ggml.c 477 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. #if __AVX__ || __AVX2__ || __AVX512F__
  410. // horizontally add 8 floats
  411. static inline float hsum_float_8(const __m256 x) {
  412. __m128 res = _mm256_extractf128_ps(x, 1);
  413. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  414. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  415. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  416. return _mm_cvtss_f32(res);
  417. }
  418. // horizontally add 8 int32_t
  419. static inline int hsum_i32_8(const __m256i a) {
  420. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  421. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  422. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  423. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  424. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  425. }
  426. // horizontally add 4 int32_t
  427. static inline int hsum_i32_4(const __m128i a) {
  428. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  429. const __m128i sum64 = _mm_add_epi32(hi64, a);
  430. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  431. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  432. }
  433. #if __AVX2__ || __AVX512F__
  434. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  435. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  436. uint32_t x32;
  437. memcpy(&x32, x, sizeof(uint32_t));
  438. const __m256i shuf_mask = _mm256_set_epi64x(
  439. 0x0303030303030303, 0x0202020202020202,
  440. 0x0101010101010101, 0x0000000000000000);
  441. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  442. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  443. bytes = _mm256_or_si256(bytes, bit_mask);
  444. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  445. }
  446. // Unpack 32 4-bit fields into 32 bytes
  447. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  448. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  449. {
  450. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  451. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  452. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  453. return _mm256_and_si256(lowMask, bytes);
  454. }
  455. // add int16_t pairwise and return as float vector
  456. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  457. const __m256i ones = _mm256_set1_epi16(1);
  458. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  459. return _mm256_cvtepi32_ps(summed_pairs);
  460. }
  461. // multiply int8_t, add results pairwise twice and return as float vector
  462. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  463. // Get absolute values of x vectors
  464. const __m256i ax = _mm256_sign_epi8(x, x);
  465. // Sign the values of the y vectors
  466. const __m256i sy = _mm256_sign_epi8(y, x);
  467. #if __AVXVNNI__
  468. const __m256i zero = _mm256_setzero_si256();
  469. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  470. return _mm256_cvtepi32_ps(summed_pairs);
  471. #else
  472. // Perform multiplication and create 16-bit values
  473. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  474. return sum_i16_pairs_float(dot);
  475. #endif
  476. }
  477. static inline __m128i packNibbles( __m256i bytes )
  478. {
  479. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  480. #if __AVX512F__
  481. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  482. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  483. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  484. #else
  485. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  486. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  487. __m256i low = _mm256_and_si256( lowByte, bytes );
  488. high = _mm256_srli_epi16( high, 4 );
  489. bytes = _mm256_or_si256( low, high );
  490. // Compress uint16_t lanes into bytes
  491. __m128i r0 = _mm256_castsi256_si128( bytes );
  492. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  493. return _mm_packus_epi16( r0, r1 );
  494. #endif
  495. }
  496. #else
  497. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  498. {
  499. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  500. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  501. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  502. __m128i low = _mm_and_si128( lowByte, bytes1 );
  503. high = _mm_srli_epi16( high, 4 );
  504. bytes1 = _mm_or_si128( low, high );
  505. high = _mm_andnot_si128( lowByte, bytes2 );
  506. low = _mm_and_si128( lowByte, bytes2 );
  507. high = _mm_srli_epi16( high, 4 );
  508. bytes2 = _mm_or_si128( low, high );
  509. return _mm_packus_epi16( bytes1, bytes2);
  510. }
  511. #endif
  512. #elif defined(__SSSE3__)
  513. // horizontally add 4x4 floats
  514. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  515. __m128 res_0 =_mm_hadd_ps(a, b);
  516. __m128 res_1 =_mm_hadd_ps(c, d);
  517. __m128 res =_mm_hadd_ps(res_0, res_1);
  518. res =_mm_hadd_ps(res, res);
  519. res =_mm_hadd_ps(res, res);
  520. return _mm_cvtss_f32(res);
  521. }
  522. #endif // __AVX__ || __AVX2__ || __AVX512F__
  523. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  524. #if __ARM_NEON
  525. #if !defined(__aarch64__)
  526. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  527. return
  528. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  529. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  530. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  531. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  532. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  533. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  534. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  535. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  536. }
  537. inline static int16_t vaddvq_s8(int8x16_t v) {
  538. return
  539. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  540. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  541. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  542. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  543. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  544. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  545. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  546. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  547. }
  548. inline static int32_t vaddvq_s16(int16x8_t v) {
  549. return
  550. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  551. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  552. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  553. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  554. }
  555. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  556. return
  557. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  558. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  559. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  560. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  561. }
  562. inline static int32_t vaddvq_s32(int32x4_t v) {
  563. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  564. }
  565. inline static float vaddvq_f32(float32x4_t v) {
  566. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  567. }
  568. float vminvq_f32(float32x4_t v) {
  569. return
  570. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  571. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  572. }
  573. float vmaxvq_f32(float32x4_t v) {
  574. return
  575. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  576. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  577. }
  578. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  579. int32x4_t res;
  580. res[0] = roundf(vgetq_lane_f32(v, 0));
  581. res[1] = roundf(vgetq_lane_f32(v, 1));
  582. res[2] = roundf(vgetq_lane_f32(v, 2));
  583. res[3] = roundf(vgetq_lane_f32(v, 3));
  584. return res;
  585. }
  586. #endif
  587. #endif
  588. #define QK4_0 32
  589. typedef struct {
  590. float d; // delta
  591. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  592. } block_q4_0;
  593. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  594. #define QK4_1 32
  595. typedef struct {
  596. float d; // delta
  597. float m; // min
  598. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  599. } block_q4_1;
  600. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  601. #define QK5_0 32
  602. typedef struct {
  603. ggml_fp16_t d; // delta
  604. uint8_t qh[4]; // 5-th bit of quants
  605. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  606. } block_q5_0;
  607. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  608. #define QK5_1 32
  609. typedef struct {
  610. ggml_fp16_t d; // delta
  611. ggml_fp16_t m; // min
  612. uint8_t qh[4]; // 5-th bit of quants
  613. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  614. } block_q5_1;
  615. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  616. #define QK8_0 32
  617. typedef struct {
  618. float d; // delta
  619. int8_t qs[QK8_0]; // quants
  620. } block_q8_0;
  621. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  622. #define QK8_1 32
  623. typedef struct {
  624. float d; // delta
  625. float s; // d * sum(qs[i])
  626. int8_t qs[QK8_1]; // quants
  627. } block_q8_1;
  628. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  629. // reference implementation for deterministic creation of model files
  630. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  631. static const int qk = QK4_0;
  632. assert(k % qk == 0);
  633. const int nb = k / qk;
  634. for (int i = 0; i < nb; i++) {
  635. float amax = 0.0f; // absolute max
  636. float max = 0.0f;
  637. for (int j = 0; j < qk; j++) {
  638. const float v = x[i*qk + j];
  639. if (amax < fabsf(v)) {
  640. amax = fabsf(v);
  641. max = v;
  642. }
  643. }
  644. const float d = max / -8;
  645. const float id = d ? 1.0f/d : 0.0f;
  646. y[i].d = d;
  647. for (int j = 0; j < qk/2; ++j) {
  648. const float x0 = x[i*qk + 0 + j]*id;
  649. const float x1 = x[i*qk + qk/2 + j]*id;
  650. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  651. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  652. y[i].qs[j] = xi0;
  653. y[i].qs[j] |= xi1 << 4;
  654. }
  655. }
  656. }
  657. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  658. quantize_row_q4_0_reference(x, y, k);
  659. }
  660. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  661. const int qk = QK4_1;
  662. assert(k % qk == 0);
  663. const int nb = k / qk;
  664. for (int i = 0; i < nb; i++) {
  665. float min = FLT_MAX;
  666. float max = -FLT_MAX;
  667. for (int j = 0; j < qk; j++) {
  668. const float v = x[i*qk + j];
  669. if (v < min) min = v;
  670. if (v > max) max = v;
  671. }
  672. const float d = (max - min) / ((1 << 4) - 1);
  673. const float id = d ? 1.0f/d : 0.0f;
  674. y[i].d = d;
  675. y[i].m = min;
  676. for (int j = 0; j < qk/2; ++j) {
  677. const float x0 = (x[i*qk + 0 + j] - min)*id;
  678. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  679. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  680. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  681. y[i].qs[j] = xi0;
  682. y[i].qs[j] |= xi1 << 4;
  683. }
  684. }
  685. }
  686. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  687. quantize_row_q4_1_reference(x, y, k);
  688. }
  689. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  690. static const int qk = QK5_0;
  691. assert(k % qk == 0);
  692. const int nb = k / qk;
  693. for (int i = 0; i < nb; i++) {
  694. float amax = 0.0f; // absolute max
  695. float max = 0.0f;
  696. for (int j = 0; j < qk; j++) {
  697. const float v = x[i*qk + j];
  698. if (amax < fabsf(v)) {
  699. amax = fabsf(v);
  700. max = v;
  701. }
  702. }
  703. const float d = max / -16;
  704. const float id = d ? 1.0f/d : 0.0f;
  705. y[i].d = GGML_FP32_TO_FP16(d);
  706. uint32_t qh = 0;
  707. for (int j = 0; j < qk/2; ++j) {
  708. const float x0 = x[i*qk + 0 + j]*id;
  709. const float x1 = x[i*qk + qk/2 + j]*id;
  710. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  711. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  712. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  713. // get the 5-th bit and store it in qh at the right position
  714. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  715. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  716. }
  717. memcpy(&y[i].qh, &qh, sizeof(qh));
  718. }
  719. }
  720. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  721. quantize_row_q5_0_reference(x, y, k);
  722. }
  723. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  724. const int qk = QK5_1;
  725. assert(k % qk == 0);
  726. const int nb = k / qk;
  727. for (int i = 0; i < nb; i++) {
  728. float min = FLT_MAX;
  729. float max = -FLT_MAX;
  730. for (int j = 0; j < qk; j++) {
  731. const float v = x[i*qk + j];
  732. if (v < min) min = v;
  733. if (v > max) max = v;
  734. }
  735. const float d = (max - min) / ((1 << 5) - 1);
  736. const float id = d ? 1.0f/d : 0.0f;
  737. y[i].d = GGML_FP32_TO_FP16(d);
  738. y[i].m = GGML_FP32_TO_FP16(min);
  739. uint32_t qh = 0;
  740. for (int j = 0; j < qk/2; ++j) {
  741. const float x0 = (x[i*qk + 0 + j] - min)*id;
  742. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  743. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  744. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  745. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  746. // get the 5-th bit and store it in qh at the right position
  747. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  748. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  749. }
  750. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  751. }
  752. }
  753. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  754. quantize_row_q5_1_reference(x, y, k);
  755. }
  756. // reference implementation for deterministic creation of model files
  757. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  758. assert(k % QK8_0 == 0);
  759. const int nb = k / QK8_0;
  760. for (int i = 0; i < nb; i++) {
  761. float amax = 0.0f; // absolute max
  762. for (int j = 0; j < QK8_0; j++) {
  763. const float v = x[i*QK8_0 + j];
  764. amax = MAX(amax, fabsf(v));
  765. }
  766. const float d = amax / ((1 << 7) - 1);
  767. const float id = d ? 1.0f/d : 0.0f;
  768. y[i].d = d;
  769. for (int j = 0; j < QK8_0; ++j) {
  770. const float x0 = x[i*QK8_0 + j]*id;
  771. y[i].qs[j] = roundf(x0);
  772. }
  773. }
  774. }
  775. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  776. assert(QK8_0 == 32);
  777. assert(k % QK8_0 == 0);
  778. const int nb = k / QK8_0;
  779. block_q8_0 * restrict y = vy;
  780. #if defined(__ARM_NEON)
  781. for (int i = 0; i < nb; i++) {
  782. float32x4_t srcv [8];
  783. float32x4_t asrcv[8];
  784. float32x4_t amaxv[8];
  785. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  786. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  787. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  788. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  789. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  790. const float amax = vmaxvq_f32(amaxv[0]);
  791. const float d = amax / ((1 << 7) - 1);
  792. const float id = d ? 1.0f/d : 0.0f;
  793. y[i].d = d;
  794. for (int j = 0; j < 8; j++) {
  795. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  796. const int32x4_t vi = vcvtnq_s32_f32(v);
  797. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  798. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  799. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  800. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  801. }
  802. }
  803. #elif defined(__AVX2__) || defined(__AVX__)
  804. for (int i = 0; i < nb; i++) {
  805. // Load elements into 4 AVX vectors
  806. __m256 v0 = _mm256_loadu_ps( x );
  807. __m256 v1 = _mm256_loadu_ps( x + 8 );
  808. __m256 v2 = _mm256_loadu_ps( x + 16 );
  809. __m256 v3 = _mm256_loadu_ps( x + 24 );
  810. x += 32;
  811. // Compute max(abs(e)) for the block
  812. const __m256 signBit = _mm256_set1_ps( -0.0f );
  813. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  814. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  815. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  816. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  817. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  818. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  819. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  820. const float maxScalar = _mm_cvtss_f32( max4 );
  821. // Quantize these floats
  822. const float d = maxScalar / 127.f;
  823. y[i].d = d;
  824. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  825. const __m256 mul = _mm256_set1_ps( id );
  826. // Apply the multiplier
  827. v0 = _mm256_mul_ps( v0, mul );
  828. v1 = _mm256_mul_ps( v1, mul );
  829. v2 = _mm256_mul_ps( v2, mul );
  830. v3 = _mm256_mul_ps( v3, mul );
  831. // Round to nearest integer
  832. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  833. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  834. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  835. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  836. // Convert floats to integers
  837. __m256i i0 = _mm256_cvtps_epi32( v0 );
  838. __m256i i1 = _mm256_cvtps_epi32( v1 );
  839. __m256i i2 = _mm256_cvtps_epi32( v2 );
  840. __m256i i3 = _mm256_cvtps_epi32( v3 );
  841. #if defined(__AVX2__)
  842. // Convert int32 to int16
  843. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  844. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  845. // Convert int16 to int8
  846. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  847. // We got our precious signed bytes, but the order is now wrong
  848. // These AVX2 pack instructions process 16-byte pieces independently
  849. // The following instruction is fixing the order
  850. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  851. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  852. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  853. #else
  854. // Since we don't have in AVX some necessary functions,
  855. // we split the registers in half and call AVX2 analogs from SSE
  856. __m128i ni0 = _mm256_castsi256_si128( i0 );
  857. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  858. __m128i ni2 = _mm256_castsi256_si128( i1 );
  859. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  860. __m128i ni4 = _mm256_castsi256_si128( i2 );
  861. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  862. __m128i ni6 = _mm256_castsi256_si128( i3 );
  863. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  864. // Convert int32 to int16
  865. ni0 = _mm_packs_epi32( ni0, ni1 );
  866. ni2 = _mm_packs_epi32( ni2, ni3 );
  867. ni4 = _mm_packs_epi32( ni4, ni5 );
  868. ni6 = _mm_packs_epi32( ni6, ni7 );
  869. // Convert int16 to int8
  870. ni0 = _mm_packs_epi16( ni0, ni2 );
  871. ni4 = _mm_packs_epi16( ni4, ni6 );
  872. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  873. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  874. #endif
  875. }
  876. #else
  877. // scalar
  878. quantize_row_q8_0_reference(x, y, k);
  879. #endif
  880. }
  881. // reference implementation for deterministic creation of model files
  882. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  883. assert(QK8_1 == 32);
  884. assert(k % QK8_1 == 0);
  885. const int nb = k / QK8_1;
  886. for (int i = 0; i < nb; i++) {
  887. float amax = 0.0f; // absolute max
  888. for (int j = 0; j < QK8_1; j++) {
  889. const float v = x[i*QK8_1 + j];
  890. amax = MAX(amax, fabsf(v));
  891. }
  892. const float d = amax / ((1 << 7) - 1);
  893. const float id = d ? 1.0f/d : 0.0f;
  894. y[i].d = d;
  895. int sum = 0;
  896. for (int j = 0; j < QK8_1/2; ++j) {
  897. const float v0 = x[i*QK8_1 + j]*id;
  898. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  899. y[i].qs[ j] = roundf(v0);
  900. y[i].qs[QK8_1/2 + j] = roundf(v1);
  901. sum += y[i].qs[ j];
  902. sum += y[i].qs[QK8_1/2 + j];
  903. }
  904. y[i].s = d * sum;
  905. }
  906. }
  907. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  908. assert(k % QK8_1 == 0);
  909. const int nb = k / QK8_1;
  910. block_q8_1 * restrict y = vy;
  911. #if defined(__ARM_NEON)
  912. for (int i = 0; i < nb; i++) {
  913. float32x4_t srcv [8];
  914. float32x4_t asrcv[8];
  915. float32x4_t amaxv[8];
  916. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  917. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  918. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  919. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  920. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  921. const float amax = vmaxvq_f32(amaxv[0]);
  922. const float d = amax / ((1 << 7) - 1);
  923. const float id = d ? 1.0f/d : 0.0f;
  924. y[i].d = d;
  925. int32x4_t accv = vdupq_n_s32(0);
  926. for (int j = 0; j < 8; j++) {
  927. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  928. const int32x4_t vi = vcvtnq_s32_f32(v);
  929. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  930. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  931. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  932. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  933. accv = vaddq_s32(accv, vi);
  934. }
  935. y[i].s = d * vaddvq_s32(accv);
  936. }
  937. #elif defined(__AVX2__) || defined(__AVX__)
  938. for (int i = 0; i < nb; i++) {
  939. // Load elements into 4 AVX vectors
  940. __m256 v0 = _mm256_loadu_ps( x );
  941. __m256 v1 = _mm256_loadu_ps( x + 8 );
  942. __m256 v2 = _mm256_loadu_ps( x + 16 );
  943. __m256 v3 = _mm256_loadu_ps( x + 24 );
  944. x += 32;
  945. // Compute max(abs(e)) for the block
  946. const __m256 signBit = _mm256_set1_ps( -0.0f );
  947. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  948. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  949. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  950. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  951. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  952. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  953. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  954. const float maxScalar = _mm_cvtss_f32( max4 );
  955. // Quantize these floats
  956. const float d = maxScalar / 127.f;
  957. y[i].d = d;
  958. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  959. const __m256 mul = _mm256_set1_ps( id );
  960. // Apply the multiplier
  961. v0 = _mm256_mul_ps( v0, mul );
  962. v1 = _mm256_mul_ps( v1, mul );
  963. v2 = _mm256_mul_ps( v2, mul );
  964. v3 = _mm256_mul_ps( v3, mul );
  965. // Round to nearest integer
  966. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  967. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  968. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  969. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  970. // Convert floats to integers
  971. __m256i i0 = _mm256_cvtps_epi32( v0 );
  972. __m256i i1 = _mm256_cvtps_epi32( v1 );
  973. __m256i i2 = _mm256_cvtps_epi32( v2 );
  974. __m256i i3 = _mm256_cvtps_epi32( v3 );
  975. #if defined(__AVX2__)
  976. // Compute the sum of the quants and set y[i].s
  977. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  978. // Convert int32 to int16
  979. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  980. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  981. // Convert int16 to int8
  982. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  983. // We got our precious signed bytes, but the order is now wrong
  984. // These AVX2 pack instructions process 16-byte pieces independently
  985. // The following instruction is fixing the order
  986. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  987. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  988. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  989. #else
  990. // Since we don't have in AVX some necessary functions,
  991. // we split the registers in half and call AVX2 analogs from SSE
  992. __m128i ni0 = _mm256_castsi256_si128( i0 );
  993. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  994. __m128i ni2 = _mm256_castsi256_si128( i1 );
  995. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  996. __m128i ni4 = _mm256_castsi256_si128( i2 );
  997. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  998. __m128i ni6 = _mm256_castsi256_si128( i3 );
  999. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1000. // Compute the sum of the quants and set y[i].s
  1001. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1002. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1003. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1004. // Convert int32 to int16
  1005. ni0 = _mm_packs_epi32( ni0, ni1 );
  1006. ni2 = _mm_packs_epi32( ni2, ni3 );
  1007. ni4 = _mm_packs_epi32( ni4, ni5 );
  1008. ni6 = _mm_packs_epi32( ni6, ni7 );
  1009. // Convert int16 to int8
  1010. ni0 = _mm_packs_epi16( ni0, ni2 );
  1011. ni4 = _mm_packs_epi16( ni4, ni6 );
  1012. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1013. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1014. #endif
  1015. }
  1016. #else
  1017. // scalar
  1018. quantize_row_q8_1_reference(x, y, k);
  1019. #endif
  1020. }
  1021. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1022. static const int qk = QK4_0;
  1023. assert(k % qk == 0);
  1024. const int nb = k / qk;
  1025. for (int i = 0; i < nb; i++) {
  1026. const float d = x[i].d;
  1027. for (int j = 0; j < qk/2; ++j) {
  1028. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1029. const int x1 = (x[i].qs[j] >> 4) - 8;
  1030. y[i*qk + j + 0 ] = x0*d;
  1031. y[i*qk + j + qk/2] = x1*d;
  1032. }
  1033. }
  1034. }
  1035. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1036. static const int qk = QK4_1;
  1037. assert(k % qk == 0);
  1038. const int nb = k / qk;
  1039. for (int i = 0; i < nb; i++) {
  1040. const float d = x[i].d;
  1041. const float m = x[i].m;
  1042. for (int j = 0; j < qk/2; ++j) {
  1043. const int x0 = (x[i].qs[j] & 0x0F);
  1044. const int x1 = (x[i].qs[j] >> 4);
  1045. y[i*qk + j + 0 ] = x0*d + m;
  1046. y[i*qk + j + qk/2] = x1*d + m;
  1047. }
  1048. }
  1049. }
  1050. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1051. static const int qk = QK5_0;
  1052. assert(k % qk == 0);
  1053. const int nb = k / qk;
  1054. for (int i = 0; i < nb; i++) {
  1055. const float d = GGML_FP16_TO_FP32(x[i].d);
  1056. uint32_t qh;
  1057. memcpy(&qh, x[i].qh, sizeof(qh));
  1058. for (int j = 0; j < qk/2; ++j) {
  1059. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1060. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1061. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1062. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1063. y[i*qk + j + 0 ] = x0*d;
  1064. y[i*qk + j + qk/2] = x1*d;
  1065. }
  1066. }
  1067. }
  1068. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1069. static const int qk = QK5_1;
  1070. assert(k % qk == 0);
  1071. const int nb = k / qk;
  1072. for (int i = 0; i < nb; i++) {
  1073. const float d = GGML_FP16_TO_FP32(x[i].d);
  1074. const float m = GGML_FP16_TO_FP32(x[i].m);
  1075. uint32_t qh;
  1076. memcpy(&qh, x[i].qh, sizeof(qh));
  1077. for (int j = 0; j < qk/2; ++j) {
  1078. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1079. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1080. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1081. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1082. y[i*qk + j + 0 ] = x0*d + m;
  1083. y[i*qk + j + qk/2] = x1*d + m;
  1084. }
  1085. }
  1086. }
  1087. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1088. static const int qk = QK8_0;
  1089. assert(k % qk == 0);
  1090. const int nb = k / qk;
  1091. const block_q8_0 * restrict x = vx;
  1092. for (int i = 0; i < nb; i++) {
  1093. const float d = x[i].d;
  1094. for (int j = 0; j < qk; ++j) {
  1095. y[i*qk + j] = x[i].qs[j]*d;
  1096. }
  1097. }
  1098. }
  1099. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1100. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1101. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1102. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1103. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1104. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1105. [GGML_TYPE_Q4_0] = {
  1106. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1107. .quantize_row_q = quantize_row_q4_0,
  1108. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1109. .quantize_row_q_dot = quantize_row_q8_0,
  1110. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1111. .vec_dot_type = GGML_TYPE_Q8_0,
  1112. },
  1113. [GGML_TYPE_Q4_1] = {
  1114. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1115. .quantize_row_q = quantize_row_q4_1,
  1116. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1117. .quantize_row_q_dot = quantize_row_q8_1,
  1118. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1119. .vec_dot_type = GGML_TYPE_Q8_1,
  1120. },
  1121. [GGML_TYPE_Q5_0] = {
  1122. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1123. .quantize_row_q = quantize_row_q5_0,
  1124. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1125. .quantize_row_q_dot = quantize_row_q8_0,
  1126. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1127. .vec_dot_type = GGML_TYPE_Q8_0,
  1128. },
  1129. [GGML_TYPE_Q5_1] = {
  1130. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1131. .quantize_row_q = quantize_row_q5_1,
  1132. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1133. .quantize_row_q_dot = quantize_row_q8_1,
  1134. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1135. .vec_dot_type = GGML_TYPE_Q8_1,
  1136. },
  1137. [GGML_TYPE_Q8_0] = {
  1138. .dequantize_row_q = dequantize_row_q8_0,
  1139. .quantize_row_q = quantize_row_q8_0,
  1140. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1141. .quantize_row_q_dot = quantize_row_q8_0,
  1142. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1143. .vec_dot_type = GGML_TYPE_Q8_0,
  1144. },
  1145. [GGML_TYPE_Q8_1] = {
  1146. .dequantize_row_q = NULL, // TODO
  1147. .quantize_row_q = quantize_row_q8_1,
  1148. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1149. .quantize_row_q_dot = quantize_row_q8_1,
  1150. .vec_dot_q = NULL, // TODO
  1151. .vec_dot_type = GGML_TYPE_Q8_1,
  1152. },
  1153. };
  1154. // For internal test use
  1155. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1156. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1157. return quantize_fns[i];
  1158. }
  1159. //
  1160. // simd mappings
  1161. //
  1162. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1163. // we then implement the fundamental computation operations below using only these macros
  1164. // adding support for new architectures requires to define the corresponding SIMD macros
  1165. //
  1166. // GGML_F32_STEP / GGML_F16_STEP
  1167. // number of elements to process in a single step
  1168. //
  1169. // GGML_F32_EPR / GGML_F16_EPR
  1170. // number of elements to fit in a single register
  1171. //
  1172. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1173. #define GGML_SIMD
  1174. // F32 NEON
  1175. #define GGML_F32_STEP 16
  1176. #define GGML_F32_EPR 4
  1177. #define GGML_F32x4 float32x4_t
  1178. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1179. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1180. #define GGML_F32x4_LOAD vld1q_f32
  1181. #define GGML_F32x4_STORE vst1q_f32
  1182. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1183. #define GGML_F32x4_ADD vaddq_f32
  1184. #define GGML_F32x4_MUL vmulq_f32
  1185. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1186. #define GGML_F32x4_REDUCE(res, x) \
  1187. { \
  1188. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1189. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1190. } \
  1191. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1192. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1193. } \
  1194. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1195. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1196. } \
  1197. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1198. }
  1199. #define GGML_F32_VEC GGML_F32x4
  1200. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1201. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1202. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1203. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1204. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1205. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1206. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1207. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1208. // F16 NEON
  1209. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1210. #define GGML_F16_STEP 32
  1211. #define GGML_F16_EPR 8
  1212. #define GGML_F16x8 float16x8_t
  1213. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1214. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1215. #define GGML_F16x8_LOAD vld1q_f16
  1216. #define GGML_F16x8_STORE vst1q_f16
  1217. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1218. #define GGML_F16x8_ADD vaddq_f16
  1219. #define GGML_F16x8_MUL vmulq_f16
  1220. #define GGML_F16x8_REDUCE(res, x) \
  1221. { \
  1222. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1223. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1224. } \
  1225. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1226. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1227. } \
  1228. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1229. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1230. } \
  1231. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1232. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1233. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1234. }
  1235. #define GGML_F16_VEC GGML_F16x8
  1236. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1237. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1238. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1239. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1240. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1241. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1242. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1243. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1244. #else
  1245. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1246. // and take advantage of the vcvt_ functions to convert to/from FP16
  1247. #define GGML_F16_STEP 16
  1248. #define GGML_F16_EPR 4
  1249. #define GGML_F32Cx4 float32x4_t
  1250. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1251. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1252. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1253. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1254. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1255. #define GGML_F32Cx4_ADD vaddq_f32
  1256. #define GGML_F32Cx4_MUL vmulq_f32
  1257. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1258. #define GGML_F16_VEC GGML_F32Cx4
  1259. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1260. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1261. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1262. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1263. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1264. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1265. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1266. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1267. #endif
  1268. #elif defined(__AVX__)
  1269. #define GGML_SIMD
  1270. // F32 AVX
  1271. #define GGML_F32_STEP 32
  1272. #define GGML_F32_EPR 8
  1273. #define GGML_F32x8 __m256
  1274. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1275. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1276. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1277. #define GGML_F32x8_STORE _mm256_storeu_ps
  1278. #if defined(__FMA__)
  1279. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1280. #else
  1281. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1282. #endif
  1283. #define GGML_F32x8_ADD _mm256_add_ps
  1284. #define GGML_F32x8_MUL _mm256_mul_ps
  1285. #define GGML_F32x8_REDUCE(res, x) \
  1286. { \
  1287. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1288. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1289. } \
  1290. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1291. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1292. } \
  1293. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1294. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1295. } \
  1296. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1297. _mm256_extractf128_ps(x[0], 1)); \
  1298. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1299. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1300. }
  1301. // TODO: is this optimal ?
  1302. #define GGML_F32_VEC GGML_F32x8
  1303. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1304. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1305. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1306. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1307. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1308. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1309. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1310. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1311. // F16 AVX
  1312. #define GGML_F16_STEP 32
  1313. #define GGML_F16_EPR 8
  1314. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1315. #define GGML_F32Cx8 __m256
  1316. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1317. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1318. #if defined(__F16C__)
  1319. // the _mm256_cvt intrinsics require F16C
  1320. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1321. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1322. #else
  1323. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1324. float tmp[8];
  1325. for (int i = 0; i < 8; i++)
  1326. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1327. return _mm256_loadu_ps(tmp);
  1328. }
  1329. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1330. float arr[8];
  1331. _mm256_storeu_ps(arr, y);
  1332. for (int i = 0; i < 8; i++)
  1333. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1334. }
  1335. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1336. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1337. #endif
  1338. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1339. #define GGML_F32Cx8_ADD _mm256_add_ps
  1340. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1341. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1342. #define GGML_F16_VEC GGML_F32Cx8
  1343. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1344. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1345. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1346. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1347. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1348. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1349. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1350. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1351. #elif defined(__POWER9_VECTOR__)
  1352. #define GGML_SIMD
  1353. // F32 POWER9
  1354. #define GGML_F32_STEP 32
  1355. #define GGML_F32_EPR 4
  1356. #define GGML_F32x4 vector float
  1357. #define GGML_F32x4_ZERO 0.0f
  1358. #define GGML_F32x4_SET1 vec_splats
  1359. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1360. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1361. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1362. #define GGML_F32x4_ADD vec_add
  1363. #define GGML_F32x4_MUL vec_mul
  1364. #define GGML_F32x4_REDUCE(res, x) \
  1365. { \
  1366. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1367. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1368. } \
  1369. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1370. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1371. } \
  1372. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1373. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1374. } \
  1375. res = vec_extract(x[0], 0) + \
  1376. vec_extract(x[0], 1) + \
  1377. vec_extract(x[0], 2) + \
  1378. vec_extract(x[0], 3); \
  1379. }
  1380. #define GGML_F32_VEC GGML_F32x4
  1381. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1382. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1383. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1384. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1385. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1386. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1387. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1388. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1389. // F16 POWER9
  1390. #define GGML_F16_STEP GGML_F32_STEP
  1391. #define GGML_F16_EPR GGML_F32_EPR
  1392. #define GGML_F16_VEC GGML_F32x4
  1393. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1394. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1395. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1396. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1397. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1398. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1399. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1400. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1401. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1402. #define GGML_F16_VEC_STORE(p, r, i) \
  1403. if (i & 0x1) \
  1404. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1405. r[i - GGML_ENDIAN_BYTE(0)]), \
  1406. 0, p - GGML_F16_EPR)
  1407. #elif defined(__wasm_simd128__)
  1408. #define GGML_SIMD
  1409. // F32 WASM
  1410. #define GGML_F32_STEP 16
  1411. #define GGML_F32_EPR 4
  1412. #define GGML_F32x4 v128_t
  1413. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1414. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1415. #define GGML_F32x4_LOAD wasm_v128_load
  1416. #define GGML_F32x4_STORE wasm_v128_store
  1417. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1418. #define GGML_F32x4_ADD wasm_f32x4_add
  1419. #define GGML_F32x4_MUL wasm_f32x4_mul
  1420. #define GGML_F32x4_REDUCE(res, x) \
  1421. { \
  1422. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1423. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1424. } \
  1425. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1426. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1427. } \
  1428. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1429. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1430. } \
  1431. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1432. wasm_f32x4_extract_lane(x[0], 1) + \
  1433. wasm_f32x4_extract_lane(x[0], 2) + \
  1434. wasm_f32x4_extract_lane(x[0], 3); \
  1435. }
  1436. #define GGML_F32_VEC GGML_F32x4
  1437. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1438. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1439. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1440. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1441. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1442. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1443. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1444. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1445. // F16 WASM
  1446. #define GGML_F16_STEP 16
  1447. #define GGML_F16_EPR 4
  1448. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1449. float tmp[4];
  1450. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1451. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1452. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1453. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1454. return wasm_v128_load(tmp);
  1455. }
  1456. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1457. float tmp[4];
  1458. wasm_v128_store(tmp, x);
  1459. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1460. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1461. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1462. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1463. }
  1464. #define GGML_F16x4 v128_t
  1465. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1466. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1467. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1468. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1469. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1470. #define GGML_F16x4_ADD wasm_f32x4_add
  1471. #define GGML_F16x4_MUL wasm_f32x4_mul
  1472. #define GGML_F16x4_REDUCE(res, x) \
  1473. { \
  1474. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1475. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1476. } \
  1477. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1478. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1479. } \
  1480. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1481. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1482. } \
  1483. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1484. wasm_f32x4_extract_lane(x[0], 1) + \
  1485. wasm_f32x4_extract_lane(x[0], 2) + \
  1486. wasm_f32x4_extract_lane(x[0], 3); \
  1487. }
  1488. #define GGML_F16_VEC GGML_F16x4
  1489. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1490. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1491. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1492. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1493. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1494. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1495. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1496. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1497. #elif defined(__SSE3__)
  1498. #define GGML_SIMD
  1499. // F32 SSE
  1500. #define GGML_F32_STEP 32
  1501. #define GGML_F32_EPR 4
  1502. #define GGML_F32x4 __m128
  1503. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1504. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1505. #define GGML_F32x4_LOAD _mm_loadu_ps
  1506. #define GGML_F32x4_STORE _mm_storeu_ps
  1507. #if defined(__FMA__)
  1508. // TODO: Does this work?
  1509. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1510. #else
  1511. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1512. #endif
  1513. #define GGML_F32x4_ADD _mm_add_ps
  1514. #define GGML_F32x4_MUL _mm_mul_ps
  1515. #define GGML_F32x4_REDUCE(res, x) \
  1516. { \
  1517. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1518. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1519. } \
  1520. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1521. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1522. } \
  1523. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1524. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1525. } \
  1526. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1527. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1528. }
  1529. // TODO: is this optimal ?
