llama.cpp 717 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUDA
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <future>
  72. #include <initializer_list>
  73. #include <locale>
  74. #include <map>
  75. #include <memory>
  76. #include <mutex>
  77. #include <numeric>
  78. #include <queue>
  79. #include <random>
  80. #include <regex>
  81. #include <set>
  82. #include <sstream>
  83. #include <thread>
  84. #include <type_traits>
  85. #include <unordered_map>
  86. #if defined(_MSC_VER)
  87. #pragma warning(disable: 4244 4267) // possible loss of data
  88. #endif
  89. #ifdef __GNUC__
  90. #ifdef __MINGW32__
  91. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  92. #else
  93. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  94. #endif
  95. #else
  96. #define LLAMA_ATTRIBUTE_FORMAT(...)
  97. #endif
  98. #define LLAMA_MAX_NODES 8192
  99. #define LLAMA_MAX_EXPERTS 60
  100. //
  101. // logging
  102. //
  103. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  104. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  105. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  106. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  107. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  108. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  109. //
  110. // helpers
  111. //
  112. static size_t utf8_len(char src) {
  113. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  114. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  115. return lookup[highbits];
  116. }
  117. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  118. std::string result;
  119. for (size_t pos = 0; ; pos += search.length()) {
  120. auto new_pos = s.find(search, pos);
  121. if (new_pos == std::string::npos) {
  122. result += s.substr(pos, s.size() - pos);
  123. break;
  124. }
  125. result += s.substr(pos, new_pos - pos) + replace;
  126. pos = new_pos;
  127. }
  128. s = std::move(result);
  129. }
  130. static bool is_float_close(float a, float b, float abs_tol) {
  131. // Check for non-negative tolerance
  132. if (abs_tol < 0.0) {
  133. throw std::invalid_argument("Tolerance must be non-negative");
  134. }
  135. // Exact equality check
  136. if (a == b) {
  137. return true;
  138. }
  139. // Check for infinities
  140. if (std::isinf(a) || std::isinf(b)) {
  141. return false;
  142. }
  143. // Regular comparison using the provided absolute tolerance
  144. return std::fabs(b - a) <= abs_tol;
  145. }
  146. static void zeros(std::ofstream & file, size_t n) {
  147. char zero = 0;
  148. for (size_t i = 0; i < n; ++i) {
  149. file.write(&zero, 1);
  150. }
  151. }
  152. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  153. static std::string format(const char * fmt, ...) {
  154. va_list ap;
  155. va_list ap2;
  156. va_start(ap, fmt);
  157. va_copy(ap2, ap);
  158. int size = vsnprintf(NULL, 0, fmt, ap);
  159. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  160. std::vector<char> buf(size + 1);
  161. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  162. GGML_ASSERT(size2 == size);
  163. va_end(ap2);
  164. va_end(ap);
  165. return std::string(buf.data(), size);
  166. }
  167. //
  168. // gguf constants (sync with gguf.py)
  169. //
  170. enum llm_arch {
  171. LLM_ARCH_LLAMA,
  172. LLM_ARCH_FALCON,
  173. LLM_ARCH_BAICHUAN,
  174. LLM_ARCH_GROK,
  175. LLM_ARCH_GPT2,
  176. LLM_ARCH_GPTJ,
  177. LLM_ARCH_GPTNEOX,
  178. LLM_ARCH_MPT,
  179. LLM_ARCH_STARCODER,
  180. LLM_ARCH_PERSIMMON,
  181. LLM_ARCH_REFACT,
  182. LLM_ARCH_BERT,
  183. LLM_ARCH_NOMIC_BERT,
  184. LLM_ARCH_BLOOM,
  185. LLM_ARCH_STABLELM,
  186. LLM_ARCH_QWEN,
  187. LLM_ARCH_QWEN2,
  188. LLM_ARCH_QWEN2MOE,
  189. LLM_ARCH_PHI2,
  190. LLM_ARCH_PHI3,
  191. LLM_ARCH_PLAMO,
  192. LLM_ARCH_CODESHELL,
  193. LLM_ARCH_ORION,
  194. LLM_ARCH_INTERNLM2,
  195. LLM_ARCH_MINICPM,
  196. LLM_ARCH_GEMMA,
  197. LLM_ARCH_STARCODER2,
  198. LLM_ARCH_MAMBA,
  199. LLM_ARCH_XVERSE,
  200. LLM_ARCH_COMMAND_R,
  201. LLM_ARCH_DBRX,
  202. LLM_ARCH_OLMO,
  203. LLM_ARCH_UNKNOWN,
  204. };
  205. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  206. { LLM_ARCH_LLAMA, "llama" },
  207. { LLM_ARCH_FALCON, "falcon" },
  208. { LLM_ARCH_GROK, "grok" },
  209. { LLM_ARCH_GPT2, "gpt2" },
  210. { LLM_ARCH_GPTJ, "gptj" },
  211. { LLM_ARCH_GPTNEOX, "gptneox" },
  212. { LLM_ARCH_MPT, "mpt" },
  213. { LLM_ARCH_BAICHUAN, "baichuan" },
  214. { LLM_ARCH_STARCODER, "starcoder" },
  215. { LLM_ARCH_PERSIMMON, "persimmon" },
  216. { LLM_ARCH_REFACT, "refact" },
  217. { LLM_ARCH_BERT, "bert" },
  218. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  219. { LLM_ARCH_BLOOM, "bloom" },
  220. { LLM_ARCH_STABLELM, "stablelm" },
  221. { LLM_ARCH_QWEN, "qwen" },
  222. { LLM_ARCH_QWEN2, "qwen2" },
  223. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  224. { LLM_ARCH_PHI2, "phi2" },
  225. { LLM_ARCH_PHI3, "phi3" },
  226. { LLM_ARCH_PLAMO, "plamo" },
  227. { LLM_ARCH_CODESHELL, "codeshell" },
  228. { LLM_ARCH_ORION, "orion" },
  229. { LLM_ARCH_INTERNLM2, "internlm2" },
  230. { LLM_ARCH_MINICPM, "minicpm" },
  231. { LLM_ARCH_GEMMA, "gemma" },
  232. { LLM_ARCH_STARCODER2, "starcoder2" },
  233. { LLM_ARCH_MAMBA, "mamba" },
  234. { LLM_ARCH_XVERSE, "xverse" },
  235. { LLM_ARCH_COMMAND_R, "command-r" },
  236. { LLM_ARCH_DBRX, "dbrx" },
  237. { LLM_ARCH_OLMO, "olmo" },
  238. { LLM_ARCH_UNKNOWN, "(unknown)" },
  239. };
  240. enum llm_kv {
  241. LLM_KV_GENERAL_ARCHITECTURE,
  242. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  243. LLM_KV_GENERAL_ALIGNMENT,
  244. LLM_KV_GENERAL_NAME,
  245. LLM_KV_GENERAL_AUTHOR,
  246. LLM_KV_GENERAL_VERSION,
  247. LLM_KV_GENERAL_URL,
  248. LLM_KV_GENERAL_DESCRIPTION,
  249. LLM_KV_GENERAL_LICENSE,
  250. LLM_KV_GENERAL_SOURCE_URL,
  251. LLM_KV_GENERAL_SOURCE_HF_REPO,
  252. LLM_KV_VOCAB_SIZE,
  253. LLM_KV_CONTEXT_LENGTH,
  254. LLM_KV_EMBEDDING_LENGTH,
  255. LLM_KV_BLOCK_COUNT,
  256. LLM_KV_FEED_FORWARD_LENGTH,
  257. LLM_KV_USE_PARALLEL_RESIDUAL,
  258. LLM_KV_TENSOR_DATA_LAYOUT,
  259. LLM_KV_EXPERT_COUNT,
  260. LLM_KV_EXPERT_USED_COUNT,
  261. LLM_KV_POOLING_TYPE,
  262. LLM_KV_LOGIT_SCALE,
  263. LLM_KV_ATTENTION_HEAD_COUNT,
  264. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  265. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  266. LLM_KV_ATTENTION_CLAMP_KQV,
  267. LLM_KV_ATTENTION_KEY_LENGTH,
  268. LLM_KV_ATTENTION_VALUE_LENGTH,
  269. LLM_KV_ATTENTION_LAYERNORM_EPS,
  270. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  271. LLM_KV_ATTENTION_CAUSAL,
  272. LLM_KV_ROPE_DIMENSION_COUNT,
  273. LLM_KV_ROPE_FREQ_BASE,
  274. LLM_KV_ROPE_SCALE_LINEAR,
  275. LLM_KV_ROPE_SCALING_TYPE,
  276. LLM_KV_ROPE_SCALING_FACTOR,
  277. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  278. LLM_KV_ROPE_SCALING_FINETUNED,
  279. LLM_KV_SPLIT_NO,
  280. LLM_KV_SPLIT_COUNT,
  281. LLM_KV_SPLIT_TENSORS_COUNT,
  282. LLM_KV_SSM_INNER_SIZE,
  283. LLM_KV_SSM_CONV_KERNEL,
  284. LLM_KV_SSM_STATE_SIZE,
  285. LLM_KV_SSM_TIME_STEP_RANK,
  286. LLM_KV_TOKENIZER_MODEL,
  287. LLM_KV_TOKENIZER_PRE,
  288. LLM_KV_TOKENIZER_LIST,
  289. LLM_KV_TOKENIZER_TOKEN_TYPE,
  290. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  291. LLM_KV_TOKENIZER_SCORES,
  292. LLM_KV_TOKENIZER_MERGES,
  293. LLM_KV_TOKENIZER_BOS_ID,
  294. LLM_KV_TOKENIZER_EOS_ID,
  295. LLM_KV_TOKENIZER_UNK_ID,
  296. LLM_KV_TOKENIZER_SEP_ID,
  297. LLM_KV_TOKENIZER_PAD_ID,
  298. LLM_KV_TOKENIZER_CLS_ID,
  299. LLM_KV_TOKENIZER_MASK_ID,
  300. LLM_KV_TOKENIZER_ADD_BOS,
  301. LLM_KV_TOKENIZER_ADD_EOS,
  302. LLM_KV_TOKENIZER_ADD_PREFIX,
  303. LLM_KV_TOKENIZER_HF_JSON,
  304. LLM_KV_TOKENIZER_RWKV,
  305. LLM_KV_TOKENIZER_PREFIX_ID,
  306. LLM_KV_TOKENIZER_SUFFIX_ID,
  307. LLM_KV_TOKENIZER_MIDDLE_ID,
  308. LLM_KV_TOKENIZER_EOT_ID,
  309. };
  310. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  311. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  312. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  313. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  314. { LLM_KV_GENERAL_NAME, "general.name" },
  315. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  316. { LLM_KV_GENERAL_VERSION, "general.version" },
  317. { LLM_KV_GENERAL_URL, "general.url" },
  318. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  319. { LLM_KV_GENERAL_LICENSE, "general.license" },
  320. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  321. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  322. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  323. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  324. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  325. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  326. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  327. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  328. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  329. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  330. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  331. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  332. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  333. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  334. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  335. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  336. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  337. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  338. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  339. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  340. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  341. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  342. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  343. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  344. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  345. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  346. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  347. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  348. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  349. { LLM_KV_SPLIT_NO, "split.no" },
  350. { LLM_KV_SPLIT_COUNT, "split.count" },
  351. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  352. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  353. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  354. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  355. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  356. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  357. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  358. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  359. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  360. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  361. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  362. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  363. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  364. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  365. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  366. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  367. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  368. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  369. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  370. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  371. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  372. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  373. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  374. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  375. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  376. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  377. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  378. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  379. };
  380. struct LLM_KV {
  381. LLM_KV(llm_arch arch) : arch(arch) {}
  382. llm_arch arch;
  383. std::string operator()(llm_kv kv) const {
  384. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  385. }
  386. };
  387. enum llm_tensor {
  388. LLM_TENSOR_TOKEN_EMBD,
  389. LLM_TENSOR_TOKEN_EMBD_NORM,
  390. LLM_TENSOR_TOKEN_TYPES,
  391. LLM_TENSOR_POS_EMBD,
  392. LLM_TENSOR_OUTPUT,
  393. LLM_TENSOR_OUTPUT_NORM,
  394. LLM_TENSOR_ROPE_FREQS,
  395. LLM_TENSOR_ATTN_Q,
  396. LLM_TENSOR_ATTN_K,
  397. LLM_TENSOR_ATTN_V,
  398. LLM_TENSOR_ATTN_QKV,
  399. LLM_TENSOR_ATTN_OUT,
  400. LLM_TENSOR_ATTN_NORM,
  401. LLM_TENSOR_ATTN_NORM_2,
  402. LLM_TENSOR_ATTN_OUT_NORM,
  403. LLM_TENSOR_ATTN_ROT_EMBD,
  404. LLM_TENSOR_FFN_GATE_INP,
  405. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  406. LLM_TENSOR_FFN_NORM,
  407. LLM_TENSOR_FFN_GATE,
  408. LLM_TENSOR_FFN_DOWN,
  409. LLM_TENSOR_FFN_UP,
  410. LLM_TENSOR_FFN_ACT,
  411. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  412. LLM_TENSOR_FFN_GATE_EXP,
  413. LLM_TENSOR_FFN_UP_EXP,
  414. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  415. LLM_TENSOR_FFN_GATE_EXPS,
  416. LLM_TENSOR_FFN_UP_EXPS,
  417. LLM_TENSOR_FFN_DOWN_SHEXP,
  418. LLM_TENSOR_FFN_GATE_SHEXP,
  419. LLM_TENSOR_FFN_UP_SHEXP,
  420. LLM_TENSOR_ATTN_Q_NORM,
  421. LLM_TENSOR_ATTN_K_NORM,
  422. LLM_TENSOR_LAYER_OUT_NORM,
  423. LLM_TENSOR_SSM_IN,
  424. LLM_TENSOR_SSM_CONV1D,
  425. LLM_TENSOR_SSM_X,
  426. LLM_TENSOR_SSM_DT,
  427. LLM_TENSOR_SSM_A,
  428. LLM_TENSOR_SSM_D,
  429. LLM_TENSOR_SSM_OUT,
  430. };
  431. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  432. {
  433. LLM_ARCH_LLAMA,
  434. {
  435. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  436. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  437. { LLM_TENSOR_OUTPUT, "output" },
  438. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  439. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  440. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  441. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  442. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  443. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  444. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  445. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  446. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  447. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  448. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  449. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  450. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  451. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  452. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  453. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  454. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  455. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  456. },
  457. },
  458. {
  459. LLM_ARCH_BAICHUAN,
  460. {
  461. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  462. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  463. { LLM_TENSOR_OUTPUT, "output" },
  464. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  465. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  466. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  467. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  468. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  469. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  470. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  471. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  472. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  473. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  474. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  475. },
  476. },
  477. {
  478. LLM_ARCH_FALCON,
  479. {
  480. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  481. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  482. { LLM_TENSOR_OUTPUT, "output" },
  483. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  484. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  485. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  486. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  487. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  488. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  489. },
  490. },
  491. {
  492. LLM_ARCH_GROK,
  493. {
  494. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  495. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  496. { LLM_TENSOR_OUTPUT, "output" },
  497. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  498. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  499. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  500. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  501. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  502. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  503. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  504. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  505. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  506. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  507. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  508. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  509. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  510. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  511. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  512. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  513. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  514. },
  515. },
  516. {
  517. LLM_ARCH_GPT2,
  518. {
  519. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  520. { LLM_TENSOR_POS_EMBD, "position_embd" },
  521. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  522. { LLM_TENSOR_OUTPUT, "output" },
  523. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  524. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  525. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  526. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  527. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  528. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  529. },
  530. },
  531. {
  532. LLM_ARCH_GPTJ,
  533. {
  534. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  535. },
  536. },
  537. {
  538. LLM_ARCH_GPTNEOX,
  539. {
  540. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  541. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  542. { LLM_TENSOR_OUTPUT, "output" },
  543. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  544. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  545. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  546. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  547. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  548. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  549. },
  550. },
  551. {
  552. LLM_ARCH_PERSIMMON,
  553. {
  554. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  555. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  556. { LLM_TENSOR_OUTPUT, "output"},
  557. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  558. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  559. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  560. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  561. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  562. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  563. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  564. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  565. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  566. },
  567. },
  568. {
  569. LLM_ARCH_MPT,
  570. {
  571. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  572. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  573. { LLM_TENSOR_OUTPUT, "output"},
  574. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  575. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  576. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  577. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  578. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  579. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  580. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  581. { LLM_TENSOR_POS_EMBD, "position_embd" },
  582. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  583. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  584. },
  585. },
  586. {
  587. LLM_ARCH_STARCODER,
  588. {
  589. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  590. { LLM_TENSOR_POS_EMBD, "position_embd" },
  591. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  592. { LLM_TENSOR_OUTPUT, "output" },
  593. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  594. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  595. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  596. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  597. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  598. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  599. },
  600. },
  601. {
  602. LLM_ARCH_REFACT,
  603. {
  604. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  605. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  606. { LLM_TENSOR_OUTPUT, "output" },
  607. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  608. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  609. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  610. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  611. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  612. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  613. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  614. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  615. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  616. },
  617. },
  618. {
  619. LLM_ARCH_BERT,
  620. {
  621. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  622. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  623. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  624. { LLM_TENSOR_POS_EMBD, "position_embd" },
  625. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  626. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  627. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  628. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  629. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  630. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  631. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  632. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  633. },
  634. },
  635. {
  636. LLM_ARCH_NOMIC_BERT,
  637. {
  638. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  639. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  640. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  641. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  642. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  643. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  644. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  645. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  646. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  647. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  648. },
  649. },
  650. {
  651. LLM_ARCH_BLOOM,
  652. {
  653. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  654. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  655. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  656. { LLM_TENSOR_OUTPUT, "output" },
  657. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  658. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  659. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  660. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  661. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  662. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  663. },
  664. },
  665. {
  666. LLM_ARCH_STABLELM,
  667. {
  668. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  669. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  670. { LLM_TENSOR_OUTPUT, "output" },
  671. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  672. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  673. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  674. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  675. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  676. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  677. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  678. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  679. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  680. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  681. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  682. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  683. },
  684. },
  685. {
  686. LLM_ARCH_QWEN,
  687. {
  688. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  689. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  690. { LLM_TENSOR_OUTPUT, "output" },
  691. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  692. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  693. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  694. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  695. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  696. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  697. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  698. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  699. },
  700. },
  701. {
  702. LLM_ARCH_QWEN2,
  703. {
  704. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  705. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  706. { LLM_TENSOR_OUTPUT, "output" },
  707. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  708. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  709. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  710. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  711. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  712. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  713. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  714. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  715. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  716. },
  717. },
  718. {
  719. LLM_ARCH_QWEN2MOE,
  720. {
  721. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  722. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  723. { LLM_TENSOR_OUTPUT, "output" },
  724. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  725. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  726. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  727. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  728. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  729. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  730. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  731. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  732. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  733. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  734. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  735. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  736. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  737. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  738. },
  739. },
  740. {
  741. LLM_ARCH_PHI2,
  742. {
  743. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  744. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  745. { LLM_TENSOR_OUTPUT, "output" },
  746. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  747. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  748. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  749. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  750. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  751. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  752. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  753. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  754. },
  755. },
  756. {
  757. LLM_ARCH_PHI3,
  758. {
  759. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  760. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  761. { LLM_TENSOR_OUTPUT, "output" },
  762. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  763. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  764. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  765. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  766. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  767. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  768. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  769. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  770. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  771. },
  772. },
  773. {
  774. LLM_ARCH_PLAMO,
  775. {
  776. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  777. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  778. { LLM_TENSOR_OUTPUT, "output" },
  779. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  780. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  781. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  782. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  783. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  784. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  785. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  786. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  787. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  788. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  789. },
  790. },
  791. {
  792. LLM_ARCH_CODESHELL,
  793. {
  794. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  795. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  796. { LLM_TENSOR_OUTPUT, "output" },
  797. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  798. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  799. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  800. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  801. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  802. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  803. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  804. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  805. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  806. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  807. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  808. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  809. },
  810. },
  811. {
  812. LLM_ARCH_ORION,
  813. {
  814. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  815. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  816. { LLM_TENSOR_OUTPUT, "output" },
  817. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  818. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  819. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  820. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  821. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  822. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  823. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  824. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  825. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  826. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  827. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  828. },
  829. },
  830. {
  831. LLM_ARCH_INTERNLM2,
  832. {
  833. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  834. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  835. { LLM_TENSOR_OUTPUT, "output" },
  836. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  837. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  838. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  839. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  840. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  841. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  842. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  843. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  844. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  845. },
  846. },
  847. {
  848. LLM_ARCH_MINICPM,
  849. {
  850. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  851. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  852. { LLM_TENSOR_OUTPUT, "output" },
  853. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  854. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  855. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  856. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  857. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  858. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  859. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  860. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  861. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  862. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  863. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  864. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  865. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  866. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  867. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  868. },
  869. },
  870. {
  871. LLM_ARCH_GEMMA,
  872. {
  873. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  874. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  875. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  876. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  877. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  878. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  879. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  880. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  881. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  882. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  883. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  884. },
  885. },
  886. {
  887. LLM_ARCH_STARCODER2,
  888. {
  889. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  890. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  891. { LLM_TENSOR_OUTPUT, "output" },
  892. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  893. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  894. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  895. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  896. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  897. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  898. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  899. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  900. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  901. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  902. },
  903. },
  904. {
  905. LLM_ARCH_MAMBA,
  906. {
  907. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  908. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  909. { LLM_TENSOR_OUTPUT, "output" },
  910. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  911. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  912. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  913. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  914. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  915. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  916. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  917. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  918. },
  919. },
  920. {
  921. LLM_ARCH_XVERSE,
  922. {
  923. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  924. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  925. { LLM_TENSOR_OUTPUT, "output" },
  926. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  927. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  928. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  929. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  930. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  931. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  932. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  933. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  934. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  935. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  936. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  937. },
  938. },
  939. {
  940. LLM_ARCH_COMMAND_R,
  941. {
  942. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  943. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  944. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  945. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  946. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  947. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  948. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  949. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  950. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  951. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  952. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  953. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  954. },
  955. },
  956. {
  957. LLM_ARCH_DBRX,
  958. {
  959. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  960. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  961. { LLM_TENSOR_OUTPUT, "output" },
  962. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  963. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  964. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  965. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  966. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  967. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  968. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  969. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  970. },
  971. },
  972. {
  973. LLM_ARCH_OLMO,
  974. {
  975. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  976. { LLM_TENSOR_OUTPUT, "output" },
  977. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  978. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  979. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  980. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  981. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  982. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  983. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  984. },
  985. },
  986. {
  987. LLM_ARCH_UNKNOWN,
  988. {
  989. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  990. },
  991. },
  992. };
  993. static llm_arch llm_arch_from_string(const std::string & name) {
  994. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  995. if (kv.second == name) {
  996. return kv.first;
  997. }
  998. }
  999. return LLM_ARCH_UNKNOWN;
  1000. }
  1001. // helper to handle gguf constants
  1002. // usage:
  1003. //
  1004. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1005. //
  1006. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1007. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1008. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1009. //
  1010. struct LLM_TN {
  1011. LLM_TN(llm_arch arch) : arch(arch) {}
  1012. llm_arch arch;
  1013. std::string operator()(llm_tensor tensor) const {
  1014. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1015. return "__missing__";
  1016. }
  1017. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1018. }
  1019. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1020. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1021. return "__missing__";
  1022. }
  1023. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1024. }
  1025. std::string operator()(llm_tensor tensor, int bid) const {
  1026. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1027. return "__missing__";
  1028. }
  1029. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1030. }
  1031. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1032. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1033. return "__missing__";
  1034. }
  1035. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1036. }
  1037. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1038. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1039. return "__missing__";
  1040. }
  1041. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1042. }
  1043. };
  1044. //
  1045. // gguf helpers
  1046. //
  1047. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1048. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1049. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1050. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1051. };
  1052. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1053. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1054. if (kv.second == name) {
  1055. return (llama_rope_scaling_type) kv.first;
  1056. }
  1057. }
  1058. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1059. }
  1060. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1061. switch (type) {
  1062. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1063. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1064. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1065. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1066. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1067. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1068. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1069. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1070. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1071. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1072. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1073. default: return format("unknown type %d", type);
  1074. }
  1075. }
  1076. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1077. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1078. switch (type) {
  1079. case GGUF_TYPE_STRING:
  1080. return gguf_get_val_str(ctx_gguf, i);
  1081. case GGUF_TYPE_ARRAY:
  1082. {
  1083. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1084. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1085. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1086. std::stringstream ss;
  1087. ss << "[";
  1088. for (int j = 0; j < arr_n; j++) {
  1089. if (arr_type == GGUF_TYPE_STRING) {
  1090. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1091. // escape quotes
  1092. replace_all(val, "\\", "\\\\");
  1093. replace_all(val, "\"", "\\\"");
  1094. ss << '"' << val << '"';
  1095. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1096. ss << "???";
  1097. } else {
  1098. ss << gguf_data_to_str(arr_type, data, j);
  1099. }
  1100. if (j < arr_n - 1) {
  1101. ss << ", ";
  1102. }
  1103. }
  1104. ss << "]";
  1105. return ss.str();
  1106. }
  1107. default:
  1108. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1109. }
  1110. }
  1111. //
  1112. // llama helpers
  1113. //
  1114. #if defined(_WIN32)
  1115. static std::string llama_format_win_err(DWORD err) {
  1116. LPSTR buf;
  1117. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1118. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1119. if (!size) {
  1120. return "FormatMessageA failed";
  1121. }
  1122. std::string ret(buf, size);
  1123. LocalFree(buf);
  1124. return ret;
  1125. }
  1126. #endif
  1127. template <typename T>
  1128. struct no_init {
  1129. T value;
  1130. no_init() { /* do nothing */ }
  1131. };
  1132. struct llama_file {
  1133. // use FILE * so we don't have to re-open the file to mmap
  1134. FILE * fp;
  1135. size_t size;
  1136. llama_file(const char * fname, const char * mode) {
  1137. fp = ggml_fopen(fname, mode);
  1138. if (fp == NULL) {
  1139. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1140. }
  1141. seek(0, SEEK_END);
  1142. size = tell();
  1143. seek(0, SEEK_SET);
  1144. }
  1145. size_t tell() const {
  1146. #ifdef _WIN32
  1147. __int64 ret = _ftelli64(fp);
  1148. #else
  1149. long ret = std::ftell(fp);
  1150. #endif
  1151. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1152. return (size_t) ret;
  1153. }
  1154. void seek(size_t offset, int whence) const {
  1155. #ifdef _WIN32
  1156. int ret = _fseeki64(fp, (__int64) offset, whence);
  1157. #else
  1158. int ret = std::fseek(fp, (long) offset, whence);
  1159. #endif
  1160. GGML_ASSERT(ret == 0); // same
  1161. }
  1162. void read_raw(void * ptr, size_t len) const {
  1163. if (len == 0) {
  1164. return;
  1165. }
  1166. errno = 0;
  1167. std::size_t ret = std::fread(ptr, len, 1, fp);
  1168. if (ferror(fp)) {
  1169. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1170. }
  1171. if (ret != 1) {
  1172. throw std::runtime_error("unexpectedly reached end of file");
  1173. }
  1174. }
  1175. uint32_t read_u32() const {
  1176. uint32_t ret;
  1177. read_raw(&ret, sizeof(ret));
  1178. return ret;
  1179. }
  1180. void write_raw(const void * ptr, size_t len) const {
  1181. if (len == 0) {
  1182. return;
  1183. }
  1184. errno = 0;
  1185. size_t ret = std::fwrite(ptr, len, 1, fp);
  1186. if (ret != 1) {
  1187. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1188. }
  1189. }
  1190. void write_u32(std::uint32_t val) const {
  1191. write_raw(&val, sizeof(val));
  1192. }
  1193. ~llama_file() {
  1194. if (fp) {
  1195. std::fclose(fp);
  1196. }
  1197. }
  1198. };
  1199. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1200. struct llama_mmap {
  1201. void * addr;
  1202. size_t size;
  1203. llama_mmap(const llama_mmap &) = delete;
  1204. #ifdef _POSIX_MAPPED_FILES
  1205. static constexpr bool SUPPORTED = true;
  1206. // list of mapped fragments (first_offset, last_offset)
  1207. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1208. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1209. size = file->size;
  1210. int fd = fileno(file->fp);
  1211. int flags = MAP_SHARED;
  1212. // prefetch/readahead impairs performance on NUMA systems
  1213. if (numa) { prefetch = 0; }
  1214. #ifdef __linux__
  1215. // advise the kernel to read the file sequentially (increases readahead)
  1216. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1217. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1218. strerror(errno));
  1219. }
  1220. if (prefetch) { flags |= MAP_POPULATE; }
  1221. #endif
  1222. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1223. if (addr == MAP_FAILED) { // NOLINT
  1224. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1225. }
  1226. if (prefetch > 0) {
  1227. // advise the kernel to preload the mapped memory
  1228. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1229. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1230. strerror(errno));
  1231. }
  1232. }
  1233. if (numa) {
  1234. // advise the kernel not to use readahead
  1235. // (because the next page might not belong on the same node)
  1236. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1237. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1238. strerror(errno));
  1239. }
  1240. }
  1241. // initialize list of mapped_fragments
  1242. mapped_fragments.emplace_back(0, file->size);
  1243. }
  1244. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1245. // align first to the next page
  1246. size_t offset_in_page = *first & (page_size - 1);
  1247. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1248. *first += offset_to_page;
  1249. // align last to the previous page
  1250. *last = *last & ~(page_size - 1);
  1251. if (*last <= *first) {
  1252. *last = *first;
  1253. }
  1254. }
  1255. // partially unmap the file in the range [first, last)
  1256. void unmap_fragment(size_t first, size_t last) {
  1257. // note: this function must not be called multiple times with overlapping ranges
  1258. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1259. int page_size = sysconf(_SC_PAGESIZE);
  1260. align_range(&first, &last, page_size);
  1261. size_t len = last - first;
  1262. if (len == 0) {
  1263. return;
  1264. }
  1265. GGML_ASSERT(first % page_size == 0);
  1266. GGML_ASSERT(last % page_size == 0);
  1267. GGML_ASSERT(last > first);
  1268. void * next_page_start = (uint8_t *) addr + first;
  1269. // unmap the range
  1270. if (munmap(next_page_start, len)) {
  1271. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1272. }
  1273. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1274. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1275. for (const auto & frag : mapped_fragments) {
  1276. if (frag.first < first && frag.second > last) {
  1277. // the range is in the middle of the fragment, split it
  1278. new_mapped_fragments.emplace_back(frag.first, first);
  1279. new_mapped_fragments.emplace_back(last, frag.second);
  1280. } else if (frag.first < first && frag.second > first) {
  1281. // the range starts in the middle of the fragment
  1282. new_mapped_fragments.emplace_back(frag.first, first);
  1283. } else if (frag.first < last && frag.second > last) {
  1284. // the range ends in the middle of the fragment
  1285. new_mapped_fragments.emplace_back(last, frag.second);
  1286. } else if (frag.first >= first && frag.second <= last) {
  1287. // the range covers the entire fragment
  1288. } else {
  1289. // the range is outside the fragment
  1290. new_mapped_fragments.push_back(frag);
  1291. }
  1292. }
  1293. mapped_fragments = std::move(new_mapped_fragments);
  1294. }
  1295. ~llama_mmap() {
  1296. for (const auto & frag : mapped_fragments) {
  1297. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1298. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1299. }
  1300. }
  1301. }
  1302. #elif defined(_WIN32)
  1303. static constexpr bool SUPPORTED = true;
  1304. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1305. GGML_UNUSED(numa);
  1306. size = file->size;
  1307. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1308. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1309. if (hMapping == NULL) {
  1310. DWORD error = GetLastError();
  1311. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1312. }
  1313. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1314. DWORD error = GetLastError();
  1315. CloseHandle(hMapping);
  1316. if (addr == NULL) {
  1317. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1318. }
  1319. if (prefetch > 0) {
  1320. #if _WIN32_WINNT >= 0x602
  1321. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1322. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1323. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1324. // may fail on pre-Windows 8 systems
  1325. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1326. if (pPrefetchVirtualMemory) {
  1327. // advise the kernel to preload the mapped memory
  1328. WIN32_MEMORY_RANGE_ENTRY range;
  1329. range.VirtualAddress = addr;
  1330. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1331. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1332. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1333. llama_format_win_err(GetLastError()).c_str());
  1334. }
  1335. }
  1336. #else
  1337. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1338. #endif
  1339. }
  1340. }
  1341. void unmap_fragment(size_t first, size_t last) {
  1342. // not supported
  1343. GGML_UNUSED(first);
  1344. GGML_UNUSED(last);
  1345. }
  1346. ~llama_mmap() {
  1347. if (!UnmapViewOfFile(addr)) {
  1348. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1349. llama_format_win_err(GetLastError()).c_str());
  1350. }
  1351. }
  1352. #else
  1353. static constexpr bool SUPPORTED = false;
  1354. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1355. GGML_UNUSED(file);
  1356. GGML_UNUSED(prefetch);
  1357. GGML_UNUSED(numa);
  1358. throw std::runtime_error("mmap not supported");
  1359. }
  1360. void unmap_fragment(size_t first, size_t last) {
  1361. GGML_UNUSED(first);
  1362. GGML_UNUSED(last);
  1363. throw std::runtime_error("mmap not supported");
  1364. }
  1365. #endif
  1366. };
  1367. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1368. // Represents some region of memory being locked using mlock or VirtualLock;
  1369. // will automatically unlock on destruction.
  1370. struct llama_mlock {
  1371. void * addr = NULL;
  1372. size_t size = 0;
  1373. bool failed_already = false;
  1374. llama_mlock() {}
  1375. llama_mlock(const llama_mlock &) = delete;
  1376. ~llama_mlock() {
  1377. if (size) {
  1378. raw_unlock(addr, size);
  1379. }
  1380. }
  1381. void init(void * ptr) {
  1382. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1383. addr = ptr;
  1384. }
  1385. void grow_to(size_t target_size) {
  1386. GGML_ASSERT(addr);
  1387. if (failed_already) {
  1388. return;
  1389. }
  1390. size_t granularity = lock_granularity();
  1391. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1392. if (target_size > size) {
  1393. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1394. size = target_size;
  1395. } else {
  1396. failed_already = true;
  1397. }
  1398. }
  1399. }
  1400. #ifdef _POSIX_MEMLOCK_RANGE
  1401. static constexpr bool SUPPORTED = true;
  1402. static size_t lock_granularity() {
  1403. return (size_t) sysconf(_SC_PAGESIZE);
  1404. }
  1405. #ifdef __APPLE__
  1406. #define MLOCK_SUGGESTION \
  1407. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1408. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1409. #else
  1410. #define MLOCK_SUGGESTION \
  1411. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1412. #endif
  1413. bool raw_lock(const void * addr, size_t size) const {
  1414. if (!mlock(addr, size)) {
  1415. return true;
  1416. }
  1417. char* errmsg = std::strerror(errno);
  1418. bool suggest = (errno == ENOMEM);
  1419. // Check if the resource limit is fine after all
  1420. struct rlimit lock_limit;
  1421. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1422. suggest = false;
  1423. }
  1424. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1425. suggest = false;
  1426. }
  1427. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1428. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1429. return false;
  1430. }
  1431. #undef MLOCK_SUGGESTION
  1432. static void raw_unlock(void * addr, size_t size) {
  1433. if (munlock(addr, size)) {
  1434. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1435. }
  1436. }
  1437. #elif defined(_WIN32)
  1438. static constexpr bool SUPPORTED = true;
  1439. static size_t lock_granularity() {
  1440. SYSTEM_INFO si;
  1441. GetSystemInfo(&si);
  1442. return (size_t) si.dwPageSize;
  1443. }
  1444. bool raw_lock(void * ptr, size_t len) const {
  1445. for (int tries = 1; ; tries++) {
  1446. if (VirtualLock(ptr, len)) {
  1447. return true;
  1448. }
  1449. if (tries == 2) {
  1450. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1451. len, size, llama_format_win_err(GetLastError()).c_str());
  1452. return false;
  1453. }
  1454. // It failed but this was only the first try; increase the working
  1455. // set size and try again.
  1456. SIZE_T min_ws_size, max_ws_size;
  1457. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1458. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1459. llama_format_win_err(GetLastError()).c_str());
  1460. return false;
  1461. }
  1462. // Per MSDN: "The maximum number of pages that a process can lock
  1463. // is equal to the number of pages in its minimum working set minus
  1464. // a small overhead."
  1465. // Hopefully a megabyte is enough overhead:
  1466. size_t increment = len + 1048576;
  1467. // The minimum must be <= the maximum, so we need to increase both:
  1468. min_ws_size += increment;
  1469. max_ws_size += increment;
  1470. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1471. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1472. llama_format_win_err(GetLastError()).c_str());
  1473. return false;
  1474. }
  1475. }
  1476. }
  1477. static void raw_unlock(void * ptr, size_t len) {
  1478. if (!VirtualUnlock(ptr, len)) {
  1479. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1480. llama_format_win_err(GetLastError()).c_str());
  1481. }
  1482. }
  1483. #else
  1484. static constexpr bool SUPPORTED = false;
  1485. static size_t lock_granularity() {
  1486. return (size_t) 65536;
  1487. }
  1488. bool raw_lock(const void * addr, size_t len) const {
  1489. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1490. return false;
  1491. }
  1492. static void raw_unlock(const void * addr, size_t len) {}
  1493. #endif
  1494. };
  1495. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1496. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1497. std::vector<char> result(8, 0);
  1498. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1499. if (n_tokens < 0) {
  1500. result.resize(-n_tokens);
  1501. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1502. GGML_ASSERT(check == -n_tokens);
  1503. }
  1504. else {
  1505. result.resize(n_tokens);
  1506. }
  1507. return std::string(result.data(), result.size());
  1508. }
  1509. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1510. ggml_backend_buffer_type_t buft = nullptr;
  1511. #if defined(GGML_USE_CUDA)
  1512. // host buffers should only be used when data is expected to be copied to/from the GPU
  1513. if (host_buffer) {
  1514. buft = ggml_backend_cuda_host_buffer_type();
  1515. }
  1516. #elif defined(GGML_USE_SYCL)
  1517. if (host_buffer) {
  1518. buft = ggml_backend_sycl_host_buffer_type();
  1519. }
  1520. #elif defined(GGML_USE_CPU_HBM)
  1521. buft = ggml_backend_cpu_hbm_buffer_type();
  1522. #elif defined(GGML_USE_VULKAN)
  1523. if (host_buffer) {
  1524. buft = ggml_backend_vk_host_buffer_type();
  1525. }
  1526. #endif
  1527. if (buft == nullptr) {
  1528. buft = ggml_backend_cpu_buffer_type();
  1529. }
  1530. return buft;
  1531. GGML_UNUSED(host_buffer);
  1532. }
  1533. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1534. ggml_backend_buffer_type_t buft = nullptr;
  1535. #ifdef GGML_USE_METAL
  1536. buft = ggml_backend_metal_buffer_type();
  1537. #elif defined(GGML_USE_CUDA)
  1538. buft = ggml_backend_cuda_buffer_type(gpu);
  1539. #elif defined(GGML_USE_VULKAN)
  1540. buft = ggml_backend_vk_buffer_type(gpu);
  1541. #elif defined(GGML_USE_SYCL)
  1542. buft = ggml_backend_sycl_buffer_type(gpu);
  1543. #elif defined(GGML_USE_CLBLAST)
  1544. buft = ggml_backend_opencl_buffer_type();
  1545. #elif defined(GGML_USE_KOMPUTE)
  1546. buft = ggml_backend_kompute_buffer_type(gpu);
  1547. if (buft == nullptr) {
  1548. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1549. }
  1550. #endif
  1551. if (buft == nullptr) {
  1552. buft = llama_default_buffer_type_cpu(true);
  1553. }
  1554. return buft;
  1555. GGML_UNUSED(gpu);
  1556. }
  1557. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1558. ggml_backend_buffer_type_t buft = nullptr;
  1559. #ifdef GGML_USE_CUDA
  1560. if (ggml_backend_cuda_get_device_count() > 1) {
  1561. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1562. }
  1563. #endif
  1564. #ifdef GGML_USE_SYCL
  1565. if (ggml_backend_sycl_get_device_count() > 1) {
  1566. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  1567. }
  1568. #endif
  1569. if (buft == nullptr) {
  1570. buft = llama_default_buffer_type_offload(fallback_gpu);
  1571. }
  1572. return buft;
  1573. GGML_UNUSED(tensor_split);
  1574. }
  1575. static size_t llama_get_device_count() {
  1576. #if defined(GGML_USE_CUDA)
  1577. return ggml_backend_cuda_get_device_count();
  1578. #elif defined(GGML_USE_SYCL)
  1579. return ggml_backend_sycl_get_device_count();
  1580. #elif defined(GGML_USE_VULKAN)
  1581. return ggml_backend_vk_get_device_count();
  1582. #else
  1583. return 1;
  1584. #endif
  1585. }
  1586. static size_t llama_get_device_memory(int device) {
  1587. #if defined(GGML_USE_CUDA)
  1588. size_t total;
  1589. size_t free;
  1590. ggml_backend_cuda_get_device_memory(device, &free, &total);
  1591. return free;
  1592. #elif defined(GGML_USE_SYCL)
  1593. size_t total;
  1594. size_t free;
  1595. ggml_backend_sycl_get_device_memory(device, &free, &total);
  1596. return free;
  1597. #elif defined(GGML_USE_VULKAN)
  1598. size_t total;
  1599. size_t free;
  1600. ggml_backend_vk_get_device_memory(device, &free, &total);
  1601. return free;
  1602. #else
  1603. return 1;
  1604. GGML_UNUSED(device);
  1605. #endif
  1606. }
  1607. //
  1608. // globals
  1609. //
  1610. struct llama_state {
  1611. llama_state() {
  1612. #ifdef GGML_USE_METAL
  1613. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1614. #endif
  1615. }
  1616. // We save the log callback globally
  1617. ggml_log_callback log_callback = llama_log_callback_default;
  1618. void * log_callback_user_data = nullptr;
  1619. };
  1620. static llama_state g_state;
  1621. // available llama models
  1622. enum e_model {
  1623. MODEL_UNKNOWN,
  1624. MODEL_17M,
  1625. MODEL_22M,
  1626. MODEL_33M,
  1627. MODEL_109M,
  1628. MODEL_137M,
  1629. MODEL_335M,
  1630. MODEL_0_5B,
  1631. MODEL_1B,
  1632. MODEL_2B,
  1633. MODEL_3B,
  1634. MODEL_4B,
  1635. MODEL_7B,
  1636. MODEL_8B,
  1637. MODEL_12B,
  1638. MODEL_13B,
  1639. MODEL_14B,
  1640. MODEL_15B,
  1641. MODEL_20B,
  1642. MODEL_30B,
  1643. MODEL_34B,
  1644. MODEL_35B,
  1645. MODEL_40B,
  1646. MODEL_65B,
  1647. MODEL_70B,
  1648. MODEL_314B,
  1649. MODEL_SMALL,
  1650. MODEL_MEDIUM,
  1651. MODEL_LARGE,
  1652. MODEL_XL,
  1653. MODEL_A2_7B,
  1654. MODEL_8x7B,
  1655. MODEL_8x22B,
  1656. MODEL_16x12B,
  1657. };
  1658. static const size_t kiB = 1024;
  1659. static const size_t MiB = 1024*kiB;
  1660. static const size_t GiB = 1024*MiB;
  1661. struct llama_hparams {
  1662. bool vocab_only;
  1663. bool rope_finetuned;
  1664. uint32_t n_vocab;
  1665. uint32_t n_ctx_train; // context size the model was trained on
  1666. uint32_t n_embd;
  1667. uint32_t n_head;
  1668. uint32_t n_head_kv;
  1669. uint32_t n_layer;
  1670. uint32_t n_rot;
  1671. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1672. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1673. uint32_t n_ff;
  1674. uint32_t n_expert = 0;
  1675. uint32_t n_expert_used = 0;
  1676. uint32_t n_vocab_type = 0; // for BERT-style token types
  1677. float f_norm_eps;
  1678. float f_norm_rms_eps;
  1679. float rope_freq_base_train;
  1680. float rope_freq_scale_train;
  1681. uint32_t n_yarn_orig_ctx;
  1682. // for State Space Models
  1683. uint32_t ssm_d_conv = 0;
  1684. uint32_t ssm_d_inner = 0;
  1685. uint32_t ssm_d_state = 0;
  1686. uint32_t ssm_dt_rank = 0;
  1687. float f_clamp_kqv = 0.0f;
  1688. float f_max_alibi_bias = 0.0f;
  1689. float f_logit_scale = 0.0f;
  1690. bool causal_attn = true;
  1691. bool use_alibi = false; // currently, we need KQ_pos data for ALiBi-based models
  1692. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1693. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1694. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1695. bool operator!=(const llama_hparams & other) const {
  1696. if (this->vocab_only != other.vocab_only) return true;
  1697. if (this->n_vocab != other.n_vocab) return true;
  1698. if (this->n_ctx_train != other.n_ctx_train) return true;
  1699. if (this->n_embd != other.n_embd) return true;
  1700. if (this->n_head != other.n_head) return true;
  1701. if (this->n_head_kv != other.n_head_kv) return true;
  1702. if (this->n_layer != other.n_layer) return true;
  1703. if (this->n_rot != other.n_rot) return true;
  1704. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1705. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1706. if (this->n_ff != other.n_ff) return true;
  1707. if (this->n_expert != other.n_expert) return true;
  1708. if (this->n_expert_used != other.n_expert_used) return true;
  1709. if (this->rope_finetuned != other.rope_finetuned) return true;
  1710. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1711. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1712. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1713. if (this->ssm_d_state != other.ssm_d_state) return true;
  1714. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1715. const float EPSILON = 1e-9f;
  1716. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1717. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1718. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1719. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1720. return false;
  1721. }
  1722. uint32_t n_gqa() const {
  1723. if (n_head_kv == 0) {
  1724. return 0;
  1725. }
  1726. return n_head/n_head_kv;
  1727. }
  1728. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1729. return n_embd_head_k * n_head_kv;
  1730. }
  1731. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1732. return n_embd_head_v * n_head_kv;
  1733. }
  1734. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1735. // corresponds to Mamba's conv_states size
  1736. // TODO: maybe support other convolution strides than 1
  1737. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1738. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1739. }
  1740. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1741. // corresponds to Mamba's ssm_states size
  1742. return ssm_d_state * ssm_d_inner;
  1743. }
  1744. };
  1745. struct llama_cparams {
  1746. uint32_t n_ctx; // context size used during inference
  1747. uint32_t n_batch;
  1748. uint32_t n_ubatch;
  1749. uint32_t n_seq_max;
  1750. uint32_t n_threads; // number of threads to use for generation
  1751. uint32_t n_threads_batch; // number of threads to use for batch processing
  1752. float rope_freq_base;
  1753. float rope_freq_scale;
  1754. uint32_t n_yarn_orig_ctx;
  1755. // These hyperparameters are not exposed in GGUF, because all
  1756. // existing YaRN models use the same values for them.
  1757. float yarn_ext_factor;
  1758. float yarn_attn_factor;
  1759. float yarn_beta_fast;
  1760. float yarn_beta_slow;
  1761. float defrag_thold;
  1762. bool embeddings;
  1763. bool causal_attn;
  1764. bool offload_kqv;
  1765. bool flash_attn;
  1766. enum llama_pooling_type pooling_type;
  1767. ggml_backend_sched_eval_callback cb_eval;
  1768. void * cb_eval_user_data;
  1769. };
  1770. struct llama_layer {
  1771. // normalization
  1772. struct ggml_tensor * attn_norm;
  1773. struct ggml_tensor * attn_norm_b;
  1774. struct ggml_tensor * attn_norm_2;
  1775. struct ggml_tensor * attn_norm_2_b;
  1776. struct ggml_tensor * attn_q_norm;
  1777. struct ggml_tensor * attn_q_norm_b;
  1778. struct ggml_tensor * attn_k_norm;
  1779. struct ggml_tensor * attn_k_norm_b;
  1780. struct ggml_tensor * attn_out_norm;
  1781. struct ggml_tensor * attn_out_norm_b;
  1782. // attention
  1783. struct ggml_tensor * wq;
  1784. struct ggml_tensor * wk;
  1785. struct ggml_tensor * wv;
  1786. struct ggml_tensor * wo;
  1787. struct ggml_tensor * wqkv;
  1788. // attention bias
  1789. struct ggml_tensor * bq;
  1790. struct ggml_tensor * bk;
  1791. struct ggml_tensor * bv;
  1792. struct ggml_tensor * bo;
  1793. struct ggml_tensor * bqkv;
  1794. // normalization
  1795. struct ggml_tensor * ffn_norm;
  1796. struct ggml_tensor * ffn_norm_b;
  1797. struct ggml_tensor * layer_out_norm;
  1798. struct ggml_tensor * layer_out_norm_b;
  1799. // ff
  1800. struct ggml_tensor * ffn_gate; // w1
  1801. struct ggml_tensor * ffn_down; // w2
  1802. struct ggml_tensor * ffn_up; // w3
  1803. // ff MoE
  1804. struct ggml_tensor * ffn_gate_inp;
  1805. struct ggml_tensor * ffn_gate_exps;
  1806. struct ggml_tensor * ffn_down_exps;
  1807. struct ggml_tensor * ffn_up_exps ;
  1808. // ff shared expert (shexp)
  1809. struct ggml_tensor * ffn_gate_inp_shexp;
  1810. struct ggml_tensor * ffn_gate_shexp;
  1811. struct ggml_tensor * ffn_down_shexp;
  1812. struct ggml_tensor * ffn_up_shexp;
  1813. // ff bias
  1814. struct ggml_tensor * ffn_down_b; // b2
  1815. struct ggml_tensor * ffn_up_b; // b3
  1816. struct ggml_tensor * ffn_act;
  1817. // mamba proj
  1818. struct ggml_tensor * ssm_in;
  1819. struct ggml_tensor * ssm_x;
  1820. struct ggml_tensor * ssm_dt;
  1821. struct ggml_tensor * ssm_out;
  1822. // mamba
  1823. struct ggml_tensor * ssm_conv1d;
  1824. struct ggml_tensor * ssm_a;
  1825. struct ggml_tensor * ssm_d;
  1826. // mamba bias
  1827. struct ggml_tensor * ssm_conv1d_b;
  1828. struct ggml_tensor * ssm_dt_b;
  1829. };
  1830. struct llama_kv_cell {
  1831. llama_pos pos = -1;
  1832. llama_pos delta = 0;
  1833. int32_t src = 0; // used by recurrent state models to copy states
  1834. std::set<llama_seq_id> seq_id;
  1835. bool has_seq_id(const llama_seq_id & id) const {
  1836. return seq_id.find(id) != seq_id.end();
  1837. }
  1838. bool is_empty() const {
  1839. return seq_id.empty();
  1840. }
  1841. bool is_same_seq(const llama_kv_cell & other) const {
  1842. return seq_id == other.seq_id;
  1843. }
  1844. };
  1845. // ring-buffer of cached KV data
  1846. struct llama_kv_cache {
  1847. bool has_shift = false;
  1848. bool do_defrag = false;
  1849. bool do_copy = false;
  1850. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1851. bool v_trans = true; // the value tensor is transposed
  1852. // Note: The value of head isn't only used to optimize searching
  1853. // for a free KV slot. llama_decode_internal also uses it, so it
  1854. // cannot be freely changed after a slot has been allocated.
  1855. uint32_t head = 0;
  1856. uint32_t size = 0;
  1857. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1858. // computed before each graph build
  1859. uint32_t n = 0;
  1860. ggml_type type_k = GGML_TYPE_F16;
  1861. ggml_type type_v = GGML_TYPE_F16;
  1862. std::vector<llama_kv_cell> cells;
  1863. std::vector<struct ggml_tensor *> k_l; // per layer
  1864. std::vector<struct ggml_tensor *> v_l;
  1865. std::vector<struct ggml_context *> ctxs;
  1866. std::vector<ggml_backend_buffer_t> bufs;
  1867. size_t total_size() const {
  1868. size_t size = 0;
  1869. for (ggml_backend_buffer_t buf : bufs) {
  1870. size += ggml_backend_buffer_get_size(buf);
  1871. }
  1872. return size;
  1873. }
  1874. ~llama_kv_cache() {
  1875. for (struct ggml_context * ctx : ctxs) {
  1876. ggml_free(ctx);
  1877. }
  1878. for (ggml_backend_buffer_t buf : bufs) {
  1879. ggml_backend_buffer_free(buf);
  1880. }
  1881. }
  1882. };
  1883. struct llama_control_vector {
  1884. std::vector<struct ggml_tensor *> tensors; // per layer
  1885. std::vector<struct ggml_context *> ctxs;
  1886. std::vector<ggml_backend_buffer_t> bufs;
  1887. int32_t layer_start = -1;
  1888. int32_t layer_end = -1;
  1889. ggml_tensor * tensor_for(int il) const {
  1890. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1891. return nullptr;
  1892. }
  1893. return tensors[il];
  1894. }
  1895. ~llama_control_vector() {
  1896. for (struct ggml_context * ctx : ctxs) {
  1897. ggml_free(ctx);
  1898. }
  1899. for (ggml_backend_buffer_t buf : bufs) {
  1900. ggml_backend_buffer_free(buf);
  1901. }
  1902. }
  1903. };
  1904. struct llama_vocab {
  1905. using id = int32_t;
  1906. using token = std::string;
  1907. using ttype = llama_token_type;
  1908. struct token_data {
  1909. token text;
  1910. float score;
  1911. ttype type;
  1912. };
  1913. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1914. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1915. std::unordered_map<token, id> token_to_id;
  1916. std::vector<token_data> id_to_token;
  1917. std::unordered_map<token, id> special_tokens_cache;
  1918. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1919. // default LLaMA special tokens
  1920. id special_bos_id = 1;
  1921. id special_eos_id = 2;
  1922. id special_unk_id = 0;
  1923. id special_sep_id = -1;
  1924. id special_pad_id = -1;
  1925. id special_cls_id = -1;
  1926. id special_mask_id = -1;
  1927. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1928. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1929. id linefeed_id = 13;
  1930. id special_prefix_id = -1;
  1931. id special_suffix_id = -1;
  1932. id special_middle_id = -1;
  1933. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1934. bool add_space_prefix = true;
  1935. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1936. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1937. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1938. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1939. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1940. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1941. if (it == bpe_ranks.end()) {
  1942. return -1;
  1943. }
  1944. return it->second;
  1945. }
  1946. };
  1947. struct llama_model {
  1948. e_model type = MODEL_UNKNOWN;
  1949. llm_arch arch = LLM_ARCH_UNKNOWN;
  1950. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1951. std::string name = "n/a";
  1952. llama_hparams hparams = {};
  1953. llama_vocab vocab;
  1954. struct ggml_tensor * tok_embd;
  1955. struct ggml_tensor * type_embd;
  1956. struct ggml_tensor * pos_embd;
  1957. struct ggml_tensor * tok_norm;
  1958. struct ggml_tensor * tok_norm_b;
  1959. struct ggml_tensor * output_norm;
  1960. struct ggml_tensor * output_norm_b;
  1961. struct ggml_tensor * output;
  1962. struct ggml_tensor * output_b;
  1963. std::vector<llama_layer> layers;
  1964. llama_split_mode split_mode;
  1965. int main_gpu;
  1966. int n_gpu_layers;
  1967. // gguf metadata
  1968. std::unordered_map<std::string, std::string> gguf_kv;
  1969. // layer -> buffer type mapping
  1970. struct layer_buft {
  1971. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1972. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1973. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1974. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1975. ggml_backend_buffer_type_t buft; // everything else
  1976. };
  1977. layer_buft buft_input;
  1978. layer_buft buft_output;
  1979. std::vector<layer_buft> buft_layer;
  1980. // contexts where the model tensors metadata is stored
  1981. std::vector<struct ggml_context *> ctxs;
  1982. // the model memory buffers for the tensor data
  1983. std::vector<ggml_backend_buffer_t> bufs;
  1984. // model memory mapped files
  1985. llama_mmaps mappings;
  1986. // objects representing data potentially being locked in memory
  1987. llama_mlocks mlock_bufs;
  1988. llama_mlocks mlock_mmaps;
  1989. // for quantize-stats only
  1990. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1991. int64_t t_load_us = 0;
  1992. int64_t t_start_us = 0;
  1993. ~llama_model() {
  1994. for (struct ggml_context * ctx : ctxs) {
  1995. ggml_free(ctx);
  1996. }
  1997. for (ggml_backend_buffer_t buf : bufs) {
  1998. #ifdef GGML_USE_CUDA
  1999. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  2000. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2001. }
  2002. #endif
  2003. ggml_backend_buffer_free(buf);
  2004. }
  2005. }
  2006. };
  2007. struct llama_context {
  2008. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2009. ~llama_context() {
  2010. ggml_backend_sched_free(sched);
  2011. for (ggml_backend_t backend : backends) {
  2012. ggml_backend_free(backend);
  2013. }
  2014. ggml_backend_buffer_free(buf_output);
  2015. }
  2016. llama_cparams cparams;
  2017. std::vector<ggml_backend_t> backends;
  2018. #ifdef GGML_USE_METAL
  2019. ggml_backend_t backend_metal = nullptr;
  2020. #endif
  2021. ggml_backend_t backend_cpu = nullptr;
  2022. const llama_model & model;
  2023. // key + value cache for the self attention
  2024. struct llama_kv_cache kv_self;
  2025. std::mt19937 rng;
  2026. bool has_evaluated_once = false;
  2027. int64_t t_start_us;
  2028. int64_t t_load_us;
  2029. int64_t t_sample_us = 0;
  2030. int64_t t_p_eval_us = 0;
  2031. int64_t t_eval_us = 0;
  2032. int64_t t_compute_start_us = 0;
  2033. int64_t n_queued_tokens = 0;
  2034. int32_t n_sample = 0; // number of tokens sampled
  2035. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2036. int32_t n_eval = 0; // number of eval calls
  2037. // host buffer for the model output (logits and embeddings)
  2038. ggml_backend_buffer_t buf_output = nullptr;
  2039. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2040. size_t logits_size = 0; // capacity (of floats) for logits
  2041. float * logits = nullptr;
  2042. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2043. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2044. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2045. bool logits_all = false;
  2046. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2047. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2048. size_t embd_size = 0; // capacity (of floats) for embeddings
  2049. float * embd = nullptr;
  2050. // sequence embeddings output (map of [n_embd] vectors)
  2051. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2052. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2053. // memory buffers used to evaluate the model
  2054. std::vector<uint8_t> buf_compute_meta;
  2055. ggml_backend_sched_t sched = nullptr;
  2056. ggml_abort_callback abort_callback = nullptr;
  2057. void * abort_callback_data = nullptr;
  2058. // input tensors
  2059. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2060. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2061. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2062. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2063. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2064. struct ggml_tensor * inp_KQ_pos; // F32 [n_kv]
  2065. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2066. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2067. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2068. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2069. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2070. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2071. // control vectors
  2072. struct llama_control_vector cvec;
  2073. #ifdef GGML_USE_MPI
  2074. ggml_mpi_context * ctx_mpi = NULL;
  2075. #endif
  2076. };
  2077. //
  2078. // kv cache helpers
  2079. //
  2080. static bool llama_kv_cache_init(
  2081. struct llama_kv_cache & cache,
  2082. const llama_context * ctx,
  2083. ggml_type type_k,
  2084. ggml_type type_v,
  2085. uint32_t kv_size,
  2086. bool offload) {
  2087. const llama_model & model = ctx->model;
  2088. const llama_cparams & cparams = ctx->cparams;
  2089. const struct llama_hparams & hparams = model.hparams;
  2090. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2091. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2092. const int64_t n_layer = hparams.n_layer;
  2093. cache.has_shift = false;
  2094. // TODO: find a nicer way to add other recurrent model architectures
  2095. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2096. cache.v_trans = !cparams.flash_attn;
  2097. // TODO: support mixed recurrent Transformer architectures
  2098. // NOTE: (!a || b) is a logical implication (a -> b)
  2099. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2100. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2101. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2102. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2103. cache.head = 0;
  2104. cache.size = kv_size;
  2105. cache.used = 0;
  2106. cache.type_k = type_k;
  2107. cache.type_v = type_v;
  2108. cache.cells.clear();
  2109. cache.cells.resize(kv_size);
  2110. if (cache.recurrent) {
  2111. // init state copy sources
  2112. for (uint32_t i = 0; i < cache.size; ++i) {
  2113. cache.cells[i].src = i;
  2114. }
  2115. }
  2116. #ifdef GGML_USE_CLBLAST
  2117. offload = false;
  2118. #endif
  2119. // count used buffer types
  2120. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2121. if (offload) {
  2122. for (int64_t i = 0; i < n_layer; ++i) {
  2123. buft_layer_count[model.buft_layer[i].buft]++;
  2124. }
  2125. } else {
  2126. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2127. }
  2128. // create a context for each buffer type
  2129. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2130. for (auto & it : buft_layer_count) {
  2131. int n_layers = it.second;
  2132. struct ggml_init_params params = {
  2133. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2134. /*.mem_buffer =*/ NULL,
  2135. /*.no_alloc =*/ true,
  2136. };
  2137. ggml_context * ctx = ggml_init(params);
  2138. if (!ctx) {
  2139. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2140. return false;
  2141. }
  2142. ctx_map[it.first] = ctx;
  2143. cache.ctxs.push_back(ctx);
  2144. }
  2145. cache.k_l.reserve(n_layer);
  2146. cache.v_l.reserve(n_layer);
  2147. for (int i = 0; i < (int) n_layer; i++) {
  2148. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2149. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2150. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2151. ggml_format_name(k, "cache_k_l%d", i);
  2152. ggml_format_name(v, "cache_v_l%d", i);
  2153. cache.k_l.push_back(k);
  2154. cache.v_l.push_back(v);
  2155. }
  2156. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2157. for (auto it : ctx_map) {
  2158. ggml_backend_buffer_type_t buft = it.first;
  2159. ggml_context * ctx = it.second;
  2160. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2161. if (!buf) {
  2162. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2163. return false;
  2164. }
  2165. ggml_backend_buffer_clear(buf, 0);
  2166. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2167. cache.bufs.push_back(buf);
  2168. }
  2169. return true;
  2170. }
  2171. // find an empty slot of size "n_tokens" in the cache
  2172. // updates the cache head
  2173. // Note: On success, it's important that cache.head points
  2174. // to the first cell of the slot.
