne02; i02++) {
  6723. id += ne00 * ir0;
  6724. for (int i01 = ir0; i01 < ir1; i01++) {
  6725. for (int i00 = 0; i00 < ne00; i00++) {
  6726. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6727. dst_ptr[id] = *src0_ptr;
  6728. id++;
  6729. }
  6730. }
  6731. id += ne00 * (ne01 - ir1);
  6732. }
  6733. }
  6734. } else if (dst->type == GGML_TYPE_F16) {
  6735. size_t id = 0;
  6736. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6737. for (int i03 = 0; i03 < ne03; i03++) {
  6738. for (int i02 = 0; i02 < ne02; i02++) {
  6739. id += ne00 * ir0;
  6740. for (int i01 = ir0; i01 < ir1; i01++) {
  6741. for (int i00 = 0; i00 < ne00; i00++) {
  6742. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6743. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6744. id++;
  6745. }
  6746. }
  6747. id += ne00 * (ne01 - ir1);
  6748. }
  6749. }
  6750. } else if (dst->type == GGML_TYPE_BF16) {
  6751. size_t id = 0;
  6752. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6753. for (int i03 = 0; i03 < ne03; i03++) {
  6754. for (int i02 = 0; i02 < ne02; i02++) {
  6755. id += ne00 * ir0;
  6756. for (int i01 = ir0; i01 < ir1; i01++) {
  6757. for (int i00 = 0; i00 < ne00; i00++) {
  6758. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6759. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  6760. id++;
  6761. }
  6762. }
  6763. id += ne00 * (ne01 - ir1);
  6764. }
  6765. }
  6766. } else {
  6767. GGML_ASSERT(false); // TODO: implement
  6768. }
  6769. }
  6770. return;
  6771. }
  6772. // dst counters
  6773. int64_t i10 = 0;
  6774. int64_t i11 = 0;
  6775. int64_t i12 = 0;
  6776. int64_t i13 = 0;
  6777. if (dst->type == GGML_TYPE_F32) {
  6778. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6779. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6780. i10 += ne00 * ir0;
  6781. while (i10 >= ne0) {
  6782. i10 -= ne0;
  6783. if (++i11 == ne1) {
  6784. i11 = 0;
  6785. if (++i12 == ne2) {
  6786. i12 = 0;
  6787. if (++i13 == ne3) {
  6788. i13 = 0;
  6789. }
  6790. }
  6791. }
  6792. }
  6793. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6794. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6795. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6796. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6797. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6798. if (++i10 == ne0) {
  6799. i10 = 0;
  6800. if (++i11 == ne1) {
  6801. i11 = 0;
  6802. if (++i12 == ne2) {
  6803. i12 = 0;
  6804. if (++i13 == ne3) {
  6805. i13 = 0;
  6806. }
  6807. }
  6808. }
  6809. }
  6810. }
  6811. }
  6812. i10 += ne00 * (ne01 - ir1);
  6813. while (i10 >= ne0) {
  6814. i10 -= ne0;
  6815. if (++i11 == ne1) {
  6816. i11 = 0;
  6817. if (++i12 == ne2) {
  6818. i12 = 0;
  6819. if (++i13 == ne3) {
  6820. i13 = 0;
  6821. }
  6822. }
  6823. }
  6824. }
  6825. }
  6826. }
  6827. } else if (dst->type == GGML_TYPE_F16) {
  6828. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6829. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6830. i10 += ne00 * ir0;
  6831. while (i10 >= ne0) {
  6832. i10 -= ne0;
  6833. if (++i11 == ne1) {
  6834. i11 = 0;
  6835. if (++i12 == ne2) {
  6836. i12 = 0;
  6837. if (++i13 == ne3) {
  6838. i13 = 0;
  6839. }
  6840. }
  6841. }
  6842. }
  6843. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6844. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6845. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6846. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6847. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6848. if (++i10 == ne0) {
  6849. i10 = 0;
  6850. if (++i11 == ne1) {
  6851. i11 = 0;
  6852. if (++i12 == ne2) {
  6853. i12 = 0;
  6854. if (++i13 == ne3) {
  6855. i13 = 0;
  6856. }
  6857. }
  6858. }
  6859. }
  6860. }
  6861. }
  6862. i10 += ne00 * (ne01 - ir1);
  6863. while (i10 >= ne0) {
  6864. i10 -= ne0;
  6865. if (++i11 == ne1) {
  6866. i11 = 0;
  6867. if (++i12 == ne2) {
  6868. i12 = 0;
  6869. if (++i13 == ne3) {
  6870. i13 = 0;
  6871. }
  6872. }
  6873. }
  6874. }
  6875. }
  6876. }
  6877. } else if (dst->type == GGML_TYPE_BF16) {
  6878. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6879. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6880. i10 += ne00 * ir0;
  6881. while (i10 >= ne0) {
  6882. i10 -= ne0;
  6883. if (++i11 == ne1) {
  6884. i11 = 0;
  6885. if (++i12 == ne2) {
  6886. i12 = 0;
  6887. if (++i13 == ne3) {
  6888. i13 = 0;
  6889. }
  6890. }
  6891. }
  6892. }
  6893. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6894. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6895. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6896. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6897. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  6898. if (++i10 == ne0) {
  6899. i10 = 0;
  6900. if (++i11 == ne1) {
  6901. i11 = 0;
  6902. if (++i12 == ne2) {
  6903. i12 = 0;
  6904. if (++i13 == ne3) {
  6905. i13 = 0;
  6906. }
  6907. }
  6908. }
  6909. }
  6910. }
  6911. }
  6912. i10 += ne00 * (ne01 - ir1);
  6913. while (i10 >= ne0) {
  6914. i10 -= ne0;
  6915. if (++i11 == ne1) {
  6916. i11 = 0;
  6917. if (++i12 == ne2) {
  6918. i12 = 0;
  6919. if (++i13 == ne3) {
  6920. i13 = 0;
  6921. }
  6922. }
  6923. }
  6924. }
  6925. }
  6926. }
  6927. } else {
  6928. GGML_ASSERT(false); // TODO: implement
  6929. }
  6930. }
  6931. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6932. static void ggml_compute_forward_dup_bytes(
  6933. const struct ggml_compute_params * params,
  6934. struct ggml_tensor * dst) {
  6935. const struct ggml_tensor * src0 = dst->src[0];
  6936. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6937. GGML_ASSERT(src0->type == dst->type);
  6938. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6939. return;
  6940. }
  6941. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6942. ggml_compute_forward_dup_same_cont(params, dst);
  6943. return;
  6944. }
  6945. GGML_TENSOR_UNARY_OP_LOCALS;
  6946. const size_t type_size = ggml_type_size(src0->type);
  6947. const int ith = params->ith; // thread index
  6948. const int nth = params->nth; // number of threads
  6949. // parallelize by rows
  6950. const int nr = ne01;
  6951. // number of rows per thread
  6952. const int dr = (nr + nth - 1) / nth;
  6953. // row range for this thread
  6954. const int ir0 = dr * ith;
  6955. const int ir1 = MIN(ir0 + dr, nr);
  6956. if (src0->type == dst->type &&
  6957. ne00 == ne0 &&
  6958. nb00 == type_size && nb0 == type_size) {
  6959. // copy by rows
  6960. const size_t rs = ne00 * type_size;
  6961. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6962. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6963. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6964. memcpy(
  6965. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6966. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6967. rs);
  6968. }
  6969. }
  6970. }
  6971. return;
  6972. }
  6973. if (ggml_is_contiguous(dst)) {
  6974. size_t id = 0;
  6975. char * dst_ptr = (char *) dst->data;
  6976. const size_t rs = ne00 * type_size;
  6977. if (nb00 == type_size) {
  6978. // src0 is contigous on first dimension, copy by rows
  6979. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6980. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6981. id += rs * ir0;
  6982. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6983. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6984. memcpy(dst_ptr + id, src0_ptr, rs);
  6985. id += rs;
  6986. }
  6987. id += rs * (ne01 - ir1);
  6988. }
  6989. }
  6990. } else {
  6991. //printf("%s: this is not optimal - fix me\n", __func__);
  6992. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6993. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6994. id += rs * ir0;
  6995. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6996. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6997. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6998. memcpy(dst_ptr + id, src0_ptr, type_size);
  6999. id += type_size;
  7000. }
  7001. }
  7002. id += rs * (ne01 - ir1);
  7003. }
  7004. }
  7005. }
  7006. return;
  7007. }
  7008. // dst counters
  7009. int64_t i10 = 0;
  7010. int64_t i11 = 0;
  7011. int64_t i12 = 0;
  7012. int64_t i13 = 0;
  7013. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7014. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7015. i10 += ne00 * ir0;
  7016. while (i10 >= ne0) {
  7017. i10 -= ne0;
  7018. if (++i11 == ne1) {
  7019. i11 = 0;
  7020. if (++i12 == ne2) {
  7021. i12 = 0;
  7022. if (++i13 == ne3) {
  7023. i13 = 0;
  7024. }
  7025. }
  7026. }
  7027. }
  7028. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7029. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7030. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7031. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7032. memcpy(dst_ptr, src0_ptr, type_size);
  7033. if (++i10 == ne0) {
  7034. i10 = 0;
  7035. if (++i11 == ne1) {
  7036. i11 = 0;
  7037. if (++i12 == ne2) {
  7038. i12 = 0;
  7039. if (++i13 == ne3) {
  7040. i13 = 0;
  7041. }
  7042. }
  7043. }
  7044. }
  7045. }
  7046. }
  7047. i10 += ne00 * (ne01 - ir1);
  7048. while (i10 >= ne0) {
  7049. i10 -= ne0;
  7050. if (++i11 == ne1) {
  7051. i11 = 0;
  7052. if (++i12 == ne2) {
  7053. i12 = 0;
  7054. if (++i13 == ne3) {
  7055. i13 = 0;
  7056. }
  7057. }
  7058. }
  7059. }
  7060. }
  7061. }
  7062. }
  7063. static void ggml_compute_forward_dup(
  7064. const struct ggml_compute_params * params,
  7065. struct ggml_tensor * dst) {
  7066. const struct ggml_tensor * src0 = dst->src[0];
  7067. if (src0->type == dst->type) {
  7068. ggml_compute_forward_dup_bytes(params, dst);
  7069. return;
  7070. }
  7071. switch (src0->type) {
  7072. case GGML_TYPE_F16:
  7073. {
  7074. ggml_compute_forward_dup_f16(params, dst);
  7075. } break;
  7076. case GGML_TYPE_BF16:
  7077. {
  7078. ggml_compute_forward_dup_bf16(params, dst);
  7079. } break;
  7080. case GGML_TYPE_F32:
  7081. {
  7082. ggml_compute_forward_dup_f32(params, dst);
  7083. } break;
  7084. default:
  7085. {
  7086. GGML_ASSERT(false);
  7087. } break;
  7088. }
  7089. }
  7090. // ggml_compute_forward_add
  7091. static void ggml_compute_forward_add_f32(
  7092. const struct ggml_compute_params * params,
  7093. struct ggml_tensor * dst) {
  7094. const struct ggml_tensor * src0 = dst->src[0];
  7095. const struct ggml_tensor * src1 = dst->src[1];
  7096. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7097. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7098. return;
  7099. }
  7100. const int ith = params->ith;
  7101. const int nth = params->nth;
  7102. #ifdef GGML_USE_CLBLAST
  7103. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7104. // TODO: OpenCL kernel support full broadcast
  7105. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7106. if (ith == 0) {
  7107. ggml_cl_add(src0, src1, dst);
  7108. }
  7109. return;
  7110. }
  7111. #endif
  7112. const int nr = ggml_nrows(src0);
  7113. GGML_TENSOR_BINARY_OP_LOCALS
  7114. GGML_ASSERT( nb0 == sizeof(float));
  7115. GGML_ASSERT(nb00 == sizeof(float));
  7116. // rows per thread
  7117. const int dr = (nr + nth - 1)/nth;
  7118. // row range for this thread
  7119. const int ir0 = dr*ith;
  7120. const int ir1 = MIN(ir0 + dr, nr);
  7121. if (nb10 == sizeof(float)) {
  7122. for (int ir = ir0; ir < ir1; ++ir) {
  7123. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7124. const int64_t i03 = ir/(ne02*ne01);
  7125. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7126. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7127. const int64_t i13 = i03 % ne13;
  7128. const int64_t i12 = i02 % ne12;
  7129. const int64_t i11 = i01 % ne11;
  7130. const int64_t nr0 = ne00 / ne10;
  7131. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7132. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7133. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7134. for (int64_t r = 0; r < nr0; ++r) {
  7135. #ifdef GGML_USE_ACCELERATE
  7136. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7137. #else
  7138. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7139. #endif
  7140. }
  7141. }
  7142. } else {
  7143. // src1 is not contiguous
  7144. for (int ir = ir0; ir < ir1; ++ir) {
  7145. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7146. const int64_t i03 = ir/(ne02*ne01);
  7147. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7148. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7149. const int64_t i13 = i03 % ne13;
  7150. const int64_t i12 = i02 % ne12;
  7151. const int64_t i11 = i01 % ne11;
  7152. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7153. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7154. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7155. const int64_t i10 = i0 % ne10;
  7156. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7157. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7158. }
  7159. }
  7160. }
  7161. }
  7162. static void ggml_compute_forward_add_f16_f32(
  7163. const struct ggml_compute_params * params,
  7164. struct ggml_tensor * dst) {
  7165. const struct ggml_tensor * src0 = dst->src[0];
  7166. const struct ggml_tensor * src1 = dst->src[1];
  7167. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7168. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7169. return;
  7170. }
  7171. const int ith = params->ith;
  7172. const int nth = params->nth;
  7173. const int nr = ggml_nrows(src0);
  7174. GGML_TENSOR_BINARY_OP_LOCALS
  7175. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7176. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7177. if (dst->type == GGML_TYPE_F32) {
  7178. GGML_ASSERT( nb0 == sizeof(float));
  7179. }
  7180. else {
  7181. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7182. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7183. }
  7184. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7185. // rows per thread
  7186. const int dr = (nr + nth - 1)/nth;
  7187. // row range for this thread
  7188. const int ir0 = dr*ith;
  7189. const int ir1 = MIN(ir0 + dr, nr);
  7190. if (nb10 == sizeof(float)) {
  7191. if (dst->type == GGML_TYPE_F16) {
  7192. for (int ir = ir0; ir < ir1; ++ir) {
  7193. // src0, src1 and dst are same shape => same indices
  7194. const int i3 = ir/(ne2*ne1);
  7195. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7196. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7197. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7198. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7199. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7200. for (int i = 0; i < ne0; i++) {
  7201. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7202. }
  7203. }
  7204. } else {
  7205. for (int ir = ir0; ir < ir1; ++ir) {
  7206. // src0, src1 and dst are same shape => same indices
  7207. const int i3 = ir/(ne2*ne1);
  7208. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7209. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7210. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7211. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7212. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7213. for (int i = 0; i < ne0; i++) {
  7214. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7215. }
  7216. }
  7217. }
  7218. }
  7219. else {
  7220. // src1 is not contiguous
  7221. GGML_ASSERT(false);
  7222. }
  7223. }
  7224. static void ggml_compute_forward_add_bf16_f32(
  7225. const struct ggml_compute_params * params,
  7226. struct ggml_tensor * dst) {
  7227. const struct ggml_tensor * src0 = dst->src[0];
  7228. const struct ggml_tensor * src1 = dst->src[1];
  7229. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7230. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7231. return;
  7232. }
  7233. const int ith = params->ith;
  7234. const int nth = params->nth;
  7235. const int nr = ggml_nrows(src0);
  7236. GGML_TENSOR_BINARY_OP_LOCALS
  7237. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7238. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7239. if (dst->type == GGML_TYPE_F32) {
  7240. GGML_ASSERT( nb0 == sizeof(float));
  7241. }
  7242. else {
  7243. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7244. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7245. }
  7246. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7247. // rows per thread
  7248. const int dr = (nr + nth - 1)/nth;
  7249. // row range for this thread
  7250. const int ir0 = dr*ith;
  7251. const int ir1 = MIN(ir0 + dr, nr);
  7252. if (nb10 == sizeof(float)) {
  7253. if (dst->type == GGML_TYPE_BF16) {
  7254. for (int ir = ir0; ir < ir1; ++ir) {
  7255. // src0, src1 and dst are same shape => same indices
  7256. const int i3 = ir/(ne2*ne1);
  7257. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7258. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7259. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7260. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7261. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7262. for (int i = 0; i < ne0; i++) {
  7263. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7264. }
  7265. }
  7266. } else {
  7267. for (int ir = ir0; ir < ir1; ++ir) {
  7268. // src0, src1 and dst are same shape => same indices
  7269. const int i3 = ir/(ne2*ne1);
  7270. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7271. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7272. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7273. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7274. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7275. for (int i = 0; i < ne0; i++) {
  7276. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7277. }
  7278. }
  7279. }
  7280. }
  7281. else {
  7282. // src1 is not contiguous
  7283. GGML_ASSERT(false);
  7284. }
  7285. }
  7286. static void ggml_compute_forward_add_f16_f16(
  7287. const struct ggml_compute_params * params,
  7288. struct ggml_tensor * dst) {
  7289. const struct ggml_tensor * src0 = dst->src[0];
  7290. const struct ggml_tensor * src1 = dst->src[1];
  7291. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7292. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7293. return;
  7294. }
  7295. const int ith = params->ith;
  7296. const int nth = params->nth;
  7297. const int nr = ggml_nrows(src0);
  7298. GGML_TENSOR_BINARY_OP_LOCALS
  7299. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7300. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7301. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7302. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7303. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7304. // rows per thread
  7305. const int dr = (nr + nth - 1)/nth;
  7306. // row range for this thread
  7307. const int ir0 = dr*ith;
  7308. const int ir1 = MIN(ir0 + dr, nr);
  7309. if (nb10 == sizeof(ggml_fp16_t)) {
  7310. for (int ir = ir0; ir < ir1; ++ir) {
  7311. // src0, src1 and dst are same shape => same indices
  7312. const int i3 = ir/(ne2*ne1);
  7313. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7314. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7315. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7316. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7317. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7318. for (int i = 0; i < ne0; i++) {
  7319. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7320. }
  7321. }
  7322. }
  7323. else {
  7324. // src1 is not contiguous
  7325. GGML_ASSERT(false);
  7326. }
  7327. }
  7328. static void ggml_compute_forward_add_bf16_bf16(
  7329. const struct ggml_compute_params * params,
  7330. struct ggml_tensor * dst) {
  7331. const struct ggml_tensor * src0 = dst->src[0];
  7332. const struct ggml_tensor * src1 = dst->src[1];
  7333. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7334. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7335. return;
  7336. }
  7337. const int ith = params->ith;
  7338. const int nth = params->nth;
  7339. const int nr = ggml_nrows(src0);
  7340. GGML_TENSOR_BINARY_OP_LOCALS
  7341. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7342. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7343. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7344. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7345. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7346. // rows per thread
  7347. const int dr = (nr + nth - 1)/nth;
  7348. // row range for this thread
  7349. const int ir0 = dr*ith;
  7350. const int ir1 = MIN(ir0 + dr, nr);
  7351. if (nb10 == sizeof(ggml_bf16_t)) {
  7352. for (int ir = ir0; ir < ir1; ++ir) {
  7353. // src0, src1 and dst are same shape => same indices
  7354. const int i3 = ir/(ne2*ne1);
  7355. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7356. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7357. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7358. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7359. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7360. for (int i = 0; i < ne0; i++) {
  7361. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7362. }
  7363. }
  7364. }
  7365. else {
  7366. // src1 is not contiguous
  7367. GGML_ASSERT(false);
  7368. }
  7369. }
  7370. static void ggml_compute_forward_add_q_f32(
  7371. const struct ggml_compute_params * params,
  7372. struct ggml_tensor * dst) {
  7373. const struct ggml_tensor * src0 = dst->src[0];
  7374. const struct ggml_tensor * src1 = dst->src[1];
  7375. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7376. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7377. return;
  7378. }
  7379. const int nr = ggml_nrows(src0);
  7380. GGML_TENSOR_BINARY_OP_LOCALS
  7381. const int ith = params->ith;
  7382. const int nth = params->nth;
  7383. const enum ggml_type type = src0->type;
  7384. const enum ggml_type dtype = dst->type;
  7385. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7386. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7387. // we don't support permuted src0 or src1
  7388. GGML_ASSERT(nb00 == ggml_type_size(type));
  7389. GGML_ASSERT(nb10 == sizeof(float));
  7390. // dst cannot be transposed or permuted
  7391. GGML_ASSERT(nb0 <= nb1);
  7392. GGML_ASSERT(nb1 <= nb2);
  7393. GGML_ASSERT(nb2 <= nb3);
  7394. GGML_ASSERT(ggml_is_quantized(src0->type));
  7395. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7396. // rows per thread
  7397. const int dr = (nr + nth - 1)/nth;
  7398. // row range for this thread
  7399. const int ir0 = dr*ith;
  7400. const int ir1 = MIN(ir0 + dr, nr);
  7401. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7402. for (int ir = ir0; ir < ir1; ++ir) {
  7403. // src0 indices
  7404. const int i03 = ir/(ne02*ne01);
  7405. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7406. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7407. // src1 and dst are same shape as src0 => same indices
  7408. const int i13 = i03;
  7409. const int i12 = i02;
  7410. const int i11 = i01;
  7411. const int i3 = i03;
  7412. const int i2 = i02;
  7413. const int i1 = i01;
  7414. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7415. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7416. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7417. assert(ne00 % 32 == 0);
  7418. // unquantize row from src0 to temp buffer
  7419. dequantize_row_q(src0_row, wdata, ne00);
  7420. // add src1
  7421. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7422. // quantize row to dst
  7423. if (quantize_row_q != NULL) {
  7424. quantize_row_q(wdata, dst_row, ne00);
  7425. } else {
  7426. memcpy(dst_row, wdata, ne0*nb0);
  7427. }
  7428. }
  7429. }
  7430. static void ggml_compute_forward_add(
  7431. const struct ggml_compute_params * params,
  7432. struct ggml_tensor * dst) {
  7433. const struct ggml_tensor * src0 = dst->src[0];
  7434. const struct ggml_tensor * src1 = dst->src[1];
  7435. switch (src0->type) {
  7436. case GGML_TYPE_F32:
  7437. {
  7438. if (src1->type == GGML_TYPE_F32) {
  7439. ggml_compute_forward_add_f32(params, dst);
  7440. }
  7441. else {
  7442. GGML_ASSERT(false);
  7443. }
  7444. } break;
  7445. case GGML_TYPE_F16:
  7446. {
  7447. if (src1->type == GGML_TYPE_F16) {
  7448. ggml_compute_forward_add_f16_f16(params, dst);
  7449. }
  7450. else if (src1->type == GGML_TYPE_F32) {
  7451. ggml_compute_forward_add_f16_f32(params, dst);
  7452. }
  7453. else {
  7454. GGML_ASSERT(false);
  7455. }
  7456. } break;
  7457. case GGML_TYPE_BF16:
  7458. {
  7459. if (src1->type == GGML_TYPE_BF16) {
  7460. ggml_compute_forward_add_bf16_bf16(params, dst);
  7461. }
  7462. else if (src1->type == GGML_TYPE_F32) {
  7463. ggml_compute_forward_add_bf16_f32(params, dst);
  7464. }
  7465. else {
  7466. GGML_ASSERT(false);
  7467. }
  7468. } break;
  7469. case GGML_TYPE_Q4_0:
  7470. case GGML_TYPE_Q4_1:
  7471. case GGML_TYPE_Q5_0:
  7472. case GGML_TYPE_Q5_1:
  7473. case GGML_TYPE_Q8_0:
  7474. case GGML_TYPE_Q2_K:
  7475. case GGML_TYPE_Q3_K:
  7476. case GGML_TYPE_Q4_K:
  7477. case GGML_TYPE_Q5_K:
  7478. case GGML_TYPE_Q6_K:
  7479. case GGML_TYPE_IQ2_XXS:
  7480. case GGML_TYPE_IQ2_XS:
  7481. case GGML_TYPE_IQ3_XXS:
  7482. case GGML_TYPE_IQ1_S:
  7483. case GGML_TYPE_IQ1_M:
  7484. case GGML_TYPE_IQ4_NL:
  7485. case GGML_TYPE_IQ4_XS:
  7486. case GGML_TYPE_IQ3_S:
  7487. case GGML_TYPE_IQ2_S:
  7488. {
  7489. ggml_compute_forward_add_q_f32(params, dst);
  7490. } break;
  7491. default:
  7492. {
  7493. GGML_ASSERT(false);
  7494. } break;
  7495. }
  7496. }
  7497. // ggml_compute_forward_add1
  7498. static void ggml_compute_forward_add1_f32(
  7499. const struct ggml_compute_params * params,
  7500. struct ggml_tensor * dst) {
  7501. const struct ggml_tensor * src0 = dst->src[0];
  7502. const struct ggml_tensor * src1 = dst->src[1];
  7503. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7504. GGML_ASSERT(ggml_is_scalar(src1));
  7505. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7506. return;
  7507. }
  7508. const int ith = params->ith;
  7509. const int nth = params->nth;
  7510. const int nr = ggml_nrows(src0);
  7511. GGML_TENSOR_UNARY_OP_LOCALS
  7512. GGML_ASSERT( nb0 == sizeof(float));
  7513. GGML_ASSERT(nb00 == sizeof(float));
  7514. // rows per thread
  7515. const int dr = (nr + nth - 1)/nth;
  7516. // row range for this thread
  7517. const int ir0 = dr*ith;
  7518. const int ir1 = MIN(ir0 + dr, nr);
  7519. for (int ir = ir0; ir < ir1; ++ir) {
  7520. // src0 and dst are same shape => same indices
  7521. const int i3 = ir/(ne2*ne1);
  7522. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7523. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7524. #ifdef GGML_USE_ACCELERATE
  7525. UNUSED(ggml_vec_add1_f32);
  7526. vDSP_vadd(
  7527. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7528. (float *) ((char *) src1->data), 0,
  7529. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7530. ne0);
  7531. #else
  7532. ggml_vec_add1_f32(ne0,
  7533. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7534. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7535. *(float *) src1->data);
  7536. #endif
  7537. }
  7538. }
  7539. static void ggml_compute_forward_add1_f16_f32(
  7540. const struct ggml_compute_params * params,
  7541. struct ggml_tensor * dst) {
  7542. const struct ggml_tensor * src0 = dst->src[0];
  7543. const struct ggml_tensor * src1 = dst->src[1];
  7544. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7545. GGML_ASSERT(ggml_is_scalar(src1));
  7546. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7547. return;
  7548. }
  7549. // scalar to add
  7550. const float v = *(float *) src1->data;
  7551. const int ith = params->ith;
  7552. const int nth = params->nth;
  7553. const int nr = ggml_nrows(src0);
  7554. GGML_TENSOR_UNARY_OP_LOCALS
  7555. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7556. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7557. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7558. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7559. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7560. // rows per thread
  7561. const int dr = (nr + nth - 1)/nth;
  7562. // row range for this thread
  7563. const int ir0 = dr*ith;
  7564. const int ir1 = MIN(ir0 + dr, nr);
  7565. for (int ir = ir0; ir < ir1; ++ir) {
  7566. // src0 and dst are same shape => same indices
  7567. const int i3 = ir/(ne2*ne1);
  7568. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7569. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7570. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7571. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7572. for (int i = 0; i < ne0; i++) {
  7573. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7574. }
  7575. }
  7576. }
  7577. static void ggml_compute_forward_add1_f16_f16(
  7578. const struct ggml_compute_params * params,
  7579. struct ggml_tensor * dst) {
  7580. const struct ggml_tensor * src0 = dst->src[0];
  7581. const struct ggml_tensor * src1 = dst->src[1];
  7582. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7583. GGML_ASSERT(ggml_is_scalar(src1));
  7584. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7585. return;
  7586. }
  7587. // scalar to add
  7588. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7589. const int ith = params->ith;
  7590. const int nth = params->nth;
  7591. const int nr = ggml_nrows(src0);
  7592. GGML_TENSOR_UNARY_OP_LOCALS
  7593. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7594. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7595. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7596. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7597. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7598. // rows per thread
  7599. const int dr = (nr + nth - 1)/nth;
  7600. // row range for this thread
  7601. const int ir0 = dr*ith;
  7602. const int ir1 = MIN(ir0 + dr, nr);
  7603. for (int ir = ir0; ir < ir1; ++ir) {
  7604. // src0 and dst are same shape => same indices
  7605. const int i3 = ir/(ne2*ne1);
  7606. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7607. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7608. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7609. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7610. for (int i = 0; i < ne0; i++) {
  7611. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7612. }
  7613. }
  7614. }
  7615. static void ggml_compute_forward_add1_q_f32(
  7616. const struct ggml_compute_params * params,
  7617. struct ggml_tensor * dst) {
  7618. const struct ggml_tensor * src0 = dst->src[0];
  7619. const struct ggml_tensor * src1 = dst->src[1];
  7620. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7621. GGML_ASSERT(ggml_is_scalar(src1));
  7622. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7623. return;
  7624. }
  7625. // scalar to add
  7626. const float v = *(float *) src1->data;
  7627. const int ith = params->ith;
  7628. const int nth = params->nth;
  7629. const int nr = ggml_nrows(src0);
  7630. GGML_TENSOR_UNARY_OP_LOCALS
  7631. const enum ggml_type type = src0->type;
  7632. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7633. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7634. // we don't support permuted src0
  7635. GGML_ASSERT(nb00 == ggml_type_size(type));
  7636. // dst cannot be transposed or permuted
  7637. GGML_ASSERT(nb0 <= nb1);
  7638. GGML_ASSERT(nb1 <= nb2);
  7639. GGML_ASSERT(nb2 <= nb3);
  7640. GGML_ASSERT(ggml_is_quantized(src0->type));
  7641. GGML_ASSERT(dst->type == src0->type);
  7642. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7643. // rows per thread
  7644. const int dr = (nr + nth - 1)/nth;
  7645. // row range for this thread
  7646. const int ir0 = dr*ith;
  7647. const int ir1 = MIN(ir0 + dr, nr);
  7648. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7649. for (int ir = ir0; ir < ir1; ++ir) {
  7650. // src0 and dst are same shape => same indices
  7651. const int i3 = ir/(ne2*ne1);
  7652. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7653. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7654. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7655. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7656. assert(ne0 % 32 == 0);
  7657. // unquantize row from src0 to temp buffer
  7658. dequantize_row_q(src0_row, wdata, ne0);
  7659. // add src1
  7660. ggml_vec_acc1_f32(ne0, wdata, v);
  7661. // quantize row to dst
  7662. quantize_row_q(wdata, dst_row, ne0);
  7663. }
  7664. }
  7665. static void ggml_compute_forward_add1_bf16_f32(
  7666. const struct ggml_compute_params * params,
  7667. struct ggml_tensor * dst) {
  7668. const struct ggml_tensor * src0 = dst->src[0];
  7669. const struct ggml_tensor * src1 = dst->src[1];
  7670. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7671. GGML_ASSERT(ggml_is_scalar(src1));
  7672. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7673. return;
  7674. }
  7675. // scalar to add
  7676. const float v = *(float *) src1->data;
  7677. const int ith = params->ith;
  7678. const int nth = params->nth;
  7679. const int nr = ggml_nrows(src0);
  7680. GGML_TENSOR_UNARY_OP_LOCALS
  7681. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7682. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7683. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7684. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7685. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7686. // rows per thread
  7687. const int dr = (nr + nth - 1)/nth;
  7688. // row range for this thread
  7689. const int ir0 = dr*ith;
  7690. const int ir1 = MIN(ir0 + dr, nr);
  7691. for (int ir = ir0; ir < ir1; ++ir) {
  7692. // src0 and dst are same shape => same indices
  7693. const int i3 = ir/(ne2*ne1);
  7694. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7695. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7696. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7697. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7698. for (int i = 0; i < ne0; i++) {
  7699. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7700. }
  7701. }
  7702. }
  7703. static void ggml_compute_forward_add1_bf16_bf16(
  7704. const struct ggml_compute_params * params,
  7705. struct ggml_tensor * dst) {
  7706. const struct ggml_tensor * src0 = dst->src[0];
  7707. const struct ggml_tensor * src1 = dst->src[1];
  7708. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7709. GGML_ASSERT(ggml_is_scalar(src1));
  7710. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7711. return;
  7712. }
  7713. // scalar to add
  7714. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  7715. const int ith = params->ith;
  7716. const int nth = params->nth;
  7717. const int nr = ggml_nrows(src0);
  7718. GGML_TENSOR_UNARY_OP_LOCALS
  7719. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7720. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7721. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7722. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7723. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7724. // rows per thread
  7725. const int dr = (nr + nth - 1)/nth;
  7726. // row range for this thread
  7727. const int ir0 = dr*ith;
  7728. const int ir1 = MIN(ir0 + dr, nr);
  7729. for (int ir = ir0; ir < ir1; ++ir) {
  7730. // src0 and dst are same shape => same indices
  7731. const int i3 = ir/(ne2*ne1);
  7732. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7733. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7734. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7735. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7736. for (int i = 0; i < ne0; i++) {
  7737. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7738. }
  7739. }
  7740. }
  7741. static void ggml_compute_forward_add1(
  7742. const struct ggml_compute_params * params,
  7743. struct ggml_tensor * dst) {
  7744. const struct ggml_tensor * src0 = dst->src[0];
  7745. const struct ggml_tensor * src1 = dst->src[1];
  7746. switch (src0->type) {
  7747. case GGML_TYPE_F32:
  7748. {
  7749. ggml_compute_forward_add1_f32(params, dst);
  7750. } break;
  7751. case GGML_TYPE_F16:
  7752. {
  7753. if (src1->type == GGML_TYPE_F16) {
  7754. ggml_compute_forward_add1_f16_f16(params, dst);
  7755. }
  7756. else if (src1->type == GGML_TYPE_F32) {
  7757. ggml_compute_forward_add1_f16_f32(params, dst);
  7758. }
  7759. else {
  7760. GGML_ASSERT(false);
  7761. }
  7762. } break;
  7763. case GGML_TYPE_BF16:
  7764. {
  7765. if (src1->type == GGML_TYPE_BF16) {
  7766. ggml_compute_forward_add1_bf16_bf16(params, dst);
  7767. }
  7768. else if (src1->type == GGML_TYPE_F32) {
  7769. ggml_compute_forward_add1_bf16_f32(params, dst);
  7770. }
  7771. else {
  7772. GGML_ASSERT(false);
  7773. }
  7774. } break;
  7775. case GGML_TYPE_Q4_0:
  7776. case GGML_TYPE_Q4_1:
  7777. case GGML_TYPE_Q5_0:
  7778. case GGML_TYPE_Q5_1:
  7779. case GGML_TYPE_Q8_0:
  7780. case GGML_TYPE_Q8_1:
  7781. case GGML_TYPE_Q2_K:
  7782. case GGML_TYPE_Q3_K:
  7783. case GGML_TYPE_Q4_K:
  7784. case GGML_TYPE_Q5_K:
  7785. case GGML_TYPE_Q6_K:
  7786. case GGML_TYPE_IQ2_XXS:
  7787. case GGML_TYPE_IQ2_XS:
  7788. case GGML_TYPE_IQ3_XXS:
  7789. case GGML_TYPE_IQ1_S:
  7790. case GGML_TYPE_IQ1_M:
  7791. case GGML_TYPE_IQ4_NL:
  7792. case GGML_TYPE_IQ4_XS:
  7793. case GGML_TYPE_IQ3_S:
  7794. case GGML_TYPE_IQ2_S:
  7795. {
  7796. ggml_compute_forward_add1_q_f32(params, dst);
  7797. } break;
  7798. default:
  7799. {
  7800. GGML_ASSERT(false);
  7801. } break;
  7802. }
  7803. }
  7804. // ggml_compute_forward_acc
  7805. static void ggml_compute_forward_acc_f32(
  7806. const struct ggml_compute_params * params,
  7807. struct ggml_tensor * dst) {
  7808. const struct ggml_tensor * src0 = dst->src[0];
  7809. const struct ggml_tensor * src1 = dst->src[1];
  7810. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7811. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7812. // view src0 and dst with these strides and data offset inbytes during acc
  7813. // nb0 is implicitly element_size because src0 and dst are contiguous
  7814. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7815. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7816. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7817. size_t offset = ((int32_t *) dst->op_params)[3];
  7818. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7819. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  7820. if (params->ith != 0) {
  7821. return;
  7822. }
  7823. // memcpy needs to be synchronized across threads to avoid race conditions.
  7824. // => do it in INIT phase
  7825. memcpy(
  7826. ((char *) dst->data),
  7827. ((char *) src0->data),
  7828. ggml_nbytes(dst));
  7829. }
  7830. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7831. return;
  7832. }
  7833. const int ith = params->ith;
  7834. const int nth = params->nth;
  7835. const int nr = ggml_nrows(src1);
  7836. const int nc = src1->ne[0];
  7837. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  7838. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  7839. // src0 and dst as viewed during acc
  7840. const size_t nb0 = ggml_element_size(src0);
  7841. const size_t nb00 = nb0;
  7842. const size_t nb01 = nb1;
  7843. const size_t nb02 = nb2;
  7844. const size_t nb03 = nb3;
  7845. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7846. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7847. GGML_ASSERT(nb10 == sizeof(float));
  7848. // rows per thread
  7849. const int dr = (nr + nth - 1)/nth;
  7850. // row range for this thread
  7851. const int ir0 = dr*ith;
  7852. const int ir1 = MIN(ir0 + dr, nr);
  7853. for (int ir = ir0; ir < ir1; ++ir) {
  7854. // src0 and dst are viewed with shape of src1 and offset
  7855. // => same indices
  7856. const int i3 = ir/(ne12*ne11);
  7857. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7858. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7859. #ifdef GGML_USE_ACCELERATE
  7860. vDSP_vadd(
  7861. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7862. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7863. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7864. #else
  7865. ggml_vec_add_f32(nc,
  7866. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7867. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7868. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7869. #endif
  7870. }
  7871. }
  7872. static void ggml_compute_forward_acc(
  7873. const struct ggml_compute_params * params,
  7874. struct ggml_tensor * dst) {
  7875. const struct ggml_tensor * src0 = dst->src[0];
  7876. switch (src0->type) {
  7877. case GGML_TYPE_F32:
  7878. {
  7879. ggml_compute_forward_acc_f32(params, dst);
  7880. } break;
  7881. case GGML_TYPE_F16:
  7882. case GGML_TYPE_BF16:
  7883. case GGML_TYPE_Q4_0:
  7884. case GGML_TYPE_Q4_1:
  7885. case GGML_TYPE_Q5_0:
  7886. case GGML_TYPE_Q5_1:
  7887. case GGML_TYPE_Q8_0:
  7888. case GGML_TYPE_Q8_1:
  7889. case GGML_TYPE_Q2_K:
  7890. case GGML_TYPE_Q3_K:
  7891. case GGML_TYPE_Q4_K:
  7892. case GGML_TYPE_Q5_K:
  7893. case GGML_TYPE_Q6_K:
  7894. case GGML_TYPE_IQ2_XXS:
  7895. case GGML_TYPE_IQ2_XS:
  7896. case GGML_TYPE_IQ3_XXS:
  7897. case GGML_TYPE_IQ1_S:
  7898. case GGML_TYPE_IQ1_M:
  7899. case GGML_TYPE_IQ4_NL:
  7900. case GGML_TYPE_IQ4_XS:
  7901. case GGML_TYPE_IQ3_S:
  7902. case GGML_TYPE_IQ2_S:
  7903. default:
  7904. {
  7905. GGML_ASSERT(false);
  7906. } break;
  7907. }
  7908. }
  7909. // ggml_compute_forward_sub
  7910. static void ggml_compute_forward_sub_f32(
  7911. const struct ggml_compute_params * params,
  7912. struct ggml_tensor * dst) {
  7913. const struct ggml_tensor * src0 = dst->src[0];
  7914. const struct ggml_tensor * src1 = dst->src[1];
  7915. assert(params->ith == 0);
  7916. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7917. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7918. return;
  7919. }
  7920. const int nr = ggml_nrows(src0);
  7921. GGML_TENSOR_BINARY_OP_LOCALS
  7922. GGML_ASSERT( nb0 == sizeof(float));
  7923. GGML_ASSERT(nb00 == sizeof(float));
  7924. if (nb10 == sizeof(float)) {
  7925. for (int ir = 0; ir < nr; ++ir) {
  7926. // src0, src1 and dst are same shape => same indices
  7927. const int i3 = ir/(ne2*ne1);
  7928. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7929. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7930. #ifdef GGML_USE_ACCELERATE
  7931. vDSP_vsub(
  7932. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7933. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7934. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7935. ne0);
  7936. #else
  7937. ggml_vec_sub_f32(ne0,
  7938. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7939. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7940. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7941. #endif
  7942. // }
  7943. // }
  7944. }
  7945. } else {
  7946. // src1 is not contiguous
  7947. for (int ir = 0; ir < nr; ++ir) {
  7948. // src0, src1 and dst are same shape => same indices
  7949. const int i3 = ir/(ne2*ne1);
  7950. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7951. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7952. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7953. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7954. for (int i0 = 0; i0 < ne0; i0++) {
  7955. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7956. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7957. }
  7958. }
  7959. }
  7960. }
  7961. static void ggml_compute_forward_sub(
  7962. const struct ggml_compute_params * params,
  7963. struct ggml_tensor * dst) {
  7964. const struct ggml_tensor * src0 = dst->src[0];
  7965. switch (src0->type) {
  7966. case GGML_TYPE_F32:
  7967. {
  7968. ggml_compute_forward_sub_f32(params, dst);
  7969. } break;
  7970. default:
  7971. {
  7972. GGML_ASSERT(false);
  7973. } break;
  7974. }
  7975. }
  7976. // ggml_compute_forward_mul
  7977. static void ggml_compute_forward_mul_f32(
  7978. const struct ggml_compute_params * params,
  7979. struct ggml_tensor * dst) {
  7980. const struct ggml_tensor * src0 = dst->src[0];
  7981. const struct ggml_tensor * src1 = dst->src[1];
  7982. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7983. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7984. return;
  7985. }
  7986. const int ith = params->ith;
  7987. const int nth = params->nth;
  7988. #if defined(GGML_USE_CLBLAST)
  7989. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7990. // TODO: OpenCL kernel support full broadcast
  7991. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7992. if (ith == 0) {
  7993. ggml_cl_mul(src0, src1, dst);
  7994. }
  7995. return;
  7996. }
  7997. #endif
  7998. const int64_t nr = ggml_nrows(src0);
  7999. GGML_TENSOR_BINARY_OP_LOCALS
  8000. GGML_ASSERT( nb0 == sizeof(float));
  8001. GGML_ASSERT(nb00 == sizeof(float));
  8002. if (nb10 == sizeof(float)) {
  8003. for (int64_t ir = ith; ir < nr; ir += nth) {
  8004. // src0 and dst are same shape => same indices
  8005. const int64_t i03 = ir/(ne02*ne01);
  8006. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8007. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8008. const int64_t i13 = i03 % ne13;
  8009. const int64_t i12 = i02 % ne12;
  8010. const int64_t i11 = i01 % ne11;
  8011. const int64_t nr0 = ne00 / ne10;
  8012. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8013. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8014. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8015. for (int64_t r = 0 ; r < nr0; ++r) {
  8016. #ifdef GGML_USE_ACCELERATE
  8017. UNUSED(ggml_vec_mul_f32);
  8018. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8019. #else
  8020. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8021. #endif
  8022. }
  8023. }
  8024. } else {
  8025. // src1 is not contiguous
  8026. for (int64_t ir = ith; ir < nr; ir += nth) {
  8027. // src0 and dst are same shape => same indices
  8028. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8029. const int64_t i03 = ir/(ne02*ne01);
  8030. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8031. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8032. const int64_t i13 = i03 % ne13;
  8033. const int64_t i12 = i02 % ne12;
  8034. const int64_t i11 = i01 % ne11;
  8035. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8036. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8037. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8038. const int64_t i10 = i0 % ne10;
  8039. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8040. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8041. }
  8042. }
  8043. }
  8044. }
  8045. static void ggml_compute_forward_mul(
  8046. const struct ggml_compute_params * params,
  8047. struct ggml_tensor * dst) {
  8048. const struct ggml_tensor * src0 = dst->src[0];
  8049. const struct ggml_tensor * src1 = dst->src[1];
  8050. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8051. switch (src0->type) {
  8052. case GGML_TYPE_F32:
  8053. {
  8054. ggml_compute_forward_mul_f32(params, dst);
  8055. } break;
  8056. default:
  8057. {
  8058. GGML_ASSERT(false);
  8059. } break;
  8060. }
  8061. }
  8062. // ggml_compute_forward_div
  8063. static void ggml_compute_forward_div_f32(
  8064. const struct ggml_compute_params * params,
  8065. struct ggml_tensor * dst) {
  8066. const struct ggml_tensor * src0 = dst->src[0];
  8067. const struct ggml_tensor * src1 = dst->src[1];
  8068. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8069. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8070. return;
  8071. }
  8072. const int ith = params->ith;
  8073. const int nth = params->nth;
  8074. const int64_t nr = ggml_nrows(src0);
  8075. GGML_TENSOR_BINARY_OP_LOCALS
  8076. GGML_ASSERT( nb0 == sizeof(float));
  8077. GGML_ASSERT(nb00 == sizeof(float));
  8078. if (nb10 == sizeof(float)) {
  8079. for (int64_t ir = ith; ir < nr; ir += nth) {
  8080. // src0 and dst are same shape => same indices
  8081. const int64_t i03 = ir/(ne02*ne01);
  8082. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8083. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8084. const int64_t i13 = i03 % ne13;
  8085. const int64_t i12 = i02 % ne12;
  8086. const int64_t i11 = i01 % ne11;
  8087. const int64_t nr0 = ne00 / ne10;
  8088. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8089. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8090. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8091. for (int64_t r = 0; r < nr0; ++r) {
  8092. #ifdef GGML_USE_ACCELERATE
  8093. UNUSED(ggml_vec_div_f32);
  8094. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8095. #else
  8096. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8097. #endif
  8098. }
  8099. }
  8100. } else {
  8101. // src1 is not contiguous
  8102. for (int64_t ir = ith; ir < nr; ir += nth) {
  8103. // src0 and dst are same shape => same indices
  8104. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8105. const int64_t i03 = ir/(ne02*ne01);
  8106. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8107. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8108. const int64_t i13 = i03 % ne13;
  8109. const int64_t i12 = i02 % ne12;
  8110. const int64_t i11 = i01 % ne11;
  8111. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8112. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8113. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8114. const int64_t i10 = i0 % ne10;
  8115. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8116. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8117. }
  8118. }
  8119. }
  8120. }
  8121. static void ggml_compute_forward_div(
  8122. const struct ggml_compute_params * params,
  8123. struct ggml_tensor * dst) {
  8124. const struct ggml_tensor * src0 = dst->src[0];
  8125. switch (src0->type) {
  8126. case GGML_TYPE_F32:
  8127. {
  8128. ggml_compute_forward_div_f32(params, dst);
  8129. } break;
  8130. default:
  8131. {
  8132. GGML_ASSERT(false);
  8133. } break;
  8134. }
  8135. }
  8136. // ggml_compute_forward_sqr
  8137. static void ggml_compute_forward_sqr_f32(
  8138. const struct ggml_compute_params * params,
  8139. struct ggml_tensor * dst) {
  8140. const struct ggml_tensor * src0 = dst->src[0];
  8141. assert(params->ith == 0);
  8142. assert(ggml_are_same_shape(src0, dst));
  8143. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8144. return;
  8145. }
  8146. const int n = ggml_nrows(src0);
  8147. const int nc = src0->ne[0];
  8148. assert( dst->nb[0] == sizeof(float));
  8149. assert(src0->nb[0] == sizeof(float));
  8150. for (int i = 0; i < n; i++) {
  8151. ggml_vec_sqr_f32(nc,
  8152. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8153. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8154. }
  8155. }
  8156. static void ggml_compute_forward_sqr(
  8157. const struct ggml_compute_params * params,
  8158. struct ggml_tensor * dst) {
  8159. const struct ggml_tensor * src0 = dst->src[0];
  8160. switch (src0->type) {
  8161. case GGML_TYPE_F32:
  8162. {
  8163. ggml_compute_forward_sqr_f32(params, dst);
  8164. } break;
  8165. default:
  8166. {
  8167. GGML_ASSERT(false);
  8168. } break;
  8169. }
  8170. }
  8171. // ggml_compute_forward_sqrt
  8172. static void ggml_compute_forward_sqrt_f32(
  8173. const struct ggml_compute_params * params,
  8174. struct ggml_tensor * dst) {
  8175. const struct ggml_tensor * src0 = dst->src[0];
  8176. assert(params->ith == 0);
  8177. assert(ggml_are_same_shape(src0, dst));
  8178. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8179. return;
  8180. }
  8181. const int n = ggml_nrows(src0);
  8182. const int nc = src0->ne[0];
  8183. assert( dst->nb[0] == sizeof(float));
  8184. assert(src0->nb[0] == sizeof(float));
  8185. for (int i = 0; i < n; i++) {
  8186. ggml_vec_sqrt_f32(nc,
  8187. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8188. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8189. }
  8190. }
  8191. static void ggml_compute_forward_sqrt(
  8192. const struct ggml_compute_params * params,
  8193. struct ggml_tensor * dst) {
  8194. const struct ggml_tensor * src0 = dst->src[0];
  8195. switch (src0->type) {
  8196. case GGML_TYPE_F32:
  8197. {
  8198. ggml_compute_forward_sqrt_f32(params, dst);
  8199. } break;
  8200. default:
  8201. {
  8202. GGML_ASSERT(false);
  8203. } break;
  8204. }
  8205. }
  8206. // ggml_compute_forward_log
  8207. static void ggml_compute_forward_log_f32(
  8208. const struct ggml_compute_params * params,
  8209. struct ggml_tensor * dst) {
  8210. const struct ggml_tensor * src0 = dst->src[0];
  8211. GGML_ASSERT(params->ith == 0);
  8212. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8213. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8214. return;
  8215. }
  8216. const int n = ggml_nrows(src0);
  8217. const int nc = src0->ne[0];
  8218. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8219. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8220. for (int i = 0; i < n; i++) {
  8221. ggml_vec_log_f32(nc,
  8222. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8223. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8224. }
  8225. }
  8226. static void ggml_compute_forward_log(
  8227. const struct ggml_compute_params * params,
  8228. struct ggml_tensor * dst) {
  8229. const struct ggml_tensor * src0 = dst->src[0];
  8230. switch (src0->type) {
  8231. case GGML_TYPE_F32:
  8232. {
  8233. ggml_compute_forward_log_f32(params, dst);
  8234. } break;
  8235. default:
  8236. {
  8237. GGML_ASSERT(false);
  8238. } break;
  8239. }
  8240. }
  8241. // ggml_compute_forward_sum
  8242. static void ggml_compute_forward_sum_f32(
  8243. const struct ggml_compute_params * params,
  8244. struct ggml_tensor * dst) {
  8245. const struct ggml_tensor * src0 = dst->src[0];
  8246. assert(params->ith == 0);
  8247. assert(ggml_is_scalar(dst));
  8248. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8249. return;
  8250. }
  8251. assert(ggml_is_scalar(dst));
  8252. assert(src0->nb[0] == sizeof(float));
  8253. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8254. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8255. ggml_float sum = 0;
  8256. ggml_float row_sum = 0;
  8257. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8258. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8259. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8260. ggml_vec_sum_f32_ggf(ne00,
  8261. &row_sum,
  8262. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8263. sum += row_sum;
  8264. }
  8265. }
  8266. }
  8267. ((float *) dst->data)[0] = sum;
  8268. }
  8269. static void ggml_compute_forward_sum_f16(
  8270. const struct ggml_compute_params * params,
  8271. struct ggml_tensor * dst) {
  8272. const struct ggml_tensor * src0 = dst->src[0];
  8273. assert(params->ith == 0);
  8274. assert(ggml_is_scalar(dst));
  8275. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8276. return;
  8277. }
  8278. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8279. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8280. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8281. float sum = 0;
  8282. float row_sum = 0;
  8283. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8284. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8285. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8286. ggml_vec_sum_f16_ggf(ne00,
  8287. &row_sum,
  8288. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8289. sum += row_sum;
  8290. }
  8291. }
  8292. }
  8293. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8294. }
  8295. static void ggml_compute_forward_sum_bf16(
  8296. const struct ggml_compute_params * params,
  8297. struct ggml_tensor * dst) {
  8298. const struct ggml_tensor * src0 = dst->src[0];
  8299. assert(params->ith == 0);
  8300. assert(ggml_is_scalar(dst));
  8301. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8302. return;
  8303. }
  8304. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8305. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8306. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8307. float sum = 0;
  8308. float row_sum = 0;
  8309. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8310. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8311. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8312. ggml_vec_sum_bf16_ggf(ne00,
  8313. &row_sum,
  8314. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8315. sum += row_sum;
  8316. }
  8317. }
  8318. }
  8319. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8320. }
  8321. static void ggml_compute_forward_sum(
  8322. const struct ggml_compute_params * params,
  8323. struct ggml_tensor * dst) {
  8324. const struct ggml_tensor * src0 = dst->src[0];
  8325. switch (src0->type) {
  8326. case GGML_TYPE_F32:
  8327. {
  8328. ggml_compute_forward_sum_f32(params, dst);
  8329. } break;
  8330. case GGML_TYPE_F16:
  8331. {
  8332. ggml_compute_forward_sum_f16(params, dst);
  8333. } break;
  8334. case GGML_TYPE_BF16:
  8335. {
  8336. ggml_compute_forward_sum_bf16(params, dst);
  8337. } break;
  8338. default:
  8339. {
  8340. GGML_ASSERT(false);
  8341. } break;
  8342. }
  8343. }
  8344. // ggml_compute_forward_sum_rows
  8345. static void ggml_compute_forward_sum_rows_f32(
  8346. const struct ggml_compute_params * params,
  8347. struct ggml_tensor * dst) {
  8348. const struct ggml_tensor * src0 = dst->src[0];
  8349. GGML_ASSERT(params->ith == 0);
  8350. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8351. return;
  8352. }
  8353. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8354. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8355. GGML_TENSOR_UNARY_OP_LOCALS
  8356. GGML_ASSERT(ne0 == 1);
  8357. GGML_ASSERT(ne1 == ne01);
  8358. GGML_ASSERT(ne2 == ne02);
  8359. GGML_ASSERT(ne3 == ne03);
  8360. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8361. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8362. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8363. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8364. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8365. float row_sum = 0;
  8366. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8367. dst_row[0] = row_sum;
  8368. }
  8369. }
  8370. }
  8371. }
  8372. static void ggml_compute_forward_sum_rows(
  8373. const struct ggml_compute_params * params,
  8374. struct ggml_tensor * dst) {
  8375. const struct ggml_tensor * src0 = dst->src[0];
  8376. switch (src0->type) {
  8377. case GGML_TYPE_F32:
  8378. {
  8379. ggml_compute_forward_sum_rows_f32(params, dst);
  8380. } break;
  8381. default:
  8382. {
  8383. GGML_ASSERT(false);
  8384. } break;
  8385. }
  8386. }
  8387. // ggml_compute_forward_mean
  8388. static void ggml_compute_forward_mean_f32(
  8389. const struct ggml_compute_params * params,
  8390. struct ggml_tensor * dst) {
  8391. const struct ggml_tensor * src0 = dst->src[0];
  8392. assert(params->ith == 0);
  8393. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8394. return;
  8395. }
  8396. assert(src0->nb[0] == sizeof(float));
  8397. GGML_TENSOR_UNARY_OP_LOCALS
  8398. assert(ne0 == 1);
  8399. assert(ne1 == ne01);
  8400. assert(ne2 == ne02);
  8401. assert(ne3 == ne03);
  8402. UNUSED(ne0);
  8403. UNUSED(ne1);
  8404. UNUSED(ne2);
  8405. UNUSED(ne3);
  8406. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8407. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8408. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8409. ggml_vec_sum_f32(ne00,
  8410. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8411. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8412. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8413. }
  8414. }
  8415. }
  8416. }
  8417. static void ggml_compute_forward_mean(
  8418. const struct ggml_compute_params * params,
  8419. struct ggml_tensor * dst) {
  8420. const struct ggml_tensor * src0 = dst->src[0];
  8421. switch (src0->type) {
  8422. case GGML_TYPE_F32:
  8423. {
  8424. ggml_compute_forward_mean_f32(params, dst);
  8425. } break;
  8426. default:
  8427. {
  8428. GGML_ASSERT(false);
  8429. } break;
  8430. }
  8431. }
  8432. // ggml_compute_forward_argmax
  8433. static void ggml_compute_forward_argmax_f32(
  8434. const struct ggml_compute_params * params,
  8435. struct ggml_tensor * dst) {
  8436. const struct ggml_tensor * src0 = dst->src[0];
  8437. assert(params->ith == 0);
  8438. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8439. return;
  8440. }
  8441. assert(src0->nb[0] == sizeof(float));
  8442. assert(dst->nb[0] == sizeof(float));
  8443. const int64_t ne00 = src0->ne[0];
  8444. const int64_t ne01 = src0->ne[1];
  8445. const size_t nb01 = src0->nb[1];
  8446. const size_t nb0 = dst->nb[0];
  8447. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8448. float * src = (float *) ((char *) src0->data + i1*nb01);
  8449. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8450. int v = 0;
  8451. ggml_vec_argmax_f32(ne00, &v, src);
  8452. dst_[0] = v;
  8453. }
  8454. }
  8455. static void ggml_compute_forward_argmax(
  8456. const struct ggml_compute_params * params,
  8457. struct ggml_tensor * dst) {
  8458. const struct ggml_tensor * src0 = dst->src[0];
  8459. switch (src0->type) {
  8460. case GGML_TYPE_F32:
  8461. {
  8462. ggml_compute_forward_argmax_f32(params, dst);
  8463. } break;
  8464. default:
  8465. {
  8466. GGML_ASSERT(false);
  8467. } break;
  8468. }
  8469. }
  8470. // ggml_compute_forward_repeat
  8471. static void ggml_compute_forward_repeat_f32(
  8472. const struct ggml_compute_params * params,
  8473. struct ggml_tensor * dst) {
  8474. const struct ggml_tensor * src0 = dst->src[0];
  8475. GGML_ASSERT(params->ith == 0);
  8476. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8477. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8478. return;
  8479. }
  8480. GGML_TENSOR_UNARY_OP_LOCALS
  8481. // guaranteed to be an integer due to the check in ggml_can_repeat
  8482. const int nr0 = (int)(ne0/ne00);
  8483. const int nr1 = (int)(ne1/ne01);
  8484. const int nr2 = (int)(ne2/ne02);
  8485. const int nr3 = (int)(ne3/ne03);
  8486. // TODO: support for transposed / permuted tensors
  8487. GGML_ASSERT(nb0 == sizeof(float));
  8488. GGML_ASSERT(nb00 == sizeof(float));
  8489. // TODO: maybe this is not optimal?