  1530. #define GGML_F32_VEC GGML_F32x4
  1531. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1532. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1533. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1534. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1535. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1536. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1537. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1538. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1539. // F16 SSE
  1540. #define GGML_F16_STEP 32
  1541. #define GGML_F16_EPR 4
  1542. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1543. float tmp[4];
  1544. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1545. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1546. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1547. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1548. return _mm_loadu_ps(tmp);
  1549. }
  1550. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1551. float arr[4];
  1552. _mm_storeu_ps(arr, y);
  1553. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1554. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1555. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1556. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1557. }
  1558. #define GGML_F32Cx4 __m128
  1559. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1560. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1561. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1562. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1563. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1564. #define GGML_F32Cx4_ADD _mm_add_ps
  1565. #define GGML_F32Cx4_MUL _mm_mul_ps
  1566. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1567. #define GGML_F16_VEC GGML_F32Cx4
  1568. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1569. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1570. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1571. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1572. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1573. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1574. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1575. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1576. #endif
  1577. // GGML_F32_ARR / GGML_F16_ARR
  1578. // number of registers to use per step
  1579. #ifdef GGML_SIMD
  1580. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1581. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1582. #endif
  1583. //
  1584. // fundamental operations
  1585. //
  1586. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1587. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1588. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1589. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1590. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1591. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1592. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1593. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1594. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1595. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1596. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1597. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1598. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1599. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1600. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1601. #ifdef GGML_SIMD
  1602. float sumf = 0.0f;
  1603. const int np = (n & ~(GGML_F32_STEP - 1));
  1604. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1605. GGML_F32_VEC ax[GGML_F32_ARR];
  1606. GGML_F32_VEC ay[GGML_F32_ARR];
  1607. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1608. for (int j = 0; j < GGML_F32_ARR; j++) {
  1609. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1610. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1611. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1612. }
  1613. }
  1614. // reduce sum0..sum3 to sum0
  1615. GGML_F32_VEC_REDUCE(sumf, sum);
  1616. // leftovers
  1617. for (int i = np; i < n; ++i) {
  1618. sumf += x[i]*y[i];
  1619. }
  1620. #else
  1621. // scalar
  1622. ggml_float sumf = 0.0;
  1623. for (int i = 0; i < n; ++i) {
  1624. sumf += (ggml_float)(x[i]*y[i]);
  1625. }
  1626. #endif
  1627. *s = sumf;
  1628. }
  1629. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1630. ggml_float sumf = 0.0;
  1631. #if defined(GGML_SIMD)
  1632. const int np = (n & ~(GGML_F16_STEP - 1));
  1633. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1634. GGML_F16_VEC ax[GGML_F16_ARR];
  1635. GGML_F16_VEC ay[GGML_F16_ARR];
  1636. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1637. for (int j = 0; j < GGML_F16_ARR; j++) {
  1638. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1639. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1640. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1641. }
  1642. }
  1643. // reduce sum0..sum3 to sum0
  1644. GGML_F16_VEC_REDUCE(sumf, sum);
  1645. // leftovers
  1646. for (int i = np; i < n; ++i) {
  1647. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1648. }
  1649. #else
  1650. for (int i = 0; i < n; ++i) {
  1651. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1652. }
  1653. #endif
  1654. *s = sumf;
  1655. }
  1656. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1657. const int qk = QK8_0;
  1658. const int nb = n / qk;
  1659. assert(n % qk == 0);
  1660. assert(nb % 2 == 0);
  1661. const block_q4_0 * restrict x = vx;
  1662. const block_q8_0 * restrict y = vy;
  1663. #if defined(__ARM_NEON)
  1664. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1665. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1666. for (int i = 0; i < nb; i += 2) {
  1667. const block_q4_0 * restrict x0 = &x[i + 0];
  1668. const block_q4_0 * restrict x1 = &x[i + 1];
  1669. const block_q8_0 * restrict y0 = &y[i + 0];
  1670. const block_q8_0 * restrict y1 = &y[i + 1];
  1671. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1672. const int8x16_t s8b = vdupq_n_s8(0x8);
  1673. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1674. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1675. // 4-bit -> 8-bit
  1676. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1677. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1678. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1679. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1680. // sub 8
  1681. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1682. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1683. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1684. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1685. // load y
  1686. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1687. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1688. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1689. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1690. #if defined(__ARM_FEATURE_DOTPROD)
  1691. // dot product into int32x4_t
  1692. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1693. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1694. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1695. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1696. #else
  1697. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1698. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1699. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1700. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1701. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1702. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1703. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1704. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1705. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1706. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1707. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1708. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1709. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1710. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1711. #endif
  1712. }
  1713. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1714. #elif defined(__AVX2__)
  1715. // Initialize accumulator with zeros
  1716. __m256 acc = _mm256_setzero_ps();
  1717. // Main loop
  1718. for (int i = 0; i < nb; ++i) {
  1719. /* Compute combined scale for the block */
  1720. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1721. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1722. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1723. const __m256i off = _mm256_set1_epi8( 8 );
  1724. bx = _mm256_sub_epi8( bx, off );
  1725. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1726. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1727. /* Multiply q with scale and accumulate */
  1728. acc = _mm256_fmadd_ps( d, q, acc );
  1729. }
  1730. *s = hsum_float_8(acc);
  1731. #elif defined(__AVX__)
  1732. // Initialize accumulator with zeros
  1733. __m256 acc = _mm256_setzero_ps();
  1734. // Main loop
  1735. for (int i = 0; i < nb; ++i) {
  1736. // Compute combined scale for the block
  1737. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1738. const __m128i lowMask = _mm_set1_epi8(0xF);
  1739. const __m128i off = _mm_set1_epi8(8);
  1740. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1741. __m128i bx = _mm_and_si128(lowMask, tmp);
  1742. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1743. bx = _mm_sub_epi8(bx, off);
  1744. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1745. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1746. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1747. bx = _mm_sub_epi8(bx, off);
  1748. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1749. // Convert int32_t to float
  1750. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1751. // Apply the scale, and accumulate
  1752. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1753. }
  1754. *s = hsum_float_8(acc);
  1755. #elif defined(__SSSE3__)
  1756. // set constants
  1757. const __m128i lowMask = _mm_set1_epi8(0xF);
  1758. const __m128i off = _mm_set1_epi8(8);
  1759. // Initialize accumulator with zeros
  1760. __m128 acc_0 = _mm_setzero_ps();
  1761. __m128 acc_1 = _mm_setzero_ps();
  1762. __m128 acc_2 = _mm_setzero_ps();
  1763. __m128 acc_3 = _mm_setzero_ps();
  1764. // First round without accumulation
  1765. {
  1766. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1767. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1768. // Compute combined scale for the block 0 and 1
  1769. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[0].d ), _mm_set1_ps( y[0].d ) );
  1770. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1771. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1772. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1773. bx_0 = _mm_sub_epi8(bx_0, off);
  1774. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1775. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1776. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1777. bx_1 = _mm_sub_epi8(bx_1, off);
  1778. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1779. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1780. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1781. // Compute combined scale for the block 2 and 3
  1782. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[1].d ), _mm_set1_ps( y[1].d ) );
  1783. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1784. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1785. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1786. bx_2 = _mm_sub_epi8(bx_2, off);
  1787. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1788. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1789. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1790. bx_3 = _mm_sub_epi8(bx_3, off);
  1791. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1792. // Convert int32_t to float
  1793. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1794. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1795. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1796. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1797. // Apply the scale
  1798. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1799. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1800. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1801. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1802. }
  1803. // Main loop
  1804. for (int i = 2; i < nb; i+=2) {
  1805. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1806. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1807. // Compute combined scale for the block 0 and 1
  1808. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[i].d ), _mm_set1_ps( y[i].d ) );
  1809. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1810. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1811. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1812. bx_0 = _mm_sub_epi8(bx_0, off);
  1813. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1814. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1815. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1816. bx_1 = _mm_sub_epi8(bx_1, off);
  1817. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1818. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1819. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1820. // Compute combined scale for the block 2 and 3
  1821. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[i + 1].d ), _mm_set1_ps( y[i + 1].d ) );
  1822. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1823. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1824. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1825. bx_2 = _mm_sub_epi8(bx_2, off);
  1826. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1827. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1828. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1829. bx_3 = _mm_sub_epi8(bx_3, off);
  1830. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1831. // Convert int32_t to float
  1832. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1833. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1834. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1835. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1836. // Apply the scale
  1837. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1838. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1839. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1840. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1841. // Acummulate
  1842. acc_0 = _mm_add_ps(p0_d, acc_0);
  1843. acc_1 = _mm_add_ps(p1_d, acc_1);
  1844. acc_2 = _mm_add_ps(p2_d, acc_2);
  1845. acc_3 = _mm_add_ps(p3_d, acc_3);
  1846. }
  1847. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1848. #else
  1849. // scalar
  1850. float sumf = 0.0;
  1851. for (int i = 0; i < nb; i++) {
  1852. int sumi = 0;
  1853. for (int j = 0; j < qk/2; ++j) {
  1854. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1855. const int v1 = (x[i].qs[j] >> 4) - 8;
  1856. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1857. }
  1858. sumf += (x[i].d*y[i].d)*sumi;
  1859. }
  1860. *s = sumf;
  1861. #endif
  1862. }
  1863. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1864. const int qk = QK8_1;
  1865. const int nb = n / qk;
  1866. assert(n % qk == 0);
  1867. assert(nb % 2 == 0);
  1868. const block_q4_1 * restrict x = vx;
  1869. const block_q8_1 * restrict y = vy;
  1870. // TODO: add WASM SIMD
  1871. #if defined(__ARM_NEON)
  1872. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1873. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1874. float summs = 0;
  1875. for (int i = 0; i < nb; i += 2) {
  1876. const block_q4_1 * restrict x0 = &x[i + 0];
  1877. const block_q4_1 * restrict x1 = &x[i + 1];
  1878. const block_q8_1 * restrict y0 = &y[i + 0];
  1879. const block_q8_1 * restrict y1 = &y[i + 1];
  1880. summs += x0->m * y0->s + x1->m * y1->s;
  1881. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1882. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1883. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1884. // 4-bit -> 8-bit
  1885. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1886. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1887. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1888. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1889. // load y
  1890. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1891. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1892. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1893. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1894. #if defined(__ARM_FEATURE_DOTPROD)
  1895. // dot product into int32x4_t
  1896. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  1897. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  1898. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1899. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1900. #else
  1901. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  1902. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  1903. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  1904. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  1905. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  1906. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  1907. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  1908. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  1909. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1910. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1911. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1912. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1913. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1914. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1915. #endif
  1916. }
  1917. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  1918. #elif defined(__AVX2__)
  1919. // Initialize accumulator with zeros
  1920. __m256 acc = _mm256_setzero_ps();
  1921. float summs = 0;
  1922. // Main loop
  1923. for (int i = 0; i < nb; ++i) {
  1924. const float * d0 = &x[i].d;
  1925. const float * d1 = &y[i].d;
  1926. summs += x[i].m * y[i].s;
  1927. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1928. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1929. // Compute combined scales
  1930. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  1931. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1932. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1933. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  1934. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  1935. // Accumulate d0*d1*x*y
  1936. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  1937. }
  1938. *s = hsum_float_8(acc) + summs;
  1939. #else
  1940. // scalar
  1941. float sumf = 0.0;
  1942. for (int i = 0; i < nb; i++) {
  1943. int sumi = 0;
  1944. for (int j = 0; j < qk/2; ++j) {
  1945. const int v0 = (x[i].qs[j] & 0x0F);
  1946. const int v1 = (x[i].qs[j] >> 4);
  1947. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1948. }
  1949. sumf += (x[i].d*y[i].d)*sumi + x[i].m*y[i].s;
  1950. }
  1951. *s = sumf;
  1952. #endif
  1953. }
  1954. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1955. const int qk = QK8_0;
  1956. const int nb = n / qk;
  1957. assert(n % qk == 0);
  1958. assert(nb % 2 == 0);
  1959. assert(qk == QK5_0);
  1960. const block_q5_0 * restrict x = vx;
  1961. const block_q8_0 * restrict y = vy;
  1962. #if defined(__ARM_NEON)
  1963. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1964. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1965. uint32_t qh0;
  1966. uint32_t qh1;
  1967. uint64_t tmp0[4];
  1968. uint64_t tmp1[4];
  1969. for (int i = 0; i < nb; i += 2) {
  1970. const block_q5_0 * restrict x0 = &x[i];
  1971. const block_q5_0 * restrict x1 = &x[i + 1];
  1972. const block_q8_0 * restrict y0 = &y[i];
  1973. const block_q8_0 * restrict y1 = &y[i + 1];
  1974. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1975. // extract the 5th bit via lookup table ((!b) << 4)
  1976. memcpy(&qh0, x0->qh, sizeof(qh0));
  1977. memcpy(&qh1, x1->qh, sizeof(qh1));
  1978. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  1979. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  1980. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  1981. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  1982. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  1983. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  1984. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  1985. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  1986. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  1987. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  1988. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  1989. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  1990. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1991. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1992. // 4-bit -> 8-bit
  1993. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1994. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1995. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1996. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1997. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  1998. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  1999. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2000. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2001. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2002. // load y
  2003. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2004. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2005. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2006. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2007. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2008. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2009. #if defined(__ARM_FEATURE_DOTPROD)
  2010. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2011. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2012. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2013. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2014. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2015. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2016. #else
  2017. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2018. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2019. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2020. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2021. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2022. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2023. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2024. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2025. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2026. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2027. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2028. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2029. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2030. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2031. #endif
  2032. }
  2033. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2034. #elif defined(__wasm_simd128__)
  2035. v128_t sumv = wasm_f32x4_splat(0.0f);
  2036. uint32_t qh;
  2037. uint64_t tmp[4];
  2038. // TODO: check if unrolling this is better
  2039. for (int i = 0; i < nb; ++i) {
  2040. const block_q5_0 * restrict x0 = &x[i];
  2041. const block_q8_0 * restrict y0 = &y[i];
  2042. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2043. const v128_t s16b = wasm_i8x16_splat(0x10);
  2044. // extract the 5th bit
  2045. memcpy(&qh, x0->qh, sizeof(qh));
  2046. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2047. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2048. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2049. tmp[3] = table_b2b_1[(qh >> 24) ];
  2050. const v128_t qhl = wasm_v128_load(tmp + 0);
  2051. const v128_t qhh = wasm_v128_load(tmp + 2);
  2052. const v128_t v0 = wasm_v128_load(x0->qs);
  2053. // 4-bit -> 8-bit
  2054. const v128_t v0l = wasm_v128_and (v0, m4b);
  2055. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2056. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2057. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2058. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2059. // load y
  2060. const v128_t v1l = wasm_v128_load(y0->qs);
  2061. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2062. // int8x16 -> int16x8
  2063. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2064. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2065. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2066. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2067. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2068. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2069. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2070. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2071. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2072. // dot product
  2073. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2074. wasm_i32x4_add(
  2075. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2076. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2077. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2078. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2079. }
  2080. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2081. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2082. #elif defined(__AVX2__)
  2083. // Initialize accumulator with zeros
  2084. __m256 acc = _mm256_setzero_ps();
  2085. // Main loop
  2086. for (int i = 0; i < nb; i++) {
  2087. /* Compute combined scale for the block */
  2088. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2089. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2090. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2091. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2092. bx = _mm256_or_si256(bx, bxhi);
  2093. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2094. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2095. /* Multiply q with scale and accumulate */
  2096. acc = _mm256_fmadd_ps(d, q, acc);
  2097. }
  2098. *s = hsum_float_8(acc);
  2099. #else
  2100. // scalar
  2101. float sumf = 0.0;
  2102. for (int i = 0; i < nb; i++) {
  2103. uint32_t qh;
  2104. memcpy(&qh, x[i].qh, sizeof(qh));
  2105. int sumi = 0;
  2106. for (int j = 0; j < qk/2; ++j) {
  2107. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2108. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2109. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2110. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2111. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2112. }
  2113. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi;
  2114. }
  2115. *s = sumf;
  2116. #endif
  2117. }
  2118. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2119. const int qk = QK8_1;
  2120. const int nb = n / qk;
  2121. assert(n % qk == 0);
  2122. assert(nb % 2 == 0);
  2123. assert(qk == QK5_1);
  2124. const block_q5_1 * restrict x = vx;
  2125. const block_q8_1 * restrict y = vy;
  2126. #if defined(__ARM_NEON)
  2127. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2128. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2129. float summs0 = 0.0f;
  2130. float summs1 = 0.0f;
  2131. uint32_t qh0;
  2132. uint32_t qh1;
  2133. uint64_t tmp0[4];
  2134. uint64_t tmp1[4];
  2135. for (int i = 0; i < nb; i += 2) {
  2136. const block_q5_1 * restrict x0 = &x[i];
  2137. const block_q5_1 * restrict x1 = &x[i + 1];
  2138. const block_q8_1 * restrict y0 = &y[i];
  2139. const block_q8_1 * restrict y1 = &y[i + 1];
  2140. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2141. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2142. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2143. // extract the 5th bit via lookup table ((b) << 4)
  2144. memcpy(&qh0, x0->qh, sizeof(qh0));
  2145. memcpy(&qh1, x1->qh, sizeof(qh1));
  2146. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2147. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2148. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2149. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2150. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2151. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2152. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2153. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2154. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2155. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2156. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2157. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2158. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2159. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2160. // 4-bit -> 8-bit
  2161. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2162. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2163. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2164. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2165. // add high bit
  2166. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2167. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2168. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2169. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2170. // load y
  2171. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2172. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2173. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2174. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2175. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2176. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2177. #if defined(__ARM_FEATURE_DOTPROD)
  2178. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2179. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2180. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2181. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2182. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2183. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2184. #else
  2185. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2186. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2187. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2188. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2189. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2190. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2191. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2192. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2193. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2194. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2195. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2196. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2197. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2198. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2199. #endif
  2200. }
  2201. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2202. #elif defined(__wasm_simd128__)
  2203. v128_t sumv = wasm_f32x4_splat(0.0f);
  2204. float summs = 0.0f;
  2205. uint32_t qh;
  2206. uint64_t tmp[4];
  2207. // TODO: check if unrolling this is better
  2208. for (int i = 0; i < nb; ++i) {
  2209. const block_q5_1 * restrict x0 = &x[i];
  2210. const block_q8_1 * restrict y0 = &y[i];
  2211. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2212. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2213. // extract the 5th bit
  2214. memcpy(&qh, x0->qh, sizeof(qh));
  2215. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2216. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2217. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2218. tmp[3] = table_b2b_0[(qh >> 24) ];
  2219. const v128_t qhl = wasm_v128_load(tmp + 0);
  2220. const v128_t qhh = wasm_v128_load(tmp + 2);
  2221. const v128_t v0 = wasm_v128_load(x0->qs);
  2222. // 4-bit -> 8-bit
  2223. const v128_t v0l = wasm_v128_and (v0, m4b);
  2224. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2225. static bool x = true;
  2226. // add high bit
  2227. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2228. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2229. // load y
  2230. const v128_t v1l = wasm_v128_load(y0->qs);
  2231. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2232. // int8x16 -> int16x8
  2233. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2234. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2235. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2236. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2237. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2238. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2239. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2240. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2241. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2242. // dot product
  2243. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2244. wasm_i32x4_add(
  2245. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2246. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2247. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2248. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2249. }
  2250. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2251. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2252. #elif defined(__AVX2__)
  2253. // Initialize accumulator with zeros
  2254. __m256 acc = _mm256_setzero_ps();
  2255. float summs = 0.0f;
  2256. // Main loop
  2257. for (int i = 0; i < nb; i++) {
  2258. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2259. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2260. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2261. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2262. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2263. bx = _mm256_or_si256(bx, bxhi);
  2264. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2265. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2266. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2267. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2268. }
  2269. *s = hsum_float_8(acc) + summs;
  2270. #else
  2271. // scalar
  2272. float sumf = 0.0;
  2273. for (int i = 0; i < nb; i++) {
  2274. uint32_t qh;
  2275. memcpy(&qh, x[i].qh, sizeof(qh));
  2276. int sumi = 0;
  2277. for (int j = 0; j < qk/2; ++j) {
  2278. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2279. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2280. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2281. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2282. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2283. }
  2284. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2285. }
  2286. *s = sumf;
  2287. #endif
  2288. }
  2289. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2290. const int qk = QK8_0;
  2291. const int nb = n / qk;
  2292. assert(n % qk == 0);
  2293. assert(nb % 2 == 0);
  2294. const block_q8_0 * restrict x = vx;
  2295. const block_q8_0 * restrict y = vy;
  2296. #if defined(__ARM_NEON)
  2297. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2298. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2299. for (int i = 0; i < nb; i += 2) {
  2300. const block_q8_0 * restrict x0 = &x[i + 0];
  2301. const block_q8_0 * restrict x1 = &x[i + 1];
  2302. const block_q8_0 * restrict y0 = &y[i + 0];
  2303. const block_q8_0 * restrict y1 = &y[i + 1];
  2304. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2305. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2306. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2307. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2308. // load y
  2309. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2310. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2311. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2312. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2313. #if defined(__ARM_FEATURE_DOTPROD)
  2314. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2315. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2316. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2317. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2318. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2319. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2320. #else
  2321. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2322. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2323. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2324. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2325. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2326. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2327. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2328. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2329. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2330. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2331. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2332. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2333. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2334. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2335. #endif
  2336. }
  2337. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2338. #elif defined(__AVX2__)
  2339. // Initialize accumulator with zeros
  2340. __m256 acc = _mm256_setzero_ps();
  2341. // Main loop
  2342. for (int i = 0; i < nb; ++i) {
  2343. // Compute combined scale for the block
  2344. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2345. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2346. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2347. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2348. // Multiply q with scale and accumulate
  2349. acc = _mm256_fmadd_ps( d, q, acc );
  2350. }
  2351. *s = hsum_float_8(acc);
  2352. #else
  2353. // scalar
  2354. float sumf = 0.0;
  2355. for (int i = 0; i < nb; i++) {
  2356. int sumi = 0;
  2357. for (int j = 0; j < qk; j++) {
  2358. sumi += x[i].qs[j]*y[i].qs[j];
  2359. }
  2360. sumf += (x[i].d*y[i].d)*sumi;
  2361. }
  2362. *s = sumf;
  2363. #endif
  2364. }
  2365. // compute GGML_VEC_DOT_UNROLL dot products at once
  2366. // xs - x row stride in bytes
  2367. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2368. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2369. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2370. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2371. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2372. }
  2373. #if defined(GGML_SIMD)
  2374. const int np = (n & ~(GGML_F16_STEP - 1));
  2375. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2376. GGML_F16_VEC ax[GGML_F16_ARR];
  2377. GGML_F16_VEC ay[GGML_F16_ARR];
  2378. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2379. for (int j = 0; j < GGML_F16_ARR; j++) {
  2380. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2381. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2382. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2383. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2384. }
  2385. }
  2386. }
  2387. // reduce sum0..sum3 to sum0
  2388. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2389. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2390. }
  2391. // leftovers
  2392. for (int i = np; i < n; ++i) {
  2393. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2394. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2395. }
  2396. }
  2397. #else
  2398. for (int i = 0; i < n; ++i) {
  2399. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2400. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2401. }
  2402. }
  2403. #endif
  2404. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2405. s[i] = sumf[i];
  2406. }
  2407. }
  2408. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2409. #if defined(GGML_SIMD)
  2410. const int np = (n & ~(GGML_F32_STEP - 1));
  2411. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2412. GGML_F32_VEC ax[GGML_F32_ARR];
  2413. GGML_F32_VEC ay[GGML_F32_ARR];
  2414. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2415. for (int j = 0; j < GGML_F32_ARR; j++) {
  2416. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2417. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2418. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2419. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2420. }
  2421. }
  2422. // leftovers
  2423. for (int i = np; i < n; ++i) {
  2424. y[i] += x[i]*v;
  2425. }
  2426. #else
  2427. // scalar
  2428. for (int i = 0; i < n; ++i) {
  2429. y[i] += x[i]*v;
  2430. }
  2431. #endif
  2432. }
  2433. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2434. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2435. #if defined(GGML_SIMD)
  2436. const int np = (n & ~(GGML_F32_STEP - 1));
  2437. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2438. GGML_F32_VEC ay[GGML_F32_ARR];
  2439. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2440. for (int j = 0; j < GGML_F32_ARR; j++) {
  2441. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2442. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2443. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2444. }
  2445. }
  2446. // leftovers
  2447. for (int i = np; i < n; ++i) {
  2448. y[i] *= v;
  2449. }
  2450. #else
  2451. // scalar
  2452. for (int i = 0; i < n; ++i) {
  2453. y[i] *= v;
  2454. }
  2455. #endif
  2456. }
  2457. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2458. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2459. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2460. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2461. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2462. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2463. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2464. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2465. static const float GELU_COEF_A = 0.044715f;
  2466. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2467. inline static float ggml_gelu_f32(float x) {
  2468. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2469. }
  2470. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2471. const uint16_t * i16 = (const uint16_t *) x;
  2472. for (int i = 0; i < n; ++i) {
  2473. y[i] = table_gelu_f16[i16[i]];
  2474. }
  2475. }
  2476. #ifdef GGML_GELU_FP16
  2477. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2478. uint16_t t;
  2479. for (int i = 0; i < n; ++i) {
  2480. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2481. memcpy(&t, &fp16, sizeof(uint16_t));
  2482. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2483. }
  2484. }
  2485. #else
  2486. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2487. for (int i = 0; i < n; ++i) {
  2488. y[i] = ggml_gelu_f32(x[i]);
  2489. }
  2490. }
  2491. #endif
  2492. // Sigmoid Linear Unit (SiLU) function
  2493. inline static float ggml_silu_f32(float x) {
  2494. return x/(1.0f + expf(-x));
  2495. }
  2496. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2497. // const uint16_t * i16 = (const uint16_t *) x;
  2498. // for (int i = 0; i < n; ++i) {
  2499. // y[i] = table_silu_f16[i16[i]];
  2500. // }
  2501. //}
  2502. #ifdef GGML_SILU_FP16
  2503. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2504. uint16_t t;
  2505. for (int i = 0; i < n; ++i) {
  2506. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2507. memcpy(&t, &fp16, sizeof(uint16_t));
  2508. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2509. }
  2510. }
  2511. #else
  2512. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2513. for (int i = 0; i < n; ++i) {
  2514. y[i] = ggml_silu_f32(x[i]);
  2515. }
  2516. }
  2517. #endif
  2518. inline static float ggml_silu_backward_f32(float x, float dy) {
  2519. const float s = 1.0f/(1.0f + expf(-x));
  2520. return dy*s*(1.0f + x*(1.0f - s));
  2521. }
  2522. #ifdef GGML_SILU_FP16
  2523. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2524. for (int i = 0; i < n; ++i) {
  2525. // we did not use x[i] to compute forward silu but its f16 equivalent
  2526. // take derivative at f16 of x[i]:
  2527. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2528. float usedx = GGML_FP16_TO_FP32(fp16);
  2529. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2530. }
  2531. }
  2532. #else
  2533. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2534. for (int i = 0; i < n; ++i) {
  2535. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2536. }
  2537. }
  2538. #endif
  2539. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2540. #ifndef GGML_USE_ACCELERATE
  2541. ggml_float sum = 0.0;
  2542. for (int i = 0; i < n; ++i) {
  2543. sum += (ggml_float)x[i];
  2544. }
  2545. *s = sum;
  2546. #else
  2547. vDSP_sve(x, 1, s, n);
  2548. #endif
  2549. }
  2550. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2551. ggml_float sum = 0.0;
  2552. for (int i = 0; i < n; ++i) {
  2553. sum += (ggml_float)x[i];
  2554. }
  2555. *s = sum;
  2556. }
  2557. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2558. #ifndef GGML_USE_ACCELERATE
  2559. float max = -INFINITY;
  2560. for (int i = 0; i < n; ++i) {
  2561. max = MAX(max, x[i]);
  2562. }
  2563. *s = max;
  2564. #else
  2565. vDSP_maxv(x, 1, s, n);
  2566. #endif
  2567. }
  2568. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2569. ggml_vec_norm_f32(n, s, x);
  2570. *s = 1.f/(*s);
  2571. }
  2572. //
  2573. // logging
  2574. //
  2575. #if (GGML_DEBUG >= 1)
  2576. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2577. #else
  2578. #define GGML_PRINT_DEBUG(...)
  2579. #endif
  2580. #if (GGML_DEBUG >= 5)
  2581. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2582. #else
  2583. #define GGML_PRINT_DEBUG_5(...)
  2584. #endif
  2585. #if (GGML_DEBUG >= 10)
  2586. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2587. #else
  2588. #define GGML_PRINT_DEBUG_10(...)
  2589. #endif
  2590. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2591. //
  2592. // data types
  2593. //
  2594. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2595. [GGML_TYPE_F32] = 1,
  2596. [GGML_TYPE_F16] = 1,
  2597. [GGML_TYPE_Q4_0] = QK4_0,
  2598. [GGML_TYPE_Q4_1] = QK4_1,
  2599. [GGML_TYPE_Q5_0] = QK5_0,
  2600. [GGML_TYPE_Q5_1] = QK5_1,
  2601. [GGML_TYPE_Q8_0] = QK8_0,
  2602. [GGML_TYPE_Q8_1] = QK8_1,
  2603. [GGML_TYPE_I8] = 1,
  2604. [GGML_TYPE_I16] = 1,
  2605. [GGML_TYPE_I32] = 1,
  2606. };
  2607. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2608. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2609. [GGML_TYPE_F32] = sizeof(float),
  2610. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2611. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2612. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2613. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2614. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2615. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2616. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2617. [GGML_TYPE_I8] = sizeof(int8_t),
  2618. [GGML_TYPE_I16] = sizeof(int16_t),
  2619. [GGML_TYPE_I32] = sizeof(int32_t),
  2620. };
  2621. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2622. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2623. [GGML_TYPE_F32] = "f32",
  2624. [GGML_TYPE_F16] = "f16",
  2625. [GGML_TYPE_Q4_0] = "q4_0",
  2626. [GGML_TYPE_Q4_1] = "q4_1",
  2627. [GGML_TYPE_Q5_0] = "q5_0",
  2628. [GGML_TYPE_Q5_1] = "q5_1",
  2629. [GGML_TYPE_Q8_0] = "q8_0",
  2630. [GGML_TYPE_Q8_1] = "q8_1",
  2631. [GGML_TYPE_I8] = "i8",
  2632. [GGML_TYPE_I16] = "i16",
  2633. [GGML_TYPE_I32] = "i32",
  2634. };
  2635. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2636. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2637. [GGML_TYPE_F32] = false,
  2638. [GGML_TYPE_F16] = false,
  2639. [GGML_TYPE_Q4_0] = true,
  2640. [GGML_TYPE_Q4_1] = true,
  2641. [GGML_TYPE_Q5_0] = true,
  2642. [GGML_TYPE_Q5_1] = true,
  2643. [GGML_TYPE_Q8_0] = true,
  2644. [GGML_TYPE_Q8_1] = true,
  2645. [GGML_TYPE_I8] = false,
  2646. [GGML_TYPE_I16] = false,
  2647. [GGML_TYPE_I32] = false,
  2648. };
  2649. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2650. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2651. "NONE",
  2652. "DUP",
  2653. "ADD",
  2654. "ADD1",
  2655. "ACC",
  2656. "SUB",
  2657. "MUL",
  2658. "DIV",
  2659. "SQR",
  2660. "SQRT",
  2661. "LOG",
  2662. "SUM",
  2663. "SUM_ROWS",
  2664. "MEAN",
  2665. "REPEAT",
  2666. "ABS",
  2667. "SGN",
  2668. "NEG",
  2669. "STEP",
  2670. "RELU",
  2671. "GELU",
  2672. "SILU",
  2673. "SILU_BACK",
  2674. "NORM",
  2675. "RMS_NORM",
  2676. "RMS_NORM_BACK",
  2677. "MUL_MAT",
  2678. "SCALE",
  2679. "SET",
  2680. "CPY",
  2681. "CONT",
  2682. "RESHAPE",
  2683. "VIEW",
  2684. "PERMUTE",
  2685. "TRANSPOSE",
  2686. "GET_ROWS",
  2687. "GET_ROWS_BACK",
  2688. "DIAG",
  2689. "DIAG_MASK_INF",
  2690. "DIAG_MASK_ZERO",
  2691. "SOFT_MAX",
  2692. "ROPE",
  2693. "ROPE_BACK",
  2694. "ALIBI",
  2695. "CONV_1D_1S",
  2696. "CONV_1D_2S",
  2697. "FLASH_ATTN",
  2698. "FLASH_FF",
  2699. "MAP_UNARY",
  2700. "MAP_BINARY",
  2701. };
  2702. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2703. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2704. "none",
  2705. "x",
  2706. "x+y",
  2707. "x+y",
  2708. "view(x,nb,offset)+=y->x",
  2709. "x-y",
  2710. "x*y",
  2711. "x/y",
  2712. "x^2",
  2713. "√x",
  2714. "log(x)",
  2715. "Σx",
  2716. "Σx_k",
  2717. "Σx/n",
  2718. "repeat(x)",
  2719. "abs(x)",
  2720. "sgn(x)",
  2721. "-x",
  2722. "step(x)",
  2723. "relu(x)",
  2724. "gelu(x)",
  2725. "silu(x)",
  2726. "silu_back(x)",
  2727. "norm(x)",
  2728. "rms_norm(x)",
  2729. "rms_norm_back(x)",
  2730. "X*Y",
  2731. "x*v",
  2732. "y-\\>view(x)",
  2733. "x-\\>y",
  2734. "cont(x)",
  2735. "reshape(x)",
  2736. "view(x)",
  2737. "permute(x)",
  2738. "transpose(x)",
  2739. "get_rows(x)",
  2740. "get_rows_back(x)",
  2741. "diag(x)",
  2742. "diag_mask_inf(x)",
  2743. "diag_mask_zero(x)",
  2744. "soft_max(x)",
  2745. "rope(x)",
  2746. "rope_back(x)",
  2747. "alibi(x)",
  2748. "conv_1d_1s(x)",
  2749. "conv_1d_2s(x)",
  2750. "flash_attn(x)",
  2751. "flash_ff(x)",
  2752. "f(x)",
  2753. "f(x,y)",
  2754. };
  2755. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2756. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2757. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2758. //
  2759. // ggml context
  2760. //
  2761. struct ggml_context {
  2762. size_t mem_size;
  2763. void * mem_buffer;
  2764. bool mem_buffer_owned;
  2765. bool no_alloc;
  2766. int n_objects;
  2767. struct ggml_object * objects_begin;
  2768. struct ggml_object * objects_end;
  2769. struct ggml_scratch scratch;
  2770. struct ggml_scratch scratch_save;
  2771. };
  2772. struct ggml_context_container {
  2773. bool used;
  2774. struct ggml_context context;
  2775. };
  2776. //
  2777. // compute types
  2778. //
  2779. enum ggml_task_type {
  2780. GGML_TASK_INIT = 0,
  2781. GGML_TASK_COMPUTE,
  2782. GGML_TASK_FINALIZE,
  2783. };
  2784. struct ggml_compute_params {
  2785. enum ggml_task_type type;
  2786. int ith, nth;
  2787. // work buffer for all threads
  2788. size_t wsize;
  2789. void * wdata;
  2790. };
  2791. //
  2792. // ggml state
  2793. //
  2794. struct ggml_state {
  2795. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2796. };
  2797. // global state
  2798. static struct ggml_state g_state;
  2799. static atomic_int g_state_barrier = 0;
  2800. // barrier via spin lock
  2801. inline static void ggml_critical_section_start(void) {
  2802. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2803. while (processing > 0) {
  2804. // wait for other threads to finish
  2805. atomic_fetch_sub(&g_state_barrier, 1);
  2806. sched_yield(); // TODO: reconsider this
  2807. processing = atomic_fetch_add(&g_state_barrier, 1);
  2808. }
  2809. }
  2810. // TODO: make this somehow automatically executed
  2811. // some sort of "sentry" mechanism
  2812. inline static void ggml_critical_section_end(void) {
  2813. atomic_fetch_sub(&g_state_barrier, 1);
  2814. }
  2815. ////////////////////////////////////////////////////////////////////////////////
  2816. void ggml_print_object(const struct ggml_object * obj) {
  2817. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2818. obj->offs, obj->size, (const void *) obj->next);
  2819. }
  2820. void ggml_print_objects(const struct ggml_context * ctx) {
  2821. struct ggml_object * obj = ctx->objects_begin;
  2822. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2823. while (obj != NULL) {
  2824. ggml_print_object(obj);
  2825. obj = obj->next;
  2826. }
  2827. GGML_PRINT("%s: --- end ---\n", __func__);
  2828. }
  2829. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2830. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2831. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2832. }
  2833. int ggml_nrows(const struct ggml_tensor * tensor) {
  2834. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2835. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2836. }
  2837. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2839. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2840. }
  2841. int ggml_blck_size(enum ggml_type type) {
  2842. return GGML_BLCK_SIZE[type];
  2843. }
  2844. size_t ggml_type_size(enum ggml_type type) {
  2845. return GGML_TYPE_SIZE[type];
  2846. }
  2847. float ggml_type_sizef(enum ggml_type type) {
  2848. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2849. }
  2850. const char * ggml_type_name(enum ggml_type type) {
  2851. return GGML_TYPE_NAME[type];
  2852. }
  2853. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2854. return GGML_TYPE_SIZE[tensor->type];
  2855. }
  2856. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2857. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2858. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2859. }
  2860. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2861. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2862. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2863. }
  2864. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2865. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2866. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2867. }
  2868. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2869. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2870. return
  2871. (t0->ne[0] == t1->ne[0]) &&
  2872. (t0->ne[2] == t1->ne[2]) &&
  2873. (t0->ne[3] == t1->ne[3]);
  2874. }
  2875. bool ggml_is_quantized(enum ggml_type type) {
  2876. return GGML_IS_QUANTIZED[type];
  2877. }
  2878. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2879. enum ggml_type wtype = GGML_TYPE_COUNT;
  2880. switch (ftype) {
  2881. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2882. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2883. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2884. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2885. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2886. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2887. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2888. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2889. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2890. }
  2891. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2892. return wtype;
  2893. }
  2894. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2895. return tensor->nb[0] > tensor->nb[1];
  2896. }
  2897. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2898. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2899. return
  2900. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2901. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2902. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2903. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2904. }
  2905. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2906. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2907. return
  2908. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2909. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2910. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2911. }
  2912. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2913. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2914. return
  2915. (t0->ne[0] == t1->ne[0] ) &&
  2916. (t0->ne[1] == t1->ne[1] ) &&
  2917. (t0->ne[2] == t1->ne[2] ) &&
  2918. (t0->ne[3] == t1->ne[3] );
  2919. }
  2920. // check if t1 can be represented as a repeatition of t0
  2921. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2922. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2923. return
  2924. (t1->ne[0]%t0->ne[0] == 0) &&
  2925. (t1->ne[1]%t0->ne[1] == 0) &&
  2926. (t1->ne[2]%t0->ne[2] == 0) &&
  2927. (t1->ne[3]%t0->ne[3] == 0);
  2928. }
  2929. static inline int ggml_up32(int n) {
  2930. return (n + 31) & ~31;
  2931. }
  2932. //static inline int ggml_up64(int n) {
  2933. // return (n + 63) & ~63;
  2934. //}
  2935. static inline int ggml_up(int n, int m) {
  2936. // assert m is a power of 2
  2937. GGML_ASSERT((m & (m - 1)) == 0);
  2938. return (n + m - 1) & ~(m - 1);
  2939. }
  2940. // assert that pointer is aligned to GGML_MEM_ALIGN
  2941. #define ggml_assert_aligned(ptr) \
  2942. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2943. ////////////////////////////////////////////////////////////////////////////////
  2944. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2945. // make this function thread safe
  2946. ggml_critical_section_start();
  2947. static bool is_first_call = true;
  2948. if (is_first_call) {
  2949. // initialize time system (required on Windows)
  2950. ggml_time_init();
  2951. // initialize GELU, SILU and EXP F32 tables
  2952. {
  2953. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2954. ggml_fp16_t ii;
  2955. for (int i = 0; i < (1 << 16); ++i) {
  2956. uint16_t ui = i;
  2957. memcpy(&ii, &ui, sizeof(ii));
  2958. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2959. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2960. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2961. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2962. }
  2963. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2964. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2965. }
  2966. // initialize g_state
  2967. {
  2968. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2969. g_state = (struct ggml_state) {
  2970. /*.contexts =*/ { { 0 } },
  2971. };
  2972. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2973. g_state.contexts[i].used = false;
  2974. }
  2975. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2976. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2977. }
  2978. #if defined(GGML_USE_CUBLAS)
  2979. ggml_init_cublas();
  2980. #elif defined(GGML_USE_CLBLAST)
  2981. ggml_cl_init();
  2982. #endif
  2983. is_first_call = false;
  2984. }
  2985. // find non-used context in g_state
  2986. struct ggml_context * ctx = NULL;
  2987. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2988. if (!g_state.contexts[i].used) {
  2989. g_state.contexts[i].used = true;
  2990. ctx = &g_state.contexts[i].context;
  2991. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2992. break;
  2993. }
  2994. }
  2995. if (ctx == NULL) {
  2996. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2997. ggml_critical_section_end();
  2998. return NULL;
  2999. }
  3000. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3001. *ctx = (struct ggml_context) {
  3002. /*.mem_size =*/ mem_size,
  3003. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3004. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3005. /*.no_alloc =*/ params.no_alloc,
  3006. /*.n_objects =*/ 0,
  3007. /*.objects_begin =*/ NULL,
  3008. /*.objects_end =*/ NULL,
  3009. /*.scratch =*/ { 0, 0, NULL, },
  3010. /*.scratch_save =*/ { 0, 0, NULL, },
  3011. };
  3012. GGML_ASSERT(ctx->mem_buffer != NULL);
  3013. ggml_assert_aligned(ctx->mem_buffer);
  3014. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3015. ggml_critical_section_end();
  3016. return ctx;
  3017. }
  3018. void ggml_free(struct ggml_context * ctx) {
  3019. // make this function thread safe
  3020. ggml_critical_section_start();
  3021. bool found = false;
  3022. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3023. if (&g_state.contexts[i].context == ctx) {
  3024. g_state.contexts[i].used = false;
  3025. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3026. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3027. if (ctx->mem_buffer_owned) {
  3028. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3029. }
  3030. found = true;
  3031. break;
  3032. }
  3033. }
  3034. if (!found) {
  3035. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3036. }
  3037. ggml_critical_section_end();
  3038. }
  3039. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3040. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3041. }
  3042. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3043. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3044. ctx->scratch = scratch;
  3045. return result;
  3046. }
  3047. ////////////////////////////////////////////////////////////////////////////////
  3048. struct ggml_tensor * ggml_new_tensor_impl(
  3049. struct ggml_context * ctx,
  3050. enum ggml_type type,
  3051. int n_dims,
  3052. const int64_t* ne,
  3053. void* data) {
  3054. // always insert objects at the end of the context's memory pool
  3055. struct ggml_object * obj_cur = ctx->objects_end;
  3056. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3057. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3058. const size_t cur_end = cur_offs + cur_size;
  3059. size_t size_needed = 0;
  3060. if (data == NULL && !ctx->no_alloc) {
  3061. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3062. for (int i = 1; i < n_dims; i++) {
  3063. size_needed *= ne[i];
  3064. }
  3065. // align to GGML_MEM_ALIGN
  3066. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3067. }
  3068. char * const mem_buffer = ctx->mem_buffer;
  3069. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3070. if (ctx->scratch.data == NULL || data != NULL) {
  3071. size_needed += sizeof(struct ggml_tensor);
  3072. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3073. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3074. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3075. assert(false);
  3076. return NULL;
  3077. }
  3078. *obj_new = (struct ggml_object) {
  3079. .offs = cur_end + GGML_OBJECT_SIZE,
  3080. .size = size_needed,
  3081. .next = NULL,
  3082. };
  3083. } else {
  3084. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3085. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3086. assert(false);
  3087. return NULL;
  3088. }
  3089. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3090. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3091. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3092. assert(false);
  3093. return NULL;
  3094. }
  3095. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3096. *obj_new = (struct ggml_object) {
  3097. .offs = cur_end + GGML_OBJECT_SIZE,
  3098. .size = sizeof(struct ggml_tensor),
  3099. .next = NULL,
  3100. };
  3101. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3102. ctx->scratch.offs += size_needed;
  3103. }
  3104. if (obj_cur != NULL) {
  3105. obj_cur->next = obj_new;
  3106. } else {
  3107. // this is the first object in this context
  3108. ctx->objects_begin = obj_new;
  3109. }
  3110. ctx->objects_end = obj_new;
  3111. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3112. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3113. ggml_assert_aligned(result);
  3114. *result = (struct ggml_tensor) {
  3115. /*.type =*/ type,
  3116. /*.n_dims =*/ n_dims,
  3117. /*.ne =*/ { 1, 1, 1, 1 },
  3118. /*.nb =*/ { 0, 0, 0, 0 },
  3119. /*.op =*/ GGML_OP_NONE,
  3120. /*.is_param =*/ false,
  3121. /*.grad =*/ NULL,
  3122. /*.src0 =*/ NULL,
  3123. /*.src1 =*/ NULL,
  3124. /*.opt =*/ { NULL },
  3125. /*.n_tasks =*/ 0,
  3126. /*.perf_runs =*/ 0,
  3127. /*.perf_cycles =*/ 0,
  3128. /*.perf_time_us =*/ 0,
  3129. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3130. /*.name =*/ { 0 },
  3131. /*.pad =*/ { 0 },
  3132. };
  3133. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3134. //ggml_assert_aligned(result->data);
  3135. for (int i = 0; i < n_dims; i++) {
  3136. result->ne[i] = ne[i];
  3137. }
  3138. result->nb[0] = GGML_TYPE_SIZE[type];
  3139. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3140. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3141. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3142. }
  3143. ctx->n_objects++;
  3144. return result;
  3145. }
  3146. struct ggml_tensor * ggml_new_tensor(
  3147. struct ggml_context * ctx,
  3148. enum ggml_type type,
  3149. int n_dims,
  3150. const int64_t * ne) {
  3151. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3152. }
  3153. struct ggml_tensor * ggml_new_tensor_1d(
  3154. struct ggml_context * ctx,
  3155. enum ggml_type type,
  3156. int64_t ne0) {
  3157. return ggml_new_tensor(ctx, type, 1, &ne0);
  3158. }
  3159. struct ggml_tensor * ggml_new_tensor_2d(
  3160. struct ggml_context * ctx,
  3161. enum ggml_type type,
  3162. int64_t ne0,
  3163. int64_t ne1) {
  3164. const int64_t ne[2] = { ne0, ne1 };
  3165. return ggml_new_tensor(ctx, type, 2, ne);
  3166. }
  3167. struct ggml_tensor * ggml_new_tensor_3d(
  3168. struct ggml_context * ctx,
  3169. enum ggml_type type,
  3170. int64_t ne0,
  3171. int64_t ne1,
  3172. int64_t ne2) {
  3173. const int64_t ne[3] = { ne0, ne1, ne2 };
  3174. return ggml_new_tensor(ctx, type, 3, ne);
  3175. }
  3176. struct ggml_tensor * ggml_new_tensor_4d(
  3177. struct ggml_context * ctx,
  3178. enum ggml_type type,
  3179. int64_t ne0,
  3180. int64_t ne1,
  3181. int64_t ne2,
  3182. int64_t ne3) {
  3183. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3184. return ggml_new_tensor(ctx, type, 4, ne);
  3185. }
  3186. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3187. ctx->scratch_save = ctx->scratch;
  3188. ctx->scratch.data = NULL;
  3189. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3190. ctx->scratch = ctx->scratch_save;
  3191. ggml_set_i32(result, value);
  3192. return result;
  3193. }
  3194. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3195. ctx->scratch_save = ctx->scratch;
  3196. ctx->scratch.data = NULL;
  3197. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3198. ctx->scratch = ctx->scratch_save;
  3199. ggml_set_f32(result, value);
  3200. return result;
  3201. }
  3202. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3203. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3204. }
  3205. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3206. memset(tensor->data, 0, ggml_nbytes(tensor));
  3207. return tensor;
  3208. }
  3209. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3210. const int n = ggml_nrows(tensor);
  3211. const int nc = tensor->ne[0];
  3212. const size_t n1 = tensor->nb[1];
  3213. char * const data = tensor->data;
  3214. switch (tensor->type) {
  3215. case GGML_TYPE_I8:
  3216. {
  3217. assert(tensor->nb[0] == sizeof(int8_t));
  3218. for (int i = 0; i < n; i++) {
  3219. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3220. }
  3221. } break;
  3222. case GGML_TYPE_I16:
  3223. {
  3224. assert(tensor->nb[0] == sizeof(int16_t));
  3225. for (int i = 0; i < n; i++) {
  3226. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3227. }
  3228. } break;
  3229. case GGML_TYPE_I32:
  3230. {
  3231. assert(tensor->nb[0] == sizeof(int32_t));
  3232. for (int i = 0; i < n; i++) {
  3233. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3234. }
  3235. } break;
  3236. case GGML_TYPE_F16:
  3237. {
  3238. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3239. for (int i = 0; i < n; i++) {
  3240. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3241. }
  3242. } break;
  3243. case GGML_TYPE_F32:
  3244. {
  3245. assert(tensor->nb[0] == sizeof(float));
  3246. for (int i = 0; i < n; i++) {
  3247. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3248. }
  3249. } break;
  3250. default:
  3251. {
  3252. GGML_ASSERT(false);
  3253. } break;
  3254. }
  3255. return tensor;
  3256. }
  3257. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3258. const int n = ggml_nrows(tensor);
  3259. const int nc = tensor->ne[0];
  3260. const size_t n1 = tensor->nb[1];
  3261. char * const data = tensor->data;
  3262. switch (tensor->type) {
  3263. case GGML_TYPE_I8:
  3264. {
  3265. assert(tensor->nb[0] == sizeof(int8_t));
  3266. for (int i = 0; i < n; i++) {
  3267. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3268. }
  3269. } break;
  3270. case GGML_TYPE_I16:
  3271. {
  3272. assert(tensor->nb[0] == sizeof(int16_t));
  3273. for (int i = 0; i < n; i++) {
  3274. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3275. }
  3276. } break;
  3277. case GGML_TYPE_I32:
  3278. {
  3279. assert(tensor->nb[0] == sizeof(int32_t));
  3280. for (int i = 0; i < n; i++) {
  3281. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3282. }
  3283. } break;
  3284. case GGML_TYPE_F16:
  3285. {
  3286. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3287. for (int i = 0; i < n; i++) {
  3288. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3289. }
  3290. } break;
  3291. case GGML_TYPE_F32:
  3292. {
  3293. assert(tensor->nb[0] == sizeof(float));
  3294. for (int i = 0; i < n; i++) {
  3295. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3296. }
  3297. } break;
  3298. default:
  3299. {
  3300. GGML_ASSERT(false);
  3301. } break;
  3302. }
  3303. return tensor;
  3304. }
  3305. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3306. switch (tensor->type) {
  3307. case GGML_TYPE_I8:
  3308. {
  3309. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3310. return ((int8_t *)(tensor->data))[i];
  3311. } break;
  3312. case GGML_TYPE_I16:
  3313. {
  3314. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3315. return ((int16_t *)(tensor->data))[i];
  3316. } break;
  3317. case GGML_TYPE_I32:
  3318. {
  3319. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3320. return ((int32_t *)(tensor->data))[i];
  3321. } break;
  3322. case GGML_TYPE_F16:
  3323. {
  3324. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3325. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3326. } break;
  3327. case GGML_TYPE_F32:
  3328. {
  3329. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3330. return ((float *)(tensor->data))[i];
  3331. } break;
  3332. default:
  3333. {
  3334. GGML_ASSERT(false);
  3335. } break;
  3336. }
  3337. return 0.0f;
  3338. }
  3339. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3340. switch (tensor->type) {
  3341. case GGML_TYPE_I8:
  3342. {
  3343. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3344. ((int8_t *)(tensor->data))[i] = value;
  3345. } break;
  3346. case GGML_TYPE_I16:
  3347. {
  3348. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3349. ((int16_t *)(tensor->data))[i] = value;
  3350. } break;
  3351. case GGML_TYPE_I32:
  3352. {
  3353. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3354. ((int32_t *)(tensor->data))[i] = value;
  3355. } break;
  3356. case GGML_TYPE_F16:
  3357. {
  3358. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3359. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3360. } break;
  3361. case GGML_TYPE_F32:
  3362. {
  3363. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3364. ((float *)(tensor->data))[i] = value;
  3365. } break;
  3366. default:
  3367. {
  3368. GGML_ASSERT(false);
  3369. } break;
  3370. }
  3371. }
  3372. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3373. switch (tensor->type) {
  3374. case GGML_TYPE_I8:
  3375. {
  3376. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3377. return ((int8_t *)(tensor->data))[i];
  3378. } break;
  3379. case GGML_TYPE_I16:
  3380. {
  3381. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3382. return ((int16_t *)(tensor->data))[i];
  3383. } break;
  3384. case GGML_TYPE_I32:
  3385. {
  3386. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3387. return ((int32_t *)(tensor->data))[i];
  3388. } break;
  3389. case GGML_TYPE_F16:
  3390. {
  3391. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3392. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3393. } break;
  3394. case GGML_TYPE_F32:
  3395. {
  3396. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3397. return ((float *)(tensor->data))[i];
  3398. } break;
  3399. default:
  3400. {
  3401. GGML_ASSERT(false);
  3402. } break;
  3403. }
  3404. return 0.0f;
  3405. }
  3406. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3407. switch (tensor->type) {
  3408. case GGML_TYPE_I8:
  3409. {
  3410. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3411. ((int8_t *)(tensor->data))[i] = value;
  3412. } break;
  3413. case GGML_TYPE_I16:
  3414. {
  3415. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3416. ((int16_t *)(tensor->data))[i] = value;
  3417. } break;
  3418. case GGML_TYPE_I32:
  3419. {
  3420. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3421. ((int32_t *)(tensor->data))[i] = value;
  3422. } break;
  3423. case GGML_TYPE_F16:
  3424. {
  3425. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3426. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3427. } break;
  3428. case GGML_TYPE_F32:
  3429. {
  3430. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3431. ((float *)(tensor->data))[i] = value;
  3432. } break;
  3433. default:
  3434. {
  3435. GGML_ASSERT(false);
  3436. } break;
  3437. }
  3438. }
  3439. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3440. return tensor->data;
  3441. }
  3442. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3443. assert(tensor->type == GGML_TYPE_F32);
  3444. return (float *)(tensor->data);
  3445. }
  3446. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3447. return tensor->name;
  3448. }
  3449. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3450. strncpy(tensor->name, name, sizeof(tensor->name));
  3451. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3452. }
  3453. struct ggml_tensor * ggml_view_tensor(
  3454. struct ggml_context * ctx,
  3455. const struct ggml_tensor * src) {
  3456. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3457. result->nb[0] = src->nb[0];
  3458. result->nb[1] = src->nb[1];
  3459. result->nb[2] = src->nb[2];
  3460. result->nb[3] = src->nb[3];
  3461. return result;
  3462. }
  3463. ////////////////////////////////////////////////////////////////////////////////
  3464. // ggml_dup
  3465. struct ggml_tensor * ggml_dup_impl(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a,
  3468. bool inplace) {
  3469. bool is_node = false;
  3470. if (!inplace && (a->grad)) {
  3471. is_node = true;
  3472. }
  3473. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3474. result->op = GGML_OP_DUP;
  3475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3476. result->src0 = a;
  3477. result->src1 = NULL;
  3478. return result;
  3479. }
  3480. struct ggml_tensor * ggml_dup(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a) {
  3483. return ggml_dup_impl(ctx, a, false);
  3484. }
  3485. struct ggml_tensor * ggml_dup_inplace(
  3486. struct ggml_context * ctx,
  3487. struct ggml_tensor * a) {
  3488. return ggml_dup_impl(ctx, a, true);
  3489. }
  3490. // ggml_add
  3491. struct ggml_tensor * ggml_add_impl(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a,
  3494. struct ggml_tensor * b,
  3495. bool inplace) {
  3496. GGML_ASSERT(ggml_are_same_shape(a, b));
  3497. bool is_node = false;
  3498. if (!inplace && (a->grad || b->grad)) {
  3499. is_node = true;
  3500. }
  3501. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3502. result->op = GGML_OP_ADD;
  3503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3504. result->src0 = a;
  3505. result->src1 = b;
  3506. return result;
  3507. }
  3508. struct ggml_tensor * ggml_add(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * a,
  3511. struct ggml_tensor * b) {
  3512. return ggml_add_impl(ctx, a, b, false);
  3513. }
  3514. struct ggml_tensor * ggml_add_inplace(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a,
  3517. struct ggml_tensor * b) {
  3518. return ggml_add_impl(ctx, a, b, true);
  3519. }
  3520. // ggml_add1
  3521. struct ggml_tensor * ggml_add1_impl(
  3522. struct ggml_context * ctx,
  3523. struct ggml_tensor * a,
  3524. struct ggml_tensor * b,
  3525. bool inplace) {
  3526. GGML_ASSERT(ggml_is_scalar(b));
  3527. GGML_ASSERT(ggml_is_padded_1d(a));
  3528. bool is_node = false;
  3529. if (!inplace && (a->grad || b->grad)) {
  3530. is_node = true;
  3531. }
  3532. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3533. result->op = GGML_OP_ADD1;
  3534. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3535. result->src0 = a;
  3536. result->src1 = b;
  3537. return result;
  3538. }
  3539. struct ggml_tensor * ggml_add1(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * a,
  3542. struct ggml_tensor * b) {
  3543. return ggml_add1_impl(ctx, a, b, false);
  3544. }
  3545. struct ggml_tensor * ggml_add1_inplace(
  3546. struct ggml_context * ctx,
  3547. struct ggml_tensor * a,
  3548. struct ggml_tensor * b) {
  3549. return ggml_add1_impl(ctx, a, b, true);
  3550. }
  3551. // ggml_acc
  3552. struct ggml_tensor * ggml_acc_impl(
  3553. struct ggml_context * ctx,
  3554. struct ggml_tensor * a,
  3555. struct ggml_tensor * b,
  3556. size_t nb1,
  3557. size_t nb2,
  3558. size_t nb3,
  3559. size_t offset,
  3560. bool inplace) {
  3561. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3562. GGML_ASSERT(ggml_is_contiguous(a));
  3563. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3564. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3565. bool is_node = false;
  3566. if (!inplace && (a->grad || b->grad)) {
  3567. is_node = true;
  3568. }
  3569. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3570. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3571. ((int32_t *) c->data)[0] = nb1;
  3572. ((int32_t *) c->data)[1] = nb2;
  3573. ((int32_t *) c->data)[2] = nb3;
  3574. ((int32_t *) c->data)[3] = offset;
  3575. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3576. result->op = GGML_OP_ACC;
  3577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3578. result->src0 = a;
  3579. result->src1 = b;
  3580. result->opt[0] = c;
  3581. return result;
  3582. }
  3583. struct ggml_tensor * ggml_acc(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. struct ggml_tensor * b,
  3587. size_t nb1,
  3588. size_t nb2,
  3589. size_t nb3,
  3590. size_t offset) {
  3591. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3592. }
  3593. struct ggml_tensor * ggml_acc_inplace(
  3594. struct ggml_context * ctx,
  3595. struct ggml_tensor * a,
  3596. struct ggml_tensor * b,
  3597. size_t nb1,
  3598. size_t nb2,
  3599. size_t nb3,
  3600. size_t offset) {
  3601. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3602. }
  3603. // ggml_sub
  3604. struct ggml_tensor * ggml_sub_impl(
  3605. struct ggml_context * ctx,
  3606. struct ggml_tensor * a,
  3607. struct ggml_tensor * b,
  3608. bool inplace) {
  3609. GGML_ASSERT(ggml_are_same_shape(a, b));
  3610. bool is_node = false;
  3611. if (!inplace && (a->grad || b->grad)) {
  3612. is_node = true;
  3613. }
  3614. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3615. result->op = GGML_OP_SUB;
  3616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3617. result->src0 = a;
  3618. result->src1 = b;
  3619. return result;
  3620. }
  3621. struct ggml_tensor * ggml_sub(
  3622. struct ggml_context * ctx,
  3623. struct ggml_tensor * a,
  3624. struct ggml_tensor * b) {
  3625. return ggml_sub_impl(ctx, a, b, false);
  3626. }
  3627. struct ggml_tensor * ggml_sub_inplace(
  3628. struct ggml_context * ctx,
  3629. struct ggml_tensor * a,
  3630. struct ggml_tensor * b) {
  3631. return ggml_sub_impl(ctx, a, b, true);
  3632. }
  3633. // ggml_mul
  3634. struct ggml_tensor * ggml_mul_impl(
  3635. struct ggml_context * ctx,
  3636. struct ggml_tensor * a,
  3637. struct ggml_tensor * b,
  3638. bool inplace) {
  3639. GGML_ASSERT(ggml_are_same_shape(a, b));
  3640. bool is_node = false;
  3641. if (!inplace && (a->grad || b->grad)) {
  3642. is_node = true;
  3643. }
  3644. if (inplace) {
  3645. GGML_ASSERT(is_node == false);
  3646. }
  3647. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3648. result->op = GGML_OP_MUL;
  3649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3650. result->src0 = a;
  3651. result->src1 = b;
  3652. return result;
  3653. }
  3654. struct ggml_tensor * ggml_mul(
  3655. struct ggml_context * ctx,
  3656. struct ggml_tensor * a,
  3657. struct ggml_tensor * b) {
  3658. return ggml_mul_impl(ctx, a, b, false);
  3659. }
  3660. struct ggml_tensor * ggml_mul_inplace(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * a,
  3663. struct ggml_tensor * b) {
  3664. return ggml_mul_impl(ctx, a, b, true);
  3665. }
  3666. // ggml_div
  3667. struct ggml_tensor * ggml_div_impl(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a,
  3670. struct ggml_tensor * b,
  3671. bool inplace) {
  3672. GGML_ASSERT(ggml_are_same_shape(a, b));
  3673. bool is_node = false;
  3674. if (!inplace && (a->grad || b->grad)) {
  3675. is_node = true;
  3676. }
  3677. if (inplace) {
  3678. GGML_ASSERT(is_node == false);
  3679. }
  3680. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3681. result->op = GGML_OP_DIV;
  3682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3683. result->src0 = a;
  3684. result->src1 = b;
  3685. return result;
  3686. }
  3687. struct ggml_tensor * ggml_div(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a,
  3690. struct ggml_tensor * b) {
  3691. return ggml_div_impl(ctx, a, b, false);
  3692. }
  3693. struct ggml_tensor * ggml_div_inplace(
  3694. struct ggml_context * ctx,
  3695. struct ggml_tensor * a,
  3696. struct ggml_tensor * b) {
  3697. return ggml_div_impl(ctx, a, b, true);
  3698. }
  3699. // ggml_sqr
  3700. struct ggml_tensor * ggml_sqr_impl(
  3701. struct ggml_context * ctx,
  3702. struct ggml_tensor * a,
  3703. bool inplace) {
  3704. bool is_node = false;
  3705. if (!inplace && (a->grad)) {
  3706. is_node = true;
  3707. }
  3708. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3709. result->op = GGML_OP_SQR;
  3710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3711. result->src0 = a;
  3712. result->src1 = NULL;
  3713. return result;
  3714. }
  3715. struct ggml_tensor * ggml_sqr(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a) {
  3718. return ggml_sqr_impl(ctx, a, false);
  3719. }
  3720. struct ggml_tensor * ggml_sqr_inplace(
  3721. struct ggml_context * ctx,
  3722. struct ggml_tensor * a) {
  3723. return ggml_sqr_impl(ctx, a, true);
  3724. }
  3725. // ggml_sqrt
  3726. struct ggml_tensor * ggml_sqrt_impl(
  3727. struct ggml_context * ctx,
  3728. struct ggml_tensor * a,
  3729. bool inplace) {
  3730. bool is_node = false;
  3731. if (!inplace && (a->grad)) {
  3732. is_node = true;
  3733. }
  3734. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3735. result->op = GGML_OP_SQRT;
  3736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3737. result->src0 = a;
  3738. result->src1 = NULL;
  3739. return result;
  3740. }
  3741. struct ggml_tensor * ggml_sqrt(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a) {
  3744. return ggml_sqrt_impl(ctx, a, false);
  3745. }
  3746. struct ggml_tensor * ggml_sqrt_inplace(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a) {
  3749. return ggml_sqrt_impl(ctx, a, true);
  3750. }
  3751. // ggml_log
  3752. struct ggml_tensor * ggml_log_impl(
  3753. struct ggml_context * ctx,
  3754. struct ggml_tensor * a,
  3755. bool inplace) {
  3756. bool is_node = false;
  3757. if (!inplace && (a->grad)) {
  3758. is_node = true;
  3759. }
  3760. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3761. result->op = GGML_OP_LOG;
  3762. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3763. result->src0 = a;
  3764. result->src1 = NULL;
  3765. return result;
  3766. }
  3767. struct ggml_tensor * ggml_log(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a) {
  3770. return ggml_log_impl(ctx, a, false);
  3771. }
  3772. struct ggml_tensor * ggml_log_inplace(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a) {
  3775. return ggml_log_impl(ctx, a, true);
  3776. }
  3777. // ggml_sum
  3778. struct ggml_tensor * ggml_sum(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a) {
  3781. bool is_node = false;
  3782. if (a->grad) {
  3783. is_node = true;
  3784. }
  3785. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3786. result->op = GGML_OP_SUM;
  3787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3788. result->src0 = a;
  3789. result->src1 = NULL;
  3790. return result;
  3791. }
  3792. // ggml_sum_rows
  3793. struct ggml_tensor * ggml_sum_rows(
  3794. struct ggml_context * ctx,
  3795. struct ggml_tensor * a) {
  3796. bool is_node = false;
  3797. if (a->grad) {
  3798. is_node = true;
  3799. }
  3800. int64_t ne[4] = {1,1,1,1};
  3801. for (int i=1; i<a->n_dims; ++i) {
  3802. ne[i] = a->ne[i];
  3803. }
  3804. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  3805. result->op = GGML_OP_SUM_ROWS;
  3806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3807. result->src0 = a;
  3808. result->src1 = NULL;
  3809. return result;
  3810. }
  3811. // ggml_mean
  3812. struct ggml_tensor * ggml_mean(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a) {
  3815. bool is_node = false;
  3816. if (a->grad) {
  3817. GGML_ASSERT(false); // TODO: implement
  3818. is_node = true;
  3819. }
  3820. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3821. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3822. result->op = GGML_OP_MEAN;
  3823. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3824. result->src0 = a;
  3825. result->src1 = NULL;
  3826. return result;
  3827. }
  3828. // ggml_repeat
  3829. struct ggml_tensor * ggml_repeat(
  3830. struct ggml_context * ctx,
  3831. struct ggml_tensor * a,
  3832. struct ggml_tensor * b) {
  3833. GGML_ASSERT(ggml_can_repeat(a, b));
  3834. bool is_node = false;
  3835. if (a->grad) {
  3836. is_node = true;
  3837. }
  3838. if (ggml_are_same_shape(a, b) && !is_node) {
  3839. return a;
  3840. }
  3841. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3842. result->op = GGML_OP_REPEAT;
  3843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3844. result->src0 = a;
  3845. result->src1 = b;
  3846. return result;
  3847. }
  3848. // ggml_abs
  3849. struct ggml_tensor * ggml_abs_impl(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a,
  3852. bool inplace) {
  3853. bool is_node = false;
  3854. if (!inplace && (a->grad)) {
  3855. is_node = true;
  3856. }
  3857. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3858. result->op = GGML_OP_ABS;
  3859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3860. result->src0 = a;
  3861. result->src1 = NULL;
  3862. return result;
  3863. }
  3864. struct ggml_tensor * ggml_abs(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a) {
  3867. return ggml_abs_impl(ctx, a, false);
  3868. }
  3869. struct ggml_tensor * ggml_abs_inplace(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a) {
  3872. return ggml_abs_impl(ctx, a, true);
  3873. }
  3874. // ggml_sgn
  3875. struct ggml_tensor * ggml_sgn_impl(
  3876. struct ggml_context * ctx,
  3877. struct ggml_tensor * a,
  3878. bool inplace) {
  3879. bool is_node = false;
  3880. if (!inplace && (a->grad)) {
  3881. is_node = true;
  3882. }
  3883. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3884. result->op = GGML_OP_SGN;
  3885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3886. result->src0 = a;
  3887. result->src1 = NULL;
  3888. return result;
  3889. }
  3890. struct ggml_tensor * ggml_sgn(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a) {
  3893. return ggml_sgn_impl(ctx, a, false);
  3894. }
  3895. struct ggml_tensor * ggml_sgn_inplace(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a) {
  3898. return ggml_sgn_impl(ctx, a, true);
  3899. }
  3900. // ggml_neg
  3901. struct ggml_tensor * ggml_neg_impl(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a,
  3904. bool inplace) {
  3905. bool is_node = false;
  3906. if (!inplace && (a->grad)) {
  3907. is_node = true;
  3908. }
  3909. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3910. result->op = GGML_OP_NEG;
  3911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3912. result->src0 = a;
  3913. result->src1 = NULL;
  3914. return result;
  3915. }
  3916. struct ggml_tensor * ggml_neg(
  3917. struct ggml_context * ctx,
  3918. struct ggml_tensor * a) {
  3919. return ggml_neg_impl(ctx, a, false);
  3920. }
  3921. struct ggml_tensor * ggml_neg_inplace(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a) {
  3924. return ggml_neg_impl(ctx, a, true);
  3925. }
  3926. // ggml_step
  3927. struct ggml_tensor * ggml_step_impl(
  3928. struct ggml_context * ctx,
  3929. struct ggml_tensor * a,
  3930. bool inplace) {
  3931. bool is_node = false;
  3932. if (!inplace && (a->grad)) {
  3933. is_node = true;
  3934. }
  3935. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3936. result->op = GGML_OP_STEP;
  3937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3938. result->src0 = a;
  3939. result->src1 = NULL;
  3940. return result;
  3941. }
  3942. struct ggml_tensor * ggml_step(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a) {
  3945. return ggml_step_impl(ctx, a, false);
  3946. }
  3947. struct ggml_tensor * ggml_step_inplace(
  3948. struct ggml_context * ctx,
  3949. struct ggml_tensor * a) {
  3950. return ggml_step_impl(ctx, a, true);
  3951. }
  3952. // ggml_relu
  3953. struct ggml_tensor * ggml_relu_impl(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a,
  3956. bool inplace) {
  3957. bool is_node = false;
  3958. if (!inplace && (a->grad)) {
  3959. is_node = true;
  3960. }
  3961. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3962. result->op = GGML_OP_RELU;
  3963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3964. result->src0 = a;
  3965. result->src1 = NULL;
  3966. return result;
  3967. }
  3968. struct ggml_tensor * ggml_relu(
  3969. struct ggml_context * ctx,
  3970. struct ggml_tensor * a) {
  3971. return ggml_relu_impl(ctx, a, false);
  3972. }
  3973. struct ggml_tensor * ggml_relu_inplace(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a) {
  3976. return ggml_relu_impl(ctx, a, true);
  3977. }
  3978. // ggml_gelu
  3979. struct ggml_tensor * ggml_gelu_impl(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a,
  3982. bool inplace) {
  3983. bool is_node = false;
  3984. if (!inplace && (a->grad)) {
  3985. is_node = true;
  3986. }
  3987. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3988. result->op = GGML_OP_GELU;
  3989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3990. result->src0 = a;
  3991. result->src1 = NULL;
  3992. return result;
  3993. }
  3994. struct ggml_tensor * ggml_gelu(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a) {
  3997. return ggml_gelu_impl(ctx, a, false);
  3998. }
  3999. struct ggml_tensor * ggml_gelu_inplace(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a) {
  4002. return ggml_gelu_impl(ctx, a, true);
  4003. }
  4004. // ggml_silu
  4005. struct ggml_tensor * ggml_silu_impl(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a,
  4008. bool inplace) {
  4009. bool is_node = false;
  4010. if (!inplace && (a->grad)) {
  4011. is_node = true;
  4012. }
  4013. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4014. result->op = GGML_OP_SILU;
  4015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4016. result->src0 = a;
  4017. result->src1 = NULL;
  4018. return result;
  4019. }
  4020. struct ggml_tensor * ggml_silu(
  4021. struct ggml_context * ctx,
  4022. struct ggml_tensor * a) {
  4023. return ggml_silu_impl(ctx, a, false);
  4024. }
  4025. struct ggml_tensor * ggml_silu_inplace(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a) {
  4028. return ggml_silu_impl(ctx, a, true);
  4029. }
  4030. // ggml_silu_back
  4031. struct ggml_tensor * ggml_silu_back(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a,
  4034. struct ggml_tensor * b) {
  4035. bool is_node = false;
  4036. if (a->grad || b->grad) {
  4037. // TODO: implement backward
  4038. is_node = true;
  4039. }
  4040. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4041. result->op = GGML_OP_SILU_BACK;
  4042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4043. result->src0 = a;
  4044. result->src1 = b;
  4045. return result;
  4046. }
  4047. // ggml_norm
  4048. struct ggml_tensor * ggml_norm_impl(
  4049. struct ggml_context * ctx,
  4050. struct ggml_tensor * a,
  4051. bool inplace) {
  4052. bool is_node = false;
  4053. if (!inplace && (a->grad)) {
  4054. GGML_ASSERT(false); // TODO: implement backward
  4055. is_node = true;
  4056. }
  4057. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4058. result->op = GGML_OP_NORM;
  4059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4060. result->src0 = a;
  4061. result->src1 = NULL; // TODO: maybe store epsilon here?