  2175. static bool llama_kv_cache_find_slot(
  2176. struct llama_kv_cache & cache,
  2177. const struct llama_batch & batch) {
  2178. const uint32_t n_ctx = cache.size;
  2179. const uint32_t n_tokens = batch.n_tokens;
  2180. if (cache.recurrent) {
  2181. // For recurrent state architectures (like Mamba),
  2182. // each KV cache cell can store the state for a whole sequence.
  2183. llama_seq_id min = cache.size - 1;
  2184. llama_seq_id max = 0;
  2185. for (uint32_t i = 0; i < n_tokens; ++i) {
  2186. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2187. llama_seq_id seq_id = batch.seq_id[i][j];
  2188. // make sure it's a valid seq_id
  2189. if ((uint32_t) seq_id < cache.size) {
  2190. if (seq_id > max) {
  2191. max = seq_id;
  2192. }
  2193. if (seq_id < min) {
  2194. min = seq_id;
  2195. }
  2196. // Assuming the tokens are in-order
  2197. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2198. // What should happen when the pos backtracks or skips a value?
  2199. // Clearing the state mid-batch would require special-casing which isn't done.
  2200. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2201. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2202. }
  2203. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2204. cache.used += 1;
  2205. }
  2206. cache.cells[seq_id].pos = batch.pos[i];
  2207. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2208. } else {
  2209. // too big seq_id
  2210. // TODO: would it be possible to resize the KV cache size instead?
  2211. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2212. return false;
  2213. }
  2214. }
  2215. }
  2216. // allow getting the range of used cells, from head to head + n
  2217. cache.head = min;
  2218. cache.n = max - min + 1;
  2219. // sanity check
  2220. return max >= min;
  2221. }
  2222. // otherwise, one cell per token.
  2223. if (n_tokens > n_ctx) {
  2224. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2225. return false;
  2226. }
  2227. uint32_t n_tested = 0;
  2228. while (true) {
  2229. if (cache.head + n_tokens > n_ctx) {
  2230. n_tested += n_ctx - cache.head;
  2231. cache.head = 0;
  2232. continue;
  2233. }
  2234. bool found = true;
  2235. for (uint32_t i = 0; i < n_tokens; i++) {
  2236. if (cache.cells[cache.head + i].pos >= 0) {
  2237. found = false;
  2238. cache.head += i + 1;
  2239. n_tested += i + 1;
  2240. break;
  2241. }
  2242. }
  2243. if (found) {
  2244. break;
  2245. }
  2246. if (n_tested >= n_ctx) {
  2247. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2248. return false;
  2249. }
  2250. }
  2251. for (uint32_t i = 0; i < n_tokens; i++) {
  2252. cache.cells[cache.head + i].pos = batch.pos[i];
  2253. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2254. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2255. }
  2256. }
  2257. cache.used += n_tokens;
  2258. return true;
  2259. }
  2260. // find how many cells are currently in use
  2261. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2262. for (uint32_t i = cache.size; i > 0; --i) {
  2263. const llama_kv_cell & cell = cache.cells[i - 1];
  2264. if (cell.pos >= 0 && !cell.is_empty()) {
  2265. return i;
  2266. }
  2267. }
  2268. return 0;
  2269. }
  2270. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2271. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2272. cache.cells[i].pos = -1;
  2273. cache.cells[i].seq_id.clear();
  2274. }
  2275. cache.head = 0;
  2276. cache.used = 0;
  2277. for (auto & buf : cache.bufs) {
  2278. ggml_backend_buffer_clear(buf, 0);
  2279. }
  2280. }
  2281. static bool llama_kv_cache_seq_rm(
  2282. struct llama_kv_cache & cache,
  2283. llama_seq_id seq_id,
  2284. llama_pos p0,
  2285. llama_pos p1) {
  2286. uint32_t new_head = cache.size;
  2287. if (p0 < 0) p0 = 0;
  2288. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2289. // models like Mamba can't have a state partially erased
  2290. if (cache.recurrent) {
  2291. if (seq_id >= (int64_t) cache.size) {
  2292. // could be fatal
  2293. return false;
  2294. }
  2295. if (0 <= seq_id) {
  2296. // partial intersection is invalid
  2297. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2298. return false;
  2299. }
  2300. } else {
  2301. // seq_id is negative, then the range should include everything or nothing
  2302. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2303. return false;
  2304. }
  2305. }
  2306. }
  2307. for (uint32_t i = 0; i < cache.size; ++i) {
  2308. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2309. if (seq_id < 0) {
  2310. cache.cells[i].seq_id.clear();
  2311. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2312. cache.cells[i].seq_id.erase(seq_id);
  2313. } else {
  2314. continue;
  2315. }
  2316. if (cache.cells[i].is_empty()) {
  2317. // keep count of the number of used cells
  2318. if (cache.cells[i].pos >= 0) cache.used--;
  2319. cache.cells[i].pos = -1;
  2320. if (new_head == cache.size) new_head = i;
  2321. }
  2322. }
  2323. }
  2324. // If we freed up a slot, set head to it so searching can start there.
  2325. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2326. return true;
  2327. }
  2328. static void llama_kv_cache_seq_cp(
  2329. struct llama_kv_cache & cache,
  2330. llama_seq_id seq_id_src,
  2331. llama_seq_id seq_id_dst,
  2332. llama_pos p0,
  2333. llama_pos p1) {
  2334. if (p0 < 0) p0 = 0;
  2335. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2336. if (cache.recurrent) {
  2337. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2338. seq_id_src = cache.cells[seq_id_src].src;
  2339. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2340. // intent to "copy from"
  2341. // supports copy chains thanks to taking the source of the source
  2342. cache.cells[seq_id_dst].src = seq_id_src;
  2343. // preserve the "keep or clear" status of the copied sequence
  2344. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2345. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2346. } else {
  2347. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2348. }
  2349. cache.do_copy = true;
  2350. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2351. }
  2352. return;
  2353. }
  2354. // otherwise, this is the KV cache of a Transformer-like model
  2355. cache.head = 0;
  2356. for (uint32_t i = 0; i < cache.size; ++i) {
  2357. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2358. cache.cells[i].seq_id.insert(seq_id_dst);
  2359. }
  2360. }
  2361. }
  2362. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2363. uint32_t new_head = cache.size;
  2364. for (uint32_t i = 0; i < cache.size; ++i) {
  2365. if (!cache.cells[i].has_seq_id(seq_id)) {
  2366. if (cache.cells[i].pos >= 0) cache.used--;
  2367. cache.cells[i].pos = -1;
  2368. cache.cells[i].seq_id.clear();
  2369. if (new_head == cache.size) new_head = i;
  2370. } else {
  2371. cache.cells[i].seq_id.clear();
  2372. cache.cells[i].seq_id.insert(seq_id);
  2373. }
  2374. }
  2375. // If we freed up a slot, set head to it so searching can start there.
  2376. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2377. }
  2378. static void llama_kv_cache_seq_add(
  2379. struct llama_kv_cache & cache,
  2380. llama_seq_id seq_id,
  2381. llama_pos p0,
  2382. llama_pos p1,
  2383. llama_pos delta) {
  2384. uint32_t new_head = cache.size;
  2385. if (p0 < 0) p0 = 0;
  2386. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2387. if (cache.recurrent) {
  2388. // for Mamba-like models, only the pos needs to be shifted
  2389. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2390. llama_kv_cell & cell = cache.cells[seq_id];
  2391. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2392. cell.pos += delta;
  2393. }
  2394. }
  2395. return;
  2396. }
  2397. for (uint32_t i = 0; i < cache.size; ++i) {
  2398. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2399. cache.has_shift = true;
  2400. cache.cells[i].pos += delta;
  2401. cache.cells[i].delta += delta;
  2402. if (cache.cells[i].pos < 0) {
  2403. if (!cache.cells[i].is_empty()) {
  2404. cache.used--;
  2405. }
  2406. cache.cells[i].pos = -1;
  2407. cache.cells[i].seq_id.clear();
  2408. if (new_head == cache.size) {
  2409. new_head = i;
  2410. }
  2411. }
  2412. }
  2413. }
  2414. // If we freed up a slot, set head to it so searching can start there.
  2415. // Otherwise we just start the next search from the beginning.
  2416. cache.head = new_head != cache.size ? new_head : 0;
  2417. }
  2418. static void llama_kv_cache_seq_div(
  2419. struct llama_kv_cache & cache,
  2420. llama_seq_id seq_id,
  2421. llama_pos p0,
  2422. llama_pos p1,
  2423. int d) {
  2424. if (p0 < 0) p0 = 0;
  2425. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2426. if (cache.recurrent) {
  2427. // for Mamba-like models, only the pos needs to be changed
  2428. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2429. llama_kv_cell & cell = cache.cells[seq_id];
  2430. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2431. cell.pos /= d;
  2432. }
  2433. }
  2434. return;
  2435. }
  2436. for (uint32_t i = 0; i < cache.size; ++i) {
  2437. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2438. cache.has_shift = true;
  2439. {
  2440. llama_pos p_old = cache.cells[i].pos;
  2441. cache.cells[i].pos /= d;
  2442. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2443. }
  2444. }
  2445. }
  2446. }
  2447. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2448. llama_pos result = 0;
  2449. for (uint32_t i = 0; i < cache.size; ++i) {
  2450. if (cache.cells[i].has_seq_id(seq_id)) {
  2451. result = std::max(result, cache.cells[i].pos);
  2452. }
  2453. }
  2454. return result;
  2455. }
  2456. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2457. cache.do_defrag = true;
  2458. }
  2459. //
  2460. // model loading and saving
  2461. //
  2462. enum llama_fver {
  2463. GGUF_FILE_VERSION_V1 = 1,
  2464. GGUF_FILE_VERSION_V2 = 2,
  2465. GGUF_FILE_VERSION_V3 = 3,
  2466. };
  2467. static const char * llama_file_version_name(llama_fver version) {
  2468. switch (version) {
  2469. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2470. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2471. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2472. }
  2473. return "unknown";
  2474. }
  2475. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2476. char buf[256];
  2477. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2478. for (size_t i = 1; i < ne.size(); i++) {
  2479. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2480. }
  2481. return buf;
  2482. }
  2483. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2484. char buf[256];
  2485. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2486. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2487. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2488. }
  2489. return buf;
  2490. }
  2491. namespace GGUFMeta {
  2492. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2493. struct GKV_Base_Type {
  2494. static constexpr gguf_type gt = gt_;
  2495. static T getter(const gguf_context * ctx, const int kid) {
  2496. return gfun(ctx, kid);
  2497. }
  2498. };
  2499. template<typename T> struct GKV_Base;
  2500. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2501. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2502. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2503. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2504. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2505. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2506. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2507. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2508. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2509. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2510. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2511. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2512. template<> struct GKV_Base<std::string> {
  2513. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2514. static std::string getter(const gguf_context * ctx, const int kid) {
  2515. return gguf_get_val_str(ctx, kid);
  2516. }
  2517. };
  2518. struct ArrayInfo {
  2519. const gguf_type gt;
  2520. const size_t length;
  2521. const void * data;
  2522. };
  2523. template<> struct GKV_Base<ArrayInfo> {
  2524. public:
  2525. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2526. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2527. return ArrayInfo {
  2528. gguf_get_arr_type(ctx, k),
  2529. size_t(gguf_get_arr_n(ctx, k)),
  2530. gguf_get_arr_data(ctx, k),
  2531. };
  2532. }
  2533. };
  2534. template<typename T>
  2535. class GKV : public GKV_Base<T> {
  2536. GKV() = delete;
  2537. public:
  2538. static T get_kv(const gguf_context * ctx, const int k) {
  2539. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2540. if (kt != GKV::gt) {
  2541. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2542. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2543. }
  2544. return GKV::getter(ctx, k);
  2545. }
  2546. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2547. switch (ty) {
  2548. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2549. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2550. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2551. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2552. }
  2553. return "unknown";
  2554. }
  2555. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2556. if (!ovrd) { return false; }
  2557. if (ovrd->tag == expected_type) {
  2558. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2559. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2560. switch (ovrd->tag) {
  2561. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2562. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2563. } break;
  2564. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2565. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2566. } break;
  2567. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2568. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2569. } break;
  2570. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2571. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2572. } break;
  2573. default:
  2574. // Shouldn't be possible to end up here, but just in case...
  2575. throw std::runtime_error(
  2576. format("Unsupported attempt to override %s type for metadata key %s\n",
  2577. override_type_to_str(ovrd->tag), ovrd->key));
  2578. }
  2579. return true;
  2580. }
  2581. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2582. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2583. return false;
  2584. }
  2585. template<typename OT>
  2586. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2587. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2588. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2589. target = ovrd->val_bool;
  2590. return true;
  2591. }
  2592. return false;
  2593. }
  2594. template<typename OT>
  2595. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2596. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2597. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2598. target = ovrd->val_i64;
  2599. return true;
  2600. }
  2601. return false;
  2602. }
  2603. template<typename OT>
  2604. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2605. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2606. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2607. target = ovrd->val_f64;
  2608. return true;
  2609. }
  2610. return false;
  2611. }
  2612. template<typename OT>
  2613. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2614. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2615. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2616. target = ovrd->val_str;
  2617. return true;
  2618. }
  2619. return false;
  2620. }
  2621. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2622. if (try_override<T>(target, ovrd)) {
  2623. return true;
  2624. }
  2625. if (k < 0) { return false; }
  2626. target = get_kv(ctx, k);
  2627. return true;
  2628. }
  2629. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2630. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2631. }
  2632. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2633. return set(ctx, key.c_str(), target, ovrd);
  2634. }
  2635. };
  2636. }
  2637. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2638. struct llama_model_loader {
  2639. int n_kv = 0;
  2640. int n_tensors = 0;
  2641. int n_created = 0;
  2642. int64_t n_elements = 0;
  2643. size_t n_bytes = 0;
  2644. bool use_mmap = false;
  2645. bool check_tensors;
  2646. llama_files files;
  2647. llama_ftype ftype;
  2648. llama_fver fver;
  2649. llama_mmaps mappings;
  2650. // Holds information on a model weight
  2651. struct llama_tensor_weight {
  2652. uint16_t idx; // source file index
  2653. size_t offs; // tensor data offset in the original file
  2654. ggml_tensor * tensor;
  2655. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2656. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2657. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2658. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2659. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2660. }
  2661. }
  2662. };
  2663. std::vector<llama_tensor_weight> weights;
  2664. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2665. struct gguf_context * meta = NULL;
  2666. std::vector<ggml_context *> contexts;
  2667. std::string arch_name;
  2668. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2669. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2670. int trace = 0;
  2671. if (getenv("LLAMA_TRACE")) {
  2672. trace = atoi(getenv("LLAMA_TRACE"));
  2673. }
  2674. if (param_overrides_p != nullptr) {
  2675. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2676. kv_overrides.insert({std::string(p->key), *p});
  2677. }
  2678. }
  2679. struct ggml_context * ctx = NULL;
  2680. struct gguf_init_params params = {
  2681. /*.no_alloc = */ true,
  2682. /*.ctx = */ &ctx,
  2683. };
  2684. meta = gguf_init_from_file(fname.c_str(), params);
  2685. if (!meta) {
  2686. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2687. }
  2688. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2689. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2690. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2691. contexts.emplace_back(ctx);
  2692. // Save tensors data offset of the main file.
  2693. // For subsidiary files, `meta` tensor data offset must not be used,
  2694. // so we build a unified tensors index for weights.
  2695. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2696. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2697. }
  2698. uint16_t n_split = 0;
  2699. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2700. // Load additional GGML contexts
  2701. if (n_split > 1) {
  2702. uint16_t idx = 0;
  2703. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2704. if (idx != 0) {
  2705. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2706. }
  2707. char split_prefix[PATH_MAX] = {0};
  2708. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2709. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2710. }
  2711. if (trace > 0) {
  2712. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2713. }
  2714. char split_path[PATH_MAX] = {0};
  2715. for (idx = 1; idx < n_split; idx++) {
  2716. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2717. struct gguf_init_params split_params = {
  2718. /*.no_alloc = */ true,
  2719. /*.ctx = */ &ctx,
  2720. };
  2721. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2722. if (!ctx_gguf) {
  2723. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2724. }
  2725. files.emplace_back(new llama_file(split_path, "rb"));
  2726. contexts.emplace_back(ctx);
  2727. // Save tensors data offset info of the shard.
  2728. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2729. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2730. }
  2731. gguf_free(ctx_gguf);
  2732. }
  2733. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2734. // sanity check
  2735. {
  2736. const int n_tensors_loaded = (int) weights.size();
  2737. if (n_tensors != n_tensors_loaded) {
  2738. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2739. }
  2740. }
  2741. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2742. }
  2743. n_kv = gguf_get_n_kv(meta);
  2744. n_tensors = weights.size();
  2745. fver = (enum llama_fver) gguf_get_version(meta);
  2746. std::set<std::string> tensor_names;
  2747. for (auto & w : weights) {
  2748. n_elements += ggml_nelements(w.tensor);
  2749. n_bytes += ggml_nbytes(w.tensor);
  2750. // make sure there is no duplicated tensor names
  2751. const std::string name(w.tensor->name);
  2752. auto found = tensor_names.find(name);
  2753. if (found != tensor_names.end()) {
  2754. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2755. }
  2756. tensor_names.insert(name);
  2757. }
  2758. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2759. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2760. // determine file type based on the number of tensors for each quantization and print meta data
  2761. // TODO: make optional
  2762. {
  2763. std::map<enum ggml_type, uint32_t> n_type;
  2764. uint32_t n_type_max = 0;
  2765. enum ggml_type type_max = GGML_TYPE_F32;
  2766. for (int i = 0; i < n_tensors; i++) {
  2767. const ggml_tensor * tensor = weights.at(i).tensor;
  2768. enum ggml_type type = tensor->type;
  2769. n_type[type]++;
  2770. if (n_type_max < n_type[type]) {
  2771. n_type_max = n_type[type];
  2772. type_max = type;
  2773. }
  2774. if (trace > 0) {
  2775. const uint16_t sid = weights.at(i).idx;
  2776. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2777. }
  2778. }
  2779. switch (type_max) {
  2780. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2781. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2782. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2783. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2784. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2785. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2786. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2787. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2788. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2789. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2790. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2791. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2792. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2793. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2794. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2795. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2796. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2797. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2798. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2799. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2800. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2801. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2802. default:
  2803. {
  2804. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2805. ftype = LLAMA_FTYPE_ALL_F32;
  2806. } break;
  2807. }
  2808. // this is a way to mark that we have "guessed" the file type
  2809. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2810. {
  2811. const int kid = gguf_find_key(meta, "general.file_type");
  2812. if (kid >= 0) {
  2813. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2814. }
  2815. }
  2816. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2817. for (int i = 0; i < n_kv; i++) {
  2818. const char * name = gguf_get_key(meta, i);
  2819. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2820. const std::string type_name =
  2821. type == GGUF_TYPE_ARRAY
  2822. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2823. : gguf_type_name(type);
  2824. std::string value = gguf_kv_to_str(meta, i);
  2825. const size_t MAX_VALUE_LEN = 40;
  2826. if (value.size() > MAX_VALUE_LEN) {
  2827. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2828. }
  2829. replace_all(value, "\n", "\\n");
  2830. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2831. }
  2832. // print type counts
  2833. for (auto & kv : n_type) {
  2834. if (kv.second == 0) {
  2835. continue;
  2836. }
  2837. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2838. }
  2839. }
  2840. if (!llama_mmap::SUPPORTED) {
  2841. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2842. use_mmap = false;
  2843. }
  2844. this->use_mmap = use_mmap;
  2845. this->check_tensors = check_tensors;
  2846. }
  2847. ~llama_model_loader() {
  2848. if (meta) {
  2849. gguf_free(meta);
  2850. }
  2851. for (auto * ctx : contexts) {
  2852. ggml_free(ctx);
  2853. }
  2854. }
  2855. template<typename T>
  2856. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2857. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2858. const int kid = gguf_find_key(meta, key.c_str());
  2859. if (kid < 0) {
  2860. if (required) {
  2861. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2862. }
  2863. return false;
  2864. }
  2865. struct GGUFMeta::ArrayInfo arr_info =
  2866. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2867. result = arr_info.length;
  2868. return true;
  2869. }
  2870. template<typename T>
  2871. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2872. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2873. return get_arr_n(llm_kv(kid), result, required);
  2874. }
  2875. template<typename T>
  2876. bool get_key(const std::string & key, T & result, const bool required = true) {
  2877. auto it = kv_overrides.find(key);
  2878. const struct llama_model_kv_override * override =
  2879. it != kv_overrides.end() ? &it->second : nullptr;
  2880. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2881. if (required && !found) {
  2882. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2883. }
  2884. return found;
  2885. }
  2886. template<typename T>
  2887. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2888. return get_key(llm_kv(kid), result, required);
  2889. }
  2890. std::string get_arch_name() const {
  2891. return arch_name;
  2892. }
  2893. enum llm_arch get_arch() const {
  2894. return llm_kv.arch;
  2895. }
  2896. const char * get_tensor_name(int i) const {
  2897. return weights.at(i).tensor->name;
  2898. }
  2899. const llama_tensor_weight * get_weight(const char * name) const {
  2900. for (const auto & weight : weights) {
  2901. if (strcmp(name, weight.tensor->name) == 0) {
  2902. return &weight;
  2903. }
  2904. }
  2905. return nullptr;
  2906. }
  2907. const llama_tensor_weight * get_weight(int i) const {
  2908. return get_weight(get_tensor_name(i));
  2909. }
  2910. const llama_tensor_weight & require_weight(const char * name) const {
  2911. const llama_tensor_weight * weight = get_weight(name);
  2912. if (!weight) {
  2913. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2914. }
  2915. return *weight;
  2916. }
  2917. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2918. const auto * weight = get_weight(name);
  2919. if (!weight) {
  2920. return nullptr;
  2921. }
  2922. return weight->tensor;
  2923. }
  2924. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2925. struct ggml_tensor * tensor = get_tensor_meta(name);
  2926. if (!tensor) {
  2927. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2928. }
  2929. return tensor;
  2930. }
  2931. struct ggml_tensor * get_tensor_meta(int i) const {
  2932. return get_tensor_meta(get_tensor_name(i));
  2933. }
  2934. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2935. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2936. ggml_set_name(tensor, ggml_get_name(cur));
  2937. n_created++;
  2938. return tensor;
  2939. }
  2940. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2941. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2942. if (cur == NULL) {
  2943. if (!required) {
  2944. return NULL;
  2945. }
  2946. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2947. }
  2948. {
  2949. bool is_ok = true;
  2950. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2951. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2952. is_ok = false;
  2953. break;
  2954. }
  2955. }
  2956. if (!is_ok) {
  2957. throw std::runtime_error(
  2958. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2959. __func__, name.c_str(),
  2960. llama_format_tensor_shape(ne).c_str(),
  2961. llama_format_tensor_shape(cur).c_str()));
  2962. }
  2963. }
  2964. return cur;
  2965. }
  2966. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2967. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2968. if (cur == NULL) {
  2969. return NULL;
  2970. }
  2971. return create_tensor_for(ctx, cur);
  2972. }
  2973. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  2974. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2975. if (cur == NULL) {
  2976. return NULL;
  2977. }
  2978. if (cur->type != base->type) {
  2979. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  2980. }
  2981. std::array<int64_t, GGML_MAX_DIMS> dims;
  2982. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2983. dims[i] = i < ne.size() ? ne[i] : 1;
  2984. }
  2985. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  2986. dims[0], dims[1], dims[2], dims[3],
  2987. cur->nb[1], cur->nb[2], cur->nb[3],
  2988. offset);
  2989. ggml_set_name(tensor, name.c_str());
  2990. n_created++;
  2991. return tensor;
  2992. }
  2993. void done_getting_tensors() const {
  2994. if (n_created != n_tensors) {
  2995. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2996. }
  2997. }
  2998. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  2999. if (use_mmap) {
  3000. mappings.reserve(files.size());
  3001. mmaps_used.reserve(files.size());
  3002. for (const auto & file : files) {
  3003. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3004. mmaps_used.emplace_back(mapping->size, 0);
  3005. if (mlock_mmaps) {
  3006. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3007. mlock_mmap->init(mapping->addr);
  3008. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3009. }
  3010. mappings.emplace_back(std::move(mapping));
  3011. }
  3012. }
  3013. // compute the total size of all tensors for progress reporting
  3014. for (auto & w : weights) {
  3015. size_data += ggml_nbytes(w.tensor);
  3016. }
  3017. }
  3018. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3019. GGML_ASSERT(!mappings.empty());
  3020. const auto & mapping = mappings.at(idx);
  3021. *first = mapping->size;
  3022. *last = 0;
  3023. *addr = mapping->addr;
  3024. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3025. try {
  3026. const auto * weight = get_weight(ggml_get_name(tensor));
  3027. if (!weight) {
  3028. continue;
  3029. }
  3030. if (weight->idx != idx) {
  3031. continue;
  3032. }
  3033. *first = std::min(*first, weight->offs);
  3034. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3035. } catch(...) {
  3036. // the tensor is not in the model
  3037. }
  3038. }
  3039. }
  3040. // for backwards compatibility, does not support ggml-backend
  3041. void load_data_for(struct ggml_tensor * cur) const {
  3042. const auto & w = require_weight(ggml_get_name(cur));
  3043. if (use_mmap) {
  3044. const auto & mapping = mappings.at(w.idx);
  3045. if (cur->data == nullptr) {
  3046. cur->data = (uint8_t *)mapping->addr + w.offs;
  3047. } else {
  3048. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3049. }
  3050. } else {
  3051. GGML_ASSERT(cur->data != nullptr);
  3052. GGML_ASSERT(w.idx < files.size());
  3053. const auto & file = files.at(w.idx);
  3054. file->seek(w.offs, SEEK_SET);
  3055. file->read_raw(cur->data, ggml_nbytes(cur));
  3056. }
  3057. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3058. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3059. }
  3060. }
  3061. size_t size_done = 0;
  3062. size_t size_data = 0;
  3063. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3064. // Returns false if cancelled by progress_callback
  3065. bool load_all_data(
  3066. struct ggml_context * ctx,
  3067. llama_buf_map & bufs_mmap,
  3068. llama_mlocks * lmlocks,
  3069. llama_progress_callback progress_callback,
  3070. void * progress_callback_user_data) {
  3071. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3072. std::vector<no_init<uint8_t>> read_buf;
  3073. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3074. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3075. const auto * weight = get_weight(ggml_get_name(cur));
  3076. if (weight == nullptr) {
  3077. // this can happen with split experts models
  3078. continue;
  3079. }
  3080. if (progress_callback) {
  3081. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3082. return false;
  3083. }
  3084. }
  3085. size_t n_size = ggml_nbytes(cur);
  3086. if (use_mmap) {
  3087. const auto & mapping = mappings.at(weight->idx);
  3088. ggml_backend_buffer_t buf_mmap = nullptr;
  3089. if (bufs_mmap.count(weight->idx)) {
  3090. buf_mmap = bufs_mmap.at(weight->idx);
  3091. }
  3092. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3093. if (check_tensors) {
  3094. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3095. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3096. }));
  3097. }
  3098. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3099. if (buf_mmap && cur->data == nullptr) {
  3100. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3101. if (lmlocks) {
  3102. const auto & lmlock = lmlocks->at(weight->idx);
  3103. lmlock->grow_to(weight->offs + n_size);
  3104. }
  3105. auto & mmap_used = mmaps_used[weight->idx];
  3106. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3107. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3108. } else {
  3109. ggml_backend_tensor_set(cur, data, 0, n_size);
  3110. }
  3111. } else {
  3112. GGML_ASSERT(weight->idx < files.size());
  3113. const auto & file = files.at(weight->idx);
  3114. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3115. file->seek(weight->offs, SEEK_SET);
  3116. file->read_raw(cur->data, n_size);
  3117. if (check_tensors) {
  3118. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3119. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3120. }));
  3121. }
  3122. } else {
  3123. read_buf.resize(n_size);
  3124. file->seek(weight->offs, SEEK_SET);
  3125. file->read_raw(read_buf.data(), n_size);
  3126. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3127. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3128. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3129. }
  3130. }
  3131. }
  3132. size_done += n_size;
  3133. }
  3134. // check validation results
  3135. bool validation_failed = false;
  3136. for (auto & future : validation_result) {
  3137. auto result = future.get();
  3138. if (!result.second) {
  3139. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3140. validation_failed = true;
  3141. }
  3142. }
  3143. if (validation_failed) {
  3144. throw std::runtime_error("found tensors with invalid data");
  3145. }
  3146. // check if this is the last call and do final cleanup
  3147. if (size_done >= size_data) {
  3148. // unmap offloaded tensors and metadata
  3149. if (use_mmap) {
  3150. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3151. const auto & mmap_used = mmaps_used.at(idx);
  3152. auto & mapping = mappings.at(idx);
  3153. mapping->unmap_fragment(0, mmap_used.first);
  3154. if (mmap_used.second != 0) {
  3155. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3156. }
  3157. }
  3158. }
  3159. if (progress_callback) {
  3160. // Even though the model is done loading, we still honor
  3161. // cancellation since we need to free allocations.
  3162. return progress_callback(1.0f, progress_callback_user_data);
  3163. }
  3164. }
  3165. return true;
  3166. }
  3167. };
  3168. template<>
  3169. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3170. uint32_t tmp;
  3171. const bool found = get_key(kid, tmp, required);
  3172. if (found) {
  3173. result = (enum llama_pooling_type) tmp;
  3174. } else {
  3175. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3176. }
  3177. return found;
  3178. }
  3179. //
  3180. // load LLaMA models
  3181. //
  3182. static const char * llama_model_arch_name(llm_arch arch) {
  3183. auto it = LLM_ARCH_NAMES.find(arch);
  3184. if (it == LLM_ARCH_NAMES.end()) {
  3185. return "unknown";
  3186. }
  3187. return it->second;
  3188. }
  3189. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3190. if (ftype & LLAMA_FTYPE_GUESSED) {
  3191. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3192. }
  3193. switch (ftype) {
  3194. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3195. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3196. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3197. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3198. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3199. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3200. return "Q4_1, some F16";
  3201. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3202. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3203. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3204. // K-quants
  3205. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3206. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3207. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3208. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3209. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3210. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3211. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3212. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3213. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3214. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3215. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3216. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3217. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3218. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3219. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3220. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3221. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3222. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3223. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3224. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3225. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3226. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3227. default: return "unknown, may not work";
  3228. }
  3229. }
  3230. static const char * llama_model_type_name(e_model type) {
  3231. switch (type) {
  3232. case MODEL_22M: return "22M";
  3233. case MODEL_33M: return "33M";
  3234. case MODEL_109M: return "109M";
  3235. case MODEL_137M: return "137M";
  3236. case MODEL_0_5B: return "0.5B";
  3237. case MODEL_1B: return "1B";
  3238. case MODEL_2B: return "2B";
  3239. case MODEL_3B: return "3B";
  3240. case MODEL_7B: return "7B";
  3241. case MODEL_8B: return "8B";
  3242. case MODEL_12B: return "12B";
  3243. case MODEL_13B: return "13B";
  3244. case MODEL_14B: return "14B";
  3245. case MODEL_15B: return "15B";
  3246. case MODEL_20B: return "20B";
  3247. case MODEL_30B: return "30B";
  3248. case MODEL_34B: return "34B";
  3249. case MODEL_35B: return "35B";
  3250. case MODEL_40B: return "40B";
  3251. case MODEL_65B: return "65B";
  3252. case MODEL_70B: return "70B";
  3253. case MODEL_314B: return "314B";
  3254. case MODEL_SMALL: return "0.1B";
  3255. case MODEL_MEDIUM: return "0.4B";
  3256. case MODEL_LARGE: return "0.8B";
  3257. case MODEL_XL: return "1.5B";
  3258. case MODEL_A2_7B: return "A2.7B";
  3259. case MODEL_8x7B: return "8x7B";
  3260. case MODEL_8x22B: return "8x22B";
  3261. case MODEL_16x12B: return "16x12B";
  3262. default: return "?B";
  3263. }
  3264. }
  3265. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3266. switch (type) {
  3267. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3268. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3269. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3270. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3271. default: return "unknown";
  3272. }
  3273. }
  3274. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3275. model.arch = ml.get_arch();
  3276. if (model.arch == LLM_ARCH_UNKNOWN) {
  3277. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3278. }
  3279. }
  3280. static void llm_load_hparams(
  3281. llama_model_loader & ml,
  3282. llama_model & model) {
  3283. auto & hparams = model.hparams;
  3284. const gguf_context * ctx = ml.meta;
  3285. // get metadata as string
  3286. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3287. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3288. if (type == GGUF_TYPE_ARRAY) {
  3289. continue;
  3290. }
  3291. const char * name = gguf_get_key(ctx, i);
  3292. const std::string value = gguf_kv_to_str(ctx, i);
  3293. model.gguf_kv.emplace(name, value);
  3294. }
  3295. // get general kv
  3296. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3297. // get hparams kv
  3298. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3299. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3300. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3301. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3302. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3303. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3304. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3305. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3306. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3307. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3308. if (hparams.n_expert > 0) {
  3309. GGML_ASSERT(hparams.n_expert_used > 0);
  3310. } else {
  3311. GGML_ASSERT(hparams.n_expert_used == 0);
  3312. }
  3313. // n_head_kv is optional, default to n_head
  3314. hparams.n_head_kv = hparams.n_head;
  3315. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3316. bool rope_finetuned = false;
  3317. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3318. hparams.rope_finetuned = rope_finetuned;
  3319. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3320. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3321. // rope_freq_base (optional)
  3322. hparams.rope_freq_base_train = 10000.0f;
  3323. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3324. std::string rope_scaling("linear");
  3325. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3326. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3327. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3328. // rope_freq_scale (inverse of the kv) is optional
  3329. float ropescale = 0.0f;
  3330. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3331. // try the old key name
  3332. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3333. }
  3334. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3335. // sanity check for n_rot (optional)
  3336. {
  3337. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3338. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3339. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3340. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3341. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3342. }
  3343. }
  3344. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3345. // gpt-j n_rot = rotary_dim
  3346. }
  3347. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3348. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3349. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3350. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3351. // arch-specific KVs
  3352. switch (model.arch) {
  3353. case LLM_ARCH_LLAMA:
  3354. {
  3355. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3356. if (hparams.n_expert == 8) {
  3357. switch (hparams.n_layer) {
  3358. case 32: model.type = e_model::MODEL_8x7B; break;
  3359. case 56: model.type = e_model::MODEL_8x22B; break;
  3360. default: model.type = e_model::MODEL_UNKNOWN;
  3361. }
  3362. } else {
  3363. switch (hparams.n_layer) {
  3364. case 22: model.type = e_model::MODEL_1B; break;
  3365. case 26: model.type = e_model::MODEL_3B; break;
  3366. case 32: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_7B : e_model::MODEL_8B; break; // LLaMa 8B v3 uses GQA
  3367. case 40: model.type = e_model::MODEL_13B; break;
  3368. case 48: model.type = e_model::MODEL_34B; break;
  3369. case 60: model.type = e_model::MODEL_30B; break;
  3370. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3371. default: model.type = e_model::MODEL_UNKNOWN;
  3372. }
  3373. }
  3374. } break;
  3375. case LLM_ARCH_MINICPM:
  3376. {
  3377. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3378. switch (hparams.n_layer) {
  3379. case 40: model.type = e_model::MODEL_2B; break;
  3380. default: model.type = e_model::MODEL_UNKNOWN;
  3381. }
  3382. } break;
  3383. case LLM_ARCH_GROK:
  3384. {
  3385. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3386. switch (hparams.n_layer) {
  3387. case 64: model.type = e_model::MODEL_314B; break;
  3388. default: model.type = e_model::MODEL_UNKNOWN;
  3389. }
  3390. } break;
  3391. case LLM_ARCH_FALCON:
  3392. {
  3393. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3394. switch (hparams.n_layer) {
  3395. case 32: model.type = e_model::MODEL_7B; break;
  3396. case 60: model.type = e_model::MODEL_40B; break;
  3397. default: model.type = e_model::MODEL_UNKNOWN;
  3398. }
  3399. } break;
  3400. case LLM_ARCH_BAICHUAN:
  3401. {
  3402. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3403. switch (hparams.n_layer) {
  3404. case 32: model.type = e_model::MODEL_7B; break;
  3405. case 40: model.type = e_model::MODEL_13B; break;
  3406. default: model.type = e_model::MODEL_UNKNOWN;
  3407. }
  3408. if (model.type == e_model::MODEL_13B) {
  3409. // TODO: become GGUF KV parameter
  3410. hparams.f_max_alibi_bias = 8.0f;
  3411. }
  3412. } break;
  3413. case LLM_ARCH_STARCODER:
  3414. {
  3415. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3416. switch (hparams.n_layer) {
  3417. case 24: model.type = e_model::MODEL_1B; break;
  3418. case 36: model.type = e_model::MODEL_3B; break;
  3419. case 42: model.type = e_model::MODEL_7B; break;
  3420. case 40: model.type = e_model::MODEL_15B; break;
  3421. default: model.type = e_model::MODEL_UNKNOWN;
  3422. }
  3423. } break;
  3424. case LLM_ARCH_PERSIMMON:
  3425. {
  3426. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3427. switch (hparams.n_layer) {
  3428. case 36: model.type = e_model::MODEL_8B; break;
  3429. default: model.type = e_model::MODEL_UNKNOWN;
  3430. }
  3431. } break;
  3432. case LLM_ARCH_REFACT:
  3433. {
  3434. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3435. switch (hparams.n_layer) {
  3436. case 32: model.type = e_model::MODEL_1B; break;
  3437. default: model.type = e_model::MODEL_UNKNOWN;
  3438. }
  3439. // TODO: become GGUF KV parameter
  3440. hparams.f_max_alibi_bias = 8.0f;
  3441. } break;
  3442. case LLM_ARCH_BERT:
  3443. {
  3444. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3445. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3446. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3447. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3448. switch (hparams.n_layer) {
  3449. case 3:
  3450. model.type = e_model::MODEL_17M; break; // bge-micro
  3451. case 6:
  3452. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3453. case 12:
  3454. switch (hparams.n_embd) {
  3455. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3456. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3457. } break;
  3458. case 24:
  3459. model.type = e_model::MODEL_335M; break; // bge-large
  3460. }
  3461. } break;
  3462. case LLM_ARCH_NOMIC_BERT:
  3463. {
  3464. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3465. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3466. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3467. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3468. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3469. model.type = e_model::MODEL_137M;
  3470. }
  3471. } break;
  3472. case LLM_ARCH_BLOOM:
  3473. {
  3474. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3475. switch (hparams.n_layer) {
  3476. case 24: model.type = e_model::MODEL_1B; break;
  3477. case 30:
  3478. switch (hparams.n_embd) {
  3479. case 2560: model.type = e_model::MODEL_3B; break;
  3480. case 4096: model.type = e_model::MODEL_7B; break;
  3481. } break;
  3482. }
  3483. // TODO: become GGUF KV parameter
  3484. hparams.f_max_alibi_bias = 8.0f;
  3485. } break;
  3486. case LLM_ARCH_MPT:
  3487. {
  3488. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3489. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3490. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3491. switch (hparams.n_layer) {
  3492. case 32: model.type = e_model::MODEL_7B; break;
  3493. case 48: model.type = e_model::MODEL_30B; break;
  3494. default: model.type = e_model::MODEL_UNKNOWN;
  3495. }
  3496. } break;
  3497. case LLM_ARCH_STABLELM:
  3498. {
  3499. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3500. switch (hparams.n_layer) {
  3501. case 24: model.type = e_model::MODEL_1B; break;
  3502. case 32: model.type = e_model::MODEL_3B; break;
  3503. case 40: model.type = e_model::MODEL_12B; break;
  3504. default: model.type = e_model::MODEL_UNKNOWN;
  3505. }
  3506. } break;
  3507. case LLM_ARCH_QWEN:
  3508. {
  3509. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3510. switch (hparams.n_layer) {
  3511. case 32: model.type = e_model::MODEL_7B; break;
  3512. case 40: model.type = e_model::MODEL_13B; break;
  3513. default: model.type = e_model::MODEL_UNKNOWN;
  3514. }
  3515. } break;
  3516. case LLM_ARCH_QWEN2:
  3517. {
  3518. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3519. switch (hparams.n_layer) {
  3520. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3521. case 32: model.type = e_model::MODEL_7B; break;
  3522. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3523. case 80: model.type = e_model::MODEL_70B; break;
  3524. default: model.type = e_model::MODEL_UNKNOWN;
  3525. }
  3526. } break;
  3527. case LLM_ARCH_QWEN2MOE:
  3528. {
  3529. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3530. switch (hparams.n_layer) {
  3531. case 24: model.type = e_model::MODEL_A2_7B; break;
  3532. default: model.type = e_model::MODEL_UNKNOWN;
  3533. }
  3534. } break;
  3535. case LLM_ARCH_PHI2:
  3536. {
  3537. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3538. switch (hparams.n_layer) {
  3539. case 24: model.type = e_model::MODEL_1B; break;
  3540. case 32: model.type = e_model::MODEL_3B; break;
  3541. default: model.type = e_model::MODEL_UNKNOWN;
  3542. }
  3543. } break;
  3544. case LLM_ARCH_PHI3:
  3545. {
  3546. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3547. switch (hparams.n_layer) {
  3548. case 24: model.type = e_model::MODEL_1B; break;
  3549. case 32: model.type = e_model::MODEL_3B; break;
  3550. default: model.type = e_model::MODEL_UNKNOWN;
  3551. }
  3552. } break;
  3553. case LLM_ARCH_PLAMO:
  3554. {
  3555. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3556. switch (hparams.n_layer) {
  3557. case 40: model.type = e_model::MODEL_13B; break;
  3558. default: model.type = e_model::MODEL_UNKNOWN;
  3559. }
  3560. } break;
  3561. case LLM_ARCH_GPT2:
  3562. {
  3563. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3564. switch (hparams.n_layer) {
  3565. case 12: model.type = e_model::MODEL_SMALL; break;
  3566. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3567. case 36: model.type = e_model::MODEL_LARGE; break;
  3568. case 48: model.type = e_model::MODEL_XL; break;
  3569. default: model.type = e_model::MODEL_UNKNOWN;
  3570. }
  3571. } break;
  3572. case LLM_ARCH_CODESHELL:
  3573. {
  3574. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3575. switch (hparams.n_layer) {
  3576. case 42: model.type = e_model::MODEL_SMALL; break;
  3577. default: model.type = e_model::MODEL_UNKNOWN;
  3578. }
  3579. } break;
  3580. case LLM_ARCH_ORION:
  3581. {
  3582. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3583. switch (hparams.n_layer) {
  3584. case 40: model.type = e_model::MODEL_14B; break;
  3585. default: model.type = e_model::MODEL_UNKNOWN;
  3586. }
  3587. } break;
  3588. case LLM_ARCH_INTERNLM2:
  3589. {
  3590. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3591. switch (hparams.n_layer) {
  3592. case 32: model.type = e_model::MODEL_7B; break;
  3593. case 48: model.type = e_model::MODEL_20B; break;
  3594. default: model.type = e_model::MODEL_UNKNOWN;
  3595. }
  3596. } break;
  3597. case LLM_ARCH_GEMMA:
  3598. {
  3599. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3600. switch (hparams.n_layer) {
  3601. case 18: model.type = e_model::MODEL_2B; break;
  3602. case 28: model.type = e_model::MODEL_7B; break;
  3603. default: model.type = e_model::MODEL_UNKNOWN;
  3604. }
  3605. } break;
  3606. case LLM_ARCH_STARCODER2:
  3607. {
  3608. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3609. switch (hparams.n_layer) {
  3610. case 30: model.type = e_model::MODEL_3B; break;
  3611. case 32: model.type = e_model::MODEL_7B; break;
  3612. case 40: model.type = e_model::MODEL_15B; break;
  3613. default: model.type = e_model::MODEL_UNKNOWN;
  3614. }
  3615. } break;
  3616. case LLM_ARCH_MAMBA:
  3617. {
  3618. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3619. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3620. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3621. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3622. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3623. switch (hparams.n_layer) {
  3624. case 24:
  3625. switch (hparams.n_embd) {
  3626. case 768: model.type = e_model::MODEL_SMALL; break;
  3627. default: model.type = e_model::MODEL_UNKNOWN;
  3628. } break;
  3629. case 48:
  3630. switch (hparams.n_embd) {
  3631. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3632. case 1536: model.type = e_model::MODEL_LARGE; break;
  3633. case 2048: model.type = e_model::MODEL_XL; break;
  3634. default: model.type = e_model::MODEL_UNKNOWN;
  3635. } break;
  3636. case 64:
  3637. switch (hparams.n_embd) {
  3638. case 2560: model.type = e_model::MODEL_3B; break;
  3639. default: model.type = e_model::MODEL_UNKNOWN;
  3640. } break;
  3641. default: model.type = e_model::MODEL_UNKNOWN;
  3642. }
  3643. } break;
  3644. case LLM_ARCH_XVERSE:
  3645. {
  3646. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3647. switch (hparams.n_layer) {
  3648. case 32: model.type = e_model::MODEL_7B; break;
  3649. case 40: model.type = e_model::MODEL_13B; break;
  3650. case 80: model.type = e_model::MODEL_65B; break;
  3651. default: model.type = e_model::MODEL_UNKNOWN;
  3652. }
  3653. } break;
  3654. case LLM_ARCH_COMMAND_R:
  3655. {
  3656. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3657. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3658. switch (hparams.n_layer) {
  3659. case 40: model.type = e_model::MODEL_35B; break;
  3660. default: model.type = e_model::MODEL_UNKNOWN;
  3661. }
  3662. } break;
  3663. case LLM_ARCH_DBRX:
  3664. {
  3665. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3666. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3667. switch (hparams.n_layer) {
  3668. case 40: model.type = e_model::MODEL_16x12B; break;
  3669. default: model.type = e_model::MODEL_UNKNOWN;
  3670. }
  3671. } break;
  3672. case LLM_ARCH_OLMO:
  3673. {
  3674. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3675. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3676. switch (hparams.n_layer) {
  3677. case 22: model.type = e_model::MODEL_1B; break;
  3678. case 32: model.type = e_model::MODEL_7B; break;
  3679. case 80: model.type = e_model::MODEL_70B; break;
  3680. default: model.type = e_model::MODEL_UNKNOWN;
  3681. }
  3682. } break;
  3683. default: (void)0;
  3684. }
  3685. model.ftype = ml.ftype;
  3686. if (hparams.f_max_alibi_bias > 0.0f) {
  3687. hparams.use_alibi = true;
  3688. }
  3689. hparams.rope_type = llama_rope_type(&model);
  3690. }
  3691. // TODO: This should probably be in llama.h
  3692. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3693. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3694. );
  3695. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3696. static void llm_load_vocab(
  3697. llama_model_loader & ml,
  3698. llama_model & model) {
  3699. auto & vocab = model.vocab;
  3700. struct gguf_context * ctx = ml.meta;
  3701. const auto kv = LLM_KV(model.arch);
  3702. // determine vocab type
  3703. {
  3704. std::string tokenizer_model;
  3705. std::string tokenizer_pre;
  3706. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3707. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3708. if (tokenizer_model == "no_vocab") {
  3709. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3710. // default special tokens
  3711. vocab.special_bos_id = -1;
  3712. vocab.special_eos_id = -1;
  3713. vocab.special_unk_id = -1;
  3714. vocab.special_sep_id = -1;
  3715. vocab.special_pad_id = -1;
  3716. vocab.special_cls_id = -1;
  3717. vocab.special_mask_id = -1;
  3718. vocab.linefeed_id = -1;
  3719. return;
  3720. } else if (tokenizer_model == "llama") {
  3721. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3722. // default special tokens
  3723. vocab.special_bos_id = 1;
  3724. vocab.special_eos_id = 2;
  3725. vocab.special_unk_id = 0;
  3726. vocab.special_sep_id = -1;
  3727. vocab.special_pad_id = -1;
  3728. vocab.special_cls_id = -1;
  3729. vocab.special_mask_id = -1;
  3730. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3731. // prior to support of FIM special tokens in GGUF, the following
  3732. // will allow those models to continue to work. The general names
  3733. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3734. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3735. // new versions of these models have been published.
  3736. std::string gen_name;
  3737. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3738. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3739. [](unsigned char c){ return std::tolower(c); });
  3740. if (gen_name.find("code") != std::string::npos) {
  3741. if (model.arch == LLM_ARCH_LLAMA) {
  3742. vocab.special_prefix_id = 32007;
  3743. vocab.special_suffix_id = 32008;
  3744. vocab.special_middle_id = 32009;
  3745. vocab.special_eot_id = 32010;
  3746. } else if (model.arch == LLM_ARCH_GEMMA) {
  3747. vocab.special_prefix_id = 67;
  3748. vocab.special_suffix_id = 69;
  3749. vocab.special_middle_id = 68;
  3750. // TODO: this is not EOT, it is "file separator" token, needs fix
  3751. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3752. //vocab.special_eot_id = 70;
  3753. vocab.special_eot_id = 107;
  3754. }
  3755. }
  3756. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3757. if (add_space_prefix_keyidx != -1) {
  3758. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3759. } // The default value of add_space_prefix is true.
  3760. } else if (tokenizer_model == "bert") {
  3761. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3762. // default special tokens
  3763. vocab.special_bos_id = -1;
  3764. vocab.special_eos_id = -1;
  3765. vocab.special_unk_id = 100;
  3766. vocab.special_sep_id = 102;
  3767. vocab.special_pad_id = 0;
  3768. vocab.special_cls_id = 101;
  3769. vocab.special_mask_id = 103;
  3770. vocab.add_space_prefix = false;
  3771. } else {
  3772. if (tokenizer_model == "gpt2") {
  3773. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3774. } else {
  3775. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
  3776. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3777. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3778. return;
  3779. }
  3780. // read bpe merges and populate bpe ranks
  3781. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3782. if (merges_keyidx == -1) {
  3783. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3784. }
  3785. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3786. for (int i = 0; i < n_merges; i++) {
  3787. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3788. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3789. std::string first;
  3790. std::string second;
  3791. const size_t pos = word.find(' ', 1);
  3792. if (pos != std::string::npos) {
  3793. first = word.substr(0, pos);
  3794. second = word.substr(pos + 1);
  3795. }
  3796. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3797. }
  3798. // default special tokens
  3799. vocab.special_bos_id = 11;
  3800. vocab.special_eos_id = 11;
  3801. vocab.special_unk_id = -1;
  3802. vocab.special_sep_id = -1;
  3803. vocab.special_pad_id = -1;
  3804. vocab.special_cls_id = -1;
  3805. vocab.special_mask_id = -1;
  3806. }
  3807. // for now, only BPE models have pre-tokenizers
  3808. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  3809. if (tokenizer_pre.empty()) {
  3810. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  3811. LLAMA_LOG_WARN("%s: \n", __func__);
  3812. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3813. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  3814. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  3815. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3816. LLAMA_LOG_WARN("%s: \n", __func__);
  3817. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3818. } else if (
  3819. tokenizer_pre == "default") {
  3820. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3821. } else if (
  3822. tokenizer_pre == "llama3" ||
  3823. tokenizer_pre == "llama-v3" ||
  3824. tokenizer_pre == "llama-bpe") {
  3825. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  3826. } else if (
  3827. tokenizer_pre == "deepseek-llm") {
  3828. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  3829. } else if (
  3830. tokenizer_pre == "deepseek-coder") {
  3831. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  3832. } else if (
  3833. tokenizer_pre == "falcon") {
  3834. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  3835. } else if (
  3836. tokenizer_pre == "mpt") {
  3837. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  3838. } else if (
  3839. tokenizer_pre == "starcoder") {
  3840. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  3841. } else if (
  3842. tokenizer_pre == "gpt-2") {
  3843. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  3844. } else if (
  3845. tokenizer_pre == "refact") {
  3846. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  3847. } else if (
  3848. tokenizer_pre == "command-r") {
  3849. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  3850. } else if (
  3851. tokenizer_pre == "qwen2") {
  3852. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  3853. } else if (
  3854. tokenizer_pre == "olmo") {
  3855. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  3856. } else if (
  3857. tokenizer_pre == "dbrx") {
  3858. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  3859. } else {
  3860. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  3861. }
  3862. } else {
  3863. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3864. }
  3865. }
  3866. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3867. if (token_idx == -1) {
  3868. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3869. }
  3870. const float * scores = nullptr;
  3871. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3872. if (score_idx != -1) {
  3873. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3874. }
  3875. const int * toktypes = nullptr;
  3876. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3877. if (toktype_idx != -1) {
  3878. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3879. }
  3880. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3881. vocab.id_to_token.resize(n_vocab);
  3882. for (uint32_t i = 0; i < n_vocab; i++) {
  3883. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3884. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3885. vocab.token_to_id[word] = i;
  3886. auto & token_data = vocab.id_to_token[i];
  3887. token_data.text = std::move(word);
  3888. token_data.score = scores ? scores[i] : 0.0f;
  3889. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3890. }
  3891. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3892. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3893. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3894. try {
  3895. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3896. } catch (const std::exception & e) {
  3897. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3898. vocab.linefeed_id = vocab.special_pad_id;
  3899. }
  3900. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3901. vocab.linefeed_id = vocab.special_pad_id;
  3902. } else {
  3903. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3904. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3905. vocab.linefeed_id = ids[0];
  3906. }
  3907. // special tokens
  3908. {
  3909. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3910. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3911. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3912. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3913. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3914. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3915. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3916. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3917. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3918. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  3919. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  3920. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  3921. };
  3922. for (const auto & it : special_token_types) {
  3923. const std::string & key = kv(std::get<0>(it));
  3924. int32_t & id = std::get<1>(it);
  3925. uint32_t new_id;
  3926. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3927. continue;
  3928. }
  3929. if (new_id >= vocab.id_to_token.size()) {
  3930. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3931. __func__, key.c_str(), new_id, id);
  3932. } else {
  3933. id = new_id;
  3934. }
  3935. }
  3936. // Handle add_bos_token and add_eos_token
  3937. {
  3938. bool temp = true;
  3939. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3940. vocab.special_add_bos = int(temp);
  3941. }
  3942. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3943. vocab.special_add_eos = int(temp);
  3944. }
  3945. }
  3946. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  3947. //
  3948. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  3949. // for now, we apply this workaround to find the EOT token based on its text
  3950. if (vocab.special_eot_id == -1) {
  3951. for (const auto & t : vocab.token_to_id) {
  3952. if (
  3953. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  3954. // need to fix convert script
  3955. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  3956. (t.first == "<|eot_id|>" ||
  3957. t.first == "<|im_end|>" ||
  3958. t.first == "<|end|>" ||
  3959. t.first == "<end_of_turn>"
  3960. )
  3961. ) {
  3962. vocab.special_eot_id = t.second;
  3963. break;
  3964. }
  3965. }
  3966. }
  3967. }
  3968. // build special tokens cache
  3969. {
  3970. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3971. // and will always be correctly labeled in 'added_tokens.json' etc.