  8490. for (int i3 = 0; i3 < nr3; i3++) {
  8491. for (int k3 = 0; k3 < ne03; k3++) {
  8492. for (int i2 = 0; i2 < nr2; i2++) {
  8493. for (int k2 = 0; k2 < ne02; k2++) {
  8494. for (int i1 = 0; i1 < nr1; i1++) {
  8495. for (int k1 = 0; k1 < ne01; k1++) {
  8496. for (int i0 = 0; i0 < nr0; i0++) {
  8497. ggml_vec_cpy_f32(ne00,
  8498. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8499. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8500. }
  8501. }
  8502. }
  8503. }
  8504. }
  8505. }
  8506. }
  8507. }
  8508. static void ggml_compute_forward_repeat_f16(
  8509. const struct ggml_compute_params * params,
  8510. struct ggml_tensor * dst) {
  8511. const struct ggml_tensor * src0 = dst->src[0];
  8512. GGML_ASSERT(params->ith == 0);
  8513. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8514. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8515. return;
  8516. }
  8517. GGML_TENSOR_UNARY_OP_LOCALS
  8518. // guaranteed to be an integer due to the check in ggml_can_repeat
  8519. const int nr0 = (int)(ne0/ne00);
  8520. const int nr1 = (int)(ne1/ne01);
  8521. const int nr2 = (int)(ne2/ne02);
  8522. const int nr3 = (int)(ne3/ne03);
  8523. // TODO: support for transposed / permuted tensors
  8524. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8525. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8526. // TODO: maybe this is not optimal?
  8527. for (int i3 = 0; i3 < nr3; i3++) {
  8528. for (int k3 = 0; k3 < ne03; k3++) {
  8529. for (int i2 = 0; i2 < nr2; i2++) {
  8530. for (int k2 = 0; k2 < ne02; k2++) {
  8531. for (int i1 = 0; i1 < nr1; i1++) {
  8532. for (int k1 = 0; k1 < ne01; k1++) {
  8533. for (int i0 = 0; i0 < nr0; i0++) {
  8534. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8535. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8536. // ggml_vec_cpy_f16(ne00, y, x)
  8537. for (int i = 0; i < ne00; ++i) {
  8538. y[i] = x[i];
  8539. }
  8540. }
  8541. }
  8542. }
  8543. }
  8544. }
  8545. }
  8546. }
  8547. }
  8548. static void ggml_compute_forward_repeat(
  8549. const struct ggml_compute_params * params,
  8550. struct ggml_tensor * dst) {
  8551. const struct ggml_tensor * src0 = dst->src[0];
  8552. switch (src0->type) {
  8553. case GGML_TYPE_F16:
  8554. case GGML_TYPE_BF16:
  8555. case GGML_TYPE_I16:
  8556. {
  8557. ggml_compute_forward_repeat_f16(params, dst);
  8558. } break;
  8559. case GGML_TYPE_F32:
  8560. case GGML_TYPE_I32:
  8561. {
  8562. ggml_compute_forward_repeat_f32(params, dst);
  8563. } break;
  8564. default:
  8565. {
  8566. GGML_ASSERT(false);
  8567. } break;
  8568. }
  8569. }
  8570. // ggml_compute_forward_repeat_back
  8571. static void ggml_compute_forward_repeat_back_f32(
  8572. const struct ggml_compute_params * params,
  8573. struct ggml_tensor * dst) {
  8574. const struct ggml_tensor * src0 = dst->src[0];
  8575. GGML_ASSERT(params->ith == 0);
  8576. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8577. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8578. return;
  8579. }
  8580. GGML_TENSOR_UNARY_OP_LOCALS
  8581. // guaranteed to be an integer due to the check in ggml_can_repeat
  8582. const int nr0 = (int)(ne00/ne0);
  8583. const int nr1 = (int)(ne01/ne1);
  8584. const int nr2 = (int)(ne02/ne2);
  8585. const int nr3 = (int)(ne03/ne3);
  8586. // TODO: support for transposed / permuted tensors
  8587. GGML_ASSERT(nb0 == sizeof(float));
  8588. GGML_ASSERT(nb00 == sizeof(float));
  8589. if (ggml_is_contiguous(dst)) {
  8590. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8591. } else {
  8592. for (int k3 = 0; k3 < ne3; k3++) {
  8593. for (int k2 = 0; k2 < ne2; k2++) {
  8594. for (int k1 = 0; k1 < ne1; k1++) {
  8595. ggml_vec_set_f32(ne0,
  8596. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8597. 0);
  8598. }
  8599. }
  8600. }
  8601. }
  8602. // TODO: maybe this is not optimal?
  8603. for (int i3 = 0; i3 < nr3; i3++) {
  8604. for (int k3 = 0; k3 < ne3; k3++) {
  8605. for (int i2 = 0; i2 < nr2; i2++) {
  8606. for (int k2 = 0; k2 < ne2; k2++) {
  8607. for (int i1 = 0; i1 < nr1; i1++) {
  8608. for (int k1 = 0; k1 < ne1; k1++) {
  8609. for (int i0 = 0; i0 < nr0; i0++) {
  8610. ggml_vec_acc_f32(ne0,
  8611. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8612. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8613. }
  8614. }
  8615. }
  8616. }
  8617. }
  8618. }
  8619. }
  8620. }
  8621. static void ggml_compute_forward_repeat_back(
  8622. const struct ggml_compute_params * params,
  8623. struct ggml_tensor * dst) {
  8624. const struct ggml_tensor * src0 = dst->src[0];
  8625. switch (src0->type) {
  8626. case GGML_TYPE_F32:
  8627. {
  8628. ggml_compute_forward_repeat_back_f32(params, dst);
  8629. } break;
  8630. default:
  8631. {
  8632. GGML_ASSERT(false);
  8633. } break;
  8634. }
  8635. }
  8636. // ggml_compute_forward_concat
  8637. static void ggml_compute_forward_concat_f32(
  8638. const struct ggml_compute_params * params,
  8639. struct ggml_tensor * dst) {
  8640. const struct ggml_tensor * src0 = dst->src[0];
  8641. const struct ggml_tensor * src1 = dst->src[1];
  8642. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8643. return;
  8644. }
  8645. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8646. const int ith = params->ith;
  8647. const int nth = params->nth;
  8648. GGML_TENSOR_BINARY_OP_LOCALS
  8649. // TODO: support for transposed / permuted tensors
  8650. GGML_ASSERT(nb0 == sizeof(float));
  8651. GGML_ASSERT(nb00 == sizeof(float));
  8652. GGML_ASSERT(nb10 == sizeof(float));
  8653. for (int i3 = 0; i3 < ne3; i3++) {
  8654. for (int i2 = ith; i2 < ne2; i2 += nth) {
  8655. if (i2 < ne02) { // src0
  8656. for (int i1 = 0; i1 < ne1; i1++) {
  8657. for (int i0 = 0; i0 < ne0; i0++) {
  8658. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8659. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8660. *y = *x;
  8661. }
  8662. }
  8663. } // src1
  8664. else {
  8665. for (int i1 = 0; i1 < ne1; i1++) {
  8666. for (int i0 = 0; i0 < ne0; i0++) {
  8667. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8668. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8669. *y = *x;
  8670. }
  8671. }
  8672. }
  8673. }
  8674. }
  8675. }
  8676. static void ggml_compute_forward_concat(
  8677. const struct ggml_compute_params* params,
  8678. struct ggml_tensor* dst) {
  8679. const struct ggml_tensor * src0 = dst->src[0];
  8680. switch (src0->type) {
  8681. case GGML_TYPE_F32:
  8682. case GGML_TYPE_I32:
  8683. {
  8684. ggml_compute_forward_concat_f32(params, dst);
  8685. } break;
  8686. default:
  8687. {
  8688. GGML_ASSERT(false);
  8689. } break;
  8690. }
  8691. }
  8692. // ggml_compute_forward_abs
  8693. static void ggml_compute_forward_abs_f32(
  8694. const struct ggml_compute_params * params,
  8695. struct ggml_tensor * dst) {
  8696. const struct ggml_tensor * src0 = dst->src[0];
  8697. assert(params->ith == 0);
  8698. assert(ggml_are_same_shape(src0, dst));
  8699. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8700. return;
  8701. }
  8702. const int n = ggml_nrows(src0);
  8703. const int nc = src0->ne[0];
  8704. assert(dst->nb[0] == sizeof(float));
  8705. assert(src0->nb[0] == sizeof(float));
  8706. for (int i = 0; i < n; i++) {
  8707. ggml_vec_abs_f32(nc,
  8708. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8709. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8710. }
  8711. }
  8712. static void ggml_compute_forward_abs(
  8713. const struct ggml_compute_params * params,
  8714. struct ggml_tensor * dst) {
  8715. const struct ggml_tensor * src0 = dst->src[0];
  8716. switch (src0->type) {
  8717. case GGML_TYPE_F32:
  8718. {
  8719. ggml_compute_forward_abs_f32(params, dst);
  8720. } break;
  8721. default:
  8722. {
  8723. GGML_ASSERT(false);
  8724. } break;
  8725. }
  8726. }
  8727. // ggml_compute_forward_sgn
  8728. static void ggml_compute_forward_sgn_f32(
  8729. const struct ggml_compute_params * params,
  8730. struct ggml_tensor * dst) {
  8731. const struct ggml_tensor * src0 = dst->src[0];
  8732. assert(params->ith == 0);
  8733. assert(ggml_are_same_shape(src0, dst));
  8734. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8735. return;
  8736. }
  8737. const int n = ggml_nrows(src0);
  8738. const int nc = src0->ne[0];
  8739. assert(dst->nb[0] == sizeof(float));
  8740. assert(src0->nb[0] == sizeof(float));
  8741. for (int i = 0; i < n; i++) {
  8742. ggml_vec_sgn_f32(nc,
  8743. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8744. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8745. }
  8746. }
  8747. static void ggml_compute_forward_sgn(
  8748. const struct ggml_compute_params * params,
  8749. struct ggml_tensor * dst) {
  8750. const struct ggml_tensor * src0 = dst->src[0];
  8751. switch (src0->type) {
  8752. case GGML_TYPE_F32:
  8753. {
  8754. ggml_compute_forward_sgn_f32(params, dst);
  8755. } break;
  8756. default:
  8757. {
  8758. GGML_ASSERT(false);
  8759. } break;
  8760. }
  8761. }
  8762. // ggml_compute_forward_neg
  8763. static void ggml_compute_forward_neg_f32(
  8764. const struct ggml_compute_params * params,
  8765. struct ggml_tensor * dst) {
  8766. const struct ggml_tensor * src0 = dst->src[0];
  8767. assert(params->ith == 0);
  8768. assert(ggml_are_same_shape(src0, dst));
  8769. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8770. return;
  8771. }
  8772. const int n = ggml_nrows(src0);
  8773. const int nc = src0->ne[0];
  8774. assert(dst->nb[0] == sizeof(float));
  8775. assert(src0->nb[0] == sizeof(float));
  8776. for (int i = 0; i < n; i++) {
  8777. ggml_vec_neg_f32(nc,
  8778. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8779. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8780. }
  8781. }
  8782. static void ggml_compute_forward_neg(
  8783. const struct ggml_compute_params * params,
  8784. struct ggml_tensor * dst) {
  8785. const struct ggml_tensor * src0 = dst->src[0];
  8786. switch (src0->type) {
  8787. case GGML_TYPE_F32:
  8788. {
  8789. ggml_compute_forward_neg_f32(params, dst);
  8790. } break;
  8791. default:
  8792. {
  8793. GGML_ASSERT(false);
  8794. } break;
  8795. }
  8796. }
  8797. // ggml_compute_forward_step
  8798. static void ggml_compute_forward_step_f32(
  8799. const struct ggml_compute_params * params,
  8800. struct ggml_tensor * dst) {
  8801. const struct ggml_tensor * src0 = dst->src[0];
  8802. assert(params->ith == 0);
  8803. assert(ggml_are_same_shape(src0, dst));
  8804. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8805. return;
  8806. }
  8807. const int n = ggml_nrows(src0);
  8808. const int nc = src0->ne[0];
  8809. assert(dst->nb[0] == sizeof(float));
  8810. assert(src0->nb[0] == sizeof(float));
  8811. for (int i = 0; i < n; i++) {
  8812. ggml_vec_step_f32(nc,
  8813. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8814. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8815. }
  8816. }
  8817. static void ggml_compute_forward_step(
  8818. const struct ggml_compute_params * params,
  8819. struct ggml_tensor * dst) {
  8820. const struct ggml_tensor * src0 = dst->src[0];
  8821. switch (src0->type) {
  8822. case GGML_TYPE_F32:
  8823. {
  8824. ggml_compute_forward_step_f32(params, dst);
  8825. } break;
  8826. default:
  8827. {
  8828. GGML_ASSERT(false);
  8829. } break;
  8830. }
  8831. }
  8832. // ggml_compute_forward_tanh
  8833. static void ggml_compute_forward_tanh_f32(
  8834. const struct ggml_compute_params * params,
  8835. struct ggml_tensor * dst) {
  8836. const struct ggml_tensor * src0 = dst->src[0];
  8837. assert(params->ith == 0);
  8838. assert(ggml_are_same_shape(src0, dst));
  8839. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8840. return;
  8841. }
  8842. const int n = ggml_nrows(src0);
  8843. const int nc = src0->ne[0];
  8844. assert(dst->nb[0] == sizeof(float));
  8845. assert(src0->nb[0] == sizeof(float));
  8846. for (int i = 0; i < n; i++) {
  8847. ggml_vec_tanh_f32(nc,
  8848. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8849. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8850. }
  8851. }
  8852. static void ggml_compute_forward_tanh(
  8853. const struct ggml_compute_params * params,
  8854. struct ggml_tensor * dst) {
  8855. const struct ggml_tensor * src0 = dst->src[0];
  8856. switch (src0->type) {
  8857. case GGML_TYPE_F32:
  8858. {
  8859. ggml_compute_forward_tanh_f32(params, dst);
  8860. } break;
  8861. default:
  8862. {
  8863. GGML_ASSERT(false);
  8864. } break;
  8865. }
  8866. }
  8867. // ggml_compute_forward_elu
  8868. static void ggml_compute_forward_elu_f32(
  8869. const struct ggml_compute_params * params,
  8870. struct ggml_tensor * dst) {
  8871. const struct ggml_tensor * src0 = dst->src[0];
  8872. assert(params->ith == 0);
  8873. assert(ggml_are_same_shape(src0, dst));
  8874. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8875. return;
  8876. }
  8877. const int n = ggml_nrows(src0);
  8878. const int nc = src0->ne[0];
  8879. assert(dst->nb[0] == sizeof(float));
  8880. assert(src0->nb[0] == sizeof(float));
  8881. for (int i = 0; i < n; i++) {
  8882. ggml_vec_elu_f32(nc,
  8883. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8884. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8885. }
  8886. }
  8887. static void ggml_compute_forward_elu(
  8888. const struct ggml_compute_params * params,
  8889. struct ggml_tensor * dst) {
  8890. const struct ggml_tensor * src0 = dst->src[0];
  8891. switch (src0->type) {
  8892. case GGML_TYPE_F32:
  8893. {
  8894. ggml_compute_forward_elu_f32(params, dst);
  8895. } break;
  8896. default:
  8897. {
  8898. GGML_ASSERT(false);
  8899. } break;
  8900. }
  8901. }
  8902. // ggml_compute_forward_relu
  8903. static void ggml_compute_forward_relu_f32(
  8904. const struct ggml_compute_params * params,
  8905. struct ggml_tensor * dst) {
  8906. const struct ggml_tensor * src0 = dst->src[0];
  8907. assert(params->ith == 0);
  8908. assert(ggml_are_same_shape(src0, dst));
  8909. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8910. return;
  8911. }
  8912. const int n = ggml_nrows(src0);
  8913. const int nc = src0->ne[0];
  8914. assert(dst->nb[0] == sizeof(float));
  8915. assert(src0->nb[0] == sizeof(float));
  8916. for (int i = 0; i < n; i++) {
  8917. ggml_vec_relu_f32(nc,
  8918. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8919. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8920. }
  8921. }
  8922. static void ggml_compute_forward_relu(
  8923. const struct ggml_compute_params * params,
  8924. struct ggml_tensor * dst) {
  8925. const struct ggml_tensor * src0 = dst->src[0];
  8926. switch (src0->type) {
  8927. case GGML_TYPE_F32:
  8928. {
  8929. ggml_compute_forward_relu_f32(params, dst);
  8930. } break;
  8931. default:
  8932. {
  8933. GGML_ASSERT(false);
  8934. } break;
  8935. }
  8936. }
  8937. // ggml_compute_forward_gelu
  8938. static void ggml_compute_forward_gelu_f32(
  8939. const struct ggml_compute_params * params,
  8940. struct ggml_tensor * dst) {
  8941. const struct ggml_tensor * src0 = dst->src[0];
  8942. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8943. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8944. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8945. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8946. return;
  8947. }
  8948. const int ith = params->ith;
  8949. const int nth = params->nth;
  8950. const int nc = src0->ne[0];
  8951. const int nr = ggml_nrows(src0);
  8952. // rows per thread
  8953. const int dr = (nr + nth - 1)/nth;
  8954. // row range for this thread
  8955. const int ir0 = dr*ith;
  8956. const int ir1 = MIN(ir0 + dr, nr);
  8957. for (int i1 = ir0; i1 < ir1; i1++) {
  8958. ggml_vec_gelu_f32(nc,
  8959. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8960. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8961. #ifndef NDEBUG
  8962. for (int k = 0; k < nc; k++) {
  8963. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8964. UNUSED(x);
  8965. assert(!isnan(x));
  8966. assert(!isinf(x));
  8967. }
  8968. #endif
  8969. }
  8970. }
  8971. static void ggml_compute_forward_gelu(
  8972. const struct ggml_compute_params * params,
  8973. struct ggml_tensor * dst) {
  8974. const struct ggml_tensor * src0 = dst->src[0];
  8975. switch (src0->type) {
  8976. case GGML_TYPE_F32:
  8977. {
  8978. ggml_compute_forward_gelu_f32(params, dst);
  8979. } break;
  8980. default:
  8981. {
  8982. GGML_ASSERT(false);
  8983. } break;
  8984. }
  8985. }
  8986. // ggml_compute_forward_gelu_quick
  8987. static void ggml_compute_forward_gelu_quick_f32(
  8988. const struct ggml_compute_params * params,
  8989. struct ggml_tensor * dst) {
  8990. const struct ggml_tensor * src0 = dst->src[0];
  8991. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8992. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8993. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8994. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8995. return;
  8996. }
  8997. const int ith = params->ith;
  8998. const int nth = params->nth;
  8999. const int nc = src0->ne[0];
  9000. const int nr = ggml_nrows(src0);
  9001. // rows per thread
  9002. const int dr = (nr + nth - 1)/nth;
  9003. // row range for this thread
  9004. const int ir0 = dr*ith;
  9005. const int ir1 = MIN(ir0 + dr, nr);
  9006. for (int i1 = ir0; i1 < ir1; i1++) {
  9007. ggml_vec_gelu_quick_f32(nc,
  9008. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9009. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9010. #ifndef NDEBUG
  9011. for (int k = 0; k < nc; k++) {
  9012. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9013. UNUSED(x);
  9014. assert(!isnan(x));
  9015. assert(!isinf(x));
  9016. }
  9017. #endif
  9018. }
  9019. }
  9020. static void ggml_compute_forward_gelu_quick(
  9021. const struct ggml_compute_params * params,
  9022. struct ggml_tensor * dst) {
  9023. const struct ggml_tensor * src0 = dst->src[0];
  9024. switch (src0->type) {
  9025. case GGML_TYPE_F32:
  9026. {
  9027. ggml_compute_forward_gelu_quick_f32(params, dst);
  9028. } break;
  9029. default:
  9030. {
  9031. GGML_ASSERT(false);
  9032. } break;
  9033. }
  9034. }
  9035. // ggml_compute_forward_silu
  9036. static void ggml_compute_forward_silu_f32(
  9037. const struct ggml_compute_params * params,
  9038. struct ggml_tensor * dst) {
  9039. const struct ggml_tensor * src0 = dst->src[0];
  9040. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9041. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9042. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9043. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9044. return;
  9045. }
  9046. const int ith = params->ith;
  9047. const int nth = params->nth;
  9048. const int nc = src0->ne[0];
  9049. const int nr = ggml_nrows(src0);
  9050. // rows per thread
  9051. const int dr = (nr + nth - 1)/nth;
  9052. // row range for this thread
  9053. const int ir0 = dr*ith;
  9054. const int ir1 = MIN(ir0 + dr, nr);
  9055. for (int i1 = ir0; i1 < ir1; i1++) {
  9056. ggml_vec_silu_f32(nc,
  9057. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9058. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9059. #ifndef NDEBUG
  9060. for (int k = 0; k < nc; k++) {
  9061. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9062. UNUSED(x);
  9063. assert(!isnan(x));
  9064. assert(!isinf(x));
  9065. }
  9066. #endif
  9067. }
  9068. }
  9069. static void ggml_compute_forward_silu(
  9070. const struct ggml_compute_params * params,
  9071. struct ggml_tensor * dst) {
  9072. const struct ggml_tensor * src0 = dst->src[0];
  9073. switch (src0->type) {
  9074. case GGML_TYPE_F32:
  9075. {
  9076. ggml_compute_forward_silu_f32(params, dst);
  9077. } break;
  9078. default:
  9079. {
  9080. GGML_ASSERT(false);
  9081. } break;
  9082. }
  9083. }
  9084. // ggml_compute_forward_leaky_relu
  9085. static void ggml_compute_forward_leaky_relu_f32(
  9086. const struct ggml_compute_params * params,
  9087. struct ggml_tensor * dst) {
  9088. const struct ggml_tensor * src0 = dst->src[0];
  9089. assert(params->ith == 0);
  9090. assert(ggml_are_same_shape(src0, dst));
  9091. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9092. return;
  9093. }
  9094. const int n = ggml_nrows(src0);
  9095. const int nc = src0->ne[0];
  9096. float negative_slope;
  9097. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9098. assert(dst->nb[0] == sizeof(float));
  9099. assert(src0->nb[0] == sizeof(float));
  9100. for (int i = 0; i < n; i++) {
  9101. ggml_vec_leaky_relu_f32(nc,
  9102. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9103. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9104. }
  9105. }
  9106. static void ggml_compute_forward_leaky_relu(
  9107. const struct ggml_compute_params * params,
  9108. struct ggml_tensor * dst) {
  9109. const struct ggml_tensor * src0 = dst->src[0];
  9110. switch (src0->type) {
  9111. case GGML_TYPE_F32:
  9112. {
  9113. ggml_compute_forward_leaky_relu_f32(params, dst);
  9114. } break;
  9115. default:
  9116. {
  9117. GGML_ASSERT(false);
  9118. } break;
  9119. }
  9120. }
  9121. // ggml_compute_forward_silu_back
  9122. static void ggml_compute_forward_silu_back_f32(
  9123. const struct ggml_compute_params * params,
  9124. struct ggml_tensor * dst) {
  9125. const struct ggml_tensor * src0 = dst->src[0];
  9126. const struct ggml_tensor * grad = dst->src[1];
  9127. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9128. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9129. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9130. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9131. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9132. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9133. return;
  9134. }
  9135. const int ith = params->ith;
  9136. const int nth = params->nth;
  9137. const int nc = src0->ne[0];
  9138. const int nr = ggml_nrows(src0);
  9139. // rows per thread
  9140. const int dr = (nr + nth - 1)/nth;
  9141. // row range for this thread
  9142. const int ir0 = dr*ith;
  9143. const int ir1 = MIN(ir0 + dr, nr);
  9144. for (int i1 = ir0; i1 < ir1; i1++) {
  9145. ggml_vec_silu_backward_f32(nc,
  9146. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9147. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9148. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9149. #ifndef NDEBUG
  9150. for (int k = 0; k < nc; k++) {
  9151. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9152. UNUSED(x);
  9153. assert(!isnan(x));
  9154. assert(!isinf(x));
  9155. }
  9156. #endif
  9157. }
  9158. }
  9159. static void ggml_compute_forward_silu_back(
  9160. const struct ggml_compute_params * params,
  9161. struct ggml_tensor * dst) {
  9162. const struct ggml_tensor * src0 = dst->src[0];
  9163. switch (src0->type) {
  9164. case GGML_TYPE_F32:
  9165. {
  9166. ggml_compute_forward_silu_back_f32(params, dst);
  9167. } break;
  9168. default:
  9169. {
  9170. GGML_ASSERT(false);
  9171. } break;
  9172. }
  9173. }
  9174. static void ggml_compute_forward_hardswish_f32(
  9175. const struct ggml_compute_params * params,
  9176. struct ggml_tensor * dst) {
  9177. const struct ggml_tensor * src0 = dst->src[0];
  9178. assert(params->ith == 0);
  9179. assert(ggml_are_same_shape(src0, dst));
  9180. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9181. return;
  9182. }
  9183. const int n = ggml_nrows(src0);
  9184. const int nc = src0->ne[0];
  9185. assert(dst->nb[0] == sizeof(float));
  9186. assert(src0->nb[0] == sizeof(float));
  9187. for (int i = 0; i < n; i++) {
  9188. ggml_vec_hardswish_f32(nc,
  9189. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9190. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9191. }
  9192. }
  9193. static void ggml_compute_forward_hardswish(
  9194. const struct ggml_compute_params * params,
  9195. struct ggml_tensor * dst) {
  9196. const struct ggml_tensor * src0 = dst->src[0];
  9197. switch (src0->type) {
  9198. case GGML_TYPE_F32:
  9199. {
  9200. ggml_compute_forward_hardswish_f32(params, dst);
  9201. } break;
  9202. default:
  9203. {
  9204. GGML_ASSERT(false);
  9205. } break;
  9206. }
  9207. }
  9208. static void ggml_compute_forward_hardsigmoid_f32(
  9209. const struct ggml_compute_params * params,
  9210. struct ggml_tensor * dst) {
  9211. const struct ggml_tensor * src0 = dst->src[0];
  9212. assert(params->ith == 0);
  9213. assert(ggml_are_same_shape(src0, dst));
  9214. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9215. return;
  9216. }
  9217. const int n = ggml_nrows(src0);
  9218. const int nc = src0->ne[0];
  9219. assert(dst->nb[0] == sizeof(float));
  9220. assert(src0->nb[0] == sizeof(float));
  9221. for (int i = 0; i < n; i++) {
  9222. ggml_vec_hardsigmoid_f32(nc,
  9223. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9224. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9225. }
  9226. }
  9227. static void ggml_compute_forward_hardsigmoid(
  9228. const struct ggml_compute_params * params,
  9229. struct ggml_tensor * dst) {
  9230. const struct ggml_tensor * src0 = dst->src[0];
  9231. switch (src0->type) {
  9232. case GGML_TYPE_F32:
  9233. {
  9234. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9235. } break;
  9236. default:
  9237. {
  9238. GGML_ASSERT(false);
  9239. } break;
  9240. }
  9241. }
  9242. // ggml_compute_forward_norm
  9243. static void ggml_compute_forward_norm_f32(
  9244. const struct ggml_compute_params * params,
  9245. struct ggml_tensor * dst) {
  9246. const struct ggml_tensor * src0 = dst->src[0];
  9247. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9248. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9249. return;
  9250. }
  9251. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9252. const int ith = params->ith;
  9253. const int nth = params->nth;
  9254. GGML_TENSOR_UNARY_OP_LOCALS
  9255. float eps;
  9256. memcpy(&eps, dst->op_params, sizeof(float));
  9257. GGML_ASSERT(eps > 0.0f);
  9258. // TODO: optimize
  9259. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9260. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9261. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9262. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9263. ggml_float sum = 0.0;
  9264. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9265. sum += (ggml_float)x[i00];
  9266. }
  9267. float mean = sum/ne00;
  9268. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9269. ggml_float sum2 = 0.0;
  9270. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9271. float v = x[i00] - mean;
  9272. y[i00] = v;
  9273. sum2 += (ggml_float)(v*v);
  9274. }
  9275. float variance = sum2/ne00;
  9276. const float scale = 1.0f/sqrtf(variance + eps);
  9277. ggml_vec_scale_f32(ne00, y, scale);
  9278. }
  9279. }
  9280. }
  9281. }
  9282. static void ggml_compute_forward_norm(
  9283. const struct ggml_compute_params * params,
  9284. struct ggml_tensor * dst) {
  9285. const struct ggml_tensor * src0 = dst->src[0];
  9286. switch (src0->type) {
  9287. case GGML_TYPE_F32:
  9288. {
  9289. ggml_compute_forward_norm_f32(params, dst);
  9290. } break;
  9291. default:
  9292. {
  9293. GGML_ASSERT(false);
  9294. } break;
  9295. }
  9296. }
  9297. // ggml_compute_forward_group_rms_norm
  9298. static void ggml_compute_forward_rms_norm_f32(
  9299. const struct ggml_compute_params * params,
  9300. struct ggml_tensor * dst) {
  9301. const struct ggml_tensor * src0 = dst->src[0];
  9302. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9303. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9304. return;
  9305. }
  9306. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9307. const int ith = params->ith;
  9308. const int nth = params->nth;
  9309. GGML_TENSOR_UNARY_OP_LOCALS
  9310. float eps;
  9311. memcpy(&eps, dst->op_params, sizeof(float));
  9312. GGML_ASSERT(eps > 0.0f);
  9313. // TODO: optimize
  9314. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9315. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9316. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9317. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9318. ggml_float sum = 0.0;
  9319. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9320. sum += (ggml_float)(x[i00] * x[i00]);
  9321. }
  9322. const float mean = sum/ne00;
  9323. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9324. memcpy(y, x, ne00 * sizeof(float));
  9325. // for (int i00 = 0; i00 < ne00; i00++) {
  9326. // y[i00] = x[i00];
  9327. // }
  9328. const float scale = 1.0f/sqrtf(mean + eps);
  9329. ggml_vec_scale_f32(ne00, y, scale);
  9330. }
  9331. }
  9332. }
  9333. }
  9334. static void ggml_compute_forward_rms_norm(
  9335. const struct ggml_compute_params * params,
  9336. struct ggml_tensor * dst) {
  9337. const struct ggml_tensor * src0 = dst->src[0];
  9338. switch (src0->type) {
  9339. case GGML_TYPE_F32:
  9340. {
  9341. ggml_compute_forward_rms_norm_f32(params, dst);
  9342. } break;
  9343. default:
  9344. {
  9345. GGML_ASSERT(false);
  9346. } break;
  9347. }
  9348. }
  9349. static void ggml_compute_forward_rms_norm_back_f32(
  9350. const struct ggml_compute_params * params,
  9351. struct ggml_tensor * dst) {
  9352. const struct ggml_tensor * src0 = dst->src[0];
  9353. const struct ggml_tensor * src1 = dst->src[1];
  9354. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9355. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9356. return;
  9357. }
  9358. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9359. const int ith = params->ith;
  9360. const int nth = params->nth;
  9361. GGML_TENSOR_BINARY_OP_LOCALS
  9362. float eps;
  9363. memcpy(&eps, dst->op_params, sizeof(float));
  9364. // TODO: optimize
  9365. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9366. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9367. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9368. // src1 is same shape as src0 => same indices
  9369. const int64_t i11 = i01;
  9370. const int64_t i12 = i02;
  9371. const int64_t i13 = i03;
  9372. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9373. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9374. ggml_float sum_xx = 0.0;
  9375. ggml_float sum_xdz = 0.0;
  9376. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9377. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9378. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9379. }
  9380. //const float mean = (float)(sum_xx)/ne00;
  9381. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9382. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9383. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9384. // we could cache rms from forward pass to improve performance.
  9385. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9386. //const float rms = sqrtf(mean_eps);
  9387. const float rrms = 1.0f / sqrtf(mean_eps);
  9388. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9389. {
  9390. // z = rms_norm(x)
  9391. //
  9392. // rms_norm(src0) =
  9393. // scale(
  9394. // src0,
  9395. // div(
  9396. // 1,
  9397. // sqrt(
  9398. // add(
  9399. // scale(
  9400. // sum(
  9401. // sqr(
  9402. // src0)),
  9403. // (1.0/N)),
  9404. // eps))));
  9405. // postorder:
  9406. // ## op args grad
  9407. // 00 param src0 grad[#00]
  9408. // 01 const 1
  9409. // 02 sqr (#00) grad[#02]
  9410. // 03 sum (#02) grad[#03]
  9411. // 04 const 1/N
  9412. // 05 scale (#03, #04) grad[#05]
  9413. // 06 const eps
  9414. // 07 add (#05, #06) grad[#07]
  9415. // 08 sqrt (#07) grad[#08]
  9416. // 09 div (#01,#08) grad[#09]
  9417. // 10 scale (#00,#09) grad[#10]
  9418. //
  9419. // backward pass, given grad[#10]
  9420. // #10: scale
  9421. // grad[#00] += scale(grad[#10],#09)
  9422. // grad[#09] += sum(mul(grad[#10],#00))
  9423. // #09: div
  9424. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9425. // #08: sqrt
  9426. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9427. // #07: add
  9428. // grad[#05] += grad[#07]
  9429. // #05: scale
  9430. // grad[#03] += scale(grad[#05],#04)
  9431. // #03: sum
  9432. // grad[#02] += repeat(grad[#03], #02)
  9433. // #02:
  9434. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9435. //
  9436. // substitute and simplify:
  9437. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9438. // grad[#02] = repeat(grad[#03], #02)
  9439. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9440. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9441. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9442. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9443. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9444. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9445. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9446. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9447. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9448. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9449. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9450. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9451. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9452. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9453. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9454. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9455. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9456. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9457. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9458. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9459. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9460. // a = b*c + d*e
  9461. // a = b*c*f/f + d*e*f/f
  9462. // a = (b*c*f + d*e*f)*(1/f)
  9463. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9464. // a = (b + d*e/c)*c
  9465. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9466. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9467. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9468. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9469. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9470. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9471. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9472. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9473. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9474. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9475. }
  9476. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9477. // post-order:
  9478. // dx := x
  9479. // dx := scale(dx,-mean_xdz/mean_eps)
  9480. // dx := add(dx, dz)
  9481. // dx := scale(dx, rrms)
  9482. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9483. ggml_vec_cpy_f32 (ne00, dx, x);
  9484. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9485. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9486. ggml_vec_acc_f32 (ne00, dx, dz);
  9487. ggml_vec_scale_f32(ne00, dx, rrms);
  9488. }
  9489. }
  9490. }
  9491. }
  9492. static void ggml_compute_forward_rms_norm_back(
  9493. const struct ggml_compute_params * params,
  9494. struct ggml_tensor * dst) {
  9495. const struct ggml_tensor * src0 = dst->src[0];
  9496. switch (src0->type) {
  9497. case GGML_TYPE_F32:
  9498. {
  9499. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9500. } break;
  9501. default:
  9502. {
  9503. GGML_ASSERT(false);
  9504. } break;
  9505. }
  9506. }
  9507. // ggml_compute_forward_group_norm
  9508. static void ggml_compute_forward_group_norm_f32(
  9509. const struct ggml_compute_params * params,
  9510. struct ggml_tensor * dst) {
  9511. const struct ggml_tensor * src0 = dst->src[0];
  9512. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9513. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9514. return;
  9515. }
  9516. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9517. const int ith = params->ith;
  9518. const int nth = params->nth;
  9519. GGML_TENSOR_UNARY_OP_LOCALS
  9520. const float eps = 1e-6f; // TODO: make this a parameter
  9521. // TODO: optimize
  9522. int n_channels = src0->ne[2];
  9523. int n_groups = dst->op_params[0];
  9524. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9525. for (int i = ith; i < n_groups; i += nth) {
  9526. int start = i * n_channels_per_group;
  9527. int end = start + n_channels_per_group;
  9528. if (end > n_channels) {
  9529. end = n_channels;
  9530. }
  9531. int step = end - start;
  9532. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9533. ggml_float sum = 0.0;
  9534. for (int64_t i02 = start; i02 < end; i02++) {
  9535. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9536. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9537. ggml_float sumr = 0.0;
  9538. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9539. sumr += (ggml_float)x[i00];
  9540. }
  9541. sum += sumr;
  9542. }
  9543. }
  9544. const float mean = sum / (ne00 * ne01 * step);
  9545. ggml_float sum2 = 0.0;
  9546. for (int64_t i02 = start; i02 < end; i02++) {
  9547. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9548. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9549. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9550. ggml_float sumr = 0.0;
  9551. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9552. float v = x[i00] - mean;
  9553. y[i00] = v;
  9554. sumr += (ggml_float)(v * v);
  9555. }
  9556. sum2 += sumr;
  9557. }
  9558. }
  9559. const float variance = sum2 / (ne00 * ne01 * step);
  9560. const float scale = 1.0f / sqrtf(variance + eps);
  9561. for (int64_t i02 = start; i02 < end; i02++) {
  9562. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9563. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9564. ggml_vec_scale_f32(ne00, y, scale);
  9565. }
  9566. }
  9567. }
  9568. }
  9569. }
  9570. static void ggml_compute_forward_group_norm(
  9571. const struct ggml_compute_params * params,
  9572. struct ggml_tensor * dst) {
  9573. const struct ggml_tensor * src0 = dst->src[0];
  9574. switch (src0->type) {
  9575. case GGML_TYPE_F32:
  9576. {
  9577. ggml_compute_forward_group_norm_f32(params, dst);
  9578. } break;
  9579. default:
  9580. {
  9581. GGML_ASSERT(false);
  9582. } break;
  9583. }
  9584. }
  9585. // ggml_compute_forward_mul_mat
  9586. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9587. // helper function to determine if it is better to use BLAS or not
  9588. // for large matrices, BLAS is faster
  9589. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  9590. const struct ggml_tensor * src0 = dst->src[0];
  9591. const struct ggml_tensor * src1 = dst->src[1];
  9592. //const int64_t ne00 = src0->ne[0];
  9593. //const int64_t ne01 = src0->ne[1];
  9594. const int64_t ne10 = src1->ne[0];
  9595. const int64_t ne0 = dst->ne[0];
  9596. const int64_t ne1 = dst->ne[1];
  9597. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  9598. // all the experts for each batch element and the processing would become incredibly slow
  9599. // TODO: find the optimal values for these
  9600. if (dst->op != GGML_OP_MUL_MAT_ID &&
  9601. ggml_is_contiguous(src0) &&
  9602. ggml_is_contiguous(src1) &&
  9603. //src0->type == GGML_TYPE_F32 &&
  9604. src1->type == GGML_TYPE_F32 &&
  9605. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9606. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9607. return true;
  9608. }
  9609. return false;
  9610. }
  9611. #endif
  9612. static void ggml_compute_forward_mul_mat(
  9613. const struct ggml_compute_params * params,
  9614. struct ggml_tensor * dst) {
  9615. const struct ggml_tensor * src0 = dst->src[0];
  9616. const struct ggml_tensor * src1 = dst->src[1];
  9617. int64_t t0 = ggml_perf_time_us();
  9618. UNUSED(t0);
  9619. GGML_TENSOR_BINARY_OP_LOCALS
  9620. const int ith = params->ith;
  9621. const int nth = params->nth;
  9622. const enum ggml_type type = src0->type;
  9623. const bool src1_cont = ggml_is_contiguous(src1);
  9624. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9625. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9626. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9627. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  9628. GGML_ASSERT(ne0 == ne01);
  9629. GGML_ASSERT(ne1 == ne11);
  9630. GGML_ASSERT(ne2 == ne12);
  9631. GGML_ASSERT(ne3 == ne13);
  9632. // we don't support permuted src0 or src1
  9633. GGML_ASSERT(nb00 == ggml_type_size(type));
  9634. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9635. // dst cannot be transposed or permuted
  9636. GGML_ASSERT(nb0 == sizeof(float));
  9637. GGML_ASSERT(nb0 <= nb1);
  9638. GGML_ASSERT(nb1 <= nb2);
  9639. GGML_ASSERT(nb2 <= nb3);
  9640. // broadcast factors
  9641. const int64_t r2 = ne12/ne02;
  9642. const int64_t r3 = ne13/ne03;
  9643. // nb01 >= nb00 - src0 is not transposed
  9644. // compute by src0 rows
  9645. #if defined(GGML_USE_CLBLAST)
  9646. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9647. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  9648. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9649. }
  9650. return;
  9651. }
  9652. #endif
  9653. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9654. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  9655. const int64_t ne_plane = ne01*ne00;
  9656. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  9657. UNUSED(desired_wsize);
  9658. if (params->type == GGML_TASK_TYPE_INIT) {
  9659. if (type != GGML_TYPE_F32) {
  9660. assert(params->wsize >= desired_wsize);
  9661. // parallelize by src0 rows
  9662. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9663. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9664. // broadcast src0 into src1 across 2nd,3rd dimension
  9665. const int64_t i03 = i13/r3;
  9666. const int64_t i02 = i12/r2;
  9667. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9668. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9669. ggml_to_float_t const to_float = type_traits[type].to_float;
  9670. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9671. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  9672. }
  9673. }
  9674. }
  9675. }
  9676. return;
  9677. }
  9678. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9679. return;
  9680. }
  9681. // perform sgemm, parallelization controlled by blas lib
  9682. if (ith != 0) {
  9683. return;
  9684. }
  9685. //const int64_t tgemm0 = ggml_perf_time_us();
  9686. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9687. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9688. const int64_t i03 = i13/r3;
  9689. const int64_t i02 = i12/r2;
  9690. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9691. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9692. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9693. if (type != GGML_TYPE_F32) {
  9694. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9695. }
  9696. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9697. ne1, ne01, ne10,
  9698. 1.0f, y, ne10,
  9699. x, ne00,
  9700. 0.0f, d, ne01);
  9701. }
  9702. }
  9703. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  9704. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9705. return;
  9706. }
  9707. #endif
  9708. #if GGML_USE_LLAMAFILE
  9709. if (src1_cont) {
  9710. for (int64_t i13 = 0; i13 < ne13; i13++)
  9711. for (int64_t i12 = 0; i12 < ne12; i12++)
  9712. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9713. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9714. nb01/ggml_type_size(src0->type),
  9715. (const char *)src1->data + i12*nb12 + i13*nb13,
  9716. nb11/ggml_type_size(src1->type),
  9717. (char *)dst->data + i12*nb2 + i13*nb3,
  9718. nb1/ggml_type_size(dst->type),
  9719. ith, nth,
  9720. params->type,
  9721. src0->type,
  9722. src1->type,
  9723. dst->type))
  9724. goto UseGgmlGemm1;
  9725. return;
  9726. }
  9727. UseGgmlGemm1:;
  9728. #endif
  9729. if (params->type == GGML_TASK_TYPE_INIT) {
  9730. if (ith != 0) {
  9731. return;
  9732. }
  9733. if (src1->type != vec_dot_type) {
  9734. char * wdata = params->wdata;
  9735. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9736. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9737. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9738. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9739. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9740. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9741. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9742. wdata += row_size;
  9743. }
  9744. }
  9745. }
  9746. }
  9747. return;
  9748. }
  9749. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9750. return;
  9751. }
  9752. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9753. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9754. #if GGML_USE_LLAMAFILE
  9755. if (src1->type != vec_dot_type) {
  9756. for (int64_t i13 = 0; i13 < ne13; i13++)
  9757. for (int64_t i12 = 0; i12 < ne12; i12++)
  9758. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9759. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9760. nb01/ggml_type_size(src0->type),
  9761. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  9762. row_size/ggml_type_size(vec_dot_type),
  9763. (char *)dst->data + i12*nb2 + i13*nb3,
  9764. nb1/ggml_type_size(dst->type),
  9765. ith, nth,
  9766. params->type,
  9767. src0->type,
  9768. vec_dot_type,
  9769. dst->type))
  9770. goto UseGgmlGemm2;
  9771. return;
  9772. }
  9773. UseGgmlGemm2:;
  9774. #endif
  9775. const int64_t nr0 = ne01; // src0 rows
  9776. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  9777. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9778. // distribute the thread work across the inner or outer loop based on which one is larger
  9779. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9780. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9781. const int64_t ith0 = ith % nth0;
  9782. const int64_t ith1 = ith / nth0;
  9783. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9784. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9785. const int64_t ir010 = dr0*ith0;
  9786. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9787. const int64_t ir110 = dr1*ith1;
  9788. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9789. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9790. // threads with no work simply yield (not sure if it helps)
  9791. if (ir010 >= ir011 || ir110 >= ir111) {
  9792. sched_yield();
  9793. return;
  9794. }
  9795. assert(ne12 % ne02 == 0);
  9796. assert(ne13 % ne03 == 0);
  9797. // block-tiling attempt
  9798. const int64_t blck_0 = 16;
  9799. const int64_t blck_1 = 16;
  9800. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  9801. int64_t nrc = vec_dot_num_rows;
  9802. // TODO: currently the mmla kernels support only even numbered rows/cols.