  4062. return result;
  4063. }
  4064. struct ggml_tensor * ggml_norm(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a) {
  4067. return ggml_norm_impl(ctx, a, false);
  4068. }
  4069. struct ggml_tensor * ggml_norm_inplace(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a) {
  4072. return ggml_norm_impl(ctx, a, true);
  4073. }
  4074. struct ggml_tensor * ggml_rms_norm_impl(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a,
  4077. bool inplace) {
  4078. bool is_node = false;
  4079. if (!inplace && (a->grad)) {
  4080. is_node = true;
  4081. }
  4082. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4083. result->op = GGML_OP_RMS_NORM;
  4084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4085. result->src0 = a;
  4086. result->src1 = NULL; // TODO: maybe store epsilon here?
  4087. return result;
  4088. }
  4089. struct ggml_tensor * ggml_rms_norm(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a) {
  4092. return ggml_rms_norm_impl(ctx, a, false);
  4093. }
  4094. struct ggml_tensor * ggml_rms_norm_inplace(
  4095. struct ggml_context * ctx,
  4096. struct ggml_tensor * a) {
  4097. return ggml_rms_norm_impl(ctx, a, true);
  4098. }
  4099. struct ggml_tensor * ggml_rms_norm_back(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a,
  4102. struct ggml_tensor * b) {
  4103. bool is_node = false;
  4104. if (a->grad) {
  4105. // TODO: implement backward
  4106. is_node = true;
  4107. }
  4108. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4109. result->op = GGML_OP_RMS_NORM_BACK;
  4110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4111. result->src0 = a;
  4112. result->src1 = b;
  4113. return result;
  4114. }
  4115. // ggml_mul_mat
  4116. struct ggml_tensor * ggml_mul_mat(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a,
  4119. struct ggml_tensor * b) {
  4120. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4121. GGML_ASSERT(!ggml_is_transposed(a));
  4122. bool is_node = false;
  4123. if (a->grad || b->grad) {
  4124. is_node = true;
  4125. }
  4126. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4127. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4128. result->op = GGML_OP_MUL_MAT;
  4129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4130. result->src0 = a;
  4131. result->src1 = b;
  4132. return result;
  4133. }
  4134. // ggml_scale
  4135. struct ggml_tensor * ggml_scale_impl(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a,
  4138. struct ggml_tensor * b,
  4139. bool inplace) {
  4140. GGML_ASSERT(ggml_is_scalar(b));
  4141. GGML_ASSERT(ggml_is_padded_1d(a));
  4142. bool is_node = false;
  4143. if (!inplace && (a->grad || b->grad)) {
  4144. is_node = true;
  4145. }
  4146. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4147. result->op = GGML_OP_SCALE;
  4148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4149. result->src0 = a;
  4150. result->src1 = b;
  4151. return result;
  4152. }
  4153. struct ggml_tensor * ggml_scale(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a,
  4156. struct ggml_tensor * b) {
  4157. return ggml_scale_impl(ctx, a, b, false);
  4158. }
  4159. struct ggml_tensor * ggml_scale_inplace(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a,
  4162. struct ggml_tensor * b) {
  4163. return ggml_scale_impl(ctx, a, b, true);
  4164. }
  4165. // ggml_set
  4166. struct ggml_tensor * ggml_set_impl(
  4167. struct ggml_context * ctx,
  4168. struct ggml_tensor * a,
  4169. struct ggml_tensor * b,
  4170. size_t nb1,
  4171. size_t nb2,
  4172. size_t nb3,
  4173. size_t offset,
  4174. bool inplace) {
  4175. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4176. bool is_node = false;
  4177. if (!inplace && (a->grad || b->grad)) {
  4178. is_node = true;
  4179. }
  4180. // make a view of the destination
  4181. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4182. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4183. (( int32_t * ) c->data)[0] = nb1;
  4184. (( int32_t * ) c->data)[1] = nb2;
  4185. (( int32_t * ) c->data)[2] = nb3;
  4186. (( int32_t * ) c->data)[3] = offset;
  4187. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4188. result->op = GGML_OP_SET;
  4189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4190. result->src0 = a;
  4191. result->src1 = b;
  4192. result->opt[0] = c;
  4193. return result;
  4194. }
  4195. struct ggml_tensor * ggml_set(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. struct ggml_tensor * b,
  4199. size_t nb1,
  4200. size_t nb2,
  4201. size_t nb3,
  4202. size_t offset) {
  4203. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4204. }
  4205. struct ggml_tensor * ggml_set_inplace(
  4206. struct ggml_context * ctx,
  4207. struct ggml_tensor * a,
  4208. struct ggml_tensor * b,
  4209. size_t nb1,
  4210. size_t nb2,
  4211. size_t nb3,
  4212. size_t offset) {
  4213. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4214. }
  4215. struct ggml_tensor * ggml_set_1d(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a,
  4218. struct ggml_tensor * b,
  4219. size_t offset) {
  4220. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4221. }
  4222. struct ggml_tensor * ggml_set_1d_inplace(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a,
  4225. struct ggml_tensor * b,
  4226. size_t offset) {
  4227. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4228. }
  4229. struct ggml_tensor * ggml_set_2d(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a,
  4232. struct ggml_tensor * b,
  4233. size_t nb1,
  4234. size_t offset) {
  4235. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4236. }
  4237. struct ggml_tensor * ggml_set_2d_inplace(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a,
  4240. struct ggml_tensor * b,
  4241. size_t nb1,
  4242. size_t offset) {
  4243. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4244. }
  4245. // ggml_cpy
  4246. struct ggml_tensor * ggml_cpy_impl(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a,
  4249. struct ggml_tensor * b,
  4250. bool inplace) {
  4251. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4252. bool is_node = false;
  4253. if (!inplace && (a->grad || b->grad)) {
  4254. is_node = true;
  4255. }
  4256. // make a view of the destination
  4257. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4258. result->op = GGML_OP_CPY;
  4259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4260. result->src0 = a;
  4261. result->src1 = b;
  4262. return result;
  4263. }
  4264. struct ggml_tensor * ggml_cpy(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a,
  4267. struct ggml_tensor * b) {
  4268. return ggml_cpy_impl(ctx, a, b, false);
  4269. }
  4270. struct ggml_tensor * ggml_cpy_inplace(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a,
  4273. struct ggml_tensor * b) {
  4274. return ggml_cpy_impl(ctx, a, b, true);
  4275. }
  4276. // ggml_cont
  4277. struct ggml_tensor * ggml_cont_impl(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a,
  4280. bool inplace) {
  4281. bool is_node = false;
  4282. if (!inplace && a->grad) {
  4283. is_node = true;
  4284. }
  4285. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4286. result->op = GGML_OP_CONT;
  4287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4288. result->src0 = a;
  4289. result->src1 = NULL;
  4290. return result;
  4291. }
  4292. struct ggml_tensor * ggml_cont(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a) {
  4295. return ggml_cont_impl(ctx, a, false);
  4296. }
  4297. struct ggml_tensor * ggml_cont_inplace(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a) {
  4300. return ggml_cont_impl(ctx, a, true);
  4301. }
  4302. // ggml_reshape
  4303. struct ggml_tensor * ggml_reshape(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b) {
  4307. GGML_ASSERT(ggml_is_contiguous(a));
  4308. GGML_ASSERT(ggml_is_contiguous(b));
  4309. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4310. bool is_node = false;
  4311. if (a->grad) {
  4312. is_node = true;
  4313. }
  4314. if (b->grad) {
  4315. // gradient propagation is not supported
  4316. //GGML_ASSERT(false);
  4317. }
  4318. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4319. result->op = GGML_OP_RESHAPE;
  4320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4321. result->src0 = a;
  4322. result->src1 = NULL;
  4323. return result;
  4324. }
  4325. struct ggml_tensor * ggml_reshape_1d(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a,
  4328. int64_t ne0) {
  4329. GGML_ASSERT(ggml_is_contiguous(a));
  4330. GGML_ASSERT(ggml_nelements(a) == ne0);
  4331. bool is_node = false;
  4332. if (a->grad) {
  4333. is_node = true;
  4334. }
  4335. const int64_t ne[1] = { ne0 };
  4336. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4337. result->op = GGML_OP_RESHAPE;
  4338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4339. result->src0 = a;
  4340. result->src1 = NULL;
  4341. return result;
  4342. }
  4343. struct ggml_tensor * ggml_reshape_2d(
  4344. struct ggml_context * ctx,
  4345. struct ggml_tensor * a,
  4346. int64_t ne0,
  4347. int64_t ne1) {
  4348. GGML_ASSERT(ggml_is_contiguous(a));
  4349. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4350. bool is_node = false;
  4351. if (a->grad) {
  4352. is_node = true;
  4353. }
  4354. const int64_t ne[2] = { ne0, ne1 };
  4355. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4356. result->op = GGML_OP_RESHAPE;
  4357. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4358. result->src0 = a;
  4359. result->src1 = NULL;
  4360. return result;
  4361. }
  4362. struct ggml_tensor * ggml_reshape_3d(
  4363. struct ggml_context * ctx,
  4364. struct ggml_tensor * a,
  4365. int64_t ne0,
  4366. int64_t ne1,
  4367. int64_t ne2) {
  4368. GGML_ASSERT(ggml_is_contiguous(a));
  4369. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4370. bool is_node = false;
  4371. if (a->grad) {
  4372. is_node = true;
  4373. }
  4374. const int64_t ne[3] = { ne0, ne1, ne2 };
  4375. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4376. result->op = GGML_OP_RESHAPE;
  4377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4378. result->src0 = a;
  4379. result->src1 = NULL;
  4380. return result;
  4381. }
  4382. struct ggml_tensor * ggml_reshape_4d(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. int64_t ne0,
  4386. int64_t ne1,
  4387. int64_t ne2,
  4388. int64_t ne3) {
  4389. GGML_ASSERT(ggml_is_contiguous(a));
  4390. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4391. bool is_node = false;
  4392. if (a->grad) {
  4393. is_node = true;
  4394. }
  4395. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4396. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4397. result->op = GGML_OP_RESHAPE;
  4398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4399. result->src0 = a;
  4400. result->src1 = NULL;
  4401. return result;
  4402. }
  4403. // ggml_view_1d
  4404. struct ggml_tensor * ggml_view_1d(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a,
  4407. int64_t ne0,
  4408. size_t offset) {
  4409. bool is_node = false;
  4410. if (a->grad) {
  4411. is_node = true;
  4412. }
  4413. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4414. result->op = GGML_OP_VIEW;
  4415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4416. result->src0 = a;
  4417. result->src1 = NULL;
  4418. if (is_node) {
  4419. memcpy(result->padding, &offset, sizeof(offset));
  4420. }
  4421. return result;
  4422. }
  4423. // ggml_view_2d
  4424. struct ggml_tensor * ggml_view_2d(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a,
  4427. int64_t ne0,
  4428. int64_t ne1,
  4429. size_t nb1,
  4430. size_t offset) {
  4431. bool is_node = false;
  4432. if (a->grad) {
  4433. is_node = true;
  4434. }
  4435. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4436. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4437. result->nb[1] = nb1;
  4438. result->nb[2] = result->nb[1]*ne1;
  4439. result->nb[3] = result->nb[2];
  4440. result->op = GGML_OP_VIEW;
  4441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4442. result->src0 = a;
  4443. result->src1 = NULL;
  4444. if (is_node) {
  4445. memcpy(result->padding, &offset, sizeof(offset));
  4446. }
  4447. return result;
  4448. }
  4449. // ggml_view_3d
  4450. struct ggml_tensor * ggml_view_3d(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a,
  4453. int64_t ne0,
  4454. int64_t ne1,
  4455. int64_t ne2,
  4456. size_t nb1,
  4457. size_t nb2,
  4458. size_t offset) {
  4459. bool is_node = false;
  4460. if (a->grad) {
  4461. is_node = true;
  4462. }
  4463. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4464. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4465. result->nb[1] = nb1;
  4466. result->nb[2] = nb2;
  4467. result->nb[3] = result->nb[2]*ne2;
  4468. result->op = GGML_OP_VIEW;
  4469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4470. result->src0 = a;
  4471. result->src1 = NULL;
  4472. if (is_node) {
  4473. memcpy(result->padding, &offset, sizeof(offset));
  4474. }
  4475. return result;
  4476. }
  4477. // ggml_view_4d
  4478. struct ggml_tensor * ggml_view_4d(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a,
  4481. int64_t ne0,
  4482. int64_t ne1,
  4483. int64_t ne2,
  4484. int64_t ne3,
  4485. size_t nb1,
  4486. size_t nb2,
  4487. size_t nb3,
  4488. size_t offset) {
  4489. bool is_node = false;
  4490. if (a->grad) {
  4491. is_node = true;
  4492. }
  4493. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4494. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4495. result->nb[1] = nb1;
  4496. result->nb[2] = nb2;
  4497. result->nb[3] = nb3;
  4498. result->op = GGML_OP_VIEW;
  4499. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4500. result->src0 = a;
  4501. result->src1 = NULL;
  4502. if (is_node) {
  4503. memcpy(result->padding, &offset, sizeof(offset));
  4504. }
  4505. return result;
  4506. }
  4507. // ggml_permute
  4508. struct ggml_tensor * ggml_permute(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. int axis0,
  4512. int axis1,
  4513. int axis2,
  4514. int axis3) {
  4515. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4516. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4517. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4518. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4519. GGML_ASSERT(axis0 != axis1);
  4520. GGML_ASSERT(axis0 != axis2);
  4521. GGML_ASSERT(axis0 != axis3);
  4522. GGML_ASSERT(axis1 != axis2);
  4523. GGML_ASSERT(axis1 != axis3);
  4524. GGML_ASSERT(axis2 != axis3);
  4525. bool is_node = false;
  4526. if (a->grad) {
  4527. is_node = true;
  4528. }
  4529. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4530. int ne[GGML_MAX_DIMS];
  4531. int nb[GGML_MAX_DIMS];
  4532. ne[axis0] = a->ne[0];
  4533. ne[axis1] = a->ne[1];
  4534. ne[axis2] = a->ne[2];
  4535. ne[axis3] = a->ne[3];
  4536. nb[axis0] = a->nb[0];
  4537. nb[axis1] = a->nb[1];
  4538. nb[axis2] = a->nb[2];
  4539. nb[axis3] = a->nb[3];
  4540. result->ne[0] = ne[0];
  4541. result->ne[1] = ne[1];
  4542. result->ne[2] = ne[2];
  4543. result->ne[3] = ne[3];
  4544. result->nb[0] = nb[0];
  4545. result->nb[1] = nb[1];
  4546. result->nb[2] = nb[2];
  4547. result->nb[3] = nb[3];
  4548. result->op = GGML_OP_PERMUTE;
  4549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4550. result->src0 = a;
  4551. result->src1 = NULL;
  4552. if (is_node) {
  4553. result->padding[0] = axis0;
  4554. result->padding[1] = axis1;
  4555. result->padding[2] = axis2;
  4556. result->padding[3] = axis3;
  4557. }
  4558. return result;
  4559. }
  4560. // ggml_transpose
  4561. struct ggml_tensor * ggml_transpose(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a) {
  4564. bool is_node = false;
  4565. if (a->grad) {
  4566. is_node = true;
  4567. }
  4568. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4569. result->ne[0] = a->ne[1];
  4570. result->ne[1] = a->ne[0];
  4571. result->nb[0] = a->nb[1];
  4572. result->nb[1] = a->nb[0];
  4573. result->op = GGML_OP_TRANSPOSE;
  4574. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4575. result->src0 = a;
  4576. result->src1 = NULL;
  4577. return result;
  4578. }
  4579. // ggml_get_rows
  4580. struct ggml_tensor * ggml_get_rows(
  4581. struct ggml_context * ctx,
  4582. struct ggml_tensor * a,
  4583. struct ggml_tensor * b) {
  4584. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4585. bool is_node = false;
  4586. if (a->grad || b->grad) {
  4587. is_node = true;
  4588. }
  4589. // TODO: implement non F32 return
  4590. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4591. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4592. result->op = GGML_OP_GET_ROWS;
  4593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4594. result->src0 = a;
  4595. result->src1 = b;
  4596. return result;
  4597. }
  4598. // ggml_get_rows_back
  4599. struct ggml_tensor * ggml_get_rows_back(
  4600. struct ggml_context * ctx,
  4601. struct ggml_tensor * a,
  4602. struct ggml_tensor * b,
  4603. struct ggml_tensor * c) {
  4604. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4605. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4606. bool is_node = false;
  4607. if (a->grad || b->grad) {
  4608. is_node = true;
  4609. }
  4610. // TODO: implement non F32 return
  4611. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4612. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4613. result->op = GGML_OP_GET_ROWS_BACK;
  4614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4615. result->src0 = a;
  4616. result->src1 = b;
  4617. result->opt[0] = c;
  4618. return result;
  4619. }
  4620. // ggml_diag
  4621. struct ggml_tensor * ggml_diag(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a) {
  4624. GGML_ASSERT(a->ne[1] == 1);
  4625. bool is_node = false;
  4626. if (a->grad) {
  4627. is_node = true;
  4628. }
  4629. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4630. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4631. result->op = GGML_OP_DIAG;
  4632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4633. result->src0 = a;
  4634. result->src1 = NULL;
  4635. return result;
  4636. }
  4637. // ggml_diag_mask_inf
  4638. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a,
  4641. int n_past,
  4642. bool inplace) {
  4643. bool is_node = false;
  4644. if (a->grad) {
  4645. is_node = true;
  4646. }
  4647. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4648. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4649. ((int32_t *) b->data)[0] = n_past;
  4650. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4651. result->op = GGML_OP_DIAG_MASK_INF;
  4652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4653. result->src0 = a;
  4654. result->src1 = b;
  4655. return result;
  4656. }
  4657. struct ggml_tensor * ggml_diag_mask_inf(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. int n_past) {
  4661. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4662. }
  4663. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a,
  4666. int n_past) {
  4667. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4668. }
  4669. // ggml_diag_mask_zero
  4670. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4671. struct ggml_context * ctx,
  4672. struct ggml_tensor * a,
  4673. int n_past,
  4674. bool inplace) {
  4675. bool is_node = false;
  4676. if (a->grad) {
  4677. is_node = true;
  4678. }
  4679. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4680. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4681. ggml_set_name(b, "n_past, inplace");
  4682. ((int32_t *) b->data)[0] = n_past;
  4683. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4684. result->op = GGML_OP_DIAG_MASK_ZERO;
  4685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4686. result->src0 = a;
  4687. result->src1 = b;
  4688. return result;
  4689. }
  4690. struct ggml_tensor * ggml_diag_mask_zero(
  4691. struct ggml_context * ctx,
  4692. struct ggml_tensor * a,
  4693. int n_past) {
  4694. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4695. }
  4696. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a,
  4699. int n_past) {
  4700. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4701. }
  4702. // ggml_soft_max
  4703. struct ggml_tensor * ggml_soft_max_impl(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. bool inplace) {
  4707. bool is_node = false;
  4708. if (a->grad) {
  4709. is_node = true;
  4710. }
  4711. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4712. result->op = GGML_OP_SOFT_MAX;
  4713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4714. result->src0 = a;
  4715. result->src1 = NULL;
  4716. return result;
  4717. }
  4718. struct ggml_tensor * ggml_soft_max(
  4719. struct ggml_context * ctx,
  4720. struct ggml_tensor * a) {
  4721. return ggml_soft_max_impl(ctx, a, false);
  4722. }
  4723. struct ggml_tensor * ggml_soft_max_inplace(
  4724. struct ggml_context * ctx,
  4725. struct ggml_tensor * a) {
  4726. return ggml_soft_max_impl(ctx, a, true);
  4727. }
  4728. // ggml_rope
  4729. struct ggml_tensor * ggml_rope_impl(
  4730. struct ggml_context * ctx,
  4731. struct ggml_tensor * a,
  4732. int n_past,
  4733. int n_dims,
  4734. int mode,
  4735. bool inplace) {
  4736. GGML_ASSERT(n_past >= 0);
  4737. bool is_node = false;
  4738. if (!inplace && a->grad) {
  4739. is_node = true;
  4740. }
  4741. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4742. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4743. ((int32_t *) b->data)[0] = n_past;
  4744. ((int32_t *) b->data)[1] = n_dims;
  4745. ((int32_t *) b->data)[2] = mode;
  4746. result->op = GGML_OP_ROPE;
  4747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4748. result->src0 = a;
  4749. result->src1 = b;
  4750. return result;
  4751. }
  4752. struct ggml_tensor * ggml_rope(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a,
  4755. int n_past,
  4756. int n_dims,
  4757. int mode) {
  4758. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  4759. }
  4760. struct ggml_tensor * ggml_rope_inplace(
  4761. struct ggml_context * ctx,
  4762. struct ggml_tensor * a,
  4763. int n_past,
  4764. int n_dims,
  4765. int mode) {
  4766. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  4767. }
  4768. // ggml_rope_back
  4769. struct ggml_tensor * ggml_rope_back(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a,
  4772. int n_past,
  4773. int n_dims,
  4774. int mode) {
  4775. GGML_ASSERT(n_past >= 0);
  4776. bool is_node = false;
  4777. if (a->grad) {
  4778. GGML_ASSERT(false); // TODO: implement backward
  4779. is_node = true;
  4780. }
  4781. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4782. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4783. ((int32_t *) b->data)[0] = n_past;
  4784. ((int32_t *) b->data)[1] = n_dims;
  4785. ((int32_t *) b->data)[2] = mode;
  4786. ggml_set_name(b, "n_past, n_dims, mode");
  4787. result->op = GGML_OP_ROPE_BACK;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src0 = a;
  4790. result->src1 = b;
  4791. return result;
  4792. }
  4793. // ggml_alibi
  4794. struct ggml_tensor * ggml_alibi(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a,
  4797. int n_past,
  4798. int n_head) {
  4799. GGML_ASSERT(n_past >= 0);
  4800. bool is_node = false;
  4801. if (a->grad) {
  4802. GGML_ASSERT(false); // TODO: implement backward
  4803. is_node = true;
  4804. }
  4805. // TODO: when implement backward, fix this:
  4806. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4807. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4808. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4809. ((int32_t *) b->data)[0] = n_past;
  4810. ((int32_t *) b->data)[1] = n_head;
  4811. result->op = GGML_OP_ALIBI;
  4812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4813. result->src0 = a;
  4814. result->src1 = b;
  4815. return result;
  4816. }
  4817. // ggml_conv_1d_1s
  4818. struct ggml_tensor * ggml_conv_1d_1s(
  4819. struct ggml_context * ctx,
  4820. struct ggml_tensor * a,
  4821. struct ggml_tensor * b) {
  4822. GGML_ASSERT(ggml_is_matrix(b));
  4823. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4824. GGML_ASSERT(a->ne[3] == 1);
  4825. bool is_node = false;
  4826. if (a->grad || b->grad) {
  4827. GGML_ASSERT(false); // TODO: implement backward
  4828. is_node = true;
  4829. }
  4830. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4831. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4832. result->op = GGML_OP_CONV_1D_1S;
  4833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4834. result->src0 = a;
  4835. result->src1 = b;
  4836. return result;
  4837. }
  4838. // ggml_conv_1d_2s
  4839. struct ggml_tensor * ggml_conv_1d_2s(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. struct ggml_tensor * b) {
  4843. GGML_ASSERT(ggml_is_matrix(b));
  4844. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4845. GGML_ASSERT(a->ne[3] == 1);
  4846. bool is_node = false;
  4847. if (a->grad || b->grad) {
  4848. GGML_ASSERT(false); // TODO: implement backward
  4849. is_node = true;
  4850. }
  4851. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4852. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4853. result->op = GGML_OP_CONV_1D_2S;
  4854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4855. result->src0 = a;
  4856. result->src1 = b;
  4857. return result;
  4858. }
  4859. // ggml_flash_attn
  4860. struct ggml_tensor * ggml_flash_attn(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * q,
  4863. struct ggml_tensor * k,
  4864. struct ggml_tensor * v,
  4865. bool masked) {
  4866. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4867. // TODO: check if vT can be multiplied by (k*qT)
  4868. bool is_node = false;
  4869. if (q->grad || k->grad || v->grad) {
  4870. GGML_ASSERT(false); // TODO: implement backward
  4871. is_node = true;
  4872. }
  4873. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4874. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4875. result->op = GGML_OP_FLASH_ATTN;
  4876. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4877. result->src0 = q;
  4878. result->src1 = k;
  4879. result->opt[0] = v;
  4880. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4881. return result;
  4882. }
  4883. // ggml_flash_ff
  4884. struct ggml_tensor * ggml_flash_ff(
  4885. struct ggml_context * ctx,
  4886. struct ggml_tensor * a,
  4887. struct ggml_tensor * b0,
  4888. struct ggml_tensor * b1,
  4889. struct ggml_tensor * c0,
  4890. struct ggml_tensor * c1) {
  4891. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4892. // TODO: more checks
  4893. bool is_node = false;
  4894. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4895. GGML_ASSERT(false); // TODO: implement backward
  4896. is_node = true;
  4897. }
  4898. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4899. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4900. result->op = GGML_OP_FLASH_FF;
  4901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4902. result->src0 = a;
  4903. result->src1 = b0;
  4904. result->opt[0] = b1;
  4905. result->opt[1] = c0;
  4906. result->opt[2] = c1;
  4907. return result;
  4908. }
  4909. // ggml_map_unary
  4910. struct ggml_tensor * ggml_map_unary_impl_f32(
  4911. struct ggml_context * ctx,
  4912. struct ggml_tensor * a,
  4913. const ggml_unary_op_f32_t fun,
  4914. bool inplace) {
  4915. bool is_node = false;
  4916. if (!inplace && a->grad) {
  4917. is_node = true;
  4918. }
  4919. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4920. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4921. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4922. result->op = GGML_OP_MAP_UNARY;
  4923. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4924. result->src0 = a;
  4925. result->opt[0] = addr_tensor;
  4926. return result;
  4927. }
  4928. struct ggml_tensor * ggml_map_unary_f32(
  4929. struct ggml_context * ctx,
  4930. struct ggml_tensor * a,
  4931. const ggml_unary_op_f32_t fun) {
  4932. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4933. }
  4934. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4935. struct ggml_context * ctx,
  4936. struct ggml_tensor * a,
  4937. const ggml_unary_op_f32_t fun) {
  4938. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4939. }
  4940. // ggml_map_binary
  4941. struct ggml_tensor * ggml_map_binary_impl_f32(
  4942. struct ggml_context * ctx,
  4943. struct ggml_tensor * a,
  4944. struct ggml_tensor * b,
  4945. const ggml_binary_op_f32_t fun,
  4946. bool inplace) {
  4947. GGML_ASSERT(ggml_are_same_shape(a, b));
  4948. bool is_node = false;
  4949. if (!inplace && (a->grad || b->grad)) {
  4950. is_node = true;
  4951. }
  4952. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4953. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4954. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4955. result->op = GGML_OP_MAP_BINARY;
  4956. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4957. result->src0 = a;
  4958. result->src1 = b;
  4959. result->opt[0] = addr_tensor;
  4960. return result;
  4961. }
  4962. struct ggml_tensor * ggml_map_binary_f32(
  4963. struct ggml_context * ctx,
  4964. struct ggml_tensor * a,
  4965. struct ggml_tensor * b,
  4966. const ggml_binary_op_f32_t fun) {
  4967. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4968. }
  4969. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4970. struct ggml_context * ctx,
  4971. struct ggml_tensor * a,
  4972. struct ggml_tensor * b,
  4973. const ggml_binary_op_f32_t fun) {
  4974. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4975. }
  4976. ////////////////////////////////////////////////////////////////////////////////
  4977. void ggml_set_param(
  4978. struct ggml_context * ctx,
  4979. struct ggml_tensor * tensor) {
  4980. tensor->is_param = true;
  4981. GGML_ASSERT(tensor->grad == NULL);
  4982. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4983. }
  4984. // ggml_compute_forward_dup
  4985. static void ggml_compute_forward_dup_same_cont(
  4986. const struct ggml_compute_params * params,
  4987. const struct ggml_tensor * src0,
  4988. struct ggml_tensor * dst) {
  4989. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4990. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4991. GGML_ASSERT(src0->type == dst->type);
  4992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4993. return;
  4994. }
  4995. const size_t nb00 = src0->nb[0];
  4996. const size_t nb0 = dst->nb[0];
  4997. const int ith = params->ith; // thread index
  4998. const int nth = params->nth; // number of threads
  4999. // parallelize by elements
  5000. const int ne = ggml_nelements(dst);
  5001. const int dr = (ne + nth - 1) / nth;
  5002. const int ie0 = dr * ith;
  5003. const int ie1 = MIN(ie0 + dr, ne);
  5004. if (ie0 < ie1) {
  5005. memcpy(
  5006. ((char *) dst->data + ie0*nb0),
  5007. ((char *) src0->data + ie0*nb00),
  5008. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5009. }
  5010. }
  5011. static void ggml_compute_forward_dup_f16(
  5012. const struct ggml_compute_params * params,
  5013. const struct ggml_tensor * src0,
  5014. struct ggml_tensor * dst) {
  5015. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5016. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5017. return;
  5018. }
  5019. const int64_t ne00 = src0->ne[0];
  5020. const int64_t ne01 = src0->ne[1];
  5021. const int64_t ne02 = src0->ne[2];
  5022. const int64_t ne03 = src0->ne[3];
  5023. const int64_t ne0 = dst->ne[0];
  5024. const int64_t ne1 = dst->ne[1];
  5025. const int64_t ne2 = dst->ne[2];
  5026. const int64_t ne3 = dst->ne[3];
  5027. const size_t nb00 = src0->nb[0];
  5028. const size_t nb01 = src0->nb[1];
  5029. const size_t nb02 = src0->nb[2];
  5030. const size_t nb03 = src0->nb[3];
  5031. const size_t nb0 = dst->nb[0];
  5032. const size_t nb1 = dst->nb[1];
  5033. const size_t nb2 = dst->nb[2];
  5034. const size_t nb3 = dst->nb[3];
  5035. const int ith = params->ith; // thread index
  5036. const int nth = params->nth; // number of threads
  5037. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5038. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5039. return;
  5040. }
  5041. // parallelize by rows
  5042. const int nr = ne01;
  5043. // number of rows per thread
  5044. const int dr = (nr + nth - 1) / nth;
  5045. // row range for this thread
  5046. const int ir0 = dr * ith;
  5047. const int ir1 = MIN(ir0 + dr, nr);
  5048. if (src0->type == dst->type &&
  5049. ne00 == ne0 &&
  5050. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5051. // copy by rows
  5052. const size_t rs = ne00*nb00;
  5053. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5054. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5055. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5056. memcpy(
  5057. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5058. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5059. rs);
  5060. }
  5061. }
  5062. }
  5063. return;
  5064. }
  5065. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5066. if (ggml_is_contiguous(dst)) {
  5067. if (nb00 == sizeof(ggml_fp16_t)) {
  5068. if (dst->type == GGML_TYPE_F16) {
  5069. size_t id = 0;
  5070. const size_t rs = ne00 * nb00;
  5071. char * dst_ptr = (char *) dst->data;
  5072. for (int i03 = 0; i03 < ne03; i03++) {
  5073. for (int i02 = 0; i02 < ne02; i02++) {
  5074. id += rs * ir0;
  5075. for (int i01 = ir0; i01 < ir1; i01++) {
  5076. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5077. memcpy(dst_ptr + id, src0_ptr, rs);
  5078. id += rs;
  5079. }
  5080. id += rs * (ne01 - ir1);
  5081. }
  5082. }
  5083. } else if (dst->type == GGML_TYPE_F32) {
  5084. size_t id = 0;
  5085. float * dst_ptr = (float *) dst->data;
  5086. for (int i03 = 0; i03 < ne03; i03++) {
  5087. for (int i02 = 0; i02 < ne02; i02++) {
  5088. id += ne00 * ir0;
  5089. for (int i01 = ir0; i01 < ir1; i01++) {
  5090. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5091. for (int i00 = 0; i00 < ne00; i00++) {
  5092. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5093. id++;
  5094. }
  5095. }
  5096. id += ne00 * (ne01 - ir1);
  5097. }
  5098. }
  5099. } else if (ggml_is_quantized(dst->type)) {
  5100. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5101. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5102. size_t id = 0;
  5103. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5104. char * dst_ptr = (char *) dst->data;
  5105. for (int i03 = 0; i03 < ne03; i03++) {
  5106. for (int i02 = 0; i02 < ne02; i02++) {
  5107. id += rs * ir0;
  5108. for (int i01 = ir0; i01 < ir1; i01++) {
  5109. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5110. for (int i00 = 0; i00 < ne00; i00++) {
  5111. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5112. }
  5113. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5114. id += rs;
  5115. }
  5116. id += rs * (ne01 - ir1);
  5117. }
  5118. }
  5119. } else {
  5120. GGML_ASSERT(false); // TODO: implement
  5121. }
  5122. } else {
  5123. //printf("%s: this is not optimal - fix me\n", __func__);
  5124. if (dst->type == GGML_TYPE_F32) {
  5125. size_t id = 0;
  5126. float * dst_ptr = (float *) dst->data;
  5127. for (int i03 = 0; i03 < ne03; i03++) {
  5128. for (int i02 = 0; i02 < ne02; i02++) {
  5129. id += ne00 * ir0;
  5130. for (int i01 = ir0; i01 < ir1; i01++) {
  5131. for (int i00 = 0; i00 < ne00; i00++) {
  5132. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5133. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5134. id++;
  5135. }
  5136. }
  5137. id += ne00 * (ne01 - ir1);
  5138. }
  5139. }
  5140. } else if (dst->type == GGML_TYPE_F16) {
  5141. size_t id = 0;
  5142. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5143. for (int i03 = 0; i03 < ne03; i03++) {
  5144. for (int i02 = 0; i02 < ne02; i02++) {
  5145. id += ne00 * ir0;
  5146. for (int i01 = ir0; i01 < ir1; i01++) {
  5147. for (int i00 = 0; i00 < ne00; i00++) {
  5148. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5149. dst_ptr[id] = *src0_ptr;
  5150. id++;
  5151. }
  5152. }
  5153. id += ne00 * (ne01 - ir1);
  5154. }
  5155. }
  5156. } else {
  5157. GGML_ASSERT(false); // TODO: implement
  5158. }
  5159. }
  5160. return;
  5161. }
  5162. // dst counters
  5163. int64_t i10 = 0;
  5164. int64_t i11 = 0;
  5165. int64_t i12 = 0;
  5166. int64_t i13 = 0;
  5167. if (dst->type == GGML_TYPE_F16) {
  5168. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5169. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5170. i10 += ne00 * ir0;
  5171. while (i10 >= ne0) {
  5172. i10 -= ne0;
  5173. if (++i11 == ne1) {
  5174. i11 = 0;
  5175. if (++i12 == ne2) {
  5176. i12 = 0;
  5177. if (++i13 == ne3) {
  5178. i13 = 0;
  5179. }
  5180. }
  5181. }
  5182. }
  5183. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5184. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5185. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5186. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5187. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5188. if (++i10 == ne00) {
  5189. i10 = 0;
  5190. if (++i11 == ne01) {
  5191. i11 = 0;
  5192. if (++i12 == ne02) {
  5193. i12 = 0;
  5194. if (++i13 == ne03) {
  5195. i13 = 0;
  5196. }
  5197. }
  5198. }
  5199. }
  5200. }
  5201. }
  5202. i10 += ne00 * (ne01 - ir1);
  5203. while (i10 >= ne0) {
  5204. i10 -= ne0;
  5205. if (++i11 == ne1) {
  5206. i11 = 0;
  5207. if (++i12 == ne2) {
  5208. i12 = 0;
  5209. if (++i13 == ne3) {
  5210. i13 = 0;
  5211. }
  5212. }
  5213. }
  5214. }
  5215. }
  5216. }
  5217. } else if (dst->type == GGML_TYPE_F32) {
  5218. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5219. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5220. i10 += ne00 * ir0;
  5221. while (i10 >= ne0) {
  5222. i10 -= ne0;
  5223. if (++i11 == ne1) {
  5224. i11 = 0;
  5225. if (++i12 == ne2) {
  5226. i12 = 0;
  5227. if (++i13 == ne3) {
  5228. i13 = 0;
  5229. }
  5230. }
  5231. }
  5232. }
  5233. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5234. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5235. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5236. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5237. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5238. if (++i10 == ne0) {
  5239. i10 = 0;
  5240. if (++i11 == ne1) {
  5241. i11 = 0;
  5242. if (++i12 == ne2) {
  5243. i12 = 0;
  5244. if (++i13 == ne3) {
  5245. i13 = 0;
  5246. }
  5247. }
  5248. }
  5249. }
  5250. }
  5251. }
  5252. i10 += ne00 * (ne01 - ir1);
  5253. while (i10 >= ne0) {
  5254. i10 -= ne0;
  5255. if (++i11 == ne1) {
  5256. i11 = 0;
  5257. if (++i12 == ne2) {
  5258. i12 = 0;
  5259. if (++i13 == ne3) {
  5260. i13 = 0;
  5261. }
  5262. }
  5263. }
  5264. }
  5265. }
  5266. }
  5267. } else {
  5268. GGML_ASSERT(false); // TODO: implement
  5269. }
  5270. }
  5271. static void ggml_compute_forward_dup_f32(
  5272. const struct ggml_compute_params * params,
  5273. const struct ggml_tensor * src0,
  5274. struct ggml_tensor * dst) {
  5275. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5276. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5277. return;
  5278. }
  5279. const int64_t ne00 = src0->ne[0];
  5280. const int64_t ne01 = src0->ne[1];
  5281. const int64_t ne02 = src0->ne[2];
  5282. const int64_t ne03 = src0->ne[3];
  5283. const int64_t ne0 = dst->ne[0];
  5284. const int64_t ne1 = dst->ne[1];
  5285. const int64_t ne2 = dst->ne[2];
  5286. const int64_t ne3 = dst->ne[3];
  5287. const size_t nb00 = src0->nb[0];
  5288. const size_t nb01 = src0->nb[1];
  5289. const size_t nb02 = src0->nb[2];
  5290. const size_t nb03 = src0->nb[3];
  5291. const size_t nb0 = dst->nb[0];
  5292. const size_t nb1 = dst->nb[1];
  5293. const size_t nb2 = dst->nb[2];
  5294. const size_t nb3 = dst->nb[3];
  5295. const int ith = params->ith; // thread index
  5296. const int nth = params->nth; // number of threads
  5297. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5298. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5299. return;
  5300. }
  5301. // parallelize by rows
  5302. const int nr = ne01;
  5303. // number of rows per thread
  5304. const int dr = (nr + nth - 1) / nth;
  5305. // row range for this thread
  5306. const int ir0 = dr * ith;
  5307. const int ir1 = MIN(ir0 + dr, nr);
  5308. if (src0->type == dst->type &&
  5309. ne00 == ne0 &&
  5310. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5311. // copy by rows
  5312. const size_t rs = ne00*nb00;
  5313. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5314. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5315. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5316. memcpy(
  5317. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5318. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5319. rs);
  5320. }
  5321. }
  5322. }
  5323. return;
  5324. }
  5325. if (ggml_is_contiguous(dst)) {
  5326. // TODO: simplify
  5327. if (nb00 == sizeof(float)) {
  5328. if (dst->type == GGML_TYPE_F32) {
  5329. size_t id = 0;
  5330. const size_t rs = ne00 * nb00;
  5331. char * dst_ptr = (char *) dst->data;
  5332. for (int i03 = 0; i03 < ne03; i03++) {
  5333. for (int i02 = 0; i02 < ne02; i02++) {
  5334. id += rs * ir0;
  5335. for (int i01 = ir0; i01 < ir1; i01++) {
  5336. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5337. memcpy(dst_ptr + id, src0_ptr, rs);
  5338. id += rs;
  5339. }
  5340. id += rs * (ne01 - ir1);
  5341. }
  5342. }
  5343. } else if (dst->type == GGML_TYPE_F16) {
  5344. size_t id = 0;
  5345. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5346. for (int i03 = 0; i03 < ne03; i03++) {
  5347. for (int i02 = 0; i02 < ne02; i02++) {
  5348. id += ne00 * ir0;
  5349. for (int i01 = ir0; i01 < ir1; i01++) {
  5350. for (int i00 = 0; i00 < ne00; i00++) {
  5351. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5352. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5353. id++;
  5354. }
  5355. }
  5356. id += ne00 * (ne01 - ir1);
  5357. }
  5358. }
  5359. } else if (ggml_is_quantized(dst->type)) {
  5360. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5361. size_t id = 0;
  5362. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5363. char * dst_ptr = (char *) dst->data;
  5364. for (int i03 = 0; i03 < ne03; i03++) {
  5365. for (int i02 = 0; i02 < ne02; i02++) {
  5366. id += rs * ir0;
  5367. for (int i01 = ir0; i01 < ir1; i01++) {
  5368. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5369. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5370. id += rs;
  5371. }
  5372. id += rs * (ne01 - ir1);
  5373. }
  5374. }
  5375. } else {
  5376. GGML_ASSERT(false); // TODO: implement
  5377. }
  5378. } else {
  5379. //printf("%s: this is not optimal - fix me\n", __func__);
  5380. if (dst->type == GGML_TYPE_F32) {
  5381. size_t id = 0;
  5382. float * dst_ptr = (float *) dst->data;
  5383. for (int i03 = 0; i03 < ne03; i03++) {
  5384. for (int i02 = 0; i02 < ne02; i02++) {
  5385. id += ne00 * ir0;
  5386. for (int i01 = ir0; i01 < ir1; i01++) {
  5387. for (int i00 = 0; i00 < ne00; i00++) {
  5388. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5389. dst_ptr[id] = *src0_ptr;
  5390. id++;
  5391. }
  5392. }
  5393. id += ne00 * (ne01 - ir1);
  5394. }
  5395. }
  5396. } else if (dst->type == GGML_TYPE_F16) {
  5397. size_t id = 0;
  5398. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5399. for (int i03 = 0; i03 < ne03; i03++) {
  5400. for (int i02 = 0; i02 < ne02; i02++) {
  5401. id += ne00 * ir0;
  5402. for (int i01 = ir0; i01 < ir1; i01++) {
  5403. for (int i00 = 0; i00 < ne00; i00++) {
  5404. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5405. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5406. id++;
  5407. }
  5408. }
  5409. id += ne00 * (ne01 - ir1);
  5410. }
  5411. }
  5412. } else {
  5413. GGML_ASSERT(false); // TODO: implement
  5414. }
  5415. }
  5416. return;
  5417. }
  5418. // dst counters
  5419. int64_t i10 = 0;
  5420. int64_t i11 = 0;
  5421. int64_t i12 = 0;
  5422. int64_t i13 = 0;
  5423. if (dst->type == GGML_TYPE_F32) {
  5424. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5425. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5426. i10 += ne00 * ir0;
  5427. while (i10 >= ne0) {
  5428. i10 -= ne0;
  5429. if (++i11 == ne1) {
  5430. i11 = 0;
  5431. if (++i12 == ne2) {
  5432. i12 = 0;
  5433. if (++i13 == ne3) {
  5434. i13 = 0;
  5435. }
  5436. }
  5437. }
  5438. }
  5439. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5440. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5441. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5442. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5443. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5444. if (++i10 == ne0) {
  5445. i10 = 0;
  5446. if (++i11 == ne1) {
  5447. i11 = 0;
  5448. if (++i12 == ne2) {
  5449. i12 = 0;
  5450. if (++i13 == ne3) {
  5451. i13 = 0;
  5452. }
  5453. }
  5454. }
  5455. }
  5456. }
  5457. }
  5458. i10 += ne00 * (ne01 - ir1);
  5459. while (i10 >= ne0) {
  5460. i10 -= ne0;
  5461. if (++i11 == ne1) {
  5462. i11 = 0;
  5463. if (++i12 == ne2) {
  5464. i12 = 0;
  5465. if (++i13 == ne3) {
  5466. i13 = 0;
  5467. }
  5468. }
  5469. }
  5470. }
  5471. }
  5472. }
  5473. } else if (dst->type == GGML_TYPE_F16) {
  5474. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5475. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5476. i10 += ne00 * ir0;
  5477. while (i10 >= ne0) {
  5478. i10 -= ne0;
  5479. if (++i11 == ne1) {
  5480. i11 = 0;
  5481. if (++i12 == ne2) {
  5482. i12 = 0;
  5483. if (++i13 == ne3) {
  5484. i13 = 0;