  3972. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3973. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3974. // are special tokens.
  3975. // From testing, this appears to correlate 1:1 with special tokens.
  3976. //
  3977. // Counting special tokens and verifying in only one direction
  3978. // is sufficient to detect difference in those two sets.
  3979. //
  3980. uint32_t special_tokens_count_by_type = 0;
  3981. uint32_t special_tokens_count_from_verification = 0;
  3982. bool special_tokens_definition_mismatch = false;
  3983. for (const auto & t : vocab.token_to_id) {
  3984. const auto & token = t.first;
  3985. const auto & id = t.second;
  3986. // Count all non-normal tokens in the vocab while iterating
  3987. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3988. special_tokens_count_by_type++;
  3989. }
  3990. // Skip single character tokens
  3991. if (token.length() > 1) {
  3992. bool is_tokenizable = false;
  3993. // Split token string representation in two, in all possible ways
  3994. // and check if both halves can be matched to a valid token
  3995. for (unsigned i = 1; i < token.length();) {
  3996. const auto left = token.substr(0, i);
  3997. const auto right = token.substr(i);
  3998. // check if we didnt partition in the middle of a utf sequence
  3999. auto utf = utf8_len(left.at(left.length() - 1));
  4000. if (utf == 1) {
  4001. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  4002. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  4003. is_tokenizable = true;
  4004. break;
  4005. }
  4006. i++;
  4007. } else {
  4008. // skip over the rest of multibyte utf sequence
  4009. i += utf - 1;
  4010. }
  4011. }
  4012. if (!is_tokenizable) {
  4013. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  4014. // it's faster to re-filter them here, since there are way less candidates now
  4015. // Calculate a total "utf" length of a token string representation
  4016. size_t utf8_str_len = 0;
  4017. for (unsigned i = 0; i < token.length();) {
  4018. utf8_str_len++;
  4019. i += utf8_len(token.at(i));
  4020. }
  4021. // And skip the ones which are one character
  4022. if (utf8_str_len > 1) {
  4023. // At this point what we have left are special tokens only
  4024. vocab.special_tokens_cache[token] = id;
  4025. // Count manually found special tokens
  4026. special_tokens_count_from_verification++;
  4027. // If this manually found special token is not marked as such, flag a mismatch
  4028. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  4029. special_tokens_definition_mismatch = true;
  4030. }
  4031. }
  4032. }
  4033. }
  4034. }
  4035. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  4036. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  4037. __func__,
  4038. special_tokens_count_from_verification, vocab.id_to_token.size(),
  4039. special_tokens_count_by_type, vocab.id_to_token.size()
  4040. );
  4041. } else {
  4042. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  4043. __func__,
  4044. special_tokens_count_from_verification, vocab.id_to_token.size()
  4045. );
  4046. }
  4047. }
  4048. }
  4049. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4050. const auto & hparams = model.hparams;
  4051. const auto & vocab = model.vocab;
  4052. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4053. // hparams
  4054. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4055. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4056. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4057. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4058. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4059. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4060. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4061. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4062. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4063. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4064. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4065. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4066. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4067. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4068. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4069. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4070. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4071. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4072. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4073. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4074. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4075. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4076. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4077. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4078. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4079. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4080. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4081. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4082. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4083. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4084. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4085. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4086. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4087. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4088. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4089. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4090. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4091. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4092. if (ml.n_elements >= 1e12) {
  4093. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4094. } else if (ml.n_elements >= 1e9) {
  4095. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4096. } else if (ml.n_elements >= 1e6) {
  4097. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4098. } else {
  4099. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4100. }
  4101. if (ml.n_bytes < GiB) {
  4102. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4103. } else {
  4104. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4105. }
  4106. // general kv
  4107. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4108. // special tokens
  4109. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4110. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4111. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4112. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4113. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4114. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4115. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4116. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4117. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4118. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4119. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4120. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4121. }
  4122. // Returns false if cancelled by progress_callback
  4123. static bool llm_load_tensors(
  4124. llama_model_loader & ml,
  4125. llama_model & model,
  4126. int n_gpu_layers,
  4127. enum llama_split_mode split_mode,
  4128. int main_gpu,
  4129. const float * tensor_split,
  4130. bool use_mlock,
  4131. llama_progress_callback progress_callback,
  4132. void * progress_callback_user_data) {
  4133. model.t_start_us = ggml_time_us();
  4134. auto & hparams = model.hparams;
  4135. #ifdef GGML_USE_SYCL
  4136. // disable MoE with SYCL until mul_mat_id is updated
  4137. if (hparams.n_expert > 0) {
  4138. n_gpu_layers = 0;
  4139. }
  4140. #endif
  4141. model.split_mode = split_mode;
  4142. model.main_gpu = main_gpu;
  4143. model.n_gpu_layers = n_gpu_layers;
  4144. const int64_t n_layer = hparams.n_layer;
  4145. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4146. bool use_mmap_buffer = true;
  4147. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4148. model.buft_input = llama_default_buffer_type_cpu(true);
  4149. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4150. model.buft_layer.resize(n_layer);
  4151. // assign cpu layers
  4152. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4153. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4154. }
  4155. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4156. // calculate the split points
  4157. int device_count = llama_get_device_count();
  4158. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4159. std::vector<float> splits(device_count);
  4160. if (all_zero) {
  4161. // default split, by free memory
  4162. for (int i = 0; i < device_count; ++i) {
  4163. splits[i] = llama_get_device_memory(i);
  4164. }
  4165. } else {
  4166. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4167. }
  4168. // sum and normalize the splits to get the split points
  4169. float split_sum = 0.0f;
  4170. for (int i = 0; i < device_count; ++i) {
  4171. split_sum += splits[i];
  4172. splits[i] = split_sum;
  4173. }
  4174. for (int i = 0; i < device_count; ++i) {
  4175. splits[i] /= split_sum;
  4176. }
  4177. // assign the repeating layers to the devices according to the splits
  4178. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4179. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4180. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4181. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  4182. }
  4183. // assign the output layer
  4184. if (n_gpu_layers > n_layer) {
  4185. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4186. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  4187. } else {
  4188. model.buft_output = llama_default_buffer_type_cpu(true);
  4189. }
  4190. } else {
  4191. ggml_backend_buffer_type_t split_buft;
  4192. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4193. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  4194. } else {
  4195. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4196. split_buft = llama_default_buffer_type_offload(main_gpu);
  4197. }
  4198. // assign the repeating layers
  4199. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4200. model.buft_layer[i] = {
  4201. split_buft,
  4202. llama_default_buffer_type_offload(main_gpu)
  4203. };
  4204. }
  4205. // assign the output layer
  4206. if (n_gpu_layers > n_layer) {
  4207. model.buft_output = {
  4208. split_buft,
  4209. llama_default_buffer_type_offload(main_gpu)
  4210. };
  4211. } else {
  4212. model.buft_output = llama_default_buffer_type_cpu(true);
  4213. }
  4214. }
  4215. // count used buffer types
  4216. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4217. buft_layer_count[model.buft_input.buft]++;
  4218. buft_layer_count[model.buft_input.buft_matrix]++;
  4219. buft_layer_count[model.buft_output.buft]++;
  4220. buft_layer_count[model.buft_output.buft_matrix]++;
  4221. for (int64_t i = 0; i < n_layer; ++i) {
  4222. buft_layer_count[model.buft_layer[i].buft]++;
  4223. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4224. }
  4225. // create one context per buffer type
  4226. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4227. // for moe merged tensors
  4228. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4229. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4230. for (auto & it : buft_layer_count) {
  4231. struct ggml_init_params params = {
  4232. /*.mem_size =*/ ctx_size,
  4233. /*.mem_buffer =*/ NULL,
  4234. /*.no_alloc =*/ true,
  4235. };
  4236. ggml_context * ctx = ggml_init(params);
  4237. if (!ctx) {
  4238. throw std::runtime_error(format("failed to create context"));
  4239. }
  4240. ctx_map[it.first] = ctx;
  4241. model.ctxs.push_back(ctx);
  4242. }
  4243. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4244. // create tensors for the weights
  4245. {
  4246. const int64_t n_embd = hparams.n_embd;
  4247. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4248. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4249. const int64_t n_embd_gqa = n_embd_v_gqa;
  4250. const int64_t n_vocab = hparams.n_vocab;
  4251. const int64_t n_vocab_type = hparams.n_vocab_type;
  4252. const int64_t n_ff = hparams.n_ff;
  4253. const int64_t n_expert = hparams.n_expert;
  4254. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4255. throw std::runtime_error("model has expert layers but no expert layers are used");
  4256. }
  4257. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4258. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4259. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4260. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4261. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4262. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4263. model.layers.resize(n_layer);
  4264. const auto tn = LLM_TN(model.arch);
  4265. switch (model.arch) {
  4266. case LLM_ARCH_LLAMA:
  4267. case LLM_ARCH_REFACT:
  4268. case LLM_ARCH_MINICPM:
  4269. {
  4270. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4271. // output
  4272. {
  4273. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4274. if (model.arch != LLM_ARCH_MINICPM){
  4275. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4276. // if output is NULL, init from the input tok embed
  4277. if (model.output == NULL) {
  4278. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4279. ml.n_created--; // artificial tensor
  4280. ml.size_data += ggml_nbytes(model.output);
  4281. }
  4282. }
  4283. }
  4284. for (int i = 0; i < n_layer; ++i) {
  4285. ggml_context * ctx_layer = ctx_for_layer(i);
  4286. ggml_context * ctx_split = ctx_for_layer_split(i);
  4287. auto & layer = model.layers[i];
  4288. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4289. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4290. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4291. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4292. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4293. // optional bias tensors
  4294. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4295. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4296. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4297. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4298. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4299. if (n_expert == 0) {
  4300. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4301. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4302. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4303. } else {
  4304. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4305. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4306. if (layer.ffn_gate_exps) {
  4307. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4308. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4309. } else {
  4310. // merge split expert into a single tensor for compatibility with older models
  4311. // requires disabling mmap
  4312. use_mmap_buffer = false;
  4313. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4314. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4315. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4316. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4317. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4318. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4319. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4320. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4321. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4322. for (uint32_t x = 0; x < n_expert; ++x) {
  4323. // the individual experts are loaded into a view of the merged tensor
  4324. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4325. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4326. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4327. }
  4328. }
  4329. }
  4330. }
  4331. } break;
  4332. case LLM_ARCH_GROK:
  4333. {
  4334. if (n_expert == 0) {
  4335. throw std::runtime_error("Grok model cannot have zero experts");
  4336. }
  4337. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4338. // output
  4339. {
  4340. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4341. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4342. // if output is NULL, init from the input tok embed
  4343. if (model.output == NULL) {
  4344. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4345. ml.n_created--; // artificial tensor
  4346. ml.size_data += ggml_nbytes(model.output);
  4347. }
  4348. }
  4349. for (int i = 0; i < n_layer; ++i) {
  4350. ggml_context * ctx_layer = ctx_for_layer(i);
  4351. ggml_context * ctx_split = ctx_for_layer_split(i);
  4352. auto & layer = model.layers[i];
  4353. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4354. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4355. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4356. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4357. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4358. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4359. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4360. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4361. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4362. if (layer.ffn_gate_exps) {
  4363. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4364. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4365. } else {
  4366. // merge split expert into a single tensor for compatibility with older models
  4367. // requires disabling mmap
  4368. use_mmap_buffer = false;
  4369. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4370. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4371. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4372. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4373. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4374. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4375. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4376. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4377. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4378. for (uint32_t x = 0; x < n_expert; ++x) {
  4379. // the individual experts are loaded into a view of the merged tensor
  4380. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4381. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4382. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4383. }
  4384. }
  4385. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4386. }
  4387. } break;
  4388. case LLM_ARCH_DBRX:
  4389. {
  4390. if (n_expert == 0) {
  4391. throw std::runtime_error("DBRX model cannot have zero experts");
  4392. }
  4393. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4394. // output
  4395. {
  4396. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4397. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4398. }
  4399. for (int i = 0; i < n_layer; ++i) {
  4400. ggml_context * ctx_layer = ctx_for_layer(i);
  4401. ggml_context * ctx_split = ctx_for_layer_split(i);
  4402. auto & layer = model.layers[i];
  4403. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4404. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4405. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4406. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4407. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4408. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4409. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4410. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4411. }
  4412. } break;
  4413. case LLM_ARCH_BAICHUAN:
  4414. {
  4415. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4416. {
  4417. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4418. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4419. }
  4420. for (int i = 0; i < n_layer; ++i) {
  4421. ggml_context * ctx_layer = ctx_for_layer(i);
  4422. ggml_context * ctx_split = ctx_for_layer_split(i);
  4423. auto & layer = model.layers[i];
  4424. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4425. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4426. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4427. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4428. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4429. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4430. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4431. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4432. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4433. }
  4434. } break;
  4435. case LLM_ARCH_FALCON:
  4436. {
  4437. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4438. // output
  4439. {
  4440. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4441. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4442. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4443. if (!model.output) {
  4444. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4445. ml.n_created--; // artificial tensor
  4446. ml.size_data += ggml_nbytes(model.output);
  4447. }
  4448. }
  4449. for (int i = 0; i < n_layer; ++i) {
  4450. ggml_context * ctx_layer = ctx_for_layer(i);
  4451. ggml_context * ctx_split = ctx_for_layer_split(i);
  4452. auto & layer = model.layers[i];
  4453. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4454. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4455. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4456. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4457. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4458. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4459. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4460. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4461. }
  4462. } break;
  4463. case LLM_ARCH_STARCODER:
  4464. {
  4465. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4466. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4467. // output
  4468. {
  4469. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4470. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4471. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4472. }
  4473. for (int i = 0; i < n_layer; ++i) {
  4474. ggml_context * ctx_layer = ctx_for_layer(i);
  4475. ggml_context * ctx_split = ctx_for_layer_split(i);
  4476. auto & layer = model.layers[i];
  4477. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4478. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4479. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4480. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4481. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4482. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4483. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4484. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4485. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4486. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4487. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4488. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4489. }
  4490. } break;
  4491. case LLM_ARCH_PERSIMMON:
  4492. {
  4493. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4494. {
  4495. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4496. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4497. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4498. }
  4499. for (int i = 0; i < n_layer; ++i) {
  4500. ggml_context * ctx_layer = ctx_for_layer(i);
  4501. ggml_context * ctx_split = ctx_for_layer_split(i);
  4502. auto & layer = model.layers[i];
  4503. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4504. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4505. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4506. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4507. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4508. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4509. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4510. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4511. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4512. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4513. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4514. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4515. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4516. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4517. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4518. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4519. }
  4520. } break;
  4521. case LLM_ARCH_BERT:
  4522. case LLM_ARCH_NOMIC_BERT:
  4523. {
  4524. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4525. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4526. if (model.arch == LLM_ARCH_BERT) {
  4527. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4528. }
  4529. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4530. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4531. for (int i = 0; i < n_layer; ++i) {
  4532. ggml_context * ctx_layer = ctx_for_layer(i);
  4533. ggml_context * ctx_split = ctx_for_layer_split(i);
  4534. auto & layer = model.layers[i];
  4535. if (model.arch == LLM_ARCH_BERT) {
  4536. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4537. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4538. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4539. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4540. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4541. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4542. } else {
  4543. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4544. }
  4545. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4546. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4547. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4548. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4549. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4550. if (model.arch == LLM_ARCH_BERT) {
  4551. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4552. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4553. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4554. } else {
  4555. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4556. }
  4557. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4558. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4559. }
  4560. } break;
  4561. case LLM_ARCH_BLOOM:
  4562. {
  4563. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4564. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4565. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4566. // output
  4567. {
  4568. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4569. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4570. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4571. }
  4572. for (int i = 0; i < n_layer; ++i) {
  4573. ggml_context * ctx_layer = ctx_for_layer(i);
  4574. ggml_context * ctx_split = ctx_for_layer_split(i);
  4575. auto & layer = model.layers[i];
  4576. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4577. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4578. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4579. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4580. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4581. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4582. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4583. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4584. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4585. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4586. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4587. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4588. }
  4589. } break;
  4590. case LLM_ARCH_MPT:
  4591. {
  4592. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4593. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4594. // output
  4595. {
  4596. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4597. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4598. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4599. if (!model.output) {
  4600. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4601. ml.n_created--; // artificial tensor
  4602. ml.size_data += ggml_nbytes(model.output);
  4603. }
  4604. }
  4605. for (int i = 0; i < n_layer; ++i) {
  4606. ggml_context * ctx_layer = ctx_for_layer(i);
  4607. ggml_context * ctx_split = ctx_for_layer_split(i);
  4608. auto & layer = model.layers[i];
  4609. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4610. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4611. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4612. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4613. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4614. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4615. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4616. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4617. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4618. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4619. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4620. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4621. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4622. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4623. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4624. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4625. // AWQ ScaleActivation layer
  4626. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4627. }
  4628. } break;
  4629. case LLM_ARCH_STABLELM:
  4630. {
  4631. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4632. // output
  4633. {
  4634. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4635. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4636. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4637. }
  4638. for (int i = 0; i < n_layer; ++i) {
  4639. ggml_context * ctx_layer = ctx_for_layer(i);
  4640. ggml_context * ctx_split = ctx_for_layer_split(i);
  4641. auto & layer = model.layers[i];
  4642. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4643. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4644. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4645. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4646. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4647. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4648. // optional bias tensors, present in Stable LM 2 1.6B
  4649. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4650. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4651. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4652. // optional q and k layernorms, present in StableLM 2 12B
  4653. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4654. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4655. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4656. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4657. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4658. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4659. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4660. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4661. }
  4662. } break;
  4663. case LLM_ARCH_QWEN:
  4664. {
  4665. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4666. // output
  4667. {
  4668. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4669. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4670. }
  4671. for (int i = 0; i < n_layer; ++i) {
  4672. ggml_context * ctx_layer = ctx_for_layer(i);
  4673. ggml_context * ctx_split = ctx_for_layer_split(i);
  4674. auto & layer = model.layers[i];
  4675. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4676. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4677. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4678. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4679. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4680. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4681. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4682. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4683. }
  4684. } break;
  4685. case LLM_ARCH_QWEN2:
  4686. {
  4687. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4688. // output
  4689. {
  4690. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4691. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4692. // if output is NULL, init from the input tok embed
  4693. if (model.output == NULL) {
  4694. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4695. ml.n_created--; // artificial tensor
  4696. ml.size_data += ggml_nbytes(model.output);
  4697. }
  4698. }
  4699. for (int i = 0; i < n_layer; ++i) {
  4700. ggml_context * ctx_layer = ctx_for_layer(i);
  4701. ggml_context * ctx_split = ctx_for_layer_split(i);
  4702. auto & layer = model.layers[i];
  4703. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4704. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4705. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4706. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4707. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4708. // optional bias tensors
  4709. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4710. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4711. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4712. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4713. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4714. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4715. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4716. }
  4717. } break;
  4718. case LLM_ARCH_QWEN2MOE:
  4719. {
  4720. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4721. // output
  4722. {
  4723. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4724. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4725. }
  4726. for (int i = 0; i < n_layer; ++i) {
  4727. ggml_context * ctx_layer = ctx_for_layer(i);
  4728. ggml_context * ctx_split = ctx_for_layer_split(i);
  4729. auto & layer = model.layers[i];
  4730. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4731. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4732. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4733. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4734. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4735. // optional bias tensors
  4736. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4737. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4738. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4739. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4740. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4741. GGML_ASSERT(hparams.n_expert > 0);
  4742. GGML_ASSERT(hparams.n_expert_used > 0);
  4743. // MoE branch
  4744. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4745. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4746. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4747. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4748. // Shared expert branch
  4749. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4750. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4751. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4752. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4753. }
  4754. } break;
  4755. case LLM_ARCH_PHI2:
  4756. {
  4757. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4758. // output
  4759. {
  4760. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4761. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4762. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4763. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4764. }
  4765. for (int i = 0; i < n_layer; ++i) {
  4766. ggml_context * ctx_layer = ctx_for_layer(i);
  4767. ggml_context * ctx_split = ctx_for_layer_split(i);
  4768. auto & layer = model.layers[i];
  4769. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4770. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4771. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4772. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4773. if (layer.wqkv == nullptr) {
  4774. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4775. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4776. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4777. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4778. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4779. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4780. }
  4781. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4782. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4783. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4784. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4785. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4786. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4787. }
  4788. } break;
  4789. case LLM_ARCH_PHI3:
  4790. {
  4791. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4792. // output
  4793. {
  4794. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4795. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4796. }
  4797. for (int i = 0; i < n_layer; ++i) {
  4798. ggml_context* ctx_layer = ctx_for_layer(i);
  4799. ggml_context* ctx_split = ctx_for_layer_split(i);
  4800. auto& layer = model.layers[i];
  4801. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4802. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
  4803. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4804. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4805. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4806. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4807. }
  4808. } break;
  4809. case LLM_ARCH_PLAMO:
  4810. {
  4811. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4812. // output
  4813. {
  4814. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4815. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4816. }
  4817. for (int i = 0; i < n_layer; ++i) {
  4818. ggml_context * ctx_layer = ctx_for_layer(i);
  4819. ggml_context * ctx_split = ctx_for_layer_split(i);
  4820. auto & layer = model.layers[i];
  4821. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4822. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4823. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4824. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4825. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4826. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4827. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4828. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4829. }
  4830. } break;
  4831. case LLM_ARCH_GPT2:
  4832. {
  4833. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4834. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4835. // output
  4836. {
  4837. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4838. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4839. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4840. }
  4841. for (int i = 0; i < n_layer; ++i) {
  4842. ggml_context * ctx_layer = ctx_for_layer(i);
  4843. ggml_context * ctx_split = ctx_for_layer_split(i);
  4844. auto & layer = model.layers[i];
  4845. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4846. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4847. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4848. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4849. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4850. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4851. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4852. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4853. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4854. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4855. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4856. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4857. }
  4858. } break;
  4859. case LLM_ARCH_CODESHELL:
  4860. {
  4861. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4862. // output
  4863. {
  4864. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4865. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4866. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4867. }
  4868. for (int i = 0; i < n_layer; ++i) {
  4869. ggml_context * ctx_layer = ctx_for_layer(i);
  4870. ggml_context * ctx_split = ctx_for_layer_split(i);
  4871. auto & layer = model.layers[i];
  4872. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4873. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4874. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4875. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4876. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4877. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4878. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4879. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4880. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4881. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4882. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4883. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4884. }
  4885. } break;
  4886. case LLM_ARCH_ORION:
  4887. {
  4888. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4889. {
  4890. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4891. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4892. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4893. }
  4894. for (int i = 0; i < n_layer; ++i) {
  4895. ggml_context * ctx_layer = ctx_for_layer(i);
  4896. ggml_context * ctx_split = ctx_for_layer_split(i);
  4897. auto & layer = model.layers[i];
  4898. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4899. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4900. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4901. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4902. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4903. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4904. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4905. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4906. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4907. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4908. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4909. }
  4910. } break;
  4911. case LLM_ARCH_INTERNLM2:
  4912. {
  4913. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4914. // output
  4915. {
  4916. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4917. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4918. }
  4919. for (int i = 0; i < n_layer; ++i) {
  4920. ggml_context * ctx_layer = ctx_for_layer(i);
  4921. ggml_context * ctx_split = ctx_for_layer_split(i);
  4922. auto & layer = model.layers[i];
  4923. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4924. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4925. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4926. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4927. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4928. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4929. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4930. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4931. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4932. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4933. }
  4934. } break;
  4935. case LLM_ARCH_GEMMA:
  4936. {
  4937. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4938. // output
  4939. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4940. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  4941. ml.n_created--; // artificial tensor
  4942. ml.size_data += ggml_nbytes(model.output);
  4943. const int64_t n_ff = hparams.n_ff;
  4944. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4945. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4946. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4947. for (uint32_t i = 0; i < n_layer; ++i) {
  4948. ggml_context * ctx_layer = ctx_for_layer(i);
  4949. ggml_context * ctx_split = ctx_for_layer_split(i);
  4950. auto & layer = model.layers[i];
  4951. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4952. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  4953. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  4954. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  4955. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  4956. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4957. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4958. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4959. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4960. }
  4961. } break;
  4962. case LLM_ARCH_STARCODER2:
  4963. {
  4964. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4965. // output
  4966. {
  4967. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4968. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4969. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4970. // if output is NULL, init from the input tok embed
  4971. if (model.output == NULL) {
  4972. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4973. ml.n_created--; // artificial tensor
  4974. ml.size_data += ggml_nbytes(model.output);
  4975. }
  4976. }
  4977. for (int i = 0; i < n_layer; ++i) {
  4978. ggml_context * ctx_layer = ctx_for_layer(i);
  4979. ggml_context * ctx_split = ctx_for_layer_split(i);
  4980. auto & layer = model.layers[i];
  4981. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4982. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4983. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4984. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4985. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4986. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4987. // optional bias tensors
  4988. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4989. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4990. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4991. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4992. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4993. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4994. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4995. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4996. // optional bias tensors
  4997. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4998. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  4999. }
  5000. } break;
  5001. case LLM_ARCH_MAMBA:
  5002. {
  5003. const int64_t d_conv = hparams.ssm_d_conv;
  5004. const int64_t d_inner = hparams.ssm_d_inner;
  5005. const int64_t d_state = hparams.ssm_d_state;
  5006. const int64_t dt_rank = hparams.ssm_dt_rank;
  5007. // only an expansion factor of 2 is supported for now
  5008. GGML_ASSERT(2 * n_embd == d_inner);
  5009. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5010. // output
  5011. {
  5012. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5013. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5014. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5015. if (model.output == NULL) {
  5016. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5017. ml.n_created--; // artificial tensor
  5018. ml.size_data += ggml_nbytes(model.output);
  5019. }
  5020. }
  5021. for (int i = 0; i < n_layer; ++i) {
  5022. ggml_context * ctx_layer = ctx_for_layer(i);
  5023. ggml_context * ctx_split = ctx_for_layer_split(i);
  5024. auto & layer = model.layers[i];
  5025. // norm
  5026. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5027. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5028. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5029. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5030. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5031. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5032. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5033. // no "weight" suffix for these
  5034. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5035. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5036. // out_proj
  5037. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5038. }
  5039. } break;
  5040. case LLM_ARCH_XVERSE:
  5041. {
  5042. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5043. {
  5044. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5045. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5046. }
  5047. for (int i = 0; i < n_layer; ++i) {
  5048. ggml_context * ctx_layer = ctx_for_layer(i);
  5049. ggml_context * ctx_split = ctx_for_layer_split(i);
  5050. auto & layer = model.layers[i];
  5051. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5052. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5053. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5054. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5055. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5056. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5057. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5058. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5059. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5060. }
  5061. } break;
  5062. case LLM_ARCH_COMMAND_R:
  5063. {
  5064. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5065. // output
  5066. {
  5067. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5068. // init output from the input tok embed
  5069. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5070. ml.n_created--; // artificial tensor
  5071. ml.size_data += ggml_nbytes(model.output);
  5072. }
  5073. for (int i = 0; i < n_layer; ++i) {
  5074. ggml_context * ctx_layer = ctx_for_layer(i);
  5075. ggml_context * ctx_split = ctx_for_layer_split(i);
  5076. auto & layer = model.layers[i];
  5077. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5078. if (n_layer >= 64){
  5079. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5080. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5081. }
  5082. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5083. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5084. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5085. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5086. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5087. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5088. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5089. }
  5090. } break;
  5091. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5092. {
  5093. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5094. // output
  5095. {
  5096. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5097. // if output is NULL, init from the input tok embed
  5098. if (model.output == NULL) {
  5099. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5100. ml.n_created--; // artificial tensor
  5101. ml.size_data += ggml_nbytes(model.output);
  5102. }
  5103. }
  5104. for (int i = 0; i < n_layer; ++i) {
  5105. ggml_context * ctx_split = ctx_for_layer_split(i);
  5106. auto & layer = model.layers[i];
  5107. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5108. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5109. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5110. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5111. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5112. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5113. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5114. }
  5115. } break;
  5116. default:
  5117. throw std::runtime_error("unknown architecture");
  5118. }
  5119. }
  5120. ml.done_getting_tensors();
  5121. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5122. model.mappings.reserve(ml.mappings.size());
  5123. // create the backend buffers
  5124. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5125. ctx_bufs.reserve(ctx_map.size());
  5126. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5127. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5128. model.bufs.reserve(n_max_backend_buffer);
  5129. for (auto & it : ctx_map) {
  5130. ggml_backend_buffer_type_t buft = it.first;
  5131. ggml_context * ctx = it.second;
  5132. llama_buf_map bufs;
  5133. bufs.reserve(n_max_backend_buffer);
  5134. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5135. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5136. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5137. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5138. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5139. void * addr = nullptr;
  5140. size_t first, last;
  5141. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5142. if (first >= last) {
  5143. continue;
  5144. }
  5145. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5146. if (buf == nullptr) {
  5147. throw std::runtime_error("unable to allocate backend CPU buffer");
  5148. }
  5149. model.bufs.push_back(buf);
  5150. bufs.emplace(idx, buf);
  5151. #ifdef GGML_USE_CUDA
  5152. if (n_layer >= n_gpu_layers) {
  5153. ggml_backend_cuda_register_host_buffer(
  5154. ggml_backend_buffer_get_base(buf),
  5155. ggml_backend_buffer_get_size(buf));
  5156. }
  5157. #endif
  5158. }
  5159. }
  5160. #ifdef GGML_USE_METAL
  5161. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5162. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5163. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5164. void * addr = nullptr;
  5165. size_t first, last;
  5166. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5167. if (first >= last) {
  5168. continue;
  5169. }
  5170. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5171. if (buf == nullptr) {
  5172. throw std::runtime_error("unable to allocate backend metal buffer");
  5173. }
  5174. model.bufs.push_back(buf);
  5175. bufs.emplace(idx, buf);
  5176. }
  5177. }
  5178. #endif
  5179. else {
  5180. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5181. if (buf == nullptr) {
  5182. throw std::runtime_error("unable to allocate backend buffer");
  5183. }
  5184. model.bufs.push_back(buf);
  5185. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5186. model.mlock_bufs.emplace_back(new llama_mlock);
  5187. auto & mlock_buf = model.mlock_bufs.back();
  5188. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5189. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5190. }
  5191. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5192. bufs.emplace(idx, buf);
  5193. }
  5194. }
  5195. if (bufs.empty()) {
  5196. throw std::runtime_error("failed to allocate buffer");
  5197. }
  5198. for (auto & buf : bufs) {
  5199. // indicate that this buffer contains weights
  5200. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5201. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5202. }
  5203. ctx_bufs.emplace_back(ctx, bufs);
  5204. }
  5205. if (llama_supports_gpu_offload()) {
  5206. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5207. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5208. if (n_gpu_layers > (int) hparams.n_layer) {
  5209. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5210. }
  5211. const int max_backend_supported_layers = hparams.n_layer + 1;
  5212. const int max_offloadable_layers = hparams.n_layer + 1;
  5213. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5214. }
  5215. // print memory requirements
  5216. for (ggml_backend_buffer_t buf : model.bufs) {
  5217. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5218. }
  5219. // populate tensors_by_name
  5220. for (ggml_context * ctx : model.ctxs) {
  5221. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5222. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5223. }
  5224. }
  5225. // load tensor data
  5226. for (auto & it : ctx_bufs) {
  5227. ggml_context * ctx = it.first;
  5228. auto & bufs = it.second;
  5229. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5230. return false;
  5231. }
  5232. }
  5233. if (use_mmap_buffer) {
  5234. for (auto & mapping : ml.mappings) {
  5235. model.mappings.emplace_back(std::move(mapping));
  5236. }
  5237. }
  5238. // loading time will be recalculate after the first eval, so
  5239. // we take page faults deferred by mmap() into consideration
  5240. model.t_load_us = ggml_time_us() - model.t_start_us;
  5241. return true;
  5242. }
  5243. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5244. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5245. try {
  5246. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5247. model.hparams.vocab_only = params.vocab_only;
  5248. try {
  5249. llm_load_arch(ml, model);
  5250. } catch(const std::exception & e) {
  5251. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5252. }
  5253. try {
  5254. llm_load_hparams(ml, model);
  5255. } catch(const std::exception & e) {
  5256. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5257. }
  5258. try {
  5259. llm_load_vocab(ml, model);
  5260. } catch(const std::exception & e) {
  5261. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5262. }
  5263. llm_load_print_meta(ml, model);
  5264. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5265. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5266. throw std::runtime_error("vocab size mismatch");
  5267. }
  5268. if (params.vocab_only) {
  5269. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5270. return 0;
  5271. }
  5272. #ifdef GGML_USE_KOMPUTE
  5273. if (params.n_gpu_layers > 0 && (
  5274. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5275. || !(
  5276. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5277. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5278. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5279. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5280. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5281. )
  5282. )) {
  5283. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5284. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5285. params.n_gpu_layers = 0;
  5286. }
  5287. #endif
  5288. #ifdef GGML_USE_SYCL
  5289. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5290. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5291. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5292. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5293. } else {
  5294. ggml_backend_sycl_set_mul_device_mode();
  5295. }
  5296. #endif
  5297. if (!llm_load_tensors(
  5298. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5299. params.progress_callback, params.progress_callback_user_data
  5300. )) {
  5301. return -2;
  5302. }
  5303. } catch (const std::exception & err) {
  5304. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5305. return -1;
  5306. }
  5307. return 0;
  5308. }
  5309. //
  5310. // llm_build
  5311. //
  5312. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5313. enum llm_ffn_op_type {
  5314. LLM_FFN_SILU,
  5315. LLM_FFN_GELU,
  5316. LLM_FFN_RELU,
  5317. LLM_FFN_RELU_SQR,
  5318. };
  5319. enum llm_ffn_gate_type {
  5320. LLM_FFN_SEQ,
  5321. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5322. };
  5323. enum llm_norm_type {
  5324. LLM_NORM,
  5325. LLM_NORM_RMS,
  5326. };
  5327. static struct ggml_tensor * llm_build_inp_embd(
  5328. struct ggml_context * ctx,
  5329. struct llama_context & lctx,
  5330. const llama_hparams & hparams,
  5331. const llama_batch & batch,
  5332. struct ggml_tensor * tok_embd,
  5333. const llm_build_cb & cb) {
  5334. const int64_t n_embd = hparams.n_embd;
  5335. struct ggml_tensor * inpL;
  5336. if (batch.token) {
  5337. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5338. cb(lctx.inp_tokens, "inp_tokens", -1);
  5339. ggml_set_input(lctx.inp_tokens);
  5340. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5341. } else {
  5342. #ifdef GGML_USE_MPI
  5343. GGML_ASSERT(false && "not implemented");
  5344. #endif
  5345. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5346. inpL = lctx.inp_embd;
  5347. ggml_set_input(lctx.inp_embd);
  5348. }
  5349. cb(inpL, "inp_embd", -1);
  5350. return inpL;
  5351. }
  5352. static void llm_build_kv_store(
  5353. struct ggml_context * ctx,
  5354. const llama_hparams & hparams,
  5355. const llama_cparams & cparams,
  5356. const llama_kv_cache & kv,
  5357. struct ggml_cgraph * graph,
  5358. struct ggml_tensor * k_cur,
  5359. struct ggml_tensor * v_cur,
  5360. int32_t n_tokens,
  5361. int32_t kv_head,
  5362. const llm_build_cb & cb,
  5363. int64_t il) {
  5364. const int64_t n_ctx = cparams.n_ctx;
  5365. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5366. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5367. GGML_ASSERT(kv.size == n_ctx);
  5368. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5369. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5370. cb(k_cache_view, "k_cache_view", il);
  5371. // note: storing RoPE-ed version of K in the KV cache
  5372. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5373. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5374. struct ggml_tensor * v_cache_view = nullptr;
  5375. if (cparams.flash_attn) {
  5376. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5377. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5378. } else {
  5379. // note: the V cache is transposed when not using flash attention
  5380. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5381. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5382. (kv_head)*ggml_element_size(kv.v_l[il]));
  5383. v_cur = ggml_transpose(ctx, v_cur);
  5384. }
  5385. cb(v_cache_view, "v_cache_view", il);
  5386. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5387. }
  5388. static struct ggml_tensor * llm_build_norm(
  5389. struct ggml_context * ctx,
  5390. struct ggml_tensor * cur,
  5391. const llama_hparams & hparams,
  5392. struct ggml_tensor * mw,
  5393. struct ggml_tensor * mb,
  5394. llm_norm_type type,
  5395. const llm_build_cb & cb,
  5396. int il) {
  5397. switch (type) {
  5398. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5399. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5400. }
  5401. if (mw || mb) {
  5402. cb(cur, "norm", il);
  5403. }
  5404. if (mw) {
  5405. cur = ggml_mul(ctx, cur, mw);
  5406. if (mb) {
  5407. cb(cur, "norm_w", il);
  5408. }
  5409. }
  5410. if (mb) {
  5411. cur = ggml_add(ctx, cur, mb);
  5412. }
  5413. return cur;
  5414. }
  5415. static struct ggml_tensor * llm_build_ffn(
  5416. struct ggml_context * ctx,
  5417. struct ggml_tensor * cur,
  5418. struct ggml_tensor * up,
  5419. struct ggml_tensor * up_b,
  5420. struct ggml_tensor * gate,
  5421. struct ggml_tensor * gate_b,
  5422. struct ggml_tensor * down,
  5423. struct ggml_tensor * down_b,
  5424. struct ggml_tensor * act_scales,
  5425. llm_ffn_op_type type_op,
  5426. llm_ffn_gate_type type_gate,
  5427. const llm_build_cb & cb,
  5428. int il) {
  5429. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  5430. cb(tmp, "ffn_up", il);
  5431. if (up_b) {
  5432. tmp = ggml_add(ctx, tmp, up_b);
  5433. cb(tmp, "ffn_up_b", il);
  5434. }
  5435. if (gate) {
  5436. switch (type_gate) {
  5437. case LLM_FFN_SEQ:
  5438. {
  5439. cur = ggml_mul_mat(ctx, gate, tmp);
  5440. cb(cur, "ffn_gate", il);
  5441. } break;
  5442. case LLM_FFN_PAR:
  5443. {
  5444. cur = ggml_mul_mat(ctx, gate, cur);
  5445. cb(cur, "ffn_gate", il);
  5446. } break;
  5447. }
  5448. if (gate_b) {
  5449. cur = ggml_add(ctx, cur, gate_b);
  5450. cb(cur, "ffn_gate_b", il);
  5451. }
  5452. } else {
  5453. cur = tmp;
  5454. }
  5455. switch (type_op) {
  5456. case LLM_FFN_SILU:
  5457. {
  5458. cur = ggml_silu(ctx, cur);
  5459. cb(cur, "ffn_silu", il);
  5460. } break;
  5461. case LLM_FFN_GELU:
  5462. {
  5463. cur = ggml_gelu(ctx, cur);
  5464. cb(cur, "ffn_gelu", il);
  5465. if (act_scales != NULL) {
  5466. cur = ggml_div(ctx, cur, act_scales);
  5467. cb(cur, "ffn_act", il);
  5468. }
  5469. } break;
  5470. case LLM_FFN_RELU:
  5471. {
  5472. cur = ggml_relu(ctx, cur);
  5473. cb(cur, "ffn_relu", il);
  5474. } break;
  5475. case LLM_FFN_RELU_SQR:
  5476. {
  5477. cur = ggml_relu(ctx, cur);
  5478. cb(cur, "ffn_relu", il);
  5479. cur = ggml_sqr(ctx, cur);
  5480. cb(cur, "ffn_sqr(relu)", il);
  5481. } break;
  5482. }
  5483. if (type_gate == LLM_FFN_PAR) {
  5484. cur = ggml_mul(ctx, cur, tmp);
  5485. cb(cur, "ffn_gate_par", il);
  5486. }
  5487. cur = ggml_mul_mat(ctx, down, cur);
  5488. if (down_b) {
  5489. cb(cur, "ffn_down", il);
  5490. }
  5491. if (down_b) {
  5492. cur = ggml_add(ctx, cur, down_b);
  5493. }
  5494. return cur;
  5495. }
  5496. static struct ggml_tensor * llm_build_moe_ffn(
  5497. struct ggml_context * ctx,
  5498. struct ggml_tensor * cur,
  5499. struct ggml_tensor * gate_inp,
  5500. struct ggml_tensor * up_exps,
  5501. struct ggml_tensor * gate_exps,
  5502. struct ggml_tensor * down_exps,
  5503. int64_t n_expert,
  5504. int64_t n_expert_used,
  5505. llm_ffn_op_type type_op,
  5506. bool norm_w,
  5507. const llm_build_cb & cb,
  5508. int il) {
  5509. int64_t n_embd = cur->ne[0];
  5510. int64_t n_tokens = cur->ne[1];
  5511. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5512. cb(logits, "ffn_moe_logits", il);
  5513. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5514. cb(probs, "ffn_moe_probs", il);
  5515. // select experts
  5516. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5517. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5518. cb(selected_experts, "ffn_moe_topk", il);
  5519. ggml_tensor * weights = ggml_get_rows(ctx,
  5520. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5521. cb(weights, "ffn_moe_weights", il);
  5522. if (norm_w) {
  5523. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5524. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5525. cb(weights_sum, "ffn_moe_weights_sum", il);
  5526. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5527. cb(weights, "ffn_moe_weights_norm", il);
  5528. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5529. }
  5530. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5531. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5532. cb(up, "ffn_moe_up", il);
  5533. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5534. cb(gate, "ffn_moe_gate", il);
  5535. switch (type_op) {
  5536. case LLM_FFN_SILU:
  5537. {
  5538. gate = ggml_silu(ctx, gate);
  5539. cb(gate, "ffn_moe_silu", il);
  5540. } break;
  5541. case LLM_FFN_GELU:
  5542. {
  5543. gate = ggml_gelu(ctx, gate);
  5544. cb(gate, "ffn_moe_gelu", il);
  5545. } break;
  5546. default:
  5547. GGML_ASSERT(false);
  5548. }
  5549. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5550. cb(par, "ffn_moe_gate_par", il);
  5551. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5552. cb(experts, "ffn_moe_down", il);
  5553. experts = ggml_mul(ctx, experts, weights);
  5554. // aggregate experts
  5555. ggml_tensor * moe_out = nullptr;
  5556. for (int i = 0; i < n_expert_used; ++i) {
  5557. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5558. experts->nb[2], i*experts->nb[1]);
  5559. if (i == 0) {
  5560. moe_out = cur_expert;
  5561. } else {
  5562. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5563. }
  5564. }
  5565. if (n_expert_used == 1) {
  5566. // avoid returning a non-contiguous tensor
  5567. moe_out = ggml_cont(ctx, moe_out);
  5568. }
  5569. return moe_out;
  5570. }
  5571. static struct ggml_tensor * llm_build_kqv(
  5572. struct ggml_context * ctx,
  5573. const llama_model & model,
  5574. const llama_hparams & hparams,
  5575. const llama_cparams & cparams,
  5576. const llama_kv_cache & kv,
  5577. struct ggml_cgraph * graph,
  5578. struct ggml_tensor * wo,
  5579. struct ggml_tensor * wo_b,
  5580. struct ggml_tensor * q_cur,
  5581. struct ggml_tensor * kq_mask,
  5582. struct ggml_tensor * kq_pos,
  5583. int32_t n_tokens,
  5584. int32_t n_kv,
  5585. float kq_scale,
  5586. const llm_build_cb & cb,
  5587. int il) {
  5588. const int64_t n_ctx = cparams.n_ctx;
  5589. const int64_t n_head = hparams.n_head;
  5590. const int64_t n_head_kv = hparams.n_head_kv;
  5591. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5592. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5593. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5594. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5595. cb(q, "q", il);
  5596. struct ggml_tensor * k =
  5597. ggml_view_3d(ctx, kv.k_l[il],
  5598. n_embd_head_k, n_kv, n_head_kv,
  5599. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5600. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5601. 0);
  5602. cb(k, "k", il);
  5603. struct ggml_tensor * cur;
  5604. if (cparams.flash_attn) {
  5605. GGML_UNUSED(model);
  5606. GGML_UNUSED(n_ctx);
  5607. // note: if this assert triggers, then some check has failed earlier
  5608. // the idea is to detect during context creation that ALiBi would be used and disable Flash Attention
  5609. GGML_ASSERT(kq_pos == nullptr && "ALiBi is not yet supported with Flash Attention");
  5610. // split cached v into n_head heads (not transposed)
  5611. struct ggml_tensor * v =
  5612. ggml_view_3d(ctx, kv.v_l[il],
  5613. n_embd_head_v, n_kv, n_head_kv,
  5614. ggml_row_size(kv.v_l[il]->type, n_embd_k_gqa),
  5615. ggml_row_size(kv.v_l[il]->type, n_embd_head_k),
  5616. 0);
  5617. cb(v, "v", il);
  5618. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale);
  5619. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5620. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  5621. }
  5622. cur = ggml_reshape_2d(ctx, cur, n_embd_head_k*n_head, n_tokens);
  5623. } else {
  5624. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5625. cb(kq, "kq", il);
  5626. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5627. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5628. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5629. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5630. }
  5631. if (model.arch == LLM_ARCH_GROK) {
  5632. // need to do the following:
  5633. // multiply by attn_output_multiplyer of 0.08838834764831845
  5634. // and then :
  5635. // kq = 30 * tanh(kq / 30)
  5636. // before the softmax below
  5637. //try from phi2
  5638. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5639. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5640. kq = ggml_scale(ctx, kq, 30);
  5641. }
  5642. #if defined(GGML_USE_KOMPUTE)
  5643. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
  5644. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  5645. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  5646. if (hparams.use_alibi) {
  5647. kq = ggml_scale(ctx, kq, kq_scale);
  5648. cb(kq, "kq_scaled", il);
  5649. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  5650. cb(kq, "kq_scaled_alibi", il);
  5651. kq = ggml_add(ctx, kq, kq_mask);
  5652. cb(kq, "kq_masked", il);
  5653. kq = ggml_soft_max(ctx, kq);
  5654. cb(kq, "kq_soft_max", il);
  5655. } else
  5656. #endif
  5657. {
  5658. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  5659. cb(kq, "kq_soft_max_ext", il);
  5660. }
  5661. GGML_ASSERT(kv.size == n_ctx);
  5662. // split cached v into n_head heads
  5663. struct ggml_tensor * v =
  5664. ggml_view_3d(ctx, kv.v_l[il],
  5665. n_kv, n_embd_head_v, n_head_kv,
  5666. ggml_element_size(kv.v_l[il])*n_ctx,
  5667. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5668. 0);
  5669. cb(v, "v", il);
  5670. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5671. cb(kqv, "kqv", il);
  5672. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5673. cb(kqv_merged, "kqv_merged", il);
  5674. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  5675. cb(cur, "kqv_merged_cont", il);
  5676. }
  5677. ggml_build_forward_expand(graph, cur);
  5678. cur = ggml_mul_mat(ctx, wo, cur);
  5679. if (wo_b) {
  5680. cb(cur, "kqv_wo", il);
  5681. }
  5682. if (wo_b) {
  5683. cur = ggml_add(ctx, cur, wo_b);
  5684. }
  5685. return cur;
  5686. }
  5687. static struct ggml_tensor * llm_build_kv(
  5688. struct ggml_context * ctx,
  5689. const llama_model & model,
  5690. const llama_hparams & hparams,
  5691. const llama_cparams & cparams,
  5692. const llama_kv_cache & kv,
  5693. struct ggml_cgraph * graph,
  5694. struct ggml_tensor * wo,
  5695. struct ggml_tensor * wo_b,
  5696. struct ggml_tensor * k_cur,
  5697. struct ggml_tensor * v_cur,
  5698. struct ggml_tensor * q_cur,
  5699. struct ggml_tensor * kq_mask,
  5700. struct ggml_tensor * kq_pos,
  5701. int32_t n_tokens,
  5702. int32_t kv_head,
  5703. int32_t n_kv,
  5704. float kq_scale,
  5705. const llm_build_cb & cb,
  5706. int il) {
  5707. // these nodes are added to the graph together so that they are not reordered
  5708. // by doing so, the number of splits in the graph is reduced
  5709. ggml_build_forward_expand(graph, q_cur);
  5710. ggml_build_forward_expand(graph, k_cur);
  5711. ggml_build_forward_expand(graph, v_cur);
  5712. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  5713. struct ggml_tensor * cur;
  5714. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  5715. q_cur, kq_mask, kq_pos, n_tokens, n_kv, kq_scale, cb, il);
  5716. cb(cur, "kqv_out", il);
  5717. return cur;
  5718. }
  5719. struct llm_build_context {
  5720. const llama_model & model;
  5721. llama_context & lctx;
  5722. const llama_hparams & hparams;
  5723. const llama_cparams & cparams;
  5724. const llama_batch & batch;
  5725. const llama_kv_cache & kv_self;
  5726. const int64_t n_embd;
  5727. const int64_t n_layer;
  5728. const int64_t n_rot;
  5729. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5730. const int64_t n_head;
  5731. const int64_t n_head_kv;
  5732. const int64_t n_embd_head_k;
  5733. const int64_t n_embd_k_gqa;
  5734. const int64_t n_embd_head_v;
  5735. const int64_t n_embd_v_gqa;
  5736. const int64_t n_expert;
  5737. const int64_t n_expert_used;
  5738. const float freq_base;
  5739. const float freq_scale;
  5740. const float ext_factor;
  5741. const float attn_factor;
  5742. const float beta_fast;
  5743. const float beta_slow;
  5744. const float norm_eps;
  5745. const float norm_rms_eps;
  5746. const int32_t n_tokens;
  5747. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5748. const int32_t n_outputs;