  9803. // this check can be removed once they are extended to support odd numbered rows/cols too
  9804. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  9805. nrc = 1;
  9806. }
  9807. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  9808. // attempt to reduce false-sharing (does not seem to make a difference)
  9809. // 16 * 2, accounting for mmla kernels
  9810. float tmp[32];
  9811. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9812. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9813. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  9814. const int64_t i13 = (ir1/(ne12*ne1));
  9815. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  9816. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  9817. // broadcast src0 into src1
  9818. const int64_t i03 = i13/r3;
  9819. const int64_t i02 = i12/r2;
  9820. const int64_t i1 = i11;
  9821. const int64_t i2 = i12;
  9822. const int64_t i3 = i13;
  9823. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9824. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9825. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9826. // the original src1 data pointer, so we should index using the indices directly
  9827. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9828. const char * src1_col = (const char *) wdata +
  9829. (src1_cont || src1->type != vec_dot_type
  9830. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9831. : (i11*nb11 + i12*nb12 + i13*nb13));
  9832. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9833. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9834. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9835. //}
  9836. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  9837. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  9838. }
  9839. for (int cn = 0; cn < nrc; ++cn) {
  9840. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9841. }
  9842. }
  9843. }
  9844. }
  9845. }
  9846. // ggml_compute_forward_mul_mat_id
  9847. static void ggml_compute_forward_mul_mat_id(
  9848. const struct ggml_compute_params * params,
  9849. struct ggml_tensor * dst) {
  9850. const struct ggml_tensor * src0 = dst->src[0];
  9851. const struct ggml_tensor * src1 = dst->src[1];
  9852. const struct ggml_tensor * ids = dst->src[2];
  9853. GGML_TENSOR_BINARY_OP_LOCALS
  9854. const int ith = params->ith;
  9855. const int nth = params->nth;
  9856. const enum ggml_type type = src0->type;
  9857. const bool src1_cont = ggml_is_contiguous(src1);
  9858. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9859. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9860. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9861. // we don't support permuted src0 or src1
  9862. GGML_ASSERT(nb00 == ggml_type_size(type));
  9863. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9864. // dst cannot be transposed or permuted
  9865. GGML_ASSERT(nb0 == sizeof(float));
  9866. GGML_ASSERT(nb0 <= nb1);
  9867. GGML_ASSERT(nb1 <= nb2);
  9868. GGML_ASSERT(nb2 <= nb3);
  9869. // row groups
  9870. const int n_ids = ids->ne[0]; // n_expert_used
  9871. const int n_as = ne02; // n_expert
  9872. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  9873. (char *) params->wdata :
  9874. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  9875. struct mmid_row_mapping {
  9876. int32_t i1;
  9877. int32_t i2;
  9878. };
  9879. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  9880. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  9881. if (params->type == GGML_TASK_TYPE_INIT) {
  9882. if (ith != 0) {
  9883. return;
  9884. }
  9885. char * wdata = params->wdata;
  9886. if (src1->type != vec_dot_type) {
  9887. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9888. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9889. assert(src1->type == GGML_TYPE_F32);
  9890. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9891. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9892. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9893. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9894. wdata += row_size;
  9895. }
  9896. }
  9897. }
  9898. }
  9899. // initialize matrix_row_counts
  9900. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  9901. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  9902. // group rows by src0 matrix
  9903. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  9904. for (int id = 0; id < n_ids; ++id) {
  9905. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  9906. assert(i02 >= 0 && i02 < n_as);
  9907. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  9908. matrix_row_counts[i02] += 1;
  9909. }
  9910. }
  9911. return;
  9912. }
  9913. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9914. return;
  9915. }
  9916. // compute each matrix multiplication in sequence
  9917. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  9918. const int64_t cne1 = matrix_row_counts[cur_a];
  9919. if (cne1 == 0) {
  9920. continue;
  9921. }
  9922. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  9923. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9924. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9925. const int64_t nr0 = ne01; // src0 rows
  9926. const int64_t nr1 = cne1; // src1 rows
  9927. // distribute the thread work across the inner or outer loop based on which one is larger
  9928. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9929. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9930. const int64_t ith0 = ith % nth0;
  9931. const int64_t ith1 = ith / nth0;
  9932. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9933. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9934. const int64_t ir010 = dr0*ith0;
  9935. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9936. const int64_t ir110 = dr1*ith1;
  9937. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9938. // threads with no work simply yield (not sure if it helps)
  9939. //if (ir010 >= ir011 || ir110 >= ir111) {
  9940. // sched_yield();
  9941. // continue;
  9942. //}
  9943. // block-tiling attempt
  9944. const int64_t blck_0 = 16;
  9945. const int64_t blck_1 = 16;
  9946. // attempt to reduce false-sharing (does not seem to make a difference)
  9947. float tmp[16];
  9948. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9949. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9950. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9951. const int64_t _i12 = ir1; // logical row index for this expert
  9952. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  9953. const int id = row_mapping.i1; // selected expert index
  9954. const int64_t i11 = id % ne11;
  9955. const int64_t i12 = row_mapping.i2; // row index in src1
  9956. const int64_t i1 = id; // selected expert index
  9957. const int64_t i2 = i12; // row
  9958. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9959. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9960. // the original src1 data pointer, so we should index using the indices directly
  9961. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9962. const char * src1_col = (const char *) wdata +
  9963. (src1_cont || src1->type != vec_dot_type
  9964. ? (i11 + i12*ne11)*row_size
  9965. : (i11*nb11 + i12*nb12));
  9966. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  9967. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9968. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9969. //}
  9970. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9971. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  9972. }
  9973. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9974. }
  9975. }
  9976. }
  9977. }
  9978. #undef MMID_MATRIX_ROW
  9979. }
  9980. // ggml_compute_forward_out_prod
  9981. static void ggml_compute_forward_out_prod_f32(
  9982. const struct ggml_compute_params * params,
  9983. struct ggml_tensor * dst) {
  9984. const struct ggml_tensor * src0 = dst->src[0];
  9985. const struct ggml_tensor * src1 = dst->src[1];
  9986. // int64_t t0 = ggml_perf_time_us();
  9987. // UNUSED(t0);
  9988. GGML_TENSOR_BINARY_OP_LOCALS
  9989. const int ith = params->ith;
  9990. const int nth = params->nth;
  9991. GGML_ASSERT(ne0 == ne00);
  9992. GGML_ASSERT(ne1 == ne10);
  9993. GGML_ASSERT(ne2 == ne02);
  9994. GGML_ASSERT(ne02 == ne12);
  9995. GGML_ASSERT(ne3 == ne13);
  9996. GGML_ASSERT(ne03 == ne13);
  9997. // we don't support permuted src0 or src1
  9998. GGML_ASSERT(nb00 == sizeof(float));
  9999. // dst cannot be transposed or permuted
  10000. GGML_ASSERT(nb0 == sizeof(float));
  10001. // GGML_ASSERT(nb0 <= nb1);
  10002. // GGML_ASSERT(nb1 <= nb2);
  10003. // GGML_ASSERT(nb2 <= nb3);
  10004. // nb01 >= nb00 - src0 is not transposed
  10005. // compute by src0 rows
  10006. // TODO: #if defined(GGML_USE_CLBLAST)
  10007. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10008. bool use_blas = ggml_is_matrix(src0) &&
  10009. ggml_is_matrix(src1) &&
  10010. ggml_is_contiguous(src0) &&
  10011. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10012. #endif
  10013. if (params->type == GGML_TASK_TYPE_INIT) {
  10014. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10015. if (use_blas) {
  10016. return;
  10017. }
  10018. #endif
  10019. if (ith != 0) {
  10020. return;
  10021. }
  10022. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10023. return;
  10024. }
  10025. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10026. return;
  10027. }
  10028. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10029. if (use_blas) {
  10030. if (params->ith != 0) { // All threads other than the first do no work.
  10031. return;
  10032. }
  10033. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10034. // src0: (k,n)
  10035. // src1: (k,m)
  10036. // dst: (m,n)
  10037. //
  10038. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10039. // Also expressed as (major,minor)
  10040. // a: (m,k): so src1 transposed
  10041. // b: (k,n): so src0
  10042. // c: (m,n)
  10043. //
  10044. // However, if ggml_is_transposed(src1) is true, then
  10045. // src1->data already contains a transposed version, so sgemm mustn't
  10046. // transpose it further.
  10047. int n = src0->ne[0];
  10048. int k = src0->ne[1];
  10049. int m = src1->ne[0];
  10050. int transposeA, lda;
  10051. if (!ggml_is_transposed(src1)) {
  10052. transposeA = CblasTrans;
  10053. lda = m;
  10054. } else {
  10055. transposeA = CblasNoTrans;
  10056. lda = k;
  10057. }
  10058. float * a = (float *) ((char *) src1->data);
  10059. float * b = (float *) ((char *) src0->data);
  10060. float * c = (float *) ((char *) dst->data);
  10061. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10062. return;
  10063. }
  10064. #endif
  10065. // dst[:,:,:,:] = 0
  10066. // for i2,i3:
  10067. // for i1:
  10068. // for i01:
  10069. // for i0:
  10070. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10071. // parallelize by last three dimensions
  10072. // total rows in dst
  10073. const int64_t nr = ne1*ne2*ne3;
  10074. // rows per thread
  10075. const int64_t dr = (nr + nth - 1)/nth;
  10076. // row range for this thread
  10077. const int64_t ir0 = dr*ith;
  10078. const int64_t ir1 = MIN(ir0 + dr, nr);
  10079. // block-tiling attempt
  10080. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10081. const int64_t blck_1 = 16;
  10082. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10083. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10084. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10085. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10086. for (int64_t ir = bir; ir < bir1; ++ir) {
  10087. // dst indices
  10088. const int64_t i3 = ir/(ne2*ne1);
  10089. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10090. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10091. const int64_t i02 = i2;
  10092. const int64_t i03 = i3;
  10093. //const int64_t i10 = i1;
  10094. const int64_t i12 = i2;
  10095. const int64_t i13 = i3;
  10096. #if GGML_VEC_MAD_UNROLL > 2
  10097. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10098. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10099. const int64_t i11 = i01;
  10100. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10101. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10102. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10103. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10104. }
  10105. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10106. const int64_t i11 = i01;
  10107. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10108. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10109. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10110. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10111. }
  10112. #else
  10113. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10114. const int64_t i11 = i01;
  10115. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10116. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10117. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10118. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10119. }
  10120. #endif
  10121. }
  10122. }
  10123. }
  10124. //int64_t t1 = ggml_perf_time_us();
  10125. //static int64_t acc = 0;
  10126. //acc += t1 - t0;
  10127. //if (t1 - t0 > 10) {
  10128. // printf("\n");
  10129. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10130. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10131. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10132. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10133. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10134. //}
  10135. }
  10136. static void ggml_compute_forward_out_prod_q_f32(
  10137. const struct ggml_compute_params * params,
  10138. struct ggml_tensor * dst) {
  10139. const struct ggml_tensor * src0 = dst->src[0];
  10140. const struct ggml_tensor * src1 = dst->src[1];
  10141. // int64_t t0 = ggml_perf_time_us();
  10142. // UNUSED(t0);
  10143. GGML_TENSOR_BINARY_OP_LOCALS;
  10144. const int ith = params->ith;
  10145. const int nth = params->nth;
  10146. const enum ggml_type type = src0->type;
  10147. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10148. GGML_ASSERT(ne02 == ne12);
  10149. GGML_ASSERT(ne03 == ne13);
  10150. GGML_ASSERT(ne2 == ne12);
  10151. GGML_ASSERT(ne3 == ne13);
  10152. // we don't support permuted src0 dim0
  10153. GGML_ASSERT(nb00 == ggml_type_size(type));
  10154. // dst dim0 cannot be transposed or permuted
  10155. GGML_ASSERT(nb0 == sizeof(float));
  10156. // GGML_ASSERT(nb0 <= nb1);
  10157. // GGML_ASSERT(nb1 <= nb2);
  10158. // GGML_ASSERT(nb2 <= nb3);
  10159. GGML_ASSERT(ne0 == ne00);
  10160. GGML_ASSERT(ne1 == ne10);
  10161. GGML_ASSERT(ne2 == ne02);
  10162. GGML_ASSERT(ne3 == ne03);
  10163. // nb01 >= nb00 - src0 is not transposed
  10164. // compute by src0 rows
  10165. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10166. if (params->type == GGML_TASK_TYPE_INIT) {
  10167. if (ith != 0) {
  10168. return;
  10169. }
  10170. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10171. return;
  10172. }
  10173. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10174. return;
  10175. }
  10176. // parallelize by last three dimensions
  10177. // total rows in dst
  10178. const int64_t nr = ne1*ne2*ne3;
  10179. // rows per thread
  10180. const int64_t dr = (nr + nth - 1)/nth;
  10181. // row range for this thread
  10182. const int64_t ir0 = dr*ith;
  10183. const int64_t ir1 = MIN(ir0 + dr, nr);
  10184. // dst[:,:,:,:] = 0
  10185. // for i2,i3:
  10186. // for i1:
  10187. // for i01:
  10188. // for i0:
  10189. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10190. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10191. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10192. // dst indices
  10193. const int64_t i3 = ir/(ne2*ne1);
  10194. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10195. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10196. const int64_t i02 = i2;
  10197. const int64_t i03 = i3;
  10198. //const int64_t i10 = i1;
  10199. const int64_t i12 = i2;
  10200. const int64_t i13 = i3;
  10201. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10202. const int64_t i11 = i01;
  10203. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10204. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10205. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10206. dequantize_row_q(s0, wdata, ne0);
  10207. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10208. }
  10209. }
  10210. //int64_t t1 = ggml_perf_time_us();
  10211. //static int64_t acc = 0;
  10212. //acc += t1 - t0;
  10213. //if (t1 - t0 > 10) {
  10214. // printf("\n");
  10215. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10216. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10217. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10218. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10219. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10220. //}
  10221. }
  10222. static void ggml_compute_forward_out_prod(
  10223. const struct ggml_compute_params * params,
  10224. struct ggml_tensor * dst) {
  10225. const struct ggml_tensor * src0 = dst->src[0];
  10226. switch (src0->type) {
  10227. case GGML_TYPE_Q4_0:
  10228. case GGML_TYPE_Q4_1:
  10229. case GGML_TYPE_Q5_0:
  10230. case GGML_TYPE_Q5_1:
  10231. case GGML_TYPE_Q8_0:
  10232. case GGML_TYPE_Q2_K:
  10233. case GGML_TYPE_Q3_K:
  10234. case GGML_TYPE_Q4_K:
  10235. case GGML_TYPE_Q5_K:
  10236. case GGML_TYPE_Q6_K:
  10237. case GGML_TYPE_IQ2_XXS:
  10238. case GGML_TYPE_IQ2_XS:
  10239. case GGML_TYPE_IQ3_XXS:
  10240. case GGML_TYPE_IQ1_S:
  10241. case GGML_TYPE_IQ1_M:
  10242. case GGML_TYPE_IQ4_NL:
  10243. case GGML_TYPE_IQ4_XS:
  10244. case GGML_TYPE_IQ3_S:
  10245. case GGML_TYPE_IQ2_S:
  10246. {
  10247. ggml_compute_forward_out_prod_q_f32(params, dst);
  10248. } break;
  10249. case GGML_TYPE_F16:
  10250. {
  10251. GGML_ASSERT(false); // todo
  10252. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10253. } break;
  10254. case GGML_TYPE_F32:
  10255. {
  10256. ggml_compute_forward_out_prod_f32(params, dst);
  10257. } break;
  10258. default:
  10259. {
  10260. GGML_ASSERT(false);
  10261. } break;
  10262. }
  10263. }
  10264. // ggml_compute_forward_scale
  10265. static void ggml_compute_forward_scale_f32(
  10266. const struct ggml_compute_params * params,
  10267. struct ggml_tensor * dst) {
  10268. const struct ggml_tensor * src0 = dst->src[0];
  10269. GGML_ASSERT(ggml_is_contiguous(src0));
  10270. GGML_ASSERT(ggml_is_contiguous(dst));
  10271. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10272. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10273. return;
  10274. }
  10275. // scale factor
  10276. float v;
  10277. memcpy(&v, dst->op_params, sizeof(float));
  10278. const int ith = params->ith;
  10279. const int nth = params->nth;
  10280. const int nc = src0->ne[0];
  10281. const int nr = ggml_nrows(src0);
  10282. // rows per thread
  10283. const int dr = (nr + nth - 1)/nth;
  10284. // row range for this thread
  10285. const int ir0 = dr*ith;
  10286. const int ir1 = MIN(ir0 + dr, nr);
  10287. const size_t nb01 = src0->nb[1];
  10288. const size_t nb1 = dst->nb[1];
  10289. for (int i1 = ir0; i1 < ir1; i1++) {
  10290. if (dst->data != src0->data) {
  10291. // src0 is same shape as dst => same indices
  10292. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10293. }
  10294. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10295. }
  10296. }
  10297. static void ggml_compute_forward_scale(
  10298. const struct ggml_compute_params * params,
  10299. struct ggml_tensor * dst) {
  10300. const struct ggml_tensor * src0 = dst->src[0];
  10301. switch (src0->type) {
  10302. case GGML_TYPE_F32:
  10303. {
  10304. ggml_compute_forward_scale_f32(params, dst);
  10305. } break;
  10306. default:
  10307. {
  10308. GGML_ASSERT(false);
  10309. } break;
  10310. }
  10311. }
  10312. // ggml_compute_forward_set
  10313. static void ggml_compute_forward_set_f32(
  10314. const struct ggml_compute_params * params,
  10315. struct ggml_tensor * dst) {
  10316. const struct ggml_tensor * src0 = dst->src[0];
  10317. const struct ggml_tensor * src1 = dst->src[1];
  10318. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10319. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10320. // view src0 and dst with these strides and data offset inbytes during set
  10321. // nb0 is implicitly element_size because src0 and dst are contiguous
  10322. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10323. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10324. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10325. size_t offset = ((int32_t *) dst->op_params)[3];
  10326. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10327. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10328. if (params->ith != 0) {
  10329. return;
  10330. }
  10331. // memcpy needs to be synchronized across threads to avoid race conditions.
  10332. // => do it in INIT phase
  10333. memcpy(
  10334. ((char *) dst->data),
  10335. ((char *) src0->data),
  10336. ggml_nbytes(dst));
  10337. }
  10338. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10339. return;
  10340. }
  10341. const int ith = params->ith;
  10342. const int nth = params->nth;
  10343. const int nr = ggml_nrows(src1);
  10344. const int nc = src1->ne[0];
  10345. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10346. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10347. // src0 and dst as viewed during set
  10348. const size_t nb0 = ggml_element_size(src0);
  10349. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10350. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10351. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10352. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10353. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10354. GGML_ASSERT(nb10 == sizeof(float));
  10355. // rows per thread
  10356. const int dr = (nr + nth - 1)/nth;
  10357. // row range for this thread
  10358. const int ir0 = dr*ith;
  10359. const int ir1 = MIN(ir0 + dr, nr);
  10360. for (int ir = ir0; ir < ir1; ++ir) {
  10361. // src0 and dst are viewed with shape of src1 and offset
  10362. // => same indices
  10363. const int i3 = ir/(ne12*ne11);
  10364. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10365. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10366. ggml_vec_cpy_f32(nc,
  10367. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10368. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10369. }
  10370. }
  10371. static void ggml_compute_forward_set(
  10372. const struct ggml_compute_params * params,
  10373. struct ggml_tensor * dst) {
  10374. const struct ggml_tensor * src0 = dst->src[0];
  10375. switch (src0->type) {
  10376. case GGML_TYPE_F32:
  10377. {
  10378. ggml_compute_forward_set_f32(params, dst);
  10379. } break;
  10380. case GGML_TYPE_F16:
  10381. case GGML_TYPE_BF16:
  10382. case GGML_TYPE_Q4_0:
  10383. case GGML_TYPE_Q4_1:
  10384. case GGML_TYPE_Q5_0:
  10385. case GGML_TYPE_Q5_1:
  10386. case GGML_TYPE_Q8_0:
  10387. case GGML_TYPE_Q8_1:
  10388. case GGML_TYPE_Q2_K:
  10389. case GGML_TYPE_Q3_K:
  10390. case GGML_TYPE_Q4_K:
  10391. case GGML_TYPE_Q5_K:
  10392. case GGML_TYPE_Q6_K:
  10393. case GGML_TYPE_IQ2_XXS:
  10394. case GGML_TYPE_IQ2_XS:
  10395. case GGML_TYPE_IQ3_XXS:
  10396. case GGML_TYPE_IQ1_S:
  10397. case GGML_TYPE_IQ1_M:
  10398. case GGML_TYPE_IQ4_NL:
  10399. case GGML_TYPE_IQ4_XS:
  10400. case GGML_TYPE_IQ3_S:
  10401. case GGML_TYPE_IQ2_S:
  10402. default:
  10403. {
  10404. GGML_ASSERT(false);
  10405. } break;
  10406. }
  10407. }
  10408. // ggml_compute_forward_cpy
  10409. static void ggml_compute_forward_cpy(
  10410. const struct ggml_compute_params * params,
  10411. struct ggml_tensor * dst) {
  10412. ggml_compute_forward_dup(params, dst);
  10413. }
  10414. // ggml_compute_forward_cont
  10415. static void ggml_compute_forward_cont(
  10416. const struct ggml_compute_params * params,
  10417. struct ggml_tensor * dst) {
  10418. ggml_compute_forward_dup(params, dst);
  10419. }
  10420. // ggml_compute_forward_reshape
  10421. static void ggml_compute_forward_reshape(
  10422. const struct ggml_compute_params * params,
  10423. struct ggml_tensor * dst) {
  10424. // NOP
  10425. UNUSED(params);
  10426. UNUSED(dst);
  10427. }
  10428. // ggml_compute_forward_view
  10429. static void ggml_compute_forward_view(
  10430. const struct ggml_compute_params * params,
  10431. const struct ggml_tensor * dst) {
  10432. // NOP
  10433. UNUSED(params);
  10434. UNUSED(dst);
  10435. }
  10436. // ggml_compute_forward_permute
  10437. static void ggml_compute_forward_permute(
  10438. const struct ggml_compute_params * params,
  10439. const struct ggml_tensor * dst) {
  10440. // NOP
  10441. UNUSED(params);
  10442. UNUSED(dst);
  10443. }
  10444. // ggml_compute_forward_transpose
  10445. static void ggml_compute_forward_transpose(
  10446. const struct ggml_compute_params * params,
  10447. const struct ggml_tensor * dst) {
  10448. // NOP
  10449. UNUSED(params);
  10450. UNUSED(dst);
  10451. }
  10452. // ggml_compute_forward_get_rows
  10453. static void ggml_compute_forward_get_rows_q(
  10454. const struct ggml_compute_params * params,
  10455. struct ggml_tensor * dst) {
  10456. const struct ggml_tensor * src0 = dst->src[0];
  10457. const struct ggml_tensor * src1 = dst->src[1];
  10458. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10459. return;
  10460. }
  10461. GGML_TENSOR_BINARY_OP_LOCALS
  10462. const int64_t nc = ne00;
  10463. const int64_t nr = ggml_nelements(src1);
  10464. const enum ggml_type type = src0->type;
  10465. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10466. assert(ne0 == nc);
  10467. assert(ne02 == ne11);
  10468. assert(nb00 == ggml_type_size(type));
  10469. assert(ggml_nrows(dst) == nr);
  10470. const int ith = params->ith;
  10471. const int nth = params->nth;
  10472. // rows per thread
  10473. const int dr = (nr + nth - 1)/nth;
  10474. // row range for this thread
  10475. const int ir0 = dr*ith;
  10476. const int ir1 = MIN(ir0 + dr, nr);
  10477. for (int64_t i = ir0; i < ir1; ++i) {
  10478. const int64_t i12 = i/(ne11*ne10);
  10479. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10480. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10481. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10482. dequantize_row_q(
  10483. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10484. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10485. }
  10486. }
  10487. static void ggml_compute_forward_get_rows_f16(
  10488. const struct ggml_compute_params * params,
  10489. struct ggml_tensor * dst) {
  10490. const struct ggml_tensor * src0 = dst->src[0];
  10491. const struct ggml_tensor * src1 = dst->src[1];
  10492. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10493. return;
  10494. }
  10495. GGML_TENSOR_BINARY_OP_LOCALS
  10496. const int64_t nc = ne00;
  10497. const int64_t nr = ggml_nelements(src1);
  10498. assert(ne0 == nc);
  10499. assert(ne02 == ne11);
  10500. assert(nb00 == sizeof(ggml_fp16_t));
  10501. assert(ggml_nrows(dst) == nr);
  10502. const int ith = params->ith;
  10503. const int nth = params->nth;
  10504. // rows per thread
  10505. const int dr = (nr + nth - 1)/nth;
  10506. // row range for this thread
  10507. const int ir0 = dr*ith;
  10508. const int ir1 = MIN(ir0 + dr, nr);
  10509. for (int64_t i = ir0; i < ir1; ++i) {
  10510. const int64_t i12 = i/(ne11*ne10);
  10511. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10512. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10513. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10514. ggml_fp16_to_fp32_row(
  10515. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10516. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10517. }
  10518. }
  10519. static void ggml_compute_forward_get_rows_bf16(
  10520. const struct ggml_compute_params * params,
  10521. struct ggml_tensor * dst) {
  10522. const struct ggml_tensor * src0 = dst->src[0];
  10523. const struct ggml_tensor * src1 = dst->src[1];
  10524. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10525. return;
  10526. }
  10527. GGML_TENSOR_BINARY_OP_LOCALS
  10528. const int64_t nc = ne00;
  10529. const int64_t nr = ggml_nelements(src1);
  10530. assert(ne0 == nc);
  10531. assert(ne02 == ne11);
  10532. assert(nb00 == sizeof(ggml_bf16_t));
  10533. assert(ggml_nrows(dst) == nr);
  10534. const int ith = params->ith;
  10535. const int nth = params->nth;
  10536. // rows per thread
  10537. const int dr = (nr + nth - 1)/nth;
  10538. // row range for this thread
  10539. const int ir0 = dr*ith;
  10540. const int ir1 = MIN(ir0 + dr, nr);
  10541. for (int64_t i = ir0; i < ir1; ++i) {
  10542. const int64_t i12 = i/(ne11*ne10);
  10543. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10544. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10545. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10546. ggml_bf16_to_fp32_row(
  10547. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10548. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10549. }
  10550. }
  10551. static void ggml_compute_forward_get_rows_f32(
  10552. const struct ggml_compute_params * params,
  10553. struct ggml_tensor * dst) {
  10554. const struct ggml_tensor * src0 = dst->src[0];
  10555. const struct ggml_tensor * src1 = dst->src[1];
  10556. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10557. return;
  10558. }
  10559. GGML_TENSOR_BINARY_OP_LOCALS
  10560. const int64_t nc = ne00;
  10561. const int64_t nr = ggml_nelements(src1);
  10562. assert(ne0 == nc);
  10563. assert(ne02 == ne11);
  10564. assert(nb00 == sizeof(float));
  10565. assert(ggml_nrows(dst) == nr);
  10566. const int ith = params->ith;
  10567. const int nth = params->nth;
  10568. // rows per thread
  10569. const int dr = (nr + nth - 1)/nth;
  10570. // row range for this thread
  10571. const int ir0 = dr*ith;
  10572. const int ir1 = MIN(ir0 + dr, nr);
  10573. for (int64_t i = ir0; i < ir1; ++i) {
  10574. const int64_t i12 = i/(ne11*ne10);
  10575. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10576. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10577. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10578. ggml_vec_cpy_f32(nc,
  10579. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10580. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10581. }
  10582. }
  10583. static void ggml_compute_forward_get_rows(
  10584. const struct ggml_compute_params * params,
  10585. struct ggml_tensor * dst) {
  10586. const struct ggml_tensor * src0 = dst->src[0];
  10587. switch (src0->type) {
  10588. case GGML_TYPE_Q4_0:
  10589. case GGML_TYPE_Q4_1:
  10590. case GGML_TYPE_Q5_0:
  10591. case GGML_TYPE_Q5_1:
  10592. case GGML_TYPE_Q8_0:
  10593. case GGML_TYPE_Q8_1:
  10594. case GGML_TYPE_Q2_K:
  10595. case GGML_TYPE_Q3_K:
  10596. case GGML_TYPE_Q4_K:
  10597. case GGML_TYPE_Q5_K:
  10598. case GGML_TYPE_Q6_K:
  10599. case GGML_TYPE_IQ2_XXS:
  10600. case GGML_TYPE_IQ2_XS:
  10601. case GGML_TYPE_IQ3_XXS:
  10602. case GGML_TYPE_IQ1_S:
  10603. case GGML_TYPE_IQ1_M:
  10604. case GGML_TYPE_IQ4_NL:
  10605. case GGML_TYPE_IQ4_XS:
  10606. case GGML_TYPE_IQ3_S:
  10607. case GGML_TYPE_IQ2_S:
  10608. {
  10609. ggml_compute_forward_get_rows_q(params, dst);
  10610. } break;
  10611. case GGML_TYPE_F16:
  10612. {
  10613. ggml_compute_forward_get_rows_f16(params, dst);
  10614. } break;
  10615. case GGML_TYPE_BF16:
  10616. {
  10617. ggml_compute_forward_get_rows_bf16(params, dst);
  10618. } break;
  10619. case GGML_TYPE_F32:
  10620. case GGML_TYPE_I32:
  10621. {
  10622. ggml_compute_forward_get_rows_f32(params, dst);
  10623. } break;
  10624. default:
  10625. {
  10626. GGML_ASSERT(false);
  10627. } break;
  10628. }
  10629. //static bool first = true;
  10630. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10631. //if (first) {
  10632. // first = false;
  10633. //} else {
  10634. // for (int k = 0; k < dst->ne[1]; ++k) {
  10635. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10636. // for (int i = 0; i < 16; ++i) {
  10637. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10638. // }
  10639. // printf("\n");
  10640. // }
  10641. // printf("\n");
  10642. // }
  10643. // printf("\n");
  10644. // exit(0);
  10645. //}
  10646. }
  10647. // ggml_compute_forward_get_rows_back
  10648. static void ggml_compute_forward_get_rows_back_f32_f16(
  10649. const struct ggml_compute_params * params,
  10650. struct ggml_tensor * dst) {
  10651. const struct ggml_tensor * src0 = dst->src[0];
  10652. const struct ggml_tensor * src1 = dst->src[1];
  10653. GGML_ASSERT(params->ith == 0);
  10654. GGML_ASSERT(ggml_is_contiguous(dst));
  10655. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10656. if (params->type == GGML_TASK_TYPE_INIT) {
  10657. if (params->ith != 0) {
  10658. return;
  10659. }
  10660. memset(dst->data, 0, ggml_nbytes(dst));
  10661. }
  10662. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10663. return;
  10664. }
  10665. const int nc = src0->ne[0];
  10666. const int nr = ggml_nelements(src1);
  10667. GGML_ASSERT( dst->ne[0] == nc);
  10668. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10669. for (int i = 0; i < nr; ++i) {
  10670. const int r = ((int32_t *) src1->data)[i];
  10671. for (int j = 0; j < nc; ++j) {
  10672. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10673. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10674. }
  10675. }
  10676. }
  10677. static void ggml_compute_forward_get_rows_back_f32(
  10678. const struct ggml_compute_params * params,
  10679. struct ggml_tensor * dst) {
  10680. const struct ggml_tensor * src0 = dst->src[0];
  10681. const struct ggml_tensor * src1 = dst->src[1];
  10682. GGML_ASSERT(params->ith == 0);
  10683. GGML_ASSERT(ggml_is_contiguous(dst));
  10684. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10685. if (params->type == GGML_TASK_TYPE_INIT) {
  10686. if (params->ith != 0) {
  10687. return;
  10688. }
  10689. memset(dst->data, 0, ggml_nbytes(dst));
  10690. }
  10691. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10692. return;
  10693. }
  10694. const int nc = src0->ne[0];
  10695. const int nr = ggml_nelements(src1);
  10696. GGML_ASSERT( dst->ne[0] == nc);
  10697. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10698. for (int i = 0; i < nr; ++i) {
  10699. const int r = ((int32_t *) src1->data)[i];
  10700. ggml_vec_add_f32(nc,
  10701. (float *) ((char *) dst->data + r*dst->nb[1]),
  10702. (float *) ((char *) dst->data + r*dst->nb[1]),
  10703. (float *) ((char *) src0->data + i*src0->nb[1]));
  10704. }
  10705. }
  10706. static void ggml_compute_forward_get_rows_back(
  10707. const struct ggml_compute_params * params,
  10708. struct ggml_tensor * dst) {
  10709. const struct ggml_tensor * src0 = dst->src[0];
  10710. switch (src0->type) {
  10711. case GGML_TYPE_F16:
  10712. {
  10713. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  10714. } break;
  10715. case GGML_TYPE_F32:
  10716. {
  10717. ggml_compute_forward_get_rows_back_f32(params, dst);
  10718. } break;
  10719. default:
  10720. {
  10721. GGML_ASSERT(false);
  10722. } break;
  10723. }
  10724. //static bool first = true;
  10725. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10726. //if (first) {
  10727. // first = false;
  10728. //} else {
  10729. // for (int k = 0; k < dst->ne[1]; ++k) {
  10730. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10731. // for (int i = 0; i < 16; ++i) {
  10732. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10733. // }
  10734. // printf("\n");
  10735. // }
  10736. // printf("\n");
  10737. // }
  10738. // printf("\n");
  10739. // exit(0);
  10740. //}
  10741. }
  10742. // ggml_compute_forward_diag
  10743. static void ggml_compute_forward_diag_f32(
  10744. const struct ggml_compute_params * params,
  10745. struct ggml_tensor * dst) {
  10746. const struct ggml_tensor * src0 = dst->src[0];
  10747. GGML_ASSERT(params->ith == 0);
  10748. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10749. return;
  10750. }
  10751. // TODO: handle transposed/permuted matrices
  10752. GGML_TENSOR_UNARY_OP_LOCALS
  10753. GGML_ASSERT(ne00 == ne0);
  10754. GGML_ASSERT(ne00 == ne1);
  10755. GGML_ASSERT(ne01 == 1);
  10756. GGML_ASSERT(ne02 == ne2);
  10757. GGML_ASSERT(ne03 == ne3);
  10758. GGML_ASSERT(nb00 == sizeof(float));
  10759. GGML_ASSERT(nb0 == sizeof(float));
  10760. for (int i3 = 0; i3 < ne3; i3++) {
  10761. for (int i2 = 0; i2 < ne2; i2++) {
  10762. for (int i1 = 0; i1 < ne1; i1++) {
  10763. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  10764. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  10765. for (int i0 = 0; i0 < i1; i0++) {
  10766. d[i0] = 0;
  10767. }
  10768. d[i1] = s[i1];
  10769. for (int i0 = i1+1; i0 < ne0; i0++) {
  10770. d[i0] = 0;
  10771. }
  10772. }
  10773. }
  10774. }
  10775. }
  10776. static void ggml_compute_forward_diag(
  10777. const struct ggml_compute_params * params,
  10778. struct ggml_tensor * dst) {
  10779. const struct ggml_tensor * src0 = dst->src[0];
  10780. switch (src0->type) {
  10781. case GGML_TYPE_F32:
  10782. {
  10783. ggml_compute_forward_diag_f32(params, dst);
  10784. } break;
  10785. default:
  10786. {
  10787. GGML_ASSERT(false);
  10788. } break;
  10789. }
  10790. }
  10791. // ggml_compute_forward_diag_mask_inf
  10792. static void ggml_compute_forward_diag_mask_f32(
  10793. const struct ggml_compute_params * params,
  10794. struct ggml_tensor * dst,
  10795. const float value) {
  10796. const struct ggml_tensor * src0 = dst->src[0];
  10797. const int ith = params->ith;
  10798. const int nth = params->nth;
  10799. const int n_past = ((int32_t *) dst->op_params)[0];
  10800. const bool inplace = src0->data == dst->data;
  10801. GGML_ASSERT(n_past >= 0);
  10802. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10803. if (ith != 0) {
  10804. return;
  10805. }
  10806. // memcpy needs to be synchronized across threads to avoid race conditions.
  10807. // => do it in INIT phase
  10808. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  10809. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10810. memcpy(
  10811. ((char *) dst->data),
  10812. ((char *) src0->data),
  10813. ggml_nbytes(dst));
  10814. }
  10815. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10816. return;
  10817. }
  10818. // TODO: handle transposed/permuted matrices
  10819. const int n = ggml_nrows(src0);
  10820. const int nc = src0->ne[0];
  10821. const int nr = src0->ne[1];
  10822. const int nz = n/nr;
  10823. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10824. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10825. for (int k = 0; k < nz; k++) {
  10826. for (int j = ith; j < nr; j += nth) {
  10827. for (int i = n_past; i < nc; i++) {
  10828. if (i > n_past + j) {
  10829. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  10830. }
  10831. }
  10832. }
  10833. }
  10834. }
  10835. static void ggml_compute_forward_diag_mask_inf(
  10836. const struct ggml_compute_params * params,
  10837. struct ggml_tensor * dst) {
  10838. const struct ggml_tensor * src0 = dst->src[0];
  10839. switch (src0->type) {
  10840. case GGML_TYPE_F32:
  10841. {
  10842. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  10843. } break;
  10844. default:
  10845. {
  10846. GGML_ASSERT(false);
  10847. } break;
  10848. }
  10849. }
  10850. static void ggml_compute_forward_diag_mask_zero(
  10851. const struct ggml_compute_params * params,
  10852. struct ggml_tensor * dst) {
  10853. const struct ggml_tensor * src0 = dst->src[0];
  10854. switch (src0->type) {
  10855. case GGML_TYPE_F32:
  10856. {
  10857. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  10858. } break;
  10859. default:
  10860. {
  10861. GGML_ASSERT(false);
  10862. } break;
  10863. }
  10864. }
  10865. // ggml_compute_forward_soft_max
  10866. static void ggml_compute_forward_soft_max_f32(
  10867. const struct ggml_compute_params * params,
  10868. struct ggml_tensor * dst) {
  10869. const struct ggml_tensor * src0 = dst->src[0];
  10870. const struct ggml_tensor * src1 = dst->src[1];
  10871. const struct ggml_tensor * src2 = dst->src[2];
  10872. assert(ggml_is_contiguous(dst));
  10873. assert(ggml_are_same_shape(src0, dst));
  10874. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10875. return;
  10876. }
  10877. float scale = 1.0f;
  10878. float max_bias = 0.0f;
  10879. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  10880. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  10881. // TODO: handle transposed/permuted matrices
  10882. const int ith = params->ith;
  10883. const int nth = params->nth;
  10884. GGML_TENSOR_UNARY_OP_LOCALS
  10885. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  10886. // TODO: is this supposed to be ceil instead of floor?
  10887. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  10888. const uint32_t n_head_kv = ne02;
  10889. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  10890. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  10891. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  10892. const int nc = src0->ne[0];
  10893. const int nr = ggml_nrows(src0);
  10894. // rows per thread
  10895. const int dr = (nr + nth - 1)/nth;
  10896. // row range for this thread
  10897. const int ir0 = dr*ith;
  10898. const int ir1 = MIN(ir0 + dr, nr);
  10899. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  10900. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  10901. ggml_fp16_t * pos_f16 = src2 ? (ggml_fp16_t *) src2->data : src0->data;
  10902. float * pos_f32 = src2 ? (float *) src2->data : src0->data;
  10903. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16) || (src2 && src2->type == GGML_TYPE_F16);
  10904. for (int i1 = ir0; i1 < ir1; i1++) {
  10905. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  10906. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  10907. // broadcast the mask across rows
  10908. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10909. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10910. ggml_vec_cpy_f32 (nc, wp, sp);
  10911. ggml_vec_scale_f32(nc, wp, scale);
  10912. if (mp_f32) {
  10913. if (use_f16) {
  10914. for (int i = 0; i < nc; ++i) {
  10915. wp[i] += GGML_FP16_TO_FP32(mp_f16[i]);
  10916. }
  10917. } else {
  10918. for (int i = 0; i < nc; ++i) {
  10919. wp[i] += mp_f32[i];
  10920. }
  10921. }
  10922. }
  10923. // ALiBi bias
  10924. if (max_bias > 0.0f) {
  10925. const uint32_t h = (i1/ne01)%ne02; // head
  10926. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  10927. if (use_f16) {
  10928. for (int i = 0; i < nc; ++i) {
  10929. wp[i] += slope*GGML_FP16_TO_FP32(pos_f16[i]);
  10930. }
  10931. } else {
  10932. for (int i = 0; i < nc; ++i) {
  10933. wp[i] += slope*pos_f32[i];
  10934. }
  10935. }
  10936. }
  10937. #ifndef NDEBUG
  10938. for (int i = 0; i < nc; ++i) {
  10939. //printf("p[%d] = %f\n", i, p[i]);
  10940. assert(!isnan(wp[i]));
  10941. }
  10942. #endif
  10943. float max = -INFINITY;
  10944. ggml_vec_max_f32(nc, &max, wp);
  10945. ggml_float sum = 0.0;
  10946. uint16_t scvt;
  10947. for (int i = 0; i < nc; i++) {
  10948. if (wp[i] == -INFINITY) {
  10949. dp[i] = 0.0f;
  10950. } else {
  10951. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  10952. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  10953. memcpy(&scvt, &s, sizeof(scvt));
  10954. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  10955. sum += (ggml_float)val;
  10956. dp[i] = val;
  10957. }
  10958. }
  10959. assert(sum > 0.0);
  10960. sum = 1.0/sum;
  10961. ggml_vec_scale_f32(nc, dp, sum);
  10962. #ifndef NDEBUG
  10963. for (int i = 0; i < nc; ++i) {
  10964. assert(!isnan(dp[i]));
  10965. assert(!isinf(dp[i]));
  10966. }
  10967. #endif
  10968. }
  10969. }
  10970. static void ggml_compute_forward_soft_max(
  10971. const struct ggml_compute_params * params,
  10972. struct ggml_tensor * dst) {
  10973. const struct ggml_tensor * src0 = dst->src[0];
  10974. switch (src0->type) {
  10975. case GGML_TYPE_F32:
  10976. {
  10977. ggml_compute_forward_soft_max_f32(params, dst);
  10978. } break;
  10979. default:
  10980. {
  10981. GGML_ASSERT(false);
  10982. } break;
  10983. }
  10984. }
  10985. // ggml_compute_forward_soft_max_back
  10986. static void ggml_compute_forward_soft_max_back_f32(
  10987. const struct ggml_compute_params * params,
  10988. struct ggml_tensor * dst) {
  10989. const struct ggml_tensor * src0 = dst->src[0];
  10990. const struct ggml_tensor * src1 = dst->src[1];
  10991. GGML_ASSERT(ggml_is_contiguous(src0));
  10992. GGML_ASSERT(ggml_is_contiguous(src1));
  10993. GGML_ASSERT(ggml_is_contiguous(dst));
  10994. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10995. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10996. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10997. return;
  10998. }
  10999. // TODO: handle transposed/permuted matrices
  11000. const int ith = params->ith;
  11001. const int nth = params->nth;
  11002. const int nc = src0->ne[0];
  11003. const int nr = ggml_nrows(src0);
  11004. // rows per thread
  11005. const int dr = (nr + nth - 1)/nth;
  11006. // row range for this thread
  11007. const int ir0 = dr*ith;
  11008. const int ir1 = MIN(ir0 + dr, nr);
  11009. for (int i1 = ir0; i1 < ir1; i1++) {
  11010. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11011. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11012. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11013. #ifndef NDEBUG
  11014. for (int i = 0; i < nc; ++i) {
  11015. //printf("p[%d] = %f\n", i, p[i]);
  11016. assert(!isnan(dy[i]));
  11017. assert(!isnan(y[i]));
  11018. }
  11019. #endif
  11020. // Jii = yi - yi*yi
  11021. // Jij = -yi*yj
  11022. // J = diag(y)-y.T*y
  11023. // dx = J * dy
  11024. // dxk = sum_i(Jki * dyi)
  11025. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11026. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11027. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11028. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11029. // dxk = -yk * dot(y, dy) + yk*dyk
  11030. // dxk = yk * (- dot(y, dy) + dyk)
  11031. // dxk = yk * (dyk - dot(y, dy))
  11032. //
  11033. // post-order:
  11034. // dot_y_dy := dot(y, dy)
  11035. // dx := dy
  11036. // dx := dx - dot_y_dy
  11037. // dx := dx * y
  11038. // linear runtime, no additional memory
  11039. float dot_y_dy = 0;
  11040. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11041. ggml_vec_cpy_f32 (nc, dx, dy);
  11042. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11043. ggml_vec_mul_f32 (nc, dx, dx, y);
  11044. #ifndef NDEBUG
  11045. for (int i = 0; i < nc; ++i) {
  11046. assert(!isnan(dx[i]));
  11047. assert(!isinf(dx[i]));
  11048. }
  11049. #endif
  11050. }
  11051. }
  11052. static void ggml_compute_forward_soft_max_back(
  11053. const struct ggml_compute_params * params,
  11054. struct ggml_tensor * dst) {
  11055. const struct ggml_tensor * src0 = dst->src[0];
  11056. switch (src0->type) {
  11057. case GGML_TYPE_F32:
  11058. {
  11059. ggml_compute_forward_soft_max_back_f32(params, dst);
  11060. } break;
  11061. default:
  11062. {
  11063. GGML_ASSERT(false);
  11064. } break;
  11065. }
  11066. }
  11067. // ggml_compute_forward_alibi
  11068. static void ggml_compute_forward_alibi_f32(
  11069. const struct ggml_compute_params * params,
  11070. struct ggml_tensor * dst) {
  11071. const struct ggml_tensor * src0 = dst->src[0];
  11072. assert(params->ith == 0);
  11073. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11074. return;
  11075. }
  11076. //const int n_past = ((int32_t *) dst->op_params)[0];
  11077. const int n_head = ((int32_t *) dst->op_params)[1];
  11078. float max_bias;
  11079. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  11080. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  11081. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  11082. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  11083. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  11084. const int64_t n = ggml_nrows(src0);
  11085. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  11086. const size_t nb0 = src0->nb[0];
  11087. const size_t nb1 = src0->nb[1];
  11088. const size_t nb2 = src0->nb[2];
  11089. //const int nb3 = src0->nb[3];
  11090. GGML_ASSERT(nb0 == sizeof(float));
  11091. GGML_ASSERT(n_head == ne2);
  11092. // add alibi to src0 (KQ_scaled)
  11093. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  11094. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  11095. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  11096. for (int64_t k = 0; k < ne2_ne3; k++) {
  11097. // TODO: k*nb2 or k*nb3
  11098. float m_k;
  11099. if (k < n_heads_log2_floor) {
  11100. m_k = powf(m0, k + 1);
  11101. } else {
  11102. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  11103. }
  11104. for (int64_t i = 0; i < ne0; i++) {
  11105. for (int64_t j = 0; j < ne1; j++) {
  11106. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  11107. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  11108. pdst[0] = i * m_k + src[0];
  11109. }
  11110. }
  11111. }
  11112. }
  11113. static void ggml_compute_forward_alibi_f16(
  11114. const struct ggml_compute_params * params,
  11115. struct ggml_tensor * dst) {
  11116. const struct ggml_tensor * src0 = dst->src[0];
  11117. assert(params->ith == 0);
  11118. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11119. return;
  11120. }
  11121. //const int n_past = ((int32_t *) dst->op_params)[0];
  11122. const int n_head = ((int32_t *) dst->op_params)[1];
  11123. float max_bias;
  11124. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  11125. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  11126. const int ne1 = src0->ne[1]; // seq_len_without_past
  11127. const int ne2 = src0->ne[2]; // n_head -> this is k
  11128. //const int ne3 = src0->ne[3]; // 1 -> bsz
  11129. const int n = ggml_nrows(src0);
  11130. const int ne2_ne3 = n/ne1; // ne2*ne3
  11131. const int nb0 = src0->nb[0];
  11132. const int nb1 = src0->nb[1];
  11133. const int nb2 = src0->nb[2];
  11134. //const int nb3 = src0->nb[3];
  11135. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11136. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  11137. GGML_ASSERT(n_head == ne2);
  11138. // add alibi to src0 (KQ_scaled)
  11139. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  11140. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  11141. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  11142. for (int k = 0; k < ne2_ne3; k++) {
  11143. // TODO: k*nb2 or k*nb3
  11144. float m_k;
  11145. if (k < n_heads_log2_floor) {
  11146. m_k = powf(m0, k + 1);
  11147. } else {
  11148. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  11149. }
  11150. for (int i = 0; i < ne0; i++) {
  11151. for (int j = 0; j < ne1; j++) {
  11152. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  11153. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  11154. // we return F32
  11155. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  11156. }
  11157. }
  11158. }
  11159. }
  11160. static void ggml_compute_forward_alibi(
  11161. const struct ggml_compute_params * params,
  11162. struct ggml_tensor * dst) {
  11163. const struct ggml_tensor * src0 = dst->src[0];
  11164. switch (src0->type) {
  11165. case GGML_TYPE_F16:
  11166. {
  11167. ggml_compute_forward_alibi_f16(params, dst);
  11168. } break;
  11169. case GGML_TYPE_F32:
  11170. {
  11171. ggml_compute_forward_alibi_f32(params, dst);
  11172. } break;
  11173. case GGML_TYPE_BF16:
  11174. case GGML_TYPE_Q4_0:
  11175. case GGML_TYPE_Q4_1:
  11176. case GGML_TYPE_Q5_0:
  11177. case GGML_TYPE_Q5_1:
  11178. case GGML_TYPE_Q8_0:
  11179. case GGML_TYPE_Q8_1:
  11180. case GGML_TYPE_Q2_K:
  11181. case GGML_TYPE_Q3_K:
  11182. case GGML_TYPE_Q4_K:
  11183. case GGML_TYPE_Q5_K:
  11184. case GGML_TYPE_Q6_K:
  11185. case GGML_TYPE_IQ2_XXS:
  11186. case GGML_TYPE_IQ2_XS:
  11187. case GGML_TYPE_IQ3_XXS:
  11188. case GGML_TYPE_IQ1_S:
  11189. case GGML_TYPE_IQ1_M:
  11190. case GGML_TYPE_IQ4_NL:
  11191. case GGML_TYPE_IQ4_XS:
  11192. case GGML_TYPE_IQ3_S:
  11193. case GGML_TYPE_IQ2_S:
  11194. case GGML_TYPE_Q8_K:
  11195. case GGML_TYPE_I8:
  11196. case GGML_TYPE_I16:
  11197. case GGML_TYPE_I32:
  11198. case GGML_TYPE_I64:
  11199. case GGML_TYPE_F64:
  11200. case GGML_TYPE_COUNT:
  11201. {
  11202. GGML_ASSERT(false);
  11203. } break;
  11204. }
  11205. }
  11206. // ggml_compute_forward_clamp
  11207. static void ggml_compute_forward_clamp_f32(
  11208. const struct ggml_compute_params * params,
  11209. struct ggml_tensor * dst) {
  11210. const struct ggml_tensor * src0 = dst->src[0];
  11211. assert(params->ith == 0);
  11212. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11213. return;
  11214. }
  11215. float min;
  11216. float max;
  11217. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11218. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11219. const int ith = params->ith;
  11220. const int nth = params->nth;
  11221. const int n = ggml_nrows(src0);
  11222. const int nc = src0->ne[0];
  11223. const size_t nb00 = src0->nb[0];
  11224. const size_t nb01 = src0->nb[1];
  11225. const size_t nb0 = dst->nb[0];
  11226. const size_t nb1 = dst->nb[1];
  11227. GGML_ASSERT( nb0 == sizeof(float));
  11228. GGML_ASSERT(nb00 == sizeof(float));
  11229. for (int j = ith; j < n; j += nth) {
  11230. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11231. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11232. for (int i = 0; i < nc; i++) {
  11233. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11234. }
  11235. }
  11236. }
  11237. static void ggml_compute_forward_clamp(
  11238. const struct ggml_compute_params * params,
  11239. struct ggml_tensor * dst) {
  11240. const struct ggml_tensor * src0 = dst->src[0];
  11241. switch (src0->type) {
  11242. case GGML_TYPE_F32:
  11243. {
  11244. ggml_compute_forward_clamp_f32(params, dst);
  11245. } break;
  11246. case GGML_TYPE_F16:
  11247. case GGML_TYPE_BF16:
  11248. case GGML_TYPE_Q4_0:
  11249. case GGML_TYPE_Q4_1:
  11250. case GGML_TYPE_Q5_0:
  11251. case GGML_TYPE_Q5_1:
  11252. case GGML_TYPE_Q8_0:
  11253. case GGML_TYPE_Q8_1:
  11254. case GGML_TYPE_Q2_K:
  11255. case GGML_TYPE_Q3_K:
  11256. case GGML_TYPE_Q4_K:
  11257. case GGML_TYPE_Q5_K:
  11258. case GGML_TYPE_Q6_K:
  11259. case GGML_TYPE_IQ2_XXS:
  11260. case GGML_TYPE_IQ2_XS:
  11261. case GGML_TYPE_IQ3_XXS:
  11262. case GGML_TYPE_IQ1_S:
  11263. case GGML_TYPE_IQ1_M:
  11264. case GGML_TYPE_IQ4_NL:
  11265. case GGML_TYPE_IQ4_XS:
  11266. case GGML_TYPE_IQ3_S:
  11267. case GGML_TYPE_IQ2_S:
  11268. case GGML_TYPE_Q8_K:
  11269. case GGML_TYPE_I8:
  11270. case GGML_TYPE_I16:
  11271. case GGML_TYPE_I32:
  11272. case GGML_TYPE_I64:
  11273. case GGML_TYPE_F64:
  11274. case GGML_TYPE_COUNT:
  11275. {
  11276. GGML_ASSERT(false);
  11277. } break;
  11278. }
  11279. }
  11280. // ggml_compute_forward_rope
  11281. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11282. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11283. return 1 - MIN(1, MAX(0, y));
  11284. }
  11285. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11286. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11287. static void rope_yarn(
  11288. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11289. float * cos_theta, float * sin_theta
  11290. ) {
  11291. // Get n-d rotational scaling corrected for extrapolation
  11292. float theta_interp = freq_scale * theta_extrap;
  11293. float theta = theta_interp;
  11294. if (ext_factor != 0.0f) {
  11295. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11296. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11297. // Get n-d magnitude scaling corrected for interpolation
  11298. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11299. }
  11300. *cos_theta = cosf(theta) * mscale;
  11301. *sin_theta = sinf(theta) * mscale;
  11302. }
  11303. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11304. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11305. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11306. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11307. }
  11308. static void ggml_rope_cache_init(
  11309. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11310. float * cache, float sin_sign, float theta_scale
  11311. ) {
  11312. float theta = theta_base;
  11313. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11314. rope_yarn(
  11315. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11316. );
  11317. cache[i0 + 1] *= sin_sign;
  11318. theta *= theta_scale;
  11319. }
  11320. }
  11321. GGML_CALL void ggml_rope_yarn_corr_dims(
  11322. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11323. ) {
  11324. // start and end correction dims
  11325. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11326. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11327. dims[0] = MAX(0, start);
  11328. dims[1] = MIN(n_dims - 1, end);
  11329. }
  11330. static void ggml_compute_forward_rope_f32(
  11331. const struct ggml_compute_params * params,
  11332. struct ggml_tensor * dst,
  11333. const bool forward) {
  11334. const struct ggml_tensor * src0 = dst->src[0];
  11335. const struct ggml_tensor * src1 = dst->src[1];
  11336. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11337. return;
  11338. }
  11339. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11340. // these two only relevant for xPos RoPE:
  11341. float xpos_base;
  11342. bool xpos_down;
  11343. //const int n_past = ((int32_t *) dst->op_params)[0];
  11344. const int n_dims = ((int32_t *) dst->op_params)[1];
  11345. const int mode = ((int32_t *) dst->op_params)[2];
  11346. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11347. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11348. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11349. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11350. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11351. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11352. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11353. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11354. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11355. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11356. GGML_TENSOR_UNARY_OP_LOCALS
  11357. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11358. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11359. GGML_ASSERT(nb00 == sizeof(float));
  11360. const int ith = params->ith;
  11361. const int nth = params->nth;
  11362. const int nr = ggml_nrows(dst);
  11363. GGML_ASSERT(n_dims <= ne0);
  11364. GGML_ASSERT(n_dims % 2 == 0);
  11365. // rows per thread
  11366. const int dr = (nr + nth - 1)/nth;
  11367. // row range for this thread
  11368. const int ir0 = dr*ith;
  11369. const int ir1 = MIN(ir0 + dr, nr);
  11370. // row index used to determine which thread to use
  11371. int ir = 0;
  11372. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11373. const float inv_ndims = -1.f/n_dims;
  11374. float corr_dims[2];
  11375. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11376. const bool is_neox = mode & 2;
  11377. const bool is_glm = mode & 4;
  11378. // backward process uses inverse rotation by cos and sin.