  5485. }
  5486. }
  5487. }
  5488. }
  5489. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5490. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5491. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5492. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5493. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5494. if (++i10 == ne0) {
  5495. i10 = 0;
  5496. if (++i11 == ne1) {
  5497. i11 = 0;
  5498. if (++i12 == ne2) {
  5499. i12 = 0;
  5500. if (++i13 == ne3) {
  5501. i13 = 0;
  5502. }
  5503. }
  5504. }
  5505. }
  5506. }
  5507. }
  5508. i10 += ne00 * (ne01 - ir1);
  5509. while (i10 >= ne0) {
  5510. i10 -= ne0;
  5511. if (++i11 == ne1) {
  5512. i11 = 0;
  5513. if (++i12 == ne2) {
  5514. i12 = 0;
  5515. if (++i13 == ne3) {
  5516. i13 = 0;
  5517. }
  5518. }
  5519. }
  5520. }
  5521. }
  5522. }
  5523. } else {
  5524. GGML_ASSERT(false); // TODO: implement
  5525. }
  5526. }
  5527. static void ggml_compute_forward_dup(
  5528. const struct ggml_compute_params * params,
  5529. const struct ggml_tensor * src0,
  5530. struct ggml_tensor * dst) {
  5531. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5532. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5533. return;
  5534. }
  5535. switch (src0->type) {
  5536. case GGML_TYPE_F16:
  5537. {
  5538. ggml_compute_forward_dup_f16(params, src0, dst);
  5539. } break;
  5540. case GGML_TYPE_F32:
  5541. {
  5542. ggml_compute_forward_dup_f32(params, src0, dst);
  5543. } break;
  5544. default:
  5545. {
  5546. GGML_ASSERT(false);
  5547. } break;
  5548. }
  5549. }
  5550. // ggml_compute_forward_add
  5551. static void ggml_compute_forward_add_f32(
  5552. const struct ggml_compute_params * params,
  5553. const struct ggml_tensor * src0,
  5554. const struct ggml_tensor * src1,
  5555. struct ggml_tensor * dst) {
  5556. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5557. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5558. return;
  5559. }
  5560. const int ith = params->ith;
  5561. const int nth = params->nth;
  5562. const int nr = ggml_nrows(src0);
  5563. const int64_t ne0 = src0->ne[0];
  5564. const int64_t ne1 = src0->ne[1];
  5565. const int64_t ne2 = src0->ne[2];
  5566. const size_t nb00 = src0->nb[0];
  5567. const size_t nb01 = src0->nb[1];
  5568. const size_t nb02 = src0->nb[2];
  5569. const size_t nb03 = src0->nb[3];
  5570. const size_t nb10 = src1->nb[0];
  5571. const size_t nb11 = src1->nb[1];
  5572. const size_t nb12 = src1->nb[2];
  5573. const size_t nb13 = src1->nb[3];
  5574. const size_t nb0 = dst->nb[0];
  5575. const size_t nb1 = dst->nb[1];
  5576. const size_t nb2 = dst->nb[2];
  5577. const size_t nb3 = dst->nb[3];
  5578. GGML_ASSERT( nb0 == sizeof(float));
  5579. GGML_ASSERT(nb00 == sizeof(float));
  5580. // rows per thread
  5581. const int dr = (nr + nth - 1)/nth;
  5582. // row range for this thread
  5583. const int ir0 = dr*ith;
  5584. const int ir1 = MIN(ir0 + dr, nr);
  5585. if (nb10 == sizeof(float)) {
  5586. for (int ir = ir0; ir < ir1; ++ir) {
  5587. // src0, src1 and dst are same shape => same indices
  5588. const int i3 = ir/(ne2*ne1);
  5589. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5590. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5591. #ifdef GGML_USE_ACCELERATE
  5592. vDSP_vadd(
  5593. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5594. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5595. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5596. ne0);
  5597. #else
  5598. ggml_vec_add_f32(ne0,
  5599. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5600. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5601. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5602. #endif
  5603. // }
  5604. // }
  5605. }
  5606. } else {
  5607. // src1 is not contiguous
  5608. for (int ir = ir0; ir < ir1; ++ir) {
  5609. // src0, src1 and dst are same shape => same indices
  5610. const int i3 = ir/(ne2*ne1);
  5611. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5612. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5613. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5614. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5615. for (int i0 = 0; i0 < ne0; i0++) {
  5616. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5617. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5618. }
  5619. }
  5620. }
  5621. }
  5622. static void ggml_compute_forward_add_f16_f32(
  5623. const struct ggml_compute_params * params,
  5624. const struct ggml_tensor * src0,
  5625. const struct ggml_tensor * src1,
  5626. struct ggml_tensor * dst) {
  5627. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5628. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5629. return;
  5630. }
  5631. const int ith = params->ith;
  5632. const int nth = params->nth;
  5633. const int nr = ggml_nrows(src0);
  5634. const int64_t ne0 = src0->ne[0];
  5635. const int64_t ne1 = src0->ne[1];
  5636. const int64_t ne2 = src0->ne[2];
  5637. const size_t nb00 = src0->nb[0];
  5638. const size_t nb01 = src0->nb[1];
  5639. const size_t nb02 = src0->nb[2];
  5640. const size_t nb03 = src0->nb[3];
  5641. const size_t nb10 = src1->nb[0];
  5642. const size_t nb11 = src1->nb[1];
  5643. const size_t nb12 = src1->nb[2];
  5644. const size_t nb13 = src1->nb[3];
  5645. const size_t nb0 = dst->nb[0];
  5646. const size_t nb1 = dst->nb[1];
  5647. const size_t nb2 = dst->nb[2];
  5648. const size_t nb3 = dst->nb[3];
  5649. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5650. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5651. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5652. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5653. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5654. // rows per thread
  5655. const int dr = (nr + nth - 1)/nth;
  5656. // row range for this thread
  5657. const int ir0 = dr*ith;
  5658. const int ir1 = MIN(ir0 + dr, nr);
  5659. if (nb10 == sizeof(float)) {
  5660. for (int ir = ir0; ir < ir1; ++ir) {
  5661. // src0, src1 and dst are same shape => same indices
  5662. const int i3 = ir/(ne2*ne1);
  5663. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5664. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5665. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5666. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5667. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5668. for (int i = 0; i < ne0; i++) {
  5669. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5670. }
  5671. }
  5672. }
  5673. else {
  5674. // src1 is not contiguous
  5675. GGML_ASSERT(false);
  5676. }
  5677. }
  5678. static void ggml_compute_forward_add_f16_f16(
  5679. const struct ggml_compute_params * params,
  5680. const struct ggml_tensor * src0,
  5681. const struct ggml_tensor * src1,
  5682. struct ggml_tensor * dst) {
  5683. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5684. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5685. return;
  5686. }
  5687. const int ith = params->ith;
  5688. const int nth = params->nth;
  5689. const int nr = ggml_nrows(src0);
  5690. const int64_t ne0 = src0->ne[0];
  5691. const int64_t ne1 = src0->ne[1];
  5692. const int64_t ne2 = src0->ne[2];
  5693. const size_t nb00 = src0->nb[0];
  5694. const size_t nb01 = src0->nb[1];
  5695. const size_t nb02 = src0->nb[2];
  5696. const size_t nb03 = src0->nb[3];
  5697. const size_t nb10 = src1->nb[0];
  5698. const size_t nb11 = src1->nb[1];
  5699. const size_t nb12 = src1->nb[2];
  5700. const size_t nb13 = src1->nb[3];
  5701. const size_t nb0 = dst->nb[0];
  5702. const size_t nb1 = dst->nb[1];
  5703. const size_t nb2 = dst->nb[2];
  5704. const size_t nb3 = dst->nb[3];
  5705. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5706. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5707. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5708. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5709. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5710. // rows per thread
  5711. const int dr = (nr + nth - 1)/nth;
  5712. // row range for this thread
  5713. const int ir0 = dr*ith;
  5714. const int ir1 = MIN(ir0 + dr, nr);
  5715. if (nb10 == sizeof(ggml_fp16_t)) {
  5716. for (int ir = ir0; ir < ir1; ++ir) {
  5717. // src0, src1 and dst are same shape => same indices
  5718. const int i3 = ir/(ne2*ne1);
  5719. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5720. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5721. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5722. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5723. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5724. for (int i = 0; i < ne0; i++) {
  5725. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5726. }
  5727. }
  5728. }
  5729. else {
  5730. // src1 is not contiguous
  5731. GGML_ASSERT(false);
  5732. }
  5733. }
  5734. static void ggml_compute_forward_add_q_f32(
  5735. const struct ggml_compute_params * params,
  5736. const struct ggml_tensor * src0,
  5737. const struct ggml_tensor * src1,
  5738. struct ggml_tensor * dst) {
  5739. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5740. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5741. return;
  5742. }
  5743. const int nr = ggml_nrows(src0);
  5744. const int64_t ne00 = src0->ne[0];
  5745. const int64_t ne01 = src0->ne[1];
  5746. const int64_t ne02 = src0->ne[2];
  5747. //const int64_t ne03 = src0->ne[3];
  5748. const size_t nb00 = src0->nb[0];
  5749. const size_t nb01 = src0->nb[1];
  5750. const size_t nb02 = src0->nb[2];
  5751. const size_t nb03 = src0->nb[3];
  5752. const size_t nb10 = src1->nb[0];
  5753. const size_t nb11 = src1->nb[1];
  5754. const size_t nb12 = src1->nb[2];
  5755. const size_t nb13 = src1->nb[3];
  5756. const size_t nb0 = dst->nb[0];
  5757. const size_t nb1 = dst->nb[1];
  5758. const size_t nb2 = dst->nb[2];
  5759. const size_t nb3 = dst->nb[3];
  5760. const int ith = params->ith;
  5761. const int nth = params->nth;
  5762. const enum ggml_type type = src0->type;
  5763. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5764. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5765. // we don't support permuted src0 or src1
  5766. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  5767. GGML_ASSERT(nb10 == sizeof(float));
  5768. // dst cannot be transposed or permuted
  5769. GGML_ASSERT(nb0 <= nb1);
  5770. GGML_ASSERT(nb1 <= nb2);
  5771. GGML_ASSERT(nb2 <= nb3);
  5772. GGML_ASSERT(ggml_is_quantized(src0->type));
  5773. GGML_ASSERT(dst->type == src0->type);
  5774. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5775. // rows per thread
  5776. const int dr = (nr + nth - 1)/nth;
  5777. // row range for this thread
  5778. const int ir0 = dr*ith;
  5779. const int ir1 = MIN(ir0 + dr, nr);
  5780. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5781. for (int ir = ir0; ir < ir1; ++ir) {
  5782. // src0 indices
  5783. const int i03 = ir/(ne02*ne01);
  5784. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5785. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5786. // src1 and dst are same shape as src0 => same indices
  5787. const int i13 = i03;
  5788. const int i12 = i02;
  5789. const int i11 = i01;
  5790. const int i3 = i03;
  5791. const int i2 = i02;
  5792. const int i1 = i01;
  5793. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5794. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5795. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5796. assert(ne00 % 32 == 0);
  5797. // unquantize row from src0 to temp buffer
  5798. dequantize_row_q(src0_row, wdata, ne00);
  5799. // add src1
  5800. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5801. // quantize row to dst
  5802. quantize_row_q(wdata, dst_row, ne00);
  5803. }
  5804. }
  5805. static void ggml_compute_forward_add(
  5806. const struct ggml_compute_params * params,
  5807. const struct ggml_tensor * src0,
  5808. const struct ggml_tensor * src1,
  5809. struct ggml_tensor * dst) {
  5810. switch (src0->type) {
  5811. case GGML_TYPE_F32:
  5812. {
  5813. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5814. } break;
  5815. case GGML_TYPE_F16:
  5816. {
  5817. if (src1->type == GGML_TYPE_F16) {
  5818. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5819. }
  5820. else if (src1->type == GGML_TYPE_F32) {
  5821. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5822. }
  5823. else {
  5824. GGML_ASSERT(false);
  5825. }
  5826. } break;
  5827. case GGML_TYPE_Q4_0:
  5828. case GGML_TYPE_Q4_1:
  5829. case GGML_TYPE_Q5_0:
  5830. case GGML_TYPE_Q5_1:
  5831. case GGML_TYPE_Q8_0:
  5832. {
  5833. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5834. } break;
  5835. default:
  5836. {
  5837. GGML_ASSERT(false);
  5838. } break;
  5839. }
  5840. }
  5841. // ggml_compute_forward_add1
  5842. static void ggml_compute_forward_add1_f32(
  5843. const struct ggml_compute_params * params,
  5844. const struct ggml_tensor * src0,
  5845. const struct ggml_tensor * src1,
  5846. struct ggml_tensor * dst) {
  5847. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5848. GGML_ASSERT(ggml_is_scalar(src1));
  5849. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5850. return;
  5851. }
  5852. const int ith = params->ith;
  5853. const int nth = params->nth;
  5854. const int nr = ggml_nrows(src0);
  5855. const int64_t ne0 = src0->ne[0];
  5856. const int64_t ne1 = src0->ne[1];
  5857. const int64_t ne2 = src0->ne[2];
  5858. const size_t nb00 = src0->nb[0];
  5859. const size_t nb01 = src0->nb[1];
  5860. const size_t nb02 = src0->nb[2];
  5861. const size_t nb03 = src0->nb[3];
  5862. const size_t nb0 = dst->nb[0];
  5863. const size_t nb1 = dst->nb[1];
  5864. const size_t nb2 = dst->nb[2];
  5865. const size_t nb3 = dst->nb[3];
  5866. GGML_ASSERT( nb0 == sizeof(float));
  5867. GGML_ASSERT(nb00 == sizeof(float));
  5868. // rows per thread
  5869. const int dr = (nr + nth - 1)/nth;
  5870. // row range for this thread
  5871. const int ir0 = dr*ith;
  5872. const int ir1 = MIN(ir0 + dr, nr);
  5873. for (int ir = ir0; ir < ir1; ++ir) {
  5874. // src0 and dst are same shape => same indices
  5875. const int i3 = ir/(ne2*ne1);
  5876. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5877. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5878. #ifdef GGML_USE_ACCELERATE
  5879. UNUSED(ggml_vec_add1_f32);
  5880. vDSP_vadd(
  5881. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5882. (float *) ((char *) src1->data), 0,
  5883. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5884. ne0);
  5885. #else
  5886. ggml_vec_add1_f32(ne0,
  5887. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5888. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5889. *(float *) src1->data);
  5890. #endif
  5891. }
  5892. }
  5893. static void ggml_compute_forward_add1_f16_f32(
  5894. const struct ggml_compute_params * params,
  5895. const struct ggml_tensor * src0,
  5896. const struct ggml_tensor * src1,
  5897. struct ggml_tensor * dst) {
  5898. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5899. GGML_ASSERT(ggml_is_scalar(src1));
  5900. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5901. return;
  5902. }
  5903. // scalar to add
  5904. const float v = *(float *) src1->data;
  5905. const int ith = params->ith;
  5906. const int nth = params->nth;
  5907. const int nr = ggml_nrows(src0);
  5908. const int64_t ne0 = src0->ne[0];
  5909. const int64_t ne1 = src0->ne[1];
  5910. const int64_t ne2 = src0->ne[2];
  5911. const size_t nb00 = src0->nb[0];
  5912. const size_t nb01 = src0->nb[1];
  5913. const size_t nb02 = src0->nb[2];
  5914. const size_t nb03 = src0->nb[3];
  5915. const size_t nb0 = dst->nb[0];
  5916. const size_t nb1 = dst->nb[1];
  5917. const size_t nb2 = dst->nb[2];
  5918. const size_t nb3 = dst->nb[3];
  5919. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5920. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5921. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5922. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5923. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5924. // rows per thread
  5925. const int dr = (nr + nth - 1)/nth;
  5926. // row range for this thread
  5927. const int ir0 = dr*ith;
  5928. const int ir1 = MIN(ir0 + dr, nr);
  5929. for (int ir = ir0; ir < ir1; ++ir) {
  5930. // src0 and dst are same shape => same indices
  5931. const int i3 = ir/(ne2*ne1);
  5932. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5933. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5934. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5935. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5936. for (int i = 0; i < ne0; i++) {
  5937. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5938. }
  5939. }
  5940. }
  5941. static void ggml_compute_forward_add1_f16_f16(
  5942. const struct ggml_compute_params * params,
  5943. const struct ggml_tensor * src0,
  5944. const struct ggml_tensor * src1,
  5945. struct ggml_tensor * dst) {
  5946. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5947. GGML_ASSERT(ggml_is_scalar(src1));
  5948. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5949. return;
  5950. }
  5951. // scalar to add
  5952. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  5953. const int ith = params->ith;
  5954. const int nth = params->nth;
  5955. const int nr = ggml_nrows(src0);
  5956. const int64_t ne0 = src0->ne[0];
  5957. const int64_t ne1 = src0->ne[1];
  5958. const int64_t ne2 = src0->ne[2];
  5959. const size_t nb00 = src0->nb[0];
  5960. const size_t nb01 = src0->nb[1];
  5961. const size_t nb02 = src0->nb[2];
  5962. const size_t nb03 = src0->nb[3];
  5963. const size_t nb0 = dst->nb[0];
  5964. const size_t nb1 = dst->nb[1];
  5965. const size_t nb2 = dst->nb[2];
  5966. const size_t nb3 = dst->nb[3];
  5967. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5968. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5969. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5970. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5971. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5972. // rows per thread
  5973. const int dr = (nr + nth - 1)/nth;
  5974. // row range for this thread
  5975. const int ir0 = dr*ith;
  5976. const int ir1 = MIN(ir0 + dr, nr);
  5977. for (int ir = ir0; ir < ir1; ++ir) {
  5978. // src0 and dst are same shape => same indices
  5979. const int i3 = ir/(ne2*ne1);
  5980. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5981. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5982. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5983. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5984. for (int i = 0; i < ne0; i++) {
  5985. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5986. }
  5987. }
  5988. }
  5989. static void ggml_compute_forward_add1_q_f32(
  5990. const struct ggml_compute_params * params,
  5991. const struct ggml_tensor * src0,
  5992. const struct ggml_tensor * src1,
  5993. struct ggml_tensor * dst) {
  5994. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5995. GGML_ASSERT(ggml_is_scalar(src1));
  5996. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5997. return;
  5998. }
  5999. // scalar to add
  6000. const float v = *(float *) src1->data;
  6001. const int ith = params->ith;
  6002. const int nth = params->nth;
  6003. const int nr = ggml_nrows(src0);
  6004. const int64_t ne0 = src0->ne[0];
  6005. const int64_t ne1 = src0->ne[1];
  6006. const int64_t ne2 = src0->ne[2];
  6007. const size_t nb00 = src0->nb[0];
  6008. const size_t nb01 = src0->nb[1];
  6009. const size_t nb02 = src0->nb[2];
  6010. const size_t nb03 = src0->nb[3];
  6011. const size_t nb0 = dst->nb[0];
  6012. const size_t nb1 = dst->nb[1];
  6013. const size_t nb2 = dst->nb[2];
  6014. const size_t nb3 = dst->nb[3];
  6015. const enum ggml_type type = src0->type;
  6016. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6017. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6018. // we don't support permuted src0
  6019. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6020. // dst cannot be transposed or permuted
  6021. GGML_ASSERT(nb0 <= nb1);
  6022. GGML_ASSERT(nb1 <= nb2);
  6023. GGML_ASSERT(nb2 <= nb3);
  6024. GGML_ASSERT(ggml_is_quantized(src0->type));
  6025. GGML_ASSERT(dst->type == src0->type);
  6026. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6027. // rows per thread
  6028. const int dr = (nr + nth - 1)/nth;
  6029. // row range for this thread
  6030. const int ir0 = dr*ith;
  6031. const int ir1 = MIN(ir0 + dr, nr);
  6032. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6033. for (int ir = ir0; ir < ir1; ++ir) {
  6034. // src0 and dst are same shape => same indices
  6035. const int i3 = ir/(ne2*ne1);
  6036. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6037. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6038. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6039. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6040. assert(ne0 % 32 == 0);
  6041. // unquantize row from src0 to temp buffer
  6042. dequantize_row_q(src0_row, wdata, ne0);
  6043. // add src1
  6044. ggml_vec_acc1_f32(ne0, wdata, v);
  6045. // quantize row to dst
  6046. quantize_row_q(wdata, dst_row, ne0);
  6047. }
  6048. }
  6049. static void ggml_compute_forward_add1(
  6050. const struct ggml_compute_params * params,
  6051. const struct ggml_tensor * src0,
  6052. const struct ggml_tensor * src1,
  6053. struct ggml_tensor * dst) {
  6054. switch (src0->type) {
  6055. case GGML_TYPE_F32:
  6056. {
  6057. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6058. } break;
  6059. case GGML_TYPE_F16:
  6060. {
  6061. if (src1->type == GGML_TYPE_F16) {
  6062. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6063. }
  6064. else if (src1->type == GGML_TYPE_F32) {
  6065. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6066. }
  6067. else {
  6068. GGML_ASSERT(false);
  6069. }
  6070. } break;
  6071. case GGML_TYPE_Q4_0:
  6072. case GGML_TYPE_Q4_1:
  6073. case GGML_TYPE_Q5_0:
  6074. case GGML_TYPE_Q5_1:
  6075. case GGML_TYPE_Q8_0:
  6076. case GGML_TYPE_Q8_1:
  6077. {
  6078. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6079. } break;
  6080. default:
  6081. {
  6082. GGML_ASSERT(false);
  6083. } break;
  6084. }
  6085. }
  6086. // ggml_compute_forward_acc
  6087. static void ggml_compute_forward_acc_f32(
  6088. const struct ggml_compute_params * params,
  6089. const struct ggml_tensor * src0,
  6090. const struct ggml_tensor * src1,
  6091. const struct ggml_tensor * opt0,
  6092. struct ggml_tensor * dst) {
  6093. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6094. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6095. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6096. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6097. // view src0 and dst with these strides and data offset inbytes during acc
  6098. // nb0 is implicitely element_size because src0 and dst are contiguous
  6099. size_t nb1 = ((int32_t *) opt0->data)[0];
  6100. size_t nb2 = ((int32_t *) opt0->data)[1];
  6101. size_t nb3 = ((int32_t *) opt0->data)[2];
  6102. size_t offset = ((int32_t *) opt0->data)[3];
  6103. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6104. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6105. // memcpy needs to be synchronized across threads to avoid race conditions.
  6106. // => do it in INIT phase
  6107. memcpy(
  6108. ((char *) dst->data),
  6109. ((char *) src0->data),
  6110. ggml_nbytes(dst));
  6111. }
  6112. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6113. return;
  6114. }
  6115. const int ith = params->ith;
  6116. const int nth = params->nth;
  6117. const int nr = ggml_nrows(src1);
  6118. const int nc = src1->ne[0];
  6119. const int64_t ne10 = src1->ne[0];
  6120. const int64_t ne11 = src1->ne[1];
  6121. const int64_t ne12 = src1->ne[2];
  6122. const int64_t ne13 = src1->ne[3];
  6123. const size_t nb10 = src1->nb[0];
  6124. const size_t nb11 = src1->nb[1];
  6125. const size_t nb12 = src1->nb[2];
  6126. const size_t nb13 = src1->nb[3];
  6127. // src0 and dst as viewed during acc
  6128. const size_t nb0 = ggml_element_size(src0);
  6129. const size_t nb00 = nb0;
  6130. const size_t nb01 = nb1;
  6131. const size_t nb02 = nb2;
  6132. const size_t nb03 = nb3;
  6133. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6134. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6135. GGML_ASSERT(nb10 == sizeof(float));
  6136. // rows per thread
  6137. const int dr = (nr + nth - 1)/nth;
  6138. // row range for this thread
  6139. const int ir0 = dr*ith;
  6140. const int ir1 = MIN(ir0 + dr, nr);
  6141. for (int ir = ir0; ir < ir1; ++ir) {
  6142. // src0 and dst are viewed with shape of src1 and offset
  6143. // => same indices
  6144. const int i3 = ir/(ne12*ne11);
  6145. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6146. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6147. #ifdef GGML_USE_ACCELERATE
  6148. vDSP_vadd(
  6149. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6150. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6151. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6152. #else
  6153. ggml_vec_add_f32(nc,
  6154. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6155. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6156. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6157. #endif
  6158. }
  6159. }
  6160. static void ggml_compute_forward_acc(
  6161. const struct ggml_compute_params * params,
  6162. const struct ggml_tensor * src0,
  6163. const struct ggml_tensor * src1,
  6164. const struct ggml_tensor * opt0,
  6165. struct ggml_tensor * dst) {
  6166. switch (src0->type) {
  6167. case GGML_TYPE_F32:
  6168. {
  6169. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6170. } break;
  6171. case GGML_TYPE_F16:
  6172. case GGML_TYPE_Q4_0:
  6173. case GGML_TYPE_Q4_1:
  6174. case GGML_TYPE_Q5_0:
  6175. case GGML_TYPE_Q5_1:
  6176. case GGML_TYPE_Q8_0:
  6177. case GGML_TYPE_Q8_1:
  6178. default:
  6179. {
  6180. GGML_ASSERT(false);
  6181. } break;
  6182. }
  6183. }
  6184. // ggml_compute_forward_sub
  6185. static void ggml_compute_forward_sub_f32(
  6186. const struct ggml_compute_params * params,
  6187. const struct ggml_tensor * src0,
  6188. const struct ggml_tensor * src1,
  6189. struct ggml_tensor * dst) {
  6190. assert(params->ith == 0);
  6191. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6192. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6193. return;
  6194. }
  6195. const int nr = ggml_nrows(src0);
  6196. const int64_t ne0 = src0->ne[0];
  6197. const int64_t ne1 = src0->ne[1];
  6198. const int64_t ne2 = src0->ne[2];
  6199. const size_t nb00 = src0->nb[0];
  6200. const size_t nb01 = src0->nb[1];
  6201. const size_t nb02 = src0->nb[2];
  6202. const size_t nb03 = src0->nb[3];
  6203. const size_t nb10 = src1->nb[0];
  6204. const size_t nb11 = src1->nb[1];
  6205. const size_t nb12 = src1->nb[2];
  6206. const size_t nb13 = src1->nb[3];
  6207. const size_t nb0 = dst->nb[0];
  6208. const size_t nb1 = dst->nb[1];
  6209. const size_t nb2 = dst->nb[2];
  6210. const size_t nb3 = dst->nb[3];
  6211. GGML_ASSERT( nb0 == sizeof(float));
  6212. GGML_ASSERT(nb00 == sizeof(float));
  6213. if (nb10 == sizeof(float)) {
  6214. for (int ir = 0; ir < nr; ++ir) {
  6215. // src0, src1 and dst are same shape => same indices
  6216. const int i3 = ir/(ne2*ne1);
  6217. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6218. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6219. #ifdef GGML_USE_ACCELERATE
  6220. vDSP_vsub(
  6221. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6222. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6223. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6224. ne0);
  6225. #else
  6226. ggml_vec_sub_f32(ne0,
  6227. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6228. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6229. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6230. #endif
  6231. // }
  6232. // }
  6233. }
  6234. } else {
  6235. // src1 is not contiguous
  6236. for (int ir = 0; ir < nr; ++ir) {
  6237. // src0, src1 and dst are same shape => same indices
  6238. const int i3 = ir/(ne2*ne1);
  6239. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6240. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6241. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6242. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6243. for (int i0 = 0; i0 < ne0; i0++) {
  6244. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6245. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6246. }
  6247. }
  6248. }
  6249. }
  6250. static void ggml_compute_forward_sub(
  6251. const struct ggml_compute_params * params,
  6252. const struct ggml_tensor * src0,
  6253. const struct ggml_tensor * src1,
  6254. struct ggml_tensor * dst) {
  6255. switch (src0->type) {
  6256. case GGML_TYPE_F32:
  6257. {
  6258. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6259. } break;
  6260. default:
  6261. {
  6262. GGML_ASSERT(false);
  6263. } break;
  6264. }
  6265. }
  6266. // ggml_compute_forward_mul
  6267. static void ggml_compute_forward_mul_f32(
  6268. const struct ggml_compute_params * params,
  6269. const struct ggml_tensor * src0,
  6270. const struct ggml_tensor * src1,
  6271. struct ggml_tensor * dst) {
  6272. assert(params->ith == 0);
  6273. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6275. return;
  6276. }
  6277. const int nr = ggml_nrows(src0);
  6278. const int64_t ne0 = src0->ne[0];
  6279. const int64_t ne1 = src0->ne[1];
  6280. const int64_t ne2 = src0->ne[2];
  6281. const size_t nb00 = src0->nb[0];
  6282. const size_t nb01 = src0->nb[1];
  6283. const size_t nb02 = src0->nb[2];
  6284. const size_t nb03 = src0->nb[3];
  6285. const size_t nb10 = src1->nb[0];
  6286. const size_t nb11 = src1->nb[1];
  6287. const size_t nb12 = src1->nb[2];
  6288. const size_t nb13 = src1->nb[3];
  6289. const size_t nb0 = dst->nb[0];
  6290. const size_t nb1 = dst->nb[1];
  6291. const size_t nb2 = dst->nb[2];
  6292. const size_t nb3 = dst->nb[3];
  6293. GGML_ASSERT( nb0 == sizeof(float));
  6294. GGML_ASSERT(nb00 == sizeof(float));
  6295. if (nb10 == sizeof(float)) {
  6296. for (int ir = 0; ir < nr; ++ir) {
  6297. // src0, src1 and dst are same shape => same indices
  6298. const int i3 = ir/(ne2*ne1);
  6299. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6300. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6301. #ifdef GGML_USE_ACCELERATE
  6302. UNUSED(ggml_vec_mul_f32);
  6303. vDSP_vmul(
  6304. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6305. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6306. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6307. ne0);
  6308. #else
  6309. ggml_vec_mul_f32(ne0,
  6310. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6311. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6312. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6313. #endif
  6314. // }
  6315. // }
  6316. }
  6317. } else {
  6318. // src1 is not contiguous
  6319. for (int ir = 0; ir < nr; ++ir) {
  6320. // src0, src1 and dst are same shape => same indices
  6321. const int i3 = ir/(ne2*ne1);
  6322. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6323. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6324. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6325. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6326. for (int i0 = 0; i0 < ne0; i0++) {
  6327. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6328. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6329. }
  6330. }
  6331. }
  6332. }
  6333. static void ggml_compute_forward_mul(
  6334. const struct ggml_compute_params * params,
  6335. const struct ggml_tensor * src0,
  6336. const struct ggml_tensor * src1,
  6337. struct ggml_tensor * dst) {
  6338. switch (src0->type) {
  6339. case GGML_TYPE_F32:
  6340. {
  6341. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6342. } break;
  6343. default:
  6344. {
  6345. GGML_ASSERT(false);
  6346. } break;
  6347. }
  6348. }
  6349. // ggml_compute_forward_div
  6350. static void ggml_compute_forward_div_f32(
  6351. const struct ggml_compute_params * params,
  6352. const struct ggml_tensor * src0,
  6353. const struct ggml_tensor * src1,
  6354. struct ggml_tensor * dst) {
  6355. assert(params->ith == 0);
  6356. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6357. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6358. return;
  6359. }
  6360. const int nr = ggml_nrows(src0);
  6361. const int64_t ne0 = src0->ne[0];
  6362. const int64_t ne1 = src0->ne[1];
  6363. const int64_t ne2 = src0->ne[2];
  6364. const size_t nb00 = src0->nb[0];
  6365. const size_t nb01 = src0->nb[1];
  6366. const size_t nb02 = src0->nb[2];
  6367. const size_t nb03 = src0->nb[3];
  6368. const size_t nb10 = src1->nb[0];
  6369. const size_t nb11 = src1->nb[1];
  6370. const size_t nb12 = src1->nb[2];
  6371. const size_t nb13 = src1->nb[3];
  6372. const size_t nb0 = dst->nb[0];
  6373. const size_t nb1 = dst->nb[1];
  6374. const size_t nb2 = dst->nb[2];
  6375. const size_t nb3 = dst->nb[3];
  6376. GGML_ASSERT( nb0 == sizeof(float));
  6377. GGML_ASSERT(nb00 == sizeof(float));
  6378. if (nb10 == sizeof(float)) {
  6379. for (int ir = 0; ir < nr; ++ir) {
  6380. // src0, src1 and dst are same shape => same indices
  6381. const int i3 = ir/(ne2*ne1);
  6382. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6383. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6384. #ifdef GGML_USE_ACCELERATE
  6385. vDSP_vdiv(
  6386. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6387. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6388. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6389. ne0);
  6390. #else
  6391. ggml_vec_div_f32(ne0,
  6392. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6393. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6394. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6395. #endif
  6396. // }
  6397. // }
  6398. }
  6399. } else {
  6400. // src1 is not contiguous
  6401. for (int ir = 0; ir < nr; ++ir) {
  6402. // src0, src1 and dst are same shape => same indices
  6403. const int i3 = ir/(ne2*ne1);
  6404. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6405. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6406. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6407. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6408. for (int i0 = 0; i0 < ne0; i0++) {
  6409. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6410. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6411. }
  6412. }
  6413. }
  6414. }
  6415. static void ggml_compute_forward_div(
  6416. const struct ggml_compute_params * params,
  6417. const struct ggml_tensor * src0,
  6418. const struct ggml_tensor * src1,
  6419. struct ggml_tensor * dst) {
  6420. switch (src0->type) {
  6421. case GGML_TYPE_F32:
  6422. {
  6423. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6424. } break;
  6425. default:
  6426. {
  6427. GGML_ASSERT(false);
  6428. } break;
  6429. }
  6430. }
  6431. // ggml_compute_forward_sqr
  6432. static void ggml_compute_forward_sqr_f32(
  6433. const struct ggml_compute_params * params,
  6434. const struct ggml_tensor * src0,
  6435. struct ggml_tensor * dst) {
  6436. assert(params->ith == 0);
  6437. assert(ggml_are_same_shape(src0, dst));
  6438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6439. return;
  6440. }
  6441. const int n = ggml_nrows(src0);
  6442. const int nc = src0->ne[0];
  6443. assert( dst->nb[0] == sizeof(float));
  6444. assert(src0->nb[0] == sizeof(float));
  6445. for (int i = 0; i < n; i++) {
  6446. ggml_vec_sqr_f32(nc,
  6447. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6448. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6449. }
  6450. }
  6451. static void ggml_compute_forward_sqr(
  6452. const struct ggml_compute_params * params,
  6453. const struct ggml_tensor * src0,
  6454. struct ggml_tensor * dst) {
  6455. switch (src0->type) {
  6456. case GGML_TYPE_F32:
  6457. {
  6458. ggml_compute_forward_sqr_f32(params, src0, dst);
  6459. } break;
  6460. default:
  6461. {
  6462. GGML_ASSERT(false);
  6463. } break;
  6464. }
  6465. }
  6466. // ggml_compute_forward_sqrt
  6467. static void ggml_compute_forward_sqrt_f32(
  6468. const struct ggml_compute_params * params,
  6469. const struct ggml_tensor * src0,
  6470. struct ggml_tensor * dst) {
  6471. assert(params->ith == 0);
  6472. assert(ggml_are_same_shape(src0, dst));
  6473. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6474. return;
  6475. }
  6476. const int n = ggml_nrows(src0);
  6477. const int nc = src0->ne[0];
  6478. assert( dst->nb[0] == sizeof(float));
  6479. assert(src0->nb[0] == sizeof(float));
  6480. for (int i = 0; i < n; i++) {
  6481. ggml_vec_sqrt_f32(nc,
  6482. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6483. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6484. }
  6485. }
  6486. static void ggml_compute_forward_sqrt(
  6487. const struct ggml_compute_params * params,
  6488. const struct ggml_tensor * src0,
  6489. struct ggml_tensor * dst) {
  6490. switch (src0->type) {
  6491. case GGML_TYPE_F32:
  6492. {
  6493. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6494. } break;
  6495. default:
  6496. {
  6497. GGML_ASSERT(false);
  6498. } break;
  6499. }
  6500. }
  6501. // ggml_compute_forward_log
  6502. static void ggml_compute_forward_log_f32(
  6503. const struct ggml_compute_params * params,
  6504. const struct ggml_tensor * src0,
  6505. struct ggml_tensor * dst) {
  6506. GGML_ASSERT(params->ith == 0);
  6507. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6508. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6509. return;
  6510. }
  6511. const int n = ggml_nrows(src0);
  6512. const int nc = src0->ne[0];
  6513. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6514. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6515. for (int i = 0; i < n; i++) {
  6516. ggml_vec_log_f32(nc,
  6517. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6518. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6519. }
  6520. }
  6521. static void ggml_compute_forward_log(
  6522. const struct ggml_compute_params * params,
  6523. const struct ggml_tensor * src0,
  6524. struct ggml_tensor * dst) {
  6525. switch (src0->type) {
  6526. case GGML_TYPE_F32:
  6527. {
  6528. ggml_compute_forward_log_f32(params, src0, dst);
  6529. } break;
  6530. default:
  6531. {
  6532. GGML_ASSERT(false);
  6533. } break;
  6534. }
  6535. }
  6536. // ggml_compute_forward_sum
  6537. static void ggml_compute_forward_sum_f32(
  6538. const struct ggml_compute_params * params,
  6539. const struct ggml_tensor * src0,
  6540. struct ggml_tensor * dst) {
  6541. assert(params->ith == 0);
  6542. assert(ggml_is_scalar(dst));
  6543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6544. return;
  6545. }
  6546. assert(ggml_is_scalar(dst));
  6547. assert(src0->nb[0] == sizeof(float));
  6548. const int64_t ne00 = src0->ne[0];
  6549. const int64_t ne01 = src0->ne[1];
  6550. const int64_t ne02 = src0->ne[2];
  6551. const int64_t ne03 = src0->ne[3];
  6552. const size_t nb01 = src0->nb[1];
  6553. const size_t nb02 = src0->nb[2];
  6554. const size_t nb03 = src0->nb[3];
  6555. ggml_float sum = 0;
  6556. ggml_float row_sum = 0;
  6557. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6558. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6559. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6560. ggml_vec_sum_ggf(ne00,
  6561. &row_sum,
  6562. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6563. sum += row_sum;
  6564. }
  6565. }
  6566. }
  6567. ((float *) dst->data)[0] = sum;
  6568. }
  6569. static void ggml_compute_forward_sum(
  6570. const struct ggml_compute_params * params,
  6571. const struct ggml_tensor * src0,
  6572. struct ggml_tensor * dst) {
  6573. switch (src0->type) {
  6574. case GGML_TYPE_F32:
  6575. {
  6576. ggml_compute_forward_sum_f32(params, src0, dst);
  6577. } break;
  6578. default:
  6579. {
  6580. GGML_ASSERT(false);
  6581. } break;
  6582. }
  6583. }
  6584. // ggml_compute_forward_sum_rows
  6585. static void ggml_compute_forward_sum_rows_f32(
  6586. const struct ggml_compute_params * params,
  6587. const struct ggml_tensor * src0,
  6588. struct ggml_tensor * dst) {
  6589. GGML_ASSERT(params->ith == 0);
  6590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6591. return;
  6592. }
  6593. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6594. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6595. const int64_t ne00 = src0->ne[0];
  6596. const int64_t ne01 = src0->ne[1];
  6597. const int64_t ne02 = src0->ne[2];
  6598. const int64_t ne03 = src0->ne[3];
  6599. const int64_t ne0 = dst->ne[0];
  6600. const int64_t ne1 = dst->ne[1];
  6601. const int64_t ne2 = dst->ne[2];
  6602. const int64_t ne3 = dst->ne[3];
  6603. GGML_ASSERT(ne0 == 1);
  6604. GGML_ASSERT(ne1 == ne01);
  6605. GGML_ASSERT(ne2 == ne02);
  6606. GGML_ASSERT(ne3 == ne03);
  6607. const size_t nb01 = src0->nb[1];
  6608. const size_t nb02 = src0->nb[2];
  6609. const size_t nb03 = src0->nb[3];
  6610. const size_t nb1 = dst->nb[1];
  6611. const size_t nb2 = dst->nb[2];
  6612. const size_t nb3 = dst->nb[3];
  6613. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6614. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6615. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6616. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6617. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6618. float row_sum = 0;
  6619. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6620. dst_row[0] = row_sum;
  6621. }
  6622. }
  6623. }
  6624. }
  6625. static void ggml_compute_forward_sum_rows(
  6626. const struct ggml_compute_params * params,
  6627. const struct ggml_tensor * src0,
  6628. struct ggml_tensor * dst) {
  6629. switch (src0->type) {
  6630. case GGML_TYPE_F32:
  6631. {
  6632. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6633. } break;
  6634. default:
  6635. {
  6636. GGML_ASSERT(false);
  6637. } break;
  6638. }
  6639. }
  6640. // ggml_compute_forward_mean
  6641. static void ggml_compute_forward_mean_f32(
  6642. const struct ggml_compute_params * params,
  6643. const struct ggml_tensor * src0,
  6644. struct ggml_tensor * dst) {
  6645. assert(params->ith == 0);
  6646. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6647. return;
  6648. }
  6649. assert(src0->nb[0] == sizeof(float));
  6650. const int64_t ne00 = src0->ne[0];
  6651. const int64_t ne01 = src0->ne[1];
  6652. const int64_t ne02 = src0->ne[2];
  6653. const int64_t ne03 = src0->ne[3];
  6654. const size_t nb01 = src0->nb[1];
  6655. const size_t nb02 = src0->nb[2];
  6656. const size_t nb03 = src0->nb[3];
  6657. const int64_t ne0 = dst->ne[0];
  6658. const int64_t ne1 = dst->ne[1];
  6659. const int64_t ne2 = dst->ne[2];
  6660. const int64_t ne3 = dst->ne[3];
  6661. assert(ne0 == 1);
  6662. assert(ne1 == ne01);
  6663. assert(ne2 == ne02);
  6664. assert(ne3 == ne03);
  6665. UNUSED(ne0);
  6666. UNUSED(ne1);
  6667. UNUSED(ne2);
  6668. UNUSED(ne3);
  6669. const size_t nb1 = dst->nb[1];
  6670. const size_t nb2 = dst->nb[2];
  6671. const size_t nb3 = dst->nb[3];
  6672. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6673. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6674. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6675. ggml_vec_sum_f32(ne00,
  6676. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6677. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6678. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6679. }
  6680. }
  6681. }
  6682. }
  6683. static void ggml_compute_forward_mean(
  6684. const struct ggml_compute_params * params,
  6685. const struct ggml_tensor * src0,
  6686. struct ggml_tensor * dst) {
  6687. switch (src0->type) {
  6688. case GGML_TYPE_F32:
  6689. {
  6690. ggml_compute_forward_mean_f32(params, src0, dst);
  6691. } break;
  6692. default:
  6693. {
  6694. GGML_ASSERT(false);
  6695. } break;
  6696. }
  6697. }
  6698. // ggml_compute_forward_repeat
  6699. static void ggml_compute_forward_repeat_f32(
  6700. const struct ggml_compute_params * params,
  6701. const struct ggml_tensor * src0,
  6702. struct ggml_tensor * dst) {
  6703. GGML_ASSERT(params->ith == 0);
  6704. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6705. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6706. return;
  6707. }
  6708. const int64_t ne0 = dst->ne[0];
  6709. const int64_t ne1 = dst->ne[1];
  6710. const int64_t ne2 = dst->ne[2];
  6711. const int64_t ne3 = dst->ne[3];
  6712. const int64_t ne00 = src0->ne[0];
  6713. const int64_t ne01 = src0->ne[1];
  6714. const int64_t ne02 = src0->ne[2];
  6715. const int64_t ne03 = src0->ne[3];
  6716. const size_t nb0 = dst->nb[0];
  6717. const size_t nb1 = dst->nb[1];
  6718. const size_t nb2 = dst->nb[2];
  6719. const size_t nb3 = dst->nb[3];
  6720. const size_t nb00 = src0->nb[0];
  6721. const size_t nb01 = src0->nb[1];
  6722. const size_t nb02 = src0->nb[2];
  6723. const size_t nb03 = src0->nb[3];
  6724. // guaranteed to be an integer due to the check in ggml_can_repeat
  6725. const int nr0 = (int)(ne0/ne00);
  6726. const int nr1 = (int)(ne1/ne01);
  6727. const int nr2 = (int)(ne2/ne02);
  6728. const int nr3 = (int)(ne3/ne03);
  6729. // TODO: support for transposed / permuted tensors
  6730. GGML_ASSERT(nb0 == sizeof(float));
  6731. GGML_ASSERT(nb00 == sizeof(float));
  6732. // TODO: maybe this is not optimal?