  5749. const int32_t kv_head; // index of where we store new KV data in the cache
  5750. const int32_t n_orig_ctx;
  5751. const bool flash_attn;
  5752. const enum llama_pooling_type pooling_type;
  5753. const enum llama_rope_type rope_type;
  5754. const llm_build_cb & cb;
  5755. std::vector<uint8_t> & buf_compute_meta;
  5756. struct ggml_context * ctx0 = nullptr;
  5757. // TODO: consider making the entire interface noexcept
  5758. llm_build_context(
  5759. llama_context & lctx,
  5760. const llama_batch & batch,
  5761. const llm_build_cb & cb,
  5762. bool worst_case) :
  5763. model (lctx.model),
  5764. lctx (lctx),
  5765. hparams (model.hparams),
  5766. cparams (lctx.cparams),
  5767. batch (batch),
  5768. kv_self (lctx.kv_self),
  5769. n_embd (hparams.n_embd),
  5770. n_layer (hparams.n_layer),
  5771. n_rot (hparams.n_rot),
  5772. n_ctx (cparams.n_ctx),
  5773. n_head (hparams.n_head),
  5774. n_head_kv (hparams.n_head_kv),
  5775. n_embd_head_k (hparams.n_embd_head_k),
  5776. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5777. n_embd_head_v (hparams.n_embd_head_v),
  5778. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5779. n_expert (hparams.n_expert),
  5780. n_expert_used (hparams.n_expert_used),
  5781. freq_base (cparams.rope_freq_base),
  5782. freq_scale (cparams.rope_freq_scale),
  5783. ext_factor (cparams.yarn_ext_factor),
  5784. attn_factor (cparams.yarn_attn_factor),
  5785. beta_fast (cparams.yarn_beta_fast),
  5786. beta_slow (cparams.yarn_beta_slow),
  5787. norm_eps (hparams.f_norm_eps),
  5788. norm_rms_eps (hparams.f_norm_rms_eps),
  5789. n_tokens (batch.n_tokens),
  5790. n_kv (worst_case ? kv_self.size : kv_self.n),
  5791. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5792. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5793. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5794. flash_attn (cparams.flash_attn),
  5795. pooling_type (cparams.pooling_type),
  5796. rope_type (hparams.rope_type),
  5797. cb (cb),
  5798. buf_compute_meta (lctx.buf_compute_meta) {
  5799. // all initializations should be done in init()
  5800. }
  5801. void init() {
  5802. struct ggml_init_params params = {
  5803. /*.mem_size =*/ buf_compute_meta.size(),
  5804. /*.mem_buffer =*/ buf_compute_meta.data(),
  5805. /*.no_alloc =*/ true,
  5806. };
  5807. ctx0 = ggml_init(params);
  5808. lctx.inp_tokens = nullptr;
  5809. lctx.inp_embd = nullptr;
  5810. lctx.inp_pos = nullptr;
  5811. lctx.inp_out_ids = nullptr;
  5812. lctx.inp_KQ_mask = nullptr;
  5813. lctx.inp_KQ_pos = nullptr;
  5814. lctx.inp_K_shift = nullptr;
  5815. lctx.inp_mean = nullptr;
  5816. lctx.inp_cls = nullptr;
  5817. lctx.inp_s_copy = nullptr;
  5818. lctx.inp_s_mask = nullptr;
  5819. lctx.inp_s_seq = nullptr;
  5820. }
  5821. void free() {
  5822. if (ctx0) {
  5823. ggml_free(ctx0);
  5824. ctx0 = nullptr;
  5825. }
  5826. }
  5827. struct ggml_cgraph * build_k_shift() {
  5828. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5829. GGML_ASSERT(kv_self.size == n_ctx);
  5830. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5831. cb(lctx.inp_K_shift, "K_shift", -1);
  5832. ggml_set_input(lctx.inp_K_shift);
  5833. for (int il = 0; il < n_layer; ++il) {
  5834. struct ggml_tensor * tmp =
  5835. // we rotate only the first n_rot dimensions
  5836. ggml_rope_custom_inplace(ctx0,
  5837. ggml_view_3d(ctx0, kv_self.k_l[il],
  5838. n_embd_head_k, n_head_kv, n_ctx,
  5839. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5840. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5841. 0),
  5842. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5843. ext_factor, attn_factor, beta_fast, beta_slow);
  5844. cb(tmp, "K_shifted", il);
  5845. ggml_build_forward_expand(gf, tmp);
  5846. }
  5847. return gf;
  5848. }
  5849. struct ggml_cgraph * build_s_copy() {
  5850. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5851. GGML_ASSERT(kv_self.recurrent);
  5852. struct ggml_tensor * state_copy = build_inp_s_copy();
  5853. for (int il = 0; il < n_layer; ++il) {
  5854. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5855. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5856. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5857. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5858. // TODO: name the intermediate tensors with cb()
  5859. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5860. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5861. }
  5862. return gf;
  5863. }
  5864. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5865. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5866. for (uint32_t i = 0; i < ids.size(); ++i) {
  5867. const uint32_t id = ids[i];
  5868. if (i == id || id == ids.size()) {
  5869. continue;
  5870. }
  5871. uint32_t nm = 1;
  5872. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5873. nm++;
  5874. }
  5875. for (int il = 0; il < n_layer; ++il) {
  5876. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5877. n_embd_k_gqa, nm,
  5878. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5879. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5880. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5881. n_embd_k_gqa, nm,
  5882. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5883. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5884. ggml_tensor * view_v_src;
  5885. ggml_tensor * view_v_dst;
  5886. if (flash_attn) {
  5887. // NOTE: the V cache is not transposed when using flash attention
  5888. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5889. n_embd_v_gqa, nm,
  5890. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5891. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  5892. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5893. n_embd_v_gqa, nm,
  5894. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5895. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  5896. } else {
  5897. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5898. nm, n_embd_v_gqa,
  5899. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5900. ggml_row_size(kv_self.v_l[il]->type, i));
  5901. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5902. nm, n_embd_v_gqa,
  5903. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5904. ggml_row_size(kv_self.v_l[il]->type, id));
  5905. }
  5906. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5907. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5908. }
  5909. i += nm - 1;
  5910. }
  5911. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5912. return gf;
  5913. }
  5914. struct ggml_tensor * build_inp_pos() {
  5915. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5916. cb(lctx.inp_pos, "inp_pos", -1);
  5917. ggml_set_input(lctx.inp_pos);
  5918. return lctx.inp_pos;
  5919. }
  5920. struct ggml_tensor * build_inp_out_ids() {
  5921. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5922. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5923. ggml_set_input(lctx.inp_out_ids);
  5924. return lctx.inp_out_ids;
  5925. }
  5926. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5927. if (causal) {
  5928. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  5929. } else {
  5930. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  5931. }
  5932. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  5933. ggml_set_input(lctx.inp_KQ_mask);
  5934. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  5935. }
  5936. struct ggml_tensor * build_inp_KQ_pos(bool causal = true) {
  5937. if (causal) {
  5938. lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv);
  5939. } else {
  5940. // TODO: this will be needed for ALiBi-based BERT models
  5941. // https://github.com/ggerganov/llama.cpp/pull/6826
  5942. lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_tokens);
  5943. }
  5944. cb(lctx.inp_KQ_pos, "KQ_pos", -1);
  5945. ggml_set_input(lctx.inp_KQ_pos);
  5946. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_pos, GGML_TYPE_F16) : lctx.inp_KQ_pos;
  5947. }
  5948. struct ggml_tensor * build_inp_mean() {
  5949. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5950. cb(lctx.inp_mean, "inp_mean", -1);
  5951. ggml_set_input(lctx.inp_mean);
  5952. return lctx.inp_mean;
  5953. }
  5954. struct ggml_tensor * build_inp_cls() {
  5955. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5956. cb(lctx.inp_cls, "inp_cls", -1);
  5957. ggml_set_input(lctx.inp_cls);
  5958. return lctx.inp_cls;
  5959. }
  5960. struct ggml_tensor * build_inp_s_copy() {
  5961. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  5962. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  5963. ggml_set_input(lctx.inp_s_copy);
  5964. return lctx.inp_s_copy;
  5965. }
  5966. struct ggml_tensor * build_inp_s_mask() {
  5967. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  5968. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  5969. ggml_set_input(lctx.inp_s_mask);
  5970. return lctx.inp_s_mask;
  5971. }
  5972. struct ggml_tensor * build_inp_s_seq() {
  5973. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  5974. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  5975. ggml_set_input(lctx.inp_s_seq);
  5976. return lctx.inp_s_seq;
  5977. }
  5978. struct ggml_cgraph * build_llama() {
  5979. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5980. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5981. int32_t n_tokens = this->n_tokens;
  5982. const int64_t n_embd_head = hparams.n_embd_head_v;
  5983. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5984. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5985. struct ggml_tensor * cur;
  5986. struct ggml_tensor * inpL;
  5987. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5988. // inp_pos - contains the positions
  5989. struct ggml_tensor * inp_pos = build_inp_pos();
  5990. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5991. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5992. for (int il = 0; il < n_layer; ++il) {
  5993. struct ggml_tensor * inpSA = inpL;
  5994. // norm
  5995. cur = llm_build_norm(ctx0, inpL, hparams,
  5996. model.layers[il].attn_norm, NULL,
  5997. LLM_NORM_RMS, cb, il);
  5998. cb(cur, "attn_norm", il);
  5999. // self-attention
  6000. {
  6001. // compute Q and K and RoPE them
  6002. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6003. cb(Qcur, "Qcur", il);
  6004. if (model.layers[il].bq) {
  6005. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6006. cb(Qcur, "Qcur", il);
  6007. }
  6008. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6009. cb(Kcur, "Kcur", il);
  6010. if (model.layers[il].bk) {
  6011. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6012. cb(Kcur, "Kcur", il);
  6013. }
  6014. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6015. cb(Vcur, "Vcur", il);
  6016. if (model.layers[il].bv) {
  6017. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6018. cb(Vcur, "Vcur", il);
  6019. }
  6020. Qcur = ggml_rope_custom(
  6021. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6022. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6023. ext_factor, attn_factor, beta_fast, beta_slow
  6024. );
  6025. cb(Qcur, "Qcur", il);
  6026. Kcur = ggml_rope_custom(
  6027. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6028. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6029. ext_factor, attn_factor, beta_fast, beta_slow
  6030. );
  6031. cb(Kcur, "Kcur", il);
  6032. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6033. model.layers[il].wo, model.layers[il].bo,
  6034. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6035. }
  6036. if (il == n_layer - 1) {
  6037. // skip computing output for unused tokens
  6038. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6039. n_tokens = n_outputs;
  6040. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6041. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6042. }
  6043. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6044. cb(ffn_inp, "ffn_inp", il);
  6045. // feed-forward network
  6046. if (model.layers[il].ffn_gate_inp == nullptr) {
  6047. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6048. model.layers[il].ffn_norm, NULL,
  6049. LLM_NORM_RMS, cb, il);
  6050. cb(cur, "ffn_norm", il);
  6051. cur = llm_build_ffn(ctx0, cur,
  6052. model.layers[il].ffn_up, NULL,
  6053. model.layers[il].ffn_gate, NULL,
  6054. model.layers[il].ffn_down, NULL,
  6055. NULL,
  6056. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6057. cb(cur, "ffn_out", il);
  6058. } else {
  6059. // MoE branch
  6060. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6061. model.layers[il].ffn_norm, NULL,
  6062. LLM_NORM_RMS, cb, il);
  6063. cb(cur, "ffn_norm", il);
  6064. cur = llm_build_moe_ffn(ctx0, cur,
  6065. model.layers[il].ffn_gate_inp,
  6066. model.layers[il].ffn_up_exps,
  6067. model.layers[il].ffn_gate_exps,
  6068. model.layers[il].ffn_down_exps,
  6069. n_expert, n_expert_used,
  6070. LLM_FFN_SILU, true,
  6071. cb, il);
  6072. cb(cur, "ffn_moe_out", il);
  6073. }
  6074. cur = ggml_add(ctx0, cur, ffn_inp);
  6075. cb(cur, "ffn_out", il);
  6076. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6077. if (layer_dir != nullptr) {
  6078. cur = ggml_add(ctx0, cur, layer_dir);
  6079. }
  6080. cb(cur, "l_out", il);
  6081. // input for next layer
  6082. inpL = cur;
  6083. }
  6084. cur = inpL;
  6085. cur = llm_build_norm(ctx0, cur, hparams,
  6086. model.output_norm, NULL,
  6087. LLM_NORM_RMS, cb, -1);
  6088. cb(cur, "result_norm", -1);
  6089. // lm_head
  6090. cur = ggml_mul_mat(ctx0, model.output, cur);
  6091. cb(cur, "result_output", -1);
  6092. ggml_build_forward_expand(gf, cur);
  6093. return gf;
  6094. }
  6095. struct ggml_cgraph * build_baichuan() {
  6096. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6097. const int64_t n_embd_head = hparams.n_embd_head_v;
  6098. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6099. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6100. struct ggml_tensor * cur;
  6101. struct ggml_tensor * inpL;
  6102. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6103. // inp_pos - contains the positions
  6104. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6105. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6106. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6107. // positions of the tokens in the KV cache
  6108. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6109. for (int il = 0; il < n_layer; ++il) {
  6110. struct ggml_tensor * inpSA = inpL;
  6111. cur = llm_build_norm(ctx0, inpL, hparams,
  6112. model.layers[il].attn_norm, NULL,
  6113. LLM_NORM_RMS, cb, il);
  6114. cb(cur, "attn_norm", il);
  6115. // self-attention
  6116. {
  6117. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6118. cb(Qcur, "Qcur", il);
  6119. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6120. cb(Kcur, "Kcur", il);
  6121. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6122. cb(Vcur, "Vcur", il);
  6123. switch (model.type) {
  6124. case MODEL_7B:
  6125. Qcur = ggml_rope_custom(
  6126. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6127. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6128. ext_factor, attn_factor, beta_fast, beta_slow
  6129. );
  6130. Kcur = ggml_rope_custom(
  6131. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6132. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6133. ext_factor, attn_factor, beta_fast, beta_slow
  6134. );
  6135. break;
  6136. case MODEL_13B:
  6137. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6138. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6139. break;
  6140. default:
  6141. GGML_ASSERT(false);
  6142. }
  6143. cb(Qcur, "Qcur", il);
  6144. cb(Kcur, "Kcur", il);
  6145. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6146. model.layers[il].wo, NULL,
  6147. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6148. }
  6149. if (il == n_layer - 1) {
  6150. // skip computing output for unused tokens
  6151. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6152. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6153. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6154. }
  6155. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6156. cb(ffn_inp, "ffn_inp", il);
  6157. // feed-forward network
  6158. {
  6159. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6160. model.layers[il].ffn_norm, NULL,
  6161. LLM_NORM_RMS, cb, il);
  6162. cb(cur, "ffn_norm", il);
  6163. cur = llm_build_ffn(ctx0, cur,
  6164. model.layers[il].ffn_up, NULL,
  6165. model.layers[il].ffn_gate, NULL,
  6166. model.layers[il].ffn_down, NULL,
  6167. NULL,
  6168. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6169. cb(cur, "ffn_out", il);
  6170. }
  6171. cur = ggml_add(ctx0, cur, ffn_inp);
  6172. cb(cur, "l_out", il);
  6173. // input for next layer
  6174. inpL = cur;
  6175. }
  6176. cur = inpL;
  6177. cur = llm_build_norm(ctx0, cur, hparams,
  6178. model.output_norm, NULL,
  6179. LLM_NORM_RMS, cb, -1);
  6180. cb(cur, "result_norm", -1);
  6181. // lm_head
  6182. cur = ggml_mul_mat(ctx0, model.output, cur);
  6183. cb(cur, "result_output", -1);
  6184. ggml_build_forward_expand(gf, cur);
  6185. return gf;
  6186. }
  6187. struct ggml_cgraph * build_xverse() {
  6188. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6189. const int64_t n_embd_head = hparams.n_embd_head_v;
  6190. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6191. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6192. struct ggml_tensor * cur;
  6193. struct ggml_tensor * inpL;
  6194. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6195. // inp_pos - contains the positions
  6196. struct ggml_tensor * inp_pos = build_inp_pos();
  6197. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6198. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6199. // positions of the tokens in the KV cache
  6200. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6201. for (int il = 0; il < n_layer; ++il) {
  6202. struct ggml_tensor * inpSA = inpL;
  6203. cur = llm_build_norm(ctx0, inpL, hparams,
  6204. model.layers[il].attn_norm, NULL,
  6205. LLM_NORM_RMS, cb, il);
  6206. cb(cur, "attn_norm", il);
  6207. // self-attention
  6208. {
  6209. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6210. cb(Qcur, "Qcur", il);
  6211. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6212. cb(Kcur, "Kcur", il);
  6213. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6214. cb(Vcur, "Vcur", il);
  6215. Qcur = ggml_rope_custom(
  6216. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6217. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6218. ext_factor, attn_factor, beta_fast, beta_slow
  6219. );
  6220. cb(Qcur, "Qcur", il);
  6221. Kcur = ggml_rope_custom(
  6222. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6223. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6224. ext_factor, attn_factor, beta_fast, beta_slow
  6225. );
  6226. cb(Kcur, "Kcur", il);
  6227. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6228. model.layers[il].wo, NULL,
  6229. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6230. }
  6231. if (il == n_layer - 1) {
  6232. // skip computing output for unused tokens
  6233. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6234. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6235. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6236. }
  6237. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6238. cb(ffn_inp, "ffn_inp", il);
  6239. // feed-forward network
  6240. {
  6241. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6242. model.layers[il].ffn_norm, NULL,
  6243. LLM_NORM_RMS, cb, il);
  6244. cb(cur, "ffn_norm", il);
  6245. cur = llm_build_ffn(ctx0, cur,
  6246. model.layers[il].ffn_up, NULL,
  6247. model.layers[il].ffn_gate, NULL,
  6248. model.layers[il].ffn_down, NULL,
  6249. NULL,
  6250. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6251. cb(cur, "ffn_out", il);
  6252. }
  6253. cur = ggml_add(ctx0, cur, ffn_inp);
  6254. cb(cur, "l_out", il);
  6255. // input for next layer
  6256. inpL = cur;
  6257. }
  6258. cur = inpL;
  6259. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6260. cb(cur, "result_norm", -1);
  6261. // lm_head
  6262. cur = ggml_mul_mat(ctx0, model.output, cur);
  6263. cb(cur, "result_output", -1);
  6264. ggml_build_forward_expand(gf, cur);
  6265. return gf;
  6266. }
  6267. struct ggml_cgraph * build_falcon() {
  6268. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6269. const int64_t n_embd_head = hparams.n_embd_head_v;
  6270. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6271. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6272. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6273. struct ggml_tensor * cur;
  6274. struct ggml_tensor * inpL;
  6275. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6276. // inp_pos - contains the positions
  6277. struct ggml_tensor * inp_pos = build_inp_pos();
  6278. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6279. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6280. for (int il = 0; il < n_layer; ++il) {
  6281. struct ggml_tensor * attn_norm;
  6282. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6283. model.layers[il].attn_norm,
  6284. model.layers[il].attn_norm_b,
  6285. LLM_NORM, cb, il);
  6286. cb(attn_norm, "attn_norm", il);
  6287. // self-attention
  6288. {
  6289. if (model.layers[il].attn_norm_2) {
  6290. // Falcon-40B
  6291. cur = llm_build_norm(ctx0, inpL, hparams,
  6292. model.layers[il].attn_norm_2,
  6293. model.layers[il].attn_norm_2_b,
  6294. LLM_NORM, cb, il);
  6295. cb(cur, "attn_norm_2", il);
  6296. } else {
  6297. cur = attn_norm;
  6298. }
  6299. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6300. cb(cur, "wqkv", il);
  6301. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6302. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6303. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6304. cb(Qcur, "Qcur", il);
  6305. cb(Kcur, "Kcur", il);
  6306. cb(Vcur, "Vcur", il);
  6307. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6308. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6309. // using mode = 2 for neox mode
  6310. Qcur = ggml_rope_custom(
  6311. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6312. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6313. );
  6314. cb(Qcur, "Qcur", il);
  6315. Kcur = ggml_rope_custom(
  6316. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6317. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6318. );
  6319. cb(Kcur, "Kcur", il);
  6320. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6321. model.layers[il].wo, NULL,
  6322. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6323. }
  6324. if (il == n_layer - 1) {
  6325. // skip computing output for unused tokens
  6326. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6327. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6328. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6329. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6330. }
  6331. struct ggml_tensor * ffn_inp = cur;
  6332. // feed forward
  6333. {
  6334. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6335. model.layers[il].ffn_up, NULL,
  6336. NULL, NULL,
  6337. model.layers[il].ffn_down, NULL,
  6338. NULL,
  6339. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6340. cb(cur, "ffn_out", il);
  6341. }
  6342. cur = ggml_add(ctx0, cur, ffn_inp);
  6343. cb(cur, "l_out", il);
  6344. cur = ggml_add(ctx0, cur, inpL);
  6345. cb(cur, "l_out", il);
  6346. // input for next layer
  6347. inpL = cur;
  6348. }
  6349. cur = inpL;
  6350. // norm
  6351. cur = llm_build_norm(ctx0, cur, hparams,
  6352. model.output_norm,
  6353. model.output_norm_b,
  6354. LLM_NORM, cb, -1);
  6355. cb(cur, "result_norm", -1);
  6356. cur = ggml_mul_mat(ctx0, model.output, cur);
  6357. cb(cur, "result_output", -1);
  6358. ggml_build_forward_expand(gf, cur);
  6359. return gf;
  6360. }
  6361. struct ggml_cgraph * build_grok() {
  6362. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6363. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6364. int32_t n_tokens = this->n_tokens;
  6365. const int64_t n_embd_head = hparams.n_embd_head_v;
  6366. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6367. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6368. struct ggml_tensor * cur;
  6369. struct ggml_tensor * inpL;
  6370. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6371. // multiply by embedding_multiplier_scale of 78.38367176906169
  6372. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6373. // inp_pos - contains the positions
  6374. struct ggml_tensor * inp_pos = build_inp_pos();
  6375. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6376. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6377. for (int il = 0; il < n_layer; ++il) {
  6378. struct ggml_tensor * inpSA = inpL;
  6379. // norm
  6380. cur = llm_build_norm(ctx0, inpL, hparams,
  6381. model.layers[il].attn_norm, NULL,
  6382. LLM_NORM_RMS, cb, il);
  6383. cb(cur, "attn_norm", il);
  6384. // self-attention
  6385. {
  6386. // compute Q and K and RoPE them
  6387. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6388. cb(Qcur, "Qcur", il);
  6389. if (model.layers[il].bq) {
  6390. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6391. cb(Qcur, "Qcur", il);
  6392. }
  6393. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6394. cb(Kcur, "Kcur", il);
  6395. if (model.layers[il].bk) {
  6396. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6397. cb(Kcur, "Kcur", il);
  6398. }
  6399. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6400. cb(Vcur, "Vcur", il);
  6401. if (model.layers[il].bv) {
  6402. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6403. cb(Vcur, "Vcur", il);
  6404. }
  6405. Qcur = ggml_rope_custom(
  6406. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6407. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6408. ext_factor, attn_factor, beta_fast, beta_slow
  6409. );
  6410. cb(Qcur, "Qcur", il);
  6411. Kcur = ggml_rope_custom(
  6412. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6413. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6414. ext_factor, attn_factor, beta_fast, beta_slow
  6415. );
  6416. cb(Kcur, "Kcur", il);
  6417. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6418. model.layers[il].wo, model.layers[il].bo,
  6419. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6420. }
  6421. if (il == n_layer - 1) {
  6422. // skip computing output for unused tokens
  6423. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6424. n_tokens = n_outputs;
  6425. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6426. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6427. }
  6428. // Grok
  6429. // if attn_out_norm is present then apply it before adding the input
  6430. if (model.layers[il].attn_out_norm) {
  6431. cur = llm_build_norm(ctx0, cur, hparams,
  6432. model.layers[il].attn_out_norm, NULL,
  6433. LLM_NORM_RMS, cb, il);
  6434. cb(cur, "attn_out_norm", il);
  6435. }
  6436. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6437. cb(ffn_inp, "ffn_inp", il);
  6438. // feed-forward network
  6439. // MoE branch
  6440. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6441. model.layers[il].ffn_norm, NULL,
  6442. LLM_NORM_RMS, cb, il);
  6443. cb(cur, "ffn_norm", il);
  6444. cur = llm_build_moe_ffn(ctx0, cur,
  6445. model.layers[il].ffn_gate_inp,
  6446. model.layers[il].ffn_up_exps,
  6447. model.layers[il].ffn_gate_exps,
  6448. model.layers[il].ffn_down_exps,
  6449. n_expert, n_expert_used,
  6450. LLM_FFN_GELU, true,
  6451. cb, il);
  6452. cb(cur, "ffn_moe_out", il);
  6453. // Grok
  6454. // if layer_out_norm is present then apply it before adding the input
  6455. // Idea: maybe ffn_out_norm is a better name
  6456. if (model.layers[il].layer_out_norm) {
  6457. cur = llm_build_norm(ctx0, cur, hparams,
  6458. model.layers[il].layer_out_norm, NULL,
  6459. LLM_NORM_RMS, cb, il);
  6460. cb(cur, "layer_out_norm", il);
  6461. }
  6462. cur = ggml_add(ctx0, cur, ffn_inp);
  6463. cb(cur, "ffn_out", il);
  6464. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6465. if (layer_dir != nullptr) {
  6466. cur = ggml_add(ctx0, cur, layer_dir);
  6467. }
  6468. cb(cur, "l_out", il);
  6469. // input for next layer
  6470. inpL = cur;
  6471. }
  6472. cur = inpL;
  6473. cur = llm_build_norm(ctx0, cur, hparams,
  6474. model.output_norm, NULL,
  6475. LLM_NORM_RMS, cb, -1);
  6476. cb(cur, "result_norm", -1);
  6477. // lm_head
  6478. cur = ggml_mul_mat(ctx0, model.output, cur);
  6479. // Grok
  6480. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6481. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6482. cb(cur, "result_output", -1);
  6483. ggml_build_forward_expand(gf, cur);
  6484. return gf;
  6485. }
  6486. struct ggml_cgraph * build_dbrx() {
  6487. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6488. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6489. int32_t n_tokens = this->n_tokens;
  6490. const int64_t n_embd_head = hparams.n_embd_head_v;
  6491. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6492. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6493. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6494. struct ggml_tensor * cur;
  6495. struct ggml_tensor * inpL;
  6496. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6497. // inp_pos - contains the positions
  6498. struct ggml_tensor * inp_pos = build_inp_pos();
  6499. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6500. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6501. for (int il = 0; il < n_layer; ++il) {
  6502. struct ggml_tensor * inpSA = inpL;
  6503. // norm
  6504. cur = llm_build_norm(ctx0, inpL, hparams,
  6505. model.layers[il].attn_norm, NULL,
  6506. LLM_NORM, cb, il);
  6507. cb(cur, "attn_norm", il);
  6508. // self-attention
  6509. {
  6510. struct ggml_tensor * Qcur = nullptr;
  6511. struct ggml_tensor * Kcur = nullptr;
  6512. struct ggml_tensor * Vcur = nullptr;
  6513. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6514. cb(cur, "wqkv", il);
  6515. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6516. cb(cur, "wqkv_clamped", il);
  6517. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6518. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6519. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6520. cb(Qcur, "Qcur", il);
  6521. cb(Kcur, "Kcur", il);
  6522. cb(Vcur, "Vcur", il);
  6523. Qcur = ggml_rope_custom(
  6524. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6525. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6526. ext_factor, attn_factor, beta_fast, beta_slow
  6527. );
  6528. cb(Qcur, "Qcur", il);
  6529. Kcur = ggml_rope_custom(
  6530. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6531. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6532. ext_factor, attn_factor, beta_fast, beta_slow
  6533. );
  6534. cb(Kcur, "Kcur", il);
  6535. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6536. model.layers[il].wo, NULL,
  6537. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6538. }
  6539. if (il == n_layer - 1) {
  6540. // skip computing output for unused tokens
  6541. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6542. n_tokens = n_outputs;
  6543. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6544. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6545. }
  6546. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6547. cb(ffn_inp, "ffn_inp", il);
  6548. // feed-forward network
  6549. // MoE branch
  6550. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6551. model.layers[il].attn_out_norm, NULL,
  6552. LLM_NORM, cb, il);
  6553. cb(cur, "attn_out_norm", il);
  6554. cur = llm_build_moe_ffn(ctx0, cur,
  6555. model.layers[il].ffn_gate_inp,
  6556. model.layers[il].ffn_up_exps,
  6557. model.layers[il].ffn_gate_exps,
  6558. model.layers[il].ffn_down_exps,
  6559. n_expert, n_expert_used,
  6560. LLM_FFN_SILU, true,
  6561. cb, il);
  6562. cb(cur, "ffn_moe_out", il);
  6563. cur = ggml_add(ctx0, cur, ffn_inp);
  6564. cb(cur, "ffn_out", il);
  6565. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6566. if (layer_dir != nullptr) {
  6567. cur = ggml_add(ctx0, cur, layer_dir);
  6568. }
  6569. cb(cur, "l_out", il);
  6570. // input for next layer
  6571. inpL = cur;
  6572. }
  6573. cur = inpL;
  6574. cur = llm_build_norm(ctx0, cur, hparams,
  6575. model.output_norm, NULL,
  6576. LLM_NORM, cb, -1);
  6577. cb(cur, "result_norm", -1);
  6578. // lm_head
  6579. cur = ggml_mul_mat(ctx0, model.output, cur);
  6580. cb(cur, "result_output", -1);
  6581. ggml_build_forward_expand(gf, cur);
  6582. return gf;
  6583. }
  6584. struct ggml_cgraph * build_starcoder() {
  6585. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6586. const int64_t n_embd_head = hparams.n_embd_head_v;
  6587. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6588. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6589. struct ggml_tensor * cur;
  6590. struct ggml_tensor * inpL;
  6591. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6592. // inp_pos - contains the positions
  6593. struct ggml_tensor * inp_pos = build_inp_pos();
  6594. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6595. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6596. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6597. cb(pos, "pos_embd", -1);
  6598. inpL = ggml_add(ctx0, inpL, pos);
  6599. cb(inpL, "inpL", -1);
  6600. for (int il = 0; il < n_layer; ++il) {
  6601. cur = llm_build_norm(ctx0, inpL, hparams,
  6602. model.layers[il].attn_norm,
  6603. model.layers[il].attn_norm_b,
  6604. LLM_NORM, cb, il);
  6605. cb(cur, "attn_norm", il);
  6606. // self-attention
  6607. {
  6608. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6609. cb(cur, "wqkv", il);
  6610. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6611. cb(cur, "bqkv", il);
  6612. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6613. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6614. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6615. cb(Qcur, "Qcur", il);
  6616. cb(Kcur, "Kcur", il);
  6617. cb(Vcur, "Vcur", il);
  6618. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6619. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6620. model.layers[il].wo, model.layers[il].bo,
  6621. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6622. }
  6623. if (il == n_layer - 1) {
  6624. // skip computing output for unused tokens
  6625. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6626. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6627. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6628. }
  6629. // add the input
  6630. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6631. cb(ffn_inp, "ffn_inp", il);
  6632. // FF
  6633. {
  6634. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6635. model.layers[il].ffn_norm,
  6636. model.layers[il].ffn_norm_b,
  6637. LLM_NORM, cb, il);
  6638. cb(cur, "ffn_norm", il);
  6639. cur = llm_build_ffn(ctx0, cur,
  6640. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6641. NULL, NULL,
  6642. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6643. NULL,
  6644. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6645. cb(cur, "ffn_out", il);
  6646. }
  6647. inpL = ggml_add(ctx0, cur, ffn_inp);
  6648. cb(inpL, "l_out", il);
  6649. }
  6650. cur = llm_build_norm(ctx0, inpL, hparams,
  6651. model.output_norm,
  6652. model.output_norm_b,
  6653. LLM_NORM, cb, -1);
  6654. cb(cur, "result_norm", -1);
  6655. cur = ggml_mul_mat(ctx0, model.output, cur);
  6656. cb(cur, "result_output", -1);
  6657. ggml_build_forward_expand(gf, cur);
  6658. return gf;
  6659. }
  6660. struct ggml_cgraph * build_persimmon() {
  6661. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6662. const int64_t n_embd_head = hparams.n_embd_head_v;
  6663. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6664. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6665. struct ggml_tensor * cur;
  6666. struct ggml_tensor * inpL;
  6667. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6668. // inp_pos - contains the positions
  6669. struct ggml_tensor * inp_pos = build_inp_pos();
  6670. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6671. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6672. for (int il = 0; il < n_layer; ++il) {
  6673. struct ggml_tensor * residual = inpL;
  6674. cur = llm_build_norm(ctx0, inpL, hparams,
  6675. model.layers[il].attn_norm,
  6676. model.layers[il].attn_norm_b,
  6677. LLM_NORM, cb, il);
  6678. cb(cur, "attn_norm", il);
  6679. // self attention
  6680. {
  6681. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6682. cb(cur, "wqkv", il);
  6683. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6684. cb(cur, "bqkv", il);
  6685. // split qkv
  6686. GGML_ASSERT(n_head_kv == n_head);
  6687. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6688. cb(tmpqkv, "tmpqkv", il);
  6689. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6690. cb(tmpqkv_perm, "tmpqkv", il);
  6691. struct ggml_tensor * tmpq = ggml_view_3d(
  6692. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6693. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6694. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6695. 0
  6696. );
  6697. cb(tmpq, "tmpq", il);
  6698. struct ggml_tensor * tmpk = ggml_view_3d(
  6699. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6700. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6701. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6702. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6703. );
  6704. cb(tmpk, "tmpk", il);
  6705. // Q/K Layernorm
  6706. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6707. model.layers[il].attn_q_norm,
  6708. model.layers[il].attn_q_norm_b,
  6709. LLM_NORM, cb, il);
  6710. cb(tmpq, "tmpq", il);
  6711. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6712. model.layers[il].attn_k_norm,
  6713. model.layers[il].attn_k_norm_b,
  6714. LLM_NORM, cb, il);
  6715. cb(tmpk, "tmpk", il);
  6716. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6717. struct ggml_tensor * qrot = ggml_view_3d(
  6718. ctx0, tmpq, n_rot, n_head, n_tokens,
  6719. ggml_element_size(tmpq) * n_embd_head,
  6720. ggml_element_size(tmpq) * n_embd_head * n_head,
  6721. 0
  6722. );
  6723. cb(qrot, "qrot", il);
  6724. struct ggml_tensor * krot = ggml_view_3d(
  6725. ctx0, tmpk, n_rot, n_head, n_tokens,
  6726. ggml_element_size(tmpk) * n_embd_head,
  6727. ggml_element_size(tmpk) * n_embd_head * n_head,
  6728. 0
  6729. );
  6730. cb(krot, "krot", il);
  6731. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6732. struct ggml_tensor * qpass = ggml_view_3d(
  6733. ctx0, tmpq, n_rot, n_head, n_tokens,
  6734. ggml_element_size(tmpq) * n_embd_head,
  6735. ggml_element_size(tmpq) * n_embd_head * n_head,
  6736. ggml_element_size(tmpq) * n_rot
  6737. );
  6738. cb(qpass, "qpass", il);
  6739. struct ggml_tensor * kpass = ggml_view_3d(
  6740. ctx0, tmpk, n_rot, n_head, n_tokens,
  6741. ggml_element_size(tmpk) * n_embd_head,
  6742. ggml_element_size(tmpk) * n_embd_head * n_head,
  6743. ggml_element_size(tmpk) * n_rot
  6744. );
  6745. cb(kpass, "kpass", il);
  6746. struct ggml_tensor * qrotated = ggml_rope_custom(
  6747. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6748. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6749. );
  6750. cb(qrotated, "qrotated", il);
  6751. struct ggml_tensor * krotated = ggml_rope_custom(
  6752. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6753. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6754. );
  6755. cb(krotated, "krotated", il);
  6756. // ggml currently only supports concatenation on dim=2
  6757. // so we need to permute qrot, qpass, concat, then permute back.
  6758. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6759. cb(qrotated, "qrotated", il);
  6760. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6761. cb(krotated, "krotated", il);
  6762. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6763. cb(qpass, "qpass", il);
  6764. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6765. cb(kpass, "kpass", il);
  6766. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6767. cb(Qcur, "Qcur", il);
  6768. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6769. cb(Kcur, "Kcur", il);
  6770. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6771. cb(Q, "Q", il);
  6772. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6773. cb(Kcur, "Kcur", il);
  6774. struct ggml_tensor * Vcur = ggml_view_3d(
  6775. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6776. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6777. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6778. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6779. );
  6780. cb(Vcur, "Vcur", il);
  6781. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6782. model.layers[il].wo, model.layers[il].bo,
  6783. Kcur, Vcur, Q, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6784. }
  6785. if (il == n_layer - 1) {
  6786. // skip computing output for unused tokens
  6787. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6788. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6789. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6790. }
  6791. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6792. cb(ffn_inp, "ffn_inp", il);
  6793. // feed-forward network
  6794. {
  6795. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6796. model.layers[il].ffn_norm,
  6797. model.layers[il].ffn_norm_b,
  6798. LLM_NORM, cb, il);
  6799. cb(cur, "ffn_norm", il);
  6800. cur = llm_build_ffn(ctx0, cur,
  6801. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6802. NULL, NULL,
  6803. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6804. NULL,
  6805. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6806. cb(cur, "ffn_out", il);
  6807. }
  6808. cur = ggml_add(ctx0, cur, ffn_inp);
  6809. cb(cur, "l_out", il);
  6810. inpL = cur;
  6811. }
  6812. cur = inpL;
  6813. cur = llm_build_norm(ctx0, cur, hparams,
  6814. model.output_norm,
  6815. model.output_norm_b,
  6816. LLM_NORM, cb, -1);
  6817. cb(cur, "result_norm", -1);
  6818. cur = ggml_mul_mat(ctx0, model.output, cur);
  6819. cb(cur, "result_output", -1);
  6820. ggml_build_forward_expand(gf, cur);
  6821. return gf;
  6822. }
  6823. struct ggml_cgraph * build_refact() {
  6824. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6825. const int64_t n_embd_head = hparams.n_embd_head_v;
  6826. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6827. struct ggml_tensor * cur;
  6828. struct ggml_tensor * inpL;
  6829. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6830. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6831. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6832. // positions of the tokens in the KV cache
  6833. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6834. for (int il = 0; il < n_layer; ++il) {
  6835. struct ggml_tensor * inpSA = inpL;
  6836. cur = llm_build_norm(ctx0, inpL, hparams,
  6837. model.layers[il].attn_norm, NULL,
  6838. LLM_NORM_RMS, cb, il);
  6839. cb(cur, "attn_norm", il);
  6840. // self-attention
  6841. {
  6842. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6843. cb(Qcur, "Qcur", il);
  6844. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6845. cb(Kcur, "Kcur", il);
  6846. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6847. cb(Vcur, "Vcur", il);
  6848. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6849. cb(Kcur, "Kcur", il);
  6850. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6851. cb(Qcur, "Qcur", il);
  6852. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6853. model.layers[il].wo, NULL,
  6854. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6855. }
  6856. if (il == n_layer - 1) {
  6857. // skip computing output for unused tokens
  6858. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6859. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6860. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6861. }
  6862. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6863. cb(ffn_inp, "ffn_inp", il);
  6864. // feed-forward network
  6865. {
  6866. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6867. model.layers[il].ffn_norm, NULL,
  6868. LLM_NORM_RMS, cb, il);
  6869. cb(cur, "ffn_norm", il);
  6870. cur = llm_build_ffn(ctx0, cur,
  6871. model.layers[il].ffn_up, NULL,
  6872. model.layers[il].ffn_gate, NULL,
  6873. model.layers[il].ffn_down, NULL,
  6874. NULL,
  6875. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6876. cb(cur, "ffn_out", il);
  6877. }
  6878. cur = ggml_add(ctx0, cur, ffn_inp);
  6879. cb(cur, "l_out", il);
  6880. // input for next layer
  6881. inpL = cur;
  6882. }
  6883. cur = inpL;
  6884. cur = llm_build_norm(ctx0, cur, hparams,
  6885. model.output_norm, NULL,
  6886. LLM_NORM_RMS, cb, -1);
  6887. cb(cur, "result_norm", -1);
  6888. // lm_head
  6889. cur = ggml_mul_mat(ctx0, model.output, cur);
  6890. cb(cur, "result_output", -1);
  6891. ggml_build_forward_expand(gf, cur);
  6892. return gf;
  6893. }
  6894. struct ggml_cgraph * build_bert() {
  6895. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6896. const int64_t n_embd_head = hparams.n_embd_head_v;
  6897. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6898. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6899. struct ggml_tensor * cur;
  6900. struct ggml_tensor * inpL;
  6901. struct ggml_tensor * inp_pos = build_inp_pos();
  6902. struct ggml_tensor * inp_mean = build_inp_mean();
  6903. struct ggml_tensor * inp_cls = build_inp_cls();
  6904. // construct input embeddings (token, type, position)
  6905. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6906. // token types are hardcoded to zero ("Sentence A")
  6907. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6908. inpL = ggml_add(ctx0, inpL, type_row0);
  6909. if (model.arch == LLM_ARCH_BERT) {
  6910. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6911. }
  6912. cb(inpL, "inp_embd", -1);
  6913. // embed layer norm
  6914. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6915. cb(inpL, "inp_norm", -1);
  6916. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6917. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6918. // iterate layers
  6919. for (int il = 0; il < n_layer; ++il) {
  6920. struct ggml_tensor * cur = inpL;
  6921. struct ggml_tensor * Qcur;
  6922. struct ggml_tensor * Kcur;
  6923. struct ggml_tensor * Vcur;
  6924. // self-attention
  6925. if (model.arch == LLM_ARCH_BERT) {
  6926. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6927. cb(Qcur, "Qcur", il);
  6928. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6929. cb(Kcur, "Kcur", il);
  6930. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6931. cb(Vcur, "Vcur", il);
  6932. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6933. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6934. } else {
  6935. // compute Q and K and RoPE them
  6936. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6937. cb(cur, "wqkv", il);
  6938. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6939. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6940. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6941. cb(Qcur, "Qcur", il);
  6942. cb(Kcur, "Kcur", il);
  6943. cb(Vcur, "Vcur", il);
  6944. Qcur = ggml_rope_custom(
  6945. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6946. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6947. ext_factor, attn_factor, beta_fast, beta_slow
  6948. );
  6949. cb(Qcur, "Qcur", il);
  6950. Kcur = ggml_rope_custom(
  6951. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6952. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6953. ext_factor, attn_factor, beta_fast, beta_slow
  6954. );
  6955. cb(Kcur, "Kcur", il);
  6956. }
  6957. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6958. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6959. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6960. cb(kq, "kq", il);
  6961. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6962. cb(kq, "kq_soft_max_ext", il);
  6963. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6964. cb(v, "v", il);
  6965. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6966. cb(kqv, "kqv", il);
  6967. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6968. cb(kqv_merged, "kqv_merged", il);
  6969. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6970. cb(cur, "kqv_merged_cont", il);
  6971. ggml_build_forward_expand(gf, cur);
  6972. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6973. if (model.layers[il].bo) {
  6974. cb(cur, "kqv_wo", il);
  6975. }
  6976. if (model.layers[il].bo) {
  6977. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6978. }
  6979. cb(cur, "kqv_out", il);
  6980. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6981. // skip computing output for unused tokens
  6982. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6983. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6984. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6985. }
  6986. // re-add the layer input
  6987. cur = ggml_add(ctx0, cur, inpL);
  6988. // attention layer norm
  6989. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6990. struct ggml_tensor * ffn_inp = cur;
  6991. cb(ffn_inp, "ffn_inp", il);
  6992. // feed-forward network
  6993. if (model.arch == LLM_ARCH_BERT) {
  6994. cur = llm_build_ffn(ctx0, cur,
  6995. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6996. NULL, NULL,
  6997. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6998. NULL,
  6999. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7000. } else {
  7001. cur = llm_build_ffn(ctx0, cur,
  7002. model.layers[il].ffn_up, NULL,
  7003. model.layers[il].ffn_gate, NULL,
  7004. model.layers[il].ffn_down, NULL,
  7005. NULL,
  7006. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7007. }
  7008. cb(cur, "ffn_out", il);
  7009. // attentions bypass the intermediate layer
  7010. cur = ggml_add(ctx0, cur, ffn_inp);
  7011. // output layer norm
  7012. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7013. // input for next layer
  7014. inpL = cur;
  7015. }
  7016. // final output
  7017. cur = inpL;
  7018. cb(cur, "result_embd", -1);
  7019. // pooling layer
  7020. switch (pooling_type) {
  7021. case LLAMA_POOLING_TYPE_NONE:
  7022. {
  7023. // nop
  7024. } break;
  7025. case LLAMA_POOLING_TYPE_MEAN:
  7026. {
  7027. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7028. cb(cur, "result_embd_pooled", -1);
  7029. } break;
  7030. case LLAMA_POOLING_TYPE_CLS:
  7031. {
  7032. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7033. cb(cur, "result_embd_pooled", -1);
  7034. } break;
  7035. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7036. {
  7037. GGML_ASSERT(false && "Invalid pooling type");
  7038. } break;
  7039. }
  7040. ggml_build_forward_expand(gf, cur);
  7041. return gf;
  7042. }
  7043. struct ggml_cgraph * build_bloom() {
  7044. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7045. const int64_t n_embd_head = hparams.n_embd_head_v;
  7046. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7047. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7048. struct ggml_tensor * cur;
  7049. struct ggml_tensor * inpL;
  7050. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7051. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7052. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7053. // positions of the tokens in the KV cache
  7054. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  7055. inpL = llm_build_norm(ctx0, inpL, hparams,
  7056. model.tok_norm,
  7057. model.tok_norm_b,
  7058. LLM_NORM, cb, -1);
  7059. cb(inpL, "inp_norm", -1);
  7060. for (int il = 0; il < n_layer; ++il) {
  7061. cur = llm_build_norm(ctx0, inpL, hparams,
  7062. model.layers[il].attn_norm,
  7063. model.layers[il].attn_norm_b,
  7064. LLM_NORM, cb, il);
  7065. cb(cur, "attn_norm", il);
  7066. // self-attention
  7067. {
  7068. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7069. cb(cur, "wqkv", il);
  7070. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7071. cb(cur, "bqkv", il);
  7072. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7073. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7074. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7075. cb(Qcur, "Qcur", il);
  7076. cb(Kcur, "Kcur", il);
  7077. cb(Vcur, "Vcur", il);
  7078. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7079. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7080. model.layers[il].wo, model.layers[il].bo,
  7081. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7082. }
  7083. if (il == n_layer - 1) {
  7084. // skip computing output for unused tokens
  7085. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7086. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7087. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7088. }
  7089. // Add the input
  7090. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7091. cb(ffn_inp, "ffn_inp", il);
  7092. // FF
  7093. {
  7094. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7095. model.layers[il].ffn_norm,
  7096. model.layers[il].ffn_norm_b,
  7097. LLM_NORM, cb, il);
  7098. cb(cur, "ffn_norm", il);
  7099. cur = llm_build_ffn(ctx0, cur,
  7100. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7101. NULL, NULL,
  7102. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7103. NULL,
  7104. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7105. cb(cur, "ffn_out", il);
  7106. }
  7107. inpL = ggml_add(ctx0, cur, ffn_inp);
  7108. cb(inpL, "l_out", il);
  7109. }
  7110. cur = llm_build_norm(ctx0, inpL, hparams,
  7111. model.output_norm,
  7112. model.output_norm_b,
  7113. LLM_NORM, cb, -1);
  7114. cb(cur, "result_norm", -1);
  7115. cur = ggml_mul_mat(ctx0, model.output, cur);
  7116. cb(cur, "result_output", -1);
  7117. ggml_build_forward_expand(gf, cur);
  7118. return gf;
  7119. }
  7120. struct ggml_cgraph * build_mpt() {
  7121. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7122. const int64_t n_embd_head = hparams.n_embd_head_v;
  7123. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7124. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7125. struct ggml_tensor * cur;
  7126. struct ggml_tensor * pos;
  7127. struct ggml_tensor * inpL;
  7128. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7129. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7130. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7131. // positions of the tokens in the KV cache
  7132. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  7133. if (model.pos_embd) {
  7134. // inp_pos - contains the positions
  7135. struct ggml_tensor * inp_pos = build_inp_pos();
  7136. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7137. cb(pos, "pos_embd", -1);
  7138. inpL = ggml_add(ctx0, inpL, pos);
  7139. cb(inpL, "inpL", -1);
  7140. }
  7141. for (int il = 0; il < n_layer; ++il) {
  7142. struct ggml_tensor * attn_norm;
  7143. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7144. model.layers[il].attn_norm,
  7145. model.layers[il].attn_norm_b,
  7146. LLM_NORM, cb, il);
  7147. cb(attn_norm, "attn_norm", il);
  7148. // self-attention
  7149. {
  7150. cur = attn_norm;
  7151. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7152. cb(cur, "wqkv", il);
  7153. if (model.layers[il].bqkv){
  7154. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7155. cb(cur, "bqkv", il);
  7156. }
  7157. if (hparams.f_clamp_kqv > 0.0f) {
  7158. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7159. cb(cur, "wqkv_clamped", il);
  7160. }
  7161. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7162. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7163. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7164. cb(Qcur, "Qcur", il);
  7165. cb(Kcur, "Kcur", il);
  7166. cb(Vcur, "Vcur", il);
  7167. // Q/K Layernorm
  7168. if (model.layers[il].attn_q_norm) {
  7169. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7170. model.layers[il].attn_q_norm,
  7171. model.layers[il].attn_q_norm_b,
  7172. LLM_NORM, cb, il);
  7173. cb(Qcur, "Qcur", il);
  7174. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7175. model.layers[il].attn_k_norm,
  7176. model.layers[il].attn_k_norm_b,
  7177. LLM_NORM, cb, il);
  7178. cb(Kcur, "Kcur", il);
  7179. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7180. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7181. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7182. model.layers[il].wo, model.layers[il].bo,
  7183. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7184. } else {
  7185. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7186. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7187. model.layers[il].wo, model.layers[il].bo,
  7188. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7189. }
  7190. }
  7191. if (il == n_layer - 1) {
  7192. // skip computing output for unused tokens
  7193. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7194. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7195. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7196. }
  7197. // Add the input
  7198. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7199. cb(ffn_inp, "ffn_inp", il);
  7200. // feed forward
  7201. {
  7202. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7203. model.layers[il].ffn_norm,
  7204. model.layers[il].ffn_norm_b,
  7205. LLM_NORM, cb, il);
  7206. cb(cur, "ffn_norm", il);
  7207. cur = llm_build_ffn(ctx0, cur,
  7208. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7209. NULL, NULL,
  7210. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7211. model.layers[il].ffn_act,
  7212. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7213. cb(cur, "ffn_out", il);
  7214. }
  7215. cur = ggml_add(ctx0, cur, ffn_inp);
  7216. cb(cur, "l_out", il);
  7217. // input for next layer
  7218. inpL = cur;
  7219. }
  7220. cur = inpL;
  7221. cur = llm_build_norm(ctx0, cur, hparams,
  7222. model.output_norm,
  7223. model.output_norm_b,
  7224. LLM_NORM, cb, -1);
  7225. cb(cur, "result_norm", -1);
  7226. cur = ggml_mul_mat(ctx0, model.output, cur);
  7227. cb(cur, "result_output", -1);
  7228. ggml_build_forward_expand(gf, cur);
  7229. return gf;
  7230. }
  7231. struct ggml_cgraph * build_stablelm() {
  7232. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7233. const int64_t n_embd_head = hparams.n_embd_head_v;
  7234. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7235. struct ggml_tensor * cur;
  7236. struct ggml_tensor * inpL;
  7237. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7238. // inp_pos - contains the positions
  7239. struct ggml_tensor * inp_pos = build_inp_pos();
  7240. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7241. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7242. for (int il = 0; il < n_layer; ++il) {
  7243. // norm
  7244. cur = llm_build_norm(ctx0, inpL, hparams,
  7245. model.layers[il].attn_norm,
  7246. model.layers[il].attn_norm_b,
  7247. LLM_NORM, cb, il);
  7248. cb(cur, "attn_norm", il);
  7249. struct ggml_tensor * inpSA = cur;
  7250. // self-attention
  7251. {
  7252. // compute Q and K and RoPE them
  7253. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7254. cb(Qcur, "Qcur", il);
  7255. if (model.layers[il].bq) {
  7256. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7257. cb(Qcur, "Qcur", il);
  7258. }
  7259. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7260. cb(Kcur, "Kcur", il);
  7261. if (model.layers[il].bk) {
  7262. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7263. cb(Kcur, "Kcur", il);
  7264. }
  7265. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7266. cb(Vcur, "Vcur", il);
  7267. if (model.layers[il].bv) {
  7268. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7269. cb(Vcur, "Vcur", il);
  7270. }
  7271. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7272. cb(Qcur, "Qcur", il);
  7273. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7274. cb(Kcur, "Kcur", il);
  7275. if (model.layers[il].attn_q_norm) {
  7276. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7277. model.layers[il].attn_q_norm,
  7278. NULL,
  7279. LLM_NORM, cb, il);
  7280. cb(Qcur, "Qcur", il);
  7281. }
  7282. if (model.layers[il].attn_k_norm) {
  7283. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7284. model.layers[il].attn_k_norm,
  7285. NULL,
  7286. LLM_NORM, cb, il);
  7287. cb(Kcur, "Kcur", il);
  7288. }
  7289. Qcur = ggml_rope_custom(
  7290. ctx0, Qcur, inp_pos,
  7291. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7292. ext_factor, attn_factor, beta_fast, beta_slow
  7293. );
  7294. cb(Qcur, "Qcur", il);
  7295. Kcur = ggml_rope_custom(
  7296. ctx0, Kcur, inp_pos,
  7297. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7298. ext_factor, attn_factor, beta_fast, beta_slow
  7299. );
  7300. cb(Kcur, "Kcur", il);
  7301. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7302. model.layers[il].wo, NULL,
  7303. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7304. }
  7305. if (il == n_layer - 1) {
  7306. // skip computing output for unused tokens
  7307. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7308. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7309. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7310. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7311. }
  7312. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7313. cb(ffn_inp, "ffn_inp", il);
  7314. // feed-forward network
  7315. {
  7316. if (model.layers[il].ffn_norm) {
  7317. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7318. model.layers[il].ffn_norm,
  7319. model.layers[il].ffn_norm_b,
  7320. LLM_NORM, cb, il);
  7321. cb(cur, "ffn_norm", il);
  7322. } else {
  7323. // parallel residual
  7324. cur = inpSA;
  7325. }
  7326. cur = llm_build_ffn(ctx0, cur,
  7327. model.layers[il].ffn_up, NULL,
  7328. model.layers[il].ffn_gate, NULL,
  7329. model.layers[il].ffn_down, NULL,
  7330. NULL,
  7331. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7332. cb(cur, "ffn_out", il);
  7333. }
  7334. cur = ggml_add(ctx0, cur, ffn_inp);
  7335. cb(cur, "l_out", il);
  7336. // input for next layer
  7337. inpL = cur;
  7338. }
  7339. cur = inpL;
  7340. cur = llm_build_norm(ctx0, cur, hparams,
  7341. model.output_norm,
  7342. model.output_norm_b,
  7343. LLM_NORM, cb, -1);
  7344. cb(cur, "result_norm", -1);
  7345. // lm_head
  7346. cur = ggml_mul_mat(ctx0, model.output, cur);
  7347. cb(cur, "result_output", -1);
  7348. ggml_build_forward_expand(gf, cur);
  7349. return gf;
  7350. }
  7351. struct ggml_cgraph * build_qwen() {
  7352. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7353. const int64_t n_embd_head = hparams.n_embd_head_v;
  7354. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7355. struct ggml_tensor * cur;
  7356. struct ggml_tensor * inpL;
  7357. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7358. // inp_pos - contains the positions
  7359. struct ggml_tensor * inp_pos = build_inp_pos();
  7360. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7361. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7362. for (int il = 0; il < n_layer; ++il) {
  7363. struct ggml_tensor * inpSA = inpL;
  7364. cur = llm_build_norm(ctx0, inpL, hparams,
  7365. model.layers[il].attn_norm, NULL,
  7366. LLM_NORM_RMS, cb, il);
  7367. cb(cur, "attn_norm", il);
  7368. // self-attention
  7369. {
  7370. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7371. cb(cur, "wqkv", il);
  7372. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7373. cb(cur, "bqkv", il);
  7374. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7375. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7376. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7377. cb(Qcur, "Qcur", il);
  7378. cb(Kcur, "Kcur", il);
  7379. cb(Vcur, "Vcur", il);
  7380. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7381. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7382. // using mode = 2 for neox mode
  7383. Qcur = ggml_rope_custom(
  7384. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7385. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7386. );
  7387. cb(Qcur, "Qcur", il);
  7388. Kcur = ggml_rope_custom(
  7389. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7390. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7391. );
  7392. cb(Kcur, "Kcur", il);
  7393. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7394. model.layers[il].wo, NULL,
  7395. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7396. }
  7397. if (il == n_layer - 1) {
  7398. // skip computing output for unused tokens
  7399. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7400. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7401. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7402. }
  7403. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7404. cb(ffn_inp, "ffn_inp", il);
  7405. // feed-forward forward
  7406. {
  7407. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7408. model.layers[il].ffn_norm, NULL,
  7409. LLM_NORM_RMS, cb, il);
  7410. cb(cur, "ffn_norm", il);
  7411. cur = llm_build_ffn(ctx0, cur,
  7412. model.layers[il].ffn_up, NULL,
  7413. model.layers[il].ffn_gate, NULL,
  7414. model.layers[il].ffn_down, NULL,
  7415. NULL,
  7416. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7417. cb(cur, "ffn_out", il);
  7418. }
  7419. cur = ggml_add(ctx0, cur, ffn_inp);
  7420. cb(cur, "l_out", il);
  7421. // input for next layer
  7422. inpL = cur;
  7423. }
  7424. cur = inpL;
  7425. cur = llm_build_norm(ctx0, cur, hparams,
  7426. model.output_norm, NULL,
  7427. LLM_NORM_RMS, cb, -1);
  7428. cb(cur, "result_norm", -1);
  7429. // lm_head
  7430. cur = ggml_mul_mat(ctx0, model.output, cur);
  7431. cb(cur, "result_output", -1);
  7432. ggml_build_forward_expand(gf, cur);
  7433. return gf;
  7434. }
  7435. struct ggml_cgraph * build_qwen2() {
  7436. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7437. const int64_t n_embd_head = hparams.n_embd_head_v;
  7438. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7439. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7440. struct ggml_tensor * cur;
  7441. struct ggml_tensor * inpL;
  7442. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7443. // inp_pos - contains the positions
  7444. struct ggml_tensor * inp_pos = build_inp_pos();
  7445. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7446. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7447. for (int il = 0; il < n_layer; ++il) {
  7448. struct ggml_tensor * inpSA = inpL;
  7449. // norm
  7450. cur = llm_build_norm(ctx0, inpL, hparams,
  7451. model.layers[il].attn_norm, NULL,
  7452. LLM_NORM_RMS, cb, il);
  7453. cb(cur, "attn_norm", il);
  7454. // self-attention
  7455. {
  7456. // compute Q and K and RoPE them
  7457. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7458. cb(Qcur, "Qcur", il);
  7459. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7460. cb(Qcur, "Qcur", il);
  7461. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7462. cb(Kcur, "Kcur", il);
  7463. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7464. cb(Kcur, "Kcur", il);
  7465. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7466. cb(Vcur, "Vcur", il);
  7467. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7468. cb(Vcur, "Vcur", il);
  7469. Qcur = ggml_rope_custom(
  7470. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7471. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7472. ext_factor, attn_factor, beta_fast, beta_slow
  7473. );
  7474. cb(Qcur, "Qcur", il);
  7475. Kcur = ggml_rope_custom(
  7476. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7477. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7478. ext_factor, attn_factor, beta_fast, beta_slow
  7479. );
  7480. cb(Kcur, "Kcur", il);
  7481. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7482. model.layers[il].wo, model.layers[il].bo,
  7483. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7484. }
  7485. if (il == n_layer - 1) {
  7486. // skip computing output for unused tokens
  7487. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7488. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7489. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7490. }
  7491. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7492. cb(ffn_inp, "ffn_inp", il);
  7493. // feed-forward network
  7494. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7495. model.layers[il].ffn_norm, NULL,
  7496. LLM_NORM_RMS, cb, il);
  7497. cb(cur, "ffn_norm", il);
  7498. cur = llm_build_ffn(ctx0, cur,
  7499. model.layers[il].ffn_up, NULL,
  7500. model.layers[il].ffn_gate, NULL,
  7501. model.layers[il].ffn_down, NULL,
  7502. NULL,
  7503. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7504. cb(cur, "ffn_out", il);
  7505. cur = ggml_add(ctx0, cur, ffn_inp);
  7506. cb(cur, "l_out", il);
  7507. // input for next layer
  7508. inpL = cur;
  7509. }
  7510. cur = inpL;
  7511. cur = llm_build_norm(ctx0, cur, hparams,
  7512. model.output_norm, NULL,
  7513. LLM_NORM_RMS, cb, -1);
  7514. cb(cur, "result_norm", -1);
  7515. // lm_head
  7516. cur = ggml_mul_mat(ctx0, model.output, cur);
  7517. cb(cur, "result_output", -1);
  7518. ggml_build_forward_expand(gf, cur);
  7519. return gf;
  7520. }
  7521. struct ggml_cgraph * build_qwen2moe() {
  7522. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7523. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7524. int32_t n_tokens = this->n_tokens;
  7525. const int64_t n_embd_head = hparams.n_embd_head_v;
  7526. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7527. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7528. struct ggml_tensor * cur;
  7529. struct ggml_tensor * inpL;
  7530. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7531. // inp_pos - contains the positions
  7532. struct ggml_tensor * inp_pos = build_inp_pos();
  7533. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7534. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7535. for (int il = 0; il < n_layer; ++il) {
  7536. struct ggml_tensor * inpSA = inpL;
  7537. // norm
  7538. cur = llm_build_norm(ctx0, inpL, hparams,
  7539. model.layers[il].attn_norm, NULL,
  7540. LLM_NORM_RMS, cb, il);
  7541. cb(cur, "attn_norm", il);
  7542. // self_attention
  7543. {
  7544. // compute Q and K and RoPE them
  7545. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7546. cb(Qcur, "Qcur", il);
  7547. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7548. cb(Qcur, "Qcur", il);
  7549. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7550. cb(Kcur, "Kcur", il);
  7551. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7552. cb(Kcur, "Kcur", il);
  7553. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7554. cb(Vcur, "Vcur", il);
  7555. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7556. cb(Vcur, "Vcur", il);
  7557. Qcur = ggml_rope_custom(
  7558. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7559. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7560. ext_factor, attn_factor, beta_fast, beta_slow
  7561. );
  7562. cb(Qcur, "Qcur", il);
  7563. Kcur = ggml_rope_custom(
  7564. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7565. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7566. ext_factor, attn_factor, beta_fast, beta_slow
  7567. );
  7568. cb(Kcur, "Kcur", il);
  7569. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7570. model.layers[il].wo, model.layers[il].bo,
  7571. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7572. }
  7573. if (il == n_layer - 1) {
  7574. // skip computing output for unused tokens
  7575. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7576. n_tokens = n_outputs;
  7577. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7578. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7579. }
  7580. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7581. cb(ffn_inp, "ffn_inp", il);
  7582. // MoE branch
  7583. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7584. model.layers[il].ffn_norm, NULL,
  7585. LLM_NORM_RMS, cb, il);
  7586. cb(cur, "ffn_norm", il);
  7587. ggml_tensor * moe_out =
  7588. llm_build_moe_ffn(ctx0, cur,
  7589. model.layers[il].ffn_gate_inp,
  7590. model.layers[il].ffn_up_exps,
  7591. model.layers[il].ffn_gate_exps,
  7592. model.layers[il].ffn_down_exps,
  7593. n_expert, n_expert_used,
  7594. LLM_FFN_SILU, false,
  7595. cb, il);
  7596. cb(cur, "ffn_moe_out", il);
  7597. // FFN shared expert
  7598. {
  7599. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7600. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7601. // sigmoid
  7602. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7603. cb(cur_gate, "ffn_shexp_gate", il);
  7604. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7605. model.layers[il].ffn_up_shexp, NULL,
  7606. model.layers[il].ffn_gate_shexp, NULL,
  7607. model.layers[il].ffn_down_shexp, NULL,
  7608. NULL,
  7609. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7610. cb(cur_ffn, "ffn_shexp", il);
  7611. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7612. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7613. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7614. cb(moe_out, "ffn_out", il);
  7615. cur = moe_out;
  7616. }
  7617. cur = ggml_add(ctx0, cur, ffn_inp);
  7618. cb(cur, "l_out", il);
  7619. // input for next layer
  7620. inpL = cur;
  7621. }
  7622. cur = inpL;
  7623. cur = llm_build_norm(ctx0, cur, hparams,
  7624. model.output_norm, NULL,