  11379. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11380. // this essentially just switches the sign of sin.
  11381. const float sin_sign = forward ? 1.0f : -1.0f;
  11382. const int32_t * pos = (const int32_t *) src1->data;
  11383. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11384. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11385. const int64_t p = pos[i2];
  11386. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11387. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11388. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11389. }
  11390. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11391. if (ir++ < ir0) continue;
  11392. if (ir > ir1) break;
  11393. float theta_base = (float)p;
  11394. if (is_glm) {
  11395. theta_base = MIN(p, n_ctx - 2);
  11396. float block_theta = MAX(p - (n_ctx - 2), 0);
  11397. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11398. const float cos_theta = cosf(theta_base);
  11399. const float sin_theta = sinf(theta_base) * sin_sign;
  11400. const float cos_block_theta = cosf(block_theta);
  11401. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11402. theta_base *= theta_scale;
  11403. block_theta *= theta_scale;
  11404. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11405. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11406. const float x0 = src[0];
  11407. const float x1 = src[n_dims/2];
  11408. const float x2 = src[n_dims];
  11409. const float x3 = src[n_dims/2*3];
  11410. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11411. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11412. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11413. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11414. }
  11415. } else if (!is_neox) {
  11416. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11417. const float cos_theta = cache[i0 + 0];
  11418. const float sin_theta = cache[i0 + 1];
  11419. // zeta scaling for xPos only:
  11420. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11421. if (xpos_down) zeta = 1.0f / zeta;
  11422. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11423. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11424. const float x0 = src[0];
  11425. const float x1 = src[1];
  11426. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11427. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11428. }
  11429. } else {
  11430. // TODO: this might be wrong for ne0 != n_dims - need double check
  11431. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11432. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11433. theta_base *= freq_scale;
  11434. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11435. if (ic < n_dims) {
  11436. const int64_t ib = 0;
  11437. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11438. float cur_rot = inv_ndims * ic - ib;
  11439. float cos_theta, sin_theta;
  11440. rope_yarn(
  11441. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11442. &cos_theta, &sin_theta
  11443. );
  11444. sin_theta *= sin_sign;
  11445. theta_base *= theta_scale;
  11446. const int64_t i0 = ib*n_dims + ic/2;
  11447. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11448. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11449. const float x0 = src[0];
  11450. const float x1 = src[n_dims/2];
  11451. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11452. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11453. } else {
  11454. const int64_t i0 = ic;
  11455. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11456. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11457. dst_data[0] = src[0];
  11458. dst_data[1] = src[1];
  11459. }
  11460. }
  11461. }
  11462. }
  11463. }
  11464. }
  11465. }
  11466. static void ggml_compute_forward_rope_f16(
  11467. const struct ggml_compute_params * params,
  11468. struct ggml_tensor * dst,
  11469. const bool forward) {
  11470. const struct ggml_tensor * src0 = dst->src[0];
  11471. const struct ggml_tensor * src1 = dst->src[1];
  11472. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11473. return;
  11474. }
  11475. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11476. //const int n_past = ((int32_t *) dst->op_params)[0];
  11477. const int n_dims = ((int32_t *) dst->op_params)[1];
  11478. const int mode = ((int32_t *) dst->op_params)[2];
  11479. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11480. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11481. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11482. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11483. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11484. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11485. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11486. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11487. GGML_TENSOR_UNARY_OP_LOCALS
  11488. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11489. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11490. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11491. const int ith = params->ith;
  11492. const int nth = params->nth;
  11493. const int nr = ggml_nrows(dst);
  11494. GGML_ASSERT(n_dims <= ne0);
  11495. GGML_ASSERT(n_dims % 2 == 0);
  11496. // rows per thread
  11497. const int dr = (nr + nth - 1)/nth;
  11498. // row range for this thread
  11499. const int ir0 = dr*ith;
  11500. const int ir1 = MIN(ir0 + dr, nr);
  11501. // row index used to determine which thread to use
  11502. int ir = 0;
  11503. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11504. const float inv_ndims = -1.f/n_dims;
  11505. float corr_dims[2];
  11506. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11507. const bool is_neox = mode & 2;
  11508. const bool is_glm = mode & 4;
  11509. // backward process uses inverse rotation by cos and sin.
  11510. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11511. // this essentially just switches the sign of sin.
  11512. const float sin_sign = forward ? 1.0f : -1.0f;
  11513. const int32_t * pos = (const int32_t *) src1->data;
  11514. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11515. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11516. const int64_t p = pos[i2];
  11517. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11518. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11519. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11520. }
  11521. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11522. if (ir++ < ir0) continue;
  11523. if (ir > ir1) break;
  11524. float theta_base = (float)p;
  11525. if (is_glm) {
  11526. theta_base = MIN(p, n_ctx - 2);
  11527. float block_theta = MAX(p - (n_ctx - 2), 0);
  11528. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11529. const float cos_theta = cosf(theta_base);
  11530. const float sin_theta = sinf(theta_base) * sin_sign;
  11531. const float cos_block_theta = cosf(block_theta);
  11532. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11533. theta_base *= theta_scale;
  11534. block_theta *= theta_scale;
  11535. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11536. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11537. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11538. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11539. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11540. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11541. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11542. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11543. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11544. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11545. }
  11546. } else if (!is_neox) {
  11547. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11548. const float cos_theta = cache[i0 + 0];
  11549. const float sin_theta = cache[i0 + 1];
  11550. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11551. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11552. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11553. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11554. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11555. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11556. }
  11557. } else {
  11558. // TODO: this might be wrong for ne0 != n_dims - need double check
  11559. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11560. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11561. theta_base *= freq_scale;
  11562. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11563. if (ic < n_dims) {
  11564. const int64_t ib = 0;
  11565. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11566. float cur_rot = inv_ndims * ic - ib;
  11567. float cos_theta, sin_theta;
  11568. rope_yarn(
  11569. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11570. &cos_theta, &sin_theta
  11571. );
  11572. sin_theta *= sin_sign;
  11573. theta_base *= theta_scale;
  11574. const int64_t i0 = ib*n_dims + ic/2;
  11575. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11576. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11577. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11578. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11579. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11580. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11581. } else {
  11582. const int64_t i0 = ic;
  11583. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11584. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11585. dst_data[0] = src[0];
  11586. dst_data[1] = src[1];
  11587. }
  11588. }
  11589. }
  11590. }
  11591. }
  11592. }
  11593. }
  11594. static void ggml_compute_forward_rope(
  11595. const struct ggml_compute_params * params,
  11596. struct ggml_tensor * dst) {
  11597. const struct ggml_tensor * src0 = dst->src[0];
  11598. switch (src0->type) {
  11599. case GGML_TYPE_F16:
  11600. {
  11601. ggml_compute_forward_rope_f16(params, dst, true);
  11602. } break;
  11603. case GGML_TYPE_F32:
  11604. {
  11605. ggml_compute_forward_rope_f32(params, dst, true);
  11606. } break;
  11607. default:
  11608. {
  11609. GGML_ASSERT(false);
  11610. } break;
  11611. }
  11612. }
  11613. // ggml_compute_forward_rope_back
  11614. static void ggml_compute_forward_rope_back(
  11615. const struct ggml_compute_params * params,
  11616. struct ggml_tensor * dst) {
  11617. const struct ggml_tensor * src0 = dst->src[0];
  11618. switch (src0->type) {
  11619. case GGML_TYPE_F16:
  11620. {
  11621. ggml_compute_forward_rope_f16(params, dst, false);
  11622. } break;
  11623. case GGML_TYPE_F32:
  11624. {
  11625. ggml_compute_forward_rope_f32(params, dst, false);
  11626. } break;
  11627. default:
  11628. {
  11629. GGML_ASSERT(false);
  11630. } break;
  11631. }
  11632. }
  11633. // ggml_compute_forward_conv_transpose_1d
  11634. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11635. const struct ggml_compute_params * params,
  11636. struct ggml_tensor * dst) {
  11637. const struct ggml_tensor * src0 = dst->src[0];
  11638. const struct ggml_tensor * src1 = dst->src[1];
  11639. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11640. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11641. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11642. int64_t t0 = ggml_perf_time_us();
  11643. UNUSED(t0);
  11644. GGML_TENSOR_BINARY_OP_LOCALS
  11645. const int ith = params->ith;
  11646. const int nth = params->nth;
  11647. const int nk = ne00*ne01*ne02;
  11648. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11649. GGML_ASSERT(nb10 == sizeof(float));
  11650. if (params->type == GGML_TASK_TYPE_INIT) {
  11651. if (ith != 0) {
  11652. return;
  11653. }
  11654. memset(params->wdata, 0, params->wsize);
  11655. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11656. {
  11657. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11658. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11659. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11660. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11661. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11662. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11663. dst_data[i00*ne02 + i02] = src[i00];
  11664. }
  11665. }
  11666. }
  11667. }
  11668. // permute source data (src1) from (L x Cin) to (Cin x L)
  11669. {
  11670. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11671. ggml_fp16_t * dst_data = wdata;
  11672. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11673. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11674. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11675. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11676. }
  11677. }
  11678. }
  11679. // need to zero dst since we are accumulating into it
  11680. memset(dst->data, 0, ggml_nbytes(dst));
  11681. return;
  11682. }
  11683. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11684. return;
  11685. }
  11686. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11687. // total rows in dst
  11688. const int nr = ne1;
  11689. // rows per thread
  11690. const int dr = (nr + nth - 1)/nth;
  11691. // row range for this thread
  11692. const int ir0 = dr*ith;
  11693. const int ir1 = MIN(ir0 + dr, nr);
  11694. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11695. ggml_fp16_t * const wdata_src = wdata + nk;
  11696. for (int i1 = ir0; i1 < ir1; i1++) {
  11697. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11698. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11699. for (int i10 = 0; i10 < ne10; i10++) {
  11700. const int i1n = i10*ne11;
  11701. for (int i00 = 0; i00 < ne00; i00++) {
  11702. float v = 0;
  11703. ggml_vec_dot_f16(ne02, &v, 0,
  11704. (ggml_fp16_t *) wdata_src + i1n, 0,
  11705. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11706. dst_data[i10*s0 + i00] += v;
  11707. }
  11708. }
  11709. }
  11710. }
  11711. static void ggml_compute_forward_conv_transpose_1d_f32(
  11712. const struct ggml_compute_params * params,
  11713. struct ggml_tensor * dst) {
  11714. const struct ggml_tensor * src0 = dst->src[0];
  11715. const struct ggml_tensor * src1 = dst->src[1];
  11716. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11717. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11718. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11719. int64_t t0 = ggml_perf_time_us();
  11720. UNUSED(t0);
  11721. GGML_TENSOR_BINARY_OP_LOCALS
  11722. const int ith = params->ith;
  11723. const int nth = params->nth;
  11724. const int nk = ne00*ne01*ne02;
  11725. GGML_ASSERT(nb00 == sizeof(float));
  11726. GGML_ASSERT(nb10 == sizeof(float));
  11727. if (params->type == GGML_TASK_TYPE_INIT) {
  11728. if (ith != 0) {
  11729. return;
  11730. }
  11731. memset(params->wdata, 0, params->wsize);
  11732. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11733. {
  11734. float * const wdata = (float *) params->wdata + 0;
  11735. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11736. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11737. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11738. float * dst_data = wdata + i01*ne00*ne02;
  11739. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11740. dst_data[i00*ne02 + i02] = src[i00];
  11741. }
  11742. }
  11743. }
  11744. }
  11745. // prepare source data (src1)
  11746. {
  11747. float * const wdata = (float *) params->wdata + nk;
  11748. float * dst_data = wdata;
  11749. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11750. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11751. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11752. dst_data[i10*ne11 + i11] = src[i10];
  11753. }
  11754. }
  11755. }
  11756. // need to zero dst since we are accumulating into it
  11757. memset(dst->data, 0, ggml_nbytes(dst));
  11758. return;
  11759. }
  11760. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11761. return;
  11762. }
  11763. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11764. // total rows in dst
  11765. const int nr = ne1;
  11766. // rows per thread
  11767. const int dr = (nr + nth - 1)/nth;
  11768. // row range for this thread
  11769. const int ir0 = dr*ith;
  11770. const int ir1 = MIN(ir0 + dr, nr);
  11771. float * const wdata = (float *) params->wdata + 0;
  11772. float * const wdata_src = wdata + nk;
  11773. for (int i1 = ir0; i1 < ir1; i1++) {
  11774. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11775. float * wdata_kernel = wdata + i1*ne02*ne00;
  11776. for (int i10 = 0; i10 < ne10; i10++) {
  11777. const int i1n = i10*ne11;
  11778. for (int i00 = 0; i00 < ne00; i00++) {
  11779. float v = 0;
  11780. ggml_vec_dot_f32(ne02, &v, 0,
  11781. wdata_src + i1n, 0,
  11782. wdata_kernel + i00*ne02, 0, 1);
  11783. dst_data[i10*s0 + i00] += v;
  11784. }
  11785. }
  11786. }
  11787. }
  11788. static void ggml_compute_forward_conv_transpose_1d(
  11789. const struct ggml_compute_params * params,
  11790. struct ggml_tensor * dst) {
  11791. const struct ggml_tensor * src0 = dst->src[0];
  11792. switch (src0->type) {
  11793. case GGML_TYPE_F16:
  11794. {
  11795. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11796. } break;
  11797. case GGML_TYPE_F32:
  11798. {
  11799. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11800. } break;
  11801. default:
  11802. {
  11803. GGML_ASSERT(false);
  11804. } break;
  11805. }
  11806. }
  11807. // src0: kernel [OC, IC, KH, KW]
  11808. // src1: image [N, IC, IH, IW]
  11809. // dst: result [N, OH, OW, IC*KH*KW]
  11810. static void ggml_compute_forward_im2col_f32(
  11811. const struct ggml_compute_params * params,
  11812. struct ggml_tensor * dst) {
  11813. const struct ggml_tensor * src0 = dst->src[0];
  11814. const struct ggml_tensor * src1 = dst->src[1];
  11815. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11816. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11817. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11818. int64_t t0 = ggml_perf_time_us();
  11819. UNUSED(t0);
  11820. GGML_TENSOR_BINARY_OP_LOCALS;
  11821. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11822. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11823. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11824. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11825. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11826. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11827. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11828. const int ith = params->ith;
  11829. const int nth = params->nth;
  11830. const int64_t N = is_2D ? ne13 : ne12;
  11831. const int64_t IC = is_2D ? ne12 : ne11;
  11832. const int64_t IH = is_2D ? ne11 : 1;
  11833. const int64_t IW = ne10;
  11834. const int64_t KH = is_2D ? ne01 : 1;
  11835. const int64_t KW = ne00;
  11836. const int64_t OH = is_2D ? ne2 : 1;
  11837. const int64_t OW = ne1;
  11838. int ofs0 = is_2D ? nb13 : nb12;
  11839. int ofs1 = is_2D ? nb12 : nb11;
  11840. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11841. GGML_ASSERT(nb10 == sizeof(float));
  11842. if (params->type == GGML_TASK_TYPE_INIT) {
  11843. return;
  11844. }
  11845. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11846. return;
  11847. }
  11848. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11849. {
  11850. float * const wdata = (float *) dst->data;
  11851. for (int64_t in = 0; in < N; in++) {
  11852. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11853. for (int64_t iow = 0; iow < OW; iow++) {
  11854. for (int64_t iic = ith; iic < IC; iic += nth) {
  11855. // micro kernel
  11856. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11857. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11858. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11859. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11860. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11861. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11862. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11863. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11864. } else {
  11865. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11866. }
  11867. }
  11868. }
  11869. }
  11870. }
  11871. }
  11872. }
  11873. }
  11874. }
  11875. // src0: kernel [OC, IC, KH, KW]
  11876. // src1: image [N, IC, IH, IW]
  11877. // dst: result [N, OH, OW, IC*KH*KW]
  11878. static void ggml_compute_forward_im2col_f16(
  11879. const struct ggml_compute_params * params,
  11880. struct ggml_tensor * dst) {
  11881. const struct ggml_tensor * src0 = dst->src[0];
  11882. const struct ggml_tensor * src1 = dst->src[1];
  11883. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11884. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11885. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11886. int64_t t0 = ggml_perf_time_us();
  11887. UNUSED(t0);
  11888. GGML_TENSOR_BINARY_OP_LOCALS;
  11889. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11890. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11891. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11892. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11893. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11894. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11895. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11896. const int ith = params->ith;
  11897. const int nth = params->nth;
  11898. const int64_t N = is_2D ? ne13 : ne12;
  11899. const int64_t IC = is_2D ? ne12 : ne11;
  11900. const int64_t IH = is_2D ? ne11 : 1;
  11901. const int64_t IW = ne10;
  11902. const int64_t KH = is_2D ? ne01 : 1;
  11903. const int64_t KW = ne00;
  11904. const int64_t OH = is_2D ? ne2 : 1;
  11905. const int64_t OW = ne1;
  11906. int ofs0 = is_2D ? nb13 : nb12;
  11907. int ofs1 = is_2D ? nb12 : nb11;
  11908. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11909. GGML_ASSERT(nb10 == sizeof(float));
  11910. if (params->type == GGML_TASK_TYPE_INIT) {
  11911. return;
  11912. }
  11913. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11914. return;
  11915. }
  11916. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11917. {
  11918. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11919. for (int64_t in = 0; in < N; in++) {
  11920. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11921. for (int64_t iow = 0; iow < OW; iow++) {
  11922. for (int64_t iic = ith; iic < IC; iic += nth) {
  11923. // micro kernel
  11924. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11925. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11926. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11927. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11928. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11929. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11930. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11931. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11932. } else {
  11933. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11934. }
  11935. }
  11936. }
  11937. }
  11938. }
  11939. }
  11940. }
  11941. }
  11942. }
  11943. static void ggml_compute_forward_im2col(
  11944. const struct ggml_compute_params * params,
  11945. struct ggml_tensor * dst) {
  11946. switch (dst->type) {
  11947. case GGML_TYPE_F16:
  11948. {
  11949. ggml_compute_forward_im2col_f16(params, dst);
  11950. } break;
  11951. case GGML_TYPE_F32:
  11952. {
  11953. ggml_compute_forward_im2col_f32(params, dst);
  11954. } break;
  11955. default:
  11956. {
  11957. GGML_ASSERT(false);
  11958. } break;
  11959. }
  11960. }
  11961. // ggml_compute_forward_conv_transpose_2d
  11962. static void ggml_compute_forward_conv_transpose_2d(
  11963. const struct ggml_compute_params * params,
  11964. struct ggml_tensor * dst) {
  11965. const struct ggml_tensor * src0 = dst->src[0];
  11966. const struct ggml_tensor * src1 = dst->src[1];
  11967. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11968. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11969. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11970. int64_t t0 = ggml_perf_time_us();
  11971. UNUSED(t0);
  11972. GGML_TENSOR_BINARY_OP_LOCALS
  11973. const int ith = params->ith;
  11974. const int nth = params->nth;
  11975. const int nk = ne00*ne01*ne02*ne03;
  11976. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11977. GGML_ASSERT(nb10 == sizeof(float));
  11978. if (params->type == GGML_TASK_TYPE_INIT) {
  11979. if (ith != 0) {
  11980. return;
  11981. }
  11982. memset(params->wdata, 0, params->wsize);
  11983. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11984. {
  11985. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11986. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11987. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11988. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11989. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11990. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11991. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11992. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11993. }
  11994. }
  11995. }
  11996. }
  11997. }
  11998. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11999. {
  12000. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12001. for (int i12 = 0; i12 < ne12; i12++) {
  12002. for (int i11 = 0; i11 < ne11; i11++) {
  12003. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12004. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12005. for (int i10 = 0; i10 < ne10; i10++) {
  12006. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12007. }
  12008. }
  12009. }
  12010. }
  12011. memset(dst->data, 0, ggml_nbytes(dst));
  12012. return;
  12013. }
  12014. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12015. return;
  12016. }
  12017. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12018. // total patches in dst
  12019. const int np = ne2;
  12020. // patches per thread
  12021. const int dp = (np + nth - 1)/nth;
  12022. // patch range for this thread
  12023. const int ip0 = dp*ith;
  12024. const int ip1 = MIN(ip0 + dp, np);
  12025. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12026. ggml_fp16_t * const wdata_src = wdata + nk;
  12027. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12028. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12029. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12030. for (int i11 = 0; i11 < ne11; i11++) {
  12031. for (int i10 = 0; i10 < ne10; i10++) {
  12032. const int i1n = i11*ne10*ne12 + i10*ne12;
  12033. for (int i01 = 0; i01 < ne01; i01++) {
  12034. for (int i00 = 0; i00 < ne00; i00++) {
  12035. float v = 0;
  12036. ggml_vec_dot_f16(ne03, &v, 0,
  12037. wdata_src + i1n, 0,
  12038. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12039. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12040. }
  12041. }
  12042. }
  12043. }
  12044. }
  12045. }
  12046. // ggml_compute_forward_pool_1d_sk_p0
  12047. static void ggml_compute_forward_pool_1d_sk_p0(
  12048. const struct ggml_compute_params * params,
  12049. const enum ggml_op_pool op,
  12050. const int k,
  12051. struct ggml_tensor * dst) {
  12052. const struct ggml_tensor * src = dst->src[0];
  12053. assert(src->type == GGML_TYPE_F32);
  12054. assert(params->ith == 0);
  12055. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12056. return;
  12057. }
  12058. const char * cdata = (const char *)src->data;
  12059. const char * const data_end = cdata + ggml_nbytes(src);
  12060. float * drow = (float *)dst->data;
  12061. const int64_t rs = dst->ne[0];
  12062. while (cdata < data_end) {
  12063. const float * const srow = (const float *)cdata;
  12064. int j = 0;
  12065. for (int64_t i = 0; i < rs; ++i) {
  12066. switch (op) {
  12067. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12068. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12069. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12070. }
  12071. for (int ki = 0; ki < k; ++ki) {
  12072. switch (op) {
  12073. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12074. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12075. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12076. }
  12077. ++j;
  12078. }
  12079. switch (op) {
  12080. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12081. case GGML_OP_POOL_MAX: break;
  12082. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12083. }
  12084. }
  12085. cdata += src->nb[1];
  12086. drow += rs;
  12087. }
  12088. }
  12089. // ggml_compute_forward_pool_1d
  12090. static void ggml_compute_forward_pool_1d(
  12091. const struct ggml_compute_params * params,
  12092. struct ggml_tensor * dst) {
  12093. const int32_t * opts = (const int32_t *)dst->op_params;
  12094. enum ggml_op_pool op = opts[0];
  12095. const int k0 = opts[1];
  12096. const int s0 = opts[2];
  12097. const int p0 = opts[3];
  12098. GGML_ASSERT(p0 == 0); // padding not supported
  12099. GGML_ASSERT(k0 == s0); // only s = k supported
  12100. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12101. }
  12102. // ggml_compute_forward_pool_2d
  12103. static void ggml_compute_forward_pool_2d(
  12104. const struct ggml_compute_params * params,
  12105. struct ggml_tensor * dst) {
  12106. const struct ggml_tensor * src = dst->src[0];
  12107. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12108. GGML_ASSERT(params->ith == 0);
  12109. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12110. return;
  12111. }
  12112. const int32_t * opts = (const int32_t *)dst->op_params;
  12113. enum ggml_op_pool op = opts[0];
  12114. const int k0 = opts[1];
  12115. const int k1 = opts[2];
  12116. const int s0 = opts[3];
  12117. const int s1 = opts[4];
  12118. const int p0 = opts[5];
  12119. const int p1 = opts[6];
  12120. const char * cdata = (const char*)src->data;
  12121. const char * const data_end = cdata + ggml_nbytes(src);
  12122. const int64_t px = dst->ne[0];
  12123. const int64_t py = dst->ne[1];
  12124. const int64_t pa = px * py;
  12125. float * dplane = (float *)dst->data;
  12126. const int ka = k0 * k1;
  12127. const int offset0 = -p0;
  12128. const int offset1 = -p1;
  12129. while (cdata < data_end) {
  12130. for (int oy = 0; oy < py; ++oy) {
  12131. float * const drow = dplane + oy * px;
  12132. for (int ox = 0; ox < px; ++ox) {
  12133. float * const out = drow + ox;
  12134. switch (op) {
  12135. case GGML_OP_POOL_AVG: *out = 0; break;
  12136. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12137. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12138. }
  12139. const int ix = offset0 + ox * s0;
  12140. const int iy = offset1 + oy * s1;
  12141. for (int ky = 0; ky < k1; ++ky) {
  12142. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12143. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12144. for (int kx = 0; kx < k0; ++kx) {
  12145. int j = ix + kx;
  12146. if (j < 0 || j >= src->ne[0]) continue;
  12147. switch (op) {
  12148. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12149. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12150. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12151. }
  12152. }
  12153. }
  12154. switch (op) {
  12155. case GGML_OP_POOL_AVG: *out /= ka; break;
  12156. case GGML_OP_POOL_MAX: break;
  12157. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12158. }
  12159. }
  12160. }
  12161. cdata += src->nb[2];
  12162. dplane += pa;
  12163. }
  12164. }
  12165. // ggml_compute_forward_upscale
  12166. static void ggml_compute_forward_upscale_f32(
  12167. const struct ggml_compute_params * params,
  12168. struct ggml_tensor * dst) {
  12169. const struct ggml_tensor * src0 = dst->src[0];
  12170. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12171. return;
  12172. }
  12173. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12174. const int ith = params->ith;
  12175. const int nth = params->nth;
  12176. GGML_TENSOR_UNARY_OP_LOCALS
  12177. const int scale_factor = dst->op_params[0];
  12178. // TODO: optimize
  12179. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12180. const int64_t i03 = i3;
  12181. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12182. const int64_t i02 = i2;
  12183. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12184. const int64_t i01 = i1 / scale_factor;
  12185. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12186. const int64_t i00 = i0 / scale_factor;
  12187. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12188. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12189. *y = *x;
  12190. }
  12191. }
  12192. }
  12193. }
  12194. }
  12195. static void ggml_compute_forward_upscale(
  12196. const struct ggml_compute_params * params,
  12197. struct ggml_tensor * dst) {
  12198. const struct ggml_tensor * src0 = dst->src[0];
  12199. switch (src0->type) {
  12200. case GGML_TYPE_F32:
  12201. {
  12202. ggml_compute_forward_upscale_f32(params, dst);
  12203. } break;
  12204. default:
  12205. {
  12206. GGML_ASSERT(false);
  12207. } break;
  12208. }
  12209. }
  12210. // ggml_compute_forward_pad
  12211. static void ggml_compute_forward_pad_f32(
  12212. const struct ggml_compute_params * params,
  12213. struct ggml_tensor * dst) {
  12214. const struct ggml_tensor * src0 = dst->src[0];
  12215. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12216. return;
  12217. }
  12218. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12219. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12220. const int ith = params->ith;
  12221. const int nth = params->nth;
  12222. GGML_TENSOR_UNARY_OP_LOCALS
  12223. float * dst_ptr = (float *) dst->data;
  12224. // TODO: optimize
  12225. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12226. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12227. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12228. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12229. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12230. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12231. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12232. dst_ptr[dst_idx] = *src_ptr;
  12233. } else {
  12234. dst_ptr[dst_idx] = 0;
  12235. }
  12236. }
  12237. }
  12238. }
  12239. }
  12240. }
  12241. static void ggml_compute_forward_pad(
  12242. const struct ggml_compute_params * params,
  12243. struct ggml_tensor * dst) {
  12244. const struct ggml_tensor * src0 = dst->src[0];
  12245. switch (src0->type) {
  12246. case GGML_TYPE_F32:
  12247. {
  12248. ggml_compute_forward_pad_f32(params, dst);
  12249. } break;
  12250. default:
  12251. {
  12252. GGML_ASSERT(false);
  12253. } break;
  12254. }
  12255. }
  12256. // ggml_compute_forward_arange
  12257. static void ggml_compute_forward_arange_f32(
  12258. const struct ggml_compute_params * params,
  12259. struct ggml_tensor * dst) {
  12260. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12261. return;
  12262. }
  12263. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12264. const int ith = params->ith;
  12265. const int nth = params->nth;
  12266. const float start = ggml_get_op_params_f32(dst, 0);
  12267. const float stop = ggml_get_op_params_f32(dst, 1);
  12268. const float step = ggml_get_op_params_f32(dst, 2);
  12269. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12270. GGML_ASSERT(ggml_nelements(dst) == steps);
  12271. for (int64_t i = ith; i < steps; i+= nth) {
  12272. float value = start + step * i;
  12273. ((float *)dst->data)[i] = value;
  12274. }
  12275. }
  12276. static void ggml_compute_forward_arange(
  12277. const struct ggml_compute_params * params,
  12278. struct ggml_tensor * dst) {
  12279. switch (dst->type) {
  12280. case GGML_TYPE_F32:
  12281. {
  12282. ggml_compute_forward_arange_f32(params, dst);
  12283. } break;
  12284. default:
  12285. {
  12286. GGML_ASSERT(false);
  12287. } break;
  12288. }
  12289. }
  12290. static void ggml_compute_forward_timestep_embedding_f32(
  12291. const struct ggml_compute_params * params,
  12292. struct ggml_tensor * dst) {
  12293. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12294. return;
  12295. }
  12296. const struct ggml_tensor * src0 = dst->src[0];
  12297. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12298. const int ith = params->ith;
  12299. const int nth = params->nth;
  12300. GGML_TENSOR_UNARY_OP_LOCALS
  12301. const int dim = ggml_get_op_params_i32(dst, 0);
  12302. const int max_period = ggml_get_op_params_i32(dst, 1);
  12303. int half = dim / 2;
  12304. for (int64_t i = 0; i < ne00; i++) {
  12305. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12306. for (int64_t j = ith; j < half; j += nth) {
  12307. float timestep = ((float *)src0->data)[i];
  12308. float freq = (float)expf(-logf(max_period) * j / half);
  12309. float arg = timestep * freq;
  12310. embed_data[j] = cosf(arg);
  12311. embed_data[j + half] = sinf(arg);
  12312. }
  12313. if (dim % 2 != 0 && ith == 0) {
  12314. embed_data[dim] = 0.f;
  12315. }
  12316. }
  12317. }
  12318. static void ggml_compute_forward_timestep_embedding(
  12319. const struct ggml_compute_params * params,
  12320. struct ggml_tensor * dst) {
  12321. const struct ggml_tensor * src0 = dst->src[0];
  12322. switch (src0->type) {
  12323. case GGML_TYPE_F32:
  12324. {
  12325. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12326. } break;
  12327. default:
  12328. {
  12329. GGML_ASSERT(false);
  12330. } break;
  12331. }
  12332. }
  12333. // ggml_compute_forward_argsort
  12334. static void ggml_compute_forward_argsort_f32(
  12335. const struct ggml_compute_params * params,
  12336. struct ggml_tensor * dst) {
  12337. const struct ggml_tensor * src0 = dst->src[0];
  12338. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12339. return;
  12340. }
  12341. GGML_TENSOR_UNARY_OP_LOCALS
  12342. GGML_ASSERT(nb0 == sizeof(float));
  12343. const int ith = params->ith;
  12344. const int nth = params->nth;
  12345. const int64_t nr = ggml_nrows(src0);
  12346. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12347. for (int64_t i = ith; i < nr; i += nth) {
  12348. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12349. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12350. for (int64_t j = 0; j < ne0; j++) {
  12351. dst_data[j] = j;
  12352. }
  12353. // C doesn't have a functional sort, so we do a bubble sort instead
  12354. for (int64_t j = 0; j < ne0; j++) {
  12355. for (int64_t k = j + 1; k < ne0; k++) {
  12356. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12357. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12358. int32_t tmp = dst_data[j];
  12359. dst_data[j] = dst_data[k];
  12360. dst_data[k] = tmp;
  12361. }
  12362. }
  12363. }
  12364. }
  12365. }
  12366. static void ggml_compute_forward_argsort(
  12367. const struct ggml_compute_params * params,
  12368. struct ggml_tensor * dst) {
  12369. const struct ggml_tensor * src0 = dst->src[0];
  12370. switch (src0->type) {
  12371. case GGML_TYPE_F32:
  12372. {
  12373. ggml_compute_forward_argsort_f32(params, dst);
  12374. } break;
  12375. default:
  12376. {
  12377. GGML_ASSERT(false);
  12378. } break;
  12379. }
  12380. }
  12381. // ggml_compute_forward_flash_attn
  12382. static void ggml_compute_forward_flash_attn_f32(
  12383. const struct ggml_compute_params * params,
  12384. const bool masked,
  12385. struct ggml_tensor * dst) {
  12386. const struct ggml_tensor * q = dst->src[0];
  12387. const struct ggml_tensor * k = dst->src[1];
  12388. const struct ggml_tensor * v = dst->src[2];
  12389. int64_t t0 = ggml_perf_time_us();
  12390. UNUSED(t0);
  12391. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12392. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12393. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12394. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12395. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12396. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12397. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12398. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12399. const int ith = params->ith;
  12400. const int nth = params->nth;
  12401. const int64_t D = neq0;
  12402. const int64_t N = neq1;
  12403. const int64_t P = nek1 - N;
  12404. const int64_t M = P + N;
  12405. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12406. GGML_ASSERT(ne0 == D);
  12407. GGML_ASSERT(ne1 == N);
  12408. GGML_ASSERT(P >= 0);
  12409. GGML_ASSERT(nbq0 == sizeof(float));
  12410. GGML_ASSERT(nbk0 == sizeof(float));
  12411. GGML_ASSERT(nbv0 == sizeof(float));
  12412. GGML_ASSERT(neq0 == D);
  12413. GGML_ASSERT(nek0 == D);
  12414. GGML_ASSERT(nev1 == D);
  12415. GGML_ASSERT(neq1 == N);
  12416. GGML_ASSERT(nek1 == N + P);
  12417. GGML_ASSERT(nev1 == D);
  12418. // dst cannot be transposed or permuted
  12419. GGML_ASSERT(nb0 == sizeof(float));
  12420. GGML_ASSERT(nb0 <= nb1);
  12421. GGML_ASSERT(nb1 <= nb2);
  12422. GGML_ASSERT(nb2 <= nb3);
  12423. if (params->type == GGML_TASK_TYPE_INIT) {
  12424. return;
  12425. }
  12426. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12427. return;
  12428. }
  12429. // parallelize by q rows using ggml_vec_dot_f32
  12430. // total rows in q
  12431. const int nr = neq1*neq2*neq3;
  12432. // rows per thread
  12433. const int dr = (nr + nth - 1)/nth;
  12434. // row range for this thread
  12435. const int ir0 = dr*ith;
  12436. const int ir1 = MIN(ir0 + dr, nr);
  12437. const float scale = 1.0f/sqrtf(D);
  12438. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12439. for (int ir = ir0; ir < ir1; ++ir) {
  12440. // q indices
  12441. const int iq3 = ir/(neq2*neq1);
  12442. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12443. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12444. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12445. for (int i = M; i < Mup; ++i) {
  12446. S[i] = -INFINITY;
  12447. }
  12448. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12449. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12450. // k indices
  12451. const int ik3 = iq3;
  12452. const int ik2 = iq2 % nek2;
  12453. const int ik1 = ic;
  12454. // S indices
  12455. const int i1 = ik1;
  12456. ggml_vec_dot_f32(neq0,
  12457. S + i1, 0,
  12458. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12459. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12460. }
  12461. // scale
  12462. ggml_vec_scale_f32(masked_begin, S, scale);
  12463. for (int64_t i = masked_begin; i < M; i++) {
  12464. S[i] = -INFINITY;
  12465. }
  12466. // softmax
  12467. // exclude known -INF S[..] values from max and loop
  12468. // dont forget to set their SW values to zero
  12469. {
  12470. float max = -INFINITY;
  12471. ggml_vec_max_f32(masked_begin, &max, S);
  12472. ggml_float sum = 0.0;
  12473. {
  12474. #ifdef GGML_SOFT_MAX_ACCELERATE
  12475. max = -max;
  12476. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12477. vvexpf(S, S, &Mup);
  12478. ggml_vec_sum_f32(Mup, &sum, S);
  12479. #else
  12480. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12481. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12482. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12483. if (i >= masked_begin) {
  12484. break;
  12485. }
  12486. float * SS = S + i;
  12487. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12488. if (i + j >= masked_begin) {
  12489. break;
  12490. } else if (SS[j] == -INFINITY) {
  12491. SS[j] = 0.0f;
  12492. } else {
  12493. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12494. const float val = expf(SS[j] - max);
  12495. #else
  12496. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12497. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12498. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12499. #endif
  12500. sump[j] += (ggml_float)val;
  12501. SS[j] = val;
  12502. }
  12503. }
  12504. }
  12505. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12506. sum += sump[i];
  12507. }
  12508. #endif
  12509. }
  12510. assert(sum > 0.0);
  12511. sum = 1.0/sum;
  12512. ggml_vec_scale_f32(masked_begin, S, sum);
  12513. #ifndef NDEBUG
  12514. for (int i = 0; i < masked_begin; ++i) {
  12515. assert(!isnan(S[i]));
  12516. assert(!isinf(S[i]));
  12517. }
  12518. #endif
  12519. }
  12520. for (int64_t ic = 0; ic < nev1; ++ic) {
  12521. // dst indices
  12522. const int i1 = iq1;
  12523. const int i2 = iq2;
  12524. const int i3 = iq3;
  12525. // v indices
  12526. const int iv2 = iq2 % nev2;
  12527. const int iv3 = iq3;
  12528. ggml_vec_dot_f32(masked_begin,
  12529. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12530. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12531. S, 0, 1);
  12532. }
  12533. }
  12534. }
  12535. static void ggml_compute_forward_flash_attn_f16(
  12536. const struct ggml_compute_params * params,
  12537. const bool masked,
  12538. struct ggml_tensor * dst) {
  12539. const struct ggml_tensor * q = dst->src[0];
  12540. const struct ggml_tensor * k = dst->src[1];
  12541. const struct ggml_tensor * v = dst->src[2];
  12542. int64_t t0 = ggml_perf_time_us();
  12543. UNUSED(t0);
  12544. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12545. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12546. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12547. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12548. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12549. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12550. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12551. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12552. const int ith = params->ith;
  12553. const int nth = params->nth;
  12554. const int64_t D = neq0;
  12555. const int64_t N = neq1;
  12556. const int64_t P = nek1 - N;
  12557. const int64_t M = P + N;
  12558. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12559. GGML_ASSERT(ne0 == D);
  12560. GGML_ASSERT(ne1 == N);
  12561. GGML_ASSERT(P >= 0);
  12562. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12563. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12564. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12565. GGML_ASSERT(neq0 == D);
  12566. GGML_ASSERT(nek0 == D);
  12567. GGML_ASSERT(nev1 == D);
  12568. GGML_ASSERT(neq1 == N);
  12569. GGML_ASSERT(nek1 == N + P);
  12570. GGML_ASSERT(nev1 == D);
  12571. // dst cannot be transposed or permuted
  12572. GGML_ASSERT(nb0 == sizeof(float));
  12573. GGML_ASSERT(nb0 <= nb1);
  12574. GGML_ASSERT(nb1 <= nb2);
  12575. GGML_ASSERT(nb2 <= nb3);
  12576. if (params->type == GGML_TASK_TYPE_INIT) {
  12577. return;
  12578. }
  12579. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12580. return;
  12581. }
  12582. // parallelize by q rows using ggml_vec_dot_f32
  12583. // total rows in q
  12584. const int nr = neq1*neq2*neq3;
  12585. // rows per thread
  12586. const int dr = (nr + nth - 1)/nth;
  12587. // row range for this thread
  12588. const int ir0 = dr*ith;
  12589. const int ir1 = MIN(ir0 + dr, nr);
  12590. const float scale = 1.0f/sqrtf(D);
  12591. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12592. for (int ir = ir0; ir < ir1; ++ir) {
  12593. // q indices
  12594. const int iq3 = ir/(neq2*neq1);
  12595. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12596. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12597. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12598. for (int i = M; i < Mup; ++i) {
  12599. S[i] = -INFINITY;
  12600. }
  12601. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12602. for (int64_t ic = 0; ic < nek1; ++ic) {
  12603. // k indices
  12604. const int ik3 = iq3;
  12605. const int ik2 = iq2 % nek2;
  12606. const int ik1 = ic;
  12607. // S indices
  12608. const int i1 = ik1;
  12609. ggml_vec_dot_f16(neq0,
  12610. S + i1, 0,
  12611. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12612. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12613. }
  12614. } else {
  12615. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12616. // k indices
  12617. const int ik3 = iq3;
  12618. const int ik2 = iq2 % nek2;
  12619. const int ik1 = ic;
  12620. // S indices
  12621. const int i1 = ik1;
  12622. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12623. S + i1,
  12624. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12625. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12626. }
  12627. }
  12628. // scale
  12629. ggml_vec_scale_f32(nek1, S, scale);
  12630. if (masked) {
  12631. for (int64_t i = P; i < M; i++) {
  12632. if (i > P + iq1) {
  12633. S[i] = -INFINITY;
  12634. }
  12635. }
  12636. }
  12637. // softmax
  12638. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12639. // dont forget to set their S values to zero
  12640. {
  12641. float max = -INFINITY;
  12642. ggml_vec_max_f32(M, &max, S);
  12643. ggml_float sum = 0.0;
  12644. {
  12645. #ifdef GGML_SOFT_MAX_ACCELERATE
  12646. max = -max;
  12647. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12648. vvexpf(S, S, &Mup);
  12649. ggml_vec_sum_f32(Mup, &sum, S);
  12650. #else
  12651. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  12652. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12653. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12654. float * SS = S + i;
  12655. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12656. if (SS[j] == -INFINITY) {
  12657. SS[j] = 0.0f;
  12658. } else {
  12659. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12660. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12661. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12662. sump[j] += (ggml_float)val;
  12663. SS[j] = val;
  12664. }
  12665. }
  12666. }
  12667. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12668. sum += sump[i];
  12669. }
  12670. #endif
  12671. }
  12672. assert(sum > 0.0);
  12673. sum = 1.0/sum;
  12674. ggml_vec_scale_f32(M, S, sum);
  12675. #ifndef NDEBUG
  12676. for (int i = 0; i < M; ++i) {
  12677. assert(!isnan(S[i]));
  12678. assert(!isinf(S[i]));
  12679. }
  12680. #endif
  12681. }
  12682. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12683. for (int64_t i = 0; i < M; i++) {
  12684. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12685. }
  12686. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12687. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12688. for (int64_t ic = 0; ic < nev1; ++ic) {
  12689. // dst indices
  12690. const int i1 = iq1;
  12691. const int i2 = iq2;
  12692. const int i3 = iq3;
  12693. // v indices
  12694. const int iv2 = iq2 % nev2;
  12695. const int iv3 = iq3;
  12696. ggml_vec_dot_f16(nev0,
  12697. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12698. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12699. S16, 0, 1);
  12700. }
  12701. } else {
  12702. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12703. // dst indices
  12704. const int i1 = iq1;
  12705. const int i2 = iq2;
  12706. const int i3 = iq3;
  12707. // v indices
  12708. const int iv2 = iq2 % nev2;
  12709. const int iv3 = iq3;
  12710. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12711. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12712. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12713. S16);
  12714. }
  12715. }
  12716. }
  12717. }
  12718. static void ggml_compute_forward_flash_attn(
  12719. const struct ggml_compute_params * params,
  12720. const bool masked,
  12721. struct ggml_tensor * dst) {
  12722. const struct ggml_tensor * q = dst->src[0];
  12723. switch (q->type) {
  12724. case GGML_TYPE_F16:
  12725. {
  12726. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  12727. } break;
  12728. case GGML_TYPE_F32:
  12729. {
  12730. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  12731. } break;
  12732. default:
  12733. {
  12734. GGML_ASSERT(false);
  12735. } break;
  12736. }
  12737. }
  12738. // ggml_compute_forward_flash_attn_ext
  12739. static void ggml_compute_forward_flash_attn_ext_f16(
  12740. const struct ggml_compute_params * params,
  12741. const struct ggml_tensor * q,
  12742. const struct ggml_tensor * k,
  12743. const struct ggml_tensor * v,
  12744. const struct ggml_tensor * mask,
  12745. struct ggml_tensor * dst) {
  12746. int64_t t0 = ggml_perf_time_us();
  12747. UNUSED(t0);
  12748. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12749. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12750. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12751. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12752. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12753. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12754. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12755. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12756. const int ith = params->ith;
  12757. const int nth = params->nth;
  12758. const int64_t D = neq0;
  12759. const int64_t N = neq1;
  12760. GGML_ASSERT(ne0 == D);
  12761. GGML_ASSERT(ne2 == N);
  12762. GGML_ASSERT(nbq0 == sizeof(float));
  12763. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12764. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12765. GGML_ASSERT(neq0 == D);
  12766. GGML_ASSERT(nek0 == D);
  12767. GGML_ASSERT(nev0 == D);
  12768. GGML_ASSERT(neq1 == N);
  12769. GGML_ASSERT(nev0 == D);
  12770. // dst cannot be transposed or permuted
  12771. GGML_ASSERT(nb0 == sizeof(float));
  12772. GGML_ASSERT(nb0 <= nb1);
  12773. GGML_ASSERT(nb1 <= nb2);
  12774. GGML_ASSERT(nb2 <= nb3);
  12775. // broadcast factors
  12776. const int64_t rk2 = neq2/nek2;
  12777. const int64_t rk3 = neq3/nek3;
  12778. const int64_t rv2 = neq2/nev2;
  12779. const int64_t rv3 = neq3/nev3;
  12780. if (params->type == GGML_TASK_TYPE_INIT) {
  12781. return;
  12782. }
  12783. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12784. return;
  12785. }
  12786. // parallelize by q rows using ggml_vec_dot_f32
  12787. // total rows in q
  12788. const int nr = neq1*neq2*neq3;
  12789. // rows per thread
  12790. const int dr = (nr + nth - 1)/nth;
  12791. // row range for this thread
  12792. const int ir0 = dr*ith;
  12793. const int ir1 = MIN(ir0 + dr, nr);
  12794. float scale = 1.0f;
  12795. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12796. // loop over n_batch and n_head
  12797. for (int ir = ir0; ir < ir1; ++ir) {
  12798. // q indices
  12799. const int iq3 = ir/(neq2*neq1);
  12800. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12801. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12802. float S = 0.0f;
  12803. float M = -INFINITY;
  12804. float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32);
  12805. ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory
  12806. ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D);
  12807. memset(V16, 0, D*sizeof(ggml_fp16_t));
  12808. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12809. // k indices
  12810. const int ik3 = iq3 / rk3;
  12811. const int ik2 = iq2 / rk2;
  12812. // v indices
  12813. const int iv3 = iq3 / rv3;
  12814. const int iv2 = iq2 / rv2;
  12815. // online softmax / attention
  12816. // loop over n_kv and n_head_kv
  12817. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12818. for (int64_t ic = 0; ic < nek1; ++ic) {
  12819. const float mv = mp ? GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12820. if (mv == -INFINITY) {
  12821. continue;
  12822. }
  12823. float s;
  12824. // convert Q to F16 in V32
  12825. {
  12826. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12827. for (int64_t d = 0; d < D; ++d) {
  12828. Q16[d] = GGML_FP32_TO_FP16(pq[d]);
  12829. }
  12830. }
  12831. ggml_vec_dot_f16(D,
  12832. &s, 0,
  12833. (ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12834. Q16, 0, 1);
  12835. s = s*scale + mv;
  12836. const float Mold = M;
  12837. float ms = 1.0f;
  12838. float vs = 1.0f;
  12839. if (s > M) {
  12840. M = s;
  12841. ms = expf(Mold - M);
  12842. // V = V*expf(Mold - M)
  12843. ggml_vec_scale_f16(D, V16, ms);
  12844. } else {
  12845. vs = expf(s - M);
  12846. }
  12847. const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12848. // V += v*expf(s - M)
  12849. ggml_vec_mad_f16(D, V16, v16, vs);
  12850. S = S*ms + vs;
  12851. }
  12852. // V /= S
  12853. for (int64_t d = 0; d < D; ++d) {
  12854. V32[d] = GGML_FP16_TO_FP32(V16[d])/S;
  12855. }
  12856. // dst indices
  12857. const int i1 = iq1;
  12858. const int i2 = iq2;
  12859. const int i3 = iq3;
  12860. // original
  12861. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12862. // permute(0, 2, 1, 3)
  12863. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1);
  12864. }
  12865. }
  12866. static void ggml_compute_forward_flash_attn_ext(
  12867. const struct ggml_compute_params * params,
  12868. const struct ggml_tensor * q,
  12869. const struct ggml_tensor * k,
  12870. const struct ggml_tensor * v,
  12871. const struct ggml_tensor * mask,
  12872. struct ggml_tensor * dst) {
  12873. switch (dst->op_params[1]) {
  12874. case GGML_PREC_DEFAULT:
  12875. case GGML_PREC_F32:
  12876. {
  12877. // uses F32 accumulators
  12878. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12879. } break;
  12880. default:
  12881. {
  12882. GGML_ASSERT(false);
  12883. } break;
  12884. }
  12885. }
  12886. // ggml_compute_forward_flash_ff
  12887. static void ggml_compute_forward_flash_ff_f16(
  12888. const struct ggml_compute_params * params,
  12889. struct ggml_tensor * dst) {
  12890. const struct ggml_tensor * a = dst->src[0]; // F16
  12891. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  12892. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  12893. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  12894. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  12895. int64_t t0 = ggml_perf_time_us();
  12896. UNUSED(t0);
  12897. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  12898. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  12899. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  12900. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  12901. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  12902. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  12903. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  12904. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  12905. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  12906. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  12907. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12908. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12909. const int ith = params->ith;
  12910. const int nth = params->nth;
  12911. const int64_t D = nea0;
  12912. //const int64_t N = nea1;
  12913. const int64_t M = neb01;
  12914. GGML_ASSERT(ne0 == nea0);
  12915. GGML_ASSERT(ne1 == nea1);
  12916. GGML_ASSERT(ne2 == nea2);
  12917. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  12918. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  12919. GGML_ASSERT(nbb10 == sizeof(float));
  12920. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  12921. GGML_ASSERT(nbc10 == sizeof(float));
  12922. GGML_ASSERT(neb00 == D);
  12923. GGML_ASSERT(neb01 == M);
  12924. GGML_ASSERT(neb10 == M);
  12925. GGML_ASSERT(neb11 == 1);
  12926. GGML_ASSERT(nec00 == M);
  12927. GGML_ASSERT(nec01 == D);
  12928. GGML_ASSERT(nec10 == D);
  12929. GGML_ASSERT(nec11 == 1);
  12930. // dst cannot be transposed or permuted
  12931. GGML_ASSERT(nb0 == sizeof(float));
  12932. GGML_ASSERT(nb0 <= nb1);
  12933. GGML_ASSERT(nb1 <= nb2);
  12934. GGML_ASSERT(nb2 <= nb3);
  12935. if (params->type == GGML_TASK_TYPE_INIT) {
  12936. return;
  12937. }
  12938. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12939. return;
  12940. }
  12941. // parallelize by a rows using ggml_vec_dot_f32
  12942. // total rows in a
  12943. const int nr = nea1*nea2*nea3;
  12944. // rows per thread
  12945. const int dr = (nr + nth - 1)/nth;
  12946. // row range for this thread
  12947. const int ir0 = dr*ith;
  12948. const int ir1 = MIN(ir0 + dr, nr);
  12949. for (int ir = ir0; ir < ir1; ++ir) {
  12950. // a indices
  12951. const int ia3 = ir/(nea2*nea1);
  12952. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  12953. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  12954. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  12955. for (int64_t ic = 0; ic < neb01; ++ic) {
  12956. // b0 indices
  12957. const int ib03 = ia3;
  12958. const int ib02 = ia2;
  12959. const int ib01 = ic;
  12960. // S indices
  12961. const int i1 = ib01;
  12962. ggml_vec_dot_f16(nea0,
  12963. S + i1, 0,
  12964. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  12965. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  12966. }
  12967. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  12968. //ggml_vec_gelu_f32(neb01, S, S);
  12969. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  12970. for (int64_t i = 0; i < M; i++) {
  12971. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12972. }
  12973. ggml_vec_gelu_f16(neb01, S16, S16);
  12974. {
  12975. // dst indices
  12976. const int i1 = ia1;
  12977. const int i2 = ia2;
  12978. const int i3 = ia3;
  12979. for (int64_t ic = 0; ic < nec01; ++ic) {
  12980. ggml_vec_dot_f16(neb01,
  12981. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12982. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  12983. S16, 0, 1);
  12984. }
  12985. ggml_vec_add_f32(nec01,
  12986. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12987. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12988. (float *) c1->data);
  12989. }
  12990. }
  12991. }
  12992. static void ggml_compute_forward_flash_ff(
  12993. const struct ggml_compute_params * params,
  12994. struct ggml_tensor * dst) {
  12995. const struct ggml_tensor * b0 = dst->src[1];
  12996. switch (b0->type) {
  12997. case GGML_TYPE_F16:
  12998. {
  12999. ggml_compute_forward_flash_ff_f16(params, dst);
  13000. } break;
  13001. case GGML_TYPE_F32:
  13002. {
  13003. GGML_ASSERT(false); // TODO
  13004. } break;
  13005. default:
  13006. {
  13007. GGML_ASSERT(false);
  13008. } break;
  13009. }
  13010. }
  13011. // ggml_compute_forward_flash_attn_back
  13012. static void ggml_compute_forward_flash_attn_back_f32(
  13013. const struct ggml_compute_params * params,
  13014. const bool masked,
  13015. struct ggml_tensor * dst) {
  13016. const struct ggml_tensor * q = dst->src[0];
  13017. const struct ggml_tensor * k = dst->src[1];
  13018. const struct ggml_tensor * v = dst->src[2];
  13019. const struct ggml_tensor * d = dst->src[3];
  13020. int64_t t0 = ggml_perf_time_us();
  13021. UNUSED(t0);
  13022. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  13023. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  13024. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  13025. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  13026. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  13027. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  13028. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  13029. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  13030. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13031. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  13032. const int ith = params->ith;
  13033. const int nth = params->nth;
  13034. const int64_t D = neq0;
  13035. const int64_t N = neq1;
  13036. const int64_t P = nek1 - N;
  13037. const int64_t M = P + N;
  13038. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  13039. const int mxDM = MAX(D, Mup);
  13040. // GGML_ASSERT(ne0 == D);
  13041. // GGML_ASSERT(ne1 == N);
  13042. GGML_ASSERT(P >= 0);
  13043. GGML_ASSERT(nbq0 == sizeof(float));
  13044. GGML_ASSERT(nbk0 == sizeof(float));
  13045. GGML_ASSERT(nbv0 == sizeof(float));
  13046. GGML_ASSERT(neq0 == D);
  13047. GGML_ASSERT(nek0 == D);
  13048. GGML_ASSERT(nev1 == D);
  13049. GGML_ASSERT(ned0 == D);
  13050. GGML_ASSERT(neq1 == N);
  13051. GGML_ASSERT(nek1 == N + P);
  13052. GGML_ASSERT(nev1 == D);
  13053. GGML_ASSERT(ned1 == N);
  13054. // dst cannot be transposed or permuted
  13055. GGML_ASSERT(nb0 == sizeof(float));
  13056. GGML_ASSERT(nb0 <= nb1);
  13057. GGML_ASSERT(nb1 <= nb2);
  13058. GGML_ASSERT(nb2 <= nb3);
  13059. if (params->type == GGML_TASK_TYPE_INIT) {
  13060. if (ith == 0) {
  13061. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  13062. }
  13063. return;
  13064. }
  13065. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13066. return;
  13067. }
  13068. const int64_t elem_q = ggml_nelements(q);
  13069. const int64_t elem_k = ggml_nelements(k);
  13070. enum ggml_type result_type = dst->type;
  13071. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13072. const size_t tsize = ggml_type_size(result_type);
  13073. const size_t offs_q = 0;
  13074. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13075. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13076. void * grad_q = (char *) dst->data;
  13077. void * grad_k = (char *) dst->data + offs_k;
  13078. void * grad_v = (char *) dst->data + offs_v;
  13079. const size_t nbgq1 = nb0*neq0;
  13080. const size_t nbgq2 = nb0*neq0*neq1;
  13081. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13082. const size_t nbgk1 = nb0*nek0;
  13083. const size_t nbgk2 = nb0*nek0*nek1;
  13084. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13085. const size_t nbgv1 = nb0*nev0;
  13086. const size_t nbgv2 = nb0*nev0*nev1;
  13087. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13088. // parallelize by k rows using ggml_vec_dot_f32
  13089. // total rows in k
  13090. const int nr = nek2*nek3;
  13091. // rows per thread
  13092. const int dr = (nr + nth - 1)/nth;
  13093. // row range for this thread
  13094. const int ir0 = dr*ith;
  13095. const int ir1 = MIN(ir0 + dr, nr);
  13096. const float scale = 1.0f/sqrtf(D);
  13097. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13098. // how often k2 (and v2) is repeated in q2
  13099. int nrep = neq2/nek2;
  13100. for (int ir = ir0; ir < ir1; ++ir) {
  13101. // q indices
  13102. const int ik3 = ir/(nek2);
  13103. const int ik2 = ir - ik3*nek2;
  13104. const int iq3 = ik3;
  13105. const int id3 = ik3;
  13106. const int iv3 = ik3;
  13107. const int iv2 = ik2;
  13108. for (int irep = 0; irep < nrep; ++irep) {
  13109. const int iq2 = ik2 + irep*nek2;
  13110. const int id2 = iq2;
  13111. // (ik2 + irep*nek2) % nek2 == ik2
  13112. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13113. const int id1 = iq1;
  13114. // not sure about CACHE_LINE_SIZE_F32..