  6733. for (int i3 = 0; i3 < nr3; i3++) {
  6734. for (int k3 = 0; k3 < ne03; k3++) {
  6735. for (int i2 = 0; i2 < nr2; i2++) {
  6736. for (int k2 = 0; k2 < ne02; k2++) {
  6737. for (int i1 = 0; i1 < nr1; i1++) {
  6738. for (int k1 = 0; k1 < ne01; k1++) {
  6739. for (int i0 = 0; i0 < nr0; i0++) {
  6740. ggml_vec_cpy_f32(ne00,
  6741. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6742. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6743. }
  6744. }
  6745. }
  6746. }
  6747. }
  6748. }
  6749. }
  6750. }
  6751. static void ggml_compute_forward_repeat(
  6752. const struct ggml_compute_params * params,
  6753. const struct ggml_tensor * src0,
  6754. struct ggml_tensor * dst) {
  6755. switch (src0->type) {
  6756. case GGML_TYPE_F32:
  6757. {
  6758. ggml_compute_forward_repeat_f32(params, src0, dst);
  6759. } break;
  6760. default:
  6761. {
  6762. GGML_ASSERT(false);
  6763. } break;
  6764. }
  6765. }
  6766. // ggml_compute_forward_abs
  6767. static void ggml_compute_forward_abs_f32(
  6768. const struct ggml_compute_params * params,
  6769. const struct ggml_tensor * src0,
  6770. struct ggml_tensor * dst) {
  6771. assert(params->ith == 0);
  6772. assert(ggml_are_same_shape(src0, dst));
  6773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6774. return;
  6775. }
  6776. const int n = ggml_nrows(src0);
  6777. const int nc = src0->ne[0];
  6778. assert(dst->nb[0] == sizeof(float));
  6779. assert(src0->nb[0] == sizeof(float));
  6780. for (int i = 0; i < n; i++) {
  6781. ggml_vec_abs_f32(nc,
  6782. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6783. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6784. }
  6785. }
  6786. static void ggml_compute_forward_abs(
  6787. const struct ggml_compute_params * params,
  6788. const struct ggml_tensor * src0,
  6789. struct ggml_tensor * dst) {
  6790. switch (src0->type) {
  6791. case GGML_TYPE_F32:
  6792. {
  6793. ggml_compute_forward_abs_f32(params, src0, dst);
  6794. } break;
  6795. default:
  6796. {
  6797. GGML_ASSERT(false);
  6798. } break;
  6799. }
  6800. }
  6801. // ggml_compute_forward_sgn
  6802. static void ggml_compute_forward_sgn_f32(
  6803. const struct ggml_compute_params * params,
  6804. const struct ggml_tensor * src0,
  6805. struct ggml_tensor * dst) {
  6806. assert(params->ith == 0);
  6807. assert(ggml_are_same_shape(src0, dst));
  6808. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6809. return;
  6810. }
  6811. const int n = ggml_nrows(src0);
  6812. const int nc = src0->ne[0];
  6813. assert(dst->nb[0] == sizeof(float));
  6814. assert(src0->nb[0] == sizeof(float));
  6815. for (int i = 0; i < n; i++) {
  6816. ggml_vec_sgn_f32(nc,
  6817. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6818. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6819. }
  6820. }
  6821. static void ggml_compute_forward_sgn(
  6822. const struct ggml_compute_params * params,
  6823. const struct ggml_tensor * src0,
  6824. struct ggml_tensor * dst) {
  6825. switch (src0->type) {
  6826. case GGML_TYPE_F32:
  6827. {
  6828. ggml_compute_forward_sgn_f32(params, src0, dst);
  6829. } break;
  6830. default:
  6831. {
  6832. GGML_ASSERT(false);
  6833. } break;
  6834. }
  6835. }
  6836. // ggml_compute_forward_neg
  6837. static void ggml_compute_forward_neg_f32(
  6838. const struct ggml_compute_params * params,
  6839. const struct ggml_tensor * src0,
  6840. struct ggml_tensor * dst) {
  6841. assert(params->ith == 0);
  6842. assert(ggml_are_same_shape(src0, dst));
  6843. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6844. return;
  6845. }
  6846. const int n = ggml_nrows(src0);
  6847. const int nc = src0->ne[0];
  6848. assert(dst->nb[0] == sizeof(float));
  6849. assert(src0->nb[0] == sizeof(float));
  6850. for (int i = 0; i < n; i++) {
  6851. ggml_vec_neg_f32(nc,
  6852. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6853. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6854. }
  6855. }
  6856. static void ggml_compute_forward_neg(
  6857. const struct ggml_compute_params * params,
  6858. const struct ggml_tensor * src0,
  6859. struct ggml_tensor * dst) {
  6860. switch (src0->type) {
  6861. case GGML_TYPE_F32:
  6862. {
  6863. ggml_compute_forward_neg_f32(params, src0, dst);
  6864. } break;
  6865. default:
  6866. {
  6867. GGML_ASSERT(false);
  6868. } break;
  6869. }
  6870. }
  6871. // ggml_compute_forward_step
  6872. static void ggml_compute_forward_step_f32(
  6873. const struct ggml_compute_params * params,
  6874. const struct ggml_tensor * src0,
  6875. struct ggml_tensor * dst) {
  6876. assert(params->ith == 0);
  6877. assert(ggml_are_same_shape(src0, dst));
  6878. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6879. return;
  6880. }
  6881. const int n = ggml_nrows(src0);
  6882. const int nc = src0->ne[0];
  6883. assert(dst->nb[0] == sizeof(float));
  6884. assert(src0->nb[0] == sizeof(float));
  6885. for (int i = 0; i < n; i++) {
  6886. ggml_vec_step_f32(nc,
  6887. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6888. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6889. }
  6890. }
  6891. static void ggml_compute_forward_step(
  6892. const struct ggml_compute_params * params,
  6893. const struct ggml_tensor * src0,
  6894. struct ggml_tensor * dst) {
  6895. switch (src0->type) {
  6896. case GGML_TYPE_F32:
  6897. {
  6898. ggml_compute_forward_step_f32(params, src0, dst);
  6899. } break;
  6900. default:
  6901. {
  6902. GGML_ASSERT(false);
  6903. } break;
  6904. }
  6905. }
  6906. // ggml_compute_forward_relu
  6907. static void ggml_compute_forward_relu_f32(
  6908. const struct ggml_compute_params * params,
  6909. const struct ggml_tensor * src0,
  6910. struct ggml_tensor * dst) {
  6911. assert(params->ith == 0);
  6912. assert(ggml_are_same_shape(src0, dst));
  6913. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6914. return;
  6915. }
  6916. const int n = ggml_nrows(src0);
  6917. const int nc = src0->ne[0];
  6918. assert(dst->nb[0] == sizeof(float));
  6919. assert(src0->nb[0] == sizeof(float));
  6920. for (int i = 0; i < n; i++) {
  6921. ggml_vec_relu_f32(nc,
  6922. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6923. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6924. }
  6925. }
  6926. static void ggml_compute_forward_relu(
  6927. const struct ggml_compute_params * params,
  6928. const struct ggml_tensor * src0,
  6929. struct ggml_tensor * dst) {
  6930. switch (src0->type) {
  6931. case GGML_TYPE_F32:
  6932. {
  6933. ggml_compute_forward_relu_f32(params, src0, dst);
  6934. } break;
  6935. default:
  6936. {
  6937. GGML_ASSERT(false);
  6938. } break;
  6939. }
  6940. }
  6941. // ggml_compute_forward_gelu
  6942. static void ggml_compute_forward_gelu_f32(
  6943. const struct ggml_compute_params * params,
  6944. const struct ggml_tensor * src0,
  6945. struct ggml_tensor * dst) {
  6946. GGML_ASSERT(ggml_is_contiguous(src0));
  6947. GGML_ASSERT(ggml_is_contiguous(dst));
  6948. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6950. return;
  6951. }
  6952. const int ith = params->ith;
  6953. const int nth = params->nth;
  6954. const int nc = src0->ne[0];
  6955. const int nr = ggml_nrows(src0);
  6956. // rows per thread
  6957. const int dr = (nr + nth - 1)/nth;
  6958. // row range for this thread
  6959. const int ir0 = dr*ith;
  6960. const int ir1 = MIN(ir0 + dr, nr);
  6961. for (int i1 = ir0; i1 < ir1; i1++) {
  6962. ggml_vec_gelu_f32(nc,
  6963. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6964. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6965. #ifndef NDEBUG
  6966. for (int k = 0; k < nc; k++) {
  6967. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6968. UNUSED(x);
  6969. assert(!isnan(x));
  6970. assert(!isinf(x));
  6971. }
  6972. #endif
  6973. }
  6974. }
  6975. static void ggml_compute_forward_gelu(
  6976. const struct ggml_compute_params * params,
  6977. const struct ggml_tensor * src0,
  6978. struct ggml_tensor * dst) {
  6979. switch (src0->type) {
  6980. case GGML_TYPE_F32:
  6981. {
  6982. ggml_compute_forward_gelu_f32(params, src0, dst);
  6983. } break;
  6984. default:
  6985. {
  6986. GGML_ASSERT(false);
  6987. } break;
  6988. }
  6989. //printf("XXXXXXXX gelu\n");
  6990. }
  6991. // ggml_compute_forward_silu
  6992. static void ggml_compute_forward_silu_f32(
  6993. const struct ggml_compute_params * params,
  6994. const struct ggml_tensor * src0,
  6995. struct ggml_tensor * dst) {
  6996. GGML_ASSERT(ggml_is_contiguous(src0));
  6997. GGML_ASSERT(ggml_is_contiguous(dst));
  6998. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6999. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7000. return;
  7001. }
  7002. const int ith = params->ith;
  7003. const int nth = params->nth;
  7004. const int nc = src0->ne[0];
  7005. const int nr = ggml_nrows(src0);
  7006. // rows per thread
  7007. const int dr = (nr + nth - 1)/nth;
  7008. // row range for this thread
  7009. const int ir0 = dr*ith;
  7010. const int ir1 = MIN(ir0 + dr, nr);
  7011. for (int i1 = ir0; i1 < ir1; i1++) {
  7012. ggml_vec_silu_f32(nc,
  7013. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7014. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7015. #ifndef NDEBUG
  7016. for (int k = 0; k < nc; k++) {
  7017. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7018. UNUSED(x);
  7019. assert(!isnan(x));
  7020. assert(!isinf(x));
  7021. }
  7022. #endif
  7023. }
  7024. }
  7025. static void ggml_compute_forward_silu(
  7026. const struct ggml_compute_params * params,
  7027. const struct ggml_tensor * src0,
  7028. struct ggml_tensor * dst) {
  7029. switch (src0->type) {
  7030. case GGML_TYPE_F32:
  7031. {
  7032. ggml_compute_forward_silu_f32(params, src0, dst);
  7033. } break;
  7034. default:
  7035. {
  7036. GGML_ASSERT(false);
  7037. } break;
  7038. }
  7039. }
  7040. // ggml_compute_forward_silu_back
  7041. static void ggml_compute_forward_silu_back_f32(
  7042. const struct ggml_compute_params * params,
  7043. const struct ggml_tensor * src0,
  7044. const struct ggml_tensor * grad,
  7045. struct ggml_tensor * dst) {
  7046. GGML_ASSERT(ggml_is_contiguous(grad));
  7047. GGML_ASSERT(ggml_is_contiguous(src0));
  7048. GGML_ASSERT(ggml_is_contiguous(dst));
  7049. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7050. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7051. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7052. return;
  7053. }
  7054. const int ith = params->ith;
  7055. const int nth = params->nth;
  7056. const int nc = src0->ne[0];
  7057. const int nr = ggml_nrows(src0);
  7058. // rows per thread
  7059. const int dr = (nr + nth - 1)/nth;
  7060. // row range for this thread
  7061. const int ir0 = dr*ith;
  7062. const int ir1 = MIN(ir0 + dr, nr);
  7063. for (int i1 = ir0; i1 < ir1; i1++) {
  7064. ggml_vec_silu_backward_f32(nc,
  7065. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7066. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7067. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7068. #ifndef NDEBUG
  7069. for (int k = 0; k < nc; k++) {
  7070. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7071. UNUSED(x);
  7072. assert(!isnan(x));
  7073. assert(!isinf(x));
  7074. }
  7075. #endif
  7076. }
  7077. }
  7078. static void ggml_compute_forward_silu_back(
  7079. const struct ggml_compute_params * params,
  7080. const struct ggml_tensor * src0,
  7081. const struct ggml_tensor * grad,
  7082. struct ggml_tensor * dst) {
  7083. switch (src0->type) {
  7084. case GGML_TYPE_F32:
  7085. {
  7086. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7087. } break;
  7088. default:
  7089. {
  7090. GGML_ASSERT(false);
  7091. } break;
  7092. }
  7093. }
  7094. // ggml_compute_forward_norm
  7095. static void ggml_compute_forward_norm_f32(
  7096. const struct ggml_compute_params * params,
  7097. const struct ggml_tensor * src0,
  7098. struct ggml_tensor * dst) {
  7099. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7101. return;
  7102. }
  7103. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7104. const int ith = params->ith;
  7105. const int nth = params->nth;
  7106. const int64_t ne00 = src0->ne[0];
  7107. const int64_t ne01 = src0->ne[1];
  7108. const int64_t ne02 = src0->ne[2];
  7109. const int64_t ne03 = src0->ne[3];
  7110. const size_t nb01 = src0->nb[1];
  7111. const size_t nb02 = src0->nb[2];
  7112. const size_t nb03 = src0->nb[3];
  7113. const size_t nb1 = dst->nb[1];
  7114. const size_t nb2 = dst->nb[2];
  7115. const size_t nb3 = dst->nb[3];
  7116. const float eps = 1e-5f; // TODO: make this a parameter
  7117. // TODO: optimize
  7118. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7119. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7120. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7121. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7122. ggml_float sum = 0.0;
  7123. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7124. sum += (ggml_float)x[i00];
  7125. }
  7126. float mean = sum/ne00;
  7127. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7128. ggml_float sum2 = 0.0;
  7129. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7130. float v = x[i00] - mean;
  7131. y[i00] = v;
  7132. sum2 += (ggml_float)(v*v);
  7133. }
  7134. float variance = sum2/ne00;
  7135. const float scale = 1.0f/sqrtf(variance + eps);
  7136. ggml_vec_scale_f32(ne00, y, scale);
  7137. }
  7138. }
  7139. }
  7140. }
  7141. static void ggml_compute_forward_norm(
  7142. const struct ggml_compute_params * params,
  7143. const struct ggml_tensor * src0,
  7144. struct ggml_tensor * dst) {
  7145. switch (src0->type) {
  7146. case GGML_TYPE_F32:
  7147. {
  7148. ggml_compute_forward_norm_f32(params, src0, dst);
  7149. } break;
  7150. default:
  7151. {
  7152. GGML_ASSERT(false);
  7153. } break;
  7154. }
  7155. }
  7156. static void ggml_compute_forward_rms_norm_f32(
  7157. const struct ggml_compute_params * params,
  7158. const struct ggml_tensor * src0,
  7159. struct ggml_tensor * dst) {
  7160. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7162. return;
  7163. }
  7164. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7165. const int ith = params->ith;
  7166. const int nth = params->nth;
  7167. const int64_t ne00 = src0->ne[0];
  7168. const int64_t ne01 = src0->ne[1];
  7169. const int64_t ne02 = src0->ne[2];
  7170. const int64_t ne03 = src0->ne[3];
  7171. const size_t nb01 = src0->nb[1];
  7172. const size_t nb02 = src0->nb[2];
  7173. const size_t nb03 = src0->nb[3];
  7174. const size_t nb1 = dst->nb[1];
  7175. const size_t nb2 = dst->nb[2];
  7176. const size_t nb3 = dst->nb[3];
  7177. const float eps = 1e-6f; // TODO: make this a parameter
  7178. // TODO: optimize
  7179. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7180. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7181. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7182. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7183. ggml_float sum = 0.0;
  7184. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7185. sum += (ggml_float)(x[i00] * x[i00]);
  7186. }
  7187. float mean = sum/ne00;
  7188. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7189. memcpy(y, x, ne00 * sizeof(float));
  7190. // for (int i00 = 0; i00 < ne00; i00++) {
  7191. // y[i00] = x[i00];
  7192. // }
  7193. const float scale = 1.0f/sqrtf(mean + eps);
  7194. ggml_vec_scale_f32(ne00, y, scale);
  7195. }
  7196. }
  7197. }
  7198. }
  7199. static void ggml_compute_forward_rms_norm(
  7200. const struct ggml_compute_params * params,
  7201. const struct ggml_tensor * src0,
  7202. struct ggml_tensor * dst) {
  7203. switch (src0->type) {
  7204. case GGML_TYPE_F32:
  7205. {
  7206. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7207. } break;
  7208. default:
  7209. {
  7210. GGML_ASSERT(false);
  7211. } break;
  7212. }
  7213. }
  7214. static void ggml_compute_forward_rms_norm_back_f32(
  7215. const struct ggml_compute_params * params,
  7216. const struct ggml_tensor * src0,
  7217. const struct ggml_tensor * src1,
  7218. struct ggml_tensor * dst) {
  7219. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7220. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7221. return;
  7222. }
  7223. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7224. const int ith = params->ith;
  7225. const int nth = params->nth;
  7226. const int64_t ne00 = src0->ne[0];
  7227. const int64_t ne01 = src0->ne[1];
  7228. const int64_t ne02 = src0->ne[2];
  7229. const int64_t ne03 = src0->ne[3];
  7230. const size_t nb01 = src0->nb[1];
  7231. const size_t nb02 = src0->nb[2];
  7232. const size_t nb03 = src0->nb[3];
  7233. const size_t nb11 = src1->nb[1];
  7234. const size_t nb12 = src1->nb[2];
  7235. const size_t nb13 = src1->nb[3];
  7236. const size_t nb1 = dst->nb[1];
  7237. const size_t nb2 = dst->nb[2];
  7238. const size_t nb3 = dst->nb[3];
  7239. const float eps = 1e-6f; // TODO: make this a parameter
  7240. // TODO: optimize
  7241. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7242. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7243. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7244. // src1 is same shape as src0 => same indices
  7245. const int64_t i11 = i01;
  7246. const int64_t i12 = i02;
  7247. const int64_t i13 = i03;
  7248. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7249. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7250. ggml_float sum_xx = 0.0;
  7251. ggml_float sum_xdz = 0.0;
  7252. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7253. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7254. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7255. }
  7256. //const float mean = (float)(sum_xx)/ne00;
  7257. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7258. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7259. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7260. // we could cache rms from forward pass to improve performance.
  7261. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7262. //const float rms = sqrtf(mean_eps);
  7263. const float rrms = 1.0f / sqrtf(mean_eps);
  7264. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7265. {
  7266. // z = rms_norm(x)
  7267. //
  7268. // rms_norm(src0) =
  7269. // scale(
  7270. // src0,
  7271. // div(
  7272. // 1,
  7273. // sqrt(
  7274. // add(
  7275. // scale(
  7276. // sum(
  7277. // sqr(
  7278. // src0)),
  7279. // (1.0/N)),
  7280. // eps))));
  7281. // postorder:
  7282. // ## op args grad
  7283. // 00 param src0 grad[#00]
  7284. // 01 const 1
  7285. // 02 sqr (#00) grad[#02]
  7286. // 03 sum (#02) grad[#03]
  7287. // 04 const 1/N
  7288. // 05 scale (#03, #04) grad[#05]
  7289. // 06 const eps
  7290. // 07 add (#05, #06) grad[#07]
  7291. // 08 sqrt (#07) grad[#08]
  7292. // 09 div (#01,#08) grad[#09]
  7293. // 10 scale (#00,#09) grad[#10]
  7294. //
  7295. // backward pass, given grad[#10]
  7296. // #10: scale
  7297. // grad[#00] += scale(grad[#10],#09)
  7298. // grad[#09] += sum(mul(grad[#10],#00))
  7299. // #09: div
  7300. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7301. // #08: sqrt
  7302. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7303. // #07: add
  7304. // grad[#05] += grad[#07]
  7305. // #05: scale
  7306. // grad[#03] += scale(grad[#05],#04)
  7307. // #03: sum
  7308. // grad[#02] += repeat(grad[#03], #02)
  7309. // #02:
  7310. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7311. //
  7312. // substitute and simplify:
  7313. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7314. // grad[#02] = repeat(grad[#03], #02)
  7315. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7316. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7317. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7318. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7319. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7320. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7321. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7322. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7323. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7324. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7325. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7326. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7327. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7328. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7329. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7330. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7331. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7332. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7333. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7334. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7335. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7336. // a = b*c + d*e
  7337. // a = b*c*f/f + d*e*f/f
  7338. // a = (b*c*f + d*e*f)*(1/f)
  7339. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7340. // a = (b + d*e/c)*c
  7341. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7342. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7343. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7344. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7345. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7346. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7347. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7348. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7349. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7350. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7351. }
  7352. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7353. // post-order:
  7354. // dx := x
  7355. // dx := scale(dx,-mean_xdz/mean_eps)
  7356. // dx := add(dx, dz)
  7357. // dx := scale(dx, rrms)
  7358. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7359. ggml_vec_cpy_f32 (ne00, dx, x);
  7360. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7361. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7362. ggml_vec_acc_f32 (ne00, dx, dz);
  7363. ggml_vec_scale_f32(ne00, dx, rrms);
  7364. }
  7365. }
  7366. }
  7367. }
  7368. static void ggml_compute_forward_rms_norm_back(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * src0,
  7371. const struct ggml_tensor * src1,
  7372. struct ggml_tensor * dst) {
  7373. switch (src0->type) {
  7374. case GGML_TYPE_F32:
  7375. {
  7376. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7377. } break;
  7378. default:
  7379. {
  7380. GGML_ASSERT(false);
  7381. } break;
  7382. }
  7383. }
  7384. // ggml_compute_forward_mul_mat
  7385. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7386. // helper function to determine if it is better to use BLAS or not
  7387. // for large matrices, BLAS is faster
  7388. static bool ggml_compute_forward_mul_mat_use_blas(
  7389. const struct ggml_tensor * src0,
  7390. const struct ggml_tensor * src1,
  7391. struct ggml_tensor * dst) {
  7392. //const int64_t ne00 = src0->ne[0];
  7393. //const int64_t ne01 = src0->ne[1];
  7394. const int64_t ne10 = src1->ne[0];
  7395. const int64_t ne0 = dst->ne[0];
  7396. const int64_t ne1 = dst->ne[1];
  7397. // TODO: find the optimal values for these
  7398. if (ggml_is_contiguous(src0) &&
  7399. ggml_is_contiguous(src1) &&
  7400. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7401. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7402. return true;
  7403. }
  7404. return false;
  7405. }
  7406. #endif
  7407. static void ggml_compute_forward_mul_mat_f32(
  7408. const struct ggml_compute_params * params,
  7409. const struct ggml_tensor * src0,
  7410. const struct ggml_tensor * src1,
  7411. struct ggml_tensor * dst) {
  7412. int64_t t0 = ggml_perf_time_us();
  7413. UNUSED(t0);
  7414. const int64_t ne00 = src0->ne[0];
  7415. const int64_t ne01 = src0->ne[1];
  7416. const int64_t ne02 = src0->ne[2];
  7417. const int64_t ne03 = src0->ne[3];
  7418. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7419. const int64_t ne10 = src1->ne[0];
  7420. #endif
  7421. const int64_t ne11 = src1->ne[1];
  7422. #ifndef NDEBUG
  7423. const int64_t ne12 = src1->ne[2];
  7424. const int64_t ne13 = src1->ne[3];
  7425. const int64_t ne0 = dst->ne[0];
  7426. const int64_t ne1 = dst->ne[1];
  7427. const int64_t ne2 = dst->ne[2];
  7428. const int64_t ne3 = dst->ne[3];
  7429. const int nb00 = src0->nb[0];
  7430. #endif
  7431. const int nb01 = src0->nb[1];
  7432. const int nb02 = src0->nb[2];
  7433. const int nb03 = src0->nb[3];
  7434. #ifndef NDEBUG
  7435. const int nb10 = src1->nb[0];
  7436. #endif
  7437. const int nb11 = src1->nb[1];
  7438. const int nb12 = src1->nb[2];
  7439. const int nb13 = src1->nb[3];
  7440. const int nb0 = dst->nb[0];
  7441. const int nb1 = dst->nb[1];
  7442. const int nb2 = dst->nb[2];
  7443. const int nb3 = dst->nb[3];
  7444. const int ith = params->ith;
  7445. const int nth = params->nth;
  7446. assert(ne02 == ne12);
  7447. assert(ne03 == ne13);
  7448. assert(ne2 == ne12);
  7449. assert(ne3 == ne13);
  7450. // we don't support permuted src0 or src1
  7451. assert(nb00 == sizeof(float));
  7452. assert(nb10 == sizeof(float));
  7453. // dst cannot be transposed or permuted
  7454. assert(nb0 == sizeof(float));
  7455. assert(nb0 <= nb1);
  7456. assert(nb1 <= nb2);
  7457. assert(nb2 <= nb3);
  7458. assert(ne0 == ne01);
  7459. assert(ne1 == ne11);
  7460. assert(ne2 == ne02);
  7461. assert(ne3 == ne03);
  7462. // nb01 >= nb00 - src0 is not transposed
  7463. // compute by src0 rows
  7464. #if defined(GGML_USE_CUBLAS)
  7465. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7466. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7467. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7468. }
  7469. return;
  7470. }
  7471. #endif
  7472. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7473. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7474. if (params->ith != 0) {
  7475. return;
  7476. }
  7477. if (params->type == GGML_TASK_INIT) {
  7478. return;
  7479. }
  7480. if (params->type == GGML_TASK_FINALIZE) {
  7481. return;
  7482. }
  7483. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7484. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7485. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7486. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7487. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7488. #if defined(GGML_USE_CLBLAST)
  7489. // zT = y * xT
  7490. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7491. ne11, ne01, ne10,
  7492. 1.0f, y, ne10,
  7493. x, ne10,
  7494. 0.0f, d, ne01,
  7495. GGML_TYPE_F32);
  7496. #else
  7497. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7498. ne11, ne01, ne10,
  7499. 1.0f, y, ne10,
  7500. x, ne00,
  7501. 0.0f, d, ne01);
  7502. #endif
  7503. }
  7504. }
  7505. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7506. return;
  7507. }
  7508. #endif
  7509. if (params->type == GGML_TASK_INIT) {
  7510. return;
  7511. }
  7512. if (params->type == GGML_TASK_FINALIZE) {
  7513. return;
  7514. }
  7515. // parallelize by src0 rows using ggml_vec_dot_f32
  7516. // total rows in src0
  7517. const int nr = ne01*ne02*ne03;
  7518. // rows per thread
  7519. const int dr = (nr + nth - 1)/nth;
  7520. // row range for this thread
  7521. const int ir0 = dr*ith;
  7522. const int ir1 = MIN(ir0 + dr, nr);
  7523. for (int ir = ir0; ir < ir1; ++ir) {
  7524. // src0 indices
  7525. const int i03 = ir/(ne02*ne01);
  7526. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7527. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7528. for (int64_t ic = 0; ic < ne11; ++ic) {
  7529. // src1 indices
  7530. const int i13 = i03;
  7531. const int i12 = i02;
  7532. const int i11 = ic;
  7533. // dst indices
  7534. const int i0 = i01;
  7535. const int i1 = i11;
  7536. const int i2 = i02;
  7537. const int i3 = i03;
  7538. ggml_vec_dot_f32(ne00,
  7539. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7540. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7541. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7542. }
  7543. }
  7544. //int64_t t1 = ggml_perf_time_us();
  7545. //static int64_t acc = 0;
  7546. //acc += t1 - t0;
  7547. //if (t1 - t0 > 10) {
  7548. // printf("\n");
  7549. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7550. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7551. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7552. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7553. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7554. //}
  7555. }
  7556. static void ggml_compute_forward_mul_mat_f16_f32(
  7557. const struct ggml_compute_params * params,
  7558. const struct ggml_tensor * src0,
  7559. const struct ggml_tensor * src1,
  7560. struct ggml_tensor * dst) {
  7561. int64_t t0 = ggml_perf_time_us();
  7562. UNUSED(t0);
  7563. const int64_t ne00 = src0->ne[0];
  7564. const int64_t ne01 = src0->ne[1];
  7565. const int64_t ne02 = src0->ne[2];
  7566. const int64_t ne03 = src0->ne[3];
  7567. const int64_t ne10 = src1->ne[0];
  7568. const int64_t ne11 = src1->ne[1];
  7569. const int64_t ne12 = src1->ne[2];
  7570. const int64_t ne13 = src1->ne[3];
  7571. const int64_t ne0 = dst->ne[0];
  7572. const int64_t ne1 = dst->ne[1];
  7573. const int64_t ne2 = dst->ne[2];
  7574. const int64_t ne3 = dst->ne[3];
  7575. //const int64_t ne = ne0*ne1*ne2*ne3;
  7576. const int nb00 = src0->nb[0];
  7577. const int nb01 = src0->nb[1];
  7578. const int nb02 = src0->nb[2];
  7579. const int nb03 = src0->nb[3];
  7580. const int nb10 = src1->nb[0];
  7581. const int nb11 = src1->nb[1];
  7582. const int nb12 = src1->nb[2];
  7583. const int nb13 = src1->nb[3];
  7584. const int nb0 = dst->nb[0];
  7585. const int nb1 = dst->nb[1];
  7586. const int nb2 = dst->nb[2];
  7587. const int nb3 = dst->nb[3];
  7588. const int ith = params->ith;
  7589. const int nth = params->nth;
  7590. GGML_ASSERT(ne02 == ne12);
  7591. GGML_ASSERT(ne03 == ne13);
  7592. GGML_ASSERT(ne2 == ne12);
  7593. GGML_ASSERT(ne3 == ne13);
  7594. // TODO: we don't support permuted src0
  7595. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7596. // dst cannot be transposed or permuted
  7597. GGML_ASSERT(nb0 == sizeof(float));
  7598. GGML_ASSERT(nb0 <= nb1);
  7599. GGML_ASSERT(nb1 <= nb2);
  7600. GGML_ASSERT(nb2 <= nb3);
  7601. GGML_ASSERT(ne0 == ne01);
  7602. GGML_ASSERT(ne1 == ne11);
  7603. GGML_ASSERT(ne2 == ne02);
  7604. GGML_ASSERT(ne3 == ne03);
  7605. // nb01 >= nb00 - src0 is not transposed
  7606. // compute by src0 rows
  7607. #if defined(GGML_USE_CUBLAS)
  7608. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7609. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7610. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7611. }
  7612. return;
  7613. }
  7614. #endif
  7615. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7616. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7617. GGML_ASSERT(nb10 == sizeof(float));
  7618. if (params->ith != 0) {
  7619. return;
  7620. }
  7621. if (params->type == GGML_TASK_INIT) {
  7622. return;
  7623. }
  7624. if (params->type == GGML_TASK_FINALIZE) {
  7625. return;
  7626. }
  7627. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7628. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7629. float * const wdata = params->wdata;
  7630. {
  7631. size_t id = 0;
  7632. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7633. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7634. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7635. }
  7636. }
  7637. assert(id*sizeof(float) <= params->wsize);
  7638. }
  7639. #if defined(GGML_USE_CLBLAST)
  7640. const float * x = wdata;
  7641. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7642. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7643. // zT = y * xT
  7644. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7645. ne11, ne01, ne10,
  7646. 1.0f, y, ne10,
  7647. x, ne10,
  7648. 0.0f, d, ne01,
  7649. GGML_TYPE_F32);
  7650. #else
  7651. const float * x = wdata;
  7652. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7653. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7654. // zT = y * xT
  7655. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7656. ne11, ne01, ne10,
  7657. 1.0f, y, ne10,
  7658. x, ne00,
  7659. 0.0f, d, ne01);
  7660. #endif
  7661. }
  7662. }
  7663. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7664. return;
  7665. }
  7666. #endif
  7667. if (params->type == GGML_TASK_INIT) {
  7668. ggml_fp16_t * const wdata = params->wdata;
  7669. size_t id = 0;
  7670. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7671. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7672. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7673. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7674. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7675. }
  7676. }
  7677. }
  7678. }
  7679. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7680. return;
  7681. }
  7682. if (params->type == GGML_TASK_FINALIZE) {
  7683. return;
  7684. }
  7685. // fp16 -> half the size, so divide by 2
  7686. // TODO: do not support transposed src1
  7687. assert(nb10/2 == sizeof(ggml_fp16_t));
  7688. // parallelize by src0 rows using ggml_vec_dot_f16
  7689. // total rows in src0
  7690. const int nr = ne01*ne02*ne03;
  7691. // rows per thread
  7692. const int dr = (nr + nth - 1)/nth;
  7693. // row range for this thread
  7694. const int ir0 = dr*ith;
  7695. const int ir1 = MIN(ir0 + dr, nr);
  7696. ggml_fp16_t * wdata = params->wdata;
  7697. for (int ir = ir0; ir < ir1; ++ir) {
  7698. // src0 indices
  7699. const int i03 = ir/(ne02*ne01);
  7700. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7701. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7702. const int i13 = i03;
  7703. const int i12 = i02;
  7704. const int i0 = i01;
  7705. const int i2 = i02;
  7706. const int i3 = i03;
  7707. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7708. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7709. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7710. for (int64_t ic = 0; ic < ne11; ++ic) {
  7711. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7712. }
  7713. }
  7714. //int64_t t1 = ggml_time_us();
  7715. //static int64_t acc = 0;
  7716. //acc += t1 - t0;
  7717. //if (t1 - t0 > 10) {
  7718. // printf("\n");
  7719. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7720. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7721. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7722. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7723. //}
  7724. }
  7725. static void ggml_compute_forward_mul_mat_q_f32(
  7726. const struct ggml_compute_params * params,
  7727. const struct ggml_tensor * src0,
  7728. const struct ggml_tensor * src1,
  7729. struct ggml_tensor * dst) {
  7730. int64_t t0 = ggml_perf_time_us();
  7731. UNUSED(t0);
  7732. const int64_t ne00 = src0->ne[0];
  7733. const int64_t ne01 = src0->ne[1];
  7734. const int64_t ne02 = src0->ne[2];
  7735. const int64_t ne03 = src0->ne[3];
  7736. const int64_t ne10 = src1->ne[0];
  7737. const int64_t ne11 = src1->ne[1];
  7738. const int64_t ne12 = src1->ne[2];
  7739. const int64_t ne13 = src1->ne[3];
  7740. const int64_t ne0 = dst->ne[0];
  7741. const int64_t ne1 = dst->ne[1];
  7742. const int64_t ne2 = dst->ne[2];
  7743. const int64_t ne3 = dst->ne[3];
  7744. const int nb00 = src0->nb[0];
  7745. const int nb01 = src0->nb[1];
  7746. const int nb02 = src0->nb[2];
  7747. const int nb03 = src0->nb[3];
  7748. const int nb10 = src1->nb[0];
  7749. const int nb11 = src1->nb[1];
  7750. const int nb12 = src1->nb[2];
  7751. const int nb13 = src1->nb[3];
  7752. const int nb0 = dst->nb[0];
  7753. const int nb1 = dst->nb[1];
  7754. const int nb2 = dst->nb[2];
  7755. const int nb3 = dst->nb[3];
  7756. const int ith = params->ith;
  7757. const int nth = params->nth;
  7758. GGML_ASSERT(ne02 == ne12);
  7759. GGML_ASSERT(ne03 == ne13);
  7760. GGML_ASSERT(ne2 == ne12);
  7761. GGML_ASSERT(ne3 == ne13);
  7762. const enum ggml_type type = src0->type;
  7763. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  7764. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  7765. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  7766. // we don't support permuted src0 or src1
  7767. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  7768. GGML_ASSERT(nb10 == sizeof(float));
  7769. // dst cannot be transposed or permuted
  7770. GGML_ASSERT(nb0 == sizeof(float));
  7771. GGML_ASSERT(nb0 <= nb1);
  7772. GGML_ASSERT(nb1 <= nb2);
  7773. GGML_ASSERT(nb2 <= nb3);
  7774. GGML_ASSERT(ne0 == ne01);
  7775. GGML_ASSERT(ne1 == ne11);
  7776. GGML_ASSERT(ne2 == ne02);
  7777. GGML_ASSERT(ne3 == ne03);
  7778. // nb01 >= nb00 - src0 is not transposed
  7779. // compute by src0 rows
  7780. #if defined(GGML_USE_CUBLAS)
  7781. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7782. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7783. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7784. }
  7785. return;
  7786. }
  7787. #endif
  7788. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7789. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7790. if (params->ith != 0) {
  7791. return;
  7792. }
  7793. if (params->type == GGML_TASK_INIT) {
  7794. return;
  7795. }
  7796. if (params->type == GGML_TASK_FINALIZE) {
  7797. return;
  7798. }
  7799. float * const wdata = params->wdata;
  7800. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7801. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7802. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7803. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7804. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7805. #if defined(GGML_USE_CLBLAST)
  7806. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7807. #else
  7808. {
  7809. size_t id = 0;
  7810. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7811. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7812. id += ne00;
  7813. }
  7814. assert(id*sizeof(float) <= params->wsize);
  7815. }
  7816. const float * x = wdata;
  7817. #endif
  7818. #if defined(GGML_USE_CLBLAST)
  7819. // zT = y * xT
  7820. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7821. ne11, ne01, ne10,
  7822. 1.0f, y, ne10,
  7823. x, ne10,
  7824. 0.0f, d, ne01,
  7825. type);
  7826. #else
  7827. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7828. ne11, ne01, ne10,
  7829. 1.0f, y, ne10,
  7830. x, ne00,
  7831. 0.0f, d, ne01);
  7832. #endif
  7833. }
  7834. }
  7835. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7836. return;
  7837. }
  7838. #endif
  7839. if (params->type == GGML_TASK_INIT) {
  7840. char * wdata = params->wdata;
  7841. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7842. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7843. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7844. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7845. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7846. wdata += row_size;
  7847. }
  7848. }
  7849. }
  7850. return;
  7851. }
  7852. if (params->type == GGML_TASK_FINALIZE) {
  7853. return;
  7854. }
  7855. // parallelize by src0 rows using ggml_vec_dot_q
  7856. // total rows in src0
  7857. const int nr = ne01*ne02*ne03;
  7858. // rows per thread
  7859. const int dr = (nr + nth - 1)/nth;
  7860. // row range for this thread
  7861. const int ir0 = dr*ith;
  7862. const int ir1 = MIN(ir0 + dr, nr);
  7863. void * wdata = params->wdata;
  7864. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7865. for (int ir = ir0; ir < ir1; ++ir) {
  7866. // src0 indices
  7867. const int i03 = ir/(ne02*ne01);
  7868. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7869. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7870. const int i13 = i03;
  7871. const int i12 = i02;
  7872. const int i0 = i01;
  7873. const int i2 = i02;
  7874. const int i3 = i03;
  7875. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7876. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7877. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7878. assert(ne00 % 32 == 0);
  7879. for (int64_t ic = 0; ic < ne11; ++ic) {
  7880. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7881. }
  7882. }
  7883. //int64_t t1 = ggml_time_us();
  7884. //static int64_t acc = 0;
  7885. //acc += t1 - t0;
  7886. //if (t1 - t0 > 10) {
  7887. // printf("\n");
  7888. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7889. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7890. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7891. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7892. //}
  7893. }
  7894. static void ggml_compute_forward_mul_mat(
  7895. const struct ggml_compute_params * params,
  7896. const struct ggml_tensor * src0,
  7897. const struct ggml_tensor * src1,
  7898. struct ggml_tensor * dst) {
  7899. switch (src0->type) {
  7900. case GGML_TYPE_Q4_0:
  7901. case GGML_TYPE_Q4_1:
  7902. case GGML_TYPE_Q5_0:
  7903. case GGML_TYPE_Q5_1:
  7904. case GGML_TYPE_Q8_0:
  7905. case GGML_TYPE_Q8_1:
  7906. {
  7907. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7908. } break;
  7909. case GGML_TYPE_F16:
  7910. {
  7911. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7912. } break;
  7913. case GGML_TYPE_F32:
  7914. {
  7915. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7916. } break;
  7917. default:
  7918. {
  7919. GGML_ASSERT(false);
  7920. } break;
  7921. }
  7922. }
  7923. // ggml_compute_forward_scale
  7924. static void ggml_compute_forward_scale_f32(
  7925. const struct ggml_compute_params * params,
  7926. const struct ggml_tensor * src0,
  7927. const struct ggml_tensor * src1,
  7928. struct ggml_tensor * dst) {
  7929. GGML_ASSERT(ggml_is_contiguous(src0));
  7930. GGML_ASSERT(ggml_is_contiguous(dst));
  7931. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7932. GGML_ASSERT(ggml_is_scalar(src1));
  7933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7934. return;
  7935. }
  7936. // scale factor
  7937. const float v = *(float *) src1->data;
  7938. const int ith = params->ith;
  7939. const int nth = params->nth;
  7940. const int nc = src0->ne[0];
  7941. const int nr = ggml_nrows(src0);
  7942. // rows per thread
  7943. const int dr = (nr + nth - 1)/nth;
  7944. // row range for this thread
  7945. const int ir0 = dr*ith;
  7946. const int ir1 = MIN(ir0 + dr, nr);
  7947. const size_t nb01 = src0->nb[1];
  7948. const size_t nb1 = dst->nb[1];
  7949. for (int i1 = ir0; i1 < ir1; i1++) {
  7950. if (dst->data != src0->data) {
  7951. // src0 is same shape as dst => same indices
  7952. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  7953. }
  7954. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  7955. }
  7956. }
  7957. static void ggml_compute_forward_scale(
  7958. const struct ggml_compute_params * params,
  7959. const struct ggml_tensor * src0,
  7960. const struct ggml_tensor * src1,
  7961. struct ggml_tensor * dst) {
  7962. switch (src0->type) {
  7963. case GGML_TYPE_F32:
  7964. {
  7965. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7966. } break;
  7967. default:
  7968. {
  7969. GGML_ASSERT(false);
  7970. } break;
  7971. }
  7972. }
  7973. // ggml_compute_forward_set
  7974. static void ggml_compute_forward_set_f32(
  7975. const struct ggml_compute_params * params,
  7976. const struct ggml_tensor * src0,
  7977. const struct ggml_tensor * src1,
  7978. const struct ggml_tensor * opt0,
  7979. struct ggml_tensor * dst) {
  7980. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7981. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7982. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7983. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7984. // view src0 and dst with these strides and data offset inbytes during set
  7985. // nb0 is implicitely element_size because src0 and dst are contiguous
  7986. size_t nb1 = ((int32_t *) opt0->data)[0];
  7987. size_t nb2 = ((int32_t *) opt0->data)[1];
  7988. size_t nb3 = ((int32_t *) opt0->data)[2];
  7989. size_t offset = ((int32_t *) opt0->data)[3];
  7990. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7991. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7992. // memcpy needs to be synchronized across threads to avoid race conditions.