  7625. LLM_NORM_RMS, cb, -1);
  7626. cb(cur, "result_norm", -1);
  7627. // lm_head
  7628. cur = ggml_mul_mat(ctx0, model.output, cur);
  7629. cb(cur, "result_output", -1);
  7630. ggml_build_forward_expand(gf, cur);
  7631. return gf;
  7632. }
  7633. struct ggml_cgraph * build_phi2() {
  7634. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7635. const int64_t n_embd_head = hparams.n_embd_head_v;
  7636. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7637. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7638. struct ggml_tensor * cur;
  7639. struct ggml_tensor * attn_norm_output;
  7640. struct ggml_tensor * ffn_output;
  7641. struct ggml_tensor * inpL;
  7642. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7643. // inp_pos - contains the positions
  7644. struct ggml_tensor * inp_pos = build_inp_pos();
  7645. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7646. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7647. for (int il = 0; il < n_layer; ++il) {
  7648. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7649. model.layers[il].attn_norm,
  7650. model.layers[il].attn_norm_b,
  7651. LLM_NORM, cb, il);
  7652. cb(attn_norm_output, "attn_norm", il);
  7653. // self-attention
  7654. {
  7655. struct ggml_tensor * Qcur = nullptr;
  7656. struct ggml_tensor * Kcur = nullptr;
  7657. struct ggml_tensor * Vcur = nullptr;
  7658. if (model.layers[il].wqkv) {
  7659. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7660. cb(cur, "wqkv", il);
  7661. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7662. cb(cur, "bqkv", il);
  7663. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7664. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7665. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7666. } else {
  7667. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7668. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7669. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7670. }
  7671. cb(Qcur, "Qcur", il);
  7672. cb(Kcur, "Kcur", il);
  7673. cb(Vcur, "Vcur", il);
  7674. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7675. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7676. Qcur = ggml_rope_custom(
  7677. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7678. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7679. );
  7680. cb(Qcur, "Qcur", il);
  7681. // with phi2, we scale the Q to avoid precision issues
  7682. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7683. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7684. cb(Qcur, "Qcur", il);
  7685. Kcur = ggml_rope_custom(
  7686. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7687. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7688. );
  7689. cb(Kcur, "Kcur", il);
  7690. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7691. model.layers[il].wo, model.layers[il].bo,
  7692. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7693. }
  7694. if (il == n_layer - 1) {
  7695. // skip computing output for unused tokens
  7696. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7697. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7698. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7699. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7700. }
  7701. // FF
  7702. {
  7703. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7704. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7705. NULL, NULL,
  7706. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7707. NULL,
  7708. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7709. cb(ffn_output, "ffn_out", il);
  7710. }
  7711. cur = ggml_add(ctx0, cur, ffn_output);
  7712. cb(cur, "l_out", il);
  7713. cur = ggml_add(ctx0, cur, inpL);
  7714. cb(cur, "l_out", il);
  7715. inpL = cur;
  7716. }
  7717. cur = llm_build_norm(ctx0, inpL, hparams,
  7718. model.output_norm,
  7719. model.output_norm_b,
  7720. LLM_NORM, cb, -1);
  7721. cb(cur, "result_norm", -1);
  7722. cur = ggml_mul_mat(ctx0, model.output, cur);
  7723. cb(cur, "result_output_no_bias", -1);
  7724. cur = ggml_add(ctx0, cur, model.output_b);
  7725. cb(cur, "result_output", -1);
  7726. ggml_build_forward_expand(gf, cur);
  7727. return gf;
  7728. }
  7729. struct ggml_cgraph * build_phi3() {
  7730. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7731. const int64_t n_embd_head = hparams.n_embd_head_v;
  7732. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7733. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7734. struct ggml_tensor * cur;
  7735. struct ggml_tensor * inpL;
  7736. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7737. // inp_pos - contains the positions
  7738. struct ggml_tensor * inp_pos = build_inp_pos();
  7739. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7740. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7741. for (int il = 0; il < n_layer; ++il) {
  7742. auto residual = inpL;
  7743. // self-attention
  7744. {
  7745. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7746. model.layers[il].attn_norm,
  7747. NULL,
  7748. LLM_NORM_RMS, cb, il);
  7749. cb(attn_norm_output, "attn_norm", il);
  7750. struct ggml_tensor * Qcur = nullptr;
  7751. struct ggml_tensor * Kcur = nullptr;
  7752. struct ggml_tensor * Vcur = nullptr;
  7753. if (model.layers[il].wqkv) {
  7754. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7755. cb(cur, "wqkv", il);
  7756. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7757. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7758. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7759. }
  7760. else {
  7761. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7762. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7763. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7764. }
  7765. cb(Qcur, "Qcur", il);
  7766. cb(Kcur, "Kcur", il);
  7767. cb(Vcur, "Vcur", il);
  7768. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7769. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7770. Qcur = ggml_rope_custom(
  7771. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7772. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7773. );
  7774. cb(Qcur, "Qcur", il);
  7775. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7776. cb(Qcur, "Qcur", il);
  7777. Kcur = ggml_rope_custom(
  7778. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7779. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7780. );
  7781. cb(Kcur, "Kcur", il);
  7782. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7783. model.layers[il].wo, model.layers[il].bo,
  7784. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7785. }
  7786. if (il == n_layer - 1) {
  7787. // skip computing output for unused tokens
  7788. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7789. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7790. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7791. }
  7792. cur = ggml_add(ctx0, cur, residual);
  7793. residual = cur;
  7794. cur = llm_build_norm(ctx0, cur, hparams,
  7795. model.layers[il].ffn_norm, NULL,
  7796. LLM_NORM_RMS, cb, il);
  7797. cb(cur, "ffn_norm", il);
  7798. // FF
  7799. // special-case: the up and gate tensors are merged into a single tensor
  7800. // TOOD: support into llm_build_ffn
  7801. {
  7802. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7803. cb(up, "ffn_up", il);
  7804. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7805. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7806. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7807. cb(y, "ffn_gate", il);
  7808. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7809. cb(down, "ffn_down", il);
  7810. cur = down;
  7811. cb(cur, "ffn_out", il);
  7812. }
  7813. cur = ggml_add(ctx0, residual, cur);
  7814. cb(cur, "l_out", il);
  7815. inpL = cur;
  7816. }
  7817. cur = llm_build_norm(ctx0, inpL, hparams,
  7818. model.output_norm,
  7819. NULL,
  7820. LLM_NORM_RMS, cb, -1);
  7821. cb(cur, "result_norm", -1);
  7822. cur = ggml_mul_mat(ctx0, model.output, cur);
  7823. cb(cur, "result_output", -1);
  7824. ggml_build_forward_expand(gf, cur);
  7825. return gf;
  7826. }
  7827. struct ggml_cgraph * build_plamo() {
  7828. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7829. const int64_t n_embd_head = hparams.n_embd_head_v;
  7830. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7831. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7832. struct ggml_tensor * cur;
  7833. struct ggml_tensor * inpL;
  7834. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7835. // inp_pos - contains the positions
  7836. struct ggml_tensor * inp_pos = build_inp_pos();
  7837. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7838. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7839. for (int il = 0; il < n_layer; ++il) {
  7840. // norm
  7841. cur = llm_build_norm(ctx0, inpL, hparams,
  7842. model.layers[il].attn_norm, NULL,
  7843. LLM_NORM_RMS, cb, il);
  7844. cb(cur, "attn_norm", il);
  7845. struct ggml_tensor * attention_norm = cur;
  7846. // self-attention
  7847. {
  7848. // compute Q and K and RoPE them
  7849. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7850. cb(Qcur, "Qcur", il);
  7851. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7852. cb(Kcur, "Kcur", il);
  7853. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7854. cb(Vcur, "Vcur", il);
  7855. Qcur = ggml_rope_custom(
  7856. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  7857. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7858. ext_factor, attn_factor, beta_fast, beta_slow);
  7859. cb(Qcur, "Qcur", il);
  7860. Kcur = ggml_rope_custom(
  7861. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  7862. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7863. ext_factor, attn_factor, beta_fast, beta_slow);
  7864. cb(Kcur, "Kcur", il);
  7865. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7866. model.layers[il].wo, NULL,
  7867. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7868. }
  7869. struct ggml_tensor * sa_out = cur;
  7870. cur = attention_norm;
  7871. if (il == n_layer - 1) {
  7872. // skip computing output for unused tokens
  7873. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7874. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7875. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7876. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7877. }
  7878. // feed-forward network
  7879. {
  7880. cur = llm_build_ffn(ctx0, cur,
  7881. model.layers[il].ffn_up, NULL,
  7882. model.layers[il].ffn_gate, NULL,
  7883. model.layers[il].ffn_down, NULL,
  7884. NULL,
  7885. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7886. cb(cur, "ffn_out", il);
  7887. }
  7888. cur = ggml_add(ctx0, cur, sa_out);
  7889. cb(cur, "l_out", il);
  7890. cur = ggml_add(ctx0, cur, inpL);
  7891. cb(cur, "l_out", il);
  7892. // input for next layer
  7893. inpL = cur;
  7894. }
  7895. cur = inpL;
  7896. cur = llm_build_norm(ctx0, cur, hparams,
  7897. model.output_norm, NULL,
  7898. LLM_NORM_RMS, cb, -1);
  7899. cb(cur, "result_norm", -1);
  7900. // lm_head
  7901. cur = ggml_mul_mat(ctx0, model.output, cur);
  7902. cb(cur, "result_output", -1);
  7903. ggml_build_forward_expand(gf, cur);
  7904. return gf;
  7905. }
  7906. struct ggml_cgraph * build_gpt2() {
  7907. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7908. const int64_t n_embd_head = hparams.n_embd_head_v;
  7909. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7910. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7911. struct ggml_tensor * cur;
  7912. struct ggml_tensor * pos;
  7913. struct ggml_tensor * inpL;
  7914. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7915. // inp_pos - contains the positions
  7916. struct ggml_tensor * inp_pos = build_inp_pos();
  7917. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7918. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7919. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7920. cb(pos, "pos_embd", -1);
  7921. inpL = ggml_add(ctx0, inpL, pos);
  7922. cb(inpL, "inpL", -1);
  7923. for (int il = 0; il < n_layer; ++il) {
  7924. cur = llm_build_norm(ctx0, inpL, hparams,
  7925. model.layers[il].attn_norm,
  7926. model.layers[il].attn_norm_b,
  7927. LLM_NORM, cb, il);
  7928. cb(cur, "attn_norm", il);
  7929. // self-attention
  7930. {
  7931. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7932. cb(cur, "wqkv", il);
  7933. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7934. cb(cur, "bqkv", il);
  7935. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7936. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7937. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7938. cb(Qcur, "Qcur", il);
  7939. cb(Kcur, "Kcur", il);
  7940. cb(Vcur, "Vcur", il);
  7941. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7942. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7943. model.layers[il].wo, model.layers[il].bo,
  7944. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7945. }
  7946. if (il == n_layer - 1) {
  7947. // skip computing output for unused tokens
  7948. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7949. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7950. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7951. }
  7952. // add the input
  7953. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7954. cb(ffn_inp, "ffn_inp", il);
  7955. // FF
  7956. {
  7957. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7958. model.layers[il].ffn_norm,
  7959. model.layers[il].ffn_norm_b,
  7960. LLM_NORM, cb, il);
  7961. cb(cur, "ffn_norm", il);
  7962. cur = llm_build_ffn(ctx0, cur,
  7963. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7964. NULL, NULL,
  7965. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7966. NULL,
  7967. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7968. cb(cur, "ffn_out", il);
  7969. }
  7970. inpL = ggml_add(ctx0, cur, ffn_inp);
  7971. cb(inpL, "l_out", il);
  7972. }
  7973. cur = llm_build_norm(ctx0, inpL, hparams,
  7974. model.output_norm,
  7975. model.output_norm_b,
  7976. LLM_NORM, cb, -1);
  7977. cb(cur, "result_norm", -1);
  7978. cur = ggml_mul_mat(ctx0, model.output, cur);
  7979. cb(cur, "result_output", -1);
  7980. ggml_build_forward_expand(gf, cur);
  7981. return gf;
  7982. }
  7983. struct ggml_cgraph * build_codeshell() {
  7984. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7985. const int64_t n_embd_head = hparams.n_embd_head_v;
  7986. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7987. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7988. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7989. struct ggml_tensor * cur;
  7990. struct ggml_tensor * inpL;
  7991. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7992. // inp_pos - contains the positions
  7993. struct ggml_tensor * inp_pos = build_inp_pos();
  7994. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7995. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7996. for (int il = 0; il < n_layer; ++il) {
  7997. cur = llm_build_norm(ctx0, inpL, hparams,
  7998. model.layers[il].attn_norm,
  7999. model.layers[il].attn_norm_b,
  8000. LLM_NORM, cb, il);
  8001. cb(cur, "attn_norm", il);
  8002. // self-attention
  8003. {
  8004. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8005. cb(cur, "wqkv", il);
  8006. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8007. cb(cur, "bqkv", il);
  8008. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8009. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8010. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8011. cb(tmpq, "tmpq", il);
  8012. cb(tmpk, "tmpk", il);
  8013. cb(Vcur, "Vcur", il);
  8014. struct ggml_tensor * Qcur = ggml_rope_custom(
  8015. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  8016. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8017. ext_factor, attn_factor, beta_fast, beta_slow
  8018. );
  8019. cb(Qcur, "Qcur", il);
  8020. struct ggml_tensor * Kcur = ggml_rope_custom(
  8021. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8022. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8023. ext_factor, attn_factor, beta_fast, beta_slow
  8024. );
  8025. cb(Kcur, "Kcur", il);
  8026. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8027. model.layers[il].wo, model.layers[il].bo,
  8028. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8029. }
  8030. if (il == n_layer - 1) {
  8031. // skip computing output for unused tokens
  8032. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8033. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8034. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8035. }
  8036. // add the input
  8037. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8038. cb(ffn_inp, "ffn_inp", il);
  8039. // FF
  8040. {
  8041. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8042. model.layers[il].ffn_norm,
  8043. model.layers[il].ffn_norm_b,
  8044. LLM_NORM, cb, il);
  8045. cb(cur, "ffn_norm", il);
  8046. cur = llm_build_ffn(ctx0, cur,
  8047. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8048. NULL, NULL,
  8049. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8050. NULL,
  8051. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8052. cb(cur, "ffn_out", il);
  8053. }
  8054. inpL = ggml_add(ctx0, cur, ffn_inp);
  8055. cb(inpL, "l_out", il);
  8056. }
  8057. cur = llm_build_norm(ctx0, inpL, hparams,
  8058. model.output_norm,
  8059. model.output_norm_b,
  8060. LLM_NORM, cb, -1);
  8061. cb(cur, "result_norm", -1);
  8062. cur = ggml_mul_mat(ctx0, model.output, cur);
  8063. cb(cur, "result_output", -1);
  8064. ggml_build_forward_expand(gf, cur);
  8065. return gf;
  8066. }
  8067. struct ggml_cgraph * build_orion() {
  8068. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8069. const int64_t n_embd_head = hparams.n_embd_head_v;
  8070. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8071. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8072. struct ggml_tensor * cur;
  8073. struct ggml_tensor * inpL;
  8074. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8075. // inp_pos - contains the positions
  8076. struct ggml_tensor * inp_pos = build_inp_pos();
  8077. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8078. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8079. for (int il = 0; il < n_layer; ++il) {
  8080. struct ggml_tensor * inpSA = inpL;
  8081. // norm
  8082. cur = llm_build_norm(ctx0, inpL, hparams,
  8083. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8084. LLM_NORM, cb, il);
  8085. cb(cur, "attn_norm", il);
  8086. // self-attention
  8087. {
  8088. // compute Q and K and RoPE them
  8089. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8090. cb(Qcur, "Qcur", il);
  8091. // if (model.layers[il].bq) {
  8092. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8093. // cb(Qcur, "Qcur", il);
  8094. // }
  8095. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8096. cb(Kcur, "Kcur", il);
  8097. // if (model.layers[il].bk) {
  8098. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8099. // cb(Kcur, "Kcur", il);
  8100. // }
  8101. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8102. cb(Vcur, "Vcur", il);
  8103. // if (model.layers[il].bv) {
  8104. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8105. // cb(Vcur, "Vcur", il);
  8106. // }
  8107. Qcur = ggml_rope_custom(
  8108. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8109. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8110. ext_factor, attn_factor, beta_fast, beta_slow
  8111. );
  8112. cb(Qcur, "Qcur", il);
  8113. Kcur = ggml_rope_custom(
  8114. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8115. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8116. ext_factor, attn_factor, beta_fast, beta_slow
  8117. );
  8118. cb(Kcur, "Kcur", il);
  8119. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8120. model.layers[il].wo, NULL,
  8121. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8122. }
  8123. if (il == n_layer - 1) {
  8124. // skip computing output for unused tokens
  8125. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8126. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8127. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8128. }
  8129. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8130. cb(ffn_inp, "ffn_inp", il);
  8131. // feed-forward network
  8132. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8133. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8134. LLM_NORM, cb, il);
  8135. cb(cur, "ffn_norm", il);
  8136. cur = llm_build_ffn(ctx0, cur,
  8137. model.layers[il].ffn_up, NULL,
  8138. model.layers[il].ffn_gate, NULL,
  8139. model.layers[il].ffn_down, NULL,
  8140. NULL,
  8141. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8142. cb(cur, "ffn_out", il);
  8143. cur = ggml_add(ctx0, cur, ffn_inp);
  8144. cb(cur, "l_out", il);
  8145. // input for next layer
  8146. inpL = cur;
  8147. }
  8148. cur = inpL;
  8149. cur = llm_build_norm(ctx0, cur, hparams,
  8150. model.output_norm, model.output_norm_b,
  8151. LLM_NORM, cb, -1);
  8152. cb(cur, "result_norm", -1);
  8153. // lm_head
  8154. cur = ggml_mul_mat(ctx0, model.output, cur);
  8155. cb(cur, "result_output", -1);
  8156. ggml_build_forward_expand(gf, cur);
  8157. return gf;
  8158. }
  8159. struct ggml_cgraph * build_internlm2() {
  8160. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8161. const int64_t n_embd_head = hparams.n_embd_head_v;
  8162. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8163. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8164. struct ggml_tensor * cur;
  8165. struct ggml_tensor * inpL;
  8166. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8167. // inp_pos - contains the positions
  8168. struct ggml_tensor * inp_pos = build_inp_pos();
  8169. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8170. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8171. for (int il = 0; il < n_layer; ++il) {
  8172. struct ggml_tensor * inpSA = inpL;
  8173. // norm
  8174. cur = llm_build_norm(ctx0, inpL, hparams,
  8175. model.layers[il].attn_norm, NULL,
  8176. LLM_NORM_RMS, cb, il);
  8177. cb(cur, "attn_norm", il);
  8178. // self-attention
  8179. {
  8180. // compute Q and K and RoPE them
  8181. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8182. cb(Qcur, "Qcur", il);
  8183. if (model.layers[il].bq) {
  8184. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8185. cb(Qcur, "Qcur", il);
  8186. }
  8187. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8188. cb(Kcur, "Kcur", il);
  8189. if (model.layers[il].bk) {
  8190. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8191. cb(Kcur, "Kcur", il);
  8192. }
  8193. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8194. cb(Vcur, "Vcur", il);
  8195. if (model.layers[il].bv) {
  8196. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8197. cb(Vcur, "Vcur", il);
  8198. }
  8199. Qcur = ggml_rope_custom(
  8200. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8201. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8202. ext_factor, attn_factor, beta_fast, beta_slow
  8203. );
  8204. cb(Qcur, "Qcur", il);
  8205. Kcur = ggml_rope_custom(
  8206. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8207. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8208. ext_factor, attn_factor, beta_fast, beta_slow
  8209. );
  8210. cb(Kcur, "Kcur", il);
  8211. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8212. model.layers[il].wo, model.layers[il].bo,
  8213. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8214. }
  8215. if (il == n_layer - 1) {
  8216. // skip computing output for unused tokens
  8217. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8218. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8219. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8220. }
  8221. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8222. cb(ffn_inp, "ffn_inp", il);
  8223. // feed-forward network
  8224. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8225. model.layers[il].ffn_norm, NULL,
  8226. LLM_NORM_RMS, cb, il);
  8227. cb(cur, "ffn_norm", il);
  8228. cur = llm_build_ffn(ctx0, cur,
  8229. model.layers[il].ffn_up, NULL,
  8230. model.layers[il].ffn_gate, NULL,
  8231. model.layers[il].ffn_down, NULL,
  8232. NULL,
  8233. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8234. cb(cur, "ffn_out", il);
  8235. cur = ggml_add(ctx0, cur, ffn_inp);
  8236. cb(cur, "l_out", il);
  8237. // input for next layer
  8238. inpL = cur;
  8239. }
  8240. cur = inpL;
  8241. cur = llm_build_norm(ctx0, cur, hparams,
  8242. model.output_norm, NULL,
  8243. LLM_NORM_RMS, cb, -1);
  8244. cb(cur, "result_norm", -1);
  8245. // lm_head
  8246. cur = ggml_mul_mat(ctx0, model.output, cur);
  8247. cb(cur, "result_output", -1);
  8248. ggml_build_forward_expand(gf, cur);
  8249. return gf;
  8250. }
  8251. // ref: https://arxiv.org/abs/2203.03466
  8252. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8253. // based on the original build_llama() function
  8254. struct ggml_cgraph * build_minicpm() {
  8255. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8256. const int64_t n_embd_head = hparams.n_embd_head_v;
  8257. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8258. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8259. const int64_t n_embd = hparams.n_embd;
  8260. //TODO: if the model varies, these parameters need to be read from the model
  8261. const int64_t n_embd_base = 256;
  8262. const float scale_embd = 12.0f;
  8263. const float scale_depth = 1.4f;
  8264. struct ggml_tensor * cur;
  8265. struct ggml_tensor * inpL;
  8266. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8267. // scale the input embeddings
  8268. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8269. cb(inpL, "inp_scaled", -1);
  8270. // inp_pos - contains the positions
  8271. struct ggml_tensor * inp_pos = build_inp_pos();
  8272. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8273. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8274. for (int il = 0; il < n_layer; ++il) {
  8275. struct ggml_tensor * inpSA = inpL;
  8276. // norm
  8277. cur = llm_build_norm(ctx0, inpL, hparams,
  8278. model.layers[il].attn_norm, NULL,
  8279. LLM_NORM_RMS, cb, il);
  8280. cb(cur, "attn_norm", il);
  8281. // self-attention
  8282. {
  8283. // compute Q and K and RoPE them
  8284. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8285. cb(Qcur, "Qcur", il);
  8286. if (model.layers[il].bq) {
  8287. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8288. cb(Qcur, "Qcur", il);
  8289. }
  8290. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8291. cb(Kcur, "Kcur", il);
  8292. if (model.layers[il].bk) {
  8293. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8294. cb(Kcur, "Kcur", il);
  8295. }
  8296. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8297. cb(Vcur, "Vcur", il);
  8298. if (model.layers[il].bv) {
  8299. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8300. cb(Vcur, "Vcur", il);
  8301. }
  8302. Qcur = ggml_rope_custom(
  8303. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8304. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8305. ext_factor, attn_factor, beta_fast, beta_slow
  8306. );
  8307. cb(Qcur, "Qcur", il);
  8308. Kcur = ggml_rope_custom(
  8309. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8310. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8311. ext_factor, attn_factor, beta_fast, beta_slow
  8312. );
  8313. cb(Kcur, "Kcur", il);
  8314. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8315. model.layers[il].wo, model.layers[il].bo,
  8316. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8317. }
  8318. if (il == n_layer - 1) {
  8319. // skip computing output for unused tokens
  8320. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8321. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8322. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8323. }
  8324. // scale_res - scale the hidden states for residual connection
  8325. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8326. cur = ggml_scale(ctx0, cur, scale_res);
  8327. cb(cur, "hidden_scaled", -1);
  8328. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8329. cb(ffn_inp, "ffn_inp", il);
  8330. // feed-forward network
  8331. {
  8332. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8333. model.layers[il].ffn_norm, NULL,
  8334. LLM_NORM_RMS, cb, il);
  8335. cb(cur, "ffn_norm", il);
  8336. cur = llm_build_ffn(ctx0, cur,
  8337. model.layers[il].ffn_up, NULL,
  8338. model.layers[il].ffn_gate, NULL,
  8339. model.layers[il].ffn_down, NULL,
  8340. NULL,
  8341. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8342. cb(cur, "ffn_out", il);
  8343. }
  8344. // scale the hidden states for residual connection
  8345. cur = ggml_scale(ctx0, cur, scale_res);
  8346. cb(cur, "hidden_scaled_ffn", -1);
  8347. cur = ggml_add(ctx0, cur, ffn_inp);
  8348. cb(cur, "l_out", il);
  8349. // input for next layer
  8350. inpL = cur;
  8351. }
  8352. cur = inpL;
  8353. cur = llm_build_norm(ctx0, cur, hparams,
  8354. model.output_norm, NULL,
  8355. LLM_NORM_RMS, cb, -1);
  8356. cb(cur, "result_norm", -1);
  8357. // lm_head scaling
  8358. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8359. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8360. cb(cur, "lmhead_scaling", -1);
  8361. // lm_head
  8362. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8363. cb(cur, "result_output", -1);
  8364. ggml_build_forward_expand(gf, cur);
  8365. return gf;
  8366. }
  8367. struct ggml_cgraph * build_gemma() {
  8368. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8369. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8370. struct ggml_tensor * cur;
  8371. struct ggml_tensor * inpL;
  8372. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8373. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8374. cb(inpL, "inp_scaled", -1);
  8375. // inp_pos - contains the positions
  8376. struct ggml_tensor * inp_pos = build_inp_pos();
  8377. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8378. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8379. for (int il = 0; il < n_layer; ++il) {
  8380. // norm
  8381. cur = llm_build_norm(ctx0, inpL, hparams,
  8382. model.layers[il].attn_norm, NULL,
  8383. LLM_NORM_RMS, cb, il);
  8384. cb(cur, "attn_norm", il);
  8385. // self-attention
  8386. {
  8387. // compute Q and K and RoPE them
  8388. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8389. cb(Qcur, "Qcur", il);
  8390. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8391. cb(Kcur, "Kcur", il);
  8392. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8393. cb(Vcur, "Vcur", il);
  8394. Qcur = ggml_rope_custom(
  8395. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  8396. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8397. ext_factor, attn_factor, beta_fast, beta_slow);
  8398. cb(Qcur, "Qcur", il);
  8399. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8400. cb(Qcur, "Qcur_scaled", il);
  8401. Kcur = ggml_rope_custom(
  8402. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  8403. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8404. ext_factor, attn_factor, beta_fast, beta_slow);
  8405. cb(Kcur, "Kcur", il);
  8406. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8407. model.layers[il].wo, NULL,
  8408. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8409. }
  8410. if (il == n_layer - 1) {
  8411. // skip computing output for unused tokens
  8412. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8413. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8414. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8415. }
  8416. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8417. cb(sa_out, "sa_out", il);
  8418. cur = llm_build_norm(ctx0, sa_out, hparams,
  8419. model.layers[il].ffn_norm, NULL,
  8420. LLM_NORM_RMS, cb, il);
  8421. cb(cur, "ffn_norm", il);
  8422. // feed-forward network
  8423. {
  8424. cur = llm_build_ffn(ctx0, cur,
  8425. model.layers[il].ffn_up, NULL,
  8426. model.layers[il].ffn_gate, NULL,
  8427. model.layers[il].ffn_down, NULL,
  8428. NULL,
  8429. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8430. cb(cur, "ffn_out", il);
  8431. }
  8432. cur = ggml_add(ctx0, cur, sa_out);
  8433. cb(cur, "l_out", il);
  8434. // input for next layer
  8435. inpL = cur;
  8436. }
  8437. cur = inpL;
  8438. cur = llm_build_norm(ctx0, cur, hparams,
  8439. model.output_norm, NULL,
  8440. LLM_NORM_RMS, cb, -1);
  8441. cb(cur, "result_norm", -1);
  8442. // lm_head
  8443. cur = ggml_mul_mat(ctx0, model.output, cur);
  8444. cb(cur, "result_output", -1);
  8445. ggml_build_forward_expand(gf, cur);
  8446. return gf;
  8447. }
  8448. struct ggml_cgraph * build_starcoder2() {
  8449. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8450. const int64_t n_embd_head = hparams.n_embd_head_v;
  8451. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8452. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8453. struct ggml_tensor * cur;
  8454. struct ggml_tensor * inpL;
  8455. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8456. // inp_pos - contains the positions
  8457. struct ggml_tensor * inp_pos = build_inp_pos();
  8458. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8459. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8460. for (int il = 0; il < n_layer; ++il) {
  8461. struct ggml_tensor * inpSA = inpL;
  8462. // norm
  8463. cur = llm_build_norm(ctx0, inpL, hparams,
  8464. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8465. LLM_NORM, cb, il);
  8466. cb(cur, "attn_norm", il);
  8467. // self-attention
  8468. {
  8469. // compute Q and K and RoPE them
  8470. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8471. cb(Qcur, "Qcur", il);
  8472. if (model.layers[il].bq) {
  8473. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8474. cb(Qcur, "Qcur", il);
  8475. }
  8476. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8477. cb(Kcur, "Kcur", il);
  8478. if (model.layers[il].bk) {
  8479. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8480. cb(Kcur, "Kcur", il);
  8481. }
  8482. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8483. cb(Vcur, "Vcur", il);
  8484. if (model.layers[il].bv) {
  8485. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8486. cb(Vcur, "Vcur", il);
  8487. }
  8488. Qcur = ggml_rope_custom(
  8489. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8490. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8491. ext_factor, attn_factor, beta_fast, beta_slow
  8492. );
  8493. cb(Qcur, "Qcur", il);
  8494. Kcur = ggml_rope_custom(
  8495. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8496. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8497. ext_factor, attn_factor, beta_fast, beta_slow
  8498. );
  8499. cb(Kcur, "Kcur", il);
  8500. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8501. model.layers[il].wo, model.layers[il].bo,
  8502. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8503. }
  8504. if (il == n_layer - 1) {
  8505. // skip computing output for unused tokens
  8506. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8507. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8508. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8509. }
  8510. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8511. cb(ffn_inp, "ffn_inp", il);
  8512. // feed-forward network
  8513. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8514. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8515. LLM_NORM, cb, il);
  8516. cb(cur, "ffn_norm", il);
  8517. cur = llm_build_ffn(ctx0, cur,
  8518. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8519. NULL, NULL,
  8520. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8521. NULL,
  8522. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8523. cb(cur, "ffn_out", il);
  8524. cur = ggml_add(ctx0, cur, ffn_inp);
  8525. cb(cur, "l_out", il);
  8526. // input for next layer
  8527. inpL = cur;
  8528. }
  8529. cur = inpL;
  8530. cur = llm_build_norm(ctx0, cur, hparams,
  8531. model.output_norm, model.output_norm_b,
  8532. LLM_NORM, cb, -1);
  8533. cb(cur, "result_norm", -1);
  8534. // lm_head
  8535. cur = ggml_mul_mat(ctx0, model.output, cur);
  8536. cb(cur, "result_output", -1);
  8537. ggml_build_forward_expand(gf, cur);
  8538. return gf;
  8539. }
  8540. struct ggml_cgraph * build_mamba() {
  8541. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8542. const int64_t d_model = n_embd;
  8543. const int64_t d_conv = hparams.ssm_d_conv;
  8544. const int64_t d_inner = hparams.ssm_d_inner;
  8545. GGML_ASSERT(2 * d_model == d_inner);
  8546. const int64_t d_state = hparams.ssm_d_state;
  8547. const int64_t dt_rank = hparams.ssm_dt_rank;
  8548. struct ggml_tensor * cur;
  8549. struct ggml_tensor * inpL;
  8550. // {n_embd, n_tokens}
  8551. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8552. struct ggml_tensor * state_mask = build_inp_s_mask();
  8553. struct ggml_tensor * state_seq = build_inp_s_seq();
  8554. for (int il = 0; il < n_layer; ++il) {
  8555. // (ab)using the KV cache to store the states
  8556. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8557. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8558. // clear states of sequences which are starting at the beginning of this batch
  8559. {
  8560. conv_states = ggml_mul(ctx0,
  8561. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8562. state_mask);
  8563. ssm_states = ggml_mul(ctx0,
  8564. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8565. state_mask);
  8566. }
  8567. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8568. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8569. // norm
  8570. cur = llm_build_norm(ctx0, inpL, hparams,
  8571. model.layers[il].attn_norm, NULL,
  8572. LLM_NORM_RMS, cb, il);
  8573. cb(cur, "attn_norm", il);
  8574. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8575. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8576. // split the above in two
  8577. // => {d_inner, n_tokens}
  8578. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8579. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8580. // conv
  8581. {
  8582. // Custom operator which is needed only to ease simultaneous sequence processing.
  8583. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8584. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8585. // then element-wise multiply that with the conv1d weigth,
  8586. // then sum the elements of each row,
  8587. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8588. // then permute away the ne[0] dimension,
  8589. // and then you're left with the resulting x tensor.
  8590. // The new conv_states is the last (d_conv - 1) columns
  8591. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8592. // For simultaneous sequences, it's more complicated.
  8593. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8594. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8595. ggml_build_forward_expand(gf,
  8596. ggml_cpy(ctx0,
  8597. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8598. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8599. // extract x from x_conv
  8600. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8601. // bias
  8602. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8603. x = ggml_silu(ctx0, x);
  8604. }
  8605. // ssm
  8606. {
  8607. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8608. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8609. // split
  8610. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8611. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8612. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8613. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8614. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8615. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8616. // Custom operator to optimize the parallel associative scan
  8617. // as described in the Annex D of the Mamba paper.
  8618. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8619. // because only a single tensor can be returned.
  8620. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8621. // store last states (the second part of y_ssm_states)
  8622. ggml_build_forward_expand(gf,
  8623. ggml_cpy(ctx0,
  8624. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8625. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8626. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8627. if (il == n_layer - 1) {
  8628. // skip computing output for unused tokens
  8629. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8630. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8631. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8632. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8633. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8634. }
  8635. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8636. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8637. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8638. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8639. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8640. }
  8641. // residual
  8642. cur = ggml_add(ctx0, cur, inpL);
  8643. cb(cur, "l_out", il);
  8644. // input for next layer
  8645. inpL = cur;
  8646. }
  8647. // final rmsnorm
  8648. cur = llm_build_norm(ctx0, inpL, hparams,
  8649. model.output_norm, NULL,
  8650. LLM_NORM_RMS, cb, -1);
  8651. cb(cur, "result_norm", -1);
  8652. // lm_head
  8653. cur = ggml_mul_mat(ctx0, model.output, cur);
  8654. cb(cur, "result_output", -1);
  8655. ggml_build_forward_expand(gf, cur);
  8656. return gf;
  8657. }
  8658. struct ggml_cgraph * build_command_r() {
  8659. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8660. const int64_t n_embd_head = hparams.n_embd_head_v;
  8661. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8662. const float f_logit_scale = hparams.f_logit_scale;
  8663. struct ggml_tensor * cur;
  8664. struct ggml_tensor * inpL;
  8665. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8666. // inp_pos - contains the positions
  8667. struct ggml_tensor * inp_pos = build_inp_pos();
  8668. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8669. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8670. for (int il = 0; il < n_layer; ++il) {
  8671. // norm
  8672. cur = llm_build_norm(ctx0, inpL, hparams,
  8673. model.layers[il].attn_norm, NULL,
  8674. LLM_NORM, cb, il);
  8675. cb(cur, "attn_norm", il);
  8676. struct ggml_tensor * ffn_inp = cur;
  8677. // self-attention
  8678. {
  8679. // compute Q and K and RoPE them
  8680. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8681. cb(Qcur, "Qcur", il);
  8682. if (model.layers[il].bq) {
  8683. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8684. cb(Qcur, "Qcur", il);
  8685. }
  8686. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8687. cb(Kcur, "Kcur", il);
  8688. if (model.layers[il].bk) {
  8689. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8690. cb(Kcur, "Kcur", il);
  8691. }
  8692. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8693. cb(Vcur, "Vcur", il);
  8694. if (model.layers[il].bv) {
  8695. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8696. cb(Vcur, "Vcur", il);
  8697. }
  8698. if (model.layers[il].attn_q_norm) {
  8699. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8700. ggml_element_size(Qcur) * n_embd_head,
  8701. ggml_element_size(Qcur) * n_embd_head * n_head,
  8702. 0);
  8703. cb(Qcur, "Qcur", il);
  8704. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8705. ggml_element_size(Kcur) * n_embd_head,
  8706. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8707. 0);
  8708. cb(Kcur, "Kcur", il);
  8709. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8710. model.layers[il].attn_q_norm,
  8711. NULL,
  8712. LLM_NORM, cb, il);
  8713. cb(Qcur, "Qcur", il);
  8714. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8715. model.layers[il].attn_k_norm,
  8716. NULL,
  8717. LLM_NORM, cb, il);
  8718. cb(Kcur, "Kcur", il);
  8719. }
  8720. Qcur = ggml_rope_custom(
  8721. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8722. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8723. ext_factor, attn_factor, beta_fast, beta_slow
  8724. );
  8725. cb(Qcur, "Qcur", il);
  8726. Kcur = ggml_rope_custom(
  8727. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8728. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8729. ext_factor, attn_factor, beta_fast, beta_slow
  8730. );
  8731. cb(Kcur, "Kcur", il);
  8732. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8733. model.layers[il].wo, model.layers[il].bo,
  8734. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8735. }
  8736. if (il == n_layer - 1) {
  8737. // skip computing output for unused tokens
  8738. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8739. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8740. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8741. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8742. }
  8743. struct ggml_tensor * attn_out = cur;
  8744. // feed-forward network
  8745. {
  8746. cur = llm_build_ffn(ctx0, ffn_inp,
  8747. model.layers[il].ffn_up, NULL,
  8748. model.layers[il].ffn_gate, NULL,
  8749. model.layers[il].ffn_down, NULL,
  8750. NULL,
  8751. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8752. cb(cur, "ffn_out", il);
  8753. }
  8754. // add together residual + FFN + self-attention
  8755. cur = ggml_add(ctx0, cur, inpL);
  8756. cur = ggml_add(ctx0, cur, attn_out);
  8757. cb(cur, "l_out", il);
  8758. // input for next layer
  8759. inpL = cur;
  8760. }
  8761. cur = inpL;
  8762. cur = llm_build_norm(ctx0, cur, hparams,
  8763. model.output_norm, NULL,
  8764. LLM_NORM, cb, -1);
  8765. cb(cur, "result_norm", -1);
  8766. // lm_head
  8767. cur = ggml_mul_mat(ctx0, model.output, cur);
  8768. if (f_logit_scale) {
  8769. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8770. }
  8771. cb(cur, "result_output", -1);
  8772. ggml_build_forward_expand(gf, cur);
  8773. return gf;
  8774. }
  8775. // ref: https://allenai.org/olmo
  8776. // based on the original build_llama() function, changes:
  8777. // * non-parametric layer norm
  8778. // * clamp qkv
  8779. // * removed bias
  8780. // * removed MoE
  8781. struct ggml_cgraph * build_olmo() {
  8782. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8783. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8784. int32_t n_tokens = this->n_tokens;
  8785. const int64_t n_embd_head = hparams.n_embd_head_v;
  8786. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8787. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8788. struct ggml_tensor * cur;
  8789. struct ggml_tensor * inpL;
  8790. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8791. // inp_pos - contains the positions
  8792. struct ggml_tensor * inp_pos = build_inp_pos();
  8793. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8794. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8795. for (int il = 0; il < n_layer; ++il) {
  8796. struct ggml_tensor * inpSA = inpL;
  8797. // norm
  8798. cur = llm_build_norm(ctx0, inpL, hparams,
  8799. NULL, NULL,
  8800. LLM_NORM, cb, il);
  8801. cb(cur, "attn_norm", il);
  8802. // self-attention
  8803. {
  8804. // compute Q and K and RoPE them
  8805. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8806. cb(Qcur, "Qcur", il);
  8807. if (hparams.f_clamp_kqv > 0.0f) {
  8808. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8809. cb(Qcur, "Qcur", il);
  8810. }
  8811. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8812. cb(Kcur, "Kcur", il);
  8813. if (hparams.f_clamp_kqv > 0.0f) {
  8814. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8815. cb(Kcur, "Kcur", il);
  8816. }
  8817. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8818. cb(Vcur, "Vcur", il);
  8819. if (hparams.f_clamp_kqv > 0.0f) {
  8820. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8821. cb(Vcur, "Vcur", il);
  8822. }
  8823. Qcur = ggml_rope_custom(
  8824. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8825. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8826. ext_factor, attn_factor, beta_fast, beta_slow
  8827. );
  8828. cb(Qcur, "Qcur", il);
  8829. Kcur = ggml_rope_custom(
  8830. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8831. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8832. ext_factor, attn_factor, beta_fast, beta_slow
  8833. );
  8834. cb(Kcur, "Kcur", il);
  8835. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8836. model.layers[il].wo, nullptr,
  8837. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8838. }
  8839. if (il == n_layer - 1) {
  8840. // skip computing output for unused tokens
  8841. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8842. n_tokens = n_outputs;
  8843. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8844. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8845. }
  8846. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8847. cb(ffn_inp, "ffn_inp", il);
  8848. // feed-forward network
  8849. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8850. NULL, NULL,
  8851. LLM_NORM, cb, il);
  8852. cb(cur, "ffn_norm", il);
  8853. cur = llm_build_ffn(ctx0, cur,
  8854. model.layers[il].ffn_up, NULL,
  8855. model.layers[il].ffn_gate, NULL,
  8856. model.layers[il].ffn_down, NULL,
  8857. NULL,
  8858. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8859. cb(cur, "ffn_out", il);
  8860. cur = ggml_add(ctx0, cur, ffn_inp);
  8861. cb(cur, "ffn_out", il);
  8862. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8863. if (layer_dir != nullptr) {
  8864. cur = ggml_add(ctx0, cur, layer_dir);
  8865. }
  8866. cb(cur, "l_out", il);
  8867. // input for next layer
  8868. inpL = cur;
  8869. }
  8870. cur = inpL;
  8871. cur = llm_build_norm(ctx0, cur, hparams,
  8872. NULL, NULL,
  8873. LLM_NORM, cb, -1);
  8874. cb(cur, "result_norm", -1);
  8875. // lm_head
  8876. cur = ggml_mul_mat(ctx0, model.output, cur);
  8877. cb(cur, "result_output", -1);
  8878. ggml_build_forward_expand(gf, cur);
  8879. return gf;
  8880. }
  8881. };
  8882. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8883. llama_batch dummy;
  8884. dummy.n_tokens = 0;
  8885. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8886. struct llm_build_context llm(lctx, dummy, cb, false);
  8887. llm.init();
  8888. struct ggml_cgraph * result = llm.build_defrag(ids);
  8889. llm.free();
  8890. return result;
  8891. }
  8892. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8893. llama_batch dummy;
  8894. dummy.n_tokens = 0;
  8895. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8896. struct llm_build_context llm(lctx, dummy, cb, false);
  8897. llm.init();
  8898. struct ggml_cgraph * result = llm.build_k_shift();
  8899. llm.free();
  8900. return result;
  8901. }
  8902. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8903. llama_batch dummy;
  8904. dummy.n_tokens = 0;
  8905. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8906. struct llm_build_context llm(lctx, dummy, cb, false);
  8907. llm.init();
  8908. struct ggml_cgraph * result = llm.build_s_copy();
  8909. llm.free();
  8910. return result;
  8911. }
  8912. static struct ggml_cgraph * llama_build_graph(
  8913. llama_context & lctx,
  8914. const llama_batch & batch,
  8915. bool worst_case) {
  8916. const auto & model = lctx.model;
  8917. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8918. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  8919. if (il >= 0) {
  8920. ggml_format_name(cur, "%s-%d", name, il);
  8921. } else {
  8922. ggml_set_name(cur, name);
  8923. }
  8924. if (!lctx.cparams.offload_kqv) {
  8925. if (strcmp(name, "kqv_merged_cont") == 0) {
  8926. // all nodes between the KV store and the attention output are run on the CPU
  8927. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  8928. }
  8929. }
  8930. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  8931. // FIXME: fix in ggml_backend_sched
  8932. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  8933. if (batch.n_tokens < 32 || full_offload) {
  8934. if (il != -1 && strcmp(name, "norm") == 0) {
  8935. for (auto * backend : lctx.backends) {
  8936. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  8937. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  8938. break;
  8939. }
  8940. }
  8941. }
  8942. }
  8943. };
  8944. struct ggml_cgraph * result = NULL;
  8945. struct llm_build_context llm(lctx, batch, cb, worst_case);
  8946. llm.init();
  8947. switch (model.arch) {
  8948. case LLM_ARCH_LLAMA:
  8949. {
  8950. result = llm.build_llama();
  8951. } break;
  8952. case LLM_ARCH_BAICHUAN:
  8953. {
  8954. result = llm.build_baichuan();
  8955. } break;
  8956. case LLM_ARCH_FALCON:
  8957. {
  8958. result = llm.build_falcon();
  8959. } break;
  8960. case LLM_ARCH_GROK:
  8961. {
  8962. result = llm.build_grok();
  8963. } break;
  8964. case LLM_ARCH_STARCODER:
  8965. {
  8966. result = llm.build_starcoder();
  8967. } break;
  8968. case LLM_ARCH_PERSIMMON:
  8969. {
  8970. result = llm.build_persimmon();
  8971. } break;
  8972. case LLM_ARCH_REFACT:
  8973. {
  8974. result = llm.build_refact();
  8975. } break;
  8976. case LLM_ARCH_BERT:
  8977. case LLM_ARCH_NOMIC_BERT:
  8978. {
  8979. result = llm.build_bert();
  8980. } break;
  8981. case LLM_ARCH_BLOOM:
  8982. {
  8983. result = llm.build_bloom();
  8984. } break;
  8985. case LLM_ARCH_MPT:
  8986. {
  8987. result = llm.build_mpt();
  8988. } break;
  8989. case LLM_ARCH_STABLELM:
  8990. {
  8991. result = llm.build_stablelm();
  8992. } break;
  8993. case LLM_ARCH_QWEN:
  8994. {
  8995. result = llm.build_qwen();
  8996. } break;
  8997. case LLM_ARCH_QWEN2:
  8998. {
  8999. result = llm.build_qwen2();
  9000. } break;
  9001. case LLM_ARCH_QWEN2MOE:
  9002. {
  9003. result = llm.build_qwen2moe();
  9004. } break;
  9005. case LLM_ARCH_PHI2:
  9006. {
  9007. result = llm.build_phi2();
  9008. } break;
  9009. case LLM_ARCH_PHI3:
  9010. {
  9011. result = llm.build_phi3();
  9012. } break;
  9013. case LLM_ARCH_PLAMO:
  9014. {
  9015. result = llm.build_plamo();
  9016. } break;
  9017. case LLM_ARCH_GPT2:
  9018. {
  9019. result = llm.build_gpt2();
  9020. } break;
  9021. case LLM_ARCH_CODESHELL:
  9022. {
  9023. result = llm.build_codeshell();
  9024. } break;
  9025. case LLM_ARCH_ORION:
  9026. {
  9027. result = llm.build_orion();
  9028. } break;
  9029. case LLM_ARCH_INTERNLM2:
  9030. {
  9031. result = llm.build_internlm2();
  9032. } break;
  9033. case LLM_ARCH_MINICPM:
  9034. {
  9035. result = llm.build_minicpm();
  9036. } break;
  9037. case LLM_ARCH_GEMMA:
  9038. {
  9039. result = llm.build_gemma();
  9040. } break;
  9041. case LLM_ARCH_STARCODER2:
  9042. {
  9043. result = llm.build_starcoder2();
  9044. } break;
  9045. case LLM_ARCH_MAMBA:
  9046. {
  9047. result = llm.build_mamba();
  9048. } break;
  9049. case LLM_ARCH_XVERSE:
  9050. {
  9051. result = llm.build_xverse();
  9052. } break;
  9053. case LLM_ARCH_COMMAND_R:
  9054. {
  9055. result = llm.build_command_r();
  9056. } break;
  9057. case LLM_ARCH_DBRX:
  9058. {
  9059. result = llm.build_dbrx();
  9060. } break;
  9061. case LLM_ARCH_OLMO:
  9062. {
  9063. result = llm.build_olmo();
  9064. } break;
  9065. default:
  9066. GGML_ASSERT(false);
  9067. }
  9068. llm.free();
  9069. return result;
  9070. }
  9071. static void llama_set_k_shift(llama_context & lctx) {
  9072. const int64_t kv_size = lctx.kv_self.size;
  9073. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9074. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9075. for (int i = 0; i < kv_size; ++i) {
  9076. data[i] = lctx.kv_self.cells[i].delta;
  9077. }
  9078. }
  9079. static void llama_set_s_copy(llama_context & lctx) {
  9080. const int64_t kv_size = lctx.kv_self.size;
  9081. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9082. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9083. for (int i = 0; i < kv_size; ++i) {
  9084. data[i] = lctx.kv_self.cells[i].src;
  9085. }
  9086. }
  9087. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9088. //
  9089. // set input data
  9090. //
  9091. const auto & hparams = lctx.model.hparams;
  9092. const auto & cparams = lctx.cparams;
  9093. const auto & kv_self = lctx.kv_self;
  9094. if (batch.token) {
  9095. const int64_t n_tokens = batch.n_tokens;
  9096. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9097. }
  9098. if (batch.embd) {
  9099. const int64_t n_embd = hparams.n_embd;
  9100. const int64_t n_tokens = batch.n_tokens;
  9101. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9102. }
  9103. if (batch.pos && lctx.inp_pos) {
  9104. const int64_t n_tokens = batch.n_tokens;
  9105. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9106. }
  9107. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9108. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9109. const int64_t n_tokens = batch.n_tokens;
  9110. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9111. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9112. if (lctx.n_outputs == n_tokens) {
  9113. for (int i = 0; i < n_tokens; ++i) {
  9114. data[i] = i;
  9115. }
  9116. } else if (batch.logits) {
  9117. int32_t n_outputs = 0;
  9118. for (int i = 0; i < n_tokens; ++i) {
  9119. if (batch.logits[i]) {
  9120. data[n_outputs++] = i;
  9121. }
  9122. }
  9123. // the graph needs to have been passed the correct number of outputs
  9124. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9125. } else if (lctx.n_outputs == 1) {
  9126. // only keep last output
  9127. data[0] = n_tokens - 1;
  9128. } else {
  9129. GGML_ASSERT(lctx.n_outputs == 0);
  9130. }
  9131. }
  9132. GGML_ASSERT(
  9133. // (!a || b) is a logical implication (a -> b)
  9134. // !hparams.causal_attn -> !cparams.causal_attn
  9135. (hparams.causal_attn || !cparams.causal_attn) &&
  9136. "causal attention with embedding models is not supported"
  9137. );
  9138. if (lctx.inp_KQ_mask) {
  9139. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9140. if (cparams.causal_attn) {
  9141. const int64_t n_kv = kv_self.n;
  9142. const int64_t n_tokens = batch.n_tokens;
  9143. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9144. float * data = (float *) lctx.inp_KQ_mask->data;
  9145. // For causal attention, use only the previous KV cells
  9146. // of the correct sequence for each token of the batch.
  9147. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9148. for (int h = 0; h < 1; ++h) {
  9149. for (int j = 0; j < n_tokens; ++j) {
  9150. const llama_pos pos = batch.pos[j];
  9151. const llama_seq_id seq_id = batch.seq_id[j][0];
  9152. for (int i = 0; i < n_kv; ++i) {
  9153. float f;
  9154. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9155. f = -INFINITY;
  9156. } else {
  9157. f = 0.0f;
  9158. }
  9159. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9160. }
  9161. }
  9162. }
  9163. } else {
  9164. // when using kv cache, the mask needs to match the kv cache size
  9165. const int64_t n_tokens = batch.n_tokens;
  9166. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9167. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9168. float * data = (float *) lctx.inp_KQ_mask->data;
  9169. for (int h = 0; h < 1; ++h) {
  9170. for (int j = 0; j < n_tokens; ++j) {
  9171. const llama_seq_id seq_id = batch.seq_id[j][0];
  9172. for (int i = 0; i < n_tokens; ++i) {
  9173. float f = -INFINITY;
  9174. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9175. if (batch.seq_id[i][s] == seq_id) {
  9176. f = 0.0f;
  9177. break;
  9178. }
  9179. }
  9180. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9181. }
  9182. for (int i = n_tokens; i < n_stride; ++i) {
  9183. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9184. }
  9185. }
  9186. }
  9187. }
  9188. }
  9189. // ALiBi requires the KQ_pos tensor to provide the sequence position of each token in the batch
  9190. // this allows to process multiple sequences in parallel with ALiBi-based models
  9191. if (hparams.use_alibi) {
  9192. const int64_t n_kv = kv_self.n;
  9193. GGML_ASSERT(lctx.inp_KQ_pos);
  9194. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  9195. float * data = (float *) lctx.inp_KQ_pos->data;
  9196. for (int i = 0; i < n_kv; ++i) {
  9197. data[i] = float(lctx.kv_self.cells[i].pos);
  9198. }
  9199. }
  9200. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9201. const int64_t n_tokens = batch.n_tokens;
  9202. GGML_ASSERT(lctx.inp_mean);
  9203. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9204. float * data = (float *) lctx.inp_mean->data;
  9205. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9206. std::vector<uint64_t> sum(n_tokens, 0);
  9207. for (int i = 0; i < n_tokens; ++i) {
  9208. const llama_seq_id seq_id = batch.seq_id[i][0];
  9209. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9210. sum[seq_id] += 1;
  9211. }
  9212. std::vector<float> div(n_tokens, 0.0f);
  9213. for (int i = 0; i < n_tokens; ++i) {
  9214. const uint64_t s = sum[i];
  9215. if (s > 0) {
  9216. div[i] = 1.0f/float(s);
  9217. }
  9218. }
  9219. for (int i = 0; i < n_tokens; ++i) {
  9220. const llama_seq_id seq_id = batch.seq_id[i][0];
  9221. data[seq_id*n_tokens + i] = div[seq_id];
  9222. }
  9223. }
  9224. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9225. const int64_t n_tokens = batch.n_tokens;
  9226. GGML_ASSERT(lctx.inp_cls);
  9227. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9228. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9229. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9230. for (int i = 0; i < n_tokens; ++i) {
  9231. const llama_seq_id seq_id = batch.seq_id[i][0];
  9232. const llama_pos pos = batch.pos[i];
  9233. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9234. if (pos == 0) {
  9235. data[seq_id] = i;
  9236. }
  9237. }
  9238. }
  9239. if (kv_self.recurrent) {
  9240. const int64_t n_kv = kv_self.n;
  9241. if (lctx.inp_s_mask) {
  9242. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9243. float * data = (float *) lctx.inp_s_mask->data;
  9244. // states which are not affected by the current batch are left untouched
  9245. for (int i = 0; i < n_kv; ++i) {
  9246. llama_seq_id seq_id = i + lctx.kv_self.head;
  9247. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9248. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9249. data[i] = (float) has_self_seq;
  9250. // ensure current sequences will be kept
  9251. if (!has_self_seq && kv_cell.pos >= 0) {
  9252. kv_cell.seq_id.insert(seq_id);
  9253. }
  9254. }
  9255. }
  9256. // For Mamba (and other recurrent architectures),
  9257. // update the correct state(s)/sequence(s) for each token of the batch.
  9258. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9259. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9260. if (lctx.inp_s_seq) {
  9261. const int64_t n_tokens = batch.n_tokens;
  9262. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9263. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9264. for (int j = 0; j < n_tokens; ++j) {
  9265. const int32_t n_seq = batch.n_seq_id[j];
  9266. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9267. for (int i = 0; i < n_kv; ++i) {
  9268. if (i < n_seq) {
  9269. // for this type of model, the head is the minimum seq_id of the batch
  9270. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9271. } else {
  9272. data[j*n_kv + i] = -1;
  9273. }
  9274. }
  9275. }
  9276. }
  9277. }
  9278. }
  9279. // Make sure enough space is available for outputs.
  9280. // Returns max number of outputs for which space was reserved.
  9281. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9282. const auto & cparams = lctx.cparams;
  9283. const auto & hparams = lctx.model.hparams;
  9284. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9285. const auto n_batch = cparams.n_batch;
  9286. const auto n_vocab = hparams.n_vocab;
  9287. const auto n_embd = hparams.n_embd;
  9288. // TODO: use a per-batch flag for logits presence instead
  9289. const bool has_logits = cparams.causal_attn;
  9290. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9291. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9292. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9293. if (lctx.output_ids.empty()) {
  9294. // init, never resized afterwards
  9295. lctx.output_ids.resize(n_batch);
  9296. }
  9297. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9298. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9299. // alloc only when more than the current capacity is required
  9300. // TODO: also consider shrinking the buffer
  9301. if (!lctx.buf_output || prev_size < new_size) {
  9302. if (lctx.buf_output) {
  9303. #ifndef NDEBUG
  9304. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9305. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9306. #endif
  9307. ggml_backend_buffer_free(lctx.buf_output);
  9308. lctx.buf_output = nullptr;
  9309. lctx.logits = nullptr;
  9310. lctx.embd = nullptr;
  9311. }
  9312. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9313. if (lctx.buf_output == nullptr) {
  9314. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9315. return 0;
  9316. }
  9317. }
  9318. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9319. lctx.logits = has_logits ? output_base : nullptr;
  9320. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9321. lctx.output_size = n_outputs_max;
  9322. lctx.logits_size = logits_size;
  9323. lctx.embd_size = embd_size;
  9324. // set all ids as invalid (negative)
  9325. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9326. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9327. lctx.n_outputs = 0;
  9328. return n_outputs_max;
  9329. }
  9330. static void llama_graph_compute(
  9331. llama_context & lctx,
  9332. ggml_cgraph * gf,
  9333. int n_threads) {
  9334. #ifdef GGML_USE_MPI
  9335. const int64_t n_layer = lctx.model.hparams.n_layer;
  9336. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  9337. #endif
  9338. #ifdef GGML_USE_METAL
  9339. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9340. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9341. }
  9342. #endif
  9343. if (lctx.backend_cpu != nullptr) {
  9344. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9345. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9346. }
  9347. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9348. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9349. #ifdef GGML_USE_MPI
  9350. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  9351. #endif
  9352. }
  9353. // decode a batch of tokens by evaluating the transformer
  9354. //
  9355. // - lctx: llama context
  9356. // - batch: batch to evaluate
  9357. //
  9358. // return 0 on success
  9359. // return positive int on warning
  9360. // return negative int on error
  9361. //
  9362. static int llama_decode_internal(
  9363. llama_context & lctx,
  9364. llama_batch batch_all) { // TODO: rename back to batch
  9365. const uint32_t n_tokens_all = batch_all.n_tokens;
  9366. if (n_tokens_all == 0) {
  9367. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9368. return -1;
  9369. }
  9370. const auto & model = lctx.model;
  9371. const auto & hparams = model.hparams;
  9372. const auto & cparams = lctx.cparams;
  9373. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9374. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9375. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9376. if (lctx.t_compute_start_us == 0) {
  9377. lctx.t_compute_start_us = ggml_time_us();
  9378. }
  9379. lctx.n_queued_tokens += n_tokens_all;
  9380. #ifdef GGML_USE_MPI
  9381. // TODO: needs fix after #3228
  9382. GGML_ASSERT(false && "not implemented");
  9383. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  9384. #endif
  9385. auto & kv_self = lctx.kv_self;
  9386. const int64_t n_embd = hparams.n_embd;
  9387. const int64_t n_vocab = hparams.n_vocab;
  9388. uint32_t n_outputs = 0;
  9389. uint32_t n_outputs_prev = 0;
  9390. const auto n_ubatch = cparams.n_ubatch;
  9391. std::vector<llama_pos> pos;
  9392. std::vector<int32_t> n_seq_id;
  9393. std::vector<llama_seq_id *> seq_id_arr;
  9394. std::vector<std::vector<llama_seq_id>> seq_id;
  9395. // count outputs
  9396. if (batch_all.logits) {
  9397. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9398. n_outputs += batch_all.logits[i] != 0;
  9399. }
  9400. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9401. n_outputs = n_tokens_all;
  9402. } else {
  9403. // keep last output only
  9404. n_outputs = 1;
  9405. }
  9406. // reserve output buffer
  9407. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9408. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9409. return -2;
  9410. };
  9411. // set output mappings
  9412. if (batch_all.logits) {
  9413. int32_t i_logits = 0;
  9414. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9415. if (batch_all.logits[i]) {
  9416. lctx.output_ids[i] = i_logits++;
  9417. }
  9418. }
  9419. } else {
  9420. for (uint32_t i = 0; i < n_outputs; ++i) {
  9421. lctx.output_ids[i] = i;
  9422. }
  9423. }
  9424. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9425. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9426. llama_batch u_batch = {
  9427. /* .n_tokens = */ (int32_t) n_tokens,
  9428. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9429. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9430. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9431. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9432. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9433. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9434. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9435. /* .all_pos_1 = */ batch_all.all_pos_1,
  9436. /* .all_seq_id = */ batch_all.all_seq_id,
  9437. };
  9438. // count the outputs in this u_batch
  9439. {
  9440. int32_t n_outputs_new = 0;
  9441. if (u_batch.logits) {
  9442. for (uint32_t i = 0; i < n_tokens; i++) {
  9443. n_outputs_new += u_batch.logits[i] != 0;
  9444. }
  9445. } else if (n_outputs == n_tokens_all) {
  9446. n_outputs_new = n_tokens;
  9447. } else {
  9448. // keep last output only
  9449. if (cur_token + n_tokens >= n_tokens_all) {
  9450. n_outputs_new = 1;
  9451. }
  9452. }
  9453. // needs to happen before the graph is built
  9454. lctx.n_outputs = n_outputs_new;
  9455. }
  9456. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9457. GGML_ASSERT(n_threads > 0);
  9458. // helpers for smoother batch API transition
  9459. // after deprecating the llama_eval calls, these will be removed
  9460. if (u_batch.pos == nullptr) {
  9461. pos.resize(n_tokens);
  9462. for (uint32_t i = 0; i < n_tokens; i++) {
  9463. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9464. }
  9465. u_batch.pos = pos.data();
  9466. }
  9467. if (u_batch.seq_id == nullptr) {
  9468. n_seq_id.resize(n_tokens);
  9469. seq_id.resize(n_tokens);
  9470. seq_id_arr.resize(n_tokens);
  9471. for (uint32_t i = 0; i < n_tokens; i++) {
  9472. n_seq_id[i] = 1;
  9473. seq_id[i].resize(1);
  9474. seq_id[i][0] = u_batch.all_seq_id;
  9475. seq_id_arr[i] = seq_id[i].data();
  9476. }
  9477. u_batch.n_seq_id = n_seq_id.data();
  9478. u_batch.seq_id = seq_id_arr.data();
  9479. }
  9480. // non-causal masks do not use the KV cache
  9481. if (hparams.causal_attn) {
  9482. llama_kv_cache_update(&lctx);
  9483. // if we have enough unused cells before the current head ->
  9484. // better to start searching from the beginning of the cache, hoping to fill it
  9485. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9486. kv_self.head = 0;
  9487. }
  9488. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9489. return 1;
  9490. }
  9491. if (!kv_self.recurrent) {
  9492. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9493. // after enough generations, the benefit from this heuristic disappears
  9494. // if we start defragmenting the cache, the benefit from this will be more important
  9495. kv_self.n = std::min(kv_self.size, std::max(256u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 256)));
  9496. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9497. }
  9498. }
  9499. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9500. ggml_backend_sched_reset(lctx.sched);
  9501. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9502. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9503. // the output is always the last tensor in the graph
  9504. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9505. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9506. if (lctx.n_outputs == 0) {
  9507. // no output
  9508. res = nullptr;
  9509. embd = nullptr;
  9510. } else if (!hparams.causal_attn) {
  9511. res = nullptr; // do not extract logits for embedding models such as BERT
  9512. // token or sequence embeddings
  9513. embd = gf->nodes[gf->n_nodes - 1];
  9514. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9515. } else if (cparams.embeddings) {
  9516. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9517. int i_embd = gf->n_nodes - 2;
  9518. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9519. i_embd = gf->n_nodes - i;
  9520. if (i_embd < 0) { break; }
  9521. embd = gf->nodes[i_embd];
  9522. }
  9523. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9524. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9525. if (!cparams.causal_attn) {
  9526. res = nullptr; // do not extract logits when not needed
  9527. // skip computing logits
  9528. // TODO: is this safe?