  13115. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13116. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13117. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13118. for (int i = M; i < Mup; ++i) {
  13119. S[i] = -INFINITY;
  13120. }
  13121. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13122. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13123. // k indices
  13124. const int ik1 = ic;
  13125. // S indices
  13126. const int i1 = ik1;
  13127. ggml_vec_dot_f32(neq0,
  13128. S + i1, 0,
  13129. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13130. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13131. }
  13132. // scale
  13133. ggml_vec_scale_f32(masked_begin, S, scale);
  13134. for (int64_t i = masked_begin; i < M; i++) {
  13135. S[i] = -INFINITY;
  13136. }
  13137. // softmax
  13138. // exclude known -INF S[..] values from max and loop
  13139. // dont forget to set their SM values to zero
  13140. {
  13141. float max = -INFINITY;
  13142. ggml_vec_max_f32(masked_begin, &max, S);
  13143. ggml_float sum = 0.0;
  13144. {
  13145. #ifdef GGML_SOFT_MAX_ACCELERATE
  13146. max = -max;
  13147. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13148. vvexpf(SM, SM, &Mup);
  13149. ggml_vec_sum_f32(Mup, &sum, SM);
  13150. #else
  13151. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  13152. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  13153. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  13154. if (i >= masked_begin) {
  13155. break;
  13156. }
  13157. float * SR = S + i;
  13158. float * SW = SM + i;
  13159. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  13160. if (i + j >= masked_begin) {
  13161. break;
  13162. } else if (SR[j] == -INFINITY) {
  13163. SW[j] = 0.0f;
  13164. } else {
  13165. #ifndef GGML_FLASH_ATTN_EXP_FP16
  13166. const float val = expf(SR[j] - max);
  13167. #else
  13168. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  13169. memcpy(&scvt[j], &s, sizeof(uint16_t));
  13170. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  13171. #endif
  13172. sump[j] += (ggml_float)val;
  13173. SW[j] = val;
  13174. }
  13175. }
  13176. }
  13177. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  13178. sum += sump[i];
  13179. }
  13180. #endif
  13181. }
  13182. assert(sum > 0.0);
  13183. sum = 1.0/sum;
  13184. ggml_vec_scale_f32(masked_begin, SM, sum);
  13185. }
  13186. // step-by-step explanation
  13187. {
  13188. // forward-process shape grads from backward process
  13189. // parallel_for ik2,ik3:
  13190. // for irep:
  13191. // iq2 = ik2 + irep*nek2
  13192. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13193. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13194. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13195. // for iq1:
  13196. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13197. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13198. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13199. // S0 = -Inf [D,1,1,1]
  13200. // ~S1[i] = dot(kcur[:D,i], qcur)
  13201. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13202. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13203. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13204. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13205. // ~S5[i] = dot(vcur[:,i], S4)
  13206. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13207. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13208. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13209. // dst backward-/ grad[dst] = d
  13210. //
  13211. // output gradients with their dependencies:
  13212. //
  13213. // grad[kcur] = grad[S1].T @ qcur
  13214. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13215. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13216. // grad[S4] = grad[S5] @ vcur
  13217. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13218. // grad[qcur] = grad[S1] @ kcur
  13219. // grad[vcur] = grad[S5].T @ S4
  13220. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13221. //
  13222. // in post-order:
  13223. //
  13224. // S1 = qcur @ kcur.T
  13225. // S2 = S1 * scale
  13226. // S3 = diag_mask_inf(S2, P)
  13227. // S4 = softmax(S3)
  13228. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13229. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13230. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13231. // grad[qcur] = grad[S1] @ kcur
  13232. // grad[kcur] = grad[S1].T @ qcur
  13233. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13234. //
  13235. // using less variables (SM=S4):
  13236. //
  13237. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13238. // SM = softmax(S)
  13239. // S = d[:D,iq1,iq2,iq3] @ vcur
  13240. // dot_SM_gradSM = dot(SM, S)
  13241. // S = SM * (S - dot(SM, S))
  13242. // S = diag_mask_zero(S, P) * scale
  13243. //
  13244. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13245. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13246. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13247. }
  13248. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13249. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13250. // for ic:
  13251. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13252. // exclude known future zero S[..] values from operation
  13253. ggml_vec_set_f32(masked_begin, S, 0);
  13254. for (int64_t ic = 0; ic < D; ++ic) {
  13255. ggml_vec_mad_f32(masked_begin,
  13256. S,
  13257. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13258. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13259. }
  13260. // S = SM * (S - dot(SM, S))
  13261. float dot_SM_gradSM = 0;
  13262. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13263. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13264. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13265. // S = diag_mask_zero(S, P) * scale
  13266. // already done by above ggml_vec_set_f32
  13267. // exclude known zero S[..] values from operation
  13268. ggml_vec_scale_f32(masked_begin, S, scale);
  13269. // S shape [M,1]
  13270. // SM shape [M,1]
  13271. // kcur shape [D,M]
  13272. // qcur shape [D,1]
  13273. // vcur shape [M,D]
  13274. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13275. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13276. // for ic:
  13277. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13278. // exclude known zero S[..] values from loop
  13279. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13280. ggml_vec_mad_f32(D,
  13281. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13282. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13283. S[ic]);
  13284. }
  13285. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13286. // for ic:
  13287. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13288. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13289. // exclude known zero S[..] values from loop
  13290. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13291. ggml_vec_mad_f32(D,
  13292. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13293. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13294. S[ic]);
  13295. }
  13296. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13297. // for ic:
  13298. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13299. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13300. // exclude known zero SM[..] values from mad
  13301. for (int64_t ic = 0; ic < D; ++ic) {
  13302. ggml_vec_mad_f32(masked_begin,
  13303. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13304. SM,
  13305. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13306. }
  13307. }
  13308. }
  13309. }
  13310. }
  13311. static void ggml_compute_forward_flash_attn_back(
  13312. const struct ggml_compute_params * params,
  13313. const bool masked,
  13314. struct ggml_tensor * dst) {
  13315. const struct ggml_tensor * q = dst->src[0];
  13316. switch (q->type) {
  13317. case GGML_TYPE_F32:
  13318. {
  13319. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13320. } break;
  13321. default:
  13322. {
  13323. GGML_ASSERT(false);
  13324. } break;
  13325. }
  13326. }
  13327. // ggml_compute_forward_ssm_conv
  13328. static void ggml_compute_forward_ssm_conv_f32(
  13329. const struct ggml_compute_params * params,
  13330. struct ggml_tensor * dst) {
  13331. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13332. return;
  13333. }
  13334. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13335. const struct ggml_tensor * src1 = dst->src[1]; // x
  13336. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13337. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13338. const int ith = params->ith;
  13339. const int nth = params->nth;
  13340. const int nc = src2->ne[0]; // d_conv
  13341. const int nr = src0->ne[1]; // d_inner
  13342. const int n_t = src1->ne[1]; // n_tokens
  13343. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13344. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13345. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13346. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13347. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13348. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13349. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13350. // for use with the destination state offset between sequences
  13351. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13352. // rows per thread
  13353. const int dr = (nr + nth - 1)/nth;
  13354. // row range for this thread
  13355. const int ir0 = dr*ith;
  13356. const int ir1 = MIN(ir0 + dr, nr);
  13357. const int ir = ir1 - ir0;
  13358. if (n_kv > 1) {
  13359. // multiple sequences means it's hard to know when it's the first time a state is read,
  13360. // so copy them all over to the destination, just to be sure.
  13361. for (int i3 = 0; i3 < n_kv; ++i3) {
  13362. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13363. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13364. // can't use memcpy because of d_conv vs d_conv - 1
  13365. for (int i1 = 0; i1 < ir; ++i1) {
  13366. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13367. // copy s0 to last (d_conv - 1) columns of s
  13368. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13369. }
  13370. }
  13371. }
  13372. }
  13373. for (int i2 = 0; i2 < n_t; ++i2) {
  13374. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13375. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13376. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13377. float * s0; // {d_conv - 1, d_inner, n_kv}
  13378. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13379. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13380. int ne0s0;
  13381. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13382. // avoid needing to copy the state for the first token
  13383. if (i2 == 0) {
  13384. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13385. ne0s0 = src0->ne[0];
  13386. } else {
  13387. // the source is the last (d_conv - 1) columns of the destination
  13388. s0 = s + 1;
  13389. ne0s0 = nc;
  13390. }
  13391. // d_inner
  13392. for (int i1 = 0; i1 < ir; ++i1) {
  13393. // shift state left
  13394. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13395. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13396. }
  13397. // insert x on the last column
  13398. s[(nc - 1) + i1*nc] = x0[i1];
  13399. }
  13400. // handle copies when there are multiple output states
  13401. for (int i3 = 1; i3 < n_kv; ++i3) {
  13402. int32_t seq = sq[i3];
  13403. if (0 <= seq && seq < n_kv) {
  13404. float * s1 = s + (seq - sq[0])*nc*nr;
  13405. memcpy(s1, s, nc*ir*sizeof(float));
  13406. } else {
  13407. // stop at negative or too big seq_ids
  13408. break;
  13409. }
  13410. }
  13411. // it seems a little faster when this is separate from the state shift
  13412. for (int i1 = 0; i1 < ir; ++i1) {
  13413. // rowwise dot product
  13414. float sumf = 0.0f;
  13415. for (int i0 = 0; i0 < nc; ++i0) {
  13416. int i = i0 + i1*nc;
  13417. sumf += s[i] * c[i];
  13418. }
  13419. x[i1] = sumf;
  13420. }
  13421. }
  13422. }
  13423. static void ggml_compute_forward_ssm_conv(
  13424. const struct ggml_compute_params * params,
  13425. struct ggml_tensor * dst) {
  13426. switch (dst->src[0]->type) {
  13427. case GGML_TYPE_F32:
  13428. {
  13429. ggml_compute_forward_ssm_conv_f32(params, dst);
  13430. } break;
  13431. default:
  13432. {
  13433. GGML_ASSERT(false);
  13434. } break;
  13435. }
  13436. }
  13437. // ggml_compute_forward_ssm_scan
  13438. static void ggml_compute_forward_ssm_scan_f32(
  13439. const struct ggml_compute_params * params,
  13440. struct ggml_tensor * dst) {
  13441. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13442. return;
  13443. }
  13444. const struct ggml_tensor * src0 = dst->src[0]; // s
  13445. const struct ggml_tensor * src1 = dst->src[1]; // x
  13446. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13447. const struct ggml_tensor * src3 = dst->src[3]; // A
  13448. const struct ggml_tensor * src4 = dst->src[4]; // B
  13449. const struct ggml_tensor * src5 = dst->src[5]; // C
  13450. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13451. const int ith = params->ith;
  13452. const int nth = params->nth;
  13453. const int64_t nc = src0->ne[0]; // d_state
  13454. const int64_t nr = src0->ne[1]; // d_inner
  13455. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13456. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13457. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13458. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13459. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13460. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13461. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13462. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13463. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13464. // required for the dot product between s and C, and when copying the states
  13465. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13466. // required for per-sequence offsets for states
  13467. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13468. // required to get correct offset for state destination (i.e. src1->nb[2])
  13469. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13470. // rows per thread
  13471. const int dr = (nr + nth - 1)/nth;
  13472. // row range for this thread
  13473. const int ir0 = dr*ith;
  13474. const int ir1 = MIN(ir0 + dr, nr);
  13475. const int ir = ir1 - ir0;
  13476. if (n_kv > 1) {
  13477. // it's hard to know if the source states have already been copied
  13478. // when there are multiple, so copy them already.
  13479. for (int i3 = 0; i3 < n_kv; ++i3) {
  13480. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13481. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13482. memcpy(s, s0, nc*ir*sizeof(float));
  13483. }
  13484. }
  13485. for (int i2 = 0; i2 < n_t; ++i2) {
  13486. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13487. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13488. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13489. float * s0;
  13490. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13491. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13492. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13493. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13494. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13495. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13496. // avoid needing to copy the state for the first token
  13497. if (i2 == 0) {
  13498. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13499. } else {
  13500. // otherwise the source is the same as the destination
  13501. s0 = s;
  13502. }
  13503. // d_inner
  13504. for (int i1 = 0; i1 < ir; ++i1) {
  13505. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13506. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13507. float x_dt = x[i1] * dt_soft_plus;
  13508. float sumf = 0.0f;
  13509. // d_state
  13510. for (int i0 = 0; i0 < nc; ++i0) {
  13511. int i = i0 + i1*nc;
  13512. // state = prev_state * dA + dB * x
  13513. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13514. // y = rowwise_dotprod(state, C)
  13515. sumf += state * C[i0];
  13516. s[i] = state;
  13517. }
  13518. y[i1] = sumf;
  13519. }
  13520. // handle copies when there are multiple output states
  13521. for (int i3 = 1; i3 < n_kv; ++i3) {
  13522. int32_t seq = sq[i3];
  13523. if (0 <= seq && seq < n_kv) {
  13524. float * s1 = s + (seq - sq[0])*nc*nr;
  13525. memcpy(s1, s, nc*ir*sizeof(float));
  13526. } else {
  13527. // stop at negative or too big seq_ids
  13528. break;
  13529. }
  13530. }
  13531. }
  13532. }
  13533. static void ggml_compute_forward_ssm_scan(
  13534. const struct ggml_compute_params * params,
  13535. struct ggml_tensor * dst) {
  13536. switch (dst->src[0]->type) {
  13537. case GGML_TYPE_F32:
  13538. {
  13539. ggml_compute_forward_ssm_scan_f32(params, dst);
  13540. } break;
  13541. default:
  13542. {
  13543. GGML_ASSERT(false);
  13544. } break;
  13545. }
  13546. }
  13547. // ggml_compute_forward_win_part
  13548. static void ggml_compute_forward_win_part_f32(
  13549. const struct ggml_compute_params * params,
  13550. struct ggml_tensor * dst) {
  13551. const struct ggml_tensor * src0 = dst->src[0];
  13552. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13553. return;
  13554. }
  13555. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13556. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13557. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13558. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13559. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13560. assert(ne00 == ne0);
  13561. assert(ne3 == nep0*nep1);
  13562. // TODO: optimize / multi-thread
  13563. for (int py = 0; py < nep1; ++py) {
  13564. for (int px = 0; px < nep0; ++px) {
  13565. const int64_t i3 = py*nep0 + px;
  13566. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13567. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13568. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13569. const int64_t i02 = py*w + i2;
  13570. const int64_t i01 = px*w + i1;
  13571. const int64_t i00 = i0;
  13572. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13573. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13574. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13575. ((float *) dst->data)[i] = 0.0f;
  13576. } else {
  13577. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13578. }
  13579. }
  13580. }
  13581. }
  13582. }
  13583. }
  13584. }
  13585. static void ggml_compute_forward_win_part(
  13586. const struct ggml_compute_params * params,
  13587. struct ggml_tensor * dst) {
  13588. const struct ggml_tensor * src0 = dst->src[0];
  13589. switch (src0->type) {
  13590. case GGML_TYPE_F32:
  13591. {
  13592. ggml_compute_forward_win_part_f32(params, dst);
  13593. } break;
  13594. default:
  13595. {
  13596. GGML_ASSERT(false);
  13597. } break;
  13598. }
  13599. }
  13600. // ggml_compute_forward_win_unpart
  13601. static void ggml_compute_forward_win_unpart_f32(
  13602. const struct ggml_compute_params * params,
  13603. struct ggml_tensor * dst) {
  13604. const struct ggml_tensor * src0 = dst->src[0];
  13605. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13606. return;
  13607. }
  13608. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13609. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13610. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13611. // padding
  13612. const int px = (w - ne1%w)%w;
  13613. //const int py = (w - ne2%w)%w;
  13614. const int npx = (px + ne1)/w;
  13615. //const int npy = (py + ne2)/w;
  13616. assert(ne0 == ne00);
  13617. // TODO: optimize / multi-thread
  13618. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13619. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13620. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13621. const int ip2 = i2/w;
  13622. const int ip1 = i1/w;
  13623. const int64_t i02 = i2%w;
  13624. const int64_t i01 = i1%w;
  13625. const int64_t i00 = i0;
  13626. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13627. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13628. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13629. }
  13630. }
  13631. }
  13632. }
  13633. static void ggml_compute_forward_win_unpart(
  13634. const struct ggml_compute_params * params,
  13635. struct ggml_tensor * dst) {
  13636. const struct ggml_tensor * src0 = dst->src[0];
  13637. switch (src0->type) {
  13638. case GGML_TYPE_F32:
  13639. {
  13640. ggml_compute_forward_win_unpart_f32(params, dst);
  13641. } break;
  13642. default:
  13643. {
  13644. GGML_ASSERT(false);
  13645. } break;
  13646. }
  13647. }
  13648. //gmml_compute_forward_unary
  13649. static void ggml_compute_forward_unary(
  13650. const struct ggml_compute_params * params,
  13651. struct ggml_tensor * dst) {
  13652. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13653. switch (op) {
  13654. case GGML_UNARY_OP_ABS:
  13655. {
  13656. ggml_compute_forward_abs(params, dst);
  13657. } break;
  13658. case GGML_UNARY_OP_SGN:
  13659. {
  13660. ggml_compute_forward_sgn(params, dst);
  13661. } break;
  13662. case GGML_UNARY_OP_NEG:
  13663. {
  13664. ggml_compute_forward_neg(params, dst);
  13665. } break;
  13666. case GGML_UNARY_OP_STEP:
  13667. {
  13668. ggml_compute_forward_step(params, dst);
  13669. } break;
  13670. case GGML_UNARY_OP_TANH:
  13671. {
  13672. ggml_compute_forward_tanh(params, dst);
  13673. } break;
  13674. case GGML_UNARY_OP_ELU:
  13675. {
  13676. ggml_compute_forward_elu(params, dst);
  13677. } break;
  13678. case GGML_UNARY_OP_RELU:
  13679. {
  13680. ggml_compute_forward_relu(params, dst);
  13681. } break;
  13682. case GGML_UNARY_OP_GELU:
  13683. {
  13684. ggml_compute_forward_gelu(params, dst);
  13685. } break;
  13686. case GGML_UNARY_OP_GELU_QUICK:
  13687. {
  13688. ggml_compute_forward_gelu_quick(params, dst);
  13689. } break;
  13690. case GGML_UNARY_OP_SILU:
  13691. {
  13692. ggml_compute_forward_silu(params, dst);
  13693. } break;
  13694. case GGML_UNARY_OP_HARDSWISH:
  13695. {
  13696. ggml_compute_forward_hardswish(params, dst);
  13697. } break;
  13698. case GGML_UNARY_OP_HARDSIGMOID:
  13699. {
  13700. ggml_compute_forward_hardsigmoid(params, dst);
  13701. } break;
  13702. default:
  13703. {
  13704. GGML_ASSERT(false);
  13705. } break;
  13706. }
  13707. }
  13708. // ggml_compute_forward_get_rel_pos
  13709. static void ggml_compute_forward_get_rel_pos_f16(
  13710. const struct ggml_compute_params * params,
  13711. struct ggml_tensor * dst) {
  13712. const struct ggml_tensor * src0 = dst->src[0];
  13713. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13714. return;
  13715. }
  13716. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13717. GGML_TENSOR_UNARY_OP_LOCALS
  13718. const int64_t w = ne1;
  13719. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13720. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13721. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13722. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13723. const int64_t pos = (w - i1 - 1) + i2;
  13724. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13725. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13726. }
  13727. }
  13728. }
  13729. }
  13730. static void ggml_compute_forward_get_rel_pos(
  13731. const struct ggml_compute_params * params,
  13732. struct ggml_tensor * dst) {
  13733. const struct ggml_tensor * src0 = dst->src[0];
  13734. switch (src0->type) {
  13735. case GGML_TYPE_F16:
  13736. case GGML_TYPE_BF16:
  13737. {
  13738. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13739. } break;
  13740. default:
  13741. {
  13742. GGML_ASSERT(false);
  13743. } break;
  13744. }
  13745. }
  13746. // ggml_compute_forward_add_rel_pos
  13747. static void ggml_compute_forward_add_rel_pos_f32(
  13748. const struct ggml_compute_params * params,
  13749. struct ggml_tensor * dst) {
  13750. const struct ggml_tensor * src0 = dst->src[0];
  13751. const struct ggml_tensor * src1 = dst->src[1];
  13752. const struct ggml_tensor * src2 = dst->src[2];
  13753. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13754. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13755. if (params->ith != 0) {
  13756. return;
  13757. }
  13758. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13759. return;
  13760. }
  13761. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13762. return;
  13763. }
  13764. int64_t t0 = ggml_perf_time_us();
  13765. UNUSED(t0);
  13766. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13767. float * src1_data = (float *) src1->data;
  13768. float * src2_data = (float *) src2->data;
  13769. float * dst_data = (float *) dst->data;
  13770. const int64_t ne10 = src1->ne[0];
  13771. const int64_t ne11 = src1->ne[1];
  13772. const int64_t ne12 = src1->ne[2];
  13773. const int64_t ne13 = src1->ne[3];
  13774. const int ith = params->ith;
  13775. const int nth = params->nth;
  13776. // total patches in dst
  13777. const int np = ne13;
  13778. // patches per thread
  13779. const int dp = (np + nth - 1)/nth;
  13780. // patch range for this thread
  13781. const int ip0 = dp*ith;
  13782. const int ip1 = MIN(ip0 + dp, np);
  13783. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13784. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13785. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13786. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13787. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13788. const int64_t jp0 = jp1 + i10;
  13789. const float src1_e = src1_data[jp0];
  13790. const float src2_e = src2_data[jp0];
  13791. const int64_t jdh = jp0 * ne10;
  13792. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13793. for (int64_t j = 0; j < ne10; ++j) {
  13794. dst_data[jdh + j ] += src2_e;
  13795. dst_data[jdw + j*ne10] += src1_e;
  13796. }
  13797. }
  13798. }
  13799. }
  13800. }
  13801. }
  13802. static void ggml_compute_forward_add_rel_pos(
  13803. const struct ggml_compute_params * params,
  13804. struct ggml_tensor * dst) {
  13805. const struct ggml_tensor * src0 = dst->src[0];
  13806. switch (src0->type) {
  13807. case GGML_TYPE_F32:
  13808. {
  13809. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13810. } break;
  13811. default:
  13812. {
  13813. GGML_ASSERT(false);
  13814. } break;
  13815. }
  13816. }
  13817. // ggml_compute_forward_map_unary
  13818. static void ggml_compute_forward_map_unary_f32(
  13819. const struct ggml_compute_params * params,
  13820. struct ggml_tensor * dst,
  13821. const ggml_unary_op_f32_t fun) {
  13822. const struct ggml_tensor * src0 = dst->src[0];
  13823. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13824. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13825. return;
  13826. }
  13827. const int n = ggml_nrows(src0);
  13828. const int nc = src0->ne[0];
  13829. assert( dst->nb[0] == sizeof(float));
  13830. assert(src0->nb[0] == sizeof(float));
  13831. for (int i = 0; i < n; i++) {
  13832. fun(nc,
  13833. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13834. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13835. }
  13836. }
  13837. static void ggml_compute_forward_map_unary(
  13838. const struct ggml_compute_params * params,
  13839. struct ggml_tensor * dst,
  13840. const ggml_unary_op_f32_t fun) {
  13841. const struct ggml_tensor * src0 = dst->src[0];
  13842. switch (src0->type) {
  13843. case GGML_TYPE_F32:
  13844. {
  13845. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13846. } break;
  13847. default:
  13848. {
  13849. GGML_ASSERT(false);
  13850. } break;
  13851. }
  13852. }
  13853. // ggml_compute_forward_map_binary
  13854. static void ggml_compute_forward_map_binary_f32(
  13855. const struct ggml_compute_params * params,
  13856. struct ggml_tensor * dst,
  13857. const ggml_binary_op_f32_t fun) {
  13858. const struct ggml_tensor * src0 = dst->src[0];
  13859. const struct ggml_tensor * src1 = dst->src[1];
  13860. assert(params->ith == 0);
  13861. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13862. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13863. return;
  13864. }
  13865. const int n = ggml_nrows(src0);
  13866. const int nc = src0->ne[0];
  13867. assert( dst->nb[0] == sizeof(float));
  13868. assert(src0->nb[0] == sizeof(float));
  13869. assert(src1->nb[0] == sizeof(float));
  13870. for (int i = 0; i < n; i++) {
  13871. fun(nc,
  13872. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13873. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13874. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13875. }
  13876. }
  13877. static void ggml_compute_forward_map_binary(
  13878. const struct ggml_compute_params * params,
  13879. struct ggml_tensor * dst,
  13880. const ggml_binary_op_f32_t fun) {
  13881. const struct ggml_tensor * src0 = dst->src[0];
  13882. switch (src0->type) {
  13883. case GGML_TYPE_F32:
  13884. {
  13885. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13886. } break;
  13887. default:
  13888. {
  13889. GGML_ASSERT(false);
  13890. } break;
  13891. }
  13892. }
  13893. // ggml_compute_forward_map_custom1
  13894. static void ggml_compute_forward_map_custom1_f32(
  13895. const struct ggml_compute_params * params,
  13896. struct ggml_tensor * dst,
  13897. const ggml_custom1_op_f32_t fun) {
  13898. const struct ggml_tensor * a = dst->src[0];
  13899. assert(params->ith == 0);
  13900. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13901. return;
  13902. }
  13903. fun(dst, a);
  13904. }
  13905. // ggml_compute_forward_map_custom2
  13906. static void ggml_compute_forward_map_custom2_f32(
  13907. const struct ggml_compute_params * params,
  13908. struct ggml_tensor * dst,
  13909. const ggml_custom2_op_f32_t fun) {
  13910. const struct ggml_tensor * a = dst->src[0];
  13911. const struct ggml_tensor * b = dst->src[1];
  13912. assert(params->ith == 0);
  13913. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13914. return;
  13915. }
  13916. fun(dst, a, b);
  13917. }
  13918. // ggml_compute_forward_map_custom3
  13919. static void ggml_compute_forward_map_custom3_f32(
  13920. const struct ggml_compute_params * params,
  13921. struct ggml_tensor * dst,
  13922. const ggml_custom3_op_f32_t fun) {
  13923. const struct ggml_tensor * a = dst->src[0];
  13924. const struct ggml_tensor * b = dst->src[1];
  13925. const struct ggml_tensor * c = dst->src[1];
  13926. assert(params->ith == 0);
  13927. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13928. return;
  13929. }
  13930. fun(dst, a, b, c);
  13931. }
  13932. // ggml_compute_forward_map_custom1
  13933. static void ggml_compute_forward_map_custom1(
  13934. const struct ggml_compute_params * params,
  13935. struct ggml_tensor * dst) {
  13936. const struct ggml_tensor * a = dst->src[0];
  13937. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13938. return;
  13939. }
  13940. struct ggml_map_custom1_op_params p;
  13941. memcpy(&p, dst->op_params, sizeof(p));
  13942. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13943. }
  13944. // ggml_compute_forward_map_custom2
  13945. static void ggml_compute_forward_map_custom2(
  13946. const struct ggml_compute_params * params,
  13947. struct ggml_tensor * dst) {
  13948. const struct ggml_tensor * a = dst->src[0];
  13949. const struct ggml_tensor * b = dst->src[1];
  13950. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13951. return;
  13952. }
  13953. struct ggml_map_custom2_op_params p;
  13954. memcpy(&p, dst->op_params, sizeof(p));
  13955. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13956. }
  13957. // ggml_compute_forward_map_custom3
  13958. static void ggml_compute_forward_map_custom3(
  13959. const struct ggml_compute_params * params,
  13960. struct ggml_tensor * dst) {
  13961. const struct ggml_tensor * a = dst->src[0];
  13962. const struct ggml_tensor * b = dst->src[1];
  13963. const struct ggml_tensor * c = dst->src[2];
  13964. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13965. return;
  13966. }
  13967. struct ggml_map_custom3_op_params p;
  13968. memcpy(&p, dst->op_params, sizeof(p));
  13969. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13970. }
  13971. // ggml_compute_forward_cross_entropy_loss
  13972. static void ggml_compute_forward_cross_entropy_loss_f32(
  13973. const struct ggml_compute_params * params,
  13974. struct ggml_tensor * dst) {
  13975. const struct ggml_tensor * src0 = dst->src[0];
  13976. const struct ggml_tensor * src1 = dst->src[1];
  13977. GGML_ASSERT(ggml_is_contiguous(src0));
  13978. GGML_ASSERT(ggml_is_contiguous(src1));
  13979. GGML_ASSERT(ggml_is_scalar(dst));
  13980. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13981. const int ith = params->ith;
  13982. const int nth = params->nth;
  13983. float * sums = (float *) params->wdata;
  13984. // TODO: handle transposed/permuted matrices
  13985. const int nc = src0->ne[0];
  13986. const int nr = ggml_nrows(src0);
  13987. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13988. if (params->type == GGML_TASK_TYPE_INIT) {
  13989. if (ith == 0) {
  13990. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13991. }
  13992. return;
  13993. }
  13994. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13995. if (ith == 0) {
  13996. float * dp = (float *) dst->data;
  13997. ggml_vec_sum_f32(nth, dp, sums);
  13998. dp[0] *= -1.0f / (float) nr;
  13999. }
  14000. return;
  14001. }
  14002. const double eps = 1e-9;
  14003. // rows per thread
  14004. const int dr = (nr + nth - 1)/nth;
  14005. // row range for this thread
  14006. const int ir0 = dr*ith;
  14007. const int ir1 = MIN(ir0 + dr, nr);
  14008. for (int i1 = ir0; i1 < ir1; i1++) {
  14009. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14010. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14011. float * st = ((float *) params->wdata) + nth + ith*nc;
  14012. #ifndef NDEBUG
  14013. for (int i = 0; i < nc; ++i) {
  14014. //printf("p[%d] = %f\n", i, p[i]);
  14015. assert(!isnan(s0[i]));
  14016. assert(!isnan(s1[i]));
  14017. }
  14018. #endif
  14019. // soft_max
  14020. ggml_float sum = 0.0;
  14021. {
  14022. float max = -INFINITY;
  14023. ggml_vec_max_f32(nc, &max, s0);
  14024. uint16_t scvt; UNUSED(scvt);
  14025. for (int i = 0; i < nc; i++) {
  14026. if (s0[i] == -INFINITY) {
  14027. st[i] = 0.0f;
  14028. } else {
  14029. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  14030. const float s = s0[i] - max;
  14031. const float val = expf(s);
  14032. #else
  14033. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  14034. memcpy(&scvt, &s, sizeof(scvt));
  14035. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  14036. #endif
  14037. sum += (ggml_float)val;
  14038. st[i] = val;
  14039. }
  14040. }
  14041. assert(sum > 0.0);
  14042. // sum = 1.0/sum;
  14043. }
  14044. // avoid log(0) by rescaling from [0..1] to [eps..1]
  14045. sum = (1.0 - eps) / sum;
  14046. ggml_vec_scale_f32(nc, st, sum);
  14047. ggml_vec_add1_f32(nc, st, st, eps);
  14048. ggml_vec_log_f32(nc, st, st);
  14049. ggml_vec_mul_f32(nc, st, st, s1);
  14050. float st_sum = 0;
  14051. ggml_vec_sum_f32(nc, &st_sum, st);
  14052. sums[ith] += st_sum;
  14053. #ifndef NDEBUG
  14054. for (int i = 0; i < nc; ++i) {
  14055. assert(!isnan(st[i]));
  14056. assert(!isinf(st[i]));
  14057. }
  14058. #endif
  14059. }
  14060. }
  14061. static void ggml_compute_forward_cross_entropy_loss(
  14062. const struct ggml_compute_params * params,
  14063. struct ggml_tensor * dst) {
  14064. const struct ggml_tensor * src0 = dst->src[0];
  14065. switch (src0->type) {
  14066. case GGML_TYPE_F32:
  14067. {
  14068. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  14069. } break;
  14070. default:
  14071. {
  14072. GGML_ASSERT(false);
  14073. } break;
  14074. }
  14075. }
  14076. // ggml_compute_forward_cross_entropy_loss_back
  14077. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  14078. const struct ggml_compute_params * params,
  14079. struct ggml_tensor * dst) {
  14080. const struct ggml_tensor * src0 = dst->src[0];
  14081. const struct ggml_tensor * src1 = dst->src[1];
  14082. const struct ggml_tensor * opt0 = dst->src[2];
  14083. GGML_ASSERT(ggml_is_contiguous(dst));
  14084. GGML_ASSERT(ggml_is_contiguous(src0));
  14085. GGML_ASSERT(ggml_is_contiguous(src1));
  14086. GGML_ASSERT(ggml_is_contiguous(opt0));
  14087. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14088. const int64_t ith = params->ith;
  14089. const int64_t nth = params->nth;
  14090. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14091. return;
  14092. }
  14093. const double eps = 1e-9;
  14094. // TODO: handle transposed/permuted matrices
  14095. const int64_t nc = src0->ne[0];
  14096. const int64_t nr = ggml_nrows(src0);
  14097. // rows per thread
  14098. const int64_t dr = (nr + nth - 1)/nth;
  14099. // row range for this thread
  14100. const int64_t ir0 = dr*ith;
  14101. const int64_t ir1 = MIN(ir0 + dr, nr);
  14102. float * d = (float *) opt0->data;
  14103. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  14104. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  14105. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14106. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14107. #ifndef NDEBUG
  14108. for (int i = 0; i < nc; ++i) {
  14109. //printf("p[%d] = %f\n", i, p[i]);
  14110. assert(!isnan(s0[i]));
  14111. assert(!isnan(s1[i]));
  14112. }
  14113. #endif
  14114. // soft_max
  14115. ggml_float sum = 0.0;
  14116. {
  14117. float max = -INFINITY;
  14118. ggml_vec_max_f32(nc, &max, s0);
  14119. uint16_t scvt; UNUSED(scvt);
  14120. for (int i = 0; i < nc; i++) {
  14121. if (s0[i] == -INFINITY) {
  14122. ds0[i] = 0.0f;
  14123. } else {
  14124. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  14125. const float s = s0[i] - max;
  14126. const float val = expf(s);
  14127. #else
  14128. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  14129. memcpy(&scvt, &s, sizeof(scvt));
  14130. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  14131. #endif
  14132. sum += (ggml_float)val;
  14133. ds0[i] = val;
  14134. }
  14135. }
  14136. assert(sum > 0.0);
  14137. sum = (1.0 - eps)/sum;
  14138. }
  14139. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14140. ggml_vec_scale_f32(nc, ds0, sum);
  14141. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14142. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14143. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14144. #ifndef NDEBUG
  14145. for (int i = 0; i < nc; ++i) {
  14146. assert(!isnan(ds0[i]));
  14147. assert(!isinf(ds0[i]));
  14148. }
  14149. #endif
  14150. }
  14151. }
  14152. static void ggml_compute_forward_cross_entropy_loss_back(
  14153. const struct ggml_compute_params * params,
  14154. struct ggml_tensor * dst) {
  14155. const struct ggml_tensor * src0 = dst->src[0];
  14156. switch (src0->type) {
  14157. case GGML_TYPE_F32:
  14158. {
  14159. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14160. } break;
  14161. default:
  14162. {
  14163. GGML_ASSERT(false);
  14164. } break;
  14165. }
  14166. }
  14167. /////////////////////////////////
  14168. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  14169. GGML_ASSERT(params);
  14170. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14171. return;
  14172. }
  14173. switch (tensor->op) {
  14174. case GGML_OP_DUP:
  14175. {
  14176. ggml_compute_forward_dup(params, tensor);
  14177. } break;
  14178. case GGML_OP_ADD:
  14179. {
  14180. ggml_compute_forward_add(params, tensor);
  14181. } break;
  14182. case GGML_OP_ADD1:
  14183. {
  14184. ggml_compute_forward_add1(params, tensor);
  14185. } break;
  14186. case GGML_OP_ACC:
  14187. {
  14188. ggml_compute_forward_acc(params, tensor);
  14189. } break;
  14190. case GGML_OP_SUB:
  14191. {
  14192. ggml_compute_forward_sub(params, tensor);
  14193. } break;
  14194. case GGML_OP_MUL:
  14195. {
  14196. ggml_compute_forward_mul(params, tensor);
  14197. } break;
  14198. case GGML_OP_DIV:
  14199. {
  14200. ggml_compute_forward_div(params, tensor);
  14201. } break;
  14202. case GGML_OP_SQR:
  14203. {
  14204. ggml_compute_forward_sqr(params, tensor);
  14205. } break;
  14206. case GGML_OP_SQRT:
  14207. {
  14208. ggml_compute_forward_sqrt(params, tensor);
  14209. } break;
  14210. case GGML_OP_LOG:
  14211. {
  14212. ggml_compute_forward_log(params, tensor);
  14213. } break;
  14214. case GGML_OP_SUM:
  14215. {
  14216. ggml_compute_forward_sum(params, tensor);
  14217. } break;
  14218. case GGML_OP_SUM_ROWS:
  14219. {
  14220. ggml_compute_forward_sum_rows(params, tensor);
  14221. } break;
  14222. case GGML_OP_MEAN:
  14223. {
  14224. ggml_compute_forward_mean(params, tensor);
  14225. } break;
  14226. case GGML_OP_ARGMAX:
  14227. {
  14228. ggml_compute_forward_argmax(params, tensor);
  14229. } break;
  14230. case GGML_OP_REPEAT:
  14231. {
  14232. ggml_compute_forward_repeat(params, tensor);
  14233. } break;
  14234. case GGML_OP_REPEAT_BACK:
  14235. {
  14236. ggml_compute_forward_repeat_back(params, tensor);
  14237. } break;
  14238. case GGML_OP_CONCAT:
  14239. {
  14240. ggml_compute_forward_concat(params, tensor);
  14241. } break;
  14242. case GGML_OP_SILU_BACK:
  14243. {
  14244. ggml_compute_forward_silu_back(params, tensor);
  14245. } break;
  14246. case GGML_OP_NORM:
  14247. {
  14248. ggml_compute_forward_norm(params, tensor);
  14249. } break;
  14250. case GGML_OP_RMS_NORM:
  14251. {
  14252. ggml_compute_forward_rms_norm(params, tensor);
  14253. } break;
  14254. case GGML_OP_RMS_NORM_BACK:
  14255. {
  14256. ggml_compute_forward_rms_norm_back(params, tensor);
  14257. } break;
  14258. case GGML_OP_GROUP_NORM:
  14259. {
  14260. ggml_compute_forward_group_norm(params, tensor);
  14261. } break;
  14262. case GGML_OP_MUL_MAT:
  14263. {
  14264. ggml_compute_forward_mul_mat(params, tensor);
  14265. } break;
  14266. case GGML_OP_MUL_MAT_ID:
  14267. {
  14268. ggml_compute_forward_mul_mat_id(params, tensor);
  14269. } break;
  14270. case GGML_OP_OUT_PROD:
  14271. {
  14272. ggml_compute_forward_out_prod(params, tensor);
  14273. } break;
  14274. case GGML_OP_SCALE:
  14275. {
  14276. ggml_compute_forward_scale(params, tensor);
  14277. } break;
  14278. case GGML_OP_SET:
  14279. {
  14280. ggml_compute_forward_set(params, tensor);
  14281. } break;
  14282. case GGML_OP_CPY:
  14283. {
  14284. ggml_compute_forward_cpy(params, tensor);
  14285. } break;
  14286. case GGML_OP_CONT:
  14287. {
  14288. ggml_compute_forward_cont(params, tensor);
  14289. } break;
  14290. case GGML_OP_RESHAPE:
  14291. {
  14292. ggml_compute_forward_reshape(params, tensor);
  14293. } break;
  14294. case GGML_OP_VIEW:
  14295. {
  14296. ggml_compute_forward_view(params, tensor);
  14297. } break;
  14298. case GGML_OP_PERMUTE:
  14299. {
  14300. ggml_compute_forward_permute(params, tensor);
  14301. } break;
  14302. case GGML_OP_TRANSPOSE:
  14303. {
  14304. ggml_compute_forward_transpose(params, tensor);
  14305. } break;
  14306. case GGML_OP_GET_ROWS:
  14307. {
  14308. ggml_compute_forward_get_rows(params, tensor);
  14309. } break;
  14310. case GGML_OP_GET_ROWS_BACK:
  14311. {
  14312. ggml_compute_forward_get_rows_back(params, tensor);
  14313. } break;
  14314. case GGML_OP_DIAG:
  14315. {
  14316. ggml_compute_forward_diag(params, tensor);
  14317. } break;
  14318. case GGML_OP_DIAG_MASK_INF:
  14319. {
  14320. ggml_compute_forward_diag_mask_inf(params, tensor);
  14321. } break;
  14322. case GGML_OP_DIAG_MASK_ZERO:
  14323. {
  14324. ggml_compute_forward_diag_mask_zero(params, tensor);
  14325. } break;
  14326. case GGML_OP_SOFT_MAX:
  14327. {
  14328. ggml_compute_forward_soft_max(params, tensor);
  14329. } break;
  14330. case GGML_OP_SOFT_MAX_BACK:
  14331. {
  14332. ggml_compute_forward_soft_max_back(params, tensor);
  14333. } break;
  14334. case GGML_OP_ROPE:
  14335. {
  14336. ggml_compute_forward_rope(params, tensor);
  14337. } break;
  14338. case GGML_OP_ROPE_BACK:
  14339. {
  14340. ggml_compute_forward_rope_back(params, tensor);
  14341. } break;
  14342. case GGML_OP_ALIBI:
  14343. {
  14344. ggml_compute_forward_alibi(params, tensor);
  14345. } break;
  14346. case GGML_OP_CLAMP:
  14347. {
  14348. ggml_compute_forward_clamp(params, tensor);
  14349. } break;
  14350. case GGML_OP_CONV_TRANSPOSE_1D:
  14351. {
  14352. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14353. } break;
  14354. case GGML_OP_IM2COL:
  14355. {
  14356. ggml_compute_forward_im2col(params, tensor);
  14357. } break;
  14358. case GGML_OP_CONV_TRANSPOSE_2D:
  14359. {
  14360. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14361. } break;
  14362. case GGML_OP_POOL_1D:
  14363. {
  14364. ggml_compute_forward_pool_1d(params, tensor);
  14365. } break;
  14366. case GGML_OP_POOL_2D:
  14367. {
  14368. ggml_compute_forward_pool_2d(params, tensor);
  14369. } break;
  14370. case GGML_OP_UPSCALE:
  14371. {
  14372. ggml_compute_forward_upscale(params, tensor);
  14373. } break;
  14374. case GGML_OP_PAD:
  14375. {
  14376. ggml_compute_forward_pad(params, tensor);
  14377. } break;
  14378. case GGML_OP_ARANGE:
  14379. {
  14380. ggml_compute_forward_arange(params, tensor);
  14381. } break;
  14382. case GGML_OP_TIMESTEP_EMBEDDING:
  14383. {
  14384. ggml_compute_forward_timestep_embedding(params, tensor);
  14385. } break;
  14386. case GGML_OP_ARGSORT:
  14387. {
  14388. ggml_compute_forward_argsort(params, tensor);
  14389. } break;
  14390. case GGML_OP_LEAKY_RELU:
  14391. {
  14392. ggml_compute_forward_leaky_relu(params, tensor);
  14393. } break;
  14394. case GGML_OP_FLASH_ATTN:
  14395. {
  14396. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  14397. GGML_ASSERT(t == 0 || t == 1);
  14398. const bool masked = t != 0;
  14399. ggml_compute_forward_flash_attn(params, masked, tensor);
  14400. } break;
  14401. case GGML_OP_FLASH_ATTN_EXT:
  14402. {
  14403. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14404. } break;
  14405. case GGML_OP_FLASH_FF:
  14406. {
  14407. ggml_compute_forward_flash_ff(params, tensor);
  14408. } break;
  14409. case GGML_OP_FLASH_ATTN_BACK:
  14410. {
  14411. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14412. GGML_ASSERT(t == 0 || t == 1);
  14413. bool masked = t != 0;
  14414. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14415. } break;
  14416. case GGML_OP_SSM_CONV:
  14417. {
  14418. ggml_compute_forward_ssm_conv(params, tensor);