  7993. // => do it in INIT phase
  7994. memcpy(
  7995. ((char *) dst->data),
  7996. ((char *) src0->data),
  7997. ggml_nbytes(dst));
  7998. }
  7999. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8000. return;
  8001. }
  8002. const int ith = params->ith;
  8003. const int nth = params->nth;
  8004. const int nr = ggml_nrows(src1);
  8005. const int nc = src1->ne[0];
  8006. const int64_t ne10 = src1->ne[0];
  8007. const int64_t ne11 = src1->ne[1];
  8008. const int64_t ne12 = src1->ne[2];
  8009. const int64_t ne13 = src1->ne[3];
  8010. const size_t nb10 = src1->nb[0];
  8011. const size_t nb11 = src1->nb[1];
  8012. const size_t nb12 = src1->nb[2];
  8013. const size_t nb13 = src1->nb[3];
  8014. // src0 and dst as viewed during set
  8015. const size_t nb0 = ggml_element_size(src0);
  8016. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8017. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8018. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8019. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8020. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8021. GGML_ASSERT(nb10 == sizeof(float));
  8022. // rows per thread
  8023. const int dr = (nr + nth - 1)/nth;
  8024. // row range for this thread
  8025. const int ir0 = dr*ith;
  8026. const int ir1 = MIN(ir0 + dr, nr);
  8027. for (int ir = ir0; ir < ir1; ++ir) {
  8028. // src0 and dst are viewed with shape of src1 and offset
  8029. // => same indices
  8030. const int i3 = ir/(ne12*ne11);
  8031. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8032. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8033. ggml_vec_cpy_f32(nc,
  8034. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8035. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8036. }
  8037. }
  8038. static void ggml_compute_forward_set(
  8039. const struct ggml_compute_params * params,
  8040. const struct ggml_tensor * src0,
  8041. const struct ggml_tensor * src1,
  8042. const struct ggml_tensor * opt0,
  8043. struct ggml_tensor * dst) {
  8044. switch (src0->type) {
  8045. case GGML_TYPE_F32:
  8046. {
  8047. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8048. } break;
  8049. case GGML_TYPE_F16:
  8050. case GGML_TYPE_Q4_0:
  8051. case GGML_TYPE_Q4_1:
  8052. case GGML_TYPE_Q5_0:
  8053. case GGML_TYPE_Q5_1:
  8054. case GGML_TYPE_Q8_0:
  8055. case GGML_TYPE_Q8_1:
  8056. default:
  8057. {
  8058. GGML_ASSERT(false);
  8059. } break;
  8060. }
  8061. }
  8062. // ggml_compute_forward_cpy
  8063. static void ggml_compute_forward_cpy(
  8064. const struct ggml_compute_params * params,
  8065. const struct ggml_tensor * src0,
  8066. struct ggml_tensor * dst) {
  8067. ggml_compute_forward_dup(params, src0, dst);
  8068. }
  8069. // ggml_compute_forward_cont
  8070. static void ggml_compute_forward_cont(
  8071. const struct ggml_compute_params * params,
  8072. const struct ggml_tensor * src0,
  8073. struct ggml_tensor * dst) {
  8074. ggml_compute_forward_dup(params, src0, dst);
  8075. }
  8076. // ggml_compute_forward_reshape
  8077. static void ggml_compute_forward_reshape(
  8078. const struct ggml_compute_params * params,
  8079. const struct ggml_tensor * src0,
  8080. struct ggml_tensor * dst) {
  8081. // NOP
  8082. UNUSED(params);
  8083. UNUSED(src0);
  8084. UNUSED(dst);
  8085. }
  8086. // ggml_compute_forward_view
  8087. static void ggml_compute_forward_view(
  8088. const struct ggml_compute_params * params,
  8089. const struct ggml_tensor * src0) {
  8090. // NOP
  8091. UNUSED(params);
  8092. UNUSED(src0);
  8093. }
  8094. // ggml_compute_forward_permute
  8095. static void ggml_compute_forward_permute(
  8096. const struct ggml_compute_params * params,
  8097. const struct ggml_tensor * src0) {
  8098. // NOP
  8099. UNUSED(params);
  8100. UNUSED(src0);
  8101. }
  8102. // ggml_compute_forward_transpose
  8103. static void ggml_compute_forward_transpose(
  8104. const struct ggml_compute_params * params,
  8105. const struct ggml_tensor * src0) {
  8106. // NOP
  8107. UNUSED(params);
  8108. UNUSED(src0);
  8109. }
  8110. // ggml_compute_forward_get_rows
  8111. static void ggml_compute_forward_get_rows_q(
  8112. const struct ggml_compute_params * params,
  8113. const struct ggml_tensor * src0,
  8114. const struct ggml_tensor * src1,
  8115. struct ggml_tensor * dst) {
  8116. assert(params->ith == 0);
  8117. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8118. return;
  8119. }
  8120. const int nc = src0->ne[0];
  8121. const int nr = ggml_nelements(src1);
  8122. const enum ggml_type type = src0->type;
  8123. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8124. assert( dst->ne[0] == nc);
  8125. assert( dst->ne[1] == nr);
  8126. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8127. for (int i = 0; i < nr; ++i) {
  8128. const int r = ((int32_t *) src1->data)[i];
  8129. dequantize_row_q(
  8130. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8131. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8132. }
  8133. }
  8134. static void ggml_compute_forward_get_rows_f16(
  8135. const struct ggml_compute_params * params,
  8136. const struct ggml_tensor * src0,
  8137. const struct ggml_tensor * src1,
  8138. struct ggml_tensor * dst) {
  8139. assert(params->ith == 0);
  8140. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8141. return;
  8142. }
  8143. const int nc = src0->ne[0];
  8144. const int nr = ggml_nelements(src1);
  8145. assert( dst->ne[0] == nc);
  8146. assert( dst->ne[1] == nr);
  8147. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8148. for (int i = 0; i < nr; ++i) {
  8149. const int r = ((int32_t *) src1->data)[i];
  8150. for (int j = 0; j < nc; ++j) {
  8151. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8152. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8153. }
  8154. }
  8155. }
  8156. static void ggml_compute_forward_get_rows_f32(
  8157. const struct ggml_compute_params * params,
  8158. const struct ggml_tensor * src0,
  8159. const struct ggml_tensor * src1,
  8160. struct ggml_tensor * dst) {
  8161. assert(params->ith == 0);
  8162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8163. return;
  8164. }
  8165. const int nc = src0->ne[0];
  8166. const int nr = ggml_nelements(src1);
  8167. assert( dst->ne[0] == nc);
  8168. assert( dst->ne[1] == nr);
  8169. assert(src0->nb[0] == sizeof(float));
  8170. for (int i = 0; i < nr; ++i) {
  8171. const int r = ((int32_t *) src1->data)[i];
  8172. ggml_vec_cpy_f32(nc,
  8173. (float *) ((char *) dst->data + i*dst->nb[1]),
  8174. (float *) ((char *) src0->data + r*src0->nb[1]));
  8175. }
  8176. }
  8177. static void ggml_compute_forward_get_rows(
  8178. const struct ggml_compute_params * params,
  8179. const struct ggml_tensor * src0,
  8180. const struct ggml_tensor * src1,
  8181. struct ggml_tensor * dst) {
  8182. switch (src0->type) {
  8183. case GGML_TYPE_Q4_0:
  8184. case GGML_TYPE_Q4_1:
  8185. case GGML_TYPE_Q5_0:
  8186. case GGML_TYPE_Q5_1:
  8187. case GGML_TYPE_Q8_0:
  8188. case GGML_TYPE_Q8_1:
  8189. {
  8190. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8191. } break;
  8192. case GGML_TYPE_F16:
  8193. {
  8194. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8195. } break;
  8196. case GGML_TYPE_F32:
  8197. {
  8198. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8199. } break;
  8200. default:
  8201. {
  8202. GGML_ASSERT(false);
  8203. } break;
  8204. }
  8205. //static bool first = true;
  8206. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8207. //if (first) {
  8208. // first = false;
  8209. //} else {
  8210. // for (int k = 0; k < dst->ne[1]; ++k) {
  8211. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8212. // for (int i = 0; i < 16; ++i) {
  8213. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8214. // }
  8215. // printf("\n");
  8216. // }
  8217. // printf("\n");
  8218. // }
  8219. // printf("\n");
  8220. // exit(0);
  8221. //}
  8222. }
  8223. // ggml_compute_forward_get_rows_back
  8224. static void ggml_compute_forward_get_rows_back_f32_f16(
  8225. const struct ggml_compute_params * params,
  8226. const struct ggml_tensor * src0,
  8227. const struct ggml_tensor * src1,
  8228. const struct ggml_tensor * opt0,
  8229. struct ggml_tensor * dst) {
  8230. GGML_ASSERT(params->ith == 0);
  8231. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8232. GGML_ASSERT(ggml_is_contiguous(opt0));
  8233. GGML_ASSERT(ggml_is_contiguous(dst));
  8234. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8236. return;
  8237. }
  8238. const int nc = src0->ne[0];
  8239. const int nr = ggml_nelements(src1);
  8240. GGML_ASSERT( dst->ne[0] == nc);
  8241. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8242. for (int i = 0; i < nr; ++i) {
  8243. const int r = ((int32_t *) src1->data)[i];
  8244. for (int j = 0; j < nc; ++j) {
  8245. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8246. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8247. }
  8248. }
  8249. }
  8250. static void ggml_compute_forward_get_rows_back_f32(
  8251. const struct ggml_compute_params * params,
  8252. const struct ggml_tensor * src0,
  8253. const struct ggml_tensor * src1,
  8254. const struct ggml_tensor * opt0,
  8255. struct ggml_tensor * dst) {
  8256. GGML_ASSERT(params->ith == 0);
  8257. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8258. GGML_ASSERT(ggml_is_contiguous(opt0));
  8259. GGML_ASSERT(ggml_is_contiguous(dst));
  8260. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8261. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8262. return;
  8263. }
  8264. const int nc = src0->ne[0];
  8265. const int nr = ggml_nelements(src1);
  8266. GGML_ASSERT( dst->ne[0] == nc);
  8267. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8268. for (int i = 0; i < nr; ++i) {
  8269. const int r = ((int32_t *) src1->data)[i];
  8270. ggml_vec_add_f32(nc,
  8271. (float *) ((char *) dst->data + r*dst->nb[1]),
  8272. (float *) ((char *) dst->data + r*dst->nb[1]),
  8273. (float *) ((char *) src0->data + i*src0->nb[1]));
  8274. }
  8275. }
  8276. static void ggml_compute_forward_get_rows_back(
  8277. const struct ggml_compute_params * params,
  8278. const struct ggml_tensor * src0,
  8279. const struct ggml_tensor * src1,
  8280. const struct ggml_tensor * opt0,
  8281. struct ggml_tensor * dst) {
  8282. switch (src0->type) {
  8283. case GGML_TYPE_F16:
  8284. {
  8285. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8286. } break;
  8287. case GGML_TYPE_F32:
  8288. {
  8289. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8290. } break;
  8291. default:
  8292. {
  8293. GGML_ASSERT(false);
  8294. } break;
  8295. }
  8296. //static bool first = true;
  8297. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8298. //if (first) {
  8299. // first = false;
  8300. //} else {
  8301. // for (int k = 0; k < dst->ne[1]; ++k) {
  8302. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8303. // for (int i = 0; i < 16; ++i) {
  8304. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8305. // }
  8306. // printf("\n");
  8307. // }
  8308. // printf("\n");
  8309. // }
  8310. // printf("\n");
  8311. // exit(0);
  8312. //}
  8313. }
  8314. // ggml_compute_forward_diag
  8315. static void ggml_compute_forward_diag_f32(
  8316. const struct ggml_compute_params * params,
  8317. const struct ggml_tensor * src0,
  8318. struct ggml_tensor * dst) {
  8319. GGML_ASSERT(params->ith == 0);
  8320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8321. return;
  8322. }
  8323. // TODO: handle transposed/permuted matrices
  8324. const int ne00 = src0->ne[0];
  8325. const int ne01 = src0->ne[1];
  8326. const int ne02 = src0->ne[2];
  8327. const int ne03 = src0->ne[3];
  8328. const int ne0 = dst->ne[0];
  8329. const int ne1 = dst->ne[1];
  8330. const int ne2 = dst->ne[2];
  8331. const int ne3 = dst->ne[3];
  8332. GGML_ASSERT(ne00 == ne0);
  8333. GGML_ASSERT(ne00 == ne1);
  8334. GGML_ASSERT(ne01 == 1);
  8335. GGML_ASSERT(ne02 == ne2);
  8336. GGML_ASSERT(ne03 == ne3);
  8337. const int nb00 = src0->nb[0];
  8338. //const int nb01 = src0->nb[1];
  8339. const int nb02 = src0->nb[2];
  8340. const int nb03 = src0->nb[3];
  8341. const int nb0 = dst->nb[0];
  8342. const int nb1 = dst->nb[1];
  8343. const int nb2 = dst->nb[2];
  8344. const int nb3 = dst->nb[3];
  8345. GGML_ASSERT(nb00 == sizeof(float));
  8346. GGML_ASSERT(nb0 == sizeof(float));
  8347. for (int i3 = 0; i3 < ne3; i3++) {
  8348. for (int i2 = 0; i2 < ne2; i2++) {
  8349. for (int i1 = 0; i1 < ne1; i1++) {
  8350. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8351. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8352. for (int i0 = 0; i0 < i1; i0++) {
  8353. d[i0] = 0;
  8354. }
  8355. d[i1] = s[i1];
  8356. for (int i0 = i1+1; i0 < ne0; i0++) {
  8357. d[i0] = 0;
  8358. }
  8359. }
  8360. }
  8361. }
  8362. }
  8363. static void ggml_compute_forward_diag(
  8364. const struct ggml_compute_params * params,
  8365. const struct ggml_tensor * src0,
  8366. struct ggml_tensor * dst) {
  8367. switch (src0->type) {
  8368. case GGML_TYPE_F32:
  8369. {
  8370. ggml_compute_forward_diag_f32(params, src0, dst);
  8371. } break;
  8372. default:
  8373. {
  8374. GGML_ASSERT(false);
  8375. } break;
  8376. }
  8377. }
  8378. // ggml_compute_forward_diag_mask_inf
  8379. static void ggml_compute_forward_diag_mask_f32(
  8380. const struct ggml_compute_params * params,
  8381. const struct ggml_tensor * src0,
  8382. const struct ggml_tensor * src1,
  8383. struct ggml_tensor * dst,
  8384. const float value) {
  8385. assert(params->ith == 0);
  8386. assert(src1->type == GGML_TYPE_I32);
  8387. assert(ggml_nelements(src1) == 2);
  8388. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8389. return;
  8390. }
  8391. const int n_past = ((int32_t *) src1->data)[0];
  8392. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8393. if (!inplace) {
  8394. ggml_compute_forward_dup_same_cont(params, src0, dst);
  8395. }
  8396. // TODO: handle transposed/permuted matrices
  8397. const int n = ggml_nrows(src0);
  8398. const int nc = src0->ne[0];
  8399. const int nr = src0->ne[1];
  8400. const int nz = n/nr;
  8401. assert( dst->nb[0] == sizeof(float));
  8402. assert(src0->nb[0] == sizeof(float));
  8403. for (int k = 0; k < nz; k++) {
  8404. for (int j = 0; j < nr; j++) {
  8405. for (int i = n_past; i < nc; i++) {
  8406. if (i > n_past + j) {
  8407. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8408. }
  8409. }
  8410. }
  8411. }
  8412. }
  8413. static void ggml_compute_forward_diag_mask_inf(
  8414. const struct ggml_compute_params * params,
  8415. const struct ggml_tensor * src0,
  8416. const struct ggml_tensor * src1,
  8417. struct ggml_tensor * dst) {
  8418. switch (src0->type) {
  8419. case GGML_TYPE_F32:
  8420. {
  8421. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8422. } break;
  8423. default:
  8424. {
  8425. GGML_ASSERT(false);
  8426. } break;
  8427. }
  8428. }
  8429. static void ggml_compute_forward_diag_mask_zero(
  8430. const struct ggml_compute_params * params,
  8431. const struct ggml_tensor * src0,
  8432. const struct ggml_tensor * src1,
  8433. struct ggml_tensor * dst) {
  8434. switch (src0->type) {
  8435. case GGML_TYPE_F32:
  8436. {
  8437. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8438. } break;
  8439. default:
  8440. {
  8441. GGML_ASSERT(false);
  8442. } break;
  8443. }
  8444. }
  8445. // ggml_compute_forward_soft_max
  8446. static void ggml_compute_forward_soft_max_f32(
  8447. const struct ggml_compute_params * params,
  8448. const struct ggml_tensor * src0,
  8449. struct ggml_tensor * dst) {
  8450. GGML_ASSERT(ggml_is_contiguous(src0));
  8451. GGML_ASSERT(ggml_is_contiguous(dst));
  8452. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8453. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8454. return;
  8455. }
  8456. // TODO: handle transposed/permuted matrices
  8457. const int ith = params->ith;
  8458. const int nth = params->nth;
  8459. const int nc = src0->ne[0];
  8460. const int nr = ggml_nrows(src0);
  8461. // rows per thread
  8462. const int dr = (nr + nth - 1)/nth;
  8463. // row range for this thread
  8464. const int ir0 = dr*ith;
  8465. const int ir1 = MIN(ir0 + dr, nr);
  8466. for (int i1 = ir0; i1 < ir1; i1++) {
  8467. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8468. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8469. #ifndef NDEBUG
  8470. for (int i = 0; i < nc; ++i) {
  8471. //printf("p[%d] = %f\n", i, p[i]);
  8472. assert(!isnan(sp[i]));
  8473. }
  8474. #endif
  8475. float max = -INFINITY;
  8476. ggml_vec_max_f32(nc, &max, sp);
  8477. ggml_float sum = 0.0;
  8478. uint16_t scvt;
  8479. for (int i = 0; i < nc; i++) {
  8480. if (sp[i] == -INFINITY) {
  8481. dp[i] = 0.0f;
  8482. } else {
  8483. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8484. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8485. memcpy(&scvt, &s, sizeof(scvt));
  8486. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8487. sum += (ggml_float)val;
  8488. dp[i] = val;
  8489. }
  8490. }
  8491. assert(sum > 0.0);
  8492. sum = 1.0/sum;
  8493. ggml_vec_scale_f32(nc, dp, sum);
  8494. #ifndef NDEBUG
  8495. for (int i = 0; i < nc; ++i) {
  8496. assert(!isnan(dp[i]));
  8497. assert(!isinf(dp[i]));
  8498. }
  8499. #endif
  8500. }
  8501. }
  8502. static void ggml_compute_forward_soft_max(
  8503. const struct ggml_compute_params * params,
  8504. const struct ggml_tensor * src0,
  8505. struct ggml_tensor * dst) {
  8506. switch (src0->type) {
  8507. case GGML_TYPE_F32:
  8508. {
  8509. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8510. } break;
  8511. default:
  8512. {
  8513. GGML_ASSERT(false);
  8514. } break;
  8515. }
  8516. }
  8517. // ggml_compute_forward_alibi
  8518. static void ggml_compute_forward_alibi_f32(
  8519. const struct ggml_compute_params * params,
  8520. const struct ggml_tensor * src0,
  8521. const struct ggml_tensor * src1,
  8522. struct ggml_tensor * dst) {
  8523. assert(params->ith == 0);
  8524. assert(src1->type == GGML_TYPE_I32);
  8525. assert(ggml_nelements(src1) == 2);
  8526. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8527. return;
  8528. }
  8529. const int n_past = ((int32_t *) src1->data)[0];
  8530. const int n_head = ((int32_t *) src1->data)[1];
  8531. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8532. const int ne1 = src0->ne[1]; // seq_len_without_past
  8533. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8534. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8535. const int n = ggml_nrows(src0);
  8536. const int ne2_ne3 = n/ne1; // ne2*ne3
  8537. const int nb0 = src0->nb[0];
  8538. const int nb1 = src0->nb[1];
  8539. const int nb2 = src0->nb[2];
  8540. //const int nb3 = src0->nb[3];
  8541. assert(nb0 == sizeof(float));
  8542. assert(ne1 + n_past == ne0); (void) n_past;
  8543. // add alibi to src0 (KQ_scaled)
  8544. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8545. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8546. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8547. for (int i = 0; i < ne0; i++) {
  8548. for (int j = 0; j < ne1; j++) {
  8549. for (int k = 0; k < ne2_ne3; k++) {
  8550. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8551. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8552. // TODO: k*nb2 or k*nb3
  8553. float m_k;
  8554. if (k < n_heads_log2_floor) {
  8555. m_k = powf(m0, k + 1);
  8556. } else {
  8557. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8558. }
  8559. pdst[0] = i * m_k + src[0];
  8560. }
  8561. }
  8562. }
  8563. }
  8564. static void ggml_compute_forward_alibi_f16(
  8565. const struct ggml_compute_params * params,
  8566. const struct ggml_tensor * src0,
  8567. const struct ggml_tensor * src1,
  8568. struct ggml_tensor * dst) {
  8569. assert(params->ith == 0);
  8570. assert(src1->type == GGML_TYPE_I32);
  8571. assert(ggml_nelements(src1) == 2);
  8572. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8573. return;
  8574. }
  8575. const int n_past = ((int32_t *) src1->data)[0];
  8576. const int n_head = ((int32_t *) src1->data)[1];
  8577. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8578. const int ne1 = src0->ne[1]; // seq_len_without_past
  8579. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8580. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8581. const int n = ggml_nrows(src0);
  8582. const int ne2_ne3 = n/ne1; // ne2*ne3
  8583. const int nb0 = src0->nb[0];
  8584. const int nb1 = src0->nb[1];
  8585. const int nb2 = src0->nb[2];
  8586. //const int nb3 = src0->nb[3];
  8587. assert(nb0 == sizeof(ggml_fp16_t));
  8588. assert(ne1 + n_past == ne0); (void) n_past;
  8589. // add alibi to src0 (KQ_scaled)
  8590. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8591. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8592. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8593. for (int i = 0; i < ne0; i++) {
  8594. for (int j = 0; j < ne1; j++) {
  8595. for (int k = 0; k < ne2_ne3; k++) {
  8596. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8597. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8598. // TODO: k*nb2 or k*nb3
  8599. float m_k;
  8600. if (k < n_heads_log2_floor) {
  8601. m_k = powf(m0, k + 1);
  8602. } else {
  8603. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8604. }
  8605. // we return F32
  8606. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8607. }
  8608. }
  8609. }
  8610. }
  8611. static void ggml_compute_forward_alibi(
  8612. const struct ggml_compute_params * params,
  8613. const struct ggml_tensor * src0,
  8614. const struct ggml_tensor * src1,
  8615. struct ggml_tensor * dst) {
  8616. switch (src0->type) {
  8617. case GGML_TYPE_F16:
  8618. {
  8619. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8620. } break;
  8621. case GGML_TYPE_F32:
  8622. {
  8623. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8624. } break;
  8625. case GGML_TYPE_Q4_0:
  8626. case GGML_TYPE_Q4_1:
  8627. case GGML_TYPE_Q5_0:
  8628. case GGML_TYPE_Q5_1:
  8629. case GGML_TYPE_Q8_0:
  8630. case GGML_TYPE_Q8_1:
  8631. case GGML_TYPE_I8:
  8632. case GGML_TYPE_I16:
  8633. case GGML_TYPE_I32:
  8634. case GGML_TYPE_COUNT:
  8635. {
  8636. GGML_ASSERT(false);
  8637. } break;
  8638. }
  8639. }
  8640. // ggml_compute_forward_rope
  8641. static void ggml_compute_forward_rope_f32(
  8642. const struct ggml_compute_params * params,
  8643. const struct ggml_tensor * src0,
  8644. const struct ggml_tensor * src1,
  8645. struct ggml_tensor * dst) {
  8646. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8647. GGML_ASSERT(ggml_nelements(src1) == 3);
  8648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8649. return;
  8650. }
  8651. const int n_past = ((int32_t *) src1->data)[0];
  8652. const int n_dims = ((int32_t *) src1->data)[1];
  8653. const int mode = ((int32_t *) src1->data)[2];
  8654. //const int64_t ne0 = src0->ne[0];
  8655. const int64_t ne1 = src0->ne[1];
  8656. const int64_t ne2 = src0->ne[2];
  8657. const int64_t ne3 = src0->ne[3];
  8658. const int nb0 = src0->nb[0];
  8659. const int nb1 = src0->nb[1];
  8660. const int nb2 = src0->nb[2];
  8661. const int nb3 = src0->nb[3];
  8662. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8663. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8664. GGML_ASSERT(nb0 == sizeof(float));
  8665. const int ith = params->ith;
  8666. const int nth = params->nth;
  8667. const int nr = ggml_nrows(src0);
  8668. const int nc = src0->ne[0];
  8669. GGML_ASSERT(n_dims <= nc);
  8670. GGML_ASSERT(n_dims % 2 == 0);
  8671. // rows per thread
  8672. const int dr = (nr + nth - 1)/nth;
  8673. // row range for this thread
  8674. const int ir0 = dr*ith;
  8675. const int ir1 = MIN(ir0 + dr, nr);
  8676. // row index used to determine which thread to use
  8677. int ir = 0;
  8678. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8679. const bool is_neox = mode & 2;
  8680. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8681. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8682. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8683. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8684. if (ir++ < ir0) continue;
  8685. if (ir > ir1) break;
  8686. float theta = (float)p;
  8687. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  8688. const float cos_theta = cosf(theta);
  8689. const float sin_theta = sinf(theta);
  8690. theta *= theta_scale;
  8691. if (!is_neox) {
  8692. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8693. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8694. const float x0 = src[0];
  8695. const float x1 = src[1];
  8696. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8697. dst_data[1] = x0*sin_theta + x1*cos_theta;
  8698. } else {
  8699. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8700. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8701. const float x0 = src[0];
  8702. const float x1 = src[n_dims/2];
  8703. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8704. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  8705. }
  8706. }
  8707. }
  8708. }
  8709. }
  8710. }
  8711. static void ggml_compute_forward_rope_f16(
  8712. const struct ggml_compute_params * params,
  8713. const struct ggml_tensor * src0,
  8714. const struct ggml_tensor * src1,
  8715. struct ggml_tensor * dst) {
  8716. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8717. GGML_ASSERT(ggml_nelements(src1) == 3);
  8718. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8719. return;
  8720. }
  8721. const int n_past = ((int32_t *) src1->data)[0];
  8722. const int n_dims = ((int32_t *) src1->data)[1];
  8723. const int mode = ((int32_t *) src1->data)[2];
  8724. //const int64_t ne0 = src0->ne[0];
  8725. const int64_t ne1 = src0->ne[1];
  8726. const int64_t ne2 = src0->ne[2];
  8727. const int64_t ne3 = src0->ne[3];
  8728. const int nb0 = src0->nb[0];
  8729. const int nb1 = src0->nb[1];
  8730. const int nb2 = src0->nb[2];
  8731. const int nb3 = src0->nb[3];
  8732. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8733. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8734. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8735. const int ith = params->ith;
  8736. const int nth = params->nth;
  8737. const int nr = ggml_nrows(src0);
  8738. const int nc = src0->ne[0];
  8739. GGML_ASSERT(n_dims <= nc);
  8740. GGML_ASSERT(n_dims % 2 == 0);
  8741. // rows per thread
  8742. const int dr = (nr + nth - 1)/nth;
  8743. // row range for this thread
  8744. const int ir0 = dr*ith;
  8745. const int ir1 = MIN(ir0 + dr, nr);
  8746. // row index used to determine which thread to use
  8747. int ir = 0;
  8748. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8749. const bool is_neox = mode & 2;
  8750. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8751. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8752. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8753. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8754. if (ir++ < ir0) continue;
  8755. if (ir > ir1) break;
  8756. float theta = (float)p;
  8757. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  8758. const float cos_theta = cosf(theta);
  8759. const float sin_theta = sinf(theta);
  8760. theta *= theta_scale;
  8761. if (!is_neox) {
  8762. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8763. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8764. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8765. const float x1 = GGML_FP16_TO_FP32(src[1]);
  8766. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8767. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8768. } else {
  8769. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8770. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8771. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8772. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  8773. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8774. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8775. }
  8776. }
  8777. }
  8778. }
  8779. }
  8780. }
  8781. static void ggml_compute_forward_rope(
  8782. const struct ggml_compute_params * params,
  8783. const struct ggml_tensor * src0,
  8784. const struct ggml_tensor * src1,
  8785. struct ggml_tensor * dst) {
  8786. switch (src0->type) {
  8787. case GGML_TYPE_F16:
  8788. {
  8789. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  8790. } break;
  8791. case GGML_TYPE_F32:
  8792. {
  8793. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  8794. } break;
  8795. default:
  8796. {
  8797. GGML_ASSERT(false);
  8798. } break;
  8799. }
  8800. }
  8801. // ggml_compute_forward_rope_back
  8802. static void ggml_compute_forward_rope_back_f32(
  8803. const struct ggml_compute_params * params,
  8804. const struct ggml_tensor * src0,
  8805. const struct ggml_tensor * src1,
  8806. struct ggml_tensor * dst) {
  8807. assert(src1->type == GGML_TYPE_I32);
  8808. assert(ggml_nelements(src1) == 3);
  8809. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8810. return;
  8811. }
  8812. // y = rope(x, src1)
  8813. // dx = rope_back(dy, src1)
  8814. // src0 is dy, src1 contains options
  8815. const int n_past = ((int32_t *) src1->data)[0];
  8816. const int n_dims = ((int32_t *) src1->data)[1];
  8817. const int mode = ((int32_t *) src1->data)[2];
  8818. //const int64_t ne0 = src0->ne[0];
  8819. const int64_t ne1 = src0->ne[1];
  8820. const int64_t ne2 = src0->ne[2];
  8821. const int64_t ne3 = src0->ne[3];
  8822. const int nb0 = src0->nb[0];
  8823. const int nb1 = src0->nb[1];
  8824. const int nb2 = src0->nb[2];
  8825. const int nb3 = src0->nb[3];
  8826. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8827. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8828. assert(nb0 == sizeof(float));
  8829. const int ith = params->ith;
  8830. const int nth = params->nth;
  8831. const int nr = ggml_nrows(src0);
  8832. // rows per thread
  8833. const int dr = (nr + nth - 1)/nth;
  8834. // row range for this thread
  8835. const int ir0 = dr*ith;
  8836. const int ir1 = MIN(ir0 + dr, nr);
  8837. // row index used to determine which thread to use
  8838. int ir = 0;
  8839. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8840. const bool is_neox = mode & 2;
  8841. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8842. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8843. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8844. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8845. if (ir++ < ir0) continue;
  8846. if (ir > ir1) break;
  8847. float theta = (float)p;
  8848. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  8849. const float cos_theta = cosf(theta);
  8850. const float sin_theta = sinf(theta);
  8851. theta *= theta_scale;
  8852. if (!is_neox) {
  8853. const float * const dy = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8854. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8855. const float dy0 = dy[0];
  8856. const float dy1 = dy[1];
  8857. dx[0] = dy0*cos_theta + dy1*sin_theta;
  8858. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  8859. } else {
  8860. const float * const dy = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8861. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8862. const float dy0 = dy[0];
  8863. const float dy1 = dy[n_dims/2];
  8864. dx[0] = dy0*cos_theta + dy1*sin_theta;
  8865. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  8866. }
  8867. }
  8868. }
  8869. }
  8870. }
  8871. }
  8872. static void ggml_compute_forward_rope_back_f16(
  8873. const struct ggml_compute_params * params,
  8874. const struct ggml_tensor * src0,
  8875. const struct ggml_tensor * src1,
  8876. struct ggml_tensor * dst) {
  8877. assert(src1->type == GGML_TYPE_I32);
  8878. assert(ggml_nelements(src1) == 3);
  8879. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8880. return;
  8881. }
  8882. // y = rope(x, src1)
  8883. // dx = rope_back(dy, src1)
  8884. // src0 is dy, src1 contains options
  8885. const int n_past = ((int32_t *) src1->data)[0];
  8886. const int n_dims = ((int32_t *) src1->data)[1];
  8887. const int mode = ((int32_t *) src1->data)[2];
  8888. //const int64_t ne0 = src0->ne[0];
  8889. const int64_t ne1 = src0->ne[1];
  8890. const int64_t ne2 = src0->ne[2];
  8891. const int64_t ne3 = src0->ne[3];
  8892. const int nb0 = src0->nb[0];
  8893. const int nb1 = src0->nb[1];
  8894. const int nb2 = src0->nb[2];
  8895. const int nb3 = src0->nb[3];
  8896. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8897. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8898. assert(nb0 == sizeof(ggml_fp16_t));
  8899. const int ith = params->ith;
  8900. const int nth = params->nth;
  8901. const int nr = ggml_nrows(src0);
  8902. // rows per thread
  8903. const int dr = (nr + nth - 1)/nth;
  8904. // row range for this thread
  8905. const int ir0 = dr*ith;
  8906. const int ir1 = MIN(ir0 + dr, nr);
  8907. // row index used to determine which thread to use
  8908. int ir = 0;
  8909. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8910. const bool is_neox = mode & 2;
  8911. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8912. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8913. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8914. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8915. if (ir++ < ir0) continue;
  8916. if (ir > ir1) break;
  8917. float theta = (float)p;
  8918. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  8919. const float cos_theta = cosf(theta);
  8920. const float sin_theta = sinf(theta);
  8921. theta *= theta_scale;
  8922. if (!is_neox) {
  8923. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8924. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8925. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  8926. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  8927. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  8928. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  8929. } else {
  8930. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8931. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8932. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  8933. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  8934. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  8935. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  8936. }
  8937. }
  8938. }
  8939. }
  8940. }
  8941. }
  8942. static void ggml_compute_forward_rope_back(
  8943. const struct ggml_compute_params * params,
  8944. const struct ggml_tensor * src0,
  8945. const struct ggml_tensor * src1,
  8946. struct ggml_tensor * dst) {
  8947. switch (src0->type) {
  8948. case GGML_TYPE_F16:
  8949. {
  8950. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  8951. } break;
  8952. case GGML_TYPE_F32:
  8953. {
  8954. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  8955. } break;
  8956. default:
  8957. {
  8958. GGML_ASSERT(false);
  8959. } break;
  8960. }
  8961. }
  8962. // ggml_compute_forward_conv_1d_1s
  8963. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  8964. const struct ggml_compute_params * params,
  8965. const struct ggml_tensor * src0,
  8966. const struct ggml_tensor * src1,
  8967. struct ggml_tensor * dst) {
  8968. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8969. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8970. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8971. int64_t t0 = ggml_perf_time_us();
  8972. UNUSED(t0);
  8973. const int64_t ne00 = src0->ne[0];
  8974. const int64_t ne01 = src0->ne[1];
  8975. const int64_t ne02 = src0->ne[2];
  8976. //const int64_t ne03 = src0->ne[3];
  8977. const int64_t ne10 = src1->ne[0];
  8978. const int64_t ne11 = src1->ne[1];
  8979. //const int64_t ne12 = src1->ne[2];
  8980. //const int64_t ne13 = src1->ne[3];
  8981. //const int64_t ne0 = dst->ne[0];
  8982. //const int64_t ne1 = dst->ne[1];
  8983. //const int64_t ne2 = dst->ne[2];
  8984. //const int64_t ne3 = dst->ne[3];
  8985. //const int64_t ne = ne0*ne1*ne2*ne3;
  8986. const int nb00 = src0->nb[0];
  8987. const int nb01 = src0->nb[1];
  8988. const int nb02 = src0->nb[2];
  8989. //const int nb03 = src0->nb[3];
  8990. const int nb10 = src1->nb[0];
  8991. const int nb11 = src1->nb[1];
  8992. //const int nb12 = src1->nb[2];
  8993. //const int nb13 = src1->nb[3];
  8994. //const int nb0 = dst->nb[0];
  8995. const int nb1 = dst->nb[1];
  8996. //const int nb2 = dst->nb[2];
  8997. //const int nb3 = dst->nb[3];
  8998. const int ith = params->ith;
  8999. const int nth = params->nth;
  9000. const int nk = ne00;
  9001. const int nh = nk/2;
  9002. const int ew0 = ggml_up32(ne01);
  9003. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9004. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9005. GGML_ASSERT(nb10 == sizeof(float));
  9006. if (params->type == GGML_TASK_INIT) {
  9007. // TODO: fix this memset (wsize is overestimated)
  9008. memset(params->wdata, 0, params->wsize);
  9009. // prepare kernel data (src0)
  9010. {
  9011. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9012. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9013. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9014. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9015. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9016. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9017. dst_data[i00*ew0 + i01] = src[i00];
  9018. }
  9019. }
  9020. }
  9021. }
  9022. // prepare source data (src1)
  9023. {
  9024. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9025. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9026. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9027. ggml_fp16_t * dst_data = wdata;
  9028. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9029. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9030. }
  9031. }
  9032. }
  9033. return;
  9034. }
  9035. if (params->type == GGML_TASK_FINALIZE) {
  9036. return;
  9037. }
  9038. // total rows in dst
  9039. const int nr = ne02;
  9040. // rows per thread
  9041. const int dr = (nr + nth - 1)/nth;
  9042. // row range for this thread
  9043. const int ir0 = dr*ith;
  9044. const int ir1 = MIN(ir0 + dr, nr);
  9045. for (int i1 = ir0; i1 < ir1; i1++) {
  9046. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9047. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9048. dst_data[i0] = 0;
  9049. for (int k = -nh; k <= nh; k++) {
  9050. float v = 0.0f;
  9051. ggml_vec_dot_f16(ew0, &v,
  9052. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9053. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9054. dst_data[i0] += v;
  9055. }
  9056. }
  9057. }
  9058. }
  9059. static void ggml_compute_forward_conv_1d_1s_f32(
  9060. const struct ggml_compute_params * params,
  9061. const struct ggml_tensor * src0,
  9062. const struct ggml_tensor * src1,
  9063. struct ggml_tensor * dst) {
  9064. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9065. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9066. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9067. int64_t t0 = ggml_perf_time_us();
  9068. UNUSED(t0);
  9069. const int64_t ne00 = src0->ne[0];
  9070. const int64_t ne01 = src0->ne[1];
  9071. const int64_t ne02 = src0->ne[2];
  9072. //const int64_t ne03 = src0->ne[3];
  9073. const int64_t ne10 = src1->ne[0];
  9074. const int64_t ne11 = src1->ne[1];
  9075. //const int64_t ne12 = src1->ne[2];
  9076. //const int64_t ne13 = src1->ne[3];
  9077. //const int64_t ne0 = dst->ne[0];
  9078. //const int64_t ne1 = dst->ne[1];
  9079. //const int64_t ne2 = dst->ne[2];
  9080. //const int64_t ne3 = dst->ne[3];
  9081. //const int64_t ne = ne0*ne1*ne2*ne3;
  9082. const int nb00 = src0->nb[0];
  9083. const int nb01 = src0->nb[1];
  9084. const int nb02 = src0->nb[2];
  9085. //const int nb03 = src0->nb[3];
  9086. const int nb10 = src1->nb[0];
  9087. const int nb11 = src1->nb[1];
  9088. //const int nb12 = src1->nb[2];
  9089. //const int nb13 = src1->nb[3];
  9090. //const int nb0 = dst->nb[0];
  9091. const int nb1 = dst->nb[1];
  9092. //const int nb2 = dst->nb[2];
  9093. //const int nb3 = dst->nb[3];
  9094. const int ith = params->ith;
  9095. const int nth = params->nth;
  9096. const int nk = ne00;
  9097. const int nh = nk/2;
  9098. const int ew0 = ggml_up32(ne01);
  9099. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9100. GGML_ASSERT(nb00 == sizeof(float));
  9101. GGML_ASSERT(nb10 == sizeof(float));
  9102. if (params->type == GGML_TASK_INIT) {
  9103. // TODO: fix this memset (wsize is overestimated)
  9104. memset(params->wdata, 0, params->wsize);
  9105. // prepare kernel data (src0)
  9106. {
  9107. float * const wdata = (float *) params->wdata + 0;
  9108. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9109. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9110. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9111. float * dst_data = wdata + i02*ew0*ne00;
  9112. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9113. dst_data[i00*ew0 + i01] = src[i00];
  9114. }
  9115. }
  9116. }
  9117. }
  9118. // prepare source data (src1)
  9119. {
  9120. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9121. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9122. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9123. float * dst_data = wdata;
  9124. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9125. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9126. }
  9127. }
  9128. }
  9129. return;
  9130. }
  9131. if (params->type == GGML_TASK_FINALIZE) {
  9132. return;
  9133. }
  9134. // total rows in dst
  9135. const int nr = ne02;
  9136. // rows per thread
  9137. const int dr = (nr + nth - 1)/nth;
  9138. // row range for this thread
  9139. const int ir0 = dr*ith;
  9140. const int ir1 = MIN(ir0 + dr, nr);
  9141. for (int i1 = ir0; i1 < ir1; i1++) {
  9142. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9143. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9144. dst_data[i0] = 0;
  9145. for (int k = -nh; k <= nh; k++) {
  9146. float v = 0.0f;
  9147. ggml_vec_dot_f32(ew0, &v,
  9148. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9149. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9150. dst_data[i0] += v;
  9151. }
  9152. }
  9153. }
  9154. }
  9155. static void ggml_compute_forward_conv_1d_1s(
  9156. const struct ggml_compute_params * params,
  9157. const struct ggml_tensor * src0,
  9158. const struct ggml_tensor * src1,
  9159. struct ggml_tensor * dst) {
  9160. switch (src0->type) {
  9161. case GGML_TYPE_F16:
  9162. {
  9163. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9164. } break;
  9165. case GGML_TYPE_F32:
  9166. {
  9167. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9168. } break;
  9169. default:
  9170. {
  9171. GGML_ASSERT(false);
  9172. } break;
  9173. }
  9174. }
  9175. // ggml_compute_forward_conv_1d_2s
  9176. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9177. const struct ggml_compute_params * params,
  9178. const struct ggml_tensor * src0,
  9179. const struct ggml_tensor * src1,
  9180. struct ggml_tensor * dst) {
  9181. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9182. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9183. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9184. int64_t t0 = ggml_perf_time_us();
  9185. UNUSED(t0);
  9186. const int64_t ne00 = src0->ne[0];
  9187. const int64_t ne01 = src0->ne[1];
  9188. const int64_t ne02 = src0->ne[2];
  9189. //const int64_t ne03 = src0->ne[3];
  9190. const int64_t ne10 = src1->ne[0];
  9191. const int64_t ne11 = src1->ne[1];
  9192. //const int64_t ne12 = src1->ne[2];
  9193. //const int64_t ne13 = src1->ne[3];
  9194. //const int64_t ne0 = dst->ne[0];
  9195. //const int64_t ne1 = dst->ne[1];
  9196. //const int64_t ne2 = dst->ne[2];
  9197. //const int64_t ne3 = dst->ne[3];
  9198. //const int64_t ne = ne0*ne1*ne2*ne3;
  9199. const int nb00 = src0->nb[0];
  9200. const int nb01 = src0->nb[1];
  9201. const int nb02 = src0->nb[2];
  9202. //const int nb03 = src0->nb[3];
  9203. const int nb10 = src1->nb[0];
  9204. const int nb11 = src1->nb[1];
  9205. //const int nb12 = src1->nb[2];
  9206. //const int nb13 = src1->nb[3];
  9207. //const int nb0 = dst->nb[0];
  9208. const int nb1 = dst->nb[1];
  9209. //const int nb2 = dst->nb[2];
  9210. //const int nb3 = dst->nb[3];
  9211. const int ith = params->ith;
  9212. const int nth = params->nth;
  9213. const int nk = ne00;
  9214. const int nh = nk/2;
  9215. const int ew0 = ggml_up32(ne01);
  9216. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9217. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9218. GGML_ASSERT(nb10 == sizeof(float));
  9219. if (params->type == GGML_TASK_INIT) {
  9220. // TODO: fix this memset (wsize is overestimated)
  9221. memset(params->wdata, 0, params->wsize);
  9222. // prepare kernel data (src0)
  9223. {
  9224. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9225. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9226. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9227. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9228. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9229. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9230. dst_data[i00*ew0 + i01] = src[i00];
  9231. }
  9232. }
  9233. }
  9234. }
  9235. // prepare source data (src1)
  9236. {
  9237. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9238. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9239. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9240. ggml_fp16_t * dst_data = wdata;
  9241. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9242. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9243. }
  9244. }
  9245. }
  9246. return;
  9247. }
  9248. if (params->type == GGML_TASK_FINALIZE) {
  9249. return;
  9250. }
  9251. // total rows in dst
  9252. const int nr = ne02;
  9253. // rows per thread
  9254. const int dr = (nr + nth - 1)/nth;
  9255. // row range for this thread
  9256. const int ir0 = dr*ith;
  9257. const int ir1 = MIN(ir0 + dr, nr);
  9258. for (int i1 = ir0; i1 < ir1; i1++) {
  9259. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9260. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9261. dst_data[i0/2] = 0;
  9262. for (int k = -nh; k <= nh; k++) {
  9263. float v = 0.0f;
  9264. ggml_vec_dot_f16(ew0, &v,
  9265. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9266. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9267. dst_data[i0/2] += v;
  9268. }
  9269. }
  9270. }
  9271. }
  9272. static void ggml_compute_forward_conv_1d_2s_f32(
  9273. const struct ggml_compute_params * params,
  9274. const struct ggml_tensor * src0,
  9275. const struct ggml_tensor * src1,
  9276. struct ggml_tensor * dst) {
  9277. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9278. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9279. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9280. int64_t t0 = ggml_perf_time_us();
  9281. UNUSED(t0);
  9282. const int64_t ne00 = src0->ne[0];
  9283. const int64_t ne01 = src0->ne[1];
  9284. const int64_t ne02 = src0->ne[2];
  9285. //const int64_t ne03 = src0->ne[3];
  9286. const int64_t ne10 = src1->ne[0];
  9287. const int64_t ne11 = src1->ne[1];
  9288. //const int64_t ne12 = src1->ne[2];
  9289. //const int64_t ne13 = src1->ne[3];
  9290. //const int64_t ne0 = dst->ne[0];
  9291. //const int64_t ne1 = dst->ne[1];
  9292. //const int64_t ne2 = dst->ne[2];
  9293. //const int64_t ne3 = dst->ne[3];
  9294. //const int64_t ne = ne0*ne1*ne2*ne3;
  9295. const int nb00 = src0->nb[0];
  9296. const int nb01 = src0->nb[1];
  9297. const int nb02 = src0->nb[2];
  9298. //const int nb03 = src0->nb[3];
  9299. const int nb10 = src1->nb[0];
  9300. const int nb11 = src1->nb[1];
  9301. //const int nb12 = src1->nb[2];
  9302. //const int nb13 = src1->nb[3];
  9303. //const int nb0 = dst->nb[0];
  9304. const int nb1 = dst->nb[1];
  9305. //const int nb2 = dst->nb[2];
  9306. //const int nb3 = dst->nb[3];
  9307. const int ith = params->ith;
  9308. const int nth = params->nth;
  9309. const int nk = ne00;
  9310. const int nh = nk/2;
  9311. const int ew0 = ggml_up32(ne01);
  9312. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9313. GGML_ASSERT(nb00 == sizeof(float));
  9314. GGML_ASSERT(nb10 == sizeof(float));
  9315. if (params->type == GGML_TASK_INIT) {
  9316. // TODO: fix this memset (wsize is overestimated)
  9317. memset(params->wdata, 0, params->wsize);
  9318. // prepare kernel data (src0)
  9319. {
  9320. float * const wdata = (float *) params->wdata + 0;
  9321. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9322. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9323. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9324. float * dst_data = wdata + i02*ew0*ne00;
  9325. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9326. dst_data[i00*ew0 + i01] = src[i00];
  9327. }
  9328. }
  9329. }
  9330. }
  9331. // prepare source data (src1)
  9332. {
  9333. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9334. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9335. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9336. float * dst_data = wdata;
  9337. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9338. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9339. }