  9529. gf->n_nodes = i_embd + 1;
  9530. }
  9531. } else {
  9532. embd = nullptr; // do not extract embeddings when not needed
  9533. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9534. }
  9535. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9536. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9537. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9538. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9539. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9540. // with the BLAS calls. need a better solution
  9541. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9542. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9543. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9544. n_threads = std::min(4, n_threads);
  9545. }
  9546. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9547. llama_set_inputs(lctx, u_batch);
  9548. llama_graph_compute(lctx, gf, n_threads);
  9549. // update the kv ring buffer
  9550. {
  9551. kv_self.head += n_tokens;
  9552. // Ensure kv cache head points to a valid index.
  9553. if (kv_self.head >= kv_self.size) {
  9554. kv_self.head = 0;
  9555. }
  9556. }
  9557. #ifdef GGML_PERF
  9558. // print timing information per ggml operation (for debugging purposes)
  9559. // requires GGML_PERF to be defined
  9560. ggml_graph_print(gf);
  9561. #endif
  9562. // plot the computation graph in dot format (for debugging purposes)
  9563. //if (n_past%100 == 0) {
  9564. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9565. //}
  9566. // extract logits
  9567. if (res) {
  9568. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9569. GGML_ASSERT(backend_res != nullptr);
  9570. GGML_ASSERT(lctx.logits != nullptr);
  9571. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9572. const int32_t n_outputs_new = lctx.n_outputs;
  9573. if (n_outputs_new) {
  9574. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9575. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9576. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9577. }
  9578. }
  9579. // extract embeddings
  9580. if (embd) {
  9581. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9582. GGML_ASSERT(backend_embd != nullptr);
  9583. switch (cparams.pooling_type) {
  9584. case LLAMA_POOLING_TYPE_NONE:
  9585. {
  9586. // extract token embeddings
  9587. GGML_ASSERT(lctx.embd != nullptr);
  9588. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9589. const int32_t n_outputs_new = lctx.n_outputs;
  9590. if (n_outputs_new) {
  9591. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9592. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9593. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9594. }
  9595. } break;
  9596. case LLAMA_POOLING_TYPE_CLS:
  9597. case LLAMA_POOLING_TYPE_MEAN:
  9598. {
  9599. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9600. // extract sequence embeddings
  9601. auto & embd_seq_out = lctx.embd_seq;
  9602. embd_seq_out.clear();
  9603. for (uint32_t i = 0; i < n_tokens; i++) {
  9604. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9605. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9606. continue;
  9607. }
  9608. embd_seq_out[seq_id].resize(n_embd);
  9609. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9610. }
  9611. } break;
  9612. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9613. {
  9614. GGML_ASSERT(false && "unknown pooling type");
  9615. } break;
  9616. }
  9617. }
  9618. n_outputs_prev += lctx.n_outputs;
  9619. }
  9620. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9621. lctx.n_outputs = n_outputs;
  9622. // wait for the computation to finish (automatically done when obtaining the model output)
  9623. //llama_synchronize(&lctx);
  9624. // decide if we need to defrag the kv cache
  9625. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9626. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9627. // queue defragmentation for next llama_kv_cache_update
  9628. if (fragmentation > cparams.defrag_thold) {
  9629. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9630. llama_kv_cache_defrag(kv_self);
  9631. }
  9632. }
  9633. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  9634. // overlap with device computation.
  9635. ggml_backend_sched_reset(lctx.sched);
  9636. return 0;
  9637. }
  9638. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9639. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9640. auto & kv_self = lctx.kv_self;
  9641. const auto & hparams = lctx.model.hparams;
  9642. const uint32_t n_layer = hparams.n_layer;
  9643. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9644. const uint32_t n_used = kv_self.used;
  9645. assert(n_used <= n_kv);
  9646. //const int64_t t_start = ggml_time_us();
  9647. // number of cells moved
  9648. uint32_t n_moves = 0;
  9649. // each move requires 6*n_layer tensors (see build_defrag)
  9650. // - source view, destination view, copy operation
  9651. // - x2 for keys and values
  9652. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9653. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  9654. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  9655. // determine which KV cells to move where
  9656. //
  9657. // cell i moves to ids[i]
  9658. //
  9659. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9660. //
  9661. std::vector<uint32_t> ids(n_kv, n_kv);
  9662. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9663. const auto & cell0 = kv_self.cells[i0];
  9664. if (!cell0.is_empty()) {
  9665. ids[i0] = i0;
  9666. continue;
  9667. }
  9668. // found a hole - fill it with data from the end of the cache
  9669. uint32_t nh = 1;
  9670. // determine the size of the hole
  9671. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9672. nh++;
  9673. }
  9674. uint32_t nf = 0;
  9675. uint32_t is = n_kv - 1;
  9676. // starting from the end, find nh non-empty cells
  9677. for (; is > i0; --is) {
  9678. const auto & cell1 = kv_self.cells[is];
  9679. if (cell1.is_empty() || ids[is] != n_kv) {
  9680. continue;
  9681. }
  9682. // non-empty cell which is not yet moved
  9683. nf++;
  9684. if (nf == nh) {
  9685. break;
  9686. }
  9687. }
  9688. // this can only happen if `n_used` is not accurate, which would be a bug
  9689. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9690. nf = 0;
  9691. uint32_t i1 = is;
  9692. // are we moving a continuous block of memory?
  9693. bool cont = false;
  9694. // should we stop searching for the next move?
  9695. bool stop = false;
  9696. // go back and move the nf cells to the hole
  9697. for (; i1 < n_kv; ++i1) {
  9698. auto & cell1 = kv_self.cells[i1];
  9699. if (cell1.is_empty() || ids[i1] != n_kv) {
  9700. if (n_moves == max_moves) {
  9701. stop = true;
  9702. break;
  9703. }
  9704. cont = false;
  9705. continue;
  9706. }
  9707. // this cell goes to (i0 + nf)
  9708. ids[i1] = i0 + nf;
  9709. // move the cell meta data
  9710. kv_self.cells[i0 + nf] = cell1;
  9711. // clear the old cell and move the head there
  9712. cell1 = llama_kv_cell();
  9713. kv_self.head = n_used;
  9714. if (!cont) {
  9715. n_moves++;
  9716. cont = true;
  9717. }
  9718. nf++;
  9719. if (nf == nh) {
  9720. break;
  9721. }
  9722. }
  9723. if (stop || n_moves == max_moves) {
  9724. break;
  9725. }
  9726. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9727. i0 += nh - 1;
  9728. }
  9729. if (n_moves == 0) {
  9730. return;
  9731. }
  9732. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9733. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9734. #if 0
  9735. // CPU defrag
  9736. //
  9737. // TODO: optimizations are possible:
  9738. // - multiple threads
  9739. // - avoid copying to the host memory when already there
  9740. //
  9741. // likely not worth the effort, as we have ggml_graph based defrag
  9742. //
  9743. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9744. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9745. const uint32_t kv_size = kv_self.size;
  9746. std::vector<uint8_t> buf_k;
  9747. std::vector<uint8_t> buf_v;
  9748. for (uint32_t il = 0; il < n_layer; ++il) {
  9749. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9750. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9751. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9752. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9753. buf_k.resize(k_size);
  9754. buf_v.resize(v_size);
  9755. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9756. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9757. // batch move [i, i+nm) to [id, id+nm)
  9758. // note: cells can move only to a lower index
  9759. for (uint32_t i = 0; i < n_kv; ++i) {
  9760. const uint32_t id = ids[i];
  9761. if (i == id || id == n_kv) {
  9762. continue;
  9763. }
  9764. uint32_t nm = 1;
  9765. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9766. nm++;
  9767. }
  9768. // move keys
  9769. {
  9770. const int64_t os = i*k_size_row;
  9771. const int64_t od = id*k_size_row;
  9772. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9773. }
  9774. // move values (note: they are transposed)
  9775. {
  9776. const int64_t os = i;
  9777. const int64_t od = id;
  9778. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9779. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9780. }
  9781. }
  9782. i += nm - 1;
  9783. }
  9784. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9785. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9786. }
  9787. #else
  9788. // ggml_graph defrag
  9789. ggml_backend_sched_reset(lctx.sched);
  9790. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9791. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9792. #endif
  9793. //const int64_t t_end = ggml_time_us();
  9794. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9795. }
  9796. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9797. bool need_reserve = false;
  9798. // apply K-shift if needed
  9799. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9800. {
  9801. ggml_backend_sched_reset(lctx.sched);
  9802. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9803. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9804. llama_set_k_shift(lctx);
  9805. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9806. need_reserve = true;
  9807. }
  9808. {
  9809. auto & kv_self = lctx.kv_self;
  9810. kv_self.has_shift = false;
  9811. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9812. kv_self.cells[i].delta = 0;
  9813. }
  9814. }
  9815. }
  9816. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9817. {
  9818. ggml_backend_sched_reset(lctx.sched);
  9819. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9820. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9821. llama_set_s_copy(lctx);
  9822. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9823. need_reserve = true;
  9824. }
  9825. {
  9826. auto & kv_self = lctx.kv_self;
  9827. kv_self.do_copy = false;
  9828. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9829. kv_self.cells[i].src = i;
  9830. }
  9831. }
  9832. }
  9833. // defragment the KV cache if needed
  9834. if (lctx.kv_self.do_defrag) {
  9835. llama_kv_cache_defrag_internal(lctx);
  9836. need_reserve = true;
  9837. lctx.kv_self.do_defrag = false;
  9838. }
  9839. // reserve a worst case graph again
  9840. if (need_reserve) {
  9841. // TODO: extract to a function
  9842. // build worst-case graph
  9843. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9844. int n_past = lctx.cparams.n_ctx - n_tokens;
  9845. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9846. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9847. // initialize scheduler with the worst-case graph
  9848. ggml_backend_sched_reset(lctx.sched);
  9849. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9850. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9851. }
  9852. }
  9853. }
  9854. //
  9855. // tokenizer
  9856. //
  9857. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9858. return vocab.type;
  9859. }
  9860. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9861. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9862. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9863. }
  9864. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9865. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9866. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9867. }
  9868. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9869. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9870. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9871. }
  9872. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9873. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9874. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9875. }
  9876. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9877. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9878. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9879. }
  9880. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9881. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9882. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9883. const auto & token_data = vocab.id_to_token.at(id);
  9884. switch (llama_vocab_get_type(vocab)) {
  9885. case LLAMA_VOCAB_TYPE_SPM: {
  9886. auto buf = token_data.text.substr(3, 2);
  9887. return strtol(buf.c_str(), NULL, 16);
  9888. }
  9889. case LLAMA_VOCAB_TYPE_BPE: {
  9890. GGML_ASSERT(false);
  9891. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  9892. }
  9893. case LLAMA_VOCAB_TYPE_WPM: {
  9894. GGML_ASSERT(false);
  9895. }
  9896. default:
  9897. GGML_ASSERT(false);
  9898. }
  9899. }
  9900. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9901. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9902. static const char * hex = "0123456789ABCDEF";
  9903. switch (llama_vocab_get_type(vocab)) {
  9904. case LLAMA_VOCAB_TYPE_SPM: {
  9905. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9906. auto token = vocab.token_to_id.find(buf);
  9907. if (token != vocab.token_to_id.end()) {
  9908. return (*token).second;
  9909. }
  9910. // Try to fall back to just the byte as a string
  9911. const char buf2[2] = { (char)ch, 0 };
  9912. return vocab.token_to_id.at(buf2);
  9913. }
  9914. case LLAMA_VOCAB_TYPE_WPM:
  9915. case LLAMA_VOCAB_TYPE_BPE: {
  9916. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9917. }
  9918. default:
  9919. GGML_ASSERT(false);
  9920. }
  9921. }
  9922. static void llama_escape_whitespace(std::string & text) {
  9923. replace_all(text, " ", "\xe2\x96\x81");
  9924. }
  9925. static void llama_unescape_whitespace(std::string & word) {
  9926. replace_all(word, "\xe2\x96\x81", " ");
  9927. }
  9928. struct llm_symbol {
  9929. using index = int;
  9930. index prev;
  9931. index next;
  9932. const char * text;
  9933. size_t n;
  9934. };
  9935. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  9936. // SPM tokenizer
  9937. // original implementation:
  9938. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  9939. struct llm_bigram_spm {
  9940. struct comparator {
  9941. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  9942. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  9943. }
  9944. };
  9945. using queue_storage = std::vector<llm_bigram_spm>;
  9946. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  9947. llm_symbol::index left;
  9948. llm_symbol::index right;
  9949. float score;
  9950. size_t size;
  9951. };
  9952. struct llm_tokenizer_spm {
  9953. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  9954. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9955. // split string into utf8 chars
  9956. int index = 0;
  9957. size_t offs = 0;
  9958. while (offs < text.size()) {
  9959. llm_symbol sym;
  9960. size_t len = utf8_len(text[offs]);
  9961. sym.text = text.c_str() + offs;
  9962. sym.n = std::min(len, text.size() - offs);
  9963. offs += sym.n;
  9964. sym.prev = index - 1;
  9965. sym.next = offs == text.size() ? -1 : index + 1;
  9966. index++;
  9967. symbols.emplace_back(sym);
  9968. }
  9969. // seed the work queue with all possible 2-character tokens.
  9970. for (size_t i = 1; i < symbols.size(); ++i) {
  9971. try_add_bigram(i - 1, i);
  9972. }
  9973. // keep substituting the highest frequency pairs for as long as we can.
  9974. while (!work_queue.empty()) {
  9975. auto bigram = work_queue.top();
  9976. work_queue.pop();
  9977. auto & left_sym = symbols[bigram.left];
  9978. auto & right_sym = symbols[bigram.right];
  9979. // if one of the symbols already got merged, skip it.
  9980. if (left_sym.n == 0 || right_sym.n == 0 ||
  9981. left_sym.n + right_sym.n != bigram.size) {
  9982. continue;
  9983. }
  9984. // merge the right sym into the left one
  9985. left_sym.n += right_sym.n;
  9986. right_sym.n = 0;
  9987. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  9988. // remove the right sym from the chain
  9989. left_sym.next = right_sym.next;
  9990. if (right_sym.next >= 0) {
  9991. symbols[right_sym.next].prev = bigram.left;
  9992. }
  9993. // find more substitutions
  9994. try_add_bigram(left_sym.prev, bigram.left);
  9995. try_add_bigram(bigram.left, left_sym.next);
  9996. }
  9997. for (int i = 0; i != -1; i = symbols[i].next) {
  9998. auto & symbol = symbols[i];
  9999. resegment(symbol, output);
  10000. }
  10001. }
  10002. private:
  10003. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10004. auto text = std::string(symbol.text, symbol.n);
  10005. auto token = vocab.token_to_id.find(text);
  10006. // Do we need to support is_unused?
  10007. if (token != vocab.token_to_id.end()) {
  10008. output.push_back((*token).second);
  10009. return;
  10010. }
  10011. const auto p = rev_merge.find(text);
  10012. if (p == rev_merge.end()) {
  10013. // output any symbols that did not form tokens as bytes.
  10014. output.reserve(output.size() + symbol.n);
  10015. for (int j = 0; j < (int)symbol.n; ++j) {
  10016. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10017. output.push_back(token_id);
  10018. }
  10019. return;
  10020. }
  10021. resegment(symbols[p->second.first], output);
  10022. resegment(symbols[p->second.second], output);
  10023. }
  10024. void try_add_bigram(int left, int right) {
  10025. if (left == -1 || right == -1) {
  10026. return;
  10027. }
  10028. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10029. auto token = vocab.token_to_id.find(text);
  10030. if (token == vocab.token_to_id.end()) {
  10031. return;
  10032. }
  10033. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10034. return;
  10035. }
  10036. const auto & tok_data = vocab.id_to_token[(*token).second];
  10037. llm_bigram_spm bigram;
  10038. bigram.left = left;
  10039. bigram.right = right;
  10040. bigram.score = tok_data.score;
  10041. bigram.size = text.size();
  10042. work_queue.push(bigram);
  10043. // Do we need to support is_unused?
  10044. rev_merge[text] = std::make_pair(left, right);
  10045. }
  10046. const llama_vocab & vocab;
  10047. std::vector<llm_symbol> symbols;
  10048. llm_bigram_spm::queue work_queue;
  10049. std::map<std::string, std::pair<int, int>> rev_merge;
  10050. };
  10051. // BPE tokenizer
  10052. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10053. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10054. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10055. struct llm_bigram_bpe {
  10056. struct comparator {
  10057. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10058. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10059. }
  10060. };
  10061. using queue_storage = std::vector<llm_bigram_bpe>;
  10062. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10063. llm_symbol::index left;
  10064. llm_symbol::index right;
  10065. std::string text;
  10066. int rank;
  10067. size_t size;
  10068. };
  10069. struct llm_tokenizer_bpe {
  10070. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  10071. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10072. int final_prev_index = -1;
  10073. std::vector<std::string> word_collection;
  10074. switch (vocab.type) {
  10075. case LLAMA_VOCAB_TYPE_BPE:
  10076. switch (vocab.type_pre) {
  10077. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10078. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10079. word_collection = unicode_regex_split(text, {
  10080. // original regex from tokenizer.json
  10081. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10082. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10083. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10084. });
  10085. break;
  10086. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10087. word_collection = unicode_regex_split(text, {
  10088. "[\r\n]",
  10089. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10090. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10091. "\\s+$",
  10092. "[一-龥ࠀ-一가-퟿]+",
  10093. "\\p{N}+",
  10094. });
  10095. break;
  10096. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10097. word_collection = unicode_regex_split(text, {
  10098. "[\r\n]",
  10099. "\\s?\\p{L}+",
  10100. "\\s?\\p{P}+",
  10101. "[一-龥ࠀ-一가-퟿]+",
  10102. "\\p{N}",
  10103. });
  10104. break;
  10105. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10106. word_collection = unicode_regex_split(text, {
  10107. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10108. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10109. "[0-9][0-9][0-9]",
  10110. });
  10111. break;
  10112. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10113. // TODO: MPT pre-tokenization regexes are unknown
  10114. // the following are close, but not exact. run the following:
  10115. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10116. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10117. word_collection = unicode_regex_split(text, {
  10118. "\\s?\\p{L}+",
  10119. "\\s?\\p{P}+",
  10120. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10121. });
  10122. break;
  10123. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10124. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10125. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10126. word_collection = unicode_regex_split(text, {
  10127. "\\p{N}",
  10128. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10129. });
  10130. break;
  10131. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10132. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10133. word_collection = unicode_regex_split(text, {
  10134. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10135. });
  10136. break;
  10137. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10138. word_collection = unicode_regex_split(text, {
  10139. // original regex from tokenizer.json
  10140. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10141. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10142. });
  10143. break;
  10144. default:
  10145. // default regex for BPE tokenization pre-processing
  10146. word_collection = unicode_regex_split(text, {
  10147. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10148. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10149. "\\p{N}+",
  10150. "[0-9][0-9][0-9]",
  10151. });
  10152. break;
  10153. }
  10154. break;
  10155. default:
  10156. GGML_ASSERT(false);
  10157. break;
  10158. }
  10159. symbols_final.clear();
  10160. for (auto & word : word_collection) {
  10161. work_queue = llm_bigram_bpe::queue();
  10162. symbols.clear();
  10163. int index = 0;
  10164. size_t offset = 0;
  10165. while (offset < word.size()) {
  10166. llm_symbol sym;
  10167. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10168. sym.text = word.c_str() + offset;
  10169. sym.n = char_len;
  10170. offset += sym.n;
  10171. sym.prev = index - 1;
  10172. sym.next = offset == word.size() ? -1 : index + 1;
  10173. index++;
  10174. symbols.emplace_back(sym);
  10175. }
  10176. for (size_t i = 1; i < symbols.size(); ++i) {
  10177. add_new_bigram(i - 1, i);
  10178. }
  10179. // build token(s)
  10180. while (!work_queue.empty()) {
  10181. auto bigram = work_queue.top();
  10182. work_queue.pop();
  10183. auto & left_symbol = symbols[bigram.left];
  10184. auto & right_symbol = symbols[bigram.right];
  10185. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10186. continue;
  10187. }
  10188. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10189. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10190. if (left_token + right_token != bigram.text) {
  10191. continue; // Skip this bigram if it's outdated
  10192. }
  10193. // merge the right sym into the left one
  10194. left_symbol.n += right_symbol.n;
  10195. right_symbol.n = 0;
  10196. // remove the right sym from the chain
  10197. left_symbol.next = right_symbol.next;
  10198. if (right_symbol.next >= 0) {
  10199. symbols[right_symbol.next].prev = bigram.left;
  10200. }
  10201. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10202. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10203. }
  10204. // add the finished tokens to the final list keeping correct order for next and prev
  10205. for (auto & sym : symbols) {
  10206. if (sym.n > 0) {
  10207. sym.prev = final_prev_index;
  10208. sym.next = -1;
  10209. if (final_prev_index != -1) {
  10210. symbols_final[final_prev_index].next = symbols_final.size();
  10211. }
  10212. symbols_final.emplace_back(sym);
  10213. final_prev_index = symbols_final.size() - 1;
  10214. }
  10215. }
  10216. }
  10217. symbols = symbols_final;
  10218. if (!symbols.empty()) {
  10219. for (int i = 0; i != -1; i = symbols[i].next) {
  10220. auto & symbol = symbols[i];
  10221. if (symbol.n == 0) {
  10222. continue;
  10223. }
  10224. const std::string str = std::string(symbol.text, symbol.n);
  10225. const auto token = vocab.token_to_id.find(str);
  10226. if (token == vocab.token_to_id.end()) {
  10227. for (auto j = str.begin(); j != str.end(); ++j) {
  10228. std::string byte_str(1, *j);
  10229. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10230. if (token_multibyte == vocab.token_to_id.end()) {
  10231. throw std::runtime_error("ERROR: byte not found in vocab");
  10232. }
  10233. output.push_back((*token_multibyte).second);
  10234. }
  10235. } else {
  10236. output.push_back((*token).second);
  10237. }
  10238. }
  10239. }
  10240. }
  10241. private:
  10242. void add_new_bigram(int left, int right) {
  10243. if (left == -1 || right == -1) {
  10244. return;
  10245. }
  10246. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10247. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10248. int rank_found = -1;
  10249. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10250. if (rank_found < 0) {
  10251. return;
  10252. }
  10253. llm_bigram_bpe bigram;
  10254. bigram.left = left;
  10255. bigram.right = right;
  10256. bigram.text = left_token + right_token;
  10257. bigram.size = left_token.size() + right_token.size();
  10258. bigram.rank = rank_found;
  10259. work_queue.push(bigram);
  10260. }
  10261. const llama_vocab & vocab;
  10262. std::vector<llm_symbol> symbols;
  10263. std::vector<llm_symbol> symbols_final;
  10264. llm_bigram_bpe::queue work_queue;
  10265. };
  10266. struct llm_tokenizer_wpm {
  10267. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10268. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10269. auto * token_map = &vocab.token_to_id;
  10270. // normalize and split by whitespace
  10271. std::vector<std::string> words = preprocess(text);
  10272. // bos token prepended already
  10273. // find the longest tokens that form the words
  10274. for (const std::string &word : words) {
  10275. // skip empty words
  10276. if (word.size() == 0) {
  10277. continue;
  10278. }
  10279. // prepend phantom space
  10280. std::string word1 = "\xe2\x96\x81" + word;
  10281. int n = word1.size();
  10282. // we're at the start of a new word
  10283. int i = 0;
  10284. bool match_any = false;
  10285. // move through character position in word
  10286. while (i < n) {
  10287. // loop through possible match length
  10288. bool match = false;
  10289. for (int j = n; j > i; j--) {
  10290. auto it = token_map->find(word1.substr(i, j - i));
  10291. if (it != token_map->end()) {
  10292. output.push_back(it->second);
  10293. match = true;
  10294. match_any = true;
  10295. i = j;
  10296. break;
  10297. }
  10298. }
  10299. // must be an unknown character
  10300. if (!match) {
  10301. i++;
  10302. }
  10303. }
  10304. // we didn't find any matches for this word
  10305. if (!match_any) {
  10306. output.push_back(vocab.special_unk_id);
  10307. }
  10308. }
  10309. }
  10310. std::vector<std::string> preprocess(const std::string & text) {
  10311. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10312. // strip accents, strip control, uniformize whitespace,
  10313. // to lowercase, pad chinese characters, pad punctuation
  10314. std::string new_str = "";
  10315. for (uint32_t code : cpts_nfd) {
  10316. int type = unicode_cpt_type(code);
  10317. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  10318. continue;
  10319. }
  10320. code = unicode_tolower(code);
  10321. if (type == CODEPOINT_TYPE_SEPARATOR) {
  10322. code = ' ';
  10323. }
  10324. std::string s = unicode_cpt_to_utf8(code);
  10325. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  10326. new_str += " ";
  10327. new_str += s;
  10328. new_str += " ";
  10329. } else {
  10330. new_str += s;
  10331. }
  10332. }
  10333. // split by whitespace
  10334. uint64_t l = 0;
  10335. uint64_t r = 0;
  10336. std::vector<std::string> words;
  10337. while (r < new_str.size()) {
  10338. // if is whitespace
  10339. if (isspace(new_str[r], std::locale::classic())) {
  10340. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10341. l = r + 1;
  10342. r = l;
  10343. } else {
  10344. r += 1;
  10345. }
  10346. }
  10347. if (r > l) {
  10348. words.push_back(new_str.substr(l, (r - l)));
  10349. }
  10350. return words;
  10351. }
  10352. bool is_ascii_punct(uint32_t code) {
  10353. if (code > 0xFF) {
  10354. return false;
  10355. }
  10356. auto c = char(static_cast<unsigned char>(code));
  10357. return ispunct(c, std::locale::classic());
  10358. }
  10359. bool is_chinese_char(uint32_t cpt) {
  10360. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10361. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10362. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10363. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10364. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10365. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10366. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10367. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10368. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10369. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10370. return true; // NOLINT
  10371. }
  10372. return false;
  10373. }
  10374. const llama_vocab & vocab;
  10375. };
  10376. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10377. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10378. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10379. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10380. struct fragment_buffer_variant {
  10381. fragment_buffer_variant(llama_vocab::id _token)
  10382. :
  10383. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10384. token(_token),
  10385. raw_text(_dummy),
  10386. offset(0),
  10387. length(0) {}
  10388. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10389. :
  10390. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10391. token((llama_vocab::id) - 1),
  10392. raw_text(_raw_text),
  10393. offset(_offset),
  10394. length(_length){
  10395. GGML_ASSERT(_offset >= 0);
  10396. GGML_ASSERT(_length >= 1);
  10397. GGML_ASSERT(offset + length <= raw_text.length());
  10398. }
  10399. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10400. const llama_vocab::id token;
  10401. const std::string _dummy;
  10402. const std::string & raw_text;
  10403. const uint64_t offset;
  10404. const uint64_t length;
  10405. };
  10406. // #define PRETOKENIZERDEBUG
  10407. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10408. // for each special token
  10409. for (const auto & st: vocab.special_tokens_cache) {
  10410. const auto & special_token = st.first;
  10411. const auto & special_id = st.second;
  10412. // for each text fragment
  10413. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10414. while (it != buffer.end()) {
  10415. auto & fragment = (*it);
  10416. // if a fragment is text ( not yet processed )
  10417. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10418. auto * raw_text = &(fragment.raw_text);
  10419. auto raw_text_base_offset = fragment.offset;
  10420. auto raw_text_base_length = fragment.length;
  10421. // loop over the text
  10422. while (true) {
  10423. // find the first occurrence of a given special token in this fragment
  10424. // passing offset argument only limit the "search area" but match coordinates
  10425. // are still relative to the source full raw_text
  10426. auto match = raw_text->find(special_token, raw_text_base_offset);
  10427. // no occurrences found, stop processing this fragment for a given special token
  10428. if (match == std::string::npos) break;
  10429. // check if match is within bounds of offset <-> length
  10430. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10431. #ifdef PRETOKENIZERDEBUG
  10432. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10433. #endif
  10434. auto source = std::distance(buffer.begin(), it);
  10435. // if match is further than base offset
  10436. // then we have some text to the left of it
  10437. if (match > raw_text_base_offset) {
  10438. // left
  10439. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10440. const int64_t left_reminder_length = match - raw_text_base_offset;
  10441. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10442. #ifdef PRETOKENIZERDEBUG
  10443. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10444. #endif
  10445. it++;
  10446. }
  10447. // special token
  10448. buffer.emplace_after(it, special_id);
  10449. it++;
  10450. // right
  10451. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10452. const int64_t right_reminder_offset = match + special_token.length();
  10453. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10454. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10455. #ifdef PRETOKENIZERDEBUG
  10456. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10457. #endif
  10458. it++;
  10459. if (source == 0) {
  10460. buffer.erase_after(buffer.before_begin());
  10461. } else {
  10462. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10463. }
  10464. // repeat for the right side
  10465. raw_text_base_offset = right_reminder_offset;
  10466. raw_text_base_length = right_reminder_length;
  10467. #ifdef PRETOKENIZERDEBUG
  10468. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10469. #endif
  10470. } else {
  10471. if (source == 0) {
  10472. buffer.erase_after(buffer.before_begin());
  10473. } else {
  10474. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10475. }
  10476. break;
  10477. }
  10478. }
  10479. }
  10480. it++;
  10481. }
  10482. }
  10483. }
  10484. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10485. std::vector<llama_vocab::id> output;
  10486. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10487. if (!raw_text.empty()) {
  10488. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10489. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10490. }
  10491. switch (vocab.type) {
  10492. case LLAMA_VOCAB_TYPE_SPM:
  10493. {
  10494. // OG tokenizer behavior:
  10495. //
  10496. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10497. // tokenizer.encode('', add_special_tokens=False) returns []
  10498. if (add_special && vocab.special_add_bos != 0) {
  10499. GGML_ASSERT(vocab.special_bos_id != -1);
  10500. output.push_back(vocab.special_bos_id);
  10501. }
  10502. for (const auto & fragment : fragment_buffer) {
  10503. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10504. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10505. // TODO: It's likely possible to get rid of this string copy entirely
  10506. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10507. // and passing 'add space prefix' as bool argument
  10508. //
  10509. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10510. if (&fragment == &fragment_buffer.front()) {
  10511. if (vocab.add_space_prefix) {
  10512. raw_text = " " + raw_text; // prefix with space if the first token is not special
  10513. }
  10514. }
  10515. #ifdef PRETOKENIZERDEBUG
  10516. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10517. #endif
  10518. llm_tokenizer_spm tokenizer(vocab);
  10519. llama_escape_whitespace(raw_text);
  10520. tokenizer.tokenize(raw_text, output);
  10521. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10522. output.push_back(fragment.token);
  10523. }
  10524. }
  10525. if (add_special && vocab.special_add_eos == 1) {
  10526. GGML_ASSERT(vocab.special_eos_id != -1);
  10527. output.push_back(vocab.special_eos_id);
  10528. }
  10529. } break;
  10530. case LLAMA_VOCAB_TYPE_BPE:
  10531. {
  10532. if (add_special && vocab.special_add_bos != 0) {
  10533. GGML_ASSERT(vocab.special_bos_id != -1);
  10534. output.push_back(vocab.special_bos_id);
  10535. }
  10536. for (const auto & fragment : fragment_buffer) {
  10537. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10538. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10539. #ifdef PRETOKENIZERDEBUG
  10540. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10541. #endif
  10542. llm_tokenizer_bpe tokenizer(vocab);
  10543. tokenizer.tokenize(raw_text, output);
  10544. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10545. output.push_back(fragment.token);
  10546. }
  10547. }
  10548. GGML_ASSERT(vocab.special_add_eos != 1);
  10549. } break;
  10550. case LLAMA_VOCAB_TYPE_WPM:
  10551. {
  10552. if (add_special) {
  10553. GGML_ASSERT(vocab.special_cls_id != -1);
  10554. output.push_back(vocab.special_cls_id);
  10555. }
  10556. for (const auto & fragment : fragment_buffer) {
  10557. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10558. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10559. #ifdef PRETOKENIZERDEBUG
  10560. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10561. #endif
  10562. llm_tokenizer_wpm tokenizer(vocab);
  10563. tokenizer.tokenize(raw_text, output);
  10564. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10565. output.push_back(fragment.token);
  10566. }
  10567. }
  10568. if (add_special) {
  10569. GGML_ASSERT(vocab.special_sep_id != -1);
  10570. output.push_back(vocab.special_sep_id);
  10571. }
  10572. } break;
  10573. case LLAMA_VOCAB_TYPE_NONE:
  10574. GGML_ASSERT(false);
  10575. }
  10576. return output;
  10577. }
  10578. //
  10579. // grammar - internal
  10580. //
  10581. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10582. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10583. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10584. const std::string & src,
  10585. llama_partial_utf8 partial_start) {
  10586. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10587. const char * pos = src.c_str();
  10588. std::vector<uint32_t> code_points;
  10589. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10590. code_points.reserve(src.size() + 1);
  10591. uint32_t value = partial_start.value;
  10592. int n_remain = partial_start.n_remain;
  10593. // continue previous decode, if applicable
  10594. while (*pos != 0 && n_remain > 0) {
  10595. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10596. if ((next_byte >> 6) != 2) {
  10597. // invalid sequence, abort
  10598. code_points.push_back(0);
  10599. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10600. }
  10601. value = (value << 6) + (next_byte & 0x3F);
  10602. ++pos;
  10603. --n_remain;
  10604. }
  10605. if (partial_start.n_remain > 0 && n_remain == 0) {
  10606. code_points.push_back(value);
  10607. }
  10608. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10609. while (*pos != 0) {
  10610. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10611. uint8_t highbits = first_byte >> 4;
  10612. n_remain = lookup[highbits] - 1;
  10613. if (n_remain < 0) {
  10614. // invalid sequence, abort
  10615. code_points.clear();
  10616. code_points.push_back(0);
  10617. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10618. }
  10619. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10620. value = first_byte & mask;
  10621. ++pos;
  10622. while (*pos != 0 && n_remain > 0) {
  10623. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10624. ++pos;
  10625. --n_remain;
  10626. }
  10627. if (n_remain == 0) {
  10628. code_points.push_back(value);
  10629. }
  10630. }
  10631. code_points.push_back(0);
  10632. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10633. }
  10634. // returns true iff pos points to the end of one of the definitions of a rule
  10635. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10636. switch (pos->type) {
  10637. case LLAMA_GRETYPE_END: return true; // NOLINT
  10638. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10639. default: return false;
  10640. }
  10641. }
  10642. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10643. // asserts that pos is pointing to a char range element
  10644. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10645. const llama_grammar_element * pos,
  10646. const uint32_t chr) {
  10647. bool found = false;
  10648. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10649. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10650. do {
  10651. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10652. // inclusive range, e.g. [a-z]
  10653. found = found || (pos->value <= chr && chr <= pos[1].value);
  10654. pos += 2;
  10655. } else {
  10656. // exact char match, e.g. [a] or "a"
  10657. found = found || pos->value == chr;
  10658. pos += 1;
  10659. }
  10660. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10661. return std::make_pair(found == is_positive_char, pos);
  10662. }
  10663. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10664. // range at pos (regular or inverse range)
  10665. // asserts that pos is pointing to a char range element
  10666. static bool llama_grammar_match_partial_char(
  10667. const llama_grammar_element * pos,
  10668. const llama_partial_utf8 partial_utf8) {
  10669. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10670. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10671. uint32_t partial_value = partial_utf8.value;
  10672. int n_remain = partial_utf8.n_remain;
  10673. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10674. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10675. return false;
  10676. }
  10677. // range of possible code points this partial UTF-8 sequence could complete to
  10678. uint32_t low = partial_value << (n_remain * 6);
  10679. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10680. if (low == 0) {
  10681. if (n_remain == 2) {
  10682. low = 1 << 11;
  10683. } else if (n_remain == 3) {
  10684. low = 1 << 16;
  10685. }
  10686. }
  10687. do {
  10688. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10689. // inclusive range, e.g. [a-z]
  10690. if (pos->value <= high && low <= pos[1].value) {
  10691. return is_positive_char;
  10692. }
  10693. pos += 2;
  10694. } else {
  10695. // exact char match, e.g. [a] or "a"
  10696. if (low <= pos->value && pos->value <= high) {
  10697. return is_positive_char;
  10698. }
  10699. pos += 1;
  10700. }
  10701. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10702. return !is_positive_char;
  10703. }
  10704. // transforms a grammar pushdown stack into N possible stacks, all ending
  10705. // at a character range (terminal element)
  10706. static void llama_grammar_advance_stack(
  10707. const std::vector<std::vector<llama_grammar_element>> & rules,
  10708. const std::vector<const llama_grammar_element *> & stack,
  10709. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10710. if (stack.empty()) {
  10711. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10712. new_stacks.emplace_back(stack);
  10713. }
  10714. return;
  10715. }
  10716. const llama_grammar_element * pos = stack.back();
  10717. switch (pos->type) {
  10718. case LLAMA_GRETYPE_RULE_REF: {
  10719. const size_t rule_id = static_cast<size_t>(pos->value);
  10720. const llama_grammar_element * subpos = rules[rule_id].data();
  10721. do {
  10722. // init new stack without the top (pos)
  10723. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10724. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10725. // if this rule ref is followed by another element, add that to stack
  10726. new_stack.push_back(pos + 1);
  10727. }
  10728. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10729. // if alternate is nonempty, add to stack
  10730. new_stack.push_back(subpos);
  10731. }
  10732. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10733. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10734. // scan to end of alternate def
  10735. subpos++;
  10736. }
  10737. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10738. // there's another alternate def of this rule to process
  10739. subpos++;
  10740. } else {
  10741. break;
  10742. }
  10743. } while (true);
  10744. break;
  10745. }
  10746. case LLAMA_GRETYPE_CHAR:
  10747. case LLAMA_GRETYPE_CHAR_NOT:
  10748. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10749. // only add the stack if it's not a duplicate of one we already have
  10750. new_stacks.emplace_back(stack);
  10751. }
  10752. break;
  10753. default:
  10754. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10755. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10756. // those
  10757. GGML_ASSERT(false);
  10758. }
  10759. }
  10760. // takes a set of possible pushdown stacks on a grammar, which are required to
  10761. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10762. // produces the N possible stacks if the given char is accepted at those
  10763. // positions
  10764. void llama_grammar_accept(
  10765. const std::vector<std::vector<llama_grammar_element>> & rules,
  10766. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10767. const uint32_t chr,
  10768. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10769. new_stacks.clear();
  10770. for (const auto & stack : stacks) {
  10771. if (stack.empty()) {
  10772. continue;
  10773. }
  10774. auto match = llama_grammar_match_char(stack.back(), chr);
  10775. if (match.first) {
  10776. const llama_grammar_element * pos = match.second;
  10777. // update top of stack to next element, if any
  10778. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10779. if (!llama_grammar_is_end_of_sequence(pos)) {
  10780. new_stack.push_back(pos);
  10781. }
  10782. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10783. }
  10784. }
  10785. }
  10786. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10787. const std::vector<std::vector<llama_grammar_element>> & rules,
  10788. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10789. const std::vector<llama_grammar_candidate> & candidates);
  10790. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10791. const std::vector<std::vector<llama_grammar_element>> & rules,
  10792. const std::vector<const llama_grammar_element *> & stack,
  10793. const std::vector<llama_grammar_candidate> & candidates) {
  10794. std::vector<llama_grammar_candidate> rejects;
  10795. rejects.reserve(candidates.size());
  10796. if (stack.empty()) {
  10797. for (const auto & tok : candidates) {
  10798. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10799. rejects.push_back(tok);
  10800. }
  10801. }
  10802. return rejects;
  10803. }
  10804. const llama_grammar_element * stack_pos = stack.back();
  10805. std::vector<llama_grammar_candidate> next_candidates;
  10806. next_candidates.reserve(candidates.size());
  10807. for (const auto & tok : candidates) {
  10808. if (*tok.code_points == 0) {
  10809. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10810. // that cannot satisfy this position in grammar
  10811. if (tok.partial_utf8.n_remain != 0 &&
  10812. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10813. rejects.push_back(tok);
  10814. }
  10815. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10816. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10817. } else {
  10818. rejects.push_back(tok);
  10819. }
  10820. }
  10821. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10822. // update top of stack to next element, if any
  10823. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10824. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10825. stack_after.push_back(stack_pos_after);
  10826. }
  10827. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10828. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10829. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10830. for (const auto & tok : next_rejects) {
  10831. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10832. }
  10833. return rejects;
  10834. }
  10835. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10836. const std::vector<std::vector<llama_grammar_element>> & rules,
  10837. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10838. const std::vector<llama_grammar_candidate> & candidates) {
  10839. GGML_ASSERT(!stacks.empty()); // REVIEW
  10840. if (candidates.empty()) {
  10841. return std::vector<llama_grammar_candidate>();
  10842. }
  10843. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10844. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10845. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10846. }
  10847. return rejects;
  10848. }
  10849. //
  10850. // grammar - external
  10851. //
  10852. struct llama_grammar * llama_grammar_init(
  10853. const llama_grammar_element ** rules,
  10854. size_t n_rules,
  10855. size_t start_rule_index) {
  10856. const llama_grammar_element * pos;
  10857. // copy rule definitions into vectors
  10858. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  10859. for (size_t i = 0; i < n_rules; i++) {
  10860. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  10861. vec_rules[i].push_back(*pos);
  10862. }
  10863. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  10864. }
  10865. // loop over alternates of start rule to build initial stacks
  10866. std::vector<std::vector<const llama_grammar_element *>> stacks;
  10867. pos = vec_rules[start_rule_index].data();
  10868. do {
  10869. std::vector<const llama_grammar_element *> stack;
  10870. if (!llama_grammar_is_end_of_sequence(pos)) {
  10871. // if alternate is nonempty, add to stack
  10872. stack.push_back(pos);
  10873. }
  10874. llama_grammar_advance_stack(vec_rules, stack, stacks);
  10875. while (!llama_grammar_is_end_of_sequence(pos)) {
  10876. // scan to end of alternate def
  10877. pos++;
  10878. }
  10879. if (pos->type == LLAMA_GRETYPE_ALT) {
  10880. // there's another alternate def of this rule to process
  10881. pos++;
  10882. } else {
  10883. break;
  10884. }
  10885. } while (true);
  10886. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  10887. }
  10888. void llama_grammar_free(struct llama_grammar * grammar) {
  10889. delete grammar;
  10890. }
  10891. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  10892. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  10893. // redirect elements in stacks to point to new rules
  10894. for (size_t is = 0; is < result->stacks.size(); is++) {
  10895. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  10896. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  10897. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  10898. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  10899. result->stacks[is][ie] = &result->rules[ir0][ir1];
  10900. }
  10901. }
  10902. }
  10903. }
  10904. }
  10905. return result;
  10906. }
  10907. //
  10908. // sampling
  10909. //
  10910. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  10911. if (seed == LLAMA_DEFAULT_SEED) {
  10912. seed = time(NULL);
  10913. }
  10914. ctx->rng.seed(seed);
  10915. }
  10916. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  10917. GGML_ASSERT(candidates->size > 0);
  10918. const int64_t t_start_sample_us = ggml_time_us();
  10919. // Sort the logits in descending order
  10920. if (!candidates->sorted) {
  10921. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10922. return a.logit > b.logit;
  10923. });
  10924. candidates->sorted = true;
  10925. }
  10926. float max_l = candidates->data[0].logit;
  10927. float cum_sum = 0.0f;
  10928. for (size_t i = 0; i < candidates->size; ++i) {
  10929. float p = expf(candidates->data[i].logit - max_l);
  10930. candidates->data[i].p = p;
  10931. cum_sum += p;
  10932. }
  10933. for (size_t i = 0; i < candidates->size; ++i) {
  10934. candidates->data[i].p /= cum_sum;
  10935. }
  10936. if (ctx) {
  10937. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10938. }
  10939. }
  10940. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  10941. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  10942. // if (k >= (int32_t)candidates->size) {
  10943. // return;
  10944. // }
  10945. const int64_t t_start_sample_us = ggml_time_us();
  10946. if (k <= 0) {
  10947. k = candidates->size;
  10948. }
  10949. k = std::max(k, (int) min_keep);
  10950. k = std::min(k, (int) candidates->size);
  10951. // Sort scores in descending order
  10952. if (!candidates->sorted) {
  10953. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  10954. return a.logit > b.logit;
  10955. };
  10956. if (k <= 128) {
  10957. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  10958. } else {
  10959. constexpr int nbuckets = 128;
  10960. constexpr float bucket_low = -10.0f;
  10961. constexpr float bucket_high = 10.0f;
  10962. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  10963. constexpr float bucker_inter = -bucket_low * bucket_scale;
  10964. std::vector<int> bucket_idx(candidates->size);
  10965. std::vector<int> histo(nbuckets, 0);
  10966. for (int i = 0; i < (int)candidates->size; ++i) {
  10967. const float val = candidates->data[i].logit;
  10968. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  10969. ib = std::max(0, std::min(nbuckets-1, ib));
  10970. bucket_idx[i] = ib;
  10971. ++histo[ib];
  10972. }
  10973. int nhave = 0;
  10974. int ib = nbuckets - 1;
  10975. for ( ; ib >= 0; --ib) {
  10976. nhave += histo[ib];
  10977. if (nhave >= k) break;
  10978. }
  10979. std::vector<llama_token_data> tmp_tokens(nhave);
  10980. auto ptr = tmp_tokens.data();
  10981. std::vector<llama_token_data*> bucket_ptrs;
  10982. bucket_ptrs.reserve(nbuckets - ib);
  10983. for (int j = nbuckets - 1; j >= ib; --j) {
  10984. bucket_ptrs.push_back(ptr);
  10985. ptr += histo[j];
  10986. }
  10987. for (int i = 0; i < (int)candidates->size; ++i) {
  10988. int j = bucket_idx[i];
  10989. if (j >= ib) {
  10990. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  10991. }
  10992. }
  10993. ptr = tmp_tokens.data();
  10994. int ndone = 0;
  10995. for (int j = nbuckets-1; j > ib; --j) {
  10996. std::sort(ptr, ptr + histo[j], comp);
  10997. ptr += histo[j];
  10998. ndone += histo[j];
  10999. }
  11000. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11001. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11002. }
  11003. candidates->sorted = true;
  11004. }
  11005. candidates->size = k;
  11006. if (ctx) {
  11007. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11008. }
  11009. }
  11010. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11011. if (p >= 1.0f) {
  11012. return;
  11013. }
  11014. llama_sample_softmax(ctx, candidates);
  11015. const int64_t t_start_sample_us = ggml_time_us();
  11016. // Compute the cumulative probabilities
  11017. float cum_sum = 0.0f;
  11018. size_t last_idx = candidates->size;
  11019. for (size_t i = 0; i < candidates->size; ++i) {
  11020. cum_sum += candidates->data[i].p;
  11021. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11022. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11023. if (cum_sum >= p && i + 1 >= min_keep) {
  11024. last_idx = i + 1;
  11025. break;
  11026. }
  11027. }
  11028. // Resize the output vector to keep only the top-p tokens
  11029. candidates->size = last_idx;
  11030. if (ctx) {
  11031. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11032. }
  11033. }
  11034. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11035. if (p <= 0.0f || !candidates->size) {
  11036. return;
  11037. }
  11038. const int64_t t_start_sample_us = ggml_time_us();
  11039. bool min_p_applied = false;
  11040. // if the candidates aren't sorted, try the unsorted implementation first
  11041. if (!candidates->sorted) {
  11042. std::vector<llama_token_data> filtered_tokens;
  11043. float max_logit = -FLT_MAX;
  11044. for (size_t i = 0; i < candidates->size; ++i) {
  11045. max_logit = std::max(max_logit, candidates->data[i].logit);
  11046. }
  11047. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11048. for (size_t i = 0; i < candidates->size; ++i) {
  11049. if (candidates->data[i].logit >= min_logit) {
  11050. filtered_tokens.push_back(candidates->data[i]);
  11051. }
  11052. }
  11053. // if we have enough values the operation was a success
  11054. if (filtered_tokens.size() >= min_keep) {
  11055. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11056. candidates->size = filtered_tokens.size();
  11057. min_p_applied = true;
  11058. }
  11059. }
  11060. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11061. if (!min_p_applied) {
  11062. // Sort the logits in descending order
  11063. if (!candidates->sorted) {
  11064. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11065. return a.logit > b.logit;
  11066. });
  11067. candidates->sorted = true;
  11068. }
  11069. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11070. size_t i = 1; // first token always matches
  11071. for (; i < candidates->size; ++i) {
  11072. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11073. break; // prob too small
  11074. }
  11075. }
  11076. // Resize the output vector to keep only the matching tokens
  11077. candidates->size = i;
  11078. }
  11079. if (ctx) {
  11080. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11081. }
  11082. }
  11083. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11084. if (z >= 1.0f || candidates->size <= 2) {
  11085. return;
  11086. }
  11087. llama_sample_softmax(nullptr, candidates);
  11088. const int64_t t_start_sample_us = ggml_time_us();
  11089. // Compute the first and second derivatives
  11090. std::vector<float> first_derivatives(candidates->size - 1);
  11091. std::vector<float> second_derivatives(candidates->size - 2);
  11092. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11093. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11094. }
  11095. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11096. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11097. }
  11098. // Calculate absolute value of second derivatives
  11099. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11100. second_derivatives[i] = std::abs(second_derivatives[i]);
  11101. }
  11102. // Normalize the second derivatives
  11103. {
  11104. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11105. if (second_derivatives_sum > 1e-6f) {
  11106. for (float & value : second_derivatives) {
  11107. value /= second_derivatives_sum;
  11108. }
  11109. } else {
  11110. for (float & value : second_derivatives) {
  11111. value = 1.0f / second_derivatives.size();
  11112. }
  11113. }
  11114. }
  11115. float cum_sum = 0.0f;
  11116. size_t last_idx = candidates->size;
  11117. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11118. cum_sum += second_derivatives[i];
  11119. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11120. if (cum_sum > z && i >= min_keep) {
  11121. last_idx = i;
  11122. break;
  11123. }
  11124. }
  11125. // Resize the output vector to keep only the tokens above the tail location
  11126. candidates->size = last_idx;
  11127. if (ctx) {
  11128. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11129. }
  11130. }
  11131. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11132. // Reference implementation:
  11133. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11134. if (p >= 1.0f) {
  11135. return;
  11136. }
  11137. // Compute the softmax of logits and calculate entropy
  11138. llama_sample_softmax(nullptr, candidates);
  11139. const int64_t t_start_sample_us = ggml_time_us();
  11140. float entropy = 0.0f;
  11141. for (size_t i = 0; i < candidates->size; ++i) {
  11142. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11143. }
  11144. // Compute the absolute difference between negative log probability and entropy for each candidate
  11145. std::vector<float> shifted_scores;
  11146. for (size_t i = 0; i < candidates->size; ++i) {
  11147. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11148. shifted_scores.push_back(shifted_score);
  11149. }
  11150. // Sort tokens based on the shifted_scores and their corresponding indices
  11151. std::vector<size_t> indices(candidates->size);
  11152. std::iota(indices.begin(), indices.end(), 0);
  11153. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11154. return shifted_scores[a] < shifted_scores[b];
  11155. });
  11156. // Compute the cumulative probabilities
  11157. float cum_sum = 0.0f;
  11158. size_t last_idx = indices.size();
  11159. for (size_t i = 0; i < indices.size(); ++i) {
  11160. size_t idx = indices[i];
  11161. cum_sum += candidates->data[idx].p;
  11162. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11163. if (cum_sum > p && i >= min_keep - 1) {
  11164. last_idx = i + 1;
  11165. break;
  11166. }
  11167. }
  11168. // Resize the output vector to keep only the locally typical tokens
  11169. std::vector<llama_token_data> new_candidates;
  11170. for (size_t i = 0; i < last_idx; ++i) {
  11171. size_t idx = indices[i];
  11172. new_candidates.push_back(candidates->data[idx]);
  11173. }
  11174. // Replace the data in candidates with the new_candidates data
  11175. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11176. candidates->size = new_candidates.size();
  11177. candidates->sorted = false;
  11178. if (ctx) {
  11179. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11180. }
  11181. }
  11182. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11183. const int64_t t_start_sample_us = ggml_time_us();
  11184. // no need to do anything if there is only one (or zero) candidates
  11185. if(candidates_p->size <= 1) {
  11186. return;
  11187. }
  11188. // Calculate maximum possible entropy
  11189. float max_entropy = -logf(1.0f / candidates_p->size);
  11190. llama_sample_softmax(nullptr, candidates_p);
  11191. // Calculate entropy of the softmax probabilities
  11192. float entropy = 0.0f;
  11193. for (size_t i = 0; i < candidates_p->size; ++i) {
  11194. float prob = candidates_p->data[i].p;
  11195. if (prob > 0.0f) { // Ensure no log(0)
  11196. entropy -= prob * logf(prob);
  11197. }
  11198. }
  11199. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11200. float normalized_entropy = entropy / max_entropy;
  11201. // Map the normalized entropy to the desired temperature range using the power function
  11202. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11203. #ifdef DEBUG
  11204. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11205. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11206. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11207. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11208. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11209. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11210. #endif
  11211. // Apply the dynamically calculated temperature scaling
  11212. for (size_t i = 0; i < candidates_p->size; ++i) {
  11213. candidates_p->data[i].logit /= dyn_temp;
  11214. }
  11215. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11216. double max_l_double = candidates_p->data[0].logit;
  11217. double cum_sum_double = 0.0;
  11218. for (size_t i = 0; i < candidates_p->size; ++i) {
  11219. double p = exp(candidates_p->data[i].logit - max_l_double);
  11220. candidates_p->data[i].p = p; // Store the scaled probability
  11221. cum_sum_double += p;
  11222. }
  11223. for (size_t i = 0; i < candidates_p->size; ++i) {
  11224. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11225. }
  11226. #ifdef DEBUG
  11227. // Print the updated top 25 probabilities after temperature scaling
  11228. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11229. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11230. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11231. }
  11232. #endif
  11233. if (ctx) {
  11234. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11235. }
  11236. }
  11237. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11238. const int64_t t_start_sample_us = ggml_time_us();
  11239. for (size_t i = 0; i < candidates_p->size; ++i) {
  11240. candidates_p->data[i].logit /= temp;
  11241. }
  11242. if (ctx) {
  11243. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11244. }
  11245. }
  11246. void llama_sample_repetition_penalties(
  11247. struct llama_context * ctx,
  11248. llama_token_data_array * candidates,
  11249. const llama_token * last_tokens,
  11250. size_t penalty_last_n,
  11251. float penalty_repeat,
  11252. float penalty_freq,
  11253. float penalty_present) {
  11254. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11255. return;
  11256. }
  11257. const int64_t t_start_sample_us = ggml_time_us();
  11258. // Create a frequency map to count occurrences of each token in last_tokens
  11259. std::unordered_map<llama_token, int> token_count;
  11260. for (size_t i = 0; i < penalty_last_n; ++i) {
  11261. token_count[last_tokens[i]]++;
  11262. }
  11263. // Apply frequency and presence penalties to the candidates
  11264. for (size_t i = 0; i < candidates->size; ++i) {
  11265. const auto token_iter = token_count.find(candidates->data[i].id);
  11266. if (token_iter == token_count.end()) {
  11267. continue;
  11268. }
  11269. const int count = token_iter->second;
  11270. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11271. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11272. if (candidates->data[i].logit <= 0) {
  11273. candidates->data[i].logit *= penalty_repeat;
  11274. } else {
  11275. candidates->data[i].logit /= penalty_repeat;
  11276. }
  11277. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11278. }
  11279. candidates->sorted = false;
  11280. if (ctx) {
  11281. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11282. }
  11283. }
  11284. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11285. GGML_ASSERT(ctx);
  11286. const int64_t t_start_sample_us = ggml_time_us();
  11287. bool allow_eog = false;
  11288. for (const auto & stack : grammar->stacks) {
  11289. if (stack.empty()) {
  11290. allow_eog = true;
  11291. break;
  11292. }
  11293. }
  11294. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11295. candidates_decoded.reserve(candidates->size);
  11296. std::vector<llama_grammar_candidate> candidates_grammar;
  11297. candidates_grammar.reserve(candidates->size);
  11298. for (size_t i = 0; i < candidates->size; ++i) {
  11299. const llama_token id = candidates->data[i].id;
  11300. const std::string piece = llama_token_to_piece(ctx, id, false);
  11301. if (llama_token_is_eog(&ctx->model, id)) {
  11302. if (!allow_eog) {
  11303. candidates->data[i].logit = -INFINITY;
  11304. }
  11305. } else if (piece.empty() || piece[0] == 0) {
  11306. candidates->data[i].logit = -INFINITY;
  11307. } else {
  11308. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11309. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11310. }
  11311. }
  11312. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11313. for (const auto & reject : rejects) {
  11314. candidates->data[reject.index].logit = -INFINITY;
  11315. }
  11316. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11317. }
  11318. static void llama_log_softmax(float * array, size_t size) {
  11319. float max_l = *std::max_element(array, array + size);
  11320. float sum = 0.f;
  11321. for (size_t i = 0; i < size; ++i) {
  11322. float p = expf(array[i] - max_l);
  11323. sum += p;
  11324. array[i] = p;
  11325. }
  11326. for (size_t i = 0; i < size; ++i) {
  11327. array[i] = logf(array[i] / sum);
  11328. }
  11329. }
  11330. void llama_sample_apply_guidance(
  11331. struct llama_context * ctx,
  11332. float * logits,
  11333. float * logits_guidance,
  11334. float scale) {
  11335. GGML_ASSERT(ctx);
  11336. const auto t_start_sample_us = ggml_time_us();
  11337. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11338. llama_log_softmax(logits, n_vocab);
  11339. llama_log_softmax(logits_guidance, n_vocab);
  11340. for (int i = 0; i < n_vocab; ++i) {
  11341. auto & l = logits[i];
  11342. const auto & g = logits_guidance[i];
  11343. l = scale * (l - g) + g;
  11344. }
  11345. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11346. }
  11347. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11348. GGML_ASSERT(ctx);
  11349. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11350. int64_t t_start_sample_us;
  11351. t_start_sample_us = ggml_time_us();
  11352. llama_sample_softmax(nullptr, candidates);
  11353. // Estimate s_hat using the most probable m tokens
  11354. float s_hat = 0.0;
  11355. float sum_ti_bi = 0.0;
  11356. float sum_ti_sq = 0.0;
  11357. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11358. float t_i = logf(float(i + 2) / float(i + 1));
  11359. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11360. sum_ti_bi += t_i * b_i;
  11361. sum_ti_sq += t_i * t_i;
  11362. }
  11363. s_hat = sum_ti_bi / sum_ti_sq;
  11364. // Compute k from the estimated s_hat and target surprise value
  11365. float epsilon_hat = s_hat - 1;
  11366. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11367. // Sample the next word X using top-k sampling
  11368. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11369. if (ctx) {
  11370. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11371. }
  11372. llama_token X = llama_sample_token(ctx, candidates);
  11373. t_start_sample_us = ggml_time_us();
  11374. // Compute error as the difference between observed surprise and target surprise value
  11375. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11376. return candidate.id == X;
  11377. }));
  11378. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11379. float e = observed_surprise - tau;
  11380. // Update mu using the learning rate and error
  11381. *mu = *mu - eta * e;
  11382. if (ctx) {
  11383. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11384. }
  11385. return X;
  11386. }
  11387. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11388. int64_t t_start_sample_us;
  11389. t_start_sample_us = ggml_time_us();
  11390. llama_sample_softmax(ctx, candidates);
  11391. // Truncate the words with surprise values greater than mu
  11392. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11393. return -log2f(candidate.p) > *mu;
  11394. }));
  11395. if (candidates->size == 0) {
  11396. candidates->size = 1;
  11397. }
  11398. if (ctx) {
  11399. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11400. }
  11401. // Normalize the probabilities of the remaining words
  11402. llama_sample_softmax(ctx, candidates);
  11403. // Sample the next word X from the remaining words
  11404. llama_token X = llama_sample_token(ctx, candidates);
  11405. t_start_sample_us = ggml_time_us();
  11406. // Compute error as the difference between observed surprise and target surprise value
  11407. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11408. return candidate.id == X;
  11409. }));
  11410. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11411. float e = observed_surprise - tau;
  11412. // Update mu using the learning rate and error
  11413. *mu = *mu - eta * e;
  11414. if (ctx) {
  11415. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11416. }
  11417. return X;
  11418. }
  11419. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11420. const int64_t t_start_sample_us = ggml_time_us();
  11421. // Find max element
  11422. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11423. return a.logit < b.logit;
  11424. });
  11425. llama_token result = max_iter->id;
  11426. if (ctx) {
  11427. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11428. ctx->n_sample++;
  11429. }
  11430. return result;
  11431. }
  11432. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11433. GGML_ASSERT(ctx);
  11434. const int64_t t_start_sample_us = ggml_time_us();
  11435. llama_sample_softmax(nullptr, candidates);
  11436. std::vector<float> probs;
  11437. probs.reserve(candidates->size);
  11438. for (size_t i = 0; i < candidates->size; ++i) {
  11439. probs.push_back(candidates->data[i].p);
  11440. }
  11441. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11442. int idx = dist(rng);
  11443. llama_token result = candidates->data[idx].id;
  11444. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11445. ctx->n_sample++;
  11446. return result;
  11447. }
  11448. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11449. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11450. }
  11451. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11452. const int64_t t_start_sample_us = ggml_time_us();
  11453. if (llama_token_is_eog(&ctx->model, token)) {
  11454. for (const auto & stack : grammar->stacks) {
  11455. if (stack.empty()) {
  11456. return;
  11457. }
  11458. }
  11459. GGML_ASSERT(false);
  11460. }
  11461. const std::string piece = llama_token_to_piece(ctx, token, false);
  11462. // Note terminating 0 in decoded string
  11463. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11464. const auto & code_points = decoded.first;
  11465. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11466. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11467. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11468. grammar->stacks = tmp_new_stacks;
  11469. }
  11470. grammar->partial_utf8 = decoded.second;
  11471. GGML_ASSERT(!grammar->stacks.empty());
  11472. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11473. }
  11474. //
  11475. // Beam search
  11476. //
  11477. struct llama_beam {
  11478. std::vector<llama_token> tokens;
  11479. float p; // Cumulative beam probability (renormalized relative to all beams)
  11480. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11481. // Sort beams by probability. In case of ties, prefer beams at eob.