  14419. } break;
  14420. case GGML_OP_SSM_SCAN:
  14421. {
  14422. ggml_compute_forward_ssm_scan(params, tensor);
  14423. } break;
  14424. case GGML_OP_WIN_PART:
  14425. {
  14426. ggml_compute_forward_win_part(params, tensor);
  14427. } break;
  14428. case GGML_OP_WIN_UNPART:
  14429. {
  14430. ggml_compute_forward_win_unpart(params, tensor);
  14431. } break;
  14432. case GGML_OP_UNARY:
  14433. {
  14434. ggml_compute_forward_unary(params, tensor);
  14435. } break;
  14436. case GGML_OP_GET_REL_POS:
  14437. {
  14438. ggml_compute_forward_get_rel_pos(params, tensor);
  14439. } break;
  14440. case GGML_OP_ADD_REL_POS:
  14441. {
  14442. ggml_compute_forward_add_rel_pos(params, tensor);
  14443. } break;
  14444. case GGML_OP_MAP_UNARY:
  14445. {
  14446. ggml_unary_op_f32_t fun;
  14447. memcpy(&fun, tensor->op_params, sizeof(fun));
  14448. ggml_compute_forward_map_unary(params, tensor, fun);
  14449. }
  14450. break;
  14451. case GGML_OP_MAP_BINARY:
  14452. {
  14453. ggml_binary_op_f32_t fun;
  14454. memcpy(&fun, tensor->op_params, sizeof(fun));
  14455. ggml_compute_forward_map_binary(params, tensor, fun);
  14456. }
  14457. break;
  14458. case GGML_OP_MAP_CUSTOM1_F32:
  14459. {
  14460. ggml_custom1_op_f32_t fun;
  14461. memcpy(&fun, tensor->op_params, sizeof(fun));
  14462. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14463. }
  14464. break;
  14465. case GGML_OP_MAP_CUSTOM2_F32:
  14466. {
  14467. ggml_custom2_op_f32_t fun;
  14468. memcpy(&fun, tensor->op_params, sizeof(fun));
  14469. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14470. }
  14471. break;
  14472. case GGML_OP_MAP_CUSTOM3_F32:
  14473. {
  14474. ggml_custom3_op_f32_t fun;
  14475. memcpy(&fun, tensor->op_params, sizeof(fun));
  14476. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14477. }
  14478. break;
  14479. case GGML_OP_MAP_CUSTOM1:
  14480. {
  14481. ggml_compute_forward_map_custom1(params, tensor);
  14482. }
  14483. break;
  14484. case GGML_OP_MAP_CUSTOM2:
  14485. {
  14486. ggml_compute_forward_map_custom2(params, tensor);
  14487. }
  14488. break;
  14489. case GGML_OP_MAP_CUSTOM3:
  14490. {
  14491. ggml_compute_forward_map_custom3(params, tensor);
  14492. }
  14493. break;
  14494. case GGML_OP_CROSS_ENTROPY_LOSS:
  14495. {
  14496. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14497. }
  14498. break;
  14499. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14500. {
  14501. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14502. }
  14503. break;
  14504. case GGML_OP_NONE:
  14505. {
  14506. // nop
  14507. } break;
  14508. case GGML_OP_COUNT:
  14509. {
  14510. GGML_ASSERT(false);
  14511. } break;
  14512. }
  14513. }
  14514. ////////////////////////////////////////////////////////////////////////////////
  14515. static size_t ggml_hash_size(size_t min_sz) {
  14516. // next primes after powers of two
  14517. static const size_t primes[] = {
  14518. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14519. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14520. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14521. 16777259, 33554467, 67108879, 134217757, 268435459,
  14522. 536870923, 1073741827, 2147483659
  14523. };
  14524. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14525. // find the smallest prime that is larger or equal to min_sz
  14526. size_t l = 0;
  14527. size_t r = n_primes;
  14528. while (l < r) {
  14529. size_t m = (l + r)/2;
  14530. if (primes[m] < min_sz) {
  14531. l = m + 1;
  14532. } else {
  14533. r = m;
  14534. }
  14535. }
  14536. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14537. return sz;
  14538. }
  14539. static size_t ggml_hash(const void * p) {
  14540. return (size_t)p;
  14541. }
  14542. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14543. size_t h = ggml_hash(key) % hash_set.size;
  14544. // linear probing
  14545. size_t i = h;
  14546. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14547. i = (i + 1) % hash_set.size;
  14548. if (i == h) {
  14549. // visited all hash table entries -> not found
  14550. return GGML_HASHTABLE_FULL;
  14551. }
  14552. }
  14553. return i;
  14554. }
  14555. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14556. size_t i = ggml_hash_find(hash_set, key);
  14557. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14558. }
  14559. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14560. size_t i = ggml_hash_find(hash_set, key);
  14561. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14562. if (hash_set.keys[i] == key) {
  14563. return GGML_HASHTABLE_ALREADY_EXISTS;
  14564. }
  14565. // insert
  14566. GGML_ASSERT(hash_set.keys[i] == NULL);
  14567. hash_set.keys[i] = key;
  14568. return i;
  14569. }
  14570. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14571. size_t i = ggml_hash_find(hash_set, key);
  14572. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14573. hash_set.keys[i] = key;
  14574. return i;
  14575. }
  14576. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14577. size = ggml_hash_size(size);
  14578. struct ggml_hash_set result;
  14579. result.size = size;
  14580. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14581. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14582. return result;
  14583. }
  14584. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14585. GGML_FREE(hash_set.keys);
  14586. }
  14587. struct hash_map {
  14588. struct ggml_hash_set set;
  14589. struct ggml_tensor ** vals;
  14590. };
  14591. static struct hash_map * ggml_new_hash_map(size_t size) {
  14592. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14593. result->set = ggml_hash_set_new(size);
  14594. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14595. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14596. return result;
  14597. }
  14598. static void ggml_hash_map_free(struct hash_map * map) {
  14599. ggml_hash_set_free(map->set);
  14600. GGML_FREE(map->vals);
  14601. GGML_FREE(map);
  14602. }
  14603. // gradient checkpointing
  14604. static struct ggml_tensor * ggml_recompute_graph_node(
  14605. struct ggml_context * ctx,
  14606. struct ggml_cgraph * graph,
  14607. struct hash_map * replacements,
  14608. struct ggml_tensor * node) {
  14609. if (node == NULL) {
  14610. return NULL;
  14611. }
  14612. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14613. return node;
  14614. }
  14615. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14616. return node;
  14617. }
  14618. int count_children = 0;
  14619. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14620. if (node->src[k]) {
  14621. ++count_children;
  14622. }
  14623. }
  14624. if (count_children == 0) {
  14625. return node;
  14626. }
  14627. size_t i = ggml_hash_find(replacements->set, node);
  14628. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14629. if (replacements->set.keys[i] == node) {
  14630. return replacements->vals[i];
  14631. }
  14632. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14633. // insert clone into replacements
  14634. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14635. replacements->set.keys[i] = node;
  14636. replacements->vals[i] = clone;
  14637. clone->op = node->op;
  14638. clone->grad = node->grad;
  14639. clone->flags = node->flags;
  14640. clone->extra = node->extra;
  14641. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14642. clone->nb[k] = node->nb[k];
  14643. }
  14644. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14645. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14646. }
  14647. if (node->view_src != NULL) {
  14648. clone->data = (node->view_src->data == NULL)
  14649. ? NULL // view_src not yet allocated
  14650. : (char *) node->view_src->data // view_src already allocated
  14651. + node->view_offs;
  14652. clone->view_src = node->view_src;
  14653. clone->view_offs = node->view_offs;
  14654. }
  14655. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14656. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14657. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14658. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14659. return clone;
  14660. }
  14661. void ggml_build_backward_gradient_checkpointing(
  14662. struct ggml_context * ctx,
  14663. struct ggml_cgraph * gf,
  14664. struct ggml_cgraph * gb,
  14665. struct ggml_cgraph * gb_tmp,
  14666. struct ggml_tensor * * checkpoints,
  14667. int n_checkpoints) {
  14668. ggml_graph_cpy(gf, gb_tmp);
  14669. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14670. if (n_checkpoints <= 0) {
  14671. ggml_graph_cpy(gb_tmp, gb);
  14672. return;
  14673. }
  14674. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14675. // insert checkpoints in replacements
  14676. for (int i = 0; i < n_checkpoints; ++i) {
  14677. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14678. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14679. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14680. replacements->set.keys[k] = checkpoints[i];
  14681. replacements->vals[k] = checkpoints[i];
  14682. }
  14683. ggml_graph_cpy(gf, gb);
  14684. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14685. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14686. // by recomputing them from checkpoints
  14687. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14688. struct ggml_tensor * node = gb_tmp->nodes[i];
  14689. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14690. // insert new tensors recomputing src, reusing already made replacements,
  14691. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14692. // recurse for input tensors,
  14693. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14694. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14695. }
  14696. // insert rewritten backward node with replacements made into resulting backward graph gb
  14697. ggml_build_forward_expand(gb, node);
  14698. }
  14699. ggml_hash_map_free(replacements);
  14700. }
  14701. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14702. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14703. if (ggml_hash_contains(zero_table, a)) {
  14704. return b;
  14705. } else {
  14706. return ggml_add_impl(ctx, a, b, false);
  14707. }
  14708. }
  14709. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14710. if (ggml_hash_contains(zero_table, a)) {
  14711. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14712. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14713. } else {
  14714. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14715. }
  14716. }
  14717. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14718. if (ggml_hash_contains(zero_table, a)) {
  14719. return ggml_repeat(ctx, b, a);
  14720. } else {
  14721. return ggml_add1_impl(ctx, a, b, false);
  14722. }
  14723. }
  14724. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14725. if (ggml_hash_contains(zero_table, a)) {
  14726. return ggml_neg(ctx, b);
  14727. } else {
  14728. return ggml_sub_impl(ctx, a, b, false);
  14729. }
  14730. }
  14731. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14732. struct ggml_tensor * src0 = tensor->src[0];
  14733. struct ggml_tensor * src1 = tensor->src[1];
  14734. switch (tensor->op) {
  14735. case GGML_OP_DUP:
  14736. {
  14737. if (src0->grad) {
  14738. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14739. }
  14740. } break;
  14741. case GGML_OP_ADD:
  14742. {
  14743. if (src0->grad) {
  14744. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14745. }
  14746. if (src1->grad) {
  14747. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14748. }
  14749. } break;
  14750. case GGML_OP_ADD1:
  14751. {
  14752. if (src0->grad) {
  14753. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14754. }
  14755. if (src1->grad) {
  14756. src1->grad = ggml_add_or_set(ctx,
  14757. src1->grad,
  14758. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14759. zero_table);
  14760. }
  14761. } break;
  14762. case GGML_OP_ACC:
  14763. {
  14764. if (src0->grad) {
  14765. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14766. }
  14767. if (src1->grad) {
  14768. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14769. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14770. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14771. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14772. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14773. tensor->grad,
  14774. src1->grad->ne[0],
  14775. src1->grad->ne[1],
  14776. src1->grad->ne[2],
  14777. src1->grad->ne[3],
  14778. nb1, nb2, nb3, offset);
  14779. src1->grad =
  14780. ggml_add_or_set(ctx,
  14781. src1->grad,
  14782. ggml_reshape(ctx,
  14783. ggml_cont(ctx, tensor_grad_view),
  14784. src1->grad),
  14785. zero_table);
  14786. }
  14787. } break;
  14788. case GGML_OP_SUB:
  14789. {
  14790. if (src0->grad) {
  14791. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14792. }
  14793. if (src1->grad) {
  14794. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14795. }
  14796. } break;
  14797. case GGML_OP_MUL:
  14798. {
  14799. if (src0->grad) {
  14800. src0->grad =
  14801. ggml_add_or_set(ctx,
  14802. src0->grad,
  14803. ggml_mul(ctx, src1, tensor->grad),
  14804. zero_table);
  14805. }
  14806. if (src1->grad) {
  14807. src1->grad =
  14808. ggml_add_or_set(ctx,
  14809. src1->grad,
  14810. ggml_mul(ctx, src0, tensor->grad),
  14811. zero_table);
  14812. }
  14813. } break;
  14814. case GGML_OP_DIV:
  14815. {
  14816. if (src0->grad) {
  14817. src0->grad =
  14818. ggml_add_or_set(ctx,
  14819. src0->grad,
  14820. ggml_div(ctx, tensor->grad, src1),
  14821. zero_table);
  14822. }
  14823. if (src1->grad) {
  14824. src1->grad =
  14825. ggml_sub_or_set(ctx,
  14826. src1->grad,
  14827. ggml_mul(ctx,
  14828. tensor->grad,
  14829. ggml_div(ctx, tensor, src1)),
  14830. zero_table);
  14831. }
  14832. } break;
  14833. case GGML_OP_SQR:
  14834. {
  14835. if (src0->grad) {
  14836. src0->grad =
  14837. ggml_add_or_set(ctx,
  14838. src0->grad,
  14839. ggml_scale(ctx,
  14840. ggml_mul(ctx, src0, tensor->grad),
  14841. 2.0f),
  14842. zero_table);
  14843. }
  14844. } break;
  14845. case GGML_OP_SQRT:
  14846. {
  14847. if (src0->grad) {
  14848. src0->grad =
  14849. ggml_add_or_set(ctx,
  14850. src0->grad,
  14851. ggml_scale(ctx,
  14852. ggml_div(ctx,
  14853. tensor->grad,
  14854. tensor),
  14855. 0.5f),
  14856. zero_table);
  14857. }
  14858. } break;
  14859. case GGML_OP_LOG:
  14860. {
  14861. if (src0->grad) {
  14862. src0->grad =
  14863. ggml_add_or_set(ctx,
  14864. src0->grad,
  14865. ggml_div(ctx,
  14866. tensor->grad,
  14867. src0),
  14868. zero_table);
  14869. }
  14870. } break;
  14871. case GGML_OP_SUM:
  14872. {
  14873. if (src0->grad) {
  14874. src0->grad =
  14875. ggml_add1_or_set(ctx,
  14876. src0->grad,
  14877. tensor->grad,
  14878. zero_table);
  14879. }
  14880. } break;
  14881. case GGML_OP_SUM_ROWS:
  14882. {
  14883. if (src0->grad) {
  14884. src0->grad =
  14885. ggml_add_or_set(ctx,
  14886. src0->grad,
  14887. ggml_repeat(ctx,
  14888. tensor->grad,
  14889. src0->grad),
  14890. zero_table);
  14891. }
  14892. } break;
  14893. case GGML_OP_MEAN:
  14894. case GGML_OP_ARGMAX:
  14895. {
  14896. GGML_ASSERT(false); // TODO: implement
  14897. } break;
  14898. case GGML_OP_REPEAT:
  14899. {
  14900. // necessary for llama
  14901. if (src0->grad) {
  14902. src0->grad = ggml_add_or_set(ctx,
  14903. src0->grad,
  14904. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14905. zero_table);
  14906. }
  14907. } break;
  14908. case GGML_OP_REPEAT_BACK:
  14909. {
  14910. if (src0->grad) {
  14911. // TODO: test this
  14912. src0->grad = ggml_add_or_set(ctx,
  14913. src0->grad,
  14914. ggml_repeat(ctx, tensor->grad, src0->grad),
  14915. zero_table);
  14916. }
  14917. } break;
  14918. case GGML_OP_CONCAT:
  14919. {
  14920. GGML_ASSERT(false); // TODO: implement
  14921. } break;
  14922. case GGML_OP_SILU_BACK:
  14923. {
  14924. GGML_ASSERT(false); // TODO: not implemented
  14925. } break;
  14926. case GGML_OP_NORM:
  14927. {
  14928. GGML_ASSERT(false); // TODO: not implemented
  14929. } break;
  14930. case GGML_OP_RMS_NORM:
  14931. {
  14932. // necessary for llama
  14933. if (src0->grad) {
  14934. float eps;
  14935. memcpy(&eps, tensor->op_params, sizeof(float));
  14936. src0->grad = ggml_add_or_set(ctx,
  14937. src0->grad,
  14938. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14939. zero_table);
  14940. }
  14941. } break;
  14942. case GGML_OP_RMS_NORM_BACK:
  14943. {
  14944. GGML_ASSERT(false); // TODO: not implemented
  14945. } break;
  14946. case GGML_OP_GROUP_NORM:
  14947. {
  14948. GGML_ASSERT(false); // TODO: not implemented
  14949. } break;
  14950. case GGML_OP_MUL_MAT:
  14951. {
  14952. // https://cs231n.github.io/optimization-2/#staged
  14953. // # forward pass
  14954. // s0 = np.random.randn(5, 10)
  14955. // s1 = np.random.randn(10, 3)
  14956. // t = s0.dot(s1)
  14957. // # now suppose we had the gradient on t from above in the circuit
  14958. // dt = np.random.randn(*t.shape) # same shape as t
  14959. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14960. // ds1 = t.T.dot(dt)
  14961. // tensor.shape [m,p,qq,rr]
  14962. // src0.shape [n,m,q1,r1]
  14963. // src1.shape [n,p,qq,rr]
  14964. // necessary for llama
  14965. if (src0->grad) {
  14966. struct ggml_tensor * s1_tg =
  14967. ggml_out_prod(ctx, // [n,m,qq,rr]
  14968. src1, // [n,p,qq,rr]
  14969. tensor->grad); // [m,p,qq,rr]
  14970. const int64_t qq = s1_tg->ne[2];
  14971. const int64_t rr = s1_tg->ne[3];
  14972. const int64_t q1 = src0->ne[2];
  14973. const int64_t r1 = src0->ne[3];
  14974. const bool ne2_broadcasted = qq > q1;
  14975. const bool ne3_broadcasted = rr > r1;
  14976. if (ne2_broadcasted || ne3_broadcasted) {
  14977. // sum broadcast repetitions of s1_tg into shape of src0
  14978. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14979. }
  14980. src0->grad =
  14981. ggml_add_or_set(ctx,
  14982. src0->grad, // [n,m,q1,r1]
  14983. s1_tg, // [n,m,q1,r1]
  14984. zero_table);
  14985. }
  14986. if (src1->grad) {
  14987. src1->grad =
  14988. ggml_add_or_set(ctx,
  14989. src1->grad, // [n,p,qq,rr]
  14990. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14991. // ggml_cont(ctx, // [m,n,q1,r1]
  14992. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14993. // tensor->grad), // [m,p,qq,rr]
  14994. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14995. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14996. // // and then use ggml_out_prod
  14997. ggml_out_prod(ctx, // [n,p,qq,rr]
  14998. src0, // [n,m,q1,r1]
  14999. ggml_transpose(ctx, // [p,m,qq,rr]
  15000. tensor->grad)), // [m,p,qq,rr]
  15001. zero_table);
  15002. }
  15003. } break;
  15004. case GGML_OP_MUL_MAT_ID:
  15005. {
  15006. GGML_ASSERT(false); // TODO: not implemented
  15007. } break;
  15008. case GGML_OP_OUT_PROD:
  15009. {
  15010. GGML_ASSERT(false); // TODO: not implemented
  15011. } break;
  15012. case GGML_OP_SCALE:
  15013. {
  15014. // necessary for llama
  15015. if (src0->grad) {
  15016. float s;
  15017. memcpy(&s, tensor->op_params, sizeof(float));
  15018. src0->grad =
  15019. ggml_add_or_set(ctx,
  15020. src0->grad,
  15021. ggml_scale_impl(ctx, tensor->grad, s, false),
  15022. zero_table);
  15023. }
  15024. } break;
  15025. case GGML_OP_SET:
  15026. {
  15027. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  15028. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  15029. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  15030. const size_t offset = ((int32_t *) tensor->op_params)[3];
  15031. struct ggml_tensor * tensor_grad_view = NULL;
  15032. if (src0->grad || src1->grad) {
  15033. GGML_ASSERT(src0->type == tensor->type);
  15034. GGML_ASSERT(tensor->grad->type == tensor->type);
  15035. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  15036. tensor_grad_view = ggml_view_4d(ctx,
  15037. tensor->grad,
  15038. src1->grad->ne[0],
  15039. src1->grad->ne[1],
  15040. src1->grad->ne[2],
  15041. src1->grad->ne[3],
  15042. nb1, nb2, nb3, offset);
  15043. }
  15044. if (src0->grad) {
  15045. src0->grad = ggml_add_or_set(ctx,
  15046. src0->grad,
  15047. ggml_acc_impl(ctx,
  15048. tensor->grad,
  15049. ggml_neg(ctx, tensor_grad_view),
  15050. nb1, nb2, nb3, offset, false),
  15051. zero_table);
  15052. }
  15053. if (src1->grad) {
  15054. src1->grad =
  15055. ggml_add_or_set(ctx,
  15056. src1->grad,
  15057. ggml_reshape(ctx,
  15058. ggml_cont(ctx, tensor_grad_view),
  15059. src1->grad),
  15060. zero_table);
  15061. }
  15062. } break;
  15063. case GGML_OP_CPY:
  15064. {
  15065. // necessary for llama
  15066. // cpy overwrites value of src1 by src0 and returns view(src1)
  15067. // the overwriting is mathematically equivalent to:
  15068. // tensor = src0 * 1 + src1 * 0
  15069. if (src0->grad) {
  15070. // dsrc0 = dtensor * 1
  15071. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15072. }
  15073. if (src1->grad) {
  15074. // dsrc1 = dtensor * 0 -> noop
  15075. }
  15076. } break;
  15077. case GGML_OP_CONT:
  15078. {
  15079. // same as cpy
  15080. if (src0->grad) {
  15081. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  15082. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  15083. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15084. }
  15085. } break;
  15086. case GGML_OP_RESHAPE:
  15087. {
  15088. // necessary for llama
  15089. if (src0->grad) {
  15090. src0->grad =
  15091. ggml_add_or_set(ctx, src0->grad,
  15092. ggml_reshape(ctx,
  15093. ggml_is_contiguous(tensor->grad)
  15094. ? tensor->grad
  15095. : ggml_cont(ctx, tensor->grad),
  15096. src0->grad),
  15097. zero_table);
  15098. }
  15099. } break;
  15100. case GGML_OP_VIEW:
  15101. {
  15102. // necessary for llama
  15103. if (src0->grad) {
  15104. size_t offset;
  15105. memcpy(&offset, tensor->op_params, sizeof(offset));
  15106. size_t nb1 = tensor->nb[1];
  15107. size_t nb2 = tensor->nb[2];
  15108. size_t nb3 = tensor->nb[3];
  15109. if (src0->type != src0->grad->type) {
  15110. // gradient is typically F32, but src0 could be other type
  15111. size_t ng = ggml_element_size(src0->grad);
  15112. size_t n0 = ggml_element_size(src0);
  15113. GGML_ASSERT(offset % n0 == 0);
  15114. GGML_ASSERT(nb1 % n0 == 0);
  15115. GGML_ASSERT(nb2 % n0 == 0);
  15116. GGML_ASSERT(nb3 % n0 == 0);
  15117. offset = (offset / n0) * ng;
  15118. nb1 = (nb1 / n0) * ng;
  15119. nb2 = (nb2 / n0) * ng;
  15120. nb3 = (nb3 / n0) * ng;
  15121. }
  15122. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  15123. }
  15124. } break;
  15125. case GGML_OP_PERMUTE:
  15126. {
  15127. // necessary for llama
  15128. if (src0->grad) {
  15129. int32_t * axes = (int32_t *) tensor->op_params;
  15130. int axis0 = axes[0] & 0x3;
  15131. int axis1 = axes[1] & 0x3;
  15132. int axis2 = axes[2] & 0x3;
  15133. int axis3 = axes[3] & 0x3;
  15134. int axes_backward[4] = {0,0,0,0};
  15135. axes_backward[axis0] = 0;
  15136. axes_backward[axis1] = 1;
  15137. axes_backward[axis2] = 2;
  15138. axes_backward[axis3] = 3;
  15139. src0->grad =
  15140. ggml_add_or_set(ctx, src0->grad,
  15141. ggml_permute(ctx,
  15142. tensor->grad,
  15143. axes_backward[0],
  15144. axes_backward[1],
  15145. axes_backward[2],
  15146. axes_backward[3]),
  15147. zero_table);
  15148. }
  15149. } break;
  15150. case GGML_OP_TRANSPOSE:
  15151. {
  15152. // necessary for llama
  15153. if (src0->grad) {
  15154. src0->grad =
  15155. ggml_add_or_set(ctx, src0->grad,
  15156. ggml_transpose(ctx, tensor->grad),
  15157. zero_table);
  15158. }
  15159. } break;
  15160. case GGML_OP_GET_ROWS:
  15161. {
  15162. // necessary for llama (only for tokenizer)
  15163. if (src0->grad) {
  15164. src0->grad =
  15165. ggml_add_or_set(ctx, src0->grad,
  15166. // last ggml_get_rows_back argument src0->grad is only
  15167. // necessary to setup correct output shape
  15168. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15169. zero_table);
  15170. }
  15171. if (src1->grad) {
  15172. // noop
  15173. }
  15174. } break;
  15175. case GGML_OP_GET_ROWS_BACK:
  15176. {
  15177. GGML_ASSERT(false); // TODO: not implemented
  15178. } break;
  15179. case GGML_OP_DIAG:
  15180. {
  15181. GGML_ASSERT(false); // TODO: not implemented
  15182. } break;
  15183. case GGML_OP_DIAG_MASK_INF:
  15184. {
  15185. // necessary for llama
  15186. if (src0->grad) {
  15187. const int n_past = ((int32_t *) tensor->op_params)[0];
  15188. src0->grad =
  15189. ggml_add_or_set(ctx, src0->grad,
  15190. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15191. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15192. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15193. zero_table);
  15194. }
  15195. } break;
  15196. case GGML_OP_DIAG_MASK_ZERO:
  15197. {
  15198. // necessary for llama
  15199. if (src0->grad) {
  15200. const int n_past = ((int32_t *) tensor->op_params)[0];
  15201. src0->grad =
  15202. ggml_add_or_set(ctx, src0->grad,
  15203. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15204. zero_table);
  15205. }
  15206. } break;
  15207. case GGML_OP_SOFT_MAX:
  15208. {
  15209. // necessary for llama
  15210. if (src0->grad) {
  15211. src0->grad =
  15212. ggml_add_or_set(ctx, src0->grad,
  15213. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15214. zero_table);
  15215. }
  15216. } break;
  15217. case GGML_OP_SOFT_MAX_BACK:
  15218. {
  15219. GGML_ASSERT(false); // TODO: not implemented
  15220. } break;
  15221. case GGML_OP_ROPE:
  15222. {
  15223. // necessary for llama
  15224. if (src0->grad) {
  15225. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15226. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15227. const int mode = ((int32_t *) tensor->op_params)[2];
  15228. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15229. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15230. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15231. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15232. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15233. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15234. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15235. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15236. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15237. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15238. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15239. src0->grad = ggml_add_or_set(ctx,
  15240. src0->grad,
  15241. ggml_rope_back(ctx,
  15242. tensor->grad,
  15243. src1,
  15244. n_dims,
  15245. mode,
  15246. n_ctx,
  15247. n_orig_ctx,
  15248. freq_base,
  15249. freq_scale,
  15250. ext_factor,
  15251. attn_factor,
  15252. beta_fast,
  15253. beta_slow,
  15254. xpos_base,
  15255. xpos_down),
  15256. zero_table);
  15257. }
  15258. } break;
  15259. case GGML_OP_ROPE_BACK:
  15260. {
  15261. if (src0->grad) {
  15262. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15263. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15264. const int mode = ((int32_t *) tensor->op_params)[2];
  15265. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15266. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15267. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15268. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15269. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15270. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15271. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15272. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15273. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15274. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15275. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15276. src0->grad = ggml_add_or_set(ctx,
  15277. src0->grad,
  15278. ggml_rope_impl(ctx,
  15279. tensor->grad,
  15280. src1,
  15281. n_dims,
  15282. mode,
  15283. n_ctx,
  15284. n_orig_ctx,
  15285. freq_base,
  15286. freq_scale,
  15287. ext_factor,
  15288. attn_factor,
  15289. beta_fast,
  15290. beta_slow,
  15291. xpos_base,
  15292. xpos_down,
  15293. false),
  15294. zero_table);
  15295. }
  15296. } break;
  15297. case GGML_OP_ALIBI:
  15298. {
  15299. GGML_ASSERT(false); // TODO: not implemented
  15300. } break;
  15301. case GGML_OP_CLAMP:
  15302. {
  15303. GGML_ASSERT(false); // TODO: not implemented
  15304. } break;
  15305. case GGML_OP_CONV_TRANSPOSE_1D:
  15306. {
  15307. GGML_ASSERT(false); // TODO: not implemented
  15308. } break;
  15309. case GGML_OP_IM2COL:
  15310. {
  15311. GGML_ASSERT(false); // TODO: not implemented
  15312. } break;
  15313. case GGML_OP_CONV_TRANSPOSE_2D:
  15314. {
  15315. GGML_ASSERT(false); // TODO: not implemented
  15316. } break;
  15317. case GGML_OP_POOL_1D:
  15318. {
  15319. GGML_ASSERT(false); // TODO: not implemented
  15320. } break;
  15321. case GGML_OP_POOL_2D:
  15322. {
  15323. GGML_ASSERT(false); // TODO: not implemented
  15324. } break;
  15325. case GGML_OP_UPSCALE:
  15326. {
  15327. GGML_ASSERT(false); // TODO: not implemented
  15328. } break;
  15329. case GGML_OP_PAD:
  15330. {
  15331. GGML_ASSERT(false); // TODO: not implemented
  15332. } break;
  15333. case GGML_OP_ARANGE:
  15334. {
  15335. GGML_ASSERT(false); // TODO: not implemented
  15336. } break;
  15337. case GGML_OP_TIMESTEP_EMBEDDING:
  15338. {
  15339. GGML_ASSERT(false); // TODO: not implemented
  15340. } break;
  15341. case GGML_OP_ARGSORT:
  15342. {
  15343. GGML_ASSERT(false); // TODO: not implemented
  15344. } break;
  15345. case GGML_OP_LEAKY_RELU:
  15346. {
  15347. GGML_ASSERT(false); // TODO: not implemented
  15348. } break;
  15349. case GGML_OP_FLASH_ATTN:
  15350. case GGML_OP_FLASH_ATTN_EXT:
  15351. {
  15352. struct ggml_tensor * flash_grad = NULL;
  15353. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15354. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15355. GGML_ASSERT(t == 0 || t == 1);
  15356. bool masked = t != 0;
  15357. flash_grad =
  15358. ggml_flash_attn_back(ctx,
  15359. src0,
  15360. src1,
  15361. tensor->src[2],
  15362. tensor->grad,
  15363. masked);
  15364. }
  15365. struct ggml_tensor * src2 = tensor->src[2];
  15366. const int64_t elem_q = ggml_nelements(src0);
  15367. const int64_t elem_k = ggml_nelements(src1);
  15368. const int64_t elem_v = ggml_nelements(src2);
  15369. enum ggml_type result_type = flash_grad->type;
  15370. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15371. const size_t tsize = ggml_type_size(result_type);
  15372. const size_t offs_q = 0;
  15373. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15374. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15375. if (src0->grad) {
  15376. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15377. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15378. src0->grad = ggml_add_or_set(ctx,
  15379. src0->grad,
  15380. grad_q,
  15381. zero_table);
  15382. }
  15383. if (src1->grad) {
  15384. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15385. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15386. src1->grad = ggml_add_or_set(ctx,
  15387. src1->grad,
  15388. grad_k,
  15389. zero_table);
  15390. }
  15391. if (src2->grad) {
  15392. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15393. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15394. src2->grad = ggml_add_or_set(ctx,
  15395. src2->grad,
  15396. grad_v,
  15397. zero_table);
  15398. }
  15399. } break;
  15400. case GGML_OP_FLASH_FF:
  15401. {
  15402. GGML_ASSERT(false); // not supported
  15403. } break;
  15404. case GGML_OP_FLASH_ATTN_BACK:
  15405. {
  15406. GGML_ASSERT(false); // not supported
  15407. } break;
  15408. case GGML_OP_SSM_CONV:
  15409. case GGML_OP_SSM_SCAN:
  15410. {
  15411. GGML_ASSERT(false); // TODO: not implemented
  15412. } break;
  15413. case GGML_OP_WIN_PART:
  15414. case GGML_OP_WIN_UNPART:
  15415. case GGML_OP_UNARY:
  15416. {
  15417. switch (ggml_get_unary_op(tensor)) {
  15418. case GGML_UNARY_OP_ABS:
  15419. {
  15420. if (src0->grad) {
  15421. src0->grad =
  15422. ggml_add_or_set(ctx,
  15423. src0->grad,
  15424. ggml_mul(ctx,
  15425. ggml_sgn(ctx, src0),
  15426. tensor->grad),
  15427. zero_table);
  15428. }
  15429. } break;
  15430. case GGML_UNARY_OP_SGN:
  15431. {
  15432. if (src0->grad) {
  15433. // noop
  15434. }
  15435. } break;
  15436. case GGML_UNARY_OP_NEG:
  15437. {
  15438. if (src0->grad) {
  15439. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15440. }
  15441. } break;
  15442. case GGML_UNARY_OP_STEP:
  15443. {
  15444. if (src0->grad) {
  15445. // noop
  15446. }
  15447. } break;
  15448. case GGML_UNARY_OP_TANH:
  15449. {
  15450. GGML_ASSERT(false); // TODO: not implemented
  15451. } break;
  15452. case GGML_UNARY_OP_ELU:
  15453. {
  15454. GGML_ASSERT(false); // TODO: not implemented
  15455. } break;
  15456. case GGML_UNARY_OP_RELU:
  15457. {
  15458. if (src0->grad) {
  15459. src0->grad = ggml_add_or_set(ctx,
  15460. src0->grad,
  15461. ggml_mul(ctx,
  15462. ggml_step(ctx, src0),
  15463. tensor->grad),
  15464. zero_table);
  15465. }
  15466. } break;
  15467. case GGML_UNARY_OP_GELU:
  15468. {
  15469. GGML_ASSERT(false); // TODO: not implemented
  15470. } break;
  15471. case GGML_UNARY_OP_GELU_QUICK:
  15472. {
  15473. GGML_ASSERT(false); // TODO: not implemented
  15474. } break;
  15475. case GGML_UNARY_OP_SILU:
  15476. {
  15477. // necessary for llama
  15478. if (src0->grad) {
  15479. src0->grad = ggml_add_or_set(ctx,
  15480. src0->grad,
  15481. ggml_silu_back(ctx, src0, tensor->grad),
  15482. zero_table);
  15483. }
  15484. } break;
  15485. default:
  15486. GGML_ASSERT(false);
  15487. }
  15488. } break;
  15489. case GGML_OP_GET_REL_POS:
  15490. case GGML_OP_ADD_REL_POS:
  15491. case GGML_OP_MAP_UNARY:
  15492. case GGML_OP_MAP_BINARY:
  15493. case GGML_OP_MAP_CUSTOM1_F32:
  15494. case GGML_OP_MAP_CUSTOM2_F32:
  15495. case GGML_OP_MAP_CUSTOM3_F32:
  15496. case GGML_OP_MAP_CUSTOM1:
  15497. case GGML_OP_MAP_CUSTOM2:
  15498. case GGML_OP_MAP_CUSTOM3:
  15499. {
  15500. GGML_ASSERT(false); // not supported
  15501. } break;
  15502. case GGML_OP_CROSS_ENTROPY_LOSS:
  15503. {
  15504. if (src0->grad) {
  15505. src0->grad = ggml_add_or_set(ctx,
  15506. src0->grad,
  15507. ggml_cross_entropy_loss_back(ctx,
  15508. src0,
  15509. src1,
  15510. tensor->grad),
  15511. zero_table);
  15512. }
  15513. } break;
  15514. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15515. {
  15516. GGML_ASSERT(false); // not supported
  15517. } break;
  15518. case GGML_OP_NONE:
  15519. {
  15520. // nop
  15521. } break;
  15522. case GGML_OP_COUNT:
  15523. {
  15524. GGML_ASSERT(false);
  15525. } break;
  15526. }
  15527. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15528. if (tensor->src[i] && tensor->src[i]->grad) {
  15529. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15530. }
  15531. }
  15532. }
  15533. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15534. if (node->grad == NULL) {
  15535. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15536. // it can also happen during forward pass, if the user performs computations with constants
  15537. if (node->op != GGML_OP_NONE) {
  15538. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15539. }
  15540. }
  15541. // check if already visited
  15542. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15543. return;
  15544. }
  15545. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15546. const int k =
  15547. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15548. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15549. /* unknown order, just fall back to using i*/ i;
  15550. if (node->src[k]) {
  15551. ggml_visit_parents(cgraph, node->src[k]);
  15552. }
  15553. }
  15554. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15555. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15556. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15557. if (strlen(node->name) == 0) {
  15558. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15559. }
  15560. cgraph->leafs[cgraph->n_leafs] = node;
  15561. cgraph->n_leafs++;
  15562. } else {
  15563. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15564. if (strlen(node->name) == 0) {
  15565. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15566. }
  15567. cgraph->nodes[cgraph->n_nodes] = node;
  15568. if (cgraph->grads) {
  15569. cgraph->grads[cgraph->n_nodes] = node->grad;
  15570. }
  15571. cgraph->n_nodes++;
  15572. }
  15573. }
  15574. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15575. if (!expand) {
  15576. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15577. ggml_graph_clear(cgraph);
  15578. }
  15579. const int n0 = cgraph->n_nodes;
  15580. UNUSED(n0);
  15581. ggml_visit_parents(cgraph, tensor);
  15582. const int n_new = cgraph->n_nodes - n0;
  15583. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15584. if (n_new > 0) {
  15585. // the last added node should always be starting point
  15586. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15587. }
  15588. }
  15589. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15590. ggml_build_forward_impl(cgraph, tensor, true);
  15591. }
  15592. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15593. GGML_ASSERT(gf->n_nodes > 0);
  15594. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15595. if (keep) {
  15596. for (int i = 0; i < gf->n_nodes; i++) {
  15597. struct ggml_tensor * node = gf->nodes[i];
  15598. if (node->grad) {
  15599. node->grad = ggml_dup_tensor(ctx, node);
  15600. gf->grads[i] = node->grad;
  15601. }
  15602. }
  15603. }
  15604. // remember original gradients which start with zero values
  15605. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15606. for (int i = 0; i < gf->n_nodes; i++) {
  15607. if (gf->grads[i]) {
  15608. ggml_hash_insert(zero_table, gf->grads[i]);
  15609. }
  15610. }
  15611. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15612. struct ggml_tensor * node = gf->nodes[i];
  15613. // inplace operations to add gradients are not created by ggml_compute_backward
  15614. // use allocator to automatically make inplace operations
  15615. if (node->grad) {
  15616. ggml_compute_backward(ctx, node, zero_table);
  15617. }
  15618. }
  15619. for (int i = 0; i < gf->n_nodes; i++) {
  15620. struct ggml_tensor * node = gf->nodes[i];
  15621. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15622. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15623. ggml_build_forward_expand(gb, node->grad);
  15624. }
  15625. }
  15626. ggml_hash_set_free(zero_table);
  15627. }
  15628. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15629. size_t nbytes = sizeof(struct ggml_cgraph);
  15630. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15631. if (grads) {
  15632. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15633. }
  15634. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15635. return nbytes;
  15636. }
  15637. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15638. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15639. }
  15640. size_t ggml_graph_overhead(void) {
  15641. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15642. }
  15643. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15644. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15645. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15646. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15647. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15648. size_t hash_size = ggml_hash_size(size * 2);
  15649. struct ggml_tensor ** nodes_ptr = data_start;
  15650. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15651. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15652. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15653. // check that we allocated the correct amount of memory
  15654. assert(obj_size == (size_t) (
  15655. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15656. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15657. *cgraph = (struct ggml_cgraph) {
  15658. /*.size =*/ size,
  15659. /*.n_nodes =*/ 0,
  15660. /*.n_leafs =*/ 0,
  15661. /*.nodes =*/ nodes_ptr,
  15662. /*.grads =*/ grads_ptr,
  15663. /*.leafs =*/ leafs_ptr,
  15664. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15665. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15666. /*.perf_runs =*/ 0,
  15667. /*.perf_cycles =*/ 0,
  15668. /*.perf_time_us =*/ 0,
  15669. };
  15670. return cgraph;
  15671. }
  15672. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15673. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15674. }
  15675. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15676. struct ggml_cgraph cgraph = {
  15677. /*.size =*/ 0,
  15678. /*.n_nodes =*/ i1 - i0,
  15679. /*.n_leafs =*/ 0,
  15680. /*.nodes =*/ cgraph0->nodes + i0,
  15681. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15682. /*.leafs =*/ NULL,
  15683. /*.hash_table =*/ { 0, NULL },
  15684. /*.order =*/ cgraph0->order,
  15685. /*.perf_runs =*/ 0,
  15686. /*.perf_cycles =*/ 0,
  15687. /*.perf_time_us =*/ 0,
  15688. };
  15689. return cgraph;
  15690. }
  15691. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15692. GGML_ASSERT(dst->size >= src->n_leafs);
  15693. GGML_ASSERT(dst->size >= src->n_nodes);
  15694. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15695. dst->n_leafs = src->n_leafs;
  15696. dst->n_nodes = src->n_nodes;
  15697. dst->order = src->order;
  15698. for (int i = 0; i < src->n_leafs; ++i) {
  15699. dst->leafs[i] = src->leafs[i];
  15700. }
  15701. for (int i = 0; i < src->n_nodes; ++i) {
  15702. dst->nodes[i] = src->nodes[i];
  15703. }
  15704. if (src->grads) {
  15705. GGML_ASSERT(dst->grads != NULL);
  15706. for (int i = 0; i < src->n_nodes; ++i) {
  15707. dst->grads[i] = src->grads[i];
  15708. }
  15709. }
  15710. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15711. if (src->visited_hash_table.keys[i]) {
  15712. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15713. }
  15714. }
  15715. }
  15716. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15717. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15718. ggml_graph_cpy(cgraph, result);
  15719. return result;
  15720. }
  15721. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15722. GGML_ASSERT(cgraph->grads != NULL);
  15723. for (int i = 0; i < cgraph->n_nodes; i++) {
  15724. struct ggml_tensor * grad = cgraph->grads[i];
  15725. if (grad) {
  15726. ggml_set_zero(grad);
  15727. }
  15728. }
  15729. }
  15730. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15731. cgraph->n_leafs = 0;
  15732. cgraph->n_nodes = 0;
  15733. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15734. }
  15735. //
  15736. // thread data
  15737. //
  15738. // synchronization is done via busy loops
  15739. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15740. //
  15741. #ifdef __APPLE__
  15742. //#include <os/lock.h>
  15743. //
  15744. //typedef os_unfair_lock ggml_lock_t;
  15745. //
  15746. //#define ggml_lock_init(x) UNUSED(x)
  15747. //#define ggml_lock_destroy(x) UNUSED(x)
  15748. //#define ggml_lock_lock os_unfair_lock_lock
  15749. //#define ggml_lock_unlock os_unfair_lock_unlock
  15750. //
  15751. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15752. typedef int ggml_lock_t;
  15753. #define ggml_lock_init(x) UNUSED(x)
  15754. #define ggml_lock_destroy(x) UNUSED(x)
  15755. #define ggml_lock_lock(x) UNUSED(x)
  15756. #define ggml_lock_unlock(x) UNUSED(x)
  15757. #define GGML_LOCK_INITIALIZER 0
  15758. typedef pthread_t ggml_thread_t;
  15759. #define ggml_thread_create pthread_create
  15760. #define ggml_thread_join pthread_join
  15761. #else
  15762. //typedef pthread_spinlock_t ggml_lock_t;
  15763. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15764. //#define ggml_lock_destroy pthread_spin_destroy
  15765. //#define ggml_lock_lock pthread_spin_lock
  15766. //#define ggml_lock_unlock pthread_spin_unlock
  15767. typedef int ggml_lock_t;
  15768. #define ggml_lock_init(x) UNUSED(x)
  15769. #define ggml_lock_destroy(x) UNUSED(x)
  15770. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15771. #define ggml_lock_lock(x) _mm_pause()
  15772. #else
  15773. #define ggml_lock_lock(x) UNUSED(x)
  15774. #endif
  15775. #define ggml_lock_unlock(x) UNUSED(x)
  15776. #define GGML_LOCK_INITIALIZER 0
  15777. typedef pthread_t ggml_thread_t;
  15778. #define ggml_thread_create pthread_create
  15779. #define ggml_thread_join pthread_join
  15780. #endif
  15781. // Android's libc implementation "bionic" does not support setting affinity
  15782. #if defined(__gnu_linux__)
  15783. static void set_numa_thread_affinity(int thread_n) {
  15784. if (!ggml_is_numa()) {
  15785. return;
  15786. }
  15787. int node_num;
  15788. int rv;
  15789. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15790. switch(g_state.numa.numa_strategy) {
  15791. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15792. // run thread on node_num thread_n / (threads per node)
  15793. node_num = thread_n % g_state.numa.n_nodes;
  15794. break;
  15795. case GGML_NUMA_STRATEGY_ISOLATE:
  15796. // run thread on current_node
  15797. node_num = g_state.numa.current_node;
  15798. break;
  15799. case GGML_NUMA_STRATEGY_NUMACTL:
  15800. // use the cpuset that numactl gave us
  15801. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15802. if (rv) {
  15803. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15804. }
  15805. return;
  15806. default:
  15807. return;
  15808. }
  15809. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15810. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15811. CPU_ZERO_S(setsize, cpus);
  15812. for (size_t i = 0; i < node->n_cpus; ++i) {
  15813. CPU_SET_S(node->cpus[i], setsize, cpus);
  15814. }
  15815. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15816. if (rv) {
  15817. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15818. }
  15819. CPU_FREE(cpus);
  15820. }
  15821. static void clear_numa_thread_affinity(void) {
  15822. if (!ggml_is_numa()) {
  15823. return;
  15824. }
  15825. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15826. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15827. CPU_ZERO_S(setsize, cpus);
  15828. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15829. CPU_SET_S(i, setsize, cpus);
  15830. }
  15831. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15832. if (rv) {
  15833. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15834. }
  15835. CPU_FREE(cpus);
  15836. }
  15837. #else
  15838. // TODO: Windows etc.