  9340. }
  9341. }
  9342. return;
  9343. }
  9344. if (params->type == GGML_TASK_FINALIZE) {
  9345. return;
  9346. }
  9347. // total rows in dst
  9348. const int nr = ne02;
  9349. // rows per thread
  9350. const int dr = (nr + nth - 1)/nth;
  9351. // row range for this thread
  9352. const int ir0 = dr*ith;
  9353. const int ir1 = MIN(ir0 + dr, nr);
  9354. for (int i1 = ir0; i1 < ir1; i1++) {
  9355. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9356. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9357. dst_data[i0/2] = 0;
  9358. for (int k = -nh; k <= nh; k++) {
  9359. float v = 0.0f;
  9360. ggml_vec_dot_f32(ew0, &v,
  9361. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9362. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9363. dst_data[i0/2] += v;
  9364. }
  9365. }
  9366. }
  9367. }
  9368. static void ggml_compute_forward_conv_1d_2s(
  9369. const struct ggml_compute_params * params,
  9370. const struct ggml_tensor * src0,
  9371. const struct ggml_tensor * src1,
  9372. struct ggml_tensor * dst) {
  9373. switch (src0->type) {
  9374. case GGML_TYPE_F16:
  9375. {
  9376. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9377. } break;
  9378. case GGML_TYPE_F32:
  9379. {
  9380. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9381. } break;
  9382. default:
  9383. {
  9384. GGML_ASSERT(false);
  9385. } break;
  9386. }
  9387. }
  9388. // ggml_compute_forward_flash_attn
  9389. static void ggml_compute_forward_flash_attn_f32(
  9390. const struct ggml_compute_params * params,
  9391. const struct ggml_tensor * q,
  9392. const struct ggml_tensor * k,
  9393. const struct ggml_tensor * v,
  9394. const bool masked,
  9395. struct ggml_tensor * dst) {
  9396. int64_t t0 = ggml_perf_time_us();
  9397. UNUSED(t0);
  9398. const int64_t neq0 = q->ne[0];
  9399. const int64_t neq1 = q->ne[1];
  9400. const int64_t neq2 = q->ne[2];
  9401. const int64_t neq3 = q->ne[3];
  9402. const int64_t nek0 = k->ne[0];
  9403. const int64_t nek1 = k->ne[1];
  9404. //const int64_t nek2 = k->ne[2];
  9405. //const int64_t nek3 = k->ne[3];
  9406. //const int64_t nev0 = v->ne[0];
  9407. const int64_t nev1 = v->ne[1];
  9408. //const int64_t nev2 = v->ne[2];
  9409. //const int64_t nev3 = v->ne[3];
  9410. const int64_t ne0 = dst->ne[0];
  9411. const int64_t ne1 = dst->ne[1];
  9412. //const int64_t ne2 = dst->ne[2];
  9413. //const int64_t ne3 = dst->ne[3];
  9414. const int nbk0 = k->nb[0];
  9415. const int nbk1 = k->nb[1];
  9416. const int nbk2 = k->nb[2];
  9417. const int nbk3 = k->nb[3];
  9418. const int nbq0 = q->nb[0];
  9419. const int nbq1 = q->nb[1];
  9420. const int nbq2 = q->nb[2];
  9421. const int nbq3 = q->nb[3];
  9422. const int nbv0 = v->nb[0];
  9423. const int nbv1 = v->nb[1];
  9424. const int nbv2 = v->nb[2];
  9425. const int nbv3 = v->nb[3];
  9426. const int nb0 = dst->nb[0];
  9427. const int nb1 = dst->nb[1];
  9428. const int nb2 = dst->nb[2];
  9429. const int nb3 = dst->nb[3];
  9430. const int ith = params->ith;
  9431. const int nth = params->nth;
  9432. const int64_t D = neq0;
  9433. const int64_t N = neq1;
  9434. const int64_t P = nek1 - N;
  9435. const int64_t M = P + N;
  9436. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9437. GGML_ASSERT(ne0 == D);
  9438. GGML_ASSERT(ne1 == N);
  9439. GGML_ASSERT(P >= 0);
  9440. GGML_ASSERT(nbq0 == sizeof(float));
  9441. GGML_ASSERT(nbk0 == sizeof(float));
  9442. GGML_ASSERT(nbv0 == sizeof(float));
  9443. GGML_ASSERT(neq0 == D);
  9444. GGML_ASSERT(nek0 == D);
  9445. GGML_ASSERT(nev1 == D);
  9446. GGML_ASSERT(neq1 == N);
  9447. GGML_ASSERT(nek1 == N + P);
  9448. GGML_ASSERT(nev1 == D);
  9449. // dst cannot be transposed or permuted
  9450. GGML_ASSERT(nb0 == sizeof(float));
  9451. GGML_ASSERT(nb0 <= nb1);
  9452. GGML_ASSERT(nb1 <= nb2);
  9453. GGML_ASSERT(nb2 <= nb3);
  9454. if (params->type == GGML_TASK_INIT) {
  9455. return;
  9456. }
  9457. if (params->type == GGML_TASK_FINALIZE) {
  9458. return;
  9459. }
  9460. // parallelize by q rows using ggml_vec_dot_f32
  9461. // total rows in q
  9462. const int nr = neq1*neq2*neq3;
  9463. // rows per thread
  9464. const int dr = (nr + nth - 1)/nth;
  9465. // row range for this thread
  9466. const int ir0 = dr*ith;
  9467. const int ir1 = MIN(ir0 + dr, nr);
  9468. const float scale = 1.0f/sqrtf(D);
  9469. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9470. for (int ir = ir0; ir < ir1; ++ir) {
  9471. // q indices
  9472. const int iq3 = ir/(neq2*neq1);
  9473. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9474. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9475. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9476. for (int i = M; i < Mup; ++i) {
  9477. S[i] = -INFINITY;
  9478. }
  9479. for (int64_t ic = 0; ic < nek1; ++ic) {
  9480. // k indices
  9481. const int ik3 = iq3;
  9482. const int ik2 = iq2;
  9483. const int ik1 = ic;
  9484. // S indices
  9485. const int i1 = ik1;
  9486. ggml_vec_dot_f32(neq0,
  9487. S + i1,
  9488. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9489. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9490. }
  9491. // scale
  9492. ggml_vec_scale_f32(nek1, S, scale);
  9493. if (masked) {
  9494. for (int64_t i = P; i < M; i++) {
  9495. if (i > P + iq1) {
  9496. S[i] = -INFINITY;
  9497. }
  9498. }
  9499. }
  9500. // softmax
  9501. {
  9502. float max = -INFINITY;
  9503. ggml_vec_max_f32(M, &max, S);
  9504. ggml_float sum = 0.0;
  9505. {
  9506. #ifdef GGML_SOFT_MAX_ACCELERATE
  9507. max = -max;
  9508. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9509. vvexpf(S, S, &Mup);
  9510. ggml_vec_sum_f32(Mup, &sum, S);
  9511. #else
  9512. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9513. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9514. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9515. float * SS = S + i;
  9516. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9517. if (SS[j] == -INFINITY) {
  9518. SS[j] = 0.0f;
  9519. } else {
  9520. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9521. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9522. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9523. sump[j] += (ggml_float)val;
  9524. SS[j] = val;
  9525. }
  9526. }
  9527. }
  9528. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9529. sum += sump[i];
  9530. }
  9531. #endif
  9532. }
  9533. assert(sum > 0.0);
  9534. sum = 1.0/sum;
  9535. ggml_vec_scale_f32(M, S, sum);
  9536. #ifndef NDEBUG
  9537. for (int i = 0; i < M; ++i) {
  9538. assert(!isnan(S[i]));
  9539. assert(!isinf(S[i]));
  9540. }
  9541. #endif
  9542. }
  9543. for (int64_t ic = 0; ic < nev1; ++ic) {
  9544. // dst indices
  9545. const int i1 = iq1;
  9546. const int i2 = iq2;
  9547. const int i3 = iq3;
  9548. ggml_vec_dot_f32(nek1,
  9549. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9550. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9551. S);
  9552. }
  9553. }
  9554. }
  9555. static void ggml_compute_forward_flash_attn_f16(
  9556. const struct ggml_compute_params * params,
  9557. const struct ggml_tensor * q,
  9558. const struct ggml_tensor * k,
  9559. const struct ggml_tensor * v,
  9560. const bool masked,
  9561. struct ggml_tensor * dst) {
  9562. int64_t t0 = ggml_perf_time_us();
  9563. UNUSED(t0);
  9564. const int64_t neq0 = q->ne[0];
  9565. const int64_t neq1 = q->ne[1];
  9566. const int64_t neq2 = q->ne[2];
  9567. const int64_t neq3 = q->ne[3];
  9568. const int64_t nek0 = k->ne[0];
  9569. const int64_t nek1 = k->ne[1];
  9570. //const int64_t nek2 = k->ne[2];
  9571. //const int64_t nek3 = k->ne[3];
  9572. //const int64_t nev0 = v->ne[0];
  9573. const int64_t nev1 = v->ne[1];
  9574. //const int64_t nev2 = v->ne[2];
  9575. //const int64_t nev3 = v->ne[3];
  9576. const int64_t ne0 = dst->ne[0];
  9577. const int64_t ne1 = dst->ne[1];
  9578. //const int64_t ne2 = dst->ne[2];
  9579. //const int64_t ne3 = dst->ne[3];
  9580. const int nbk0 = k->nb[0];
  9581. const int nbk1 = k->nb[1];
  9582. const int nbk2 = k->nb[2];
  9583. const int nbk3 = k->nb[3];
  9584. const int nbq0 = q->nb[0];
  9585. const int nbq1 = q->nb[1];
  9586. const int nbq2 = q->nb[2];
  9587. const int nbq3 = q->nb[3];
  9588. const int nbv0 = v->nb[0];
  9589. const int nbv1 = v->nb[1];
  9590. const int nbv2 = v->nb[2];
  9591. const int nbv3 = v->nb[3];
  9592. const int nb0 = dst->nb[0];
  9593. const int nb1 = dst->nb[1];
  9594. const int nb2 = dst->nb[2];
  9595. const int nb3 = dst->nb[3];
  9596. const int ith = params->ith;
  9597. const int nth = params->nth;
  9598. const int64_t D = neq0;
  9599. const int64_t N = neq1;
  9600. const int64_t P = nek1 - N;
  9601. const int64_t M = P + N;
  9602. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9603. GGML_ASSERT(ne0 == D);
  9604. GGML_ASSERT(ne1 == N);
  9605. GGML_ASSERT(P >= 0);
  9606. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9607. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9608. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9609. GGML_ASSERT(neq0 == D);
  9610. GGML_ASSERT(nek0 == D);
  9611. GGML_ASSERT(nev1 == D);
  9612. GGML_ASSERT(neq1 == N);
  9613. GGML_ASSERT(nek1 == N + P);
  9614. GGML_ASSERT(nev1 == D);
  9615. // dst cannot be transposed or permuted
  9616. GGML_ASSERT(nb0 == sizeof(float));
  9617. GGML_ASSERT(nb0 <= nb1);
  9618. GGML_ASSERT(nb1 <= nb2);
  9619. GGML_ASSERT(nb2 <= nb3);
  9620. if (params->type == GGML_TASK_INIT) {
  9621. return;
  9622. }
  9623. if (params->type == GGML_TASK_FINALIZE) {
  9624. return;
  9625. }
  9626. // parallelize by q rows using ggml_vec_dot_f32
  9627. // total rows in q
  9628. const int nr = neq1*neq2*neq3;
  9629. // rows per thread
  9630. const int dr = (nr + nth - 1)/nth;
  9631. // row range for this thread
  9632. const int ir0 = dr*ith;
  9633. const int ir1 = MIN(ir0 + dr, nr);
  9634. const float scale = 1.0f/sqrtf(D);
  9635. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9636. for (int ir = ir0; ir < ir1; ++ir) {
  9637. // q indices
  9638. const int iq3 = ir/(neq2*neq1);
  9639. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9640. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9641. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  9642. for (int i = M; i < Mup; ++i) {
  9643. S[i] = -INFINITY;
  9644. }
  9645. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  9646. for (int64_t ic = 0; ic < nek1; ++ic) {
  9647. // k indices
  9648. const int ik3 = iq3;
  9649. const int ik2 = iq2;
  9650. const int ik1 = ic;
  9651. // S indices
  9652. const int i1 = ik1;
  9653. ggml_vec_dot_f16(neq0,
  9654. S + i1,
  9655. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9656. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9657. }
  9658. } else {
  9659. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  9660. // k indices
  9661. const int ik3 = iq3;
  9662. const int ik2 = iq2;
  9663. const int ik1 = ic;
  9664. // S indices
  9665. const int i1 = ik1;
  9666. ggml_vec_dot_f16_unroll(neq0, nbk1,
  9667. S + i1,
  9668. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9669. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9670. }
  9671. }
  9672. // scale
  9673. ggml_vec_scale_f32(nek1, S, scale);
  9674. if (masked) {
  9675. for (int64_t i = P; i < M; i++) {
  9676. if (i > P + iq1) {
  9677. S[i] = -INFINITY;
  9678. }
  9679. }
  9680. }
  9681. // softmax
  9682. {
  9683. float max = -INFINITY;
  9684. ggml_vec_max_f32(M, &max, S);
  9685. ggml_float sum = 0.0;
  9686. {
  9687. #ifdef GGML_SOFT_MAX_ACCELERATE
  9688. max = -max;
  9689. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9690. vvexpf(S, S, &Mup);
  9691. ggml_vec_sum_f32(Mup, &sum, S);
  9692. #else
  9693. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9694. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9695. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9696. float * SS = S + i;
  9697. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9698. if (SS[j] == -INFINITY) {
  9699. SS[j] = 0.0f;
  9700. } else {
  9701. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9702. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9703. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9704. sump[j] += (ggml_float)val;
  9705. SS[j] = val;
  9706. }
  9707. }
  9708. }
  9709. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9710. sum += sump[i];
  9711. }
  9712. #endif
  9713. }
  9714. assert(sum > 0.0);
  9715. sum = 1.0/sum;
  9716. ggml_vec_scale_f32(M, S, sum);
  9717. #ifndef NDEBUG
  9718. for (int i = 0; i < M; ++i) {
  9719. assert(!isnan(S[i]));
  9720. assert(!isinf(S[i]));
  9721. }
  9722. #endif
  9723. }
  9724. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  9725. for (int64_t i = 0; i < M; i++) {
  9726. S16[i] = GGML_FP32_TO_FP16(S[i]);
  9727. }
  9728. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  9729. for (int64_t ic = 0; ic < nev1; ++ic) {
  9730. // dst indices
  9731. const int i1 = iq1;
  9732. const int i2 = iq2;
  9733. const int i3 = iq3;
  9734. ggml_vec_dot_f16(nek1,
  9735. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9736. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9737. S16);
  9738. }
  9739. } else {
  9740. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  9741. // dst indices
  9742. const int i1 = iq1;
  9743. const int i2 = iq2;
  9744. const int i3 = iq3;
  9745. ggml_vec_dot_f16_unroll(nek1, nbv1,
  9746. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9747. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9748. S16);
  9749. }
  9750. }
  9751. }
  9752. }
  9753. static void ggml_compute_forward_flash_attn(
  9754. const struct ggml_compute_params * params,
  9755. const struct ggml_tensor * q,
  9756. const struct ggml_tensor * k,
  9757. const struct ggml_tensor * v,
  9758. const bool masked,
  9759. struct ggml_tensor * dst) {
  9760. switch (q->type) {
  9761. case GGML_TYPE_F16:
  9762. {
  9763. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  9764. } break;
  9765. case GGML_TYPE_F32:
  9766. {
  9767. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  9768. } break;
  9769. default:
  9770. {
  9771. GGML_ASSERT(false);
  9772. } break;
  9773. }
  9774. }
  9775. // ggml_compute_forward_flash_ff
  9776. static void ggml_compute_forward_flash_ff_f16(
  9777. const struct ggml_compute_params * params,
  9778. const struct ggml_tensor * a, // F16
  9779. const struct ggml_tensor * b0, // F16 fc_w
  9780. const struct ggml_tensor * b1, // F32 fc_b
  9781. const struct ggml_tensor * c0, // F16 proj_w
  9782. const struct ggml_tensor * c1, // F32 proj_b
  9783. struct ggml_tensor * dst) {
  9784. int64_t t0 = ggml_perf_time_us();
  9785. UNUSED(t0);
  9786. const int64_t nea0 = a->ne[0];
  9787. const int64_t nea1 = a->ne[1];
  9788. const int64_t nea2 = a->ne[2];
  9789. const int64_t nea3 = a->ne[3];
  9790. const int64_t neb00 = b0->ne[0];
  9791. const int64_t neb01 = b0->ne[1];
  9792. //const int64_t neb02 = b0->ne[2];
  9793. //const int64_t neb03 = b0->ne[3];
  9794. const int64_t neb10 = b1->ne[0];
  9795. const int64_t neb11 = b1->ne[1];
  9796. //const int64_t neb12 = b1->ne[2];
  9797. //const int64_t neb13 = b1->ne[3];
  9798. const int64_t nec00 = c0->ne[0];
  9799. const int64_t nec01 = c0->ne[1];
  9800. //const int64_t nec02 = c0->ne[2];
  9801. //const int64_t nec03 = c0->ne[3];
  9802. const int64_t nec10 = c1->ne[0];
  9803. const int64_t nec11 = c1->ne[1];
  9804. //const int64_t nec12 = c1->ne[2];
  9805. //const int64_t nec13 = c1->ne[3];
  9806. const int64_t ne0 = dst->ne[0];
  9807. const int64_t ne1 = dst->ne[1];
  9808. const int64_t ne2 = dst->ne[2];
  9809. //const int64_t ne3 = dst->ne[3];
  9810. const int nba0 = a->nb[0];
  9811. const int nba1 = a->nb[1];
  9812. const int nba2 = a->nb[2];
  9813. const int nba3 = a->nb[3];
  9814. const int nbb00 = b0->nb[0];
  9815. const int nbb01 = b0->nb[1];
  9816. const int nbb02 = b0->nb[2];
  9817. const int nbb03 = b0->nb[3];
  9818. const int nbb10 = b1->nb[0];
  9819. //const int nbb11 = b1->nb[1];
  9820. //const int nbb12 = b1->nb[2];
  9821. //const int nbb13 = b1->nb[3];
  9822. const int nbc00 = c0->nb[0];
  9823. const int nbc01 = c0->nb[1];
  9824. const int nbc02 = c0->nb[2];
  9825. const int nbc03 = c0->nb[3];
  9826. const int nbc10 = c1->nb[0];
  9827. //const int nbc11 = c1->nb[1];
  9828. //const int nbc12 = c1->nb[2];
  9829. //const int nbc13 = c1->nb[3];
  9830. const int nb0 = dst->nb[0];
  9831. const int nb1 = dst->nb[1];
  9832. const int nb2 = dst->nb[2];
  9833. const int nb3 = dst->nb[3];
  9834. const int ith = params->ith;
  9835. const int nth = params->nth;
  9836. const int64_t D = nea0;
  9837. //const int64_t N = nea1;
  9838. const int64_t M = neb01;
  9839. GGML_ASSERT(ne0 == nea0);
  9840. GGML_ASSERT(ne1 == nea1);
  9841. GGML_ASSERT(ne2 == nea2);
  9842. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  9843. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  9844. GGML_ASSERT(nbb10 == sizeof(float));
  9845. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  9846. GGML_ASSERT(nbc10 == sizeof(float));
  9847. GGML_ASSERT(neb00 == D);
  9848. GGML_ASSERT(neb01 == M);
  9849. GGML_ASSERT(neb10 == M);
  9850. GGML_ASSERT(neb11 == 1);
  9851. GGML_ASSERT(nec00 == M);
  9852. GGML_ASSERT(nec01 == D);
  9853. GGML_ASSERT(nec10 == D);
  9854. GGML_ASSERT(nec11 == 1);
  9855. // dst cannot be transposed or permuted
  9856. GGML_ASSERT(nb0 == sizeof(float));
  9857. GGML_ASSERT(nb0 <= nb1);
  9858. GGML_ASSERT(nb1 <= nb2);
  9859. GGML_ASSERT(nb2 <= nb3);
  9860. if (params->type == GGML_TASK_INIT) {
  9861. return;
  9862. }
  9863. if (params->type == GGML_TASK_FINALIZE) {
  9864. return;
  9865. }
  9866. // parallelize by a rows using ggml_vec_dot_f32
  9867. // total rows in a
  9868. const int nr = nea1*nea2*nea3;
  9869. // rows per thread
  9870. const int dr = (nr + nth - 1)/nth;
  9871. // row range for this thread
  9872. const int ir0 = dr*ith;
  9873. const int ir1 = MIN(ir0 + dr, nr);
  9874. for (int ir = ir0; ir < ir1; ++ir) {
  9875. // a indices
  9876. const int ia3 = ir/(nea2*nea1);
  9877. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  9878. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  9879. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  9880. for (int64_t ic = 0; ic < neb01; ++ic) {
  9881. // b0 indices
  9882. const int ib03 = ia3;
  9883. const int ib02 = ia2;
  9884. const int ib01 = ic;
  9885. // S indices
  9886. const int i1 = ib01;
  9887. ggml_vec_dot_f16(nea0,
  9888. S + i1,
  9889. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  9890. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  9891. }
  9892. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  9893. //ggml_vec_gelu_f32(neb01, S, S);
  9894. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  9895. for (int64_t i = 0; i < M; i++) {
  9896. S16[i] = GGML_FP32_TO_FP16(S[i]);
  9897. }
  9898. ggml_vec_gelu_f16(neb01, S16, S16);
  9899. {
  9900. // dst indices
  9901. const int i1 = ia1;
  9902. const int i2 = ia2;
  9903. const int i3 = ia3;
  9904. for (int64_t ic = 0; ic < nec01; ++ic) {
  9905. ggml_vec_dot_f16(neb01,
  9906. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9907. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  9908. S16);
  9909. }
  9910. ggml_vec_add_f32(nec01,
  9911. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  9912. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  9913. (float *) c1->data);
  9914. }
  9915. }
  9916. }
  9917. static void ggml_compute_forward_flash_ff(
  9918. const struct ggml_compute_params * params,
  9919. const struct ggml_tensor * a,
  9920. const struct ggml_tensor * b0,
  9921. const struct ggml_tensor * b1,
  9922. const struct ggml_tensor * c0,
  9923. const struct ggml_tensor * c1,
  9924. struct ggml_tensor * dst) {
  9925. switch (b0->type) {
  9926. case GGML_TYPE_F16:
  9927. {
  9928. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  9929. } break;
  9930. case GGML_TYPE_F32:
  9931. {
  9932. GGML_ASSERT(false); // TODO
  9933. } break;
  9934. default:
  9935. {
  9936. GGML_ASSERT(false);
  9937. } break;
  9938. }
  9939. }
  9940. // ggml_compute_forward_map_unary
  9941. static void ggml_compute_forward_map_unary_f32(
  9942. const struct ggml_compute_params * params,
  9943. const struct ggml_tensor * src0,
  9944. struct ggml_tensor * dst,
  9945. const ggml_unary_op_f32_t fun) {
  9946. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9948. return;
  9949. }
  9950. const int n = ggml_nrows(src0);
  9951. const int nc = src0->ne[0];
  9952. assert( dst->nb[0] == sizeof(float));
  9953. assert(src0->nb[0] == sizeof(float));
  9954. for (int i = 0; i < n; i++) {
  9955. fun(nc,
  9956. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9957. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9958. }
  9959. }
  9960. static void ggml_compute_forward_map_unary(
  9961. const struct ggml_compute_params * params,
  9962. const struct ggml_tensor * src0,
  9963. struct ggml_tensor * dst,
  9964. const ggml_unary_op_f32_t fun) {
  9965. switch (src0->type) {
  9966. case GGML_TYPE_F32:
  9967. {
  9968. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  9969. } break;
  9970. default:
  9971. {
  9972. GGML_ASSERT(false);
  9973. } break;
  9974. }
  9975. }
  9976. // ggml_compute_forward_map_binary
  9977. static void ggml_compute_forward_map_binary_f32(
  9978. const struct ggml_compute_params * params,
  9979. const struct ggml_tensor * src0,
  9980. const struct ggml_tensor * src1,
  9981. struct ggml_tensor * dst,
  9982. const ggml_binary_op_f32_t fun) {
  9983. assert(params->ith == 0);
  9984. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  9985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9986. return;
  9987. }
  9988. const int n = ggml_nrows(src0);
  9989. const int nc = src0->ne[0];
  9990. assert( dst->nb[0] == sizeof(float));
  9991. assert(src0->nb[0] == sizeof(float));
  9992. assert(src1->nb[0] == sizeof(float));
  9993. for (int i = 0; i < n; i++) {
  9994. fun(nc,
  9995. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9996. (float *) ((char *) src0->data + i*(src0->nb[1])),
  9997. (float *) ((char *) src1->data + i*(src1->nb[1])));
  9998. }
  9999. }
  10000. static void ggml_compute_forward_map_binary(
  10001. const struct ggml_compute_params * params,
  10002. const struct ggml_tensor * src0,
  10003. const struct ggml_tensor * src1,
  10004. struct ggml_tensor * dst,
  10005. const ggml_binary_op_f32_t fun) {
  10006. switch (src0->type) {
  10007. case GGML_TYPE_F32:
  10008. {
  10009. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10010. } break;
  10011. default:
  10012. {
  10013. GGML_ASSERT(false);
  10014. } break;
  10015. }
  10016. }
  10017. /////////////////////////////////
  10018. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10019. GGML_ASSERT(params);
  10020. switch (tensor->op) {
  10021. case GGML_OP_DUP:
  10022. {
  10023. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10024. } break;
  10025. case GGML_OP_ADD:
  10026. {
  10027. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10028. } break;
  10029. case GGML_OP_ADD1:
  10030. {
  10031. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10032. } break;
  10033. case GGML_OP_ACC:
  10034. {
  10035. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10036. } break;
  10037. case GGML_OP_SUB:
  10038. {
  10039. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10040. } break;
  10041. case GGML_OP_MUL:
  10042. {
  10043. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10044. } break;
  10045. case GGML_OP_DIV:
  10046. {
  10047. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10048. } break;
  10049. case GGML_OP_SQR:
  10050. {
  10051. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10052. } break;
  10053. case GGML_OP_SQRT:
  10054. {
  10055. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10056. } break;
  10057. case GGML_OP_LOG:
  10058. {
  10059. ggml_compute_forward_log(params, tensor->src0, tensor);
  10060. } break;
  10061. case GGML_OP_SUM:
  10062. {
  10063. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10064. } break;
  10065. case GGML_OP_SUM_ROWS:
  10066. {
  10067. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10068. } break;
  10069. case GGML_OP_MEAN:
  10070. {
  10071. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10072. } break;
  10073. case GGML_OP_REPEAT:
  10074. {
  10075. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10076. } break;
  10077. case GGML_OP_ABS:
  10078. {
  10079. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10080. } break;
  10081. case GGML_OP_SGN:
  10082. {
  10083. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10084. } break;
  10085. case GGML_OP_NEG:
  10086. {
  10087. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10088. } break;
  10089. case GGML_OP_STEP:
  10090. {
  10091. ggml_compute_forward_step(params, tensor->src0, tensor);
  10092. } break;
  10093. case GGML_OP_RELU:
  10094. {
  10095. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10096. } break;
  10097. case GGML_OP_GELU:
  10098. {
  10099. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10100. } break;
  10101. case GGML_OP_SILU:
  10102. {
  10103. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10104. } break;
  10105. case GGML_OP_SILU_BACK:
  10106. {
  10107. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10108. } break;
  10109. case GGML_OP_NORM:
  10110. {
  10111. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10112. } break;
  10113. case GGML_OP_RMS_NORM:
  10114. {
  10115. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10116. } break;
  10117. case GGML_OP_RMS_NORM_BACK:
  10118. {
  10119. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10120. } break;
  10121. case GGML_OP_MUL_MAT:
  10122. {
  10123. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10124. } break;
  10125. case GGML_OP_SCALE:
  10126. {
  10127. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10128. } break;
  10129. case GGML_OP_SET:
  10130. {
  10131. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10132. } break;
  10133. case GGML_OP_CPY:
  10134. {
  10135. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10136. } break;
  10137. case GGML_OP_CONT:
  10138. {
  10139. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10140. } break;
  10141. case GGML_OP_RESHAPE:
  10142. {
  10143. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10144. } break;
  10145. case GGML_OP_VIEW:
  10146. {
  10147. ggml_compute_forward_view(params, tensor->src0);
  10148. } break;
  10149. case GGML_OP_PERMUTE:
  10150. {
  10151. ggml_compute_forward_permute(params, tensor->src0);
  10152. } break;
  10153. case GGML_OP_TRANSPOSE:
  10154. {
  10155. ggml_compute_forward_transpose(params, tensor->src0);
  10156. } break;
  10157. case GGML_OP_GET_ROWS:
  10158. {
  10159. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10160. } break;
  10161. case GGML_OP_GET_ROWS_BACK:
  10162. {
  10163. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10164. } break;
  10165. case GGML_OP_DIAG:
  10166. {
  10167. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10168. } break;
  10169. case GGML_OP_DIAG_MASK_INF:
  10170. {
  10171. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10172. } break;
  10173. case GGML_OP_DIAG_MASK_ZERO:
  10174. {
  10175. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10176. } break;
  10177. case GGML_OP_SOFT_MAX:
  10178. {
  10179. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10180. } break;
  10181. case GGML_OP_ROPE:
  10182. {
  10183. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10184. } break;
  10185. case GGML_OP_ROPE_BACK:
  10186. {
  10187. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10188. } break;
  10189. case GGML_OP_ALIBI:
  10190. {
  10191. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10192. } break;
  10193. case GGML_OP_CONV_1D_1S:
  10194. {
  10195. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10196. } break;
  10197. case GGML_OP_CONV_1D_2S:
  10198. {
  10199. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10200. } break;
  10201. case GGML_OP_FLASH_ATTN:
  10202. {
  10203. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10204. GGML_ASSERT(t == 0 || t == 1);
  10205. bool masked = t != 0;
  10206. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10207. } break;
  10208. case GGML_OP_FLASH_FF:
  10209. {
  10210. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10211. } break;
  10212. case GGML_OP_MAP_UNARY:
  10213. {
  10214. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10215. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10216. }
  10217. break;
  10218. case GGML_OP_MAP_BINARY:
  10219. {
  10220. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10221. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10222. }
  10223. break;
  10224. case GGML_OP_NONE:
  10225. {
  10226. // nop
  10227. } break;
  10228. case GGML_OP_COUNT:
  10229. {
  10230. GGML_ASSERT(false);
  10231. } break;
  10232. }
  10233. }
  10234. ////////////////////////////////////////////////////////////////////////////////
  10235. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10236. struct ggml_tensor * src0 = tensor->src0;
  10237. struct ggml_tensor * src1 = tensor->src1;
  10238. switch (tensor->op) {
  10239. case GGML_OP_DUP:
  10240. {
  10241. if (src0->grad) {
  10242. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10243. }
  10244. } break;
  10245. case GGML_OP_ADD:
  10246. {
  10247. if (src0->grad) {
  10248. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10249. }
  10250. if (src1->grad) {
  10251. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10252. }
  10253. } break;
  10254. case GGML_OP_ADD1:
  10255. {
  10256. if (src0->grad) {
  10257. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10258. }
  10259. if (src1->grad) {
  10260. src1->grad = ggml_add_impl(ctx,
  10261. src1->grad,
  10262. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10263. inplace);
  10264. }
  10265. } break;
  10266. case GGML_OP_ACC:
  10267. {
  10268. if (src0->grad) {
  10269. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10270. }
  10271. if (src1->grad) {
  10272. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10273. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10274. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10275. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10276. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10277. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10278. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10279. tensor->grad,
  10280. src1->grad->ne[0],
  10281. src1->grad->ne[1],
  10282. src1->grad->ne[2],
  10283. src1->grad->ne[3],
  10284. nb1, nb2, nb3, offset);
  10285. src1->grad =
  10286. ggml_add_impl(ctx,
  10287. src1->grad,
  10288. ggml_reshape(ctx,
  10289. ggml_cont(ctx, tensor_grad_view),
  10290. src1->grad),
  10291. inplace);
  10292. }
  10293. } break;
  10294. case GGML_OP_SUB:
  10295. {
  10296. if (src0->grad) {
  10297. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10298. }
  10299. if (src1->grad) {
  10300. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10301. }
  10302. } break;
  10303. case GGML_OP_MUL:
  10304. {
  10305. if (src0->grad) {
  10306. src0->grad =
  10307. ggml_add_impl(ctx,
  10308. src0->grad,
  10309. ggml_mul(ctx, src1, tensor->grad),
  10310. inplace);
  10311. }
  10312. if (src1->grad) {
  10313. src1->grad =
  10314. ggml_add_impl(ctx,
  10315. src1->grad,
  10316. ggml_mul(ctx, src0, tensor->grad),
  10317. inplace);
  10318. }
  10319. } break;
  10320. case GGML_OP_DIV:
  10321. {
  10322. if (src0->grad) {
  10323. src0->grad =
  10324. ggml_add_impl(ctx,
  10325. src0->grad,
  10326. ggml_div(ctx, tensor->grad, src1),
  10327. inplace);
  10328. }
  10329. if (src1->grad) {
  10330. src1->grad =
  10331. ggml_sub_impl(ctx,
  10332. src1->grad,
  10333. ggml_mul(ctx,
  10334. tensor->grad,
  10335. ggml_div(ctx, tensor, src1)),
  10336. inplace);
  10337. }
  10338. } break;
  10339. case GGML_OP_SQR:
  10340. {
  10341. if (src0->grad) {
  10342. src0->grad =
  10343. ggml_add_impl(ctx,
  10344. src0->grad,
  10345. ggml_scale(ctx,
  10346. ggml_mul(ctx, src0, tensor->grad),
  10347. ggml_new_f32(ctx, 2.0f)),
  10348. inplace);
  10349. }
  10350. } break;
  10351. case GGML_OP_SQRT:
  10352. {
  10353. if (src0->grad) {
  10354. src0->grad =
  10355. ggml_add_impl(ctx,
  10356. src0->grad,
  10357. ggml_mul(ctx,
  10358. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10359. ggml_div(ctx,
  10360. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10361. tensor)),
  10362. inplace);
  10363. }
  10364. } break;
  10365. case GGML_OP_LOG:
  10366. {
  10367. if (src0->grad) {
  10368. src0->grad =
  10369. ggml_add_impl(ctx,
  10370. src0->grad,
  10371. ggml_div(ctx,
  10372. tensor->grad,
  10373. src0),
  10374. inplace);
  10375. }
  10376. } break;
  10377. case GGML_OP_SUM:
  10378. {
  10379. if (src0->grad) {
  10380. src0->grad =
  10381. ggml_add1_impl(ctx,
  10382. src0->grad,
  10383. tensor->grad,
  10384. inplace);
  10385. }
  10386. } break;
  10387. case GGML_OP_SUM_ROWS:
  10388. {
  10389. if (src0->grad) {
  10390. src0->grad =
  10391. ggml_add_impl(ctx,
  10392. src0->grad,
  10393. ggml_repeat(ctx,
  10394. tensor->grad,
  10395. src0->grad),
  10396. inplace);
  10397. }
  10398. } break;
  10399. case GGML_OP_MEAN:
  10400. {
  10401. GGML_ASSERT(false); // TODO: implement
  10402. } break;
  10403. case GGML_OP_REPEAT:
  10404. {
  10405. // necessary for llama
  10406. if (src0->grad) {
  10407. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10408. const int nc = tensor->ne[0];
  10409. const int nr = tensor->ne[1];
  10410. const int nc0 = src0->ne[0];
  10411. const int nr0 = src0->ne[1];
  10412. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10413. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10414. // tensor->grad [nc,nr,1,1]
  10415. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10416. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10417. // substitute [nc0,nr0,ncr,nrr]
  10418. // reshape [nc0*nr0,ncr*nrr,1,1]
  10419. // transpose [ncr*nrr,nc0*nr0,1,1]
  10420. // sum rows [1,nc0*nr0,1,1]
  10421. // transpose [nc0*nr0,1,1]
  10422. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10423. // add to src0->grad
  10424. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10425. struct ggml_tensor* F00 = tensor->grad;
  10426. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10427. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10428. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10429. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10430. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10431. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10432. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10433. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10434. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10435. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10436. src0->grad =
  10437. ggml_add_impl(ctx,
  10438. src0->grad,
  10439. F10,
  10440. inplace);
  10441. }
  10442. } break;
  10443. case GGML_OP_ABS:
  10444. {
  10445. if (src0->grad) {
  10446. src0->grad =
  10447. ggml_add_impl(ctx,
  10448. src0->grad,
  10449. ggml_mul(ctx,
  10450. ggml_sgn(ctx, src0),
  10451. tensor->grad),
  10452. inplace);
  10453. }
  10454. } break;
  10455. case GGML_OP_SGN:
  10456. {
  10457. if (src0->grad) {
  10458. // noop
  10459. }
  10460. } break;
  10461. case GGML_OP_NEG:
  10462. {
  10463. if (src0->grad) {
  10464. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10465. }
  10466. } break;
  10467. case GGML_OP_STEP:
  10468. {
  10469. if (src0->grad) {
  10470. // noop
  10471. }
  10472. } break;
  10473. case GGML_OP_RELU:
  10474. {
  10475. if (src0->grad) {
  10476. src0->grad = ggml_sub_impl(ctx,
  10477. src0->grad,
  10478. ggml_mul(ctx,
  10479. ggml_step(ctx, src0),
  10480. tensor->grad),
  10481. inplace);
  10482. }
  10483. } break;
  10484. case GGML_OP_GELU:
  10485. {
  10486. GGML_ASSERT(false); // TODO: not implemented
  10487. } break;
  10488. case GGML_OP_ALIBI:
  10489. {
  10490. GGML_ASSERT(false); // TODO: not implemented
  10491. } break;
  10492. case GGML_OP_SILU:
  10493. {
  10494. // necessary for llama
  10495. if (src0->grad) {
  10496. src0->grad = ggml_add_impl(ctx,
  10497. src0->grad,
  10498. ggml_silu_back(ctx, src0, tensor->grad),
  10499. inplace);
  10500. }
  10501. } break;
  10502. case GGML_OP_SILU_BACK:
  10503. {
  10504. GGML_ASSERT(false); // TODO: not implemented
  10505. } break;
  10506. case GGML_OP_NORM:
  10507. {
  10508. GGML_ASSERT(false); // TODO: not implemented
  10509. } break;
  10510. case GGML_OP_RMS_NORM:
  10511. {
  10512. // necessary for llama
  10513. if (src0->grad) {
  10514. src0->grad = ggml_add_impl(ctx,
  10515. src0->grad,
  10516. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10517. inplace);
  10518. }
  10519. } break;
  10520. case GGML_OP_RMS_NORM_BACK:
  10521. {
  10522. GGML_ASSERT(false); // TODO: not implemented
  10523. } break;
  10524. case GGML_OP_MUL_MAT:
  10525. {
  10526. // https://cs231n.github.io/optimization-2/#staged
  10527. // # forward pass
  10528. // s0 = np.random.randn(5, 10)
  10529. // s1 = np.random.randn(10, 3)
  10530. // t = s0.dot(s1)
  10531. // # now suppose we had the gradient on t from above in the circuit
  10532. // dt = np.random.randn(*t.shape) # same shape as t
  10533. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10534. // ds1 = t.T.dot(dt)
  10535. // tensor.shape [m,p]
  10536. // src0.shape [n,m]
  10537. // src1.shape [n,p]
  10538. // necessary for llama
  10539. if (src0->grad) {
  10540. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10541. src0->grad =
  10542. ggml_add_impl(ctx,
  10543. src0->grad,
  10544. // ds0 = dt.dot(s1.T)
  10545. // ggml_out_prod(ctx, // [n,m]
  10546. // src1, // [n,p]
  10547. // tensor->grad), // [m,p]
  10548. // for now just using A*B==(B.T*A.T).T
  10549. ggml_cont(ctx, // [n,m]
  10550. ggml_transpose(ctx, // [n,m]
  10551. ggml_mul_mat(ctx, // [m,n]
  10552. ggml_cont(ctx, // [p,m]
  10553. ggml_transpose(ctx, // [p,m]
  10554. tensor->grad)), // [m,p]
  10555. ggml_cont(ctx, // [p,n]
  10556. ggml_transpose(ctx, // [p,n]
  10557. src1))))), // [n,p]
  10558. inplace);
  10559. }
  10560. if (src1->grad) {
  10561. src1->grad =
  10562. ggml_add_impl(ctx,
  10563. src1->grad,
  10564. // ds1 = s0.T.dot(dt):
  10565. ggml_mul_mat(ctx, // [n,p]
  10566. ggml_cont(ctx, // [m,n]
  10567. ggml_transpose(ctx, src0)), // [m,n]
  10568. tensor->grad), // [m,p]
  10569. inplace);
  10570. }
  10571. } break;
  10572. case GGML_OP_SCALE:
  10573. {
  10574. // necessary for llama
  10575. if (src0->grad) {
  10576. src0->grad =
  10577. ggml_add_impl(ctx,
  10578. src0->grad,
  10579. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10580. inplace);
  10581. }
  10582. if (src1->grad) {
  10583. src1->grad =
  10584. ggml_add_impl(ctx,
  10585. src1->grad,
  10586. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10587. inplace);
  10588. }
  10589. } break;
  10590. case GGML_OP_SET:
  10591. {
  10592. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10593. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10594. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10595. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10596. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10597. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10598. struct ggml_tensor * tensor_grad_view = NULL;
  10599. if (src0->grad || src1->grad) {
  10600. GGML_ASSERT(src0->type == tensor->type);
  10601. GGML_ASSERT(tensor->grad->type == tensor->type);
  10602. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  10603. tensor_grad_view = ggml_view_4d(ctx,
  10604. tensor->grad,
  10605. src1->grad->ne[0],
  10606. src1->grad->ne[1],
  10607. src1->grad->ne[2],
  10608. src1->grad->ne[3],
  10609. nb1, nb2, nb3, offset);
  10610. }
  10611. if (src0->grad) {
  10612. src0->grad = ggml_add_impl(ctx,
  10613. src0->grad,
  10614. ggml_acc_impl(ctx,
  10615. tensor->grad,
  10616. ggml_neg(ctx, tensor_grad_view),
  10617. nb1, nb2, nb3, offset, false),
  10618. inplace);
  10619. }
  10620. if (src1->grad) {
  10621. src1->grad =
  10622. ggml_add_impl(ctx,
  10623. src1->grad,
  10624. ggml_reshape(ctx,
  10625. ggml_cont(ctx, tensor_grad_view),
  10626. src1->grad),
  10627. inplace);
  10628. }
  10629. } break;
  10630. case GGML_OP_CPY:
  10631. {
  10632. // necessary for llama
  10633. // cpy overwrites value of src1 by src0 and returns view(src1)
  10634. // the overwriting is mathematically equivalent to:
  10635. // tensor = src0 * 1 + src1 * 0
  10636. if (src0->grad) {
  10637. // dsrc0 = dtensor * 1
  10638. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10639. }
  10640. if (src1->grad) {
  10641. // dsrc1 = dtensor * 0 -> noop
  10642. }
  10643. } break;
  10644. case GGML_OP_CONT:
  10645. {
  10646. // same as cpy
  10647. if (src0->grad) {
  10648. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  10649. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  10650. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10651. }
  10652. } break;
  10653. case GGML_OP_RESHAPE:
  10654. {
  10655. // necessary for llama
  10656. if (src0->grad) {
  10657. src0->grad =
  10658. ggml_add_impl(ctx, src0->grad,
  10659. ggml_reshape(ctx, tensor->grad, src0->grad),
  10660. inplace);
  10661. }
  10662. } break;
  10663. case GGML_OP_VIEW:
  10664. {
  10665. // necessary for llama
  10666. if (src0->grad) {
  10667. size_t offset;
  10668. memcpy(&offset, tensor->padding, sizeof(offset));
  10669. size_t nb1 = tensor->nb[1];
  10670. size_t nb2 = tensor->nb[2];
  10671. size_t nb3 = tensor->nb[3];
  10672. if (src0->type != src0->grad->type) {
  10673. // gradient is typically F32, but src0 could be other type
  10674. size_t ng = ggml_element_size(src0->grad);
  10675. size_t n0 = ggml_element_size(src0);
  10676. GGML_ASSERT(offset % n0 == 0);
  10677. GGML_ASSERT(nb1 % n0 == 0);
  10678. GGML_ASSERT(nb2 % n0 == 0);
  10679. GGML_ASSERT(nb3 % n0 == 0);
  10680. offset = (offset / n0) * ng;
  10681. nb1 = (nb1 / n0) * ng;
  10682. nb2 = (nb2 / n0) * ng;
  10683. nb3 = (nb3 / n0) * ng;
  10684. }
  10685. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  10686. }
  10687. } break;
  10688. case GGML_OP_PERMUTE:
  10689. {
  10690. // necessary for llama
  10691. if (src0->grad) {
  10692. int axis0 = tensor->padding[0] & 0x3;
  10693. int axis1 = tensor->padding[1] & 0x3;
  10694. int axis2 = tensor->padding[2] & 0x3;
  10695. int axis3 = tensor->padding[3] & 0x3;
  10696. int axes_backward[4] = {0,0,0,0};
  10697. axes_backward[axis0] = 0;
  10698. axes_backward[axis1] = 1;
  10699. axes_backward[axis2] = 2;
  10700. axes_backward[axis3] = 3;
  10701. src0->grad =
  10702. ggml_add_impl(ctx, src0->grad,
  10703. ggml_permute(ctx,
  10704. tensor->grad,
  10705. axes_backward[0],
  10706. axes_backward[1],
  10707. axes_backward[2],
  10708. axes_backward[3]),
  10709. inplace);
  10710. }
  10711. } break;
  10712. case GGML_OP_TRANSPOSE:
  10713. {
  10714. // necessary for llama
  10715. if (src0->grad) {
  10716. src0->grad =
  10717. ggml_add_impl(ctx, src0->grad,
  10718. ggml_transpose(ctx, tensor->grad),
  10719. inplace);
  10720. }
  10721. } break;
  10722. case GGML_OP_GET_ROWS:
  10723. {
  10724. // necessary for llama (only for tokenizer)
  10725. if (src0->grad) {
  10726. src0->grad =
  10727. ggml_add_impl(ctx, src0->grad,
  10728. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  10729. inplace);
  10730. }
  10731. if (src1->grad) {
  10732. // noop
  10733. }
  10734. } break;
  10735. case GGML_OP_GET_ROWS_BACK:
  10736. {
  10737. GGML_ASSERT(false); // TODO: not implemented
  10738. } break;
  10739. case GGML_OP_DIAG:
  10740. {
  10741. GGML_ASSERT(false); // TODO: not implemented
  10742. } break;
  10743. case GGML_OP_DIAG_MASK_INF:
  10744. {
  10745. // necessary for llama
  10746. if (src0->grad) {
  10747. assert(src1->type == GGML_TYPE_I32);
  10748. assert(ggml_nelements(src1) == 2);
  10749. const int n_past = ((int32_t *) src1->data)[0];
  10750. src0->grad =
  10751. ggml_add_impl(ctx, src0->grad,
  10752. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10753. inplace);
  10754. }
  10755. if (src1->grad) {
  10756. // noop
  10757. }
  10758. } break;
  10759. case GGML_OP_DIAG_MASK_ZERO:
  10760. {
  10761. // necessary for llama
  10762. if (src0->grad) {
  10763. assert(src1->type == GGML_TYPE_I32);
  10764. assert(ggml_nelements(src1) == 2);
  10765. const int n_past = ((int32_t *) src1->data)[0];
  10766. src0->grad =
  10767. ggml_add_impl(ctx, src0->grad,
  10768. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10769. inplace);
  10770. }
  10771. if (src1->grad) {
  10772. // noop
  10773. }
  10774. } break;
  10775. case GGML_OP_SOFT_MAX:
  10776. {
  10777. // necessary for llama
  10778. if (src0->grad) {
  10779. // y = softmax(x)
  10780. //
  10781. // Jii = yi - yi*yi
  10782. // Jij = -yi*yj
  10783. // J = diag(y)-y.*y
  10784. // dx = J * dy
  10785. // dxk = sum(Jkj * dyk)
  10786. int64_t ne2[4] = {
  10787. tensor->ne[0],
  10788. 1,
  10789. tensor->ne[1]*tensor->ne[2],
  10790. tensor->ne[3]
  10791. };
  10792. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  10793. ggml_reshape_4d(ctx,
  10794. ggml_cont(ctx, tensor),
  10795. ne2[0], ne2[1], ne2[2], ne2[3]));
  10796. struct ggml_tensor * grad2 = ggml_cont(ctx,
  10797. ggml_reshape_4d(ctx,
  10798. ggml_cont(ctx, tensor->grad),
  10799. ne2[0], ne2[1], ne2[2], ne2[3]));
  10800. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  10801. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  10802. tensor2, // [ne0,1,ne1*ne2,ne3]
  10803. 1, 0, 2, 3));
  10804. src0->grad =
  10805. ggml_add_impl(ctx,
  10806. src0->grad, // [ne0,ne1,ne2,ne3]
  10807. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  10808. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  10809. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  10810. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  10811. tensor2), // [ne0,1,ne1*ne2,ne3]
  10812. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  10813. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  10814. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  10815. grad2), // [ne0,1,ne1*ne2,ne3]
  10816. src0->grad),
  10817. inplace);
  10818. }
  10819. } break;
  10820. case GGML_OP_ROPE:
  10821. {
  10822. // necessary for llama
  10823. if (src0->grad) {
  10824. assert(src1->type == GGML_TYPE_I32);
  10825. assert(ggml_nelements(src1) == 3);
  10826. const int n_past = ((int32_t *) src1->data)[0];
  10827. const int n_dims = ((int32_t *) src1->data)[1];
  10828. const int mode = ((int32_t *) src1->data)[2];
  10829. src0->grad = ggml_add_impl(ctx,
  10830. src0->grad,
  10831. ggml_rope_back(ctx,
  10832. tensor->grad,
  10833. n_past,
  10834. n_dims,
  10835. mode),
  10836. inplace);
  10837. }
  10838. if (src1->grad) {
  10839. // noop
  10840. }
  10841. } break;
  10842. case GGML_OP_ROPE_BACK:
  10843. {
  10844. if (src0->grad) {
  10845. assert(src1->type == GGML_TYPE_I32);
  10846. assert(ggml_nelements(src1) == 3);
  10847. const int n_past = ((int32_t *) src1->data)[0];
  10848. const int n_dims = ((int32_t *) src1->data)[1];
  10849. const int mode = ((int32_t *) src1->data)[2];
  10850. src0->grad = ggml_add_impl(ctx,
  10851. src0->grad,
  10852. ggml_rope(ctx,
  10853. tensor->grad,
  10854. n_past,
  10855. n_dims,
  10856. mode),
  10857. inplace);
  10858. }
  10859. if (src1->grad) {
  10860. // noop
  10861. }
  10862. } break;
  10863. case GGML_OP_CONV_1D_1S:
  10864. {
  10865. GGML_ASSERT(false); // TODO: not implemented
  10866. } break;
  10867. case GGML_OP_CONV_1D_2S:
  10868. {
  10869. GGML_ASSERT(false); // TODO: not implemented
  10870. } break;
  10871. case GGML_OP_FLASH_ATTN:
  10872. {
  10873. GGML_ASSERT(false); // not supported
  10874. } break;
  10875. case GGML_OP_FLASH_FF:
  10876. {
  10877. GGML_ASSERT(false); // not supported
  10878. } break;
  10879. case GGML_OP_MAP_UNARY:
  10880. case GGML_OP_MAP_BINARY:
  10881. {
  10882. GGML_ASSERT(false); // not supported
  10883. } break;
  10884. case GGML_OP_NONE:
  10885. {
  10886. // nop
  10887. } break;
  10888. case GGML_OP_COUNT:
  10889. {
  10890. GGML_ASSERT(false);
  10891. } break;
  10892. }
  10893. }
  10894. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  10895. if (node->grad == NULL) {
  10896. // this usually happens when we generate intermediate nodes from constants in the backward pass
  10897. // it can also happen during forward pass, if the user performs computations with constants
  10898. if (node->op != GGML_OP_NONE) {
  10899. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  10900. }
  10901. }
  10902. // check if already visited
  10903. for (int i = 0; i < cgraph->n_nodes; i++) {
  10904. if (cgraph->nodes[i] == node) {
  10905. return;
  10906. }
  10907. }