  11482. bool operator<(const llama_beam & rhs) const {
  11483. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11484. }
  11485. // Shift off first n tokens and discard them.
  11486. void shift_tokens(const size_t n) {
  11487. if (n) {
  11488. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11489. tokens.resize(tokens.size() - n);
  11490. }
  11491. }
  11492. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11493. };
  11494. // A struct for calculating logit-related info.
  11495. struct llama_logit_info {
  11496. const float * const logits;
  11497. const int n_vocab;
  11498. const float max_l;
  11499. const float normalizer;
  11500. struct sum_exp {
  11501. float max_l;
  11502. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11503. };
  11504. llama_logit_info(llama_context * ctx)
  11505. : logits(llama_get_logits(ctx))
  11506. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11507. , max_l(*std::max_element(logits, logits + n_vocab))
  11508. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11509. { }
  11510. llama_token_data get_token_data(const llama_token token_id) const {
  11511. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11512. return {token_id, logits[token_id], p};
  11513. }
  11514. // Return top k token_data by logit.
  11515. std::vector<llama_token_data> top_k(size_t k) {
  11516. std::vector<llama_token_data> min_heap; // min-heap by logit
  11517. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11518. min_heap.reserve(k_min);
  11519. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11520. min_heap.push_back(get_token_data(token_id));
  11521. }
  11522. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11523. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11524. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11525. if (min_heap.front().logit < logits[token_id]) {
  11526. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11527. min_heap.back().id = token_id;
  11528. min_heap.back().logit = logits[token_id];
  11529. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11530. }
  11531. }
  11532. return min_heap;
  11533. }
  11534. float probability_from_logit(float logit) const {
  11535. return normalizer * std::exp(logit - max_l);
  11536. }
  11537. };
  11538. struct llama_beam_search_data {
  11539. llama_context * ctx;
  11540. size_t n_beams;
  11541. int n_past;
  11542. int n_predict;
  11543. std::vector<llama_beam> beams;
  11544. std::vector<llama_beam> next_beams;
  11545. // Re-calculated on each loop iteration
  11546. size_t common_prefix_length;
  11547. // Used to communicate to/from callback on beams state.
  11548. std::vector<llama_beam_view> beam_views;
  11549. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11550. : ctx(ctx)
  11551. , n_beams(n_beams)
  11552. , n_past(n_past)
  11553. , n_predict(n_predict)
  11554. , beam_views(n_beams) {
  11555. beams.reserve(n_beams);
  11556. next_beams.reserve(n_beams);
  11557. }
  11558. // Collapse beams to a single beam given by index.
  11559. void collapse_beams(const size_t beam_idx) {
  11560. if (0u < beam_idx) {
  11561. std::swap(beams[0], beams[beam_idx]);
  11562. }
  11563. beams.resize(1);
  11564. }
  11565. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11566. // The repetitive patterns below reflect the 2 stages of heaps:
  11567. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11568. // * If the heap is full and a new element is found that should be included, pop the
  11569. // least element to the back(), replace it with the new, then push it into the heap.
  11570. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11571. // Min-heaps use a greater-than comparator.
  11572. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11573. if (beam.eob) {
  11574. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11575. if (next_beams.size() < n_beams) {
  11576. next_beams.push_back(std::move(beam));
  11577. if (next_beams.size() == n_beams) {
  11578. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11579. }
  11580. } else if (next_beams.front().p < beam.p) {
  11581. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11582. next_beams.back() = std::move(beam);
  11583. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11584. }
  11585. } else {
  11586. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11587. if (!beam.tokens.empty()) {
  11588. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11589. }
  11590. llama_logit_info logit_info(ctx);
  11591. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11592. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11593. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11594. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11595. size_t i=0;
  11596. if (next_beams.size() < n_beams) {
  11597. for (; next_beams.size() < n_beams ; ++i) {
  11598. llama_beam next_beam = beam;
  11599. next_beam.tokens.push_back(next_tokens[i].id);
  11600. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11601. next_beams.push_back(std::move(next_beam));
  11602. }
  11603. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11604. } else {
  11605. for (; next_beams.front().p == 0.0f ; ++i) {
  11606. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11607. next_beams.back() = beam;
  11608. next_beams.back().tokens.push_back(next_tokens[i].id);
  11609. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11610. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11611. }
  11612. }
  11613. for (; i < n_beams ; ++i) {
  11614. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11615. if (next_beams.front().p < next_p) {
  11616. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11617. next_beams.back() = beam;
  11618. next_beams.back().tokens.push_back(next_tokens[i].id);
  11619. next_beams.back().p = next_p;
  11620. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11621. }
  11622. }
  11623. }
  11624. }
  11625. // Find common_prefix_length based on beams.
  11626. // Requires beams is not empty.
  11627. size_t find_common_prefix_length() {
  11628. size_t common_prefix_length = beams[0].tokens.size();
  11629. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11630. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11631. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11632. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11633. common_prefix_length = j;
  11634. break;
  11635. }
  11636. }
  11637. }
  11638. return common_prefix_length;
  11639. }
  11640. // Construct beams_state to send back to caller via the callback function.
  11641. // Side effect: set common_prefix_length = find_common_prefix_length();
  11642. llama_beams_state get_beams_state(const bool last_call) {
  11643. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11644. beam_views[i] = beams[i].view();
  11645. }
  11646. common_prefix_length = find_common_prefix_length();
  11647. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11648. }
  11649. // Loop:
  11650. // * while i < n_predict, AND
  11651. // * any of the beams have not yet reached end-of-beam (eob), AND
  11652. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11653. // (since all other beam probabilities can only decrease)
  11654. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11655. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11656. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11657. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11658. !beams[top_beam_index()].eob ; ++i) {
  11659. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11660. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11661. if (common_prefix_length) {
  11662. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11663. n_past += common_prefix_length;
  11664. }
  11665. // Zero-out next_beam probabilities to place them last in following min-heap.
  11666. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11667. for (llama_beam & beam : beams) {
  11668. beam.shift_tokens(common_prefix_length);
  11669. fill_next_beams_by_top_probabilities(beam);
  11670. }
  11671. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11672. beams.swap(next_beams);
  11673. renormalize_beam_probabilities(beams);
  11674. }
  11675. collapse_beams(top_beam_index());
  11676. callback(callback_data, get_beams_state(true));
  11677. }
  11678. // As beams grow, the cumulative probabilities decrease.
  11679. // Renormalize them to avoid floating point underflow.
  11680. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11681. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11682. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11683. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11684. }
  11685. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11686. size_t top_beam_index() {
  11687. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11688. }
  11689. // Copy (p,eob) for each beam which may have been changed by the callback.
  11690. void update_beams_from_beam_views() {
  11691. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11692. beams[i].p = beam_views[i].p;
  11693. beams[i].eob = beam_views[i].eob;
  11694. }
  11695. }
  11696. };
  11697. void llama_beam_search(llama_context * ctx,
  11698. llama_beam_search_callback_fn_t callback, void * callback_data,
  11699. size_t n_beams, int n_past, int n_predict) {
  11700. assert(ctx);
  11701. const int64_t t_start_sample_us = ggml_time_us();
  11702. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11703. beam_search_data.loop(callback, callback_data);
  11704. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11705. ctx->n_sample++;
  11706. }
  11707. //
  11708. // quantization
  11709. //
  11710. struct quantize_state_internal {
  11711. const llama_model & model;
  11712. const llama_model_quantize_params * params;
  11713. int n_attention_wv = 0;
  11714. int n_ffn_down = 0;
  11715. int n_ffn_gate = 0;
  11716. int n_ffn_up = 0;
  11717. int i_attention_wv = 0;
  11718. int i_ffn_down = 0;
  11719. int i_ffn_gate = 0;
  11720. int i_ffn_up = 0;
  11721. int n_k_quantized = 0;
  11722. int n_fallback = 0;
  11723. bool has_imatrix = false;
  11724. // used to figure out if a model shares tok_embd with the output weight
  11725. bool has_output = false;
  11726. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11727. : model(model)
  11728. , params(params)
  11729. {}
  11730. };
  11731. static void llama_tensor_dequantize_internal(
  11732. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11733. const size_t nelements, const int nthread
  11734. ) {
  11735. if (output.size() < nelements) {
  11736. output.resize(nelements);
  11737. }
  11738. float * f32_output = (float *) output.data();
  11739. ggml_type_traits_t qtype;
  11740. if (ggml_is_quantized(tensor->type)) {
  11741. qtype = ggml_internal_get_type_traits(tensor->type);
  11742. if (qtype.to_float == NULL) {
  11743. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11744. }
  11745. } else if (tensor->type != GGML_TYPE_F16 &&
  11746. tensor->type != GGML_TYPE_BF16) {
  11747. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11748. }
  11749. if (nthread < 2) {
  11750. if (tensor->type == GGML_TYPE_F16) {
  11751. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11752. } else if (tensor->type == GGML_TYPE_BF16) {
  11753. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  11754. } else if (ggml_is_quantized(tensor->type)) {
  11755. qtype.to_float(tensor->data, f32_output, nelements);
  11756. } else {
  11757. GGML_ASSERT(false); // unreachable
  11758. }
  11759. return;
  11760. }
  11761. size_t block_size;
  11762. if (tensor->type == GGML_TYPE_F16 ||
  11763. tensor->type == GGML_TYPE_BF16) {
  11764. block_size = 1;
  11765. } else {
  11766. block_size = (size_t)ggml_blck_size(tensor->type);
  11767. }
  11768. size_t block_size_bytes = ggml_type_size(tensor->type);
  11769. GGML_ASSERT(nelements % block_size == 0);
  11770. size_t nblocks = nelements / block_size;
  11771. size_t blocks_per_thread = nblocks / nthread;
  11772. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11773. size_t in_buff_offs = 0;
  11774. size_t out_buff_offs = 0;
  11775. for (int tnum = 0; tnum < nthread; tnum++) {
  11776. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11777. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11778. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11779. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11780. if (typ == GGML_TYPE_F16) {
  11781. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11782. } else if (typ == GGML_TYPE_BF16) {
  11783. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  11784. } else {
  11785. qtype.to_float(inbuf, outbuf, nels);
  11786. }
  11787. };
  11788. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11789. in_buff_offs += thr_block_bytes;
  11790. out_buff_offs += thr_elems;
  11791. }
  11792. for (auto & w : workers) { w.join(); }
  11793. workers.clear();
  11794. }
  11795. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11796. const std::string name = ggml_get_name(tensor);
  11797. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11798. const llm_arch arch = qs.model.arch;
  11799. const auto tn = LLM_TN(arch);
  11800. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11801. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11802. };
  11803. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11804. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11805. if (n_expert > 1) {
  11806. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11807. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11808. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11809. // tensor name.
  11810. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11811. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11812. }
  11813. if (i_layer < 0 || i_layer >= n_layer) {
  11814. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11815. }
  11816. }
  11817. return std::make_pair(i_layer, n_layer);
  11818. };
  11819. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11820. // with the quantization of the output tensor
  11821. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11822. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11823. new_type = qs.params->output_tensor_type;
  11824. } else {
  11825. int nx = tensor->ne[0];
  11826. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11827. new_type = GGML_TYPE_Q8_0;
  11828. }
  11829. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11830. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  11831. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11832. new_type = GGML_TYPE_Q5_K;
  11833. }
  11834. else if (new_type != GGML_TYPE_Q8_0) {
  11835. new_type = GGML_TYPE_Q6_K;
  11836. }
  11837. }
  11838. } else if (name == "token_embd.weight") {
  11839. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  11840. new_type = qs.params->token_embedding_type;
  11841. } else {
  11842. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  11843. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11844. new_type = GGML_TYPE_Q2_K;
  11845. }
  11846. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  11847. new_type = GGML_TYPE_IQ3_S;
  11848. }
  11849. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11850. new_type = GGML_TYPE_IQ3_S;
  11851. }
  11852. }
  11853. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  11854. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11855. if (name.find("attn_v.weight") != std::string::npos) {
  11856. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  11857. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11858. ++qs.i_attention_wv;
  11859. }
  11860. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  11861. new_type = GGML_TYPE_Q4_K;
  11862. }
  11863. else if (name.find("ffn_down") != std::string::npos) {
  11864. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  11865. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11866. }
  11867. ++qs.i_ffn_down;
  11868. }
  11869. else if (name.find("attn_output.weight") != std::string::npos) {
  11870. if (qs.model.hparams.n_expert == 8) {
  11871. new_type = GGML_TYPE_Q5_K;
  11872. } else {
  11873. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  11874. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  11875. }
  11876. }
  11877. } else if (name.find("attn_v.weight") != std::string::npos) {
  11878. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  11879. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11880. }
  11881. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  11882. new_type = GGML_TYPE_Q4_K;
  11883. }
  11884. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11885. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  11886. }
  11887. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  11888. new_type = GGML_TYPE_Q4_K;
  11889. }
  11890. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11891. new_type = GGML_TYPE_Q4_K;
  11892. }
  11893. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11894. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11895. }
  11896. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  11897. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  11898. new_type = GGML_TYPE_Q5_K;
  11899. }
  11900. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  11901. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  11902. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  11903. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  11904. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  11905. if (qs.model.type == MODEL_70B) {
  11906. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  11907. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  11908. // nearly negligible increase in model size by quantizing this tensor with more bits:
  11909. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  11910. }
  11911. if (qs.model.hparams.n_expert == 8) {
  11912. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11913. // TODO: explore better strategies
  11914. new_type = GGML_TYPE_Q8_0;
  11915. }
  11916. ++qs.i_attention_wv;
  11917. } else if (name.find("attn_k.weight") != std::string::npos) {
  11918. if (qs.model.hparams.n_expert == 8) {
  11919. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11920. // TODO: explore better strategies
  11921. new_type = GGML_TYPE_Q8_0;
  11922. }
  11923. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11924. new_type = GGML_TYPE_IQ3_XXS;
  11925. }
  11926. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11927. new_type = GGML_TYPE_IQ2_S;
  11928. }
  11929. } else if (name.find("attn_q.weight") != std::string::npos) {
  11930. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11931. new_type = GGML_TYPE_IQ3_XXS;
  11932. }
  11933. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11934. new_type = GGML_TYPE_IQ2_S;
  11935. }
  11936. } else if (name.find("ffn_down") != std::string::npos) {
  11937. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  11938. int i_layer = info.first, n_layer = info.second;
  11939. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11940. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  11941. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  11942. }
  11943. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  11944. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11945. }
  11946. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11947. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  11948. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  11949. : GGML_TYPE_Q3_K;
  11950. }
  11951. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  11952. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  11953. new_type = GGML_TYPE_Q4_K;
  11954. }
  11955. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  11956. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  11957. }
  11958. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  11959. if (arch == LLM_ARCH_FALCON) {
  11960. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  11961. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11962. } else {
  11963. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11964. }
  11965. }
  11966. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  11967. new_type = GGML_TYPE_Q5_K;
  11968. }
  11969. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11970. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  11971. new_type = GGML_TYPE_Q5_K;
  11972. }
  11973. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  11974. && qs.has_imatrix && i_layer < n_layer/8) {
  11975. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  11976. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  11977. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  11978. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  11979. }
  11980. ++qs.i_ffn_down;
  11981. } else if (name.find("attn_output.weight") != std::string::npos) {
  11982. if (arch != LLM_ARCH_FALCON) {
  11983. if (qs.model.hparams.n_expert == 8) {
  11984. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11985. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  11986. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  11987. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  11988. new_type = GGML_TYPE_Q5_K;
  11989. }
  11990. } else {
  11991. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  11992. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  11993. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  11994. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  11995. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  11996. }
  11997. } else {
  11998. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  11999. }
  12000. }
  12001. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12002. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12003. new_type = GGML_TYPE_Q4_K;
  12004. }
  12005. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12006. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12007. }
  12008. else if (name.find("ffn_gate") != std::string::npos) {
  12009. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12010. int i_layer = info.first, n_layer = info.second;
  12011. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12012. new_type = GGML_TYPE_IQ3_XXS;
  12013. }
  12014. ++qs.i_ffn_gate;
  12015. }
  12016. else if (name.find("ffn_up") != std::string::npos) {
  12017. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12018. int i_layer = info.first, n_layer = info.second;
  12019. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12020. new_type = GGML_TYPE_IQ3_XXS;
  12021. }
  12022. ++qs.i_ffn_up;
  12023. }
  12024. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12025. //}
  12026. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12027. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12028. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12029. //}
  12030. // This can be used to reduce the size of the Q5_K_S model.
  12031. // The associated PPL increase is fully in line with the size reduction
  12032. //else {
  12033. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12034. //}
  12035. bool convert_incompatible_tensor = false;
  12036. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12037. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12038. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12039. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12040. new_type == GGML_TYPE_IQ1_M) {
  12041. int nx = tensor->ne[0];
  12042. int ny = tensor->ne[1];
  12043. if (nx % QK_K != 0) {
  12044. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12045. convert_incompatible_tensor = true;
  12046. } else {
  12047. ++qs.n_k_quantized;
  12048. }
  12049. }
  12050. if (convert_incompatible_tensor) {
  12051. switch (new_type) {
  12052. case GGML_TYPE_IQ2_XXS:
  12053. case GGML_TYPE_IQ2_XS:
  12054. case GGML_TYPE_IQ2_S:
  12055. case GGML_TYPE_IQ3_XXS:
  12056. case GGML_TYPE_IQ3_S:
  12057. case GGML_TYPE_IQ1_S:
  12058. case GGML_TYPE_IQ1_M:
  12059. case GGML_TYPE_Q2_K:
  12060. case GGML_TYPE_Q3_K:
  12061. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12062. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12063. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12064. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12065. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12066. }
  12067. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12068. ++qs.n_fallback;
  12069. }
  12070. return new_type;
  12071. }
  12072. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12073. if (nthread < 2) {
  12074. // single-thread
  12075. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12076. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12077. throw std::runtime_error("quantized data validation failed");
  12078. }
  12079. return new_size;
  12080. }
  12081. std::mutex mutex;
  12082. int64_t counter = 0;
  12083. size_t new_size = 0;
  12084. bool valid = true;
  12085. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12086. nrows, n_per_row, imatrix]() {
  12087. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12088. size_t local_size = 0;
  12089. while (true) {
  12090. std::unique_lock<std::mutex> lock(mutex);
  12091. int64_t first_row = counter; counter += nrows_per_chunk;
  12092. if (first_row >= nrows) {
  12093. if (local_size > 0) {
  12094. new_size += local_size;
  12095. }
  12096. break;
  12097. }
  12098. lock.unlock();
  12099. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12100. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12101. local_size += this_size;
  12102. // validate the quantized data
  12103. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12104. void * this_data = (char *) new_data + first_row * row_size;
  12105. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12106. std::unique_lock<std::mutex> lock(mutex);
  12107. valid = false;
  12108. break;
  12109. }
  12110. }
  12111. };
  12112. for (int it = 0; it < nthread - 1; ++it) {
  12113. workers.emplace_back(compute);
  12114. }
  12115. compute();
  12116. for (auto & w : workers) { w.join(); }
  12117. workers.clear();
  12118. if (!valid) {
  12119. throw std::runtime_error("quantized data validation failed");
  12120. }
  12121. return new_size;
  12122. }
  12123. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12124. ggml_type default_type;
  12125. llama_ftype ftype = params->ftype;
  12126. switch (params->ftype) {
  12127. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12128. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12129. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12130. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12131. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12132. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12133. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12134. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12135. // K-quants
  12136. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12137. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12138. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12139. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12140. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12141. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12142. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12143. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12144. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12145. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12146. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12147. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12148. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12149. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12150. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12151. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12152. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12153. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12154. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12155. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12156. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12157. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12158. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12159. }
  12160. int nthread = params->nthread;
  12161. if (nthread <= 0) {
  12162. nthread = std::thread::hardware_concurrency();
  12163. }
  12164. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12165. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12166. #if defined(__linux__) || defined(_WIN32)
  12167. constexpr bool use_mmap = true;
  12168. #else
  12169. constexpr bool use_mmap = false;
  12170. #endif
  12171. llama_model_kv_override * kv_overrides = nullptr;
  12172. if (params->kv_overrides) {
  12173. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12174. kv_overrides = v->data();
  12175. }
  12176. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12177. ml.init_mappings(false); // no prefetching
  12178. llama_model model;
  12179. llm_load_arch(ml, model);
  12180. llm_load_hparams(ml, model);
  12181. struct quantize_state_internal qs(model, params);
  12182. if (params->only_copy) {
  12183. ftype = model.ftype;
  12184. }
  12185. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12186. if (params->imatrix) {
  12187. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12188. if (imatrix_data) {
  12189. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12190. qs.has_imatrix = true;
  12191. }
  12192. }
  12193. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12194. struct gguf_context * ctx_out = gguf_init_empty();
  12195. // copy the KV pairs from the input file
  12196. gguf_set_kv (ctx_out, ml.meta);
  12197. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12198. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12199. // Remove split metadata
  12200. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12201. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12202. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12203. if (params->kv_overrides) {
  12204. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12205. for (auto & o : overrides) {
  12206. if (o.key[0] == 0) break;
  12207. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12208. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12209. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12210. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12211. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12212. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12213. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12214. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12215. } else {
  12216. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12217. }
  12218. }
  12219. }
  12220. for (int i = 0; i < ml.n_tensors; ++i) {
  12221. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12222. const std::string name = ggml_get_name(meta);
  12223. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12224. if (name.find("attn_v.weight") != std::string::npos ||
  12225. name.find("attn_qkv.weight") != std::string::npos) {
  12226. ++qs.n_attention_wv;
  12227. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12228. qs.has_output = true;
  12229. }
  12230. }
  12231. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12232. // sanity checks
  12233. //
  12234. // - qs.n_attention_wv == 0 for Mamba models
  12235. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12236. //
  12237. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12238. size_t total_size_org = 0;
  12239. size_t total_size_new = 0;
  12240. std::vector<std::thread> workers;
  12241. workers.reserve(nthread);
  12242. int idx = 0;
  12243. std::vector<no_init<uint8_t>> read_data;
  12244. std::vector<no_init<uint8_t>> work;
  12245. std::vector<no_init<float>> f32_conv_buf;
  12246. uint16_t n_split = 1;
  12247. // Assume split index is continuous
  12248. if (params->keep_split) {
  12249. for (int i = 0; i < ml.n_tensors; ++i) {
  12250. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12251. }
  12252. }
  12253. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12254. ctx_outs[0] = ctx_out;
  12255. // populate the original tensors so we get an initial meta data
  12256. for (int i = 0; i < ml.n_tensors; ++i) {
  12257. auto weight = ml.get_weight(i);
  12258. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12259. struct ggml_tensor * tensor = weight->tensor;
  12260. if (ctx_outs[i_split] == NULL) {
  12261. ctx_outs[i_split] = gguf_init_empty();
  12262. }
  12263. gguf_add_tensor(ctx_outs[i_split], tensor);
  12264. }
  12265. // Set split info if needed
  12266. if (n_split > 1) {
  12267. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12268. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12269. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12270. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12271. }
  12272. }
  12273. int cur_split = -1;
  12274. std::ofstream fout;
  12275. auto close_ofstream = [&]() {
  12276. // Write metadata and close file handler
  12277. if (fout.is_open()) {
  12278. fout.seekp(0);
  12279. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12280. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12281. fout.write((const char *) data.data(), data.size());
  12282. fout.close();
  12283. }
  12284. };
  12285. auto new_ofstream = [&](int index) {
  12286. cur_split = index;
  12287. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12288. std::string fname = fname_out;
  12289. if (params->keep_split) {
  12290. char split_path[PATH_MAX] = {0};
  12291. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12292. fname = std::string(split_path);
  12293. }
  12294. fout = std::ofstream(fname, std::ios::binary);
  12295. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12296. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12297. // placeholder for the meta data
  12298. ::zeros(fout, meta_size);
  12299. };
  12300. const auto tn = LLM_TN(model.arch);
  12301. new_ofstream(0);
  12302. for (int i = 0; i < ml.n_tensors; ++i) {
  12303. auto weight = ml.get_weight(i);
  12304. struct ggml_tensor * tensor = weight->tensor;
  12305. if (weight->idx != cur_split && params->keep_split) {
  12306. close_ofstream();
  12307. new_ofstream(weight->idx);
  12308. }
  12309. const std::string name = ggml_get_name(tensor);
  12310. if (!ml.use_mmap) {
  12311. if (read_data.size() < ggml_nbytes(tensor)) {
  12312. read_data.resize(ggml_nbytes(tensor));
  12313. }
  12314. tensor->data = read_data.data();
  12315. }
  12316. ml.load_data_for(tensor);
  12317. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12318. ++idx, ml.n_tensors,
  12319. ggml_get_name(tensor),
  12320. llama_format_tensor_shape(tensor).c_str(),
  12321. ggml_type_name(tensor->type));
  12322. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12323. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12324. // quantize only 2D and 3D tensors (experts)
  12325. quantize &= (ggml_n_dims(tensor) >= 2);
  12326. // do not quantize norm tensors
  12327. quantize &= name.find("_norm.weight") == std::string::npos;
  12328. quantize &= params->quantize_output_tensor || name != "output.weight";
  12329. quantize &= !params->only_copy;
  12330. // do not quantize expert gating tensors
  12331. // NOTE: can't use LLM_TN here because the layer number is not known
  12332. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12333. // do not quantize positional embeddings and token types (BERT)
  12334. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12335. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12336. // do not quantize Mamba's small yet 2D weights
  12337. // NOTE: can't use LLM_TN here because the layer number is not known
  12338. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12339. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12340. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12341. enum ggml_type new_type;
  12342. void * new_data;
  12343. size_t new_size;
  12344. if (quantize) {
  12345. new_type = default_type;
  12346. // get more optimal quantization type based on the tensor shape, layer, etc.
  12347. if (!params->pure && ggml_is_quantized(default_type)) {
  12348. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12349. }
  12350. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12351. new_type = params->token_embedding_type;
  12352. }
  12353. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12354. new_type = params->output_tensor_type;
  12355. }
  12356. // If we've decided to quantize to the same type the tensor is already
  12357. // in then there's nothing to do.
  12358. quantize = tensor->type != new_type;
  12359. }
  12360. if (!quantize) {
  12361. new_type = tensor->type;
  12362. new_data = tensor->data;
  12363. new_size = ggml_nbytes(tensor);
  12364. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12365. } else {
  12366. const int64_t nelements = ggml_nelements(tensor);
  12367. const float * imatrix = nullptr;
  12368. if (imatrix_data) {
  12369. auto it = imatrix_data->find(tensor->name);
  12370. if (it == imatrix_data->end()) {
  12371. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12372. } else {
  12373. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12374. imatrix = it->second.data();
  12375. } else {
  12376. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12377. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12378. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12379. // this is a significant error and it may be good idea to abort the process if this happens,
  12380. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12381. // tok_embd should be ignored in this case, since it always causes this warning
  12382. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12383. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12384. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12385. }
  12386. }
  12387. }
  12388. }
  12389. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12390. new_type == GGML_TYPE_IQ2_XS ||
  12391. new_type == GGML_TYPE_IQ2_S ||
  12392. new_type == GGML_TYPE_IQ1_S ||
  12393. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12394. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12395. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12396. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12397. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12398. LLAMA_LOG_ERROR("============================================================\n\n");
  12399. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12400. }
  12401. float * f32_data;
  12402. if (tensor->type == GGML_TYPE_F32) {
  12403. f32_data = (float *) tensor->data;
  12404. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12405. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12406. } else {
  12407. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12408. f32_data = (float *) f32_conv_buf.data();
  12409. }
  12410. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12411. fflush(stdout);
  12412. if (work.size() < (size_t)nelements * 4) {
  12413. work.resize(nelements * 4); // upper bound on size
  12414. }
  12415. new_data = work.data();
  12416. const int64_t n_per_row = tensor->ne[0];
  12417. const int64_t nrows = tensor->ne[1];
  12418. static const int64_t min_chunk_size = 32 * 512;
  12419. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12420. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12421. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12422. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12423. // quantize each expert separately since they have different importance matrices
  12424. new_size = 0;
  12425. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12426. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12427. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12428. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12429. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12430. }
  12431. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12432. }
  12433. total_size_org += ggml_nbytes(tensor);
  12434. total_size_new += new_size;
  12435. // update the gguf meta data as we go
  12436. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12437. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12438. // write tensor data + padding
  12439. fout.write((const char *) new_data, new_size);
  12440. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12441. }
  12442. close_ofstream();
  12443. for (auto & c:ctx_outs) {
  12444. gguf_free(c);
  12445. }
  12446. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12447. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12448. if (qs.n_fallback > 0) {
  12449. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12450. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12451. }
  12452. }
  12453. static int llama_apply_lora_from_file_internal(
  12454. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12455. ) {
  12456. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12457. const int64_t t_start_lora_us = ggml_time_us();
  12458. llama_file fin(path_lora, "rb");
  12459. // verify magic and version
  12460. {
  12461. uint32_t magic = fin.read_u32();
  12462. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12463. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12464. return 1;
  12465. }
  12466. uint32_t format_version = fin.read_u32();
  12467. if (format_version != 1) {
  12468. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12469. return 1;
  12470. }
  12471. }
  12472. int32_t lora_r = fin.read_u32();
  12473. int32_t lora_alpha = fin.read_u32();
  12474. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12475. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12476. // load base model
  12477. std::unique_ptr<llama_model_loader> ml;
  12478. if (path_base_model) {
  12479. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12480. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12481. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12482. }
  12483. struct tensor_meta {
  12484. std::string name;
  12485. ggml_type type;
  12486. int32_t ne[2];
  12487. size_t offset;
  12488. };
  12489. std::map<std::string, tensor_meta> tensor_meta_map;
  12490. // load all tensor meta
  12491. while (true) {
  12492. if (fin.tell() == fin.size) {
  12493. // eof
  12494. break;
  12495. }
  12496. int32_t n_dims;
  12497. int32_t name_len;
  12498. int32_t ftype;
  12499. fin.read_raw(&n_dims, sizeof(n_dims));
  12500. fin.read_raw(&name_len, sizeof(name_len));
  12501. fin.read_raw(&ftype, sizeof(ftype));
  12502. if (n_dims != 1 && n_dims != 2) {
  12503. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12504. return 1;
  12505. }
  12506. int32_t ne[2] = { 1, 1 };
  12507. for (int i = 0; i < n_dims; ++i) {
  12508. fin.read_raw(&ne[i], sizeof(ne[i]));
  12509. }
  12510. std::string name;
  12511. {
  12512. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12513. char buf[GGML_MAX_NAME];
  12514. fin.read_raw(buf, name_len);
  12515. name = std::string(buf, name_len);
  12516. }
  12517. // check for lora suffix
  12518. std::string lora_suffix;
  12519. if (name.length() > 6) {
  12520. lora_suffix = name.substr(name.length() - 6);
  12521. }
  12522. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12523. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12524. return 1;
  12525. }
  12526. // tensor type
  12527. ggml_type wtype;
  12528. switch (ftype) {
  12529. case 0: wtype = GGML_TYPE_F32; break;
  12530. case 1: wtype = GGML_TYPE_F16; break;
  12531. default:
  12532. {
  12533. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12534. __func__, ftype);
  12535. return 1;
  12536. }
  12537. }
  12538. // data offset
  12539. size_t offset = fin.tell();
  12540. offset = (offset + 31) & -32;
  12541. // skip tensor data
  12542. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12543. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12544. }
  12545. bool warned = false;
  12546. int n_tensors = 0;
  12547. // apply
  12548. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12549. if (backend_cpu == nullptr) {
  12550. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12551. return 1;
  12552. }
  12553. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12554. std::vector<no_init<uint8_t>> read_buf;
  12555. for (const auto & it : model.tensors_by_name) {
  12556. const std::string & base_name = it.first;
  12557. ggml_tensor * model_t = it.second;
  12558. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12559. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12560. continue;
  12561. }
  12562. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12563. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12564. ggml_init_params lora_init_params = {
  12565. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12566. /* .mem_buffer */ nullptr,
  12567. /* .no_alloc */ true,
  12568. };
  12569. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12570. if (lora_ctx == nullptr) {
  12571. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12572. ggml_backend_free(backend_cpu);
  12573. return 1;
  12574. }
  12575. // create tensors
  12576. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12577. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12578. ggml_set_name(loraA, metaA.name.c_str());
  12579. ggml_set_name(loraB, metaB.name.c_str());
  12580. ggml_tensor * base_t;
  12581. if (ml) {
  12582. if (!ml->get_tensor_meta(base_name.c_str())) {
  12583. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12584. return 1;
  12585. }
  12586. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12587. } else {
  12588. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12589. }
  12590. ggml_set_name(base_t, base_name.c_str());
  12591. // allocate in backend buffer
  12592. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12593. if (lora_buf == nullptr) {
  12594. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12595. return 1;
  12596. }
  12597. // load tensor data
  12598. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12599. read_buf.resize(ggml_nbytes(tensor));
  12600. fin.seek(tensor_meta.offset, SEEK_SET);
  12601. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12602. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12603. };
  12604. load_tensor(metaA, loraA);
  12605. load_tensor(metaB, loraB);
  12606. // load base model tensor data
  12607. if (ml) {
  12608. ml->load_data_for(base_t);
  12609. } else {
  12610. ggml_backend_tensor_copy(model_t, base_t);
  12611. }
  12612. if (ggml_is_quantized(base_t->type) && !warned) {
  12613. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12614. "use a f16 or f32 base model with --lora-base\n", __func__);
  12615. warned = true;
  12616. }
  12617. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12618. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12619. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12620. ggml_free(lora_ctx);
  12621. ggml_backend_buffer_free(lora_buf);
  12622. ggml_backend_free(backend_cpu);
  12623. return 1;
  12624. }
  12625. auto build_lora_graph = [&]() {
  12626. // w = w + BA*s
  12627. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12628. ggml_set_name(BA, "BA");
  12629. if (scaling != 1.0f) {
  12630. BA = ggml_scale(lora_ctx, BA, scaling);
  12631. ggml_set_name(BA, "BA_scaled");
  12632. }
  12633. ggml_tensor * r;
  12634. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12635. ggml_set_name(r, "r_add");
  12636. if (base_t->type != model_t->type) {
  12637. // convert the result to the model type
  12638. r = ggml_cast(lora_ctx, r, model_t->type);
  12639. ggml_set_name(r, "r_cast");
  12640. }
  12641. return r;
  12642. };
  12643. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12644. ggml_tensor * r = build_lora_graph();
  12645. ggml_build_forward_expand(gf, r);
  12646. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12647. if (graph_buf == nullptr) {
  12648. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12649. ggml_free(lora_ctx);
  12650. ggml_backend_buffer_free(lora_buf);
  12651. ggml_backend_free(backend_cpu);
  12652. return 1;
  12653. }
  12654. ggml_backend_graph_compute(backend_cpu, gf);
  12655. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12656. #if 0
  12657. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12658. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12659. // sched compute
  12660. ggml_build_forward_expand(gf, build_graph());
  12661. ggml_backend_sched_init_measure(sched, gf);
  12662. // create the graph again, since the previous one was destroyed by the measure
  12663. ggml_graph_clear(gf);
  12664. ggml_build_forward_expand(gf, build_graph());
  12665. ggml_backend_sched_graph_compute(sched, gf);
  12666. ggml_backend_sched_free(sched);
  12667. #endif
  12668. ggml_backend_buffer_free(lora_buf);
  12669. ggml_backend_buffer_free(graph_buf);
  12670. ggml_free(lora_ctx);
  12671. n_tensors++;
  12672. if (n_tensors % 4 == 0) {
  12673. LLAMA_LOG_INFO(".");
  12674. }
  12675. }
  12676. ggml_backend_free(backend_cpu);
  12677. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12678. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12679. return 0;
  12680. }
  12681. //
  12682. // interface implementation
  12683. //
  12684. struct llama_model_params llama_model_default_params() {
  12685. struct llama_model_params result = {
  12686. /*.n_gpu_layers =*/ 0,
  12687. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12688. /*.main_gpu =*/ 0,
  12689. /*.tensor_split =*/ nullptr,
  12690. /*.progress_callback =*/ nullptr,
  12691. /*.progress_callback_user_data =*/ nullptr,
  12692. /*.kv_overrides =*/ nullptr,
  12693. /*.vocab_only =*/ false,
  12694. /*.use_mmap =*/ true,
  12695. /*.use_mlock =*/ false,
  12696. /*.check_tensors =*/ false,
  12697. };
  12698. #ifdef GGML_USE_METAL
  12699. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12700. result.n_gpu_layers = 999;
  12701. #endif
  12702. return result;
  12703. }
  12704. struct llama_context_params llama_context_default_params() {
  12705. struct llama_context_params result = {
  12706. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12707. /*.n_ctx =*/ 512,
  12708. /*.n_batch =*/ 2048,
  12709. /*.n_ubatch =*/ 512,
  12710. /*.n_seq_max =*/ 1,
  12711. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12712. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12713. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12714. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12715. /*.rope_freq_base =*/ 0.0f,
  12716. /*.rope_freq_scale =*/ 0.0f,
  12717. /*.yarn_ext_factor =*/ -1.0f,
  12718. /*.yarn_attn_factor =*/ 1.0f,
  12719. /*.yarn_beta_fast =*/ 32.0f,
  12720. /*.yarn_beta_slow =*/ 1.0f,
  12721. /*.yarn_orig_ctx =*/ 0,
  12722. /*.defrag_thold =*/ -1.0f,
  12723. /*.cb_eval =*/ nullptr,
  12724. /*.cb_eval_user_data =*/ nullptr,
  12725. /*.type_k =*/ GGML_TYPE_F16,
  12726. /*.type_v =*/ GGML_TYPE_F16,
  12727. /*.logits_all =*/ false,
  12728. /*.embeddings =*/ false,
  12729. /*.offload_kqv =*/ true,
  12730. /*.flash_attn =*/ false,
  12731. /*.abort_callback =*/ nullptr,
  12732. /*.abort_callback_data =*/ nullptr,
  12733. };
  12734. return result;
  12735. }
  12736. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12737. struct llama_model_quantize_params result = {
  12738. /*.nthread =*/ 0,
  12739. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12740. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12741. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12742. /*.allow_requantize =*/ false,
  12743. /*.quantize_output_tensor =*/ true,
  12744. /*.only_copy =*/ false,
  12745. /*.pure =*/ false,
  12746. /*.keep_split =*/ false,
  12747. /*.imatrix =*/ nullptr,
  12748. /*.kv_overrides =*/ nullptr,
  12749. };
  12750. return result;
  12751. }
  12752. size_t llama_max_devices(void) {
  12753. #if defined(GGML_USE_METAL)
  12754. return 1;
  12755. #elif defined(GGML_USE_CUDA)
  12756. return GGML_CUDA_MAX_DEVICES;
  12757. #elif defined(GGML_USE_SYCL)
  12758. return GGML_SYCL_MAX_DEVICES;
  12759. #elif defined(GGML_USE_VULKAN)
  12760. return GGML_VK_MAX_DEVICES;
  12761. #else
  12762. return 1;
  12763. #endif
  12764. }
  12765. bool llama_supports_mmap(void) {
  12766. return llama_mmap::SUPPORTED;
  12767. }
  12768. bool llama_supports_mlock(void) {
  12769. return llama_mlock::SUPPORTED;
  12770. }
  12771. bool llama_supports_gpu_offload(void) {
  12772. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12773. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  12774. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12775. return true;
  12776. #else
  12777. return false;
  12778. #endif
  12779. }
  12780. void llama_backend_init(void) {
  12781. ggml_time_init();
  12782. // needed to initialize f16 tables
  12783. {
  12784. struct ggml_init_params params = { 0, NULL, false };
  12785. struct ggml_context * ctx = ggml_init(params);
  12786. ggml_free(ctx);
  12787. }
  12788. #ifdef GGML_USE_MPI
  12789. ggml_mpi_backend_init();
  12790. #endif
  12791. }
  12792. void llama_numa_init(enum ggml_numa_strategy numa) {
  12793. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12794. ggml_numa_init(numa);
  12795. }
  12796. }
  12797. void llama_backend_free(void) {
  12798. #ifdef GGML_USE_MPI
  12799. ggml_mpi_backend_free();
  12800. #endif
  12801. ggml_quantize_free();
  12802. }
  12803. int64_t llama_time_us(void) {
  12804. return ggml_time_us();
  12805. }
  12806. struct llama_model * llama_load_model_from_file(
  12807. const char * path_model,
  12808. struct llama_model_params params) {
  12809. ggml_time_init();
  12810. llama_model * model = new llama_model;
  12811. unsigned cur_percentage = 0;
  12812. if (params.progress_callback == NULL) {
  12813. params.progress_callback_user_data = &cur_percentage;
  12814. params.progress_callback = [](float progress, void * ctx) {
  12815. unsigned * cur_percentage_p = (unsigned *) ctx;
  12816. unsigned percentage = (unsigned) (100 * progress);
  12817. while (percentage > *cur_percentage_p) {
  12818. *cur_percentage_p = percentage;
  12819. LLAMA_LOG_INFO(".");
  12820. if (percentage >= 100) {
  12821. LLAMA_LOG_INFO("\n");
  12822. }
  12823. }
  12824. return true;
  12825. };
  12826. }
  12827. int status = llama_model_load(path_model, *model, params);
  12828. GGML_ASSERT(status <= 0);
  12829. if (status < 0) {
  12830. if (status == -1) {
  12831. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  12832. } else if (status == -2) {
  12833. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  12834. }
  12835. delete model;
  12836. return nullptr;
  12837. }
  12838. return model;
  12839. }
  12840. void llama_free_model(struct llama_model * model) {
  12841. delete model;
  12842. }
  12843. struct llama_context * llama_new_context_with_model(
  12844. struct llama_model * model,
  12845. struct llama_context_params params) {
  12846. if (!model) {
  12847. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  12848. return nullptr;
  12849. }
  12850. if (params.n_batch == 0 && params.n_ubatch == 0) {
  12851. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  12852. return nullptr;
  12853. }
  12854. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  12855. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  12856. return nullptr;
  12857. }
  12858. llama_context * ctx = new llama_context(*model);
  12859. const auto & hparams = model->hparams;
  12860. auto & cparams = ctx->cparams;
  12861. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  12862. cparams.n_threads = params.n_threads;
  12863. cparams.n_threads_batch = params.n_threads_batch;
  12864. cparams.yarn_ext_factor = params.yarn_ext_factor;
  12865. cparams.yarn_attn_factor = params.yarn_attn_factor;
  12866. cparams.yarn_beta_fast = params.yarn_beta_fast;
  12867. cparams.yarn_beta_slow = params.yarn_beta_slow;
  12868. cparams.defrag_thold = params.defrag_thold;
  12869. cparams.embeddings = params.embeddings;
  12870. cparams.offload_kqv = params.offload_kqv;
  12871. cparams.flash_attn = params.flash_attn;
  12872. cparams.pooling_type = params.pooling_type;
  12873. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  12874. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  12875. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  12876. // this is necessary due to kv_self.n being padded later during inference
  12877. cparams.n_ctx = GGML_PAD(cparams.n_ctx, 256);
  12878. // with causal attention, the batch size is limited by the context size
  12879. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  12880. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  12881. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  12882. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  12883. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  12884. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  12885. cparams.n_batch = GGML_KQ_MASK_PAD;
  12886. }
  12887. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  12888. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  12889. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  12890. hparams.n_ctx_train;
  12891. cparams.cb_eval = params.cb_eval;
  12892. cparams.cb_eval_user_data = params.cb_eval_user_data;
  12893. auto rope_scaling_type = params.rope_scaling_type;
  12894. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  12895. rope_scaling_type = hparams.rope_scaling_type_train;
  12896. }
  12897. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  12898. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  12899. }
  12900. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  12901. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  12902. }
  12903. cparams.causal_attn = hparams.causal_attn;
  12904. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12905. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12906. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  12907. } else {
  12908. cparams.pooling_type = hparams.pooling_type;
  12909. }
  12910. }
  12911. if (cparams.flash_attn && hparams.use_alibi) {
  12912. LLAMA_LOG_WARN("%s: flash_attn is not yet compatible with ALiBi - forcing off\n", __func__);
  12913. cparams.flash_attn = false;
  12914. }
  12915. if (cparams.flash_attn && model->arch == LLM_ARCH_GROK) {
  12916. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  12917. cparams.flash_attn = false;
  12918. }
  12919. if (params.seed == LLAMA_DEFAULT_SEED) {
  12920. params.seed = time(NULL);
  12921. }
  12922. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  12923. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  12924. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  12925. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  12926. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  12927. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  12928. ctx->abort_callback = params.abort_callback;
  12929. ctx->abort_callback_data = params.abort_callback_data;
  12930. ctx->rng = std::mt19937(params.seed);
  12931. ctx->logits_all = params.logits_all;
  12932. uint32_t kv_size = cparams.n_ctx;
  12933. ggml_type type_k = params.type_k;
  12934. ggml_type type_v = params.type_v;
  12935. // Mamba only needs a constant number of KV cache cells per sequence
  12936. if (model->arch == LLM_ARCH_MAMBA) {
  12937. // Mamba needs at least as many KV cells as there are sequences kept at any time
  12938. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  12939. // it's probably best to keep as much precision as possible for the states
  12940. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  12941. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  12942. }
  12943. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  12944. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  12945. if (!hparams.vocab_only) {
  12946. // initialize backends
  12947. #ifdef GGML_USE_METAL
  12948. if (model->n_gpu_layers > 0) {
  12949. ctx->backend_metal = ggml_backend_metal_init();
  12950. if (ctx->backend_metal == nullptr) {
  12951. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  12952. llama_free(ctx);
  12953. return nullptr;
  12954. }
  12955. ctx->backends.push_back(ctx->backend_metal);
  12956. }
  12957. #elif defined(GGML_USE_CUDA)
  12958. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12959. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12960. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  12961. if (backend == nullptr) {
  12962. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  12963. llama_free(ctx);
  12964. return nullptr;
  12965. }
  12966. ctx->backends.push_back(backend);
  12967. } else {
  12968. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  12969. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  12970. ggml_backend_t backend = ggml_backend_cuda_init(device);
  12971. if (backend == nullptr) {
  12972. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  12973. llama_free(ctx);
  12974. return nullptr;
  12975. }
  12976. ctx->backends.push_back(backend);
  12977. }
  12978. }
  12979. #elif defined(GGML_USE_VULKAN)
  12980. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12981. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  12982. llama_free(ctx);
  12983. return nullptr;
  12984. }
  12985. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  12986. ggml_backend_t backend = ggml_backend_vk_init(0);
  12987. if (backend == nullptr) {
  12988. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  12989. llama_free(ctx);
  12990. return nullptr;
  12991. }
  12992. ctx->backends.push_back(backend);
  12993. } else {
  12994. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  12995. ggml_backend_t backend = ggml_backend_vk_init(device);
  12996. if (backend == nullptr) {
  12997. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  12998. llama_free(ctx);
  12999. return nullptr;
  13000. }
  13001. ctx->backends.push_back(backend);
  13002. }
  13003. }
  13004. #elif defined(GGML_USE_SYCL)
  13005. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13006. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13007. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13008. if (backend == nullptr) {
  13009. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  13010. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  13011. llama_free(ctx);
  13012. return nullptr;
  13013. }
  13014. ctx->backends.push_back(backend);
  13015. } else {
  13016. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13017. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13018. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13019. if (backend == nullptr) {
  13020. int id_list[GGML_SYCL_MAX_DEVICES];
  13021. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13022. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13023. llama_free(ctx);
  13024. return nullptr;
  13025. }
  13026. ctx->backends.push_back(backend);
  13027. }
  13028. }
  13029. #elif defined(GGML_USE_KOMPUTE)
  13030. if (model->n_gpu_layers > 0) {
  13031. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13032. if (backend == nullptr) {
  13033. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13034. llama_free(ctx);
  13035. return nullptr;
  13036. }
  13037. ctx->backends.push_back(backend);
  13038. }
  13039. #endif
  13040. ctx->backend_cpu = ggml_backend_cpu_init();
  13041. if (ctx->backend_cpu == nullptr) {
  13042. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13043. llama_free(ctx);
  13044. return nullptr;
  13045. }
  13046. ctx->backends.push_back(ctx->backend_cpu);
  13047. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13048. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13049. llama_free(ctx);
  13050. return nullptr;
  13051. }
  13052. {
  13053. size_t memory_size_k = 0;
  13054. size_t memory_size_v = 0;
  13055. for (auto & k : ctx->kv_self.k_l) {
  13056. memory_size_k += ggml_nbytes(k);
  13057. }
  13058. for (auto & v : ctx->kv_self.v_l) {
  13059. memory_size_v += ggml_nbytes(v);
  13060. }
  13061. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13062. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13063. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13064. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13065. }
  13066. // graph outputs buffer
  13067. {
  13068. // resized during inference when a batch uses more outputs
  13069. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13070. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13071. llama_free(ctx);
  13072. return nullptr;
  13073. }
  13074. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13075. ggml_backend_buffer_name(ctx->buf_output),
  13076. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13077. }
  13078. // scheduler and compute buffers
  13079. {
  13080. // buffer types used for the compute buffer of each backend
  13081. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13082. for (auto * backend : ctx->backends) {
  13083. if (ggml_backend_is_cpu(backend)) {
  13084. // use host buffers for the CPU backend compute buffer
  13085. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13086. } else {
  13087. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13088. }
  13089. }
  13090. // buffer used to store the computation graph and the tensor meta data
  13091. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13092. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13093. bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
  13094. #ifndef GGML_USE_CUDA
  13095. // pipeline parallelism requires support for async compute and events
  13096. // currently this is only implemented in the CUDA backend
  13097. pipeline_parallel = false;
  13098. #endif
  13099. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13100. if (pipeline_parallel) {
  13101. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13102. }
  13103. // build worst-case graph
  13104. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13105. int n_past = cparams.n_ctx - n_tokens;
  13106. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13107. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13108. // initialize scheduler with the worst-case graph
  13109. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13110. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13111. llama_free(ctx);
  13112. return nullptr;
  13113. }
  13114. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13115. ggml_backend_t backend = ctx->backends[i];
  13116. ggml_backend_buffer_type_t buft = backend_buft[i];
  13117. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13118. if (size > 1) {
  13119. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13120. ggml_backend_buft_name(buft),
  13121. size / 1024.0 / 1024.0);
  13122. }
  13123. }
  13124. // note: the number of splits during measure is higher than during inference due to the kv shift
  13125. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13126. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13127. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13128. }
  13129. }
  13130. #ifdef GGML_USE_MPI
  13131. ctx->ctx_mpi = ggml_mpi_init();
  13132. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  13133. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  13134. // TODO: needs fix after #3228
  13135. GGML_ASSERT(false && "not implemented");
  13136. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  13137. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  13138. llama_backend_free();
  13139. exit(1);
  13140. }
  13141. #endif
  13142. return ctx;
  13143. }
  13144. void llama_free(struct llama_context * ctx) {
  13145. delete ctx;
  13146. }
  13147. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13148. return &ctx->model;
  13149. }
  13150. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13151. return ctx->cparams.n_ctx;
  13152. }
  13153. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13154. return ctx->cparams.n_batch;
  13155. }
  13156. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13157. return ctx->cparams.n_ubatch;
  13158. }
  13159. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13160. return ctx->kv_self.size;
  13161. }
  13162. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13163. return model->vocab.type;
  13164. }
  13165. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13166. switch (model->arch) {
  13167. // these models do not use RoPE
  13168. case LLM_ARCH_GPT2:
  13169. case LLM_ARCH_GPTJ:
  13170. case LLM_ARCH_GPTNEOX:
  13171. case LLM_ARCH_MPT:
  13172. case LLM_ARCH_REFACT:
  13173. case LLM_ARCH_BLOOM:
  13174. case LLM_ARCH_MAMBA:
  13175. return LLAMA_ROPE_TYPE_NONE;
  13176. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13177. case LLM_ARCH_LLAMA:
  13178. case LLM_ARCH_BAICHUAN:
  13179. case LLM_ARCH_STARCODER:
  13180. case LLM_ARCH_PLAMO:
  13181. case LLM_ARCH_CODESHELL:
  13182. case LLM_ARCH_ORION:
  13183. case LLM_ARCH_INTERNLM2:
  13184. case LLM_ARCH_MINICPM:
  13185. case LLM_ARCH_XVERSE:
  13186. case LLM_ARCH_COMMAND_R:
  13187. case LLM_ARCH_OLMO:
  13188. return LLAMA_ROPE_TYPE_NORM;
  13189. // the pairs of head values are offset by n_rot/2
  13190. case LLM_ARCH_FALCON:
  13191. case LLM_ARCH_GROK:
  13192. case LLM_ARCH_DBRX:
  13193. case LLM_ARCH_PERSIMMON:
  13194. case LLM_ARCH_BERT:
  13195. case LLM_ARCH_NOMIC_BERT:
  13196. case LLM_ARCH_STABLELM:
  13197. case LLM_ARCH_QWEN:
  13198. case LLM_ARCH_QWEN2:
  13199. case LLM_ARCH_QWEN2MOE:
  13200. case LLM_ARCH_PHI2:
  13201. case LLM_ARCH_PHI3:
  13202. case LLM_ARCH_GEMMA:
  13203. case LLM_ARCH_STARCODER2:
  13204. return LLAMA_ROPE_TYPE_NEOX;
  13205. // all model arches should be listed explicitly here
  13206. case LLM_ARCH_UNKNOWN:
  13207. GGML_ASSERT(false && "unknown architecture");
  13208. break;
  13209. }
  13210. return LLAMA_ROPE_TYPE_NONE;
  13211. }
  13212. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13213. return ctx->cparams.pooling_type;
  13214. }
  13215. int32_t llama_n_vocab(const struct llama_model * model) {
  13216. return model->hparams.n_vocab;
  13217. }
  13218. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13219. return model->hparams.n_ctx_train;
  13220. }
  13221. int32_t llama_n_embd(const struct llama_model * model) {
  13222. return model->hparams.n_embd;
  13223. }
  13224. int32_t llama_n_layer(const struct llama_model * model) {