  15839. // (the linux implementation may also work on BSD, someone should test)
  15840. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15841. static void clear_numa_thread_affinity(void) {}
  15842. #endif
  15843. struct ggml_compute_state_shared {
  15844. const struct ggml_cgraph * cgraph;
  15845. const struct ggml_cplan * cplan;
  15846. int64_t perf_node_start_cycles;
  15847. int64_t perf_node_start_time_us;
  15848. const int n_threads;
  15849. // synchronization primitives
  15850. atomic_int n_active; // num active threads
  15851. atomic_int node_n; // active graph node
  15852. atomic_int node_task; // active graph node task phase
  15853. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  15854. void * abort_callback_data;
  15855. };
  15856. struct ggml_compute_state {
  15857. ggml_thread_t thrd;
  15858. int ith;
  15859. struct ggml_compute_state_shared * shared;
  15860. enum ggml_status ec;
  15861. };
  15862. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15863. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15864. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15865. node->perf_runs++;
  15866. node->perf_cycles += cycles_cur;
  15867. node->perf_time_us += time_us_cur;
  15868. }
  15869. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15870. int n_tasks = 0;
  15871. if (ggml_is_empty(node)) {
  15872. // no need to multi-thread a no-op
  15873. n_tasks = 1;
  15874. return n_tasks;
  15875. }
  15876. switch (node->op) {
  15877. case GGML_OP_CPY:
  15878. case GGML_OP_DUP:
  15879. case GGML_OP_ADD:
  15880. case GGML_OP_ADD1:
  15881. case GGML_OP_ACC:
  15882. {
  15883. n_tasks = n_threads;
  15884. } break;
  15885. case GGML_OP_SUB:
  15886. case GGML_OP_SQR:
  15887. case GGML_OP_SQRT:
  15888. case GGML_OP_LOG:
  15889. case GGML_OP_SUM:
  15890. case GGML_OP_SUM_ROWS:
  15891. case GGML_OP_MEAN:
  15892. case GGML_OP_ARGMAX:
  15893. case GGML_OP_REPEAT:
  15894. case GGML_OP_REPEAT_BACK:
  15895. case GGML_OP_LEAKY_RELU:
  15896. {
  15897. n_tasks = 1;
  15898. } break;
  15899. case GGML_OP_UNARY:
  15900. switch (ggml_get_unary_op(node)) {
  15901. case GGML_UNARY_OP_ABS:
  15902. case GGML_UNARY_OP_SGN:
  15903. case GGML_UNARY_OP_NEG:
  15904. case GGML_UNARY_OP_STEP:
  15905. case GGML_UNARY_OP_TANH:
  15906. case GGML_UNARY_OP_ELU:
  15907. case GGML_UNARY_OP_RELU:
  15908. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15909. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15910. {
  15911. n_tasks = 1;
  15912. } break;
  15913. case GGML_UNARY_OP_GELU:
  15914. case GGML_UNARY_OP_GELU_QUICK:
  15915. case GGML_UNARY_OP_SILU:
  15916. {
  15917. n_tasks = n_threads;
  15918. } break;
  15919. default:
  15920. GGML_ASSERT(false);
  15921. }
  15922. break;
  15923. case GGML_OP_SILU_BACK:
  15924. case GGML_OP_MUL:
  15925. case GGML_OP_DIV:
  15926. case GGML_OP_NORM:
  15927. case GGML_OP_RMS_NORM:
  15928. case GGML_OP_RMS_NORM_BACK:
  15929. case GGML_OP_GROUP_NORM:
  15930. case GGML_OP_CONCAT:
  15931. {
  15932. n_tasks = n_threads;
  15933. } break;
  15934. case GGML_OP_MUL_MAT:
  15935. {
  15936. n_tasks = n_threads;
  15937. // TODO: use different scheduling for different matrix sizes
  15938. //const int nr0 = ggml_nrows(node->src[0]);
  15939. //const int nr1 = ggml_nrows(node->src[1]);
  15940. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15941. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15942. } break;
  15943. case GGML_OP_MUL_MAT_ID:
  15944. {
  15945. n_tasks = n_threads;
  15946. } break;
  15947. case GGML_OP_OUT_PROD:
  15948. {
  15949. n_tasks = n_threads;
  15950. } break;
  15951. case GGML_OP_GET_ROWS:
  15952. {
  15953. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15954. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15955. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15956. } break;
  15957. case GGML_OP_SCALE:
  15958. case GGML_OP_SET:
  15959. case GGML_OP_CONT:
  15960. case GGML_OP_RESHAPE:
  15961. case GGML_OP_VIEW:
  15962. case GGML_OP_PERMUTE:
  15963. case GGML_OP_TRANSPOSE:
  15964. case GGML_OP_GET_ROWS_BACK:
  15965. case GGML_OP_DIAG:
  15966. {
  15967. n_tasks = 1;
  15968. } break;
  15969. case GGML_OP_DIAG_MASK_ZERO:
  15970. case GGML_OP_DIAG_MASK_INF:
  15971. case GGML_OP_SOFT_MAX_BACK:
  15972. case GGML_OP_ROPE:
  15973. case GGML_OP_ROPE_BACK:
  15974. case GGML_OP_ADD_REL_POS:
  15975. {
  15976. n_tasks = n_threads;
  15977. } break;
  15978. case GGML_OP_ALIBI:
  15979. {
  15980. n_tasks = 1; //TODO
  15981. } break;
  15982. case GGML_OP_CLAMP:
  15983. {
  15984. n_tasks = 1; //TODO
  15985. } break;
  15986. case GGML_OP_SOFT_MAX:
  15987. {
  15988. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15989. } break;
  15990. case GGML_OP_CONV_TRANSPOSE_1D:
  15991. {
  15992. n_tasks = n_threads;
  15993. } break;
  15994. case GGML_OP_IM2COL:
  15995. {
  15996. n_tasks = n_threads;
  15997. } break;
  15998. case GGML_OP_CONV_TRANSPOSE_2D:
  15999. {
  16000. n_tasks = n_threads;
  16001. } break;
  16002. case GGML_OP_POOL_1D:
  16003. case GGML_OP_POOL_2D:
  16004. {
  16005. n_tasks = 1;
  16006. } break;
  16007. case GGML_OP_UPSCALE:
  16008. {
  16009. n_tasks = n_threads;
  16010. } break;
  16011. case GGML_OP_PAD:
  16012. {
  16013. n_tasks = n_threads;
  16014. } break;
  16015. case GGML_OP_ARANGE:
  16016. {
  16017. n_tasks = n_threads;
  16018. } break;
  16019. case GGML_OP_TIMESTEP_EMBEDDING:
  16020. {
  16021. n_tasks = n_threads;
  16022. } break;
  16023. case GGML_OP_ARGSORT:
  16024. {
  16025. n_tasks = n_threads;
  16026. } break;
  16027. case GGML_OP_FLASH_ATTN:
  16028. case GGML_OP_FLASH_ATTN_EXT:
  16029. {
  16030. n_tasks = n_threads;
  16031. } break;
  16032. case GGML_OP_FLASH_FF:
  16033. {
  16034. n_tasks = n_threads;
  16035. } break;
  16036. case GGML_OP_FLASH_ATTN_BACK:
  16037. {
  16038. n_tasks = n_threads;
  16039. } break;
  16040. case GGML_OP_SSM_CONV:
  16041. case GGML_OP_SSM_SCAN:
  16042. {
  16043. n_tasks = n_threads;
  16044. } break;
  16045. case GGML_OP_WIN_PART:
  16046. case GGML_OP_WIN_UNPART:
  16047. case GGML_OP_GET_REL_POS:
  16048. case GGML_OP_MAP_UNARY:
  16049. case GGML_OP_MAP_BINARY:
  16050. case GGML_OP_MAP_CUSTOM1_F32:
  16051. case GGML_OP_MAP_CUSTOM2_F32:
  16052. case GGML_OP_MAP_CUSTOM3_F32:
  16053. {
  16054. n_tasks = 1;
  16055. } break;
  16056. case GGML_OP_MAP_CUSTOM1:
  16057. {
  16058. struct ggml_map_custom1_op_params p;
  16059. memcpy(&p, node->op_params, sizeof(p));
  16060. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16061. n_tasks = n_threads;
  16062. } else {
  16063. n_tasks = MIN(p.n_tasks, n_threads);
  16064. }
  16065. } break;
  16066. case GGML_OP_MAP_CUSTOM2:
  16067. {
  16068. struct ggml_map_custom2_op_params p;
  16069. memcpy(&p, node->op_params, sizeof(p));
  16070. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16071. n_tasks = n_threads;
  16072. } else {
  16073. n_tasks = MIN(p.n_tasks, n_threads);
  16074. }
  16075. } break;
  16076. case GGML_OP_MAP_CUSTOM3:
  16077. {
  16078. struct ggml_map_custom3_op_params p;
  16079. memcpy(&p, node->op_params, sizeof(p));
  16080. if (p.n_tasks == GGML_N_TASKS_MAX) {
  16081. n_tasks = n_threads;
  16082. } else {
  16083. n_tasks = MIN(p.n_tasks, n_threads);
  16084. }
  16085. } break;
  16086. case GGML_OP_CROSS_ENTROPY_LOSS:
  16087. {
  16088. n_tasks = n_threads;
  16089. } break;
  16090. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16091. {
  16092. n_tasks = n_threads;
  16093. } break;
  16094. case GGML_OP_NONE:
  16095. {
  16096. n_tasks = 1;
  16097. } break;
  16098. case GGML_OP_COUNT:
  16099. {
  16100. GGML_ASSERT(false);
  16101. } break;
  16102. default:
  16103. {
  16104. fprintf(stderr, "%s: op not implemented: ", __func__);
  16105. if (node->op < GGML_OP_COUNT) {
  16106. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16107. } else {
  16108. fprintf(stderr, "%d\n", node->op);
  16109. }
  16110. GGML_ASSERT(false);
  16111. } break;
  16112. }
  16113. assert(n_tasks > 0);
  16114. return n_tasks;
  16115. }
  16116. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  16117. // wait for other threads to finish
  16118. const int last_node_n = * node_n;
  16119. while (true) {
  16120. if (do_yield) {
  16121. sched_yield();
  16122. }
  16123. * node_n = atomic_load(&state->shared->node_n);
  16124. if (* node_n != last_node_n) break;
  16125. }
  16126. }
  16127. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  16128. // wait for other threads to finish
  16129. const int last_task_phase = * task_phase;
  16130. while (true) {
  16131. if (do_yield) {
  16132. sched_yield();
  16133. }
  16134. * task_phase = atomic_load(&state->shared->node_task);
  16135. if (* task_phase != last_task_phase) break;
  16136. }
  16137. }
  16138. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16139. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16140. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  16141. const struct ggml_cplan * cplan = state->shared->cplan;
  16142. const int n_threads = state->shared->n_threads;
  16143. set_numa_thread_affinity(state->ith);
  16144. int node_n = -1;
  16145. int task_phase = GGML_TASK_TYPE_FINALIZE;
  16146. while (true) {
  16147. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16148. state->shared->node_n += 1;
  16149. state->ec = GGML_STATUS_ABORTED;
  16150. return 0;
  16151. }
  16152. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16153. // all other threads are finished and spinning
  16154. // do finalize and init here so we don't have synchronize again
  16155. struct ggml_compute_params params = {
  16156. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  16157. /*.ith =*/ 0,
  16158. /*.nth =*/ 0,
  16159. /*.wsize =*/ cplan->work_size,
  16160. /*.wdata =*/ cplan->work_data,
  16161. };
  16162. if (node_n != -1) {
  16163. /* FINALIZE */
  16164. struct ggml_tensor * node = cgraph->nodes[node_n];
  16165. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16166. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16167. ggml_compute_forward(&params, node);
  16168. }
  16169. ggml_graph_compute_perf_stats_node(node, state->shared);
  16170. }
  16171. // distribute new work or execute it direct if 1T
  16172. while (++node_n < cgraph->n_nodes) {
  16173. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16174. struct ggml_tensor * node = cgraph->nodes[node_n];
  16175. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16176. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16177. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16178. params.nth = n_tasks;
  16179. if (n_tasks == 1) {
  16180. /* INIT */
  16181. if (GGML_OP_HAS_INIT[node->op]) {
  16182. params.type = GGML_TASK_TYPE_INIT;
  16183. ggml_compute_forward(&params, node);
  16184. }
  16185. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16186. // they do something more efficient than spinning (?)
  16187. params.type = GGML_TASK_TYPE_COMPUTE;
  16188. ggml_compute_forward(&params, node);
  16189. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16190. params.type = GGML_TASK_TYPE_FINALIZE;
  16191. ggml_compute_forward(&params, node);
  16192. }
  16193. ggml_graph_compute_perf_stats_node(node, state->shared);
  16194. } else {
  16195. break;
  16196. }
  16197. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16198. break;
  16199. }
  16200. }
  16201. task_phase = GGML_TASK_TYPE_INIT;
  16202. atomic_store(&state->shared->n_active, n_threads);
  16203. atomic_store(&state->shared->node_n, node_n);
  16204. atomic_store(&state->shared->node_task, task_phase);
  16205. } else {
  16206. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16207. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16208. }
  16209. // check if we should stop
  16210. if (node_n >= cgraph->n_nodes) break;
  16211. /* INIT & COMPUTE */
  16212. struct ggml_tensor * node = cgraph->nodes[node_n];
  16213. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16214. struct ggml_compute_params params = {
  16215. /*.type =*/ GGML_TASK_TYPE_INIT,
  16216. /*.ith =*/ state->ith,
  16217. /*.nth =*/ n_tasks,
  16218. /*.wsize =*/ cplan->work_size,
  16219. /*.wdata =*/ cplan->work_data,
  16220. };
  16221. if (state->ith < n_tasks) {
  16222. if (GGML_OP_HAS_INIT[node->op]) {
  16223. ggml_compute_forward(&params, node);
  16224. }
  16225. }
  16226. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16227. task_phase = GGML_TASK_TYPE_COMPUTE;
  16228. atomic_store(&state->shared->n_active, n_threads);
  16229. atomic_store(&state->shared->node_task, task_phase);
  16230. }
  16231. else {
  16232. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16233. // depending on the workload and the operating system.
  16234. // since it is not clear what is the best approach, it should potentially become user-configurable
  16235. // ref: https://github.com/ggerganov/ggml/issues/291
  16236. // UPD: adding the do_yield flag seems to resolve the issue universally
  16237. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16238. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16239. }
  16240. if (state->ith < n_tasks) {
  16241. params.type = GGML_TASK_TYPE_COMPUTE;
  16242. ggml_compute_forward(&params, node);
  16243. }
  16244. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16245. task_phase = GGML_TASK_TYPE_FINALIZE;
  16246. atomic_store(&state->shared->n_active, n_threads);
  16247. atomic_store(&state->shared->node_task, task_phase);
  16248. }
  16249. else {
  16250. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16251. }
  16252. }
  16253. return 0;
  16254. }
  16255. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16256. if (n_threads <= 0) {
  16257. n_threads = GGML_DEFAULT_N_THREADS;
  16258. }
  16259. size_t work_size = 0;
  16260. struct ggml_cplan cplan;
  16261. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16262. int max_tasks = 1;
  16263. // thread scheduling for the different operations + work buffer size estimation
  16264. for (int i = 0; i < cgraph->n_nodes; i++) {
  16265. struct ggml_tensor * node = cgraph->nodes[i];
  16266. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16267. max_tasks = MAX(max_tasks, n_tasks);
  16268. size_t cur = 0;
  16269. switch (node->op) {
  16270. case GGML_OP_CPY:
  16271. case GGML_OP_DUP:
  16272. {
  16273. if (ggml_is_quantized(node->type) ||
  16274. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16275. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16276. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16277. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16278. }
  16279. } break;
  16280. case GGML_OP_ADD:
  16281. case GGML_OP_ADD1:
  16282. {
  16283. if (ggml_is_quantized(node->src[0]->type)) {
  16284. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16285. }
  16286. } break;
  16287. case GGML_OP_ACC:
  16288. {
  16289. if (ggml_is_quantized(node->src[0]->type)) {
  16290. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16291. }
  16292. } break;
  16293. case GGML_OP_MUL_MAT:
  16294. {
  16295. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16296. #if defined(GGML_USE_CLBLAST)
  16297. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16298. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16299. } else
  16300. #endif
  16301. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16302. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16303. if (node->src[0]->type != GGML_TYPE_F32) {
  16304. // here we need memory for fully dequantized matrix from src0
  16305. // take into account that src0 can be broadcasted into src1[2,3]
  16306. cur = ggml_type_size(GGML_TYPE_F32)
  16307. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16308. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16309. }
  16310. } else
  16311. #endif
  16312. if (node->src[1]->type != vec_dot_type) {
  16313. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16314. }
  16315. } break;
  16316. case GGML_OP_MUL_MAT_ID:
  16317. {
  16318. cur = 0;
  16319. const struct ggml_tensor * src0 = node->src[0];
  16320. const struct ggml_tensor * src1 = node->src[1];
  16321. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16322. if (src1->type != vec_dot_type) {
  16323. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16324. }
  16325. const int n_as = src0->ne[2];
  16326. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16327. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16328. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16329. } break;
  16330. case GGML_OP_OUT_PROD:
  16331. {
  16332. if (ggml_is_quantized(node->src[0]->type)) {
  16333. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16334. }
  16335. } break;
  16336. case GGML_OP_SOFT_MAX:
  16337. case GGML_OP_ROPE:
  16338. {
  16339. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16340. } break;
  16341. case GGML_OP_CONV_TRANSPOSE_1D:
  16342. {
  16343. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16344. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16345. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16346. const int64_t ne00 = node->src[0]->ne[0]; // K
  16347. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16348. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16349. const int64_t ne10 = node->src[1]->ne[0]; // L
  16350. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16351. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16352. node->src[0]->type == GGML_TYPE_BF16) &&
  16353. node->src[1]->type == GGML_TYPE_F32) {
  16354. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16355. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16356. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16357. node->src[1]->type == GGML_TYPE_F32) {
  16358. cur += sizeof(float)*ne00*ne01*ne02;
  16359. cur += sizeof(float)*ne10*ne11;
  16360. } else {
  16361. GGML_ASSERT(false);
  16362. }
  16363. } break;
  16364. case GGML_OP_CONV_TRANSPOSE_2D:
  16365. {
  16366. const int64_t ne00 = node->src[0]->ne[0]; // W
  16367. const int64_t ne01 = node->src[0]->ne[1]; // H
  16368. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16369. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16370. const int64_t ne10 = node->src[1]->ne[0]; // W
  16371. const int64_t ne11 = node->src[1]->ne[1]; // H
  16372. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16373. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16374. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16375. } break;
  16376. case GGML_OP_FLASH_ATTN:
  16377. {
  16378. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16379. if (node->src[1]->type == GGML_TYPE_F32) {
  16380. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16381. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16382. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16383. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16384. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16385. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16386. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16387. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16388. }
  16389. } break;
  16390. case GGML_OP_FLASH_ATTN_EXT:
  16391. {
  16392. const int64_t ne00 = node->src[0]->ne[0]; // D
  16393. cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size
  16394. } break;
  16395. case GGML_OP_FLASH_FF:
  16396. {
  16397. if (node->src[1]->type == GGML_TYPE_F32) {
  16398. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16399. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16400. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16401. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16402. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16403. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16404. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16405. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16406. }
  16407. } break;
  16408. case GGML_OP_FLASH_ATTN_BACK:
  16409. {
  16410. const int64_t D = node->src[0]->ne[0];
  16411. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16412. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16413. if (node->src[1]->type == GGML_TYPE_F32) {
  16414. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16415. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16416. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16417. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16418. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16419. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16420. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16421. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16422. }
  16423. } break;
  16424. case GGML_OP_CROSS_ENTROPY_LOSS:
  16425. {
  16426. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16427. } break;
  16428. case GGML_OP_COUNT:
  16429. {
  16430. GGML_ASSERT(false);
  16431. } break;
  16432. default:
  16433. break;
  16434. }
  16435. work_size = MAX(work_size, cur);
  16436. }
  16437. if (work_size > 0) {
  16438. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16439. }
  16440. cplan.n_threads = MIN(max_tasks, n_threads);
  16441. cplan.work_size = work_size;
  16442. cplan.work_data = NULL;
  16443. return cplan;
  16444. }
  16445. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16446. {
  16447. GGML_ASSERT(cplan);
  16448. GGML_ASSERT(cplan->n_threads > 0);
  16449. if (cplan->work_size > 0) {
  16450. GGML_ASSERT(cplan->work_data);
  16451. }
  16452. }
  16453. const int n_threads = cplan->n_threads;
  16454. struct ggml_compute_state_shared state_shared = {
  16455. /*.cgraph =*/ cgraph,
  16456. /*.cgraph_plan =*/ cplan,
  16457. /*.perf_node_start_cycles =*/ 0,
  16458. /*.perf_node_start_time_us =*/ 0,
  16459. /*.n_threads =*/ n_threads,
  16460. /*.n_active =*/ n_threads,
  16461. /*.node_n =*/ -1,
  16462. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16463. /*.abort_callback =*/ NULL,
  16464. /*.abort_callback_data =*/ NULL,
  16465. };
  16466. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16467. // create thread pool
  16468. if (n_threads > 1) {
  16469. for (int j = 1; j < n_threads; ++j) {
  16470. workers[j] = (struct ggml_compute_state) {
  16471. .thrd = 0,
  16472. .ith = j,
  16473. .shared = &state_shared,
  16474. .ec = GGML_STATUS_SUCCESS,
  16475. };
  16476. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16477. GGML_ASSERT(rc == 0);
  16478. UNUSED(rc);
  16479. }
  16480. }
  16481. workers[0].ith = 0;
  16482. workers[0].shared = &state_shared;
  16483. workers[0].ec = GGML_STATUS_SUCCESS;
  16484. const int64_t perf_start_cycles = ggml_perf_cycles();
  16485. const int64_t perf_start_time_us = ggml_perf_time_us();
  16486. // this is a work thread too
  16487. ggml_graph_compute_thread(&workers[0]);
  16488. enum ggml_status compute_status = workers[0].ec;
  16489. // don't leave affinity set on the main thread
  16490. clear_numa_thread_affinity();
  16491. // join or kill thread pool
  16492. if (n_threads > 1) {
  16493. for (int j = 1; j < n_threads; j++) {
  16494. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16495. GGML_ASSERT(rc == 0);
  16496. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16497. compute_status = workers[j].ec;
  16498. }
  16499. }
  16500. // performance stats (graph)
  16501. {
  16502. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16503. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16504. cgraph->perf_runs++;
  16505. cgraph->perf_cycles += perf_cycles_cur;
  16506. cgraph->perf_time_us += perf_time_us_cur;
  16507. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16508. __func__, cgraph->perf_runs,
  16509. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16510. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16511. (double) perf_time_us_cur / 1000.0,
  16512. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16513. }
  16514. return compute_status;
  16515. }
  16516. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16517. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16518. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16519. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16520. return ggml_graph_compute(cgraph, &cplan);
  16521. }
  16522. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16523. for (int i = 0; i < cgraph->n_leafs; i++) {
  16524. struct ggml_tensor * leaf = cgraph->leafs[i];
  16525. if (strcmp(leaf->name, name) == 0) {
  16526. return leaf;
  16527. }
  16528. }
  16529. for (int i = 0; i < cgraph->n_nodes; i++) {
  16530. struct ggml_tensor * node = cgraph->nodes[i];
  16531. if (strcmp(node->name, name) == 0) {
  16532. return node;
  16533. }
  16534. }
  16535. return NULL;
  16536. }
  16537. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16538. const int64_t * ne = tensor->ne;
  16539. const size_t * nb = tensor->nb;
  16540. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16541. ggml_type_name(tensor->type),
  16542. ggml_op_name (tensor->op),
  16543. ggml_n_dims(tensor),
  16544. ne[0], ne[1], ne[2], ne[3],
  16545. nb[0], nb[1], nb[2], nb[3],
  16546. tensor->data,
  16547. tensor->name);
  16548. }
  16549. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16550. const int64_t * ne = tensor->ne;
  16551. const size_t * nb = tensor->nb;
  16552. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16553. arg,
  16554. ggml_type_name(tensor->type),
  16555. ggml_op_name (tensor->op),
  16556. ggml_n_dims(tensor),
  16557. ne[0], ne[1], ne[2], ne[3],
  16558. nb[0], nb[1], nb[2], nb[3],
  16559. tensor->data,
  16560. tensor->name);
  16561. }
  16562. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16563. uint64_t size_eval = 0;
  16564. // compute size of intermediate results
  16565. // TODO: does not take into account scratch buffers !!!!
  16566. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16567. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16568. }
  16569. // print
  16570. {
  16571. FILE * fout = stdout;
  16572. fprintf(fout, "\n");
  16573. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16574. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16575. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16576. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16577. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16578. // header
  16579. fprintf(fout, "\n");
  16580. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16581. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16582. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16583. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16584. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16585. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16586. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16587. }
  16588. // header
  16589. fprintf(fout, "\n");
  16590. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16591. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16592. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16593. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16594. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16595. if (cgraph->nodes[i]->src[j]) {
  16596. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16597. }
  16598. }
  16599. fprintf(fout, "\n");
  16600. }
  16601. fprintf(fout, "\n");
  16602. }
  16603. // write binary data
  16604. {
  16605. FILE * fout = ggml_fopen(fname, "wb");
  16606. if (!fout) {
  16607. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16608. return;
  16609. }
  16610. // header
  16611. {
  16612. const uint32_t magic = GGML_FILE_MAGIC;
  16613. const uint32_t version = GGML_FILE_VERSION;
  16614. const uint32_t n_leafs = cgraph->n_leafs;
  16615. const uint32_t n_nodes = cgraph->n_nodes;
  16616. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16617. fwrite(&version, sizeof(uint32_t), 1, fout);
  16618. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16619. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16620. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16621. }
  16622. // leafs
  16623. {
  16624. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16625. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16626. const uint32_t type = tensor->type;
  16627. const uint32_t op = tensor->op;
  16628. fwrite(&type, sizeof(uint32_t), 1, fout);
  16629. fwrite(&op, sizeof(uint32_t), 1, fout);
  16630. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16631. const uint64_t ne = tensor->ne[j];
  16632. const uint64_t nb = tensor->nb[j];
  16633. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16634. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16635. }
  16636. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16637. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16638. // dump the data
  16639. // TODO: pad this to 32 byte boundary
  16640. {
  16641. const size_t size = ggml_nbytes(tensor);
  16642. fwrite(tensor->data, sizeof(char), size, fout);
  16643. }
  16644. }
  16645. }
  16646. // nodes
  16647. {
  16648. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16649. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16650. const uint32_t type = tensor->type;
  16651. const uint32_t op = tensor->op;
  16652. fwrite(&type, sizeof(uint32_t), 1, fout);
  16653. fwrite(&op, sizeof(uint32_t), 1, fout);
  16654. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16655. const uint64_t ne = tensor->ne[j];
  16656. const uint64_t nb = tensor->nb[j];
  16657. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16658. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16659. }
  16660. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16661. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16662. // output the op arguments
  16663. {
  16664. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16665. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16666. args[j] = tensor->src[j];
  16667. }
  16668. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16669. if (args[j]) {
  16670. int32_t idx = -1;
  16671. // check if leaf
  16672. {
  16673. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16674. if (args[j] == cgraph->leafs[k]) {
  16675. idx = k;
  16676. break;
  16677. }
  16678. }
  16679. }
  16680. // check if node
  16681. if (idx == -1) {
  16682. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16683. if (args[j] == cgraph->nodes[k]) {
  16684. idx = cgraph->n_leafs + k;
  16685. break;
  16686. }
  16687. }
  16688. }
  16689. if (idx == -1) {
  16690. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16691. fclose(fout);
  16692. return;
  16693. }
  16694. fwrite(&idx, sizeof(int32_t), 1, fout);
  16695. } else {
  16696. const int32_t nul = -1;
  16697. fwrite(&nul, sizeof(int32_t), 1, fout);
  16698. }
  16699. }
  16700. }
  16701. }
  16702. }
  16703. fclose(fout);
  16704. }
  16705. }
  16706. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16707. assert(*ctx_data == NULL);
  16708. assert(*ctx_eval == NULL);
  16709. struct ggml_cgraph * result = NULL;
  16710. struct ggml_tensor * data = NULL;
  16711. // read file into data
  16712. {
  16713. FILE * fin = ggml_fopen(fname, "rb");
  16714. if (!fin) {
  16715. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16716. return result;
  16717. }
  16718. size_t fsize = 0;
  16719. fseek(fin, 0, SEEK_END);
  16720. fsize = ftell(fin);
  16721. fseek(fin, 0, SEEK_SET);
  16722. // create the data context
  16723. {
  16724. const size_t overhead = 1*ggml_tensor_overhead();
  16725. struct ggml_init_params params = {
  16726. .mem_size = fsize + overhead,
  16727. .mem_buffer = NULL,
  16728. .no_alloc = false,
  16729. };
  16730. *ctx_data = ggml_init(params);
  16731. if (!*ctx_data) {
  16732. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16733. fclose(fin);
  16734. return result;
  16735. }
  16736. }
  16737. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16738. {
  16739. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16740. if (ret != fsize) {
  16741. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16742. fclose(fin);
  16743. return result;
  16744. }
  16745. }
  16746. fclose(fin);
  16747. }
  16748. // populate result
  16749. {
  16750. char * ptr = (char *) data->data;
  16751. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16752. if (magic != GGML_FILE_MAGIC) {
  16753. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16754. return result;
  16755. }
  16756. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16757. if (version != GGML_FILE_VERSION) {
  16758. fprintf(stderr, "%s: invalid version number\n", __func__);
  16759. return result;
  16760. }
  16761. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16762. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16763. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16764. const int graph_size = MAX(n_leafs, n_nodes);
  16765. // create the data context
  16766. {
  16767. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16768. struct ggml_init_params params = {
  16769. .mem_size = size_eval + overhead,
  16770. .mem_buffer = NULL,
  16771. .no_alloc = true,
  16772. };
  16773. *ctx_eval = ggml_init(params);
  16774. if (!*ctx_eval) {
  16775. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16776. return result;
  16777. }
  16778. }
  16779. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16780. result->n_leafs = n_leafs;
  16781. result->n_nodes = n_nodes;
  16782. // leafs
  16783. {
  16784. uint32_t type;
  16785. uint32_t op;
  16786. for (uint32_t i = 0; i < n_leafs; ++i) {
  16787. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16788. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16789. int64_t ne[GGML_MAX_DIMS];
  16790. size_t nb[GGML_MAX_DIMS];
  16791. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16792. uint64_t ne_cur;
  16793. uint64_t nb_cur;
  16794. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16795. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16796. ne[j] = ne_cur;
  16797. nb[j] = nb_cur;
  16798. }
  16799. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16800. tensor->op = (enum ggml_op) op;
  16801. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16802. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16803. tensor->data = (void *) ptr;
  16804. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16805. tensor->nb[j] = nb[j];
  16806. }
  16807. result->leafs[i] = tensor;
  16808. ptr += ggml_nbytes(tensor);
  16809. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16810. }
  16811. }
  16812. ggml_set_no_alloc(*ctx_eval, false);
  16813. // nodes
  16814. {
  16815. uint32_t type;
  16816. uint32_t op;
  16817. for (uint32_t i = 0; i < n_nodes; ++i) {
  16818. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16819. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16820. enum ggml_op eop = (enum ggml_op) op;
  16821. int64_t ne[GGML_MAX_DIMS];
  16822. size_t nb[GGML_MAX_DIMS];
  16823. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16824. uint64_t ne_cur;
  16825. uint64_t nb_cur;
  16826. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16827. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16828. ne[j] = ne_cur;
  16829. nb[j] = nb_cur;
  16830. }
  16831. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16832. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16833. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16834. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16835. // parse args
  16836. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16837. const int32_t arg_idx = ptr_arg_idx[j];
  16838. if (arg_idx == -1) {
  16839. continue;
  16840. }
  16841. if (arg_idx < result->n_leafs) {
  16842. args[j] = result->leafs[arg_idx];
  16843. } else {
  16844. args[j] = result->nodes[arg_idx - result->n_leafs];
  16845. }
  16846. }
  16847. // create the tensor
  16848. // "view" operations are handled differently
  16849. // TODO: handle inplace ops - currently a copy is always made
  16850. struct ggml_tensor * tensor = NULL;
  16851. switch (eop) {
  16852. // TODO: implement other view ops
  16853. case GGML_OP_RESHAPE:
  16854. {
  16855. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16856. } break;
  16857. case GGML_OP_VIEW:
  16858. {
  16859. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16860. size_t offs;
  16861. memcpy(&offs, ptr_op_params, sizeof(offs));
  16862. tensor->data = ((char *) tensor->data) + offs;
  16863. } break;
  16864. case GGML_OP_TRANSPOSE:
  16865. {
  16866. tensor = ggml_transpose(*ctx_eval, args[0]);
  16867. } break;
  16868. case GGML_OP_PERMUTE:
  16869. {
  16870. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16871. } break;
  16872. default:
  16873. {
  16874. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16875. tensor->op = eop;
  16876. } break;
  16877. }
  16878. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16879. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16880. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16881. tensor->nb[j] = nb[j];
  16882. }
  16883. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16884. tensor->src[j] = args[j];
  16885. }
  16886. result->nodes[i] = tensor;
  16887. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16888. }
  16889. }
  16890. }
  16891. return result;
  16892. }
  16893. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16894. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16895. GGML_PRINT("=== GRAPH ===\n");
  16896. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16897. for (int i = 0; i < cgraph->n_nodes; i++) {
  16898. struct ggml_tensor * node = cgraph->nodes[i];
  16899. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16900. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16901. i,
  16902. node->ne[0], node->ne[1], node->ne[2],
  16903. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16904. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16905. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16906. (double) node->perf_time_us / 1000.0,
  16907. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16908. }
  16909. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16910. for (int i = 0; i < cgraph->n_leafs; i++) {
  16911. struct ggml_tensor * node = cgraph->leafs[i];
  16912. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16913. i,
  16914. node->ne[0], node->ne[1],
  16915. ggml_op_name(node->op),
  16916. ggml_get_name(node));
  16917. }
  16918. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16919. if (perf_total_per_op_us[i] == 0) {
  16920. continue;
  16921. }
  16922. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16923. }
  16924. GGML_PRINT("========================================\n");
  16925. }
  16926. // check if node is part of the graph
  16927. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16928. if (cgraph == NULL) {
  16929. return true;
  16930. }
  16931. for (int i = 0; i < cgraph->n_nodes; i++) {
  16932. if (cgraph->nodes[i] == node) {
  16933. return true;
  16934. }
  16935. }
  16936. return false;
  16937. }
  16938. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16939. for (int i = 0; i < cgraph->n_nodes; i++) {
  16940. struct ggml_tensor * parent = cgraph->nodes[i];
  16941. if (parent->grad == node) {
  16942. return parent;
  16943. }
  16944. }
  16945. return NULL;
  16946. }
  16947. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16948. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16949. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16950. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16951. gparent0 ? (void *) gparent0 : (void *) parent,
  16952. gparent0 ? "g" : "x",
  16953. gparent ? (void *) gparent : (void *) node,
  16954. gparent ? "g" : "x",
  16955. gparent ? "empty" : "vee",
  16956. gparent ? "dashed" : "solid",
  16957. label);
  16958. }
  16959. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16960. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16961. (void *) parent, "x",
  16962. (void *) node, "x",
  16963. label);
  16964. }
  16965. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16966. char color[16];
  16967. FILE * fp = ggml_fopen(filename, "w");
  16968. GGML_ASSERT(fp);
  16969. fprintf(fp, "digraph G {\n");
  16970. fprintf(fp, " newrank = true;\n");
  16971. fprintf(fp, " rankdir = LR;\n");
  16972. for (int i = 0; i < gb->n_nodes; i++) {
  16973. struct ggml_tensor * node = gb->nodes[i];
  16974. if (ggml_graph_get_parent(gb, node) != NULL) {
  16975. continue;
  16976. }
  16977. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16978. snprintf(color, sizeof(color), "yellow");
  16979. } else if (node->grad) {
  16980. if (ggml_graph_find(gf, node)) {
  16981. snprintf(color, sizeof(color), "green");
  16982. } else {
  16983. snprintf(color, sizeof(color), "lightblue");
  16984. }
  16985. } else {
  16986. snprintf(color, sizeof(color), "white");
  16987. }
  16988. fprintf(fp, " \"%p\" [ "
  16989. "style = filled; fillcolor = %s; shape = record; "
  16990. "label=\"",
  16991. (void *) node, color);
  16992. if (strlen(node->name) > 0) {
  16993. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16994. } else {
  16995. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16996. }
  16997. if (ggml_is_matrix(node)) {
  16998. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16999. } else {
  17000. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  17001. }
  17002. if (node->grad) {
  17003. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  17004. } else {
  17005. fprintf(fp, "\"; ]\n");
  17006. }
  17007. }
  17008. for (int i = 0; i < gb->n_leafs; i++) {
  17009. struct ggml_tensor * node = gb->leafs[i];
  17010. snprintf(color, sizeof(color), "pink");
  17011. fprintf(fp, " \"%p\" [ "
  17012. "style = filled; fillcolor = %s; shape = record; "
  17013. "label=\"<x>",
  17014. (void *) node, color);
  17015. if (strlen(node->name) > 0) {
  17016. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  17017. } else {
  17018. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  17019. }
  17020. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  17021. if (ggml_nelements(node) < 5) {
  17022. fprintf(fp, " | (");
  17023. for (int j = 0; j < ggml_nelements(node); j++) {
  17024. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  17025. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  17026. }
  17027. else if (node->type == GGML_TYPE_F32 ||
  17028. node->type == GGML_TYPE_F16 ||
  17029. node->type == GGML_TYPE_BF16) {
  17030. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  17031. }
  17032. else {
  17033. fprintf(fp, "#");
  17034. }
  17035. if (j < ggml_nelements(node) - 1) {
  17036. fprintf(fp, ", ");
  17037. }
  17038. }
  17039. fprintf(fp, ")");
  17040. }
  17041. fprintf(fp, "\"; ]\n");
  17042. }
  17043. for (int i = 0; i < gb->n_nodes; i++) {
  17044. struct ggml_tensor * node = gb->nodes[i];
  17045. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17046. if (node->src[j]) {
  17047. char label[16];
  17048. snprintf(label, sizeof(label), "src %d", j);
  17049. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  17050. }
  17051. }
  17052. }
  17053. for (int i = 0; i < gb->n_leafs; i++) {
  17054. struct ggml_tensor * node = gb->leafs[i];
  17055. for (int j = 0; j < GGML_MAX_SRC; j++) {
  17056. if (node->src[j]) {
  17057. char label[16];
  17058. snprintf(label, sizeof(label), "src %d", j);
  17059. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  17060. }
  17061. }
  17062. }
  17063. fprintf(fp, "}\n");
  17064. fclose(fp);
  17065. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  17066. }
  17067. ////////////////////////////////////////////////////////////////////////////////
  17068. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  17069. int i = 0;
  17070. for (int p = 0; p < np; ++p) {
  17071. const int64_t ne = ggml_nelements(ps[p]) ;
  17072. // TODO: add function to set tensor from array
  17073. for (int64_t j = 0; j < ne; ++j) {
  17074. ggml_set_f32_1d(ps[p], j, x[i++]);
  17075. }
  17076. }
  17077. }
  17078. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  17079. int i = 0;
  17080. for (int p = 0; p < np; ++p) {
  17081. const int64_t ne = ggml_nelements(ps[p]) ;
  17082. // TODO: add function to get all elements at once
  17083. for (int64_t j = 0; j < ne; ++j) {
  17084. x[i++] = ggml_get_f32_1d(ps[p], j);
  17085. }
  17086. }
  17087. }
  17088. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  17089. int64_t i = 0;
  17090. for (int p = 0; p < np; ++p) {
  17091. const int64_t ne = ggml_nelements(ps[p]) ;
  17092. // TODO: add function to get all elements at once
  17093. for (int64_t j = 0; j < ne; ++j) {
  17094. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17095. }
  17096. }
  17097. }
  17098. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17099. int64_t i = 0;
  17100. for (int p = 0; p < np; ++p) {
  17101. const int64_t ne = ggml_nelements(ps[p]) ;
  17102. // TODO: add function to get all elements at once
  17103. for (int64_t j = 0; j < ne; ++j) {
  17104. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17105. }
  17106. }
  17107. }
  17108. //
  17109. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17110. //
  17111. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17112. //
  17113. static enum ggml_opt_result ggml_opt_adam(
  17114. struct ggml_context * ctx,
  17115. struct ggml_opt_context * opt,
  17116. struct ggml_opt_params params,
  17117. struct ggml_tensor * f,
  17118. struct ggml_cgraph * gf,
  17119. struct ggml_cgraph * gb,
  17120. ggml_opt_callback callback,
  17121. void * callback_data) {
  17122. GGML_ASSERT(ggml_is_scalar(f));
  17123. // these will store the parameters we want to optimize
  17124. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17125. int np = 0;
  17126. int64_t nx = 0;
  17127. for (int i = 0; i < gf->n_nodes; ++i) {
  17128. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17129. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17130. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17131. ps[np++] = gf->nodes[i];
  17132. nx += ggml_nelements(gf->nodes[i]);
  17133. }
  17134. }
  17135. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17136. int iter = opt->iter;
  17137. ggml_opt_init(opt->ctx, opt, params, nx);
  17138. opt->iter = iter;
  17139. }
  17140. // constants
  17141. float sched = params.adam.sched;
  17142. const float alpha = params.adam.alpha;
  17143. const float decay = params.adam.decay * alpha;
  17144. const float beta1 = params.adam.beta1;
  17145. const float beta2 = params.adam.beta2;
  17146. const float eps = params.adam.eps;
  17147. const float gclip = params.adam.gclip;
  17148. const int decay_min_ndim = params.adam.decay_min_ndim;
  17149. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17150. const float accum_norm = 1.0f / (float) n_accum;
  17151. float * g = opt->adam.g->data; // gradients
  17152. float * m = opt->adam.m->data; // first moment
  17153. float * v = opt->adam.v->data; // second moment
  17154. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17155. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17156. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17157. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17158. bool cancel = false;
  17159. // compute the function value
  17160. float fx = 0;
  17161. ggml_set_zero(opt->adam.g);
  17162. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17163. if (callback) {
  17164. callback(callback_data, accum_step, &sched, &cancel);
  17165. if (cancel) {
  17166. return GGML_OPT_RESULT_CANCEL;
  17167. }
  17168. }
  17169. // ggml_graph_reset (gf);
  17170. ggml_set_f32 (f->grad, 1.0f);
  17171. ggml_graph_compute(gb, &cplan);
  17172. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17173. fx += ggml_get_f32_1d(f, 0);
  17174. }
  17175. fx *= accum_norm;
  17176. opt->adam.fx_prev = fx;
  17177. opt->adam.fx_best = opt->adam.fx_prev;
  17178. if (pf) {
  17179. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17180. }
  17181. opt->loss_before = opt->adam.fx_prev;
  17182. opt->loss_after = opt->adam.fx_prev;
  17183. // initialize
  17184. if (opt->just_initialized) {
  17185. opt->adam.n_no_improvement = 0;
  17186. opt->just_initialized = false;
  17187. }
  17188. float * fx_best = &opt->adam.fx_best;
  17189. float * fx_prev = &opt->adam.fx_prev;
  17190. int * n_no_improvement = &opt->adam.n_no_improvement;
  17191. int iter0 = opt->iter;
  17192. // run the optimizer
  17193. for (int t = 0; t < params.adam.n_iter; ++t) {
  17194. opt->iter = iter0 + t + 1;
  17195. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17196. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17197. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17198. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17199. for (int i = 0; i < np; ++i) {
  17200. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17201. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17202. }
  17203. const int64_t t_start_wall = ggml_time_us();
  17204. const int64_t t_start_cpu = ggml_cycles();
  17205. UNUSED(t_start_wall);
  17206. UNUSED(t_start_cpu);
  17207. {
  17208. float gnorm = 1.0f;
  17209. if (gclip > 0.0f) {
  17210. // gradient clipping
  17211. ggml_float sum = 0.0;
  17212. for (int64_t i = 0; i < nx; ++i) {
  17213. sum += (ggml_float)(g[i]*g[i]);
  17214. }
  17215. ggml_float norm = sqrt(sum);
  17216. if (norm > (ggml_float) gclip) {
  17217. gnorm = (float) ((ggml_float) gclip / norm);
  17218. }
  17219. }
  17220. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17221. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17222. int64_t i = 0;
  17223. for (int p = 0; p < np; ++p) {
  17224. const int64_t ne = ggml_nelements(ps[p]);
  17225. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17226. for (int64_t j = 0; j < ne; ++j) {
  17227. float x = ggml_get_f32_1d(ps[p], j);
  17228. float g_ = g[i]*gnorm;
  17229. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17230. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17231. float mh = m[i]*beta1h;
  17232. float vh = v[i]*beta2h;
  17233. vh = sqrtf(vh) + eps;
  17234. x = x*(1.0f - p_decay) - mh/vh;
  17235. ggml_set_f32_1d(ps[p], j, x);
  17236. ++i;
  17237. }
  17238. }
  17239. }
  17240. fx = 0;
  17241. ggml_set_zero(opt->adam.g);
  17242. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17243. if (callback) {
  17244. callback(callback_data, accum_step, &sched, &cancel);
  17245. if (cancel) {
  17246. return GGML_OPT_RESULT_CANCEL;;
  17247. }
  17248. }
  17249. // ggml_graph_reset (gf);
  17250. ggml_set_f32 (f->grad, 1.0f);
  17251. ggml_graph_compute(gb, &cplan);
  17252. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17253. fx += ggml_get_f32_1d(f, 0);
  17254. }
  17255. fx *= accum_norm;
  17256. opt->loss_after = fx;
  17257. // check convergence
  17258. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17259. GGML_PRINT_DEBUG("converged\n");
  17260. return GGML_OPT_RESULT_OK;
  17261. }
  17262. // delta-based convergence test
  17263. if (pf != NULL) {
  17264. // need at least params.past iterations to start checking for convergence
  17265. if (params.past <= iter0 + t) {
  17266. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17267. if (fabsf(rate) < params.delta) {
  17268. return GGML_OPT_RESULT_OK;
  17269. }
  17270. }
  17271. pf[(iter0 + t)%params.past] = fx;
  17272. }
  17273. // check for improvement
  17274. if (params.max_no_improvement > 0) {
  17275. if (fx_best[0] > fx) {
  17276. fx_best[0] = fx;
  17277. n_no_improvement[0] = 0;
  17278. } else {
  17279. ++n_no_improvement[0];
  17280. if (n_no_improvement[0] >= params.max_no_improvement) {
  17281. return GGML_OPT_RESULT_OK;
  17282. }
  17283. }
  17284. }
  17285. fx_prev[0] = fx;
  17286. {
  17287. const int64_t t_end_cpu = ggml_cycles();
  17288. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17289. UNUSED(t_end_cpu);
  17290. const int64_t t_end_wall = ggml_time_us();
  17291. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17292. UNUSED(t_end_wall);
  17293. }
  17294. }
  17295. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17296. }
  17297. //
  17298. // L-BFGS
  17299. //
  17300. // the L-BFGS implementation below is based on the following implementation:
  17301. //
  17302. // https://github.com/chokkan/liblbfgs
  17303. //
  17304. struct ggml_lbfgs_iteration_data {
  17305. float alpha;
  17306. float ys;
  17307. float * s;
  17308. float * y;
  17309. };
  17310. static enum ggml_opt_result linesearch_backtracking(
  17311. const struct ggml_opt_params * params,
  17312. int nx,
  17313. float * x,
  17314. float * fx,
  17315. float * g,
  17316. float * d,
  17317. float * step,
  17318. const float * xp,
  17319. struct ggml_tensor * f,
  17320. struct ggml_cgraph * gb,
  17321. struct ggml_cplan * cplan,
  17322. const int np,
  17323. struct ggml_tensor * ps[],
  17324. bool * cancel,
  17325. ggml_opt_callback callback,
  17326. void * callback_data) {
  17327. int count = 0;
  17328. float width = 0.0f;
  17329. float dg = 0.0f;
  17330. float finit = 0.0f;
  17331. float dginit = 0.0f;
  17332. float dgtest = 0.0f;
  17333. const float dec = 0.5f;
  17334. const float inc = 2.1f;
  17335. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17336. const float accum_norm = 1.0f / (float) n_accum;
  17337. if (*step <= 0.f) {
  17338. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17339. }
  17340. // compute the initial gradient in the search direction
  17341. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17342. // make sure that d points to a descent direction
  17343. if (0 < dginit) {
  17344. return GGML_LINESEARCH_FAIL;
  17345. }
  17346. // initialize local variables
  17347. finit = *fx;
  17348. dgtest = params->lbfgs.ftol*dginit;
  17349. while (true) {
  17350. ggml_vec_cpy_f32(nx, x, xp);
  17351. ggml_vec_mad_f32(nx, x, d, *step);
  17352. // evaluate the function and gradient values
  17353. {
  17354. ggml_opt_set_params(np, ps, x);
  17355. *fx = 0;
  17356. memset(g, 0, sizeof(float)*nx);
  17357. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17358. if (callback) {
  17359. // LBFG-S does not support learning rate -> ignore learning schedule
  17360. float sched = 0;
  17361. callback(callback_data, accum_step, &sched, cancel);
  17362. if (*cancel) {
  17363. return GGML_OPT_RESULT_CANCEL;
  17364. }
  17365. }
  17366. // ggml_graph_reset (gf);
  17367. ggml_set_f32 (f->grad, 1.0f);
  17368. ggml_graph_compute(gb, cplan);
  17369. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17370. *fx += ggml_get_f32_1d(f, 0);
  17371. }
  17372. *fx *= accum_norm;
  17373. }
  17374. ++count;
  17375. if (*fx > finit + (*step)*dgtest) {
  17376. width = dec;
  17377. } else {
  17378. // Armijo condition is satisfied
  17379. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17380. return count;
  17381. }
  17382. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17383. // check the Wolfe condition
  17384. if (dg < params->lbfgs.wolfe * dginit) {
  17385. width = inc;
  17386. } else {
  17387. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17388. // regular Wolfe conditions
  17389. return count;
  17390. }
  17391. if(dg > -params->lbfgs.wolfe*dginit) {
  17392. width = dec;
  17393. } else {
  17394. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17395. return count;
  17396. }
  17397. }
  17398. }
  17399. if (*step < params->lbfgs.min_step) {
  17400. return GGML_LINESEARCH_MINIMUM_STEP;
  17401. }
  17402. if (*step > params->lbfgs.max_step) {
  17403. return GGML_LINESEARCH_MAXIMUM_STEP;
  17404. }
  17405. if (params->lbfgs.max_linesearch <= count) {
  17406. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17407. }
  17408. (*step) *= width;
  17409. }
  17410. GGML_ASSERT(false && "line search failed");
  17411. return GGML_LINESEARCH_FAIL;
  17412. }
  17413. static enum ggml_opt_result ggml_opt_lbfgs(
  17414. struct ggml_context * ctx,
  17415. struct ggml_opt_context * opt,
  17416. struct ggml_opt_params params,
  17417. struct ggml_tensor * f,
  17418. struct ggml_cgraph * gf,
  17419. struct ggml_cgraph * gb,
  17420. ggml_opt_callback callback,
  17421. void * callback_data) {
  17422. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17423. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17424. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17425. return GGML_OPT_RESULT_INVALID_WOLFE;
  17426. }
  17427. }
  17428. const int m = params.lbfgs.m;
  17429. // these will store the parameters we want to optimize
  17430. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17431. int np = 0;
  17432. int nx = 0;
  17433. for (int i = 0; i < gf->n_nodes; ++i) {
  17434. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17435. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17436. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17437. ps[np++] = gf->nodes[i];
  17438. nx += ggml_nelements(gf->nodes[i]);
  17439. }
  17440. }
  17441. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17442. int iter = opt->iter;
  17443. ggml_opt_init(ctx, opt, params, nx);
  17444. opt->iter = iter;
  17445. }
  17446. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17447. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17448. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17449. float * x = opt->lbfgs.x->data; // current parameters
  17450. float * xp = opt->lbfgs.xp->data; // previous parameters
  17451. float * g = opt->lbfgs.g->data; // current gradient
  17452. float * gp = opt->lbfgs.gp->data; // previous gradient
  17453. float * d = opt->lbfgs.d->data; // search direction
  17454. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17455. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17456. const float accum_norm = 1.0f / (float) n_accum;
  17457. float fx = 0.0f; // cost function value
  17458. float xnorm = 0.0f; // ||x||
  17459. float gnorm = 0.0f; // ||g||
  17460. // initialize x from the graph nodes
  17461. ggml_opt_get_params(np, ps, x);
  17462. // the L-BFGS memory
  17463. float * lm_alpha = opt->lbfgs.lmal->data;
  17464. float * lm_ys = opt->lbfgs.lmys->data;
  17465. float * lm_s = opt->lbfgs.lms->data;
  17466. float * lm_y = opt->lbfgs.lmy->data;
  17467. bool cancel = false;
  17468. // evaluate the function value and its gradient
  17469. {
  17470. ggml_opt_set_params(np, ps, x);
  17471. fx = 0;
  17472. memset(g, 0, sizeof(float)*nx);
  17473. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17474. if (callback) {
  17475. // LBFG-S does not support learning rate -> ignore learning schedule
  17476. float sched = 0;
  17477. callback(callback_data, accum_step, &sched, &cancel);
  17478. if (cancel) {
  17479. return GGML_OPT_RESULT_CANCEL;
  17480. }
  17481. }
  17482. // ggml_graph_reset (gf);
  17483. ggml_set_f32 (f->grad, 1.0f);
  17484. ggml_graph_compute(gb, &cplan);
  17485. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17486. fx += ggml_get_f32_1d(f, 0);
  17487. }
  17488. fx *= accum_norm;
  17489. opt->loss_before = fx;
  17490. opt->loss_after = fx;
  17491. }
  17492. // search direction = -gradient
  17493. ggml_vec_neg_f32(nx, d, g);
  17494. // ||x||, ||g||
  17495. ggml_vec_norm_f32(nx, &xnorm, x);
  17496. ggml_vec_norm_f32(nx, &gnorm, g);
  17497. if (xnorm < 1.0f) {
  17498. xnorm = 1.0f;
  17499. }
  17500. // already optimized
  17501. if (gnorm/xnorm <= params.lbfgs.eps) {
  17502. return GGML_OPT_RESULT_OK;
  17503. }
  17504. if (opt->just_initialized) {
  17505. if (pf) {
  17506. pf[0] = fx;
  17507. }
  17508. opt->lbfgs.fx_best = fx;
  17509. // initial step
  17510. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17511. opt->lbfgs.j = 0;
  17512. opt->lbfgs.k = 1;
  17513. opt->lbfgs.end = 0;
  17514. opt->lbfgs.n_no_improvement = 0;
  17515. opt->just_initialized = false;
  17516. }
  17517. float * fx_best = &opt->lbfgs.fx_best;
  17518. float * step = &opt->lbfgs.step;
  17519. int * j = &opt->lbfgs.j;
  17520. int * k = &opt->lbfgs.k;
  17521. int * end = &opt->lbfgs.end;
  17522. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17523. int ls = 0;
  17524. int bound = 0;
  17525. float ys = 0.0f;
  17526. float yy = 0.0f;
  17527. float beta = 0.0f;
  17528. int it = 0;
  17529. while (true) {
  17530. // store the current position and gradient vectors
  17531. ggml_vec_cpy_f32(nx, xp, x);
  17532. ggml_vec_cpy_f32(nx, gp, g);
  17533. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17534. // to determine if the optimization should be cancelled
  17535. // this is a simple change, but not doing this atm, since I don't have a nice
  17536. // way to test and don't want to break something with so many changes lined up
  17537. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17538. if (cancel) {
  17539. return GGML_OPT_RESULT_CANCEL;
  17540. }
  17541. if (ls < 0) {
  17542. // linesearch failed - go back to the previous point and return
  17543. ggml_vec_cpy_f32(nx, x, xp);
  17544. ggml_vec_cpy_f32(nx, g, gp);
  17545. return ls;
  17546. }
  17547. opt->loss_after = fx;
  17548. ggml_vec_norm_f32(nx, &xnorm, x);
  17549. ggml_vec_norm_f32(nx, &gnorm, g);
  17550. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17551. if (xnorm < 1.0f) {
  17552. xnorm = 1.0f;
  17553. }
  17554. if (gnorm/xnorm <= params.lbfgs.eps) {
  17555. // converged
  17556. return GGML_OPT_RESULT_OK;
  17557. }
  17558. // delta-based convergence test
  17559. if (pf != NULL) {
  17560. // need at least params.past iterations to start checking for convergence
  17561. if (params.past <= k[0]) {
  17562. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17563. if (fabsf(rate) < params.delta) {
  17564. return GGML_OPT_RESULT_OK;
  17565. }
  17566. }
  17567. pf[k[0]%params.past] = fx;
  17568. }
  17569. // check for improvement
  17570. if (params.max_no_improvement > 0) {
  17571. if (fx < fx_best[0]) {
  17572. fx_best[0] = fx;
  17573. n_no_improvement[0] = 0;
  17574. } else {
  17575. n_no_improvement[0]++;
  17576. if (n_no_improvement[0] >= params.max_no_improvement) {
  17577. return GGML_OPT_RESULT_OK;
  17578. }
  17579. }
  17580. }
  17581. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17582. // reached the maximum number of iterations
  17583. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17584. }
  17585. // update vectors s and y:
  17586. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17587. // y_{k+1} = g_{k+1} - g_{k}.