  13225. return model->hparams.n_layer;
  13226. }
  13227. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13228. return model->hparams.rope_freq_scale_train;
  13229. }
  13230. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13231. const auto & it = model->gguf_kv.find(key);
  13232. if (it == model->gguf_kv.end()) {
  13233. if (buf_size > 0) {
  13234. buf[0] = '\0';
  13235. }
  13236. return -1;
  13237. }
  13238. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13239. }
  13240. int32_t llama_model_meta_count(const struct llama_model * model) {
  13241. return (int)model->gguf_kv.size();
  13242. }
  13243. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13244. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13245. if (buf_size > 0) {
  13246. buf[0] = '\0';
  13247. }
  13248. return -1;
  13249. }
  13250. auto it = model->gguf_kv.begin();
  13251. std::advance(it, i);
  13252. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13253. }
  13254. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13255. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13256. if (buf_size > 0) {
  13257. buf[0] = '\0';
  13258. }
  13259. return -1;
  13260. }
  13261. auto it = model->gguf_kv.begin();
  13262. std::advance(it, i);
  13263. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13264. }
  13265. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13266. return snprintf(buf, buf_size, "%s %s %s",
  13267. llama_model_arch_name(model->arch),
  13268. llama_model_type_name(model->type),
  13269. llama_model_ftype_name(model->ftype).c_str());
  13270. }
  13271. uint64_t llama_model_size(const struct llama_model * model) {
  13272. uint64_t size = 0;
  13273. for (const auto & it : model->tensors_by_name) {
  13274. size += ggml_nbytes(it.second);
  13275. }
  13276. return size;
  13277. }
  13278. uint64_t llama_model_n_params(const struct llama_model * model) {
  13279. uint64_t nparams = 0;
  13280. for (const auto & it : model->tensors_by_name) {
  13281. nparams += ggml_nelements(it.second);
  13282. }
  13283. return nparams;
  13284. }
  13285. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13286. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13287. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13288. return it.first == name;
  13289. });
  13290. if (it == model->tensors_by_name.end()) {
  13291. return nullptr;
  13292. }
  13293. return it->second;
  13294. }
  13295. uint32_t llama_model_quantize(
  13296. const char * fname_inp,
  13297. const char * fname_out,
  13298. const llama_model_quantize_params * params) {
  13299. try {
  13300. llama_model_quantize_internal(fname_inp, fname_out, params);
  13301. return 0;
  13302. } catch (const std::exception & err) {
  13303. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13304. return 1;
  13305. }
  13306. }
  13307. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13308. try {
  13309. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13310. } catch (const std::exception & err) {
  13311. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13312. return 1;
  13313. }
  13314. }
  13315. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13316. GGML_ASSERT(cvec.tensors.empty());
  13317. GGML_ASSERT(cvec.ctxs.empty());
  13318. GGML_ASSERT(cvec.bufs.empty());
  13319. // count layer buffer types
  13320. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13321. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13322. buft_layer_count[model.buft_layer[i].buft]++;
  13323. }
  13324. // allocate contexts
  13325. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13326. for (auto & it : buft_layer_count) {
  13327. int n_layers = it.second;
  13328. struct ggml_init_params params = {
  13329. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13330. /*.mem_buffer =*/ NULL,
  13331. /*.no_alloc =*/ true,
  13332. };
  13333. ggml_context * ctx = ggml_init(params);
  13334. if (!ctx) {
  13335. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13336. return 1;
  13337. }
  13338. ctx_map[it.first] = ctx;
  13339. }
  13340. // make tensors
  13341. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13342. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13343. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13344. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13345. cvec.tensors.push_back(tensor);
  13346. }
  13347. // allocate tensors / buffers and zero
  13348. for (auto it : ctx_map) {
  13349. ggml_backend_buffer_type_t buft = it.first;
  13350. ggml_context * ctx = it.second;
  13351. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13352. if (!buf) {
  13353. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13354. return false;
  13355. }
  13356. ggml_backend_buffer_clear(buf, 0);
  13357. cvec.ctxs.push_back(ctx);
  13358. cvec.bufs.push_back(buf);
  13359. }
  13360. return true;
  13361. }
  13362. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13363. const llama_model & model = lctx->model;
  13364. llama_control_vector & cvec = lctx->cvec;
  13365. if (data == nullptr) {
  13366. // disable the current control vector (but leave allocated for later)
  13367. cvec.layer_start = -1;
  13368. cvec.layer_end = -1;
  13369. return 0;
  13370. }
  13371. if (n_embd != (int) model.hparams.n_embd) {
  13372. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13373. return 1;
  13374. }
  13375. if (cvec.tensors.empty()) {
  13376. if (!llama_control_vector_init(cvec, model)) {
  13377. return 1;
  13378. }
  13379. }
  13380. cvec.layer_start = il_start;
  13381. cvec.layer_end = il_end;
  13382. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13383. assert(cvec.tensors[il] != nullptr);
  13384. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13385. if (off + n_embd <= len) {
  13386. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13387. }
  13388. }
  13389. return 0;
  13390. }
  13391. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13392. struct llama_kv_cache_view result = {
  13393. /*.n_cells = */ 0,
  13394. /*.n_seq_max = */ n_seq_max,
  13395. /*.token_count = */ 0,
  13396. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13397. /*.max_contiguous = */ 0,
  13398. /*.max_contiguous_idx = */ -1,
  13399. /*.cells = */ nullptr,
  13400. /*.cells_sequences = */ nullptr,
  13401. };
  13402. return result;
  13403. }
  13404. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13405. if (view->cells != nullptr) {
  13406. free(view->cells);
  13407. view->cells = nullptr;
  13408. }
  13409. if (view->cells_sequences != nullptr) {
  13410. free(view->cells_sequences);
  13411. view->cells_sequences = nullptr;
  13412. }
  13413. }
  13414. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13415. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13416. view->n_cells = int32_t(ctx->kv_self.size);
  13417. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13418. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13419. view->cells = (struct llama_kv_cache_view_cell *)p;
  13420. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13421. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13422. view->cells_sequences = (llama_seq_id *)p;
  13423. }
  13424. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13425. llama_kv_cache_view_cell * c_curr = view->cells;
  13426. llama_seq_id * cs_curr = view->cells_sequences;
  13427. int32_t used_cells = 0;
  13428. int32_t token_count = 0;
  13429. int32_t curr_contig_idx = -1;
  13430. uint32_t max_contig = 0;
  13431. int32_t max_contig_idx = -1;
  13432. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13433. const size_t curr_size = kv_cells[i].seq_id.size();
  13434. token_count += curr_size;
  13435. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13436. if (curr_size > 0) {
  13437. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13438. max_contig = i - curr_contig_idx;
  13439. max_contig_idx = curr_contig_idx;
  13440. }
  13441. curr_contig_idx = -1;
  13442. } else if (curr_contig_idx < 0) {
  13443. curr_contig_idx = i;
  13444. }
  13445. int seq_idx = 0;
  13446. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13447. if (seq_idx >= view->n_seq_max) {
  13448. break;
  13449. }
  13450. cs_curr[seq_idx] = it;
  13451. seq_idx++;
  13452. }
  13453. if (seq_idx != 0) {
  13454. used_cells++;
  13455. }
  13456. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13457. cs_curr[seq_idx] = -1;
  13458. }
  13459. }
  13460. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13461. max_contig_idx = curr_contig_idx;
  13462. max_contig = kv_cells.size() - curr_contig_idx;
  13463. }
  13464. view->max_contiguous = max_contig;
  13465. view->max_contiguous_idx = max_contig_idx;
  13466. view->token_count = token_count;
  13467. view->used_cells = used_cells;
  13468. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13469. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13470. __func__, ctx->kv_self.used, used_cells);
  13471. }
  13472. }
  13473. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13474. int result = 0;
  13475. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13476. result += ctx->kv_self.cells[i].seq_id.size();
  13477. }
  13478. return result;
  13479. }
  13480. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13481. return ctx->kv_self.used;
  13482. }
  13483. void llama_kv_cache_clear(struct llama_context * ctx) {
  13484. llama_kv_cache_clear(ctx->kv_self);
  13485. }
  13486. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13487. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13488. }
  13489. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13490. if (seq_id_src == seq_id_dst) {
  13491. return;
  13492. }
  13493. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13494. }
  13495. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13496. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13497. }
  13498. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13499. if (delta == 0) {
  13500. return;
  13501. }
  13502. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13503. }
  13504. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13505. if (d == 1) {
  13506. return;
  13507. }
  13508. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13509. }
  13510. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13511. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13512. }
  13513. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13514. llama_kv_cache_defrag(ctx->kv_self);
  13515. }
  13516. void llama_kv_cache_update(struct llama_context * ctx) {
  13517. llama_kv_cache_update_internal(*ctx);
  13518. }
  13519. // deprecated
  13520. size_t llama_get_state_size(const struct llama_context * ctx) {
  13521. return llama_state_get_size(ctx);
  13522. }
  13523. // deprecated
  13524. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13525. return llama_state_get_data(ctx, dst);
  13526. }
  13527. // deprecated
  13528. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13529. return llama_state_set_data(ctx, src);
  13530. }
  13531. // deprecated
  13532. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13533. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13534. }
  13535. // deprecated
  13536. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13537. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13538. }
  13539. // Returns the *maximum* size of the state
  13540. size_t llama_state_get_size(const struct llama_context * ctx) {
  13541. const auto & cparams = ctx->cparams;
  13542. const auto & hparams = ctx->model.hparams;
  13543. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13544. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13545. const size_t s_rng_size = sizeof(size_t);
  13546. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13547. const size_t s_n_outputs = sizeof(size_t);
  13548. // assume worst case for outputs although only currently set ones are serialized
  13549. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13550. const size_t s_logits_size = sizeof(size_t);
  13551. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13552. const size_t s_embedding_size = sizeof(size_t);
  13553. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13554. const size_t s_kv_buf_size = sizeof(size_t);
  13555. const size_t s_kv_head = sizeof(uint32_t);
  13556. const size_t s_kv_size = sizeof(uint32_t);
  13557. const size_t s_kv_used = sizeof(uint32_t);
  13558. const size_t s_v_trans = sizeof(uint32_t);
  13559. const size_t s_kv = ctx->kv_self.total_size();
  13560. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13561. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13562. const size_t s_total = (
  13563. + s_rng_size
  13564. + s_rng
  13565. + s_n_outputs
  13566. + s_output_pos
  13567. + s_logits_size
  13568. + s_logits
  13569. + s_embedding_size
  13570. + s_embedding
  13571. + s_kv_buf_size
  13572. + s_kv_head
  13573. + s_kv_size
  13574. + s_kv_used
  13575. + s_v_trans
  13576. + s_kv
  13577. + s_kv_cells
  13578. );
  13579. // on session change it is very likely that the state size has changed - so we need to update this function
  13580. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  13581. return s_total;
  13582. }
  13583. // llama_context_data
  13584. struct llama_data_context {
  13585. virtual void write(const void * src, size_t size) = 0;
  13586. virtual size_t get_size_written() = 0;
  13587. virtual ~llama_data_context() = default;
  13588. };
  13589. struct llama_data_buffer_context : llama_data_context {
  13590. uint8_t * ptr;
  13591. size_t size_written = 0;
  13592. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13593. void write(const void * src, size_t size) override {
  13594. memcpy(ptr, src, size);
  13595. ptr += size;
  13596. size_written += size;
  13597. }
  13598. size_t get_size_written() override {
  13599. return size_written;
  13600. }
  13601. };
  13602. struct llama_data_file_context : llama_data_context {
  13603. llama_file * file;
  13604. size_t size_written = 0;
  13605. llama_data_file_context(llama_file * f) : file(f) {}
  13606. void write(const void * src, size_t size) override {
  13607. file->write_raw(src, size);
  13608. size_written += size;
  13609. }
  13610. size_t get_size_written() override {
  13611. return size_written;
  13612. }
  13613. };
  13614. /** copy state data into either a buffer or file depending on the passed in context
  13615. *
  13616. * file context:
  13617. * llama_file file("/path", "wb");
  13618. * llama_data_file_context data_ctx(&file);
  13619. * llama_state_get_data(ctx, &data_ctx);
  13620. *
  13621. * buffer context:
  13622. * std::vector<uint8_t> buf(max_size, 0);
  13623. * llama_data_buffer_context data_ctx(&buf.data());
  13624. * llama_state_get_data(ctx, &data_ctx);
  13625. *
  13626. */
  13627. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13628. llama_synchronize(ctx);
  13629. // copy rng
  13630. {
  13631. std::ostringstream rng_ss;
  13632. rng_ss << ctx->rng;
  13633. const std::string & rng_str = rng_ss.str();
  13634. const size_t rng_size = rng_str.size();
  13635. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13636. data_ctx->write(&rng_size, sizeof(rng_size));
  13637. data_ctx->write(rng_str.data(), rng_size);
  13638. }
  13639. // copy outputs
  13640. {
  13641. // Can't use ctx->n_outputs because it's not for the
  13642. // entire last batch when n_ubatch is smaller than n_batch
  13643. size_t n_outputs = 0;
  13644. // copy output ids
  13645. {
  13646. std::vector<int32_t> output_pos;
  13647. const size_t n_batch = ctx->cparams.n_batch;
  13648. const auto & output_ids = ctx->output_ids;
  13649. output_pos.resize(ctx->output_size);
  13650. // build a more compact representation of the output ids
  13651. for (size_t i = 0; i < n_batch; ++i) {
  13652. // map an output id to a position in the batch
  13653. int32_t pos = output_ids[i];
  13654. if (pos >= 0) {
  13655. if ((size_t) pos >= n_outputs) {
  13656. n_outputs = pos + 1;
  13657. }
  13658. GGML_ASSERT((size_t) pos < ctx->output_size);
  13659. output_pos[pos] = i;
  13660. }
  13661. }
  13662. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13663. if (n_outputs) {
  13664. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13665. }
  13666. }
  13667. // copy logits
  13668. {
  13669. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13670. data_ctx->write(&logits_size, sizeof(logits_size));
  13671. if (logits_size) {
  13672. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13673. }
  13674. }
  13675. // copy embeddings
  13676. {
  13677. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13678. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13679. if (embeddings_size) {
  13680. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13681. }
  13682. }
  13683. }
  13684. // copy kv cache
  13685. {
  13686. const auto & kv_self = ctx->kv_self;
  13687. const auto & hparams = ctx->model.hparams;
  13688. const uint32_t n_layer = hparams.n_layer;
  13689. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13690. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13691. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13692. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13693. const uint32_t kv_size = kv_self.size;
  13694. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13695. const uint32_t kv_used = kv_self.used;
  13696. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  13697. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13698. data_ctx->write(&kv_head, sizeof(kv_head));
  13699. data_ctx->write(&kv_size, sizeof(kv_size));
  13700. data_ctx->write(&kv_used, sizeof(kv_used));
  13701. data_ctx->write(&v_trans, sizeof(v_trans));
  13702. if (kv_buf_size) {
  13703. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13704. std::vector<uint8_t> tmp_buf;
  13705. for (int il = 0; il < (int) n_layer; ++il) {
  13706. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13707. tmp_buf.resize(k_size);
  13708. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13709. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13710. if (kv_self.recurrent || !kv_self.v_trans) {
  13711. // v is contiguous for recurrent models
  13712. // TODO: use other tensors for state models than k and v
  13713. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13714. tmp_buf.resize(v_size);
  13715. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13716. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13717. continue;
  13718. }
  13719. // v is not contiguous, copy row by row
  13720. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13721. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13722. tmp_buf.resize(v_row_size);
  13723. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13724. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13725. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13726. }
  13727. }
  13728. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13729. }
  13730. for (uint32_t i = 0; i < kv_head; ++i) {
  13731. const auto & cell = kv_self.cells[i];
  13732. const llama_pos pos = cell.pos;
  13733. const size_t seq_id_size = cell.seq_id.size();
  13734. data_ctx->write(&pos, sizeof(pos));
  13735. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13736. for (auto seq_id : cell.seq_id) {
  13737. data_ctx->write(&seq_id, sizeof(seq_id));
  13738. }
  13739. }
  13740. }
  13741. }
  13742. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13743. llama_data_buffer_context data_ctx(dst);
  13744. llama_state_get_data_internal(ctx, &data_ctx);
  13745. return data_ctx.get_size_written();
  13746. }
  13747. // Sets the state reading from the specified source address
  13748. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13749. llama_synchronize(ctx);
  13750. const uint8_t * inp = src;
  13751. // set rng
  13752. {
  13753. size_t rng_size;
  13754. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13755. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13756. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13757. std::istringstream rng_ss(rng_str);
  13758. rng_ss >> ctx->rng;
  13759. GGML_ASSERT(!rng_ss.fail());
  13760. }
  13761. // set output ids
  13762. {
  13763. size_t n_outputs;
  13764. std::vector<int32_t> output_pos;
  13765. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13766. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13767. if (n_outputs) {
  13768. output_pos.resize(n_outputs);
  13769. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13770. inp += n_outputs * sizeof(int32_t);
  13771. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13772. int32_t id = output_pos[i];
  13773. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13774. ctx->output_ids[id] = i;
  13775. }
  13776. ctx->n_outputs = n_outputs;
  13777. }
  13778. }
  13779. // set logits
  13780. {
  13781. size_t logits_size;
  13782. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13783. GGML_ASSERT(ctx->logits_size >= logits_size);
  13784. if (logits_size) {
  13785. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13786. inp += logits_size * sizeof(float);
  13787. }
  13788. }
  13789. // set embeddings
  13790. {
  13791. size_t embeddings_size;
  13792. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13793. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13794. if (embeddings_size) {
  13795. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13796. inp += embeddings_size * sizeof(float);
  13797. }
  13798. }
  13799. // set kv cache
  13800. {
  13801. const auto & kv_self = ctx->kv_self;
  13802. const auto & hparams = ctx->model.hparams;
  13803. const uint32_t n_layer = hparams.n_layer;
  13804. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13805. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13806. size_t kv_buf_size;
  13807. uint32_t kv_head;
  13808. uint32_t kv_size;
  13809. uint32_t kv_used;
  13810. uint32_t v_trans;
  13811. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13812. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13813. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13814. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  13815. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  13816. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  13817. if (kv_self.size != kv_size) {
  13818. // the KV cache needs to be big enough to load all the KV cells from the saved state
  13819. GGML_ASSERT(kv_self.size >= kv_head);
  13820. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  13821. __func__, kv_head, kv_size, kv_self.size);
  13822. }
  13823. llama_kv_cache_clear(ctx);
  13824. if (kv_buf_size) {
  13825. const size_t pre_kv_buf_size = inp - src;
  13826. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  13827. for (int il = 0; il < (int) n_layer; ++il) {
  13828. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13829. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  13830. inp += k_size;
  13831. if (kv_self.recurrent || !kv_self.v_trans) {
  13832. // v is contiguous for recurrent models
  13833. // TODO: use other tensors for state models than k and v
  13834. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13835. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  13836. inp += v_size;
  13837. continue;
  13838. }
  13839. // v is not contiguous, copy row by row
  13840. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13841. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  13842. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13843. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  13844. inp += v_row_size;
  13845. }
  13846. }
  13847. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  13848. }
  13849. ctx->kv_self.head = kv_head;
  13850. ctx->kv_self.used = kv_used;
  13851. for (uint32_t i = 0; i < kv_head; ++i) {
  13852. llama_pos pos;
  13853. size_t seq_id_size;
  13854. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  13855. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  13856. ctx->kv_self.cells[i].pos = pos;
  13857. llama_seq_id seq_id;
  13858. for (size_t j = 0; j < seq_id_size; ++j) {
  13859. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  13860. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  13861. }
  13862. }
  13863. }
  13864. const size_t nread = inp - src;
  13865. const size_t max_size = llama_state_get_size(ctx);
  13866. GGML_ASSERT(nread <= max_size);
  13867. return nread;
  13868. }
  13869. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13870. llama_file file(path_session, "rb");
  13871. // sanity checks
  13872. {
  13873. const uint32_t magic = file.read_u32();
  13874. const uint32_t version = file.read_u32();
  13875. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  13876. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  13877. return false;
  13878. }
  13879. llama_hparams session_hparams;
  13880. file.read_raw(&session_hparams, sizeof(llama_hparams));
  13881. if (session_hparams != ctx->model.hparams) {
  13882. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  13883. return false;
  13884. }
  13885. }
  13886. // load the prompt
  13887. {
  13888. const uint32_t n_token_count = file.read_u32();
  13889. if (n_token_count > n_token_capacity) {
  13890. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13891. return false;
  13892. }
  13893. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13894. *n_token_count_out = n_token_count;
  13895. }
  13896. // restore the context state
  13897. {
  13898. const size_t n_state_size_cur = file.size - file.tell();
  13899. const size_t n_state_size_max = llama_state_get_size(ctx);
  13900. if (n_state_size_cur > n_state_size_max) {
  13901. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  13902. return false;
  13903. }
  13904. std::vector<uint8_t> state_data(n_state_size_max);
  13905. file.read_raw(state_data.data(), n_state_size_cur);
  13906. llama_state_set_data(ctx, state_data.data());
  13907. }
  13908. return true;
  13909. }
  13910. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13911. try {
  13912. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13913. } catch (const std::exception & err) {
  13914. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  13915. return false;
  13916. }
  13917. }
  13918. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13919. llama_file file(path_session, "wb");
  13920. file.write_u32(LLAMA_SESSION_MAGIC);
  13921. file.write_u32(LLAMA_SESSION_VERSION);
  13922. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  13923. // save the prompt
  13924. file.write_u32((uint32_t) n_token_count);
  13925. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13926. // save the context state using stream saving
  13927. llama_data_file_context data_ctx(&file);
  13928. llama_state_get_data_internal(ctx, &data_ctx);
  13929. return true;
  13930. }
  13931. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13932. try {
  13933. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  13934. } catch (const std::exception & err) {
  13935. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  13936. return false;
  13937. }
  13938. }
  13939. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  13940. // save the size of size_t as a uint32_t for safety check
  13941. const size_t size_t_size_size = sizeof(uint32_t);
  13942. // other values
  13943. const size_t s_cell_count_size = sizeof(uint32_t);
  13944. const size_t s_layer_count_size = sizeof(uint32_t);
  13945. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  13946. size_t s_cell_count = 0;
  13947. size_t s_cell_data_size = 0;
  13948. const auto & kv_self = ctx->kv_self;
  13949. const auto & hparams = ctx->model.hparams;
  13950. const uint32_t n_layer = hparams.n_layer;
  13951. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13952. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13953. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13954. const auto & cell = kv_self.cells[i];
  13955. if (cell.seq_id.count(seq_id) > 0) {
  13956. ++s_cell_count;
  13957. s_cell_data_size += sizeof(llama_pos);
  13958. }
  13959. }
  13960. for (int il = 0; il < (int)n_layer; ++il) {
  13961. // types of keys and values
  13962. s_cell_data_size += sizeof(int32_t) * 2;
  13963. // k_size_row and v_size_el values of layer
  13964. s_cell_data_size += sizeof(size_t) * 2;
  13965. // keys
  13966. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13967. s_cell_data_size += k_size_row * s_cell_count;
  13968. // values (transposed)
  13969. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13970. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  13971. }
  13972. const size_t s_total = (
  13973. size_t_size_size +
  13974. s_cell_count_size +
  13975. s_layer_count_size +
  13976. n_embd_v_gqa_size +
  13977. s_cell_data_size
  13978. );
  13979. return s_total;
  13980. }
  13981. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  13982. llama_synchronize(ctx);
  13983. const auto & kv_self = ctx->kv_self;
  13984. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13985. // Save the size of size_t as a uint32_t for safety check
  13986. const uint32_t size_t_size = sizeof(size_t);
  13987. data_ctx.write(&size_t_size, sizeof(size_t_size));
  13988. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  13989. uint32_t cell_count = 0;
  13990. // Count the number of cells with the specified seq_id
  13991. // Find all the ranges of cells with this seq id
  13992. {
  13993. uint32_t cell_range_begin = kv_self.size;
  13994. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13995. const auto & cell = kv_self.cells[i];
  13996. if (cell.has_seq_id(seq_id)) {
  13997. ++cell_count;
  13998. if (cell_range_begin == kv_self.size) {
  13999. cell_range_begin = i;
  14000. }
  14001. }
  14002. else {
  14003. if (cell_range_begin != kv_self.size) {
  14004. cell_ranges.push_back({ cell_range_begin, i });
  14005. cell_range_begin = kv_self.size;
  14006. }
  14007. }
  14008. }
  14009. if (cell_range_begin != kv_self.size) {
  14010. cell_ranges.push_back({ cell_range_begin, kv_self.size });
  14011. }
  14012. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14013. uint32_t cell_count_check = 0;
  14014. for (const auto & range : cell_ranges) {
  14015. cell_count_check += range.second - range.first;
  14016. }
  14017. GGML_ASSERT(cell_count == cell_count_check);
  14018. }
  14019. // Write the cell count
  14020. data_ctx.write(&cell_count, sizeof(cell_count));
  14021. const auto & hparams = ctx->model.hparams;
  14022. const uint32_t n_layer = hparams.n_layer;
  14023. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14024. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14025. // Write the layer count
  14026. data_ctx.write(&n_layer, sizeof(n_layer));
  14027. // Write n_embd_v_gqa
  14028. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14029. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14030. for (const auto & range : cell_ranges) {
  14031. for (uint32_t i = range.first; i < range.second; ++i) {
  14032. const auto & cell = kv_self.cells[i];
  14033. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14034. }
  14035. }
  14036. // Iterate and write all the keys first, each row is a cell
  14037. // Get whole range at a time
  14038. std::vector<uint8_t> tmp_buf;
  14039. for (int il = 0; il < (int)n_layer; ++il) {
  14040. // Write key type
  14041. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14042. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14043. // Write row size of key
  14044. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14045. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14046. // Read each range of cells of k_size length each into tmp_buf and write out
  14047. for (const auto & range : cell_ranges) {
  14048. const size_t range_size = range.second - range.first;
  14049. tmp_buf.resize(range_size * k_size_row);
  14050. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14051. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14052. }
  14053. }
  14054. // TODO: simplify, reduce copy-paste
  14055. if (!kv_self.v_trans) {
  14056. for (int il = 0; il < (int)n_layer; ++il) {
  14057. // Write value type
  14058. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14059. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14060. // Write row size of value
  14061. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14062. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14063. // Read each range of cells of v_size length each into tmp_buf and write out
  14064. for (const auto & range : cell_ranges) {
  14065. const size_t range_size = range.second - range.first;
  14066. tmp_buf.resize(range_size * v_size_row);
  14067. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14068. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14069. }
  14070. }
  14071. } else {
  14072. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14073. const uint32_t kv_size = kv_self.size;
  14074. for (int il = 0; il < (int)n_layer; ++il) {
  14075. // Write value type
  14076. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14077. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14078. // Write element size
  14079. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14080. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14081. // For each row, we get the element values of each cell
  14082. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14083. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14084. for (const auto & range : cell_ranges) {
  14085. const size_t range_size = range.second - range.first;
  14086. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14087. tmp_buf.resize(range_size * v_size_el);
  14088. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14089. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14090. }
  14091. }
  14092. }
  14093. }
  14094. return data_ctx.get_size_written();
  14095. }
  14096. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14097. llama_data_buffer_context data_ctx(dst);
  14098. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14099. }
  14100. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14101. llama_synchronize(ctx);
  14102. auto & kv_self = ctx->kv_self;
  14103. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14104. // Wipe the slot
  14105. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14106. const uint8_t * inp = src;
  14107. // Read size of size_t
  14108. uint32_t size_t_size;
  14109. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14110. inp += sizeof(size_t_size);
  14111. if (size_t_size != sizeof(size_t)) {
  14112. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14113. return 0;
  14114. }
  14115. // Read the cell count
  14116. uint32_t cell_count;
  14117. memcpy(&cell_count, inp, sizeof(cell_count));
  14118. inp += sizeof(cell_count);
  14119. // Read the layer count
  14120. uint32_t n_layer_ref;
  14121. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14122. inp += sizeof(n_layer_ref);
  14123. // Read n_embd_v_gqa
  14124. uint32_t n_embd_v_gqa_ref;
  14125. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14126. inp += sizeof(n_embd_v_gqa_ref);
  14127. // Sanity check model compatibility
  14128. const auto & hparams = ctx->model.hparams;
  14129. const uint32_t n_layer = hparams.n_layer;
  14130. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14131. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14132. if (n_layer != n_layer_ref) {
  14133. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14134. return 0;
  14135. }
  14136. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14137. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14138. return 0;
  14139. }
  14140. // Allocate the new cells for the slot
  14141. if (cell_count) {
  14142. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14143. batch.n_tokens = cell_count;
  14144. for (uint32_t i = 0; i < cell_count; ++i) {
  14145. llama_pos pos;
  14146. memcpy(&pos, inp, sizeof(pos));
  14147. inp += sizeof(pos);
  14148. batch.pos[i] = pos;
  14149. batch.n_seq_id[i] = 1;
  14150. batch.seq_id[i][0] = dest_seq_id;
  14151. }
  14152. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14153. llama_batch_free(batch);
  14154. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14155. return 0;
  14156. }
  14157. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14158. // Assume that this is one contiguous block of cells
  14159. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14160. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14161. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14162. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14163. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14164. // Cleanup
  14165. llama_batch_free(batch);
  14166. }
  14167. const uint32_t kv_size = kv_self.size;
  14168. const uint32_t kv_head = kv_self.head;
  14169. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14170. for (int il = 0; il < (int)n_layer; ++il) {
  14171. // Read type of key
  14172. int32_t k_type_i_ref;
  14173. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14174. inp += sizeof(k_type_i_ref);
  14175. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14176. if (k_type_i != k_type_i_ref) {
  14177. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14178. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14179. return 0;
  14180. }
  14181. // Read row size of key
  14182. size_t k_size_row_ref;
  14183. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14184. inp += sizeof(k_size_row_ref);
  14185. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14186. if (k_size_row != k_size_row_ref) {
  14187. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14188. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14189. return 0;
  14190. }
  14191. if (cell_count) {
  14192. // Read and set the keys for the whole cell range
  14193. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14194. inp += cell_count * k_size_row;
  14195. }
  14196. }
  14197. // TODO: simplify, reduce copy-paste
  14198. if (!kv_self.v_trans) {
  14199. for (int il = 0; il < (int)n_layer; ++il) {
  14200. // Read type of value
  14201. int32_t v_type_i_ref;
  14202. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14203. inp += sizeof(v_type_i_ref);
  14204. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14205. if (v_type_i != v_type_i_ref) {
  14206. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14207. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14208. return 0;
  14209. }
  14210. // Read row size of value
  14211. size_t v_size_row_ref;
  14212. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14213. inp += sizeof(v_size_row_ref);
  14214. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14215. if (v_size_row != v_size_row_ref) {
  14216. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14217. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14218. return 0;
  14219. }
  14220. if (cell_count) {
  14221. // Read and set the values for the whole cell range
  14222. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14223. inp += cell_count * v_size_row;
  14224. }
  14225. }
  14226. } else {
  14227. // For each layer, read the values for each cell (transposed)
  14228. for (int il = 0; il < (int)n_layer; ++il) {
  14229. // Read type of value
  14230. int32_t v_type_i_ref;
  14231. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14232. inp += sizeof(v_type_i_ref);
  14233. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14234. if (v_type_i != v_type_i_ref) {
  14235. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14236. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14237. return 0;
  14238. }
  14239. // Read element size of value
  14240. size_t v_size_el_ref;
  14241. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14242. inp += sizeof(v_size_el_ref);
  14243. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14244. if (v_size_el != v_size_el_ref) {
  14245. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14246. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14247. return 0;
  14248. }
  14249. if (cell_count) {
  14250. // For each row in the transposed matrix, read the values for the whole cell range
  14251. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14252. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14253. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14254. inp += cell_count * v_size_el;
  14255. }
  14256. }
  14257. }
  14258. }
  14259. const size_t nread = inp - src;
  14260. return nread;
  14261. }
  14262. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14263. llama_file file(filepath, "wb");
  14264. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14265. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14266. // save the prompt
  14267. file.write_u32((uint32_t)n_token_count);
  14268. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14269. // save the context state using stream saving
  14270. llama_data_file_context data_ctx(&file);
  14271. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14272. const size_t res = file.tell();
  14273. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14274. return res;
  14275. }
  14276. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14277. llama_file file(filepath, "rb");
  14278. // version checks
  14279. {
  14280. const uint32_t magic = file.read_u32();
  14281. const uint32_t version = file.read_u32();
  14282. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14283. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14284. return 0;
  14285. }
  14286. }
  14287. // load the prompt
  14288. {
  14289. const uint32_t n_token_count = file.read_u32();
  14290. if (n_token_count > n_token_capacity) {
  14291. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14292. return 0;
  14293. }
  14294. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14295. *n_token_count_out = n_token_count;
  14296. }
  14297. // restore the context state
  14298. {
  14299. const size_t state_size = file.size - file.tell();
  14300. std::vector<uint8_t> state_data(state_size);
  14301. file.read_raw(state_data.data(), state_size);
  14302. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14303. if (!nread) {
  14304. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14305. return 0;
  14306. }
  14307. GGML_ASSERT(nread <= state_size);
  14308. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14309. }
  14310. return file.tell();
  14311. }
  14312. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14313. try {
  14314. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14315. } catch (const std::exception & err) {
  14316. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14317. return 0;
  14318. }
  14319. }
  14320. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14321. try {
  14322. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14323. } catch (const std::exception & err) {
  14324. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14325. return 0;
  14326. }
  14327. }
  14328. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14329. ctx->cparams.n_threads = n_threads;
  14330. ctx->cparams.n_threads_batch = n_threads_batch;
  14331. }
  14332. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14333. ctx->abort_callback = abort_callback;
  14334. ctx->abort_callback_data = abort_callback_data;
  14335. }
  14336. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14337. ctx->cparams.causal_attn = causal_attn;
  14338. }
  14339. struct llama_batch llama_batch_get_one(
  14340. llama_token * tokens,
  14341. int32_t n_tokens,
  14342. llama_pos pos_0,
  14343. llama_seq_id seq_id) {
  14344. return {
  14345. /*n_tokens =*/ n_tokens,
  14346. /*tokens =*/ tokens,
  14347. /*embd =*/ nullptr,
  14348. /*pos =*/ nullptr,
  14349. /*n_seq_id =*/ nullptr,
  14350. /*seq_id =*/ nullptr,
  14351. /*logits =*/ nullptr,
  14352. /*all_pos_0 =*/ pos_0,
  14353. /*all_pos_1 =*/ 1,
  14354. /*all_seq_id =*/ seq_id,
  14355. };
  14356. }
  14357. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14358. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14359. if (embd) {
  14360. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14361. } else {
  14362. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14363. }
  14364. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14365. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14366. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14367. for (int i = 0; i < n_tokens_alloc; ++i) {
  14368. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14369. }
  14370. batch.seq_id[n_tokens_alloc] = nullptr;
  14371. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14372. return batch;
  14373. }
  14374. void llama_batch_free(struct llama_batch batch) {
  14375. if (batch.token) free(batch.token);
  14376. if (batch.embd) free(batch.embd);
  14377. if (batch.pos) free(batch.pos);
  14378. if (batch.n_seq_id) free(batch.n_seq_id);
  14379. if (batch.seq_id) {
  14380. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14381. free(batch.seq_id[i]);
  14382. }
  14383. free(batch.seq_id);
  14384. }
  14385. if (batch.logits) free(batch.logits);
  14386. }
  14387. int32_t llama_decode(
  14388. struct llama_context * ctx,
  14389. struct llama_batch batch) {
  14390. const int ret = llama_decode_internal(*ctx, batch);
  14391. if (ret < 0) {
  14392. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14393. }
  14394. return ret;
  14395. }
  14396. void llama_synchronize(struct llama_context * ctx) {
  14397. ggml_backend_sched_synchronize(ctx->sched);
  14398. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14399. // the stats will be added to the prompt evaluation stats
  14400. // this should only happen when using batch size 1 to evaluate a batch
  14401. // add the evaluation to the stats
  14402. if (ctx->n_queued_tokens == 1) {
  14403. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14404. ctx->n_eval++;
  14405. } else if (ctx->n_queued_tokens > 1) {
  14406. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14407. ctx->n_p_eval += ctx->n_queued_tokens;
  14408. }
  14409. // get a more accurate load time, upon first eval
  14410. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14411. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14412. ctx->has_evaluated_once = true;
  14413. }
  14414. ctx->n_queued_tokens = 0;
  14415. ctx->t_compute_start_us = 0;
  14416. }
  14417. float * llama_get_logits(struct llama_context * ctx) {
  14418. llama_synchronize(ctx);
  14419. return ctx->logits;
  14420. }
  14421. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14422. int32_t j = -1;
  14423. llama_synchronize(ctx);
  14424. try {
  14425. if (ctx->logits == nullptr) {
  14426. throw std::runtime_error("no logits");
  14427. }
  14428. if (i < 0) {
  14429. j = ctx->n_outputs + i;
  14430. if (j < 0) {
  14431. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14432. }
  14433. } else if ((size_t) i >= ctx->output_ids.size()) {
  14434. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14435. } else {
  14436. j = ctx->output_ids[i];
  14437. }
  14438. if (j < 0) {
  14439. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14440. }
  14441. if (j >= ctx->n_outputs) {
  14442. // This should not happen
  14443. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14444. }
  14445. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14446. } catch (const std::exception & err) {
  14447. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14448. #ifndef NDEBUG
  14449. GGML_ASSERT(false);
  14450. #endif
  14451. return nullptr;
  14452. }
  14453. }
  14454. float * llama_get_embeddings(struct llama_context * ctx) {
  14455. llama_synchronize(ctx);
  14456. return ctx->embd;
  14457. }
  14458. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14459. int32_t j = -1;
  14460. llama_synchronize(ctx);
  14461. try {
  14462. if (ctx->embd == nullptr) {
  14463. throw std::runtime_error("no embeddings");
  14464. }
  14465. if (i < 0) {
  14466. j = ctx->n_outputs + i;
  14467. if (j < 0) {
  14468. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14469. }
  14470. } else if ((size_t) i >= ctx->output_ids.size()) {
  14471. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14472. } else {
  14473. j = ctx->output_ids[i];
  14474. }
  14475. if (j < 0) {
  14476. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14477. }
  14478. if (j >= ctx->n_outputs) {
  14479. // This should not happen
  14480. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14481. }
  14482. return ctx->embd + j*ctx->model.hparams.n_embd;
  14483. } catch (const std::exception & err) {
  14484. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14485. #ifndef NDEBUG
  14486. GGML_ASSERT(false);
  14487. #endif
  14488. return nullptr;
  14489. }
  14490. }
  14491. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14492. llama_synchronize(ctx);
  14493. auto it = ctx->embd_seq.find(seq_id);
  14494. if (it == ctx->embd_seq.end()) {
  14495. return nullptr;
  14496. }
  14497. return it->second.data();
  14498. }
  14499. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14500. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14501. return model->vocab.id_to_token[token].text.c_str();
  14502. }
  14503. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14504. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14505. return model->vocab.id_to_token[token].score;
  14506. }
  14507. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14508. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14509. return model->vocab.id_to_token[token].type;
  14510. }
  14511. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14512. return token != -1 && (
  14513. token == llama_token_eos(model) ||
  14514. token == llama_token_eot(model)
  14515. );
  14516. }
  14517. llama_token llama_token_bos(const struct llama_model * model) {
  14518. return model->vocab.special_bos_id;
  14519. }
  14520. llama_token llama_token_eos(const struct llama_model * model) {
  14521. return model->vocab.special_eos_id;
  14522. }
  14523. llama_token llama_token_cls(const struct llama_model * model) {
  14524. return model->vocab.special_cls_id;
  14525. }
  14526. llama_token llama_token_sep(const struct llama_model * model) {
  14527. return model->vocab.special_sep_id;
  14528. }
  14529. llama_token llama_token_nl(const struct llama_model * model) {
  14530. return model->vocab.linefeed_id;
  14531. }
  14532. int32_t llama_add_bos_token(const struct llama_model * model) {
  14533. return model->vocab.special_add_bos;
  14534. }
  14535. int32_t llama_add_eos_token(const struct llama_model * model) {
  14536. return model->vocab.special_add_eos;
  14537. }
  14538. llama_token llama_token_prefix(const struct llama_model * model) {
  14539. return model->vocab.special_prefix_id;
  14540. }
  14541. llama_token llama_token_middle(const struct llama_model * model) {
  14542. return model->vocab.special_middle_id;
  14543. }
  14544. llama_token llama_token_suffix(const struct llama_model * model) {
  14545. return model->vocab.special_suffix_id;
  14546. }
  14547. llama_token llama_token_eot(const struct llama_model * model) {
  14548. return model->vocab.special_eot_id;
  14549. }
  14550. int32_t llama_tokenize(
  14551. const struct llama_model * model,
  14552. const char * text,
  14553. int32_t text_len,
  14554. llama_token * tokens,
  14555. int32_t n_tokens_max,
  14556. bool add_special,
  14557. bool parse_special) {
  14558. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14559. if (n_tokens_max < (int) res.size()) {
  14560. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14561. return -((int) res.size());
  14562. }
  14563. for (size_t i = 0; i < res.size(); i++) {
  14564. tokens[i] = res[i];
  14565. }
  14566. return res.size();
  14567. }
  14568. static std::string llama_decode_text(const std::string & text) {
  14569. std::string decoded_text;
  14570. const auto cpts = unicode_cpts_from_utf8(text);
  14571. for (const auto cpt : cpts) {
  14572. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt));
  14573. }
  14574. return decoded_text;
  14575. }
  14576. // does not write null-terminator to buf
  14577. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14578. if (0 <= token && token < llama_n_vocab(model)) {
  14579. switch (llama_vocab_get_type(model->vocab)) {
  14580. case LLAMA_VOCAB_TYPE_WPM:
  14581. case LLAMA_VOCAB_TYPE_SPM: {
  14582. // NOTE: we accept all unsupported token types,
  14583. // suppressing them like CONTROL tokens.
  14584. if (llama_is_normal_token(model->vocab, token)) {
  14585. std::string result = model->vocab.id_to_token[token].text;
  14586. llama_unescape_whitespace(result);
  14587. if (length < (int) result.length()) {
  14588. return -(int) result.length();
  14589. }
  14590. memcpy(buf, result.c_str(), result.length());
  14591. return result.length();
  14592. } else if (
  14593. (llama_is_user_defined_token(model->vocab, token)) ||
  14594. (llama_is_control_token (model->vocab, token) && special)) {
  14595. std::string result = model->vocab.id_to_token[token].text;
  14596. if (length < (int) result.length()) {
  14597. return -(int) result.length();
  14598. }
  14599. memcpy(buf, result.c_str(), result.length());
  14600. return result.length();
  14601. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14602. if (length < 3) {
  14603. return -3;
  14604. }
  14605. memcpy(buf, "\xe2\x96\x85", 3);
  14606. return 3;
  14607. } else if (llama_is_byte_token(model->vocab, token)) {
  14608. if (length < 1) {
  14609. return -1;
  14610. }
  14611. buf[0] = llama_token_to_byte(model->vocab, token);
  14612. return 1;
  14613. }
  14614. break;
  14615. }
  14616. case LLAMA_VOCAB_TYPE_BPE: {
  14617. // NOTE: we accept all unsupported token types,
  14618. // suppressing them like CONTROL tokens.
  14619. if (llama_is_normal_token(model->vocab, token)) {
  14620. std::string result = model->vocab.id_to_token[token].text;
  14621. result = llama_decode_text(result);
  14622. if (length < (int) result.length()) {
  14623. return -(int) result.length();
  14624. }
  14625. memcpy(buf, result.c_str(), result.length());
  14626. return result.length();
  14627. } else if (
  14628. (llama_is_user_defined_token(model->vocab, token)) ||
  14629. (llama_is_control_token (model->vocab, token) && special)) {
  14630. std::string result = model->vocab.id_to_token[token].text;
  14631. if (length < (int) result.length()) {
  14632. return -(int) result.length();
  14633. }
  14634. memcpy(buf, result.c_str(), result.length());
  14635. return result.length();
  14636. }
  14637. break;
  14638. }
  14639. default:
  14640. GGML_ASSERT(false);
  14641. }
  14642. }
  14643. return 0;
  14644. }
  14645. // trim whitespace from the beginning and end of a string
  14646. static std::string trim(const std::string & str) {
  14647. size_t start = 0;
  14648. size_t end = str.size();
  14649. while (start < end && isspace(str[start])) {
  14650. start += 1;
  14651. }
  14652. while (end > start && isspace(str[end - 1])) {
  14653. end -= 1;
  14654. }
  14655. return str.substr(start, end - start);
  14656. }
  14657. // Simple version of "llama_apply_chat_template" that only works with strings
  14658. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14659. static int32_t llama_chat_apply_template_internal(
  14660. const std::string & tmpl,
  14661. const std::vector<const llama_chat_message *> & chat,
  14662. std::string & dest, bool add_ass) {
  14663. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14664. std::stringstream ss;
  14665. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14666. // chatml template
  14667. for (auto message : chat) {
  14668. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14669. }
  14670. if (add_ass) {
  14671. ss << "<|im_start|>assistant\n";
  14672. }
  14673. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14674. // llama2 template and its variants
  14675. // [variant] support system message
  14676. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14677. // [variant] space before + after response
  14678. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14679. // [variant] add BOS inside history
  14680. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14681. // [variant] trim spaces from the input message
  14682. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14683. // construct the prompt
  14684. bool is_inside_turn = true; // skip BOS at the beginning
  14685. ss << "[INST] ";
  14686. for (auto message : chat) {
  14687. std::string content = strip_message ? trim(message->content) : message->content;
  14688. std::string role(message->role);
  14689. if (!is_inside_turn) {
  14690. is_inside_turn = true;
  14691. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14692. }
  14693. if (role == "system") {
  14694. if (support_system_message) {
  14695. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14696. } else {
  14697. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14698. ss << content << "\n";
  14699. }
  14700. } else if (role == "user") {
  14701. ss << content << " [/INST]";
  14702. } else {
  14703. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14704. is_inside_turn = false;
  14705. }
  14706. }
  14707. // llama2 templates seem to not care about "add_generation_prompt"
  14708. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14709. // zephyr template
  14710. for (auto message : chat) {
  14711. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14712. }
  14713. if (add_ass) {
  14714. ss << "<|assistant|>\n";
  14715. }
  14716. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14717. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14718. for (auto message : chat) {
  14719. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14720. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14721. }
  14722. if (add_ass) {
  14723. ss << "<s>assistant\n";
  14724. }
  14725. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14726. // google/gemma-7b-it
  14727. std::string system_prompt = "";
  14728. for (auto message : chat) {
  14729. std::string role(message->role);
  14730. if (role == "system") {
  14731. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14732. system_prompt = trim(message->content);
  14733. continue;
  14734. }
  14735. // in gemma, "assistant" is "model"
  14736. role = role == "assistant" ? "model" : message->role;
  14737. ss << "<start_of_turn>" << role << "\n";
  14738. if (!system_prompt.empty() && role != "model") {
  14739. ss << system_prompt << "\n\n";
  14740. system_prompt = "";
  14741. }
  14742. ss << trim(message->content) << "<end_of_turn>\n";
  14743. }
  14744. if (add_ass) {
  14745. ss << "<start_of_turn>model\n";
  14746. }
  14747. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14748. // OrionStarAI/Orion-14B-Chat
  14749. std::string system_prompt = "";
  14750. for (auto message : chat) {
  14751. std::string role(message->role);
  14752. if (role == "system") {
  14753. // there is no system message support, we will merge it with user prompt
  14754. system_prompt = message->content;
  14755. continue;
  14756. } else if (role == "user") {
  14757. ss << "Human: ";
  14758. if (!system_prompt.empty()) {
  14759. ss << system_prompt << "\n\n";
  14760. system_prompt = "";
  14761. }
  14762. ss << message->content << "\n\nAssistant: </s>";
  14763. } else {
  14764. ss << message->content << "</s>";
  14765. }
  14766. }
  14767. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14768. // openchat/openchat-3.5-0106,
  14769. for (auto message : chat) {
  14770. std::string role(message->role);
  14771. if (role == "system") {
  14772. ss << message->content << "<|end_of_turn|>";
  14773. } else {
  14774. role[0] = toupper(role[0]);
  14775. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14776. }
  14777. }
  14778. if (add_ass) {
  14779. ss << "GPT4 Correct Assistant:";
  14780. }
  14781. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14782. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14783. for (auto message : chat) {
  14784. std::string role(message->role);
  14785. if (role == "system") {
  14786. // Orca-Vicuna variant uses a system prefix
  14787. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14788. ss << "SYSTEM: " << message->content << "\n";
  14789. } else {
  14790. ss << message->content << "\n\n";
  14791. }
  14792. } else if (role == "user") {
  14793. ss << "USER: " << message->content << "\n";
  14794. } else if (role == "assistant") {
  14795. ss << "ASSISTANT: " << message->content << "</s>\n";
  14796. }
  14797. }
  14798. if (add_ass) {
  14799. ss << "ASSISTANT:";
  14800. }
  14801. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14802. // deepseek-ai/deepseek-coder-33b-instruct
  14803. for (auto message : chat) {
  14804. std::string role(message->role);
  14805. if (role == "system") {
  14806. ss << message->content;
  14807. } else if (role == "user") {
  14808. ss << "### Instruction:\n" << message->content << "\n";
  14809. } else if (role == "assistant") {
  14810. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  14811. }
  14812. }
  14813. if (add_ass) {
  14814. ss << "### Response:\n";
  14815. }
  14816. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  14817. // CohereForAI/c4ai-command-r-plus
  14818. for (auto message : chat) {
  14819. std::string role(message->role);
  14820. if (role == "system") {
  14821. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14822. } else if (role == "user") {
  14823. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14824. } else if (role == "assistant") {
  14825. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14826. }
  14827. }
  14828. if (add_ass) {
  14829. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  14830. }
  14831. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  14832. // Llama 3
  14833. for (auto message : chat) {
  14834. std::string role(message->role);
  14835. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  14836. }
  14837. if (add_ass) {
  14838. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  14839. }
  14840. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
  14841. // Phi 3
  14842. for (auto message : chat) {
  14843. std::string role(message->role);
  14844. ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
  14845. }
  14846. if (add_ass) {
  14847. ss << "<|assistant|>\n";
  14848. }
  14849. } else {
  14850. // template not supported
  14851. return -1;
  14852. }
  14853. dest = ss.str();
  14854. return dest.size();
  14855. }
  14856. LLAMA_API int32_t llama_chat_apply_template(
  14857. const struct llama_model * model,
  14858. const char * tmpl,
  14859. const struct llama_chat_message * chat,
  14860. size_t n_msg,
  14861. bool add_ass,
  14862. char * buf,
  14863. int32_t length) {
  14864. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  14865. if (tmpl == nullptr) {
  14866. GGML_ASSERT(model != nullptr);
  14867. // load template from model
  14868. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  14869. std::string template_key = "tokenizer.chat_template";
  14870. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  14871. if (res < 0) {
  14872. // worst case: there is no information about template, we will use chatml by default
  14873. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  14874. } else {
  14875. curr_tmpl = std::string(model_template.data(), model_template.size());
  14876. }
  14877. }
  14878. // format the chat to string
  14879. std::vector<const llama_chat_message *> chat_vec;
  14880. chat_vec.resize(n_msg);
  14881. for (size_t i = 0; i < n_msg; i++) {
  14882. chat_vec[i] = &chat[i];
  14883. }
  14884. std::string formatted_chat;
  14885. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  14886. if (res < 0) {
  14887. return res;
  14888. }
  14889. if (buf && length > 0) {
  14890. strncpy(buf, formatted_chat.c_str(), length);
  14891. }
  14892. return res;
  14893. }
  14894. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  14895. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  14896. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  14897. return strlen(split_path);
  14898. }
  14899. return 0;
  14900. }
  14901. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  14902. std::string str_split_path(split_path);
  14903. char postfix[32];
  14904. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  14905. std::string str_postfix(postfix);
  14906. // check if dest ends with postfix
  14907. int size_prefix = str_split_path.size() - str_postfix.size();
  14908. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  14909. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  14910. return size_prefix;
  14911. }
  14912. return 0;
  14913. }
  14914. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  14915. struct llama_timings result = {
  14916. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  14917. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  14918. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  14919. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  14920. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  14921. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  14922. /*.n_sample =*/ std::max(1, ctx->n_sample),
  14923. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  14924. /*.n_eval =*/ std::max(1, ctx->n_eval),
  14925. };
  14926. return result;
  14927. }
  14928. void llama_print_timings(struct llama_context * ctx) {
  14929. const llama_timings timings = llama_get_timings(ctx);
  14930. LLAMA_LOG_INFO("\n");
  14931. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  14932. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14933. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  14934. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  14935. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  14936. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14937. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  14938. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  14939. }
  14940. void llama_reset_timings(struct llama_context * ctx) {
  14941. ctx->t_start_us = ggml_time_us();
  14942. ctx->t_sample_us = ctx->n_sample = 0;
  14943. ctx->t_eval_us = ctx->n_eval = 0;
  14944. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  14945. }
  14946. const char * llama_print_system_info(void) {
  14947. static std::string s;
  14948. s = "";
  14949. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  14950. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  14951. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  14952. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  14953. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  14954. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  14955. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  14956. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  14957. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  14958. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  14959. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  14960. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  14961. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  14962. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  14963. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  14964. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  14965. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  14966. #ifdef GGML_USE_LLAMAFILE
  14967. s += "LLAMAFILE = 1 | ";
  14968. #else
  14969. s += "LLAMAFILE = 0 | ";
  14970. #endif
  14971. return s.c_str();
  14972. }
  14973. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  14974. fprintf(stream, "\n");
  14975. fprintf(stream, "###########\n");
  14976. fprintf(stream, "# Timings #\n");
  14977. fprintf(stream, "###########\n");
  14978. fprintf(stream, "\n");
  14979. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  14980. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  14981. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  14982. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  14983. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  14984. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  14985. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  14986. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  14987. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  14988. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  14989. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  14990. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  14991. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  14992. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  14993. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  14994. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  14995. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  14996. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  14997. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  14998. }
  14999. // For internal test use
  15000. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15001. struct llama_context * ctx
  15002. ) {
  15003. return ctx->model.tensors_by_name;
  15004. }
  15005. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15006. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15007. g_state.log_callback_user_data = user_data;
  15008. #ifdef GGML_USE_METAL
  15009. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15010. #endif
  15011. }
  15012. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15013. va_list args_copy;
  15014. va_copy(args_copy, args);
  15015. char buffer[128];
  15016. int len = vsnprintf(buffer, 128, format, args);
  15017. if (len < 128) {
  15018. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15019. } else {
  15020. char* buffer2 = new char[len+1];
  15021. vsnprintf(buffer2, len+1, format, args_copy);
  15022. buffer2[len] = 0;
  15023. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15024. delete[] buffer2;
  15025. }
  15026. va_end(args_copy);
  15027. }
  15028. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15029. va_list args;
  15030. va_start(args, format);
  15031. llama_log_internal_v(level, format, args);
  15032. va_end(args);
  15033. }
  15034. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15035. (void) level;
  15036. (void) user_data;
  15037. fputs(text, stderr);
  15038. fflush(stderr);
  15039. }