  17588. //
  17589. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17590. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17591. // compute scalars ys and yy:
  17592. // ys = y^t \cdot s -> 1 / \rho.
  17593. // yy = y^t \cdot y.
  17594. //
  17595. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17596. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17597. lm_ys[end[0]] = ys;
  17598. // find new search direction
  17599. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17600. bound = (m <= k[0]) ? m : k[0];
  17601. k[0]++;
  17602. it++;
  17603. end[0] = (end[0] + 1)%m;
  17604. // initialize search direction with -g
  17605. ggml_vec_neg_f32(nx, d, g);
  17606. j[0] = end[0];
  17607. for (int i = 0; i < bound; ++i) {
  17608. j[0] = (j[0] + m - 1) % m;
  17609. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17610. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17611. lm_alpha[j[0]] /= lm_ys[j[0]];
  17612. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17613. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17614. }
  17615. ggml_vec_scale_f32(nx, d, ys/yy);
  17616. for (int i = 0; i < bound; ++i) {
  17617. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17618. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17619. beta /= lm_ys[j[0]];
  17620. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17621. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17622. j[0] = (j[0] + 1)%m;
  17623. }
  17624. step[0] = 1.0;
  17625. }
  17626. GGML_ASSERT(false && "lbfgs failed");
  17627. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17628. }
  17629. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17630. struct ggml_opt_params result;
  17631. switch (type) {
  17632. case GGML_OPT_TYPE_ADAM:
  17633. {
  17634. result = (struct ggml_opt_params) {
  17635. .type = GGML_OPT_TYPE_ADAM,
  17636. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17637. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17638. .past = 0,
  17639. .delta = 1e-5f,
  17640. .max_no_improvement = 100,
  17641. .print_forward_graph = true,
  17642. .print_backward_graph = true,
  17643. .n_gradient_accumulation = 1,
  17644. .adam = {
  17645. .n_iter = 10000,
  17646. .sched = 1.000f,
  17647. .decay = 0.0f,
  17648. .decay_min_ndim = 2,
  17649. .alpha = 0.001f,
  17650. .beta1 = 0.9f,
  17651. .beta2 = 0.999f,
  17652. .eps = 1e-8f,
  17653. .eps_f = 1e-5f,
  17654. .eps_g = 1e-3f,
  17655. .gclip = 0.0f,
  17656. },
  17657. };
  17658. } break;
  17659. case GGML_OPT_TYPE_LBFGS:
  17660. {
  17661. result = (struct ggml_opt_params) {
  17662. .type = GGML_OPT_TYPE_LBFGS,
  17663. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17664. .n_threads = 1,
  17665. .past = 0,
  17666. .delta = 1e-5f,
  17667. .max_no_improvement = 0,
  17668. .print_forward_graph = true,
  17669. .print_backward_graph = true,
  17670. .n_gradient_accumulation = 1,
  17671. .lbfgs = {
  17672. .m = 6,
  17673. .n_iter = 100,
  17674. .max_linesearch = 20,
  17675. .eps = 1e-5f,
  17676. .ftol = 1e-4f,
  17677. .wolfe = 0.9f,
  17678. .min_step = 1e-20f,
  17679. .max_step = 1e+20f,
  17680. .linesearch = GGML_LINESEARCH_DEFAULT,
  17681. },
  17682. };
  17683. } break;
  17684. }
  17685. return result;
  17686. }
  17687. GGML_API void ggml_opt_init(
  17688. struct ggml_context * ctx,
  17689. struct ggml_opt_context * opt,
  17690. struct ggml_opt_params params,
  17691. int64_t nx) {
  17692. opt->ctx = ctx;
  17693. opt->params = params;
  17694. opt->iter = 0;
  17695. opt->nx = nx;
  17696. opt->just_initialized = true;
  17697. if (opt->ctx == NULL) {
  17698. struct ggml_init_params ctx_opt_params;
  17699. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17700. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17701. if (opt->params.past > 0) {
  17702. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17703. }
  17704. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17705. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17706. if (opt->params.past > 0) {
  17707. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17708. }
  17709. }
  17710. ctx_opt_params.mem_buffer = NULL;
  17711. ctx_opt_params.no_alloc = false;
  17712. opt->ctx = ggml_init(ctx_opt_params);
  17713. }
  17714. switch (opt->params.type) {
  17715. case GGML_OPT_TYPE_ADAM:
  17716. {
  17717. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17718. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17719. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17720. opt->adam.pf = params.past > 0
  17721. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17722. : NULL;
  17723. ggml_set_zero(opt->adam.m);
  17724. ggml_set_zero(opt->adam.v);
  17725. if (opt->adam.pf) {
  17726. ggml_set_zero(opt->adam.pf);
  17727. }
  17728. } break;
  17729. case GGML_OPT_TYPE_LBFGS:
  17730. {
  17731. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17732. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17733. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17734. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17735. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17736. opt->lbfgs.pf = params.past > 0
  17737. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17738. : NULL;
  17739. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17740. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17741. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17742. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17743. ggml_set_zero(opt->lbfgs.x);
  17744. ggml_set_zero(opt->lbfgs.xp);
  17745. ggml_set_zero(opt->lbfgs.g);
  17746. ggml_set_zero(opt->lbfgs.gp);
  17747. ggml_set_zero(opt->lbfgs.d);
  17748. if (opt->lbfgs.pf) {
  17749. ggml_set_zero(opt->lbfgs.pf);
  17750. }
  17751. ggml_set_zero(opt->lbfgs.lmal);
  17752. ggml_set_zero(opt->lbfgs.lmys);
  17753. ggml_set_zero(opt->lbfgs.lms);
  17754. ggml_set_zero(opt->lbfgs.lmy);
  17755. } break;
  17756. }
  17757. }
  17758. enum ggml_opt_result ggml_opt(
  17759. struct ggml_context * ctx,
  17760. struct ggml_opt_params params,
  17761. struct ggml_tensor * f) {
  17762. bool free_ctx = false;
  17763. if (ctx == NULL) {
  17764. struct ggml_init_params params_ctx = {
  17765. .mem_size = 16*1024*1024,
  17766. .mem_buffer = NULL,
  17767. .no_alloc = false,
  17768. };
  17769. ctx = ggml_init(params_ctx);
  17770. if (ctx == NULL) {
  17771. return GGML_OPT_RESULT_NO_CONTEXT;
  17772. }
  17773. free_ctx = true;
  17774. }
  17775. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17776. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17777. ggml_opt_init(ctx, opt, params, 0);
  17778. result = ggml_opt_resume(ctx, opt, f);
  17779. if (free_ctx) {
  17780. ggml_free(ctx);
  17781. }
  17782. return result;
  17783. }
  17784. enum ggml_opt_result ggml_opt_resume(
  17785. struct ggml_context * ctx,
  17786. struct ggml_opt_context * opt,
  17787. struct ggml_tensor * f) {
  17788. // build forward + backward compute graphs
  17789. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17790. ggml_build_forward_expand(gf, f);
  17791. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17792. ggml_build_backward_expand(ctx, gf, gb, true);
  17793. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17794. }
  17795. enum ggml_opt_result ggml_opt_resume_g(
  17796. struct ggml_context * ctx,
  17797. struct ggml_opt_context * opt,
  17798. struct ggml_tensor * f,
  17799. struct ggml_cgraph * gf,
  17800. struct ggml_cgraph * gb,
  17801. ggml_opt_callback callback,
  17802. void * callback_data) {
  17803. // build forward + backward compute graphs
  17804. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17805. switch (opt->params.type) {
  17806. case GGML_OPT_TYPE_ADAM:
  17807. {
  17808. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17809. } break;
  17810. case GGML_OPT_TYPE_LBFGS:
  17811. {
  17812. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17813. } break;
  17814. }
  17815. if (opt->params.print_forward_graph) {
  17816. ggml_graph_print (gf);
  17817. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17818. }
  17819. if (opt->params.print_backward_graph) {
  17820. ggml_graph_print (gb);
  17821. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17822. }
  17823. return result;
  17824. }
  17825. ////////////////////////////////////////////////////////////////////////////////
  17826. void ggml_set_input(struct ggml_tensor * tensor) {
  17827. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17828. }
  17829. void ggml_set_output(struct ggml_tensor * tensor) {
  17830. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17831. }
  17832. ////////////////////////////////////////////////////////////////////////////////
  17833. void ggml_quantize_init(enum ggml_type type) {
  17834. ggml_critical_section_start();
  17835. switch (type) {
  17836. case GGML_TYPE_IQ2_XXS:
  17837. case GGML_TYPE_IQ2_XS:
  17838. case GGML_TYPE_IQ2_S:
  17839. case GGML_TYPE_IQ1_S:
  17840. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17841. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17842. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17843. default: // nothing
  17844. break;
  17845. }
  17846. ggml_critical_section_end();
  17847. }
  17848. void ggml_quantize_free(void) {
  17849. ggml_critical_section_start();
  17850. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17851. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17852. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17853. iq3xs_free_impl(256);
  17854. ggml_critical_section_end();
  17855. }
  17856. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17857. return
  17858. type == GGML_TYPE_IQ2_XXS ||
  17859. type == GGML_TYPE_IQ2_XS ||
  17860. type == GGML_TYPE_IQ1_S;// ||
  17861. //type == GGML_TYPE_IQ1_M;
  17862. }
  17863. size_t ggml_quantize_chunk(
  17864. enum ggml_type type,
  17865. const float * src,
  17866. void * dst,
  17867. int64_t start,
  17868. int64_t nrows,
  17869. int64_t n_per_row,
  17870. const float * imatrix) {
  17871. const int64_t n = (int64_t) nrows * n_per_row;
  17872. if (ggml_quantize_requires_imatrix(type)) {
  17873. GGML_ASSERT(imatrix != NULL);
  17874. }
  17875. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17876. GGML_ASSERT(start % n_per_row == 0);
  17877. ggml_quantize_init(type); // this is noop if already initialized
  17878. const size_t start_row = start / n_per_row;
  17879. const size_t row_size = ggml_row_size(type, n_per_row);
  17880. size_t result = 0;
  17881. switch (type) {
  17882. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17883. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17884. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17885. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17886. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17887. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17888. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17889. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17890. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17891. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17892. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17893. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17894. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17895. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17896. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17897. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17898. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17899. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17900. #if QK_K == 64
  17901. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17902. #else
  17903. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17904. #endif
  17905. case GGML_TYPE_F16:
  17906. {
  17907. size_t elemsize = sizeof(ggml_fp16_t);
  17908. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17909. result = n * elemsize;
  17910. } break;
  17911. case GGML_TYPE_BF16:
  17912. {
  17913. size_t elemsize = sizeof(ggml_bf16_t);
  17914. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17915. result = n * elemsize;
  17916. } break;
  17917. case GGML_TYPE_F32:
  17918. {
  17919. size_t elemsize = sizeof(float);
  17920. result = n * elemsize;
  17921. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17922. } break;
  17923. default:
  17924. assert(false);
  17925. }
  17926. GGML_ASSERT(result == nrows * row_size);
  17927. return result;
  17928. }
  17929. ////////////////////////////////////////////////////////////////////////////////
  17930. struct gguf_str {
  17931. uint64_t n; // GGUFv2
  17932. char * data;
  17933. };
  17934. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17935. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17936. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17937. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17938. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17939. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17940. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17941. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17942. [GGUF_TYPE_BOOL] = sizeof(bool),
  17943. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17944. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17945. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17946. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17947. [GGUF_TYPE_ARRAY] = 0, // undefined
  17948. };
  17949. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17950. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17951. [GGUF_TYPE_UINT8] = "u8",
  17952. [GGUF_TYPE_INT8] = "i8",
  17953. [GGUF_TYPE_UINT16] = "u16",
  17954. [GGUF_TYPE_INT16] = "i16",
  17955. [GGUF_TYPE_UINT32] = "u32",
  17956. [GGUF_TYPE_INT32] = "i32",
  17957. [GGUF_TYPE_FLOAT32] = "f32",
  17958. [GGUF_TYPE_BOOL] = "bool",
  17959. [GGUF_TYPE_STRING] = "str",
  17960. [GGUF_TYPE_ARRAY] = "arr",
  17961. [GGUF_TYPE_UINT64] = "u64",
  17962. [GGUF_TYPE_INT64] = "i64",
  17963. [GGUF_TYPE_FLOAT64] = "f64",
  17964. };
  17965. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17966. union gguf_value {
  17967. uint8_t uint8;
  17968. int8_t int8;
  17969. uint16_t uint16;
  17970. int16_t int16;
  17971. uint32_t uint32;
  17972. int32_t int32;
  17973. float float32;
  17974. uint64_t uint64;
  17975. int64_t int64;
  17976. double float64;
  17977. bool bool_;
  17978. struct gguf_str str;
  17979. struct {
  17980. enum gguf_type type;
  17981. uint64_t n; // GGUFv2
  17982. void * data;
  17983. } arr;
  17984. };
  17985. struct gguf_kv {
  17986. struct gguf_str key;
  17987. enum gguf_type type;
  17988. union gguf_value value;
  17989. };
  17990. struct gguf_header {
  17991. char magic[4];
  17992. uint32_t version;
  17993. uint64_t n_tensors; // GGUFv2
  17994. uint64_t n_kv; // GGUFv2
  17995. };
  17996. struct gguf_tensor_info {
  17997. struct gguf_str name;
  17998. uint32_t n_dims;
  17999. uint64_t ne[GGML_MAX_DIMS];
  18000. enum ggml_type type;
  18001. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  18002. // for writing API
  18003. const void * data;
  18004. size_t size;
  18005. };
  18006. struct gguf_context {
  18007. struct gguf_header header;
  18008. struct gguf_kv * kv;
  18009. struct gguf_tensor_info * infos;
  18010. size_t alignment;
  18011. size_t offset; // offset of `data` from beginning of file
  18012. size_t size; // size of `data` in bytes
  18013. //uint8_t * padding;
  18014. void * data;
  18015. };
  18016. static size_t gguf_type_size(enum gguf_type type) {
  18017. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  18018. return GGUF_TYPE_SIZE[type];
  18019. }
  18020. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  18021. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  18022. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  18023. for (uint32_t i = 0; i < info->n_dims; ++i) {
  18024. GGML_ASSERT(info->ne[i] > 0);
  18025. }
  18026. // prevent overflow for total number of elements
  18027. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  18028. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  18029. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  18030. }
  18031. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  18032. const size_t n = fread(dst, 1, size, file);
  18033. *offset += n;
  18034. return n == size;
  18035. }
  18036. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  18037. p->n = 0;
  18038. p->data = NULL;
  18039. bool ok = true;
  18040. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  18041. // early exit if string length is invalid, prevents from integer overflow
  18042. if (p->n == SIZE_MAX) {
  18043. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  18044. return false;
  18045. }
  18046. p->data = GGML_CALLOC(p->n + 1, 1);
  18047. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  18048. return ok;
  18049. }
  18050. static void gguf_free_kv(struct gguf_kv * kv) {
  18051. if (kv->key.data) {
  18052. GGML_FREE(kv->key.data);
  18053. }
  18054. if (kv->type == GGUF_TYPE_STRING) {
  18055. if (kv->value.str.data) {
  18056. GGML_FREE(kv->value.str.data);
  18057. }
  18058. }
  18059. if (kv->type == GGUF_TYPE_ARRAY) {
  18060. if (kv->value.arr.data) {
  18061. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  18062. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18063. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  18064. if (str->data) {
  18065. GGML_FREE(str->data);
  18066. }
  18067. }
  18068. }
  18069. GGML_FREE(kv->value.arr.data);
  18070. }
  18071. }
  18072. }
  18073. struct gguf_context * gguf_init_empty(void) {
  18074. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18075. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  18076. ctx->header.version = GGUF_VERSION;
  18077. ctx->header.n_tensors = 0;
  18078. ctx->header.n_kv = 0;
  18079. ctx->kv = NULL;
  18080. ctx->infos = NULL;
  18081. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18082. ctx->offset = 0;
  18083. ctx->size = 0;
  18084. ctx->data = NULL;
  18085. return ctx;
  18086. }
  18087. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  18088. FILE * file = ggml_fopen(fname, "rb");
  18089. if (!file) {
  18090. return NULL;
  18091. }
  18092. // offset from start of file
  18093. size_t offset = 0;
  18094. char magic[4];
  18095. // check the magic before making allocations
  18096. {
  18097. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18098. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18099. if (magic[i] != GGUF_MAGIC[i]) {
  18100. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18101. fclose(file);
  18102. return NULL;
  18103. }
  18104. }
  18105. }
  18106. bool ok = true;
  18107. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18108. // read the header
  18109. {
  18110. strncpy(ctx->header.magic, magic, 4);
  18111. ctx->kv = NULL;
  18112. ctx->infos = NULL;
  18113. ctx->data = NULL;
  18114. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18115. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18116. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18117. if (ctx->header.version == 1) {
  18118. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18119. fclose(file);
  18120. gguf_free(ctx);
  18121. return NULL;
  18122. }
  18123. // sanity-checks to prevent from integer/buffer overflows
  18124. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18125. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18126. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18127. if (!ok) {
  18128. fprintf(stderr, "%s: failed to read header\n", __func__);
  18129. fclose(file);
  18130. gguf_free(ctx);
  18131. return NULL;
  18132. }
  18133. }
  18134. // read the kv pairs
  18135. {
  18136. const uint64_t n_kv = ctx->header.n_kv;
  18137. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18138. ctx->header.n_kv = 0;
  18139. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18140. for (uint64_t i = 0; i < n_kv; ++i) {
  18141. struct gguf_kv * kv = &ctx->kv[i];
  18142. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18143. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18144. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18145. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18146. switch (kv->type) {
  18147. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18148. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18149. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18150. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18151. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18152. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18153. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18154. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18155. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18156. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18157. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18158. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18159. case GGUF_TYPE_ARRAY:
  18160. {
  18161. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18162. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18163. switch (kv->value.arr.type) {
  18164. case GGUF_TYPE_UINT8:
  18165. case GGUF_TYPE_INT8:
  18166. case GGUF_TYPE_UINT16:
  18167. case GGUF_TYPE_INT16:
  18168. case GGUF_TYPE_UINT32:
  18169. case GGUF_TYPE_INT32:
  18170. case GGUF_TYPE_FLOAT32:
  18171. case GGUF_TYPE_UINT64:
  18172. case GGUF_TYPE_INT64:
  18173. case GGUF_TYPE_FLOAT64:
  18174. case GGUF_TYPE_BOOL:
  18175. {
  18176. // prevent from integer overflow in the malloc below
  18177. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18178. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18179. fclose(file);
  18180. gguf_free(ctx);
  18181. return NULL;
  18182. }
  18183. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18184. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18185. } break;
  18186. case GGUF_TYPE_STRING:
  18187. {
  18188. // prevent from integer overflow in the malloc below
  18189. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18190. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18191. fclose(file);
  18192. gguf_free(ctx);
  18193. return NULL;
  18194. }
  18195. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18196. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18197. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18198. }
  18199. } break;
  18200. case GGUF_TYPE_ARRAY:
  18201. default: GGML_ASSERT(false && "invalid type"); break;
  18202. }
  18203. } break;
  18204. default: GGML_ASSERT(false && "invalid type");
  18205. }
  18206. if (!ok) {
  18207. break;
  18208. }
  18209. ctx->header.n_kv++;
  18210. }
  18211. if (!ok) {
  18212. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18213. fclose(file);
  18214. gguf_free(ctx);
  18215. return NULL;
  18216. }
  18217. }
  18218. // read the tensor infos
  18219. if (ctx->header.n_tensors > 0) {
  18220. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18221. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18222. struct gguf_tensor_info * info = &ctx->infos[i];
  18223. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18224. info->ne[j] = 1;
  18225. }
  18226. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18227. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18228. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18229. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18230. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18231. }
  18232. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18233. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18234. // TODO: return an error instead of crashing with GGML_ASSERT
  18235. gguf_tensor_info_sanitize(info);
  18236. // make sure there is no duplicated tensor names
  18237. for (uint64_t j = 0; j < i; ++j) {
  18238. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18239. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18240. ok = false;
  18241. }
  18242. }
  18243. if (!ok) {
  18244. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18245. fclose(file);
  18246. gguf_free(ctx);
  18247. return NULL;
  18248. }
  18249. }
  18250. }
  18251. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18252. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18253. if (alignment_idx != -1) {
  18254. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18255. }
  18256. // we require the data section to be aligned, so take into account any padding
  18257. {
  18258. const size_t offset_pad = offset % ctx->alignment;
  18259. if (offset_pad != 0) {
  18260. offset += ctx->alignment - offset_pad;
  18261. fseek(file, offset, SEEK_SET);
  18262. }
  18263. }
  18264. // store the current file offset - this is where the data section starts
  18265. ctx->offset = offset;
  18266. // compute the total size of the data section, taking into account the alignment
  18267. {
  18268. ctx->size = 0;
  18269. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18270. struct gguf_tensor_info * info = &ctx->infos[i];
  18271. const int64_t ne =
  18272. (int64_t) info->ne[0] *
  18273. (int64_t) info->ne[1] *
  18274. (int64_t) info->ne[2] *
  18275. (int64_t) info->ne[3];
  18276. if (ne % ggml_blck_size(info->type) != 0) {
  18277. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18278. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18279. fclose(file);
  18280. gguf_free(ctx);
  18281. return NULL;
  18282. }
  18283. const size_t size_cur = ggml_row_size(info->type, ne);
  18284. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18285. }
  18286. }
  18287. // load the tensor data only if requested
  18288. if (params.ctx != NULL) {
  18289. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18290. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18291. // the ggml_tensor structs to the appropriate locations in the binary blob
  18292. // compute the exact size needed for the new ggml_context
  18293. const size_t mem_size =
  18294. params.no_alloc ?
  18295. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18296. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18297. struct ggml_init_params pdata = {
  18298. .mem_size = mem_size,
  18299. .mem_buffer = NULL,
  18300. .no_alloc = params.no_alloc,
  18301. };
  18302. *params.ctx = ggml_init(pdata);
  18303. struct ggml_context * ctx_data = *params.ctx;
  18304. struct ggml_tensor * data = NULL;
  18305. if (!params.no_alloc) {
  18306. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18307. ok = ok && data != NULL;
  18308. // read the binary blob with the tensor data
  18309. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18310. if (!ok) {
  18311. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18312. fclose(file);
  18313. ggml_free(ctx_data);
  18314. gguf_free(ctx);
  18315. return NULL;
  18316. }
  18317. ctx->data = data->data;
  18318. }
  18319. ggml_set_no_alloc(ctx_data, true);
  18320. // create the tensors
  18321. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18322. const int64_t ne[GGML_MAX_DIMS] = {
  18323. ctx->infos[i].ne[0],
  18324. ctx->infos[i].ne[1],
  18325. ctx->infos[i].ne[2],
  18326. ctx->infos[i].ne[3],
  18327. };
  18328. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18329. ok = ok && cur != NULL;
  18330. if (!ok) {
  18331. break;
  18332. }
  18333. ggml_set_name(cur, ctx->infos[i].name.data);
  18334. // point the data member to the appropriate location in the binary blob using the tensor infos
  18335. if (!params.no_alloc) {
  18336. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18337. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18338. }
  18339. }
  18340. if (!ok) {
  18341. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18342. fclose(file);
  18343. ggml_free(ctx_data);
  18344. gguf_free(ctx);
  18345. return NULL;
  18346. }
  18347. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18348. }
  18349. fclose(file);
  18350. return ctx;
  18351. }
  18352. void gguf_free(struct gguf_context * ctx) {
  18353. if (ctx == NULL) {
  18354. return;
  18355. }
  18356. if (ctx->kv) {
  18357. // free string memory - not great..
  18358. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18359. gguf_free_kv(&ctx->kv[i]);
  18360. }
  18361. GGML_FREE(ctx->kv);
  18362. }
  18363. if (ctx->infos) {
  18364. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18365. struct gguf_tensor_info * info = &ctx->infos[i];
  18366. if (info->name.data) {
  18367. GGML_FREE(info->name.data);
  18368. }
  18369. }
  18370. GGML_FREE(ctx->infos);
  18371. }
  18372. GGML_FREE(ctx);
  18373. }
  18374. const char * gguf_type_name(enum gguf_type type) {
  18375. return GGUF_TYPE_NAME[type];
  18376. }
  18377. int gguf_get_version(const struct gguf_context * ctx) {
  18378. return ctx->header.version;
  18379. }
  18380. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18381. return ctx->alignment;
  18382. }
  18383. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18384. return ctx->offset;
  18385. }
  18386. void * gguf_get_data(const struct gguf_context * ctx) {
  18387. return ctx->data;
  18388. }
  18389. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18390. return ctx->header.n_kv;
  18391. }
  18392. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18393. // return -1 if key not found
  18394. int keyfound = -1;
  18395. const int n_kv = gguf_get_n_kv(ctx);
  18396. for (int i = 0; i < n_kv; ++i) {
  18397. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18398. keyfound = i;
  18399. break;
  18400. }
  18401. }
  18402. return keyfound;
  18403. }
  18404. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18405. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18406. return ctx->kv[key_id].key.data;
  18407. }
  18408. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18409. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18410. return ctx->kv[key_id].type;
  18411. }
  18412. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18413. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18414. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18415. return ctx->kv[key_id].value.arr.type;
  18416. }
  18417. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18418. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18419. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18420. return ctx->kv[key_id].value.arr.data;
  18421. }
  18422. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18423. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18424. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18425. struct gguf_kv * kv = &ctx->kv[key_id];
  18426. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18427. return str->data;
  18428. }
  18429. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18430. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18431. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18432. return ctx->kv[key_id].value.arr.n;
  18433. }
  18434. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18435. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18436. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18437. return ctx->kv[key_id].value.uint8;
  18438. }
  18439. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18440. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18441. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18442. return ctx->kv[key_id].value.int8;
  18443. }
  18444. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18445. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18446. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18447. return ctx->kv[key_id].value.uint16;
  18448. }
  18449. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18450. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18451. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18452. return ctx->kv[key_id].value.int16;
  18453. }
  18454. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18455. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18456. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18457. return ctx->kv[key_id].value.uint32;
  18458. }
  18459. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18460. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18461. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18462. return ctx->kv[key_id].value.int32;
  18463. }
  18464. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18465. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18466. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18467. return ctx->kv[key_id].value.float32;
  18468. }
  18469. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18470. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18471. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18472. return ctx->kv[key_id].value.uint64;
  18473. }
  18474. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18475. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18476. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18477. return ctx->kv[key_id].value.int64;
  18478. }
  18479. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18480. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18481. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18482. return ctx->kv[key_id].value.float64;
  18483. }
  18484. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18485. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18486. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18487. return ctx->kv[key_id].value.bool_;
  18488. }
  18489. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18490. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18491. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18492. return ctx->kv[key_id].value.str.data;
  18493. }
  18494. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18495. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18496. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18497. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18498. return &ctx->kv[key_id].value;
  18499. }
  18500. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18501. return ctx->header.n_tensors;
  18502. }
  18503. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18504. // return -1 if tensor not found
  18505. int tensorfound = -1;
  18506. const int n_tensors = gguf_get_n_tensors(ctx);
  18507. for (int i = 0; i < n_tensors; ++i) {
  18508. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18509. tensorfound = i;
  18510. break;
  18511. }
  18512. }
  18513. return tensorfound;
  18514. }
  18515. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18516. return ctx->infos[i].offset;
  18517. }
  18518. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18519. return ctx->infos[i].name.data;
  18520. }
  18521. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18522. return ctx->infos[i].type;
  18523. }
  18524. // returns the index
  18525. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18526. const int idx = gguf_find_key(ctx, key);
  18527. if (idx >= 0) {
  18528. return idx;
  18529. }
  18530. const int n_kv = gguf_get_n_kv(ctx);
  18531. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18532. ctx->kv[n_kv].key.n = strlen(key);
  18533. ctx->kv[n_kv].key.data = strdup(key);
  18534. ctx->header.n_kv++;
  18535. return n_kv;
  18536. }
  18537. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18538. const int idx = gguf_find_key(ctx, key);
  18539. if (idx >= 0) {
  18540. const int n_kv = gguf_get_n_kv(ctx);
  18541. gguf_free_kv(&ctx->kv[idx]);
  18542. for (int i = idx; i < n_kv-1; ++i) {
  18543. ctx->kv[i] = ctx->kv[i+1];
  18544. }
  18545. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18546. ctx->header.n_kv--;
  18547. }
  18548. }
  18549. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18550. const int idx = gguf_get_or_add_key(ctx, key);
  18551. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18552. ctx->kv[idx].value.uint8 = val;
  18553. }
  18554. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18555. const int idx = gguf_get_or_add_key(ctx, key);
  18556. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18557. ctx->kv[idx].value.int8 = val;
  18558. }
  18559. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18560. const int idx = gguf_get_or_add_key(ctx, key);
  18561. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18562. ctx->kv[idx].value.uint16 = val;
  18563. }
  18564. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18565. const int idx = gguf_get_or_add_key(ctx, key);
  18566. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18567. ctx->kv[idx].value.int16 = val;
  18568. }
  18569. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18570. const int idx = gguf_get_or_add_key(ctx, key);
  18571. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18572. ctx->kv[idx].value.uint32 = val;
  18573. }
  18574. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18575. const int idx = gguf_get_or_add_key(ctx, key);
  18576. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18577. ctx->kv[idx].value.int32 = val;
  18578. }
  18579. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18580. const int idx = gguf_get_or_add_key(ctx, key);
  18581. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18582. ctx->kv[idx].value.float32 = val;
  18583. }
  18584. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18585. const int idx = gguf_get_or_add_key(ctx, key);
  18586. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18587. ctx->kv[idx].value.uint64 = val;
  18588. }
  18589. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18590. const int idx = gguf_get_or_add_key(ctx, key);
  18591. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18592. ctx->kv[idx].value.int64 = val;
  18593. }
  18594. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18595. const int idx = gguf_get_or_add_key(ctx, key);
  18596. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18597. ctx->kv[idx].value.float64 = val;
  18598. }
  18599. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18600. const int idx = gguf_get_or_add_key(ctx, key);
  18601. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18602. ctx->kv[idx].value.bool_ = val;
  18603. }
  18604. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18605. const int idx = gguf_get_or_add_key(ctx, key);
  18606. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18607. ctx->kv[idx].value.str.n = strlen(val);
  18608. ctx->kv[idx].value.str.data = strdup(val);
  18609. }
  18610. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18611. const int idx = gguf_get_or_add_key(ctx, key);
  18612. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18613. ctx->kv[idx].value.arr.type = type;
  18614. ctx->kv[idx].value.arr.n = n;
  18615. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18616. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18617. }
  18618. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18619. const int idx = gguf_get_or_add_key(ctx, key);
  18620. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18621. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18622. ctx->kv[idx].value.arr.n = n;
  18623. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18624. for (int i = 0; i < n; i++) {
  18625. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18626. str->n = strlen(data[i]);
  18627. str->data = strdup(data[i]);
  18628. }
  18629. }
  18630. // set or add KV pairs from another context
  18631. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18632. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18633. switch (src->kv[i].type) {
  18634. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18635. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18636. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18637. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18638. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18639. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18640. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18641. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18642. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18643. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18644. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18645. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18646. case GGUF_TYPE_ARRAY:
  18647. {
  18648. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18649. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18650. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18651. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18652. }
  18653. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18654. GGML_FREE((void *)data);
  18655. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18656. GGML_ASSERT(false && "nested arrays not supported");
  18657. } else {
  18658. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18659. }
  18660. } break;
  18661. default: GGML_ASSERT(false && "invalid type"); break;
  18662. }
  18663. }
  18664. }
  18665. void gguf_add_tensor(
  18666. struct gguf_context * ctx,
  18667. const struct ggml_tensor * tensor) {
  18668. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18669. GGML_ASSERT(false && "duplicated tensor name");
  18670. }
  18671. const int idx = ctx->header.n_tensors;
  18672. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18673. ctx->infos[idx].name.n = strlen(tensor->name);
  18674. ctx->infos[idx].name.data = strdup(tensor->name);
  18675. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18676. ctx->infos[idx].ne[i] = 1;
  18677. }
  18678. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18679. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18680. ctx->infos[idx].ne[i] = tensor->ne[i];
  18681. }
  18682. ctx->infos[idx].type = tensor->type;
  18683. ctx->infos[idx].offset = 0;
  18684. ctx->infos[idx].data = tensor->data;
  18685. ctx->infos[idx].size = ggml_nbytes(tensor);
  18686. if (ctx->header.n_tensors > 0) {
  18687. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18688. }
  18689. ctx->header.n_tensors++;
  18690. }
  18691. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18692. const int idx = gguf_find_tensor(ctx, name);
  18693. if (idx < 0) {
  18694. GGML_ASSERT(false && "tensor not found");
  18695. }
  18696. ctx->infos[idx].type = type;
  18697. }
  18698. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18699. const int idx = gguf_find_tensor(ctx, name);
  18700. if (idx < 0) {
  18701. GGML_ASSERT(false && "tensor not found");
  18702. }
  18703. ctx->infos[idx].data = data;
  18704. ctx->infos[idx].size = size;
  18705. // update offsets
  18706. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18707. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18708. }
  18709. }
  18710. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18711. // fwrite(&val->n, sizeof(val->n), 1, file);
  18712. // fwrite(val->data, sizeof(char), val->n, file);
  18713. //}
  18714. //
  18715. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18716. // fwrite(val, sizeof(char), size, file);
  18717. //}
  18718. struct gguf_buf {
  18719. void * data;
  18720. size_t size;
  18721. size_t offset;
  18722. };
  18723. static struct gguf_buf gguf_buf_init(size_t size) {
  18724. struct gguf_buf buf = {
  18725. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18726. /*buf.size =*/ size,
  18727. /*buf.offset =*/ 0,
  18728. };
  18729. return buf;
  18730. }
  18731. static void gguf_buf_free(struct gguf_buf buf) {
  18732. if (buf.data) {
  18733. GGML_FREE(buf.data);
  18734. }
  18735. }
  18736. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18737. if (buf->offset + size > buf->size) {
  18738. buf->size = 1.5*(buf->offset + size);
  18739. if (buf->data) {
  18740. buf->data = realloc(buf->data, buf->size);
  18741. }
  18742. }
  18743. }
  18744. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18745. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18746. if (buf->data) {
  18747. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18748. }
  18749. buf->offset += sizeof(val->n);
  18750. if (buf->data) {
  18751. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18752. }
  18753. buf->offset += val->n;
  18754. }
  18755. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18756. gguf_buf_grow(buf, el_size);
  18757. if (buf->data) {
  18758. memcpy((char *) buf->data + buf->offset, val, el_size);
  18759. }
  18760. buf->offset += el_size;
  18761. }
  18762. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18763. // write header
  18764. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18765. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18766. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18767. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18768. // write key-value pairs
  18769. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18770. struct gguf_kv * kv = &ctx->kv[i];
  18771. gguf_bwrite_str(buf, &kv->key);
  18772. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18773. switch (kv->type) {
  18774. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18775. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18776. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18777. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18778. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18779. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18780. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18781. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18782. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18783. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18784. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18785. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18786. case GGUF_TYPE_ARRAY:
  18787. {
  18788. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18789. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18790. switch (kv->value.arr.type) {
  18791. case GGUF_TYPE_UINT8:
  18792. case GGUF_TYPE_INT8:
  18793. case GGUF_TYPE_UINT16:
  18794. case GGUF_TYPE_INT16:
  18795. case GGUF_TYPE_UINT32:
  18796. case GGUF_TYPE_INT32:
  18797. case GGUF_TYPE_FLOAT32:
  18798. case GGUF_TYPE_UINT64:
  18799. case GGUF_TYPE_INT64:
  18800. case GGUF_TYPE_FLOAT64:
  18801. case GGUF_TYPE_BOOL:
  18802. {
  18803. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18804. } break;
  18805. case GGUF_TYPE_STRING:
  18806. {
  18807. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18808. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18809. }
  18810. } break;
  18811. case GGUF_TYPE_ARRAY:
  18812. default: GGML_ASSERT(false && "invalid type"); break;
  18813. }
  18814. } break;
  18815. default: GGML_ASSERT(false && "invalid type");
  18816. }
  18817. }
  18818. // write tensor infos
  18819. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18820. struct gguf_tensor_info * info = &ctx->infos[i];
  18821. gguf_bwrite_str(buf, &info->name);
  18822. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18823. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18824. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18825. }
  18826. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18827. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18828. }
  18829. // we require the data section to be aligned, so take into account any padding
  18830. {
  18831. const size_t offset = buf->offset;
  18832. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18833. if (offset_pad != offset) {
  18834. uint8_t pad = 0;
  18835. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18836. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18837. }
  18838. }
  18839. }
  18840. if (only_meta) {
  18841. return;
  18842. }
  18843. size_t offset = 0;
  18844. // write tensor data
  18845. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18846. struct gguf_tensor_info * info = &ctx->infos[i];
  18847. const size_t size = info->size;
  18848. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18849. gguf_bwrite_el(buf, info->data, size);
  18850. if (size_pad != size) {
  18851. uint8_t pad = 0;
  18852. for (size_t j = 0; j < size_pad - size; ++j) {
  18853. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18854. }
  18855. }
  18856. GGML_ASSERT(offset == info->offset);
  18857. offset += size_pad;
  18858. }
  18859. }
  18860. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18861. FILE * file = ggml_fopen(fname, "wb");
  18862. if (!file) {
  18863. GGML_ASSERT(false && "failed to open file for writing");
  18864. }
  18865. struct gguf_buf buf = gguf_buf_init(16*1024);
  18866. gguf_write_to_buf(ctx, &buf, only_meta);
  18867. fwrite(buf.data, 1, buf.offset, file);
  18868. gguf_buf_free(buf);
  18869. fclose(file);
  18870. }
  18871. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18872. // no allocs - only compute size
  18873. struct gguf_buf buf = gguf_buf_init(0);
  18874. gguf_write_to_buf(ctx, &buf, true);
  18875. return buf.offset;
  18876. }
  18877. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18878. struct gguf_buf buf = gguf_buf_init(16*1024);
  18879. gguf_write_to_buf(ctx, &buf, true);
  18880. memcpy(data, buf.data, buf.offset);
  18881. gguf_buf_free(buf);
  18882. }
  18883. ////////////////////////////////////////////////////////////////////////////////
  18884. int ggml_cpu_has_avx(void) {
  18885. #if defined(__AVX__)
  18886. return 1;
  18887. #else
  18888. return 0;
  18889. #endif
  18890. }
  18891. int ggml_cpu_has_avx_vnni(void) {
  18892. #if defined(__AVXVNNI__)
  18893. return 1;
  18894. #else
  18895. return 0;
  18896. #endif
  18897. }
  18898. int ggml_cpu_has_avx2(void) {
  18899. #if defined(__AVX2__)
  18900. return 1;
  18901. #else
  18902. return 0;
  18903. #endif
  18904. }
  18905. int ggml_cpu_has_avx512(void) {
  18906. #if defined(__AVX512F__)
  18907. return 1;
  18908. #else
  18909. return 0;
  18910. #endif
  18911. }
  18912. int ggml_cpu_has_avx512_vbmi(void) {
  18913. #if defined(__AVX512VBMI__)
  18914. return 1;
  18915. #else
  18916. return 0;
  18917. #endif
  18918. }
  18919. int ggml_cpu_has_avx512_vnni(void) {
  18920. #if defined(__AVX512VNNI__)
  18921. return 1;
  18922. #else
  18923. return 0;
  18924. #endif
  18925. }
  18926. int ggml_cpu_has_fma(void) {
  18927. #if defined(__FMA__)
  18928. return 1;
  18929. #else
  18930. return 0;
  18931. #endif
  18932. }
  18933. int ggml_cpu_has_neon(void) {
  18934. #if defined(__ARM_NEON)
  18935. return 1;
  18936. #else
  18937. return 0;
  18938. #endif
  18939. }
  18940. int ggml_cpu_has_arm_fma(void) {
  18941. #if defined(__ARM_FEATURE_FMA)
  18942. return 1;
  18943. #else
  18944. return 0;
  18945. #endif
  18946. }
  18947. int ggml_cpu_has_metal(void) {
  18948. #if defined(GGML_USE_METAL)
  18949. return 1;
  18950. #else
  18951. return 0;
  18952. #endif
  18953. }
  18954. int ggml_cpu_has_f16c(void) {
  18955. #if defined(__F16C__)
  18956. return 1;
  18957. #else
  18958. return 0;
  18959. #endif
  18960. }
  18961. int ggml_cpu_has_fp16_va(void) {
  18962. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18963. return 1;
  18964. #else
  18965. return 0;
  18966. #endif
  18967. }
  18968. int ggml_cpu_has_wasm_simd(void) {
  18969. #if defined(__wasm_simd128__)
  18970. return 1;
  18971. #else
  18972. return 0;
  18973. #endif
  18974. }
  18975. int ggml_cpu_has_blas(void) {
  18976. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18977. return 1;
  18978. #else
  18979. return 0;
  18980. #endif
  18981. }
  18982. int ggml_cpu_has_cuda(void) {
  18983. #if defined(GGML_USE_CUDA)
  18984. return 1;
  18985. #else
  18986. return 0;
  18987. #endif
  18988. }
  18989. int ggml_cpu_has_clblast(void) {
  18990. #if defined(GGML_USE_CLBLAST)
  18991. return 1;
  18992. #else
  18993. return 0;
  18994. #endif
  18995. }
  18996. int ggml_cpu_has_vulkan(void) {
  18997. #if defined(GGML_USE_VULKAN)
  18998. return 1;
  18999. #else
  19000. return 0;
  19001. #endif
  19002. }
  19003. int ggml_cpu_has_kompute(void) {
  19004. #if defined(GGML_USE_KOMPUTE)
  19005. return 1;
  19006. #else
  19007. return 0;
  19008. #endif
  19009. }
  19010. int ggml_cpu_has_sycl(void) {
  19011. #if defined(GGML_USE_SYCL)
  19012. return 1;
  19013. #else
  19014. return 0;
  19015. #endif
  19016. }
  19017. int ggml_cpu_has_gpublas(void) {
  19018. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  19019. ggml_cpu_has_sycl();
  19020. }
  19021. int ggml_cpu_has_sse3(void) {
  19022. #if defined(__SSE3__)
  19023. return 1;
  19024. #else
  19025. return 0;
  19026. #endif
  19027. }
  19028. int ggml_cpu_has_ssse3(void) {
  19029. #if defined(__SSSE3__)
  19030. return 1;
  19031. #else
  19032. return 0;
  19033. #endif
  19034. }
  19035. int ggml_cpu_has_vsx(void) {
  19036. #if defined(__POWER9_VECTOR__)
  19037. return 1;
  19038. #else
  19039. return 0;
  19040. #endif
  19041. }
  19042. int ggml_cpu_has_matmul_int8(void) {
  19043. #if defined(__ARM_FEATURE_MATMUL_INT8)
  19044. return 1;
  19045. #else
  19046. return 0;
  19047. #endif
  19048. }
  19049. ////////////////////////////////////////////////////////////////////////////////