  10908. for (int i = 0; i < cgraph->n_leafs; i++) {
  10909. if (cgraph->leafs[i] == node) {
  10910. return;
  10911. }
  10912. }
  10913. if (node->src0) {
  10914. ggml_visit_parents(cgraph, node->src0);
  10915. }
  10916. if (node->src1) {
  10917. ggml_visit_parents(cgraph, node->src1);
  10918. }
  10919. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  10920. if (node->opt[i]) {
  10921. ggml_visit_parents(cgraph, node->opt[i]);
  10922. }
  10923. }
  10924. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  10925. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  10926. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  10927. cgraph->leafs[cgraph->n_leafs] = node;
  10928. cgraph->n_leafs++;
  10929. } else {
  10930. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  10931. cgraph->nodes[cgraph->n_nodes] = node;
  10932. cgraph->grads[cgraph->n_nodes] = node->grad;
  10933. cgraph->n_nodes++;
  10934. }
  10935. }
  10936. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  10937. if (!expand) {
  10938. cgraph->n_nodes = 0;
  10939. cgraph->n_leafs = 0;
  10940. }
  10941. const int n0 = cgraph->n_nodes;
  10942. UNUSED(n0);
  10943. ggml_visit_parents(cgraph, tensor);
  10944. const int n_new = cgraph->n_nodes - n0;
  10945. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  10946. if (n_new > 0) {
  10947. // the last added node should always be starting point
  10948. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  10949. }
  10950. }
  10951. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  10952. ggml_build_forward_impl(cgraph, tensor, true);
  10953. }
  10954. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  10955. struct ggml_cgraph result = {
  10956. /*.n_nodes =*/ 0,
  10957. /*.n_leafs =*/ 0,
  10958. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  10959. /*.work_size =*/ 0,
  10960. /*.work =*/ NULL,
  10961. /*.nodes =*/ { NULL },
  10962. /*.grads =*/ { NULL },
  10963. /*.leafs =*/ { NULL },
  10964. /*.perf_runs =*/ 0,
  10965. /*.perf_cycles =*/ 0,
  10966. /*.perf_time_us =*/ 0,
  10967. };
  10968. ggml_build_forward_impl(&result, tensor, false);
  10969. return result;
  10970. }
  10971. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  10972. struct ggml_cgraph result = *gf;
  10973. GGML_ASSERT(gf->n_nodes > 0);
  10974. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  10975. if (keep) {
  10976. for (int i = 0; i < gf->n_nodes; i++) {
  10977. struct ggml_tensor * node = gf->nodes[i];
  10978. if (node->grad) {
  10979. node->grad = ggml_dup_tensor(ctx, node);
  10980. gf->grads[i] = node->grad;
  10981. }
  10982. }
  10983. }
  10984. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  10985. struct ggml_tensor * node = gf->nodes[i];
  10986. // because we detached the grad nodes from the original graph, we can afford inplace operations
  10987. if (node->grad) {
  10988. ggml_compute_backward(ctx, node, keep);
  10989. }
  10990. }
  10991. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  10992. struct ggml_tensor * node = gf->nodes[i];
  10993. if (node->is_param) {
  10994. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  10995. ggml_build_forward_impl(&result, node->grad, true);
  10996. }
  10997. }
  10998. return result;
  10999. }
  11000. //
  11001. // thread data
  11002. //
  11003. // synchronization is done via busy loops
  11004. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11005. //
  11006. #ifdef __APPLE__
  11007. //#include <os/lock.h>
  11008. //
  11009. //typedef os_unfair_lock ggml_lock_t;
  11010. //
  11011. //#define ggml_lock_init(x) UNUSED(x)
  11012. //#define ggml_lock_destroy(x) UNUSED(x)
  11013. //#define ggml_lock_lock os_unfair_lock_lock
  11014. //#define ggml_lock_unlock os_unfair_lock_unlock
  11015. //
  11016. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11017. typedef int ggml_lock_t;
  11018. #define ggml_lock_init(x) UNUSED(x)
  11019. #define ggml_lock_destroy(x) UNUSED(x)
  11020. #define ggml_lock_lock(x) UNUSED(x)
  11021. #define ggml_lock_unlock(x) UNUSED(x)
  11022. #define GGML_LOCK_INITIALIZER 0
  11023. typedef pthread_t ggml_thread_t;
  11024. #define ggml_thread_create pthread_create
  11025. #define ggml_thread_join pthread_join
  11026. #else
  11027. //typedef pthread_spinlock_t ggml_lock_t;
  11028. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11029. //#define ggml_lock_destroy pthread_spin_destroy
  11030. //#define ggml_lock_lock pthread_spin_lock
  11031. //#define ggml_lock_unlock pthread_spin_unlock
  11032. typedef int ggml_lock_t;
  11033. #define ggml_lock_init(x) UNUSED(x)
  11034. #define ggml_lock_destroy(x) UNUSED(x)
  11035. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11036. #define ggml_lock_lock(x) _mm_pause()
  11037. #else
  11038. #define ggml_lock_lock(x) UNUSED(x)
  11039. #endif
  11040. #define ggml_lock_unlock(x) UNUSED(x)
  11041. #define GGML_LOCK_INITIALIZER 0
  11042. typedef pthread_t ggml_thread_t;
  11043. #define ggml_thread_create pthread_create
  11044. #define ggml_thread_join pthread_join
  11045. #endif
  11046. struct ggml_compute_state_shared {
  11047. ggml_lock_t spin;
  11048. int n_threads;
  11049. // synchronization primitives
  11050. atomic_int n_ready;
  11051. atomic_bool has_work;
  11052. atomic_bool stop; // stop all threads
  11053. };
  11054. struct ggml_compute_state {
  11055. ggml_thread_t thrd;
  11056. struct ggml_compute_params params;
  11057. struct ggml_tensor * node;
  11058. struct ggml_compute_state_shared * shared;
  11059. };
  11060. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11061. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11062. const int n_threads = state->shared->n_threads;
  11063. while (true) {
  11064. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11065. atomic_store(&state->shared->has_work, false);
  11066. } else {
  11067. while (atomic_load(&state->shared->has_work)) {
  11068. if (atomic_load(&state->shared->stop)) {
  11069. return 0;
  11070. }
  11071. ggml_lock_lock (&state->shared->spin);
  11072. ggml_lock_unlock(&state->shared->spin);
  11073. }
  11074. }
  11075. atomic_fetch_sub(&state->shared->n_ready, 1);
  11076. // wait for work
  11077. while (!atomic_load(&state->shared->has_work)) {
  11078. if (atomic_load(&state->shared->stop)) {
  11079. return 0;
  11080. }
  11081. ggml_lock_lock (&state->shared->spin);
  11082. ggml_lock_unlock(&state->shared->spin);
  11083. }
  11084. // check if we should stop
  11085. if (atomic_load(&state->shared->stop)) {
  11086. break;
  11087. }
  11088. if (state->node) {
  11089. if (state->params.ith < state->params.nth) {
  11090. ggml_compute_forward(&state->params, state->node);
  11091. }
  11092. state->node = NULL;
  11093. } else {
  11094. break;
  11095. }
  11096. }
  11097. return 0;
  11098. }
  11099. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11100. const int n_threads = cgraph->n_threads;
  11101. struct ggml_compute_state_shared state_shared = {
  11102. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11103. /*.n_threads =*/ n_threads,
  11104. /*.n_ready =*/ 0,
  11105. /*.has_work =*/ false,
  11106. /*.stop =*/ false,
  11107. };
  11108. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11109. // create thread pool
  11110. if (n_threads > 1) {
  11111. ggml_lock_init(&state_shared.spin);
  11112. atomic_store(&state_shared.has_work, true);
  11113. for (int j = 0; j < n_threads - 1; j++) {
  11114. workers[j] = (struct ggml_compute_state) {
  11115. .thrd = 0,
  11116. .params = {
  11117. .type = GGML_TASK_COMPUTE,
  11118. .ith = j + 1,
  11119. .nth = n_threads,
  11120. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11121. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11122. },
  11123. .node = NULL,
  11124. .shared = &state_shared,
  11125. };
  11126. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11127. GGML_ASSERT(rc == 0);
  11128. UNUSED(rc);
  11129. }
  11130. }
  11131. // initialize tasks + work buffer
  11132. {
  11133. size_t work_size = 0;
  11134. // thread scheduling for the different operations
  11135. for (int i = 0; i < cgraph->n_nodes; i++) {
  11136. struct ggml_tensor * node = cgraph->nodes[i];
  11137. switch (node->op) {
  11138. case GGML_OP_CPY:
  11139. case GGML_OP_DUP:
  11140. {
  11141. node->n_tasks = n_threads;
  11142. size_t cur = 0;
  11143. if (ggml_is_quantized(node->type)) {
  11144. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11145. }
  11146. work_size = MAX(work_size, cur);
  11147. } break;
  11148. case GGML_OP_ADD:
  11149. case GGML_OP_ADD1:
  11150. {
  11151. node->n_tasks = n_threads;
  11152. size_t cur = 0;
  11153. if (ggml_is_quantized(node->src0->type)) {
  11154. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11155. }
  11156. work_size = MAX(work_size, cur);
  11157. } break;
  11158. case GGML_OP_ACC:
  11159. {
  11160. node->n_tasks = n_threads;
  11161. size_t cur = 0;
  11162. if (ggml_is_quantized(node->src0->type)) {
  11163. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11164. }
  11165. work_size = MAX(work_size, cur);
  11166. } break;
  11167. case GGML_OP_SUB:
  11168. case GGML_OP_MUL:
  11169. case GGML_OP_DIV:
  11170. case GGML_OP_SQR:
  11171. case GGML_OP_SQRT:
  11172. case GGML_OP_LOG:
  11173. case GGML_OP_SUM:
  11174. case GGML_OP_SUM_ROWS:
  11175. case GGML_OP_MEAN:
  11176. case GGML_OP_REPEAT:
  11177. case GGML_OP_ABS:
  11178. case GGML_OP_SGN:
  11179. case GGML_OP_NEG:
  11180. case GGML_OP_STEP:
  11181. case GGML_OP_RELU:
  11182. {
  11183. node->n_tasks = 1;
  11184. } break;
  11185. case GGML_OP_GELU:
  11186. {
  11187. node->n_tasks = n_threads;
  11188. } break;
  11189. case GGML_OP_SILU:
  11190. {
  11191. node->n_tasks = n_threads;
  11192. } break;
  11193. case GGML_OP_SILU_BACK:
  11194. {
  11195. node->n_tasks = n_threads;
  11196. } break;
  11197. case GGML_OP_NORM:
  11198. case GGML_OP_RMS_NORM:
  11199. case GGML_OP_RMS_NORM_BACK:
  11200. {
  11201. node->n_tasks = n_threads;
  11202. } break;
  11203. case GGML_OP_MUL_MAT:
  11204. {
  11205. node->n_tasks = n_threads;
  11206. // TODO: use different scheduling for different matrix sizes
  11207. //const int nr0 = ggml_nrows(node->src0);
  11208. //const int nr1 = ggml_nrows(node->src1);
  11209. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11210. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11211. size_t cur = 0;
  11212. #if defined(GGML_USE_CUBLAS)
  11213. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11214. node->n_tasks = 1; // TODO: this actually is doing nothing
  11215. // the threads are still spinning
  11216. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11217. }
  11218. else
  11219. #endif
  11220. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11221. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11222. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11223. node->n_tasks = 1; // TODO: this actually is doing nothing
  11224. // the threads are still spinning
  11225. // here we need memory just for single 2D matrix from src0
  11226. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11227. } else {
  11228. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11229. }
  11230. #else
  11231. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11232. #endif
  11233. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11234. cur = 0;
  11235. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11236. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11237. node->n_tasks = 1;
  11238. }
  11239. #endif
  11240. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11241. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11242. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11243. node->n_tasks = 1;
  11244. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11245. } else
  11246. #endif
  11247. {
  11248. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11249. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11250. }
  11251. } else {
  11252. GGML_ASSERT(false);
  11253. }
  11254. work_size = MAX(work_size, cur);
  11255. } break;
  11256. case GGML_OP_SCALE:
  11257. {
  11258. node->n_tasks = n_threads;
  11259. } break;
  11260. case GGML_OP_SET:
  11261. case GGML_OP_CONT:
  11262. case GGML_OP_RESHAPE:
  11263. case GGML_OP_VIEW:
  11264. case GGML_OP_PERMUTE:
  11265. case GGML_OP_TRANSPOSE:
  11266. case GGML_OP_GET_ROWS:
  11267. case GGML_OP_GET_ROWS_BACK:
  11268. case GGML_OP_DIAG:
  11269. case GGML_OP_DIAG_MASK_INF:
  11270. case GGML_OP_DIAG_MASK_ZERO:
  11271. {
  11272. node->n_tasks = 1;
  11273. } break;
  11274. case GGML_OP_SOFT_MAX:
  11275. case GGML_OP_ROPE:
  11276. case GGML_OP_ROPE_BACK:
  11277. {
  11278. node->n_tasks = n_threads;
  11279. } break;
  11280. case GGML_OP_ALIBI:
  11281. {
  11282. node->n_tasks = 1; //TODO
  11283. } break;
  11284. case GGML_OP_CONV_1D_1S:
  11285. case GGML_OP_CONV_1D_2S:
  11286. {
  11287. node->n_tasks = n_threads;
  11288. GGML_ASSERT(node->src0->ne[3] == 1);
  11289. GGML_ASSERT(node->src1->ne[2] == 1);
  11290. GGML_ASSERT(node->src1->ne[3] == 1);
  11291. size_t cur = 0;
  11292. const int nk = node->src0->ne[0];
  11293. if (node->src0->type == GGML_TYPE_F16 &&
  11294. node->src1->type == GGML_TYPE_F32) {
  11295. cur = sizeof(ggml_fp16_t)*(
  11296. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11297. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11298. );
  11299. } else if (node->src0->type == GGML_TYPE_F32 &&
  11300. node->src1->type == GGML_TYPE_F32) {
  11301. cur = sizeof(float)*(
  11302. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11303. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11304. );
  11305. } else {
  11306. GGML_ASSERT(false);
  11307. }
  11308. work_size = MAX(work_size, cur);
  11309. } break;
  11310. case GGML_OP_FLASH_ATTN:
  11311. {
  11312. node->n_tasks = n_threads;
  11313. size_t cur = 0;
  11314. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11315. if (node->src1->type == GGML_TYPE_F32) {
  11316. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11317. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11318. }
  11319. if (node->src1->type == GGML_TYPE_F16) {
  11320. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11321. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11322. }
  11323. work_size = MAX(work_size, cur);
  11324. } break;
  11325. case GGML_OP_FLASH_FF:
  11326. {
  11327. node->n_tasks = n_threads;
  11328. size_t cur = 0;
  11329. if (node->src1->type == GGML_TYPE_F32) {
  11330. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11331. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11332. }
  11333. if (node->src1->type == GGML_TYPE_F16) {
  11334. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11335. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11336. }
  11337. work_size = MAX(work_size, cur);
  11338. } break;
  11339. case GGML_OP_MAP_UNARY:
  11340. case GGML_OP_MAP_BINARY:
  11341. {
  11342. node->n_tasks = 1;
  11343. } break;
  11344. case GGML_OP_NONE:
  11345. {
  11346. node->n_tasks = 1;
  11347. } break;
  11348. case GGML_OP_COUNT:
  11349. {
  11350. GGML_ASSERT(false);
  11351. } break;
  11352. }
  11353. }
  11354. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11355. GGML_ASSERT(false); // TODO: better handling
  11356. }
  11357. if (work_size > 0 && cgraph->work == NULL) {
  11358. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11359. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11360. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11361. }
  11362. }
  11363. const int64_t perf_start_cycles = ggml_perf_cycles();
  11364. const int64_t perf_start_time_us = ggml_perf_time_us();
  11365. for (int i = 0; i < cgraph->n_nodes; i++) {
  11366. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11367. struct ggml_tensor * node = cgraph->nodes[i];
  11368. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11369. //if (node->grad == NULL && node->perf_runs > 0) {
  11370. // continue;
  11371. //}
  11372. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11373. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11374. // INIT
  11375. struct ggml_compute_params params = {
  11376. /*.type =*/ GGML_TASK_INIT,
  11377. /*.ith =*/ 0,
  11378. /*.nth =*/ node->n_tasks,
  11379. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11380. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11381. };
  11382. ggml_compute_forward(&params, node);
  11383. // COMPUTE
  11384. if (node->n_tasks > 1) {
  11385. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11386. atomic_store(&state_shared.has_work, false);
  11387. }
  11388. while (atomic_load(&state_shared.has_work)) {
  11389. ggml_lock_lock (&state_shared.spin);
  11390. ggml_lock_unlock(&state_shared.spin);
  11391. }
  11392. // launch thread pool
  11393. for (int j = 0; j < n_threads - 1; j++) {
  11394. workers[j].params = (struct ggml_compute_params) {
  11395. .type = GGML_TASK_COMPUTE,
  11396. .ith = j + 1,
  11397. .nth = node->n_tasks,
  11398. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11399. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11400. };
  11401. workers[j].node = node;
  11402. }
  11403. atomic_fetch_sub(&state_shared.n_ready, 1);
  11404. while (atomic_load(&state_shared.n_ready) > 0) {
  11405. ggml_lock_lock (&state_shared.spin);
  11406. ggml_lock_unlock(&state_shared.spin);
  11407. }
  11408. atomic_store(&state_shared.has_work, true);
  11409. }
  11410. params.type = GGML_TASK_COMPUTE;
  11411. ggml_compute_forward(&params, node);
  11412. // wait for thread pool
  11413. if (node->n_tasks > 1) {
  11414. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11415. atomic_store(&state_shared.has_work, false);
  11416. }
  11417. while (atomic_load(&state_shared.has_work)) {
  11418. ggml_lock_lock (&state_shared.spin);
  11419. ggml_lock_unlock(&state_shared.spin);
  11420. }
  11421. atomic_fetch_sub(&state_shared.n_ready, 1);
  11422. while (atomic_load(&state_shared.n_ready) != 0) {
  11423. ggml_lock_lock (&state_shared.spin);
  11424. ggml_lock_unlock(&state_shared.spin);
  11425. }
  11426. }
  11427. // FINALIZE
  11428. if (node->n_tasks > 1) {
  11429. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11430. atomic_store(&state_shared.has_work, false);
  11431. }
  11432. while (atomic_load(&state_shared.has_work)) {
  11433. ggml_lock_lock (&state_shared.spin);
  11434. ggml_lock_unlock(&state_shared.spin);
  11435. }
  11436. // launch thread pool
  11437. for (int j = 0; j < n_threads - 1; j++) {
  11438. workers[j].params = (struct ggml_compute_params) {
  11439. .type = GGML_TASK_FINALIZE,
  11440. .ith = j + 1,
  11441. .nth = node->n_tasks,
  11442. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11443. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11444. };
  11445. workers[j].node = node;
  11446. }
  11447. atomic_fetch_sub(&state_shared.n_ready, 1);
  11448. while (atomic_load(&state_shared.n_ready) > 0) {
  11449. ggml_lock_lock (&state_shared.spin);
  11450. ggml_lock_unlock(&state_shared.spin);
  11451. }
  11452. atomic_store(&state_shared.has_work, true);
  11453. }
  11454. params.type = GGML_TASK_FINALIZE;
  11455. ggml_compute_forward(&params, node);
  11456. // wait for thread pool
  11457. if (node->n_tasks > 1) {
  11458. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11459. atomic_store(&state_shared.has_work, false);
  11460. }
  11461. while (atomic_load(&state_shared.has_work)) {
  11462. ggml_lock_lock (&state_shared.spin);
  11463. ggml_lock_unlock(&state_shared.spin);
  11464. }
  11465. atomic_fetch_sub(&state_shared.n_ready, 1);
  11466. while (atomic_load(&state_shared.n_ready) != 0) {
  11467. ggml_lock_lock (&state_shared.spin);
  11468. ggml_lock_unlock(&state_shared.spin);
  11469. }
  11470. }
  11471. // performance stats (node)
  11472. {
  11473. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11474. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11475. node->perf_runs++;
  11476. node->perf_cycles += perf_cycles_cur;
  11477. node->perf_time_us += perf_time_us_cur;
  11478. }
  11479. }
  11480. // join thread pool
  11481. if (n_threads > 1) {
  11482. atomic_store(&state_shared.stop, true);
  11483. atomic_store(&state_shared.has_work, true);
  11484. for (int j = 0; j < n_threads - 1; j++) {
  11485. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11486. GGML_ASSERT(rc == 0);
  11487. UNUSED(rc);
  11488. }
  11489. ggml_lock_destroy(&state_shared.spin);
  11490. }
  11491. // performance stats (graph)
  11492. {
  11493. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11494. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11495. cgraph->perf_runs++;
  11496. cgraph->perf_cycles += perf_cycles_cur;
  11497. cgraph->perf_time_us += perf_time_us_cur;
  11498. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11499. __func__, cgraph->perf_runs,
  11500. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11501. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11502. (double) perf_time_us_cur / 1000.0,
  11503. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11504. }
  11505. }
  11506. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11507. for (int i = 0; i < cgraph->n_nodes; i++) {
  11508. struct ggml_tensor * grad = cgraph->grads[i];
  11509. if (grad) {
  11510. ggml_set_zero(grad);
  11511. }
  11512. }
  11513. }
  11514. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  11515. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  11516. GGML_PRINT("=== GRAPH ===\n");
  11517. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  11518. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  11519. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  11520. for (int i = 0; i < cgraph->n_nodes; i++) {
  11521. struct ggml_tensor * node = cgraph->nodes[i];
  11522. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  11523. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  11524. i,
  11525. node->ne[0], node->ne[1], node->ne[2],
  11526. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  11527. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  11528. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  11529. (double) node->perf_time_us / 1000.0,
  11530. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  11531. }
  11532. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  11533. for (int i = 0; i < cgraph->n_leafs; i++) {
  11534. struct ggml_tensor * node = cgraph->leafs[i];
  11535. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  11536. i,
  11537. node->ne[0], node->ne[1],
  11538. GGML_OP_LABEL[node->op]);
  11539. }
  11540. for (int i = 0; i < GGML_OP_COUNT; i++) {
  11541. if (perf_total_per_op_us[i] == 0) {
  11542. continue;
  11543. }
  11544. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  11545. }
  11546. GGML_PRINT("========================================\n");
  11547. }
  11548. // check if node is part of the graph
  11549. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11550. if (cgraph == NULL) {
  11551. return true;
  11552. }
  11553. for (int i = 0; i < cgraph->n_nodes; i++) {
  11554. if (cgraph->nodes[i] == node) {
  11555. return true;
  11556. }
  11557. }
  11558. return false;
  11559. }
  11560. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11561. for (int i = 0; i < cgraph->n_nodes; i++) {
  11562. struct ggml_tensor * parent = cgraph->nodes[i];
  11563. if (parent->grad == node) {
  11564. return parent;
  11565. }
  11566. }
  11567. return NULL;
  11568. }
  11569. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  11570. char color[16];
  11571. FILE * fp = fopen(filename, "w");
  11572. GGML_ASSERT(fp);
  11573. fprintf(fp, "digraph G {\n");
  11574. fprintf(fp, " newrank = true;\n");
  11575. fprintf(fp, " rankdir = LR;\n");
  11576. for (int i = 0; i < gb->n_nodes; i++) {
  11577. struct ggml_tensor * node = gb->nodes[i];
  11578. if (ggml_graph_get_parent(gb, node) != NULL) {
  11579. continue;
  11580. }
  11581. if (node->is_param) {
  11582. snprintf(color, sizeof(color), "yellow");
  11583. } else if (node->grad) {
  11584. if (ggml_graph_find(gf, node)) {
  11585. snprintf(color, sizeof(color), "green");
  11586. } else {
  11587. snprintf(color, sizeof(color), "lightblue");
  11588. }
  11589. } else {
  11590. snprintf(color, sizeof(color), "white");
  11591. }
  11592. fprintf(fp, " \"%p\" [ "
  11593. "style = filled; fillcolor = %s; shape = record; "
  11594. "label=\"",
  11595. (void *) node, color);
  11596. if (strlen(node->name) > 0) {
  11597. fprintf(fp, "%s |", node->name);
  11598. }
  11599. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  11600. i, node->ne[0], node->ne[1],
  11601. GGML_OP_SYMBOL[node->op]);
  11602. if (node->grad) {
  11603. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  11604. } else {
  11605. fprintf(fp, "\"; ]\n");
  11606. }
  11607. }
  11608. for (int i = 0; i < gb->n_leafs; i++) {
  11609. struct ggml_tensor * node = gb->leafs[i];
  11610. snprintf(color, sizeof(color), "pink");
  11611. fprintf(fp, " \"%p\" [ "
  11612. "style = filled; fillcolor = %s; shape = record; "
  11613. "label=\"<x>",
  11614. (void *) node, color);
  11615. if (strlen(node->name) > 0) {
  11616. fprintf(fp, "%s | ", node->name);
  11617. }
  11618. if (ggml_nelements(node) == 1) {
  11619. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  11620. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  11621. }
  11622. else {
  11623. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  11624. }
  11625. }
  11626. else {
  11627. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  11628. }
  11629. fprintf(fp, "\"; ]\n");
  11630. }
  11631. for (int i = 0; i < gb->n_nodes; i++) {
  11632. struct ggml_tensor * node = gb->nodes[i];
  11633. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  11634. if (node->src0) {
  11635. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  11636. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  11637. parent0 ? (void *) parent0 : (void *) node->src0,
  11638. parent0 ? "g" : "x",
  11639. parent ? (void *) parent : (void *) node,
  11640. parent ? "g" : "x",
  11641. parent ? "empty" : "vee",
  11642. parent ? "dashed" : "solid");
  11643. }
  11644. if (node->src1) {
  11645. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  11646. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  11647. parent1 ? (void *) parent1 : (void *) node->src1,
  11648. parent1 ? "g" : "x",
  11649. parent ? (void *) parent : (void *) node,
  11650. parent ? "g" : "x",
  11651. parent ? "empty" : "vee",
  11652. parent ? "dashed" : "solid");
  11653. }
  11654. }
  11655. for (int i = 0; i < gb->n_leafs; i++) {
  11656. struct ggml_tensor * node = gb->leafs[i];
  11657. if (node->src0) {
  11658. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  11659. (void *) node->src0, "x",
  11660. (void *) node, "x");
  11661. }
  11662. if (node->src1) {
  11663. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  11664. (void *) node->src1, "x",
  11665. (void *) node, "x");
  11666. }
  11667. }
  11668. fprintf(fp, "}\n");
  11669. fclose(fp);
  11670. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  11671. }
  11672. ////////////////////////////////////////////////////////////////////////////////
  11673. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  11674. int i = 0;
  11675. for (int p = 0; p < np; ++p) {
  11676. const int64_t ne = ggml_nelements(ps[p]) ;
  11677. // TODO: add function to set tensor from array
  11678. for (int64_t j = 0; j < ne; ++j) {
  11679. ggml_set_f32_1d(ps[p], j, x[i++]);
  11680. }
  11681. }
  11682. }
  11683. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  11684. int i = 0;
  11685. for (int p = 0; p < np; ++p) {
  11686. const int64_t ne = ggml_nelements(ps[p]) ;
  11687. // TODO: add function to get all elements at once
  11688. for (int64_t j = 0; j < ne; ++j) {
  11689. x[i++] = ggml_get_f32_1d(ps[p], j);
  11690. }
  11691. }
  11692. }
  11693. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  11694. int i = 0;
  11695. for (int p = 0; p < np; ++p) {
  11696. const int64_t ne = ggml_nelements(ps[p]) ;
  11697. // TODO: add function to get all elements at once
  11698. for (int64_t j = 0; j < ne; ++j) {
  11699. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  11700. }
  11701. }
  11702. }
  11703. //
  11704. // ADAM
  11705. //
  11706. // ref: https://arxiv.org/pdf/1412.6980.pdf
  11707. //
  11708. static enum ggml_opt_result ggml_opt_adam(
  11709. struct ggml_context * ctx,
  11710. struct ggml_opt_params params,
  11711. struct ggml_tensor * f,
  11712. struct ggml_cgraph * gf,
  11713. struct ggml_cgraph * gb) {
  11714. GGML_ASSERT(ggml_is_scalar(f));
  11715. gf->n_threads = params.n_threads;
  11716. gb->n_threads = params.n_threads;
  11717. // these will store the parameters we want to optimize
  11718. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  11719. int np = 0;
  11720. int nx = 0;
  11721. for (int i = 0; i < gf->n_nodes; ++i) {
  11722. if (gf->nodes[i]->is_param) {
  11723. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  11724. GGML_ASSERT(np < GGML_MAX_PARAMS);
  11725. ps[np++] = gf->nodes[i];
  11726. nx += ggml_nelements(gf->nodes[i]);
  11727. }
  11728. }
  11729. // constants
  11730. const float alpha = params.adam.alpha;
  11731. const float beta1 = params.adam.beta1;
  11732. const float beta2 = params.adam.beta2;
  11733. const float eps = params.adam.eps;
  11734. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  11735. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  11736. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  11737. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  11738. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  11739. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  11740. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  11741. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  11742. // initialize
  11743. ggml_vec_set_f32(nx, m, 0.0f);
  11744. ggml_vec_set_f32(nx, v, 0.0f);
  11745. // update view
  11746. ggml_opt_get_params(np, ps, x);
  11747. // compute the function value
  11748. ggml_graph_reset (gf);
  11749. ggml_set_f32 (f->grad, 1.0f);
  11750. ggml_graph_compute(ctx, gb);
  11751. float fx_prev = ggml_get_f32_1d(f, 0);
  11752. if (pf) {
  11753. pf[0] = fx_prev;
  11754. }
  11755. int n_no_improvement = 0;
  11756. float fx_best = fx_prev;
  11757. // run the optimizer
  11758. for (int t = 0; t < params.adam.n_iter; ++t) {
  11759. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  11760. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  11761. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  11762. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  11763. for (int i = 0; i < np; ++i) {
  11764. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  11765. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  11766. }
  11767. const int64_t t_start_wall = ggml_time_us();
  11768. const int64_t t_start_cpu = ggml_cycles();
  11769. UNUSED(t_start_wall);
  11770. UNUSED(t_start_cpu);
  11771. {
  11772. // update the gradient
  11773. ggml_opt_get_grad(np, ps, g1);
  11774. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  11775. ggml_vec_scale_f32(nx, m, beta1);
  11776. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  11777. // g2 = g1^2
  11778. ggml_vec_sqr_f32 (nx, g2, g1);
  11779. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  11780. ggml_vec_scale_f32(nx, v, beta2);
  11781. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  11782. // m^hat = m_t / (1 - beta1^t)
  11783. // v^hat = v_t / (1 - beta2^t)
  11784. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  11785. ggml_vec_cpy_f32 (nx, mh, m);
  11786. ggml_vec_cpy_f32 (nx, vh, v);
  11787. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  11788. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  11789. ggml_vec_sqrt_f32 (nx, vh, vh);
  11790. ggml_vec_acc1_f32 (nx, vh, eps);
  11791. ggml_vec_div_f32 (nx, mh, mh, vh);
  11792. ggml_vec_sub_f32 (nx, x, x, mh);
  11793. // update the parameters
  11794. ggml_opt_set_params(np, ps, x);
  11795. }
  11796. ggml_graph_reset (gf);
  11797. ggml_set_f32 (f->grad, 1.0f);
  11798. ggml_graph_compute(ctx, gb);
  11799. const float fx = ggml_get_f32_1d(f, 0);
  11800. // check convergence
  11801. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  11802. GGML_PRINT_DEBUG("converged\n");
  11803. return GGML_OPT_OK;
  11804. }
  11805. // delta-based convergence test
  11806. if (pf != NULL) {
  11807. // need at least params.past iterations to start checking for convergence
  11808. if (params.past <= t) {
  11809. const float rate = (pf[t%params.past] - fx)/fx;
  11810. if (fabsf(rate) < params.delta) {
  11811. return GGML_OPT_OK;
  11812. }
  11813. }
  11814. pf[t%params.past] = fx;
  11815. }
  11816. // check for improvement
  11817. if (params.max_no_improvement > 0) {
  11818. if (fx_best > fx) {
  11819. fx_best = fx;
  11820. n_no_improvement = 0;
  11821. } else {
  11822. ++n_no_improvement;
  11823. if (n_no_improvement >= params.max_no_improvement) {
  11824. return GGML_OPT_OK;
  11825. }
  11826. }
  11827. }
  11828. fx_prev = fx;
  11829. {
  11830. const int64_t t_end_cpu = ggml_cycles();
  11831. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  11832. UNUSED(t_end_cpu);
  11833. const int64_t t_end_wall = ggml_time_us();
  11834. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  11835. UNUSED(t_end_wall);
  11836. }
  11837. }
  11838. return GGML_OPT_DID_NOT_CONVERGE;
  11839. }
  11840. //
  11841. // L-BFGS
  11842. //
  11843. // the L-BFGS implementation below is based on the following implementation:
  11844. //
  11845. // https://github.com/chokkan/liblbfgs
  11846. //
  11847. struct ggml_lbfgs_iteration_data {
  11848. float alpha;
  11849. float ys;
  11850. float * s;
  11851. float * y;
  11852. };
  11853. static enum ggml_opt_result linesearch_backtracking(
  11854. struct ggml_context * ctx,
  11855. const struct ggml_opt_params * params,
  11856. int nx,
  11857. float * x,
  11858. float * fx,
  11859. float * g,
  11860. float * d,
  11861. float * step,
  11862. const float * xp,
  11863. struct ggml_tensor * f,
  11864. struct ggml_cgraph * gf,
  11865. struct ggml_cgraph * gb,
  11866. const int np,
  11867. struct ggml_tensor * ps[]) {
  11868. int count = 0;
  11869. float width = 0.0f;
  11870. float dg = 0.0f;
  11871. float finit = 0.0f;
  11872. float dginit = 0.0f;
  11873. float dgtest = 0.0f;
  11874. const float dec = 0.5f;
  11875. const float inc = 2.1f;
  11876. if (*step <= 0.f) {
  11877. return GGML_LINESEARCH_INVALID_PARAMETERS;
  11878. }
  11879. // compute the initial gradient in the search direction
  11880. ggml_vec_dot_f32(nx, &dginit, g, d);
  11881. // make sure that d points to a descent direction
  11882. if (0 < dginit) {
  11883. return GGML_LINESEARCH_FAIL;
  11884. }
  11885. // initialize local variables
  11886. finit = *fx;
  11887. dgtest = params->lbfgs.ftol*dginit;
  11888. while (true) {
  11889. ggml_vec_cpy_f32(nx, x, xp);
  11890. ggml_vec_mad_f32(nx, x, d, *step);
  11891. // evaluate the function and gradient values
  11892. {
  11893. ggml_opt_set_params(np, ps, x);
  11894. ggml_graph_reset (gf);
  11895. ggml_set_f32 (f->grad, 1.0f);
  11896. ggml_graph_compute(ctx, gb);
  11897. ggml_opt_get_grad(np, ps, g);
  11898. *fx = ggml_get_f32_1d(f, 0);
  11899. }
  11900. ++count;
  11901. if (*fx > finit + (*step)*dgtest) {
  11902. width = dec;
  11903. } else {
  11904. // Armijo condition is satisfied
  11905. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  11906. return count;
  11907. }
  11908. ggml_vec_dot_f32(nx, &dg, g, d);
  11909. // check the Wolfe condition
  11910. if (dg < params->lbfgs.wolfe * dginit) {
  11911. width = inc;
  11912. } else {
  11913. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  11914. // regular Wolfe conditions
  11915. return count;
  11916. }
  11917. if(dg > -params->lbfgs.wolfe*dginit) {
  11918. width = dec;
  11919. } else {
  11920. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  11921. return count;
  11922. }
  11923. return count;
  11924. }
  11925. }
  11926. if (*step < params->lbfgs.min_step) {
  11927. return GGML_LINESEARCH_MINIMUM_STEP;
  11928. }
  11929. if (*step > params->lbfgs.max_step) {
  11930. return GGML_LINESEARCH_MAXIMUM_STEP;
  11931. }
  11932. if (params->lbfgs.max_linesearch <= count) {
  11933. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  11934. }
  11935. (*step) *= width;
  11936. }
  11937. return GGML_LINESEARCH_FAIL;
  11938. }
  11939. static enum ggml_opt_result ggml_opt_lbfgs(
  11940. struct ggml_context * ctx,
  11941. struct ggml_opt_params params,
  11942. struct ggml_tensor * f,
  11943. struct ggml_cgraph * gf,
  11944. struct ggml_cgraph * gb) {
  11945. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  11946. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  11947. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  11948. return GGML_OPT_INVALID_WOLFE;
  11949. }
  11950. }
  11951. gf->n_threads = params.n_threads;
  11952. gb->n_threads = params.n_threads;
  11953. const int m = params.lbfgs.m;
  11954. // these will store the parameters we want to optimize
  11955. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  11956. int np = 0;
  11957. int nx = 0;
  11958. for (int i = 0; i < gf->n_nodes; ++i) {
  11959. if (gf->nodes[i]->is_param) {
  11960. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  11961. GGML_ASSERT(np < GGML_MAX_PARAMS);
  11962. ps[np++] = gf->nodes[i];
  11963. nx += ggml_nelements(gf->nodes[i]);
  11964. }
  11965. }
  11966. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  11967. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  11968. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  11969. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  11970. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  11971. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  11972. float fx = 0.0f; // cost function value
  11973. float xnorm = 0.0f; // ||x||
  11974. float gnorm = 0.0f; // ||g||
  11975. float step = 0.0f;
  11976. // initialize x from the graph nodes
  11977. ggml_opt_get_params(np, ps, x);
  11978. // the L-BFGS memory
  11979. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  11980. for (int i = 0; i < m; ++i) {
  11981. lm[i].alpha = 0.0f;
  11982. lm[i].ys = 0.0f;
  11983. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  11984. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  11985. }
  11986. // evaluate the function value and its gradient
  11987. {
  11988. ggml_opt_set_params(np, ps, x);
  11989. ggml_graph_reset (gf);
  11990. ggml_set_f32 (f->grad, 1.0f);
  11991. ggml_graph_compute(ctx, gb);
  11992. ggml_opt_get_grad(np, ps, g);
  11993. fx = ggml_get_f32_1d(f, 0);
  11994. }
  11995. if (pf) {
  11996. pf[0] = fx;
  11997. }
  11998. float fx_best = fx;
  11999. // search direction = -gradient
  12000. ggml_vec_neg_f32(nx, d, g);
  12001. // ||x||, ||g||
  12002. ggml_vec_norm_f32(nx, &xnorm, x);
  12003. ggml_vec_norm_f32(nx, &gnorm, g);
  12004. if (xnorm < 1.0f) {
  12005. xnorm = 1.0f;
  12006. }
  12007. // already optimized
  12008. if (gnorm/xnorm <= params.lbfgs.eps) {
  12009. return GGML_OPT_OK;
  12010. }
  12011. // initial step
  12012. ggml_vec_norm_inv_f32(nx, &step, d);
  12013. int j = 0;
  12014. int k = 1;
  12015. int ls = 0;
  12016. int end = 0;
  12017. int bound = 0;
  12018. int n_no_improvement = 0;
  12019. float ys = 0.0f;
  12020. float yy = 0.0f;
  12021. float beta = 0.0f;
  12022. while (true) {
  12023. // store the current position and gradient vectors
  12024. ggml_vec_cpy_f32(nx, xp, x);
  12025. ggml_vec_cpy_f32(nx, gp, g);
  12026. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12027. if (ls < 0) {
  12028. // linesearch failed - go back to the previous point and return
  12029. ggml_vec_cpy_f32(nx, x, xp);
  12030. ggml_vec_cpy_f32(nx, g, gp);
  12031. return ls;
  12032. }
  12033. ggml_vec_norm_f32(nx, &xnorm, x);
  12034. ggml_vec_norm_f32(nx, &gnorm, g);
  12035. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12036. if (xnorm < 1.0f) {
  12037. xnorm = 1.0f;
  12038. }
  12039. if (gnorm/xnorm <= params.lbfgs.eps) {
  12040. // converged
  12041. return GGML_OPT_OK;
  12042. }
  12043. // delta-based convergence test
  12044. if (pf != NULL) {
  12045. // need at least params.past iterations to start checking for convergence
  12046. if (params.past <= k) {
  12047. const float rate = (pf[k%params.past] - fx)/fx;
  12048. if (fabsf(rate) < params.delta) {
  12049. return GGML_OPT_OK;
  12050. }
  12051. }
  12052. pf[k%params.past] = fx;
  12053. }
  12054. // check for improvement
  12055. if (params.max_no_improvement > 0) {
  12056. if (fx < fx_best) {
  12057. fx_best = fx;
  12058. n_no_improvement = 0;
  12059. } else {
  12060. n_no_improvement++;
  12061. if (n_no_improvement >= params.max_no_improvement) {
  12062. return GGML_OPT_OK;
  12063. }
  12064. }
  12065. }
  12066. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12067. // reached the maximum number of iterations
  12068. return GGML_OPT_DID_NOT_CONVERGE;
  12069. }
  12070. // update vectors s and y:
  12071. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12072. // y_{k+1} = g_{k+1} - g_{k}.
  12073. //
  12074. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12075. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12076. // compute scalars ys and yy:
  12077. // ys = y^t \cdot s -> 1 / \rho.
  12078. // yy = y^t \cdot y.
  12079. //
  12080. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12081. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12082. lm[end].ys = ys;
  12083. // find new search direction
  12084. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12085. bound = (m <= k) ? m : k;
  12086. k++;
  12087. end = (end + 1)%m;
  12088. // initialize search direction with -g
  12089. ggml_vec_neg_f32(nx, d, g);
  12090. j = end;
  12091. for (int i = 0; i < bound; ++i) {
  12092. j = (j + m - 1) % m;
  12093. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12094. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12095. lm[j].alpha /= lm[j].ys;
  12096. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12097. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12098. }
  12099. ggml_vec_scale_f32(nx, d, ys/yy);
  12100. for (int i = 0; i < bound; ++i) {
  12101. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12102. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12103. beta /= lm[j].ys;
  12104. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12105. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12106. j = (j + 1)%m;
  12107. }
  12108. step = 1.0;
  12109. }
  12110. return GGML_OPT_DID_NOT_CONVERGE;
  12111. }
  12112. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12113. struct ggml_opt_params result;
  12114. switch (type) {
  12115. case GGML_OPT_ADAM:
  12116. {
  12117. result = (struct ggml_opt_params) {
  12118. .type = GGML_OPT_ADAM,
  12119. .n_threads = 1,
  12120. .past = 0,
  12121. .delta = 1e-5f,
  12122. .max_no_improvement = 100,
  12123. .print_forward_graph = true,
  12124. .print_backward_graph = true,
  12125. .adam = {
  12126. .n_iter = 10000,
  12127. .alpha = 0.001f,
  12128. .beta1 = 0.9f,
  12129. .beta2 = 0.999f,
  12130. .eps = 1e-8f,
  12131. .eps_f = 1e-5f,
  12132. .eps_g = 1e-3f,
  12133. },
  12134. };
  12135. } break;
  12136. case GGML_OPT_LBFGS:
  12137. {
  12138. result = (struct ggml_opt_params) {
  12139. .type = GGML_OPT_LBFGS,
  12140. .n_threads = 1,
  12141. .past = 0,
  12142. .delta = 1e-5f,
  12143. .max_no_improvement = 0,
  12144. .print_forward_graph = true,
  12145. .print_backward_graph = true,
  12146. .lbfgs = {
  12147. .m = 6,
  12148. .n_iter = 100,
  12149. .max_linesearch = 20,
  12150. .eps = 1e-5f,
  12151. .ftol = 1e-4f,
  12152. .wolfe = 0.9f,
  12153. .min_step = 1e-20f,
  12154. .max_step = 1e+20f,
  12155. .linesearch = GGML_LINESEARCH_DEFAULT,
  12156. },
  12157. };
  12158. } break;
  12159. }
  12160. return result;
  12161. }
  12162. enum ggml_opt_result ggml_opt(
  12163. struct ggml_context * ctx,
  12164. struct ggml_opt_params params,
  12165. struct ggml_tensor * f) {
  12166. bool free_ctx = false;
  12167. if (ctx == NULL) {
  12168. struct ggml_init_params params_ctx = {
  12169. .mem_size = 16*1024*1024,
  12170. .mem_buffer = NULL,
  12171. .no_alloc = false,
  12172. };
  12173. ctx = ggml_init(params_ctx);
  12174. if (ctx == NULL) {
  12175. return GGML_OPT_NO_CONTEXT;
  12176. }
  12177. free_ctx = true;
  12178. }
  12179. enum ggml_opt_result result = GGML_OPT_OK;
  12180. // build forward + backward compute graphs
  12181. struct ggml_cgraph gf = ggml_build_forward (f);
  12182. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12183. switch (params.type) {
  12184. case GGML_OPT_ADAM:
  12185. {
  12186. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12187. } break;
  12188. case GGML_OPT_LBFGS:
  12189. {
  12190. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12191. } break;
  12192. }
  12193. if (params.print_forward_graph) {
  12194. ggml_graph_print (&gf);
  12195. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12196. }
  12197. if (params.print_backward_graph) {
  12198. ggml_graph_print (&gb);
  12199. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12200. }
  12201. if (free_ctx) {
  12202. ggml_free(ctx);
  12203. }
  12204. return result;
  12205. }
  12206. ////////////////////////////////////////////////////////////////////////////////
  12207. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12208. assert(k % QK4_0 == 0);
  12209. const int nb = k / QK4_0;
  12210. for (int b = 0; b < n; b += k) {
  12211. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12212. quantize_row_q4_0_reference(src + b, y, k);
  12213. for (int i = 0; i < nb; i++) {
  12214. for (int j = 0; j < QK4_0; j += 2) {
  12215. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12216. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12217. hist[vi0]++;
  12218. hist[vi1]++;
  12219. }
  12220. }
  12221. }
  12222. return (n/QK4_0*sizeof(block_q4_0));
  12223. }
  12224. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12225. assert(k % QK4_1 == 0);
  12226. const int nb = k / QK4_1;
  12227. for (int b = 0; b < n; b += k) {
  12228. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  12229. quantize_row_q4_1_reference(src + b, y, k);
  12230. for (int i = 0; i < nb; i++) {
  12231. for (int j = 0; j < QK4_1; j += 2) {
  12232. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12233. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12234. hist[vi0]++;
  12235. hist[vi1]++;
  12236. }
  12237. }
  12238. }
  12239. return (n/QK4_1*sizeof(block_q4_1));
  12240. }
  12241. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12242. assert(k % QK5_0 == 0);
  12243. const int nb = k / QK5_0;
  12244. for (int b = 0; b < n; b += k) {
  12245. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  12246. quantize_row_q5_0_reference(src + b, y, k);
  12247. for (int i = 0; i < nb; i++) {
  12248. uint32_t qh;
  12249. memcpy(&qh, &y[i].qh, sizeof(qh));
  12250. for (int j = 0; j < QK5_0; j += 2) {
  12251. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12252. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12253. // cast to 16 bins
  12254. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12255. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12256. hist[vi0]++;
  12257. hist[vi1]++;
  12258. }
  12259. }
  12260. }
  12261. return (n/QK5_0*sizeof(block_q5_0));
  12262. }
  12263. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12264. assert(k % QK5_1 == 0);
  12265. const int nb = k / QK5_1;
  12266. for (int b = 0; b < n; b += k) {
  12267. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  12268. quantize_row_q5_1_reference(src + b, y, k);
  12269. for (int i = 0; i < nb; i++) {
  12270. uint32_t qh;
  12271. memcpy(&qh, &y[i].qh, sizeof(qh));
  12272. for (int j = 0; j < QK5_1; j += 2) {
  12273. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12274. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12275. // cast to 16 bins
  12276. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12277. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12278. hist[vi0]++;
  12279. hist[vi1]++;
  12280. }
  12281. }
  12282. }
  12283. return (n/QK5_1*sizeof(block_q5_1));
  12284. }
  12285. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12286. assert(k % QK8_0 == 0);
  12287. const int nb = k / QK8_0;
  12288. for (int b = 0; b < n; b += k) {
  12289. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  12290. quantize_row_q8_0_reference(src + b, y, k);
  12291. for (int i = 0; i < nb; i++) {
  12292. for (int j = 0; j < QK8_0; ++j) {
  12293. const int8_t vi = y[i].qs[j];
  12294. hist[vi/16 + 8]++;
  12295. }
  12296. }
  12297. }
  12298. return (n/QK8_0*sizeof(block_q8_0));
  12299. }
  12300. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  12301. size_t result = 0;
  12302. switch (type) {
  12303. case GGML_TYPE_Q4_0:
  12304. {
  12305. GGML_ASSERT(start % QK4_0 == 0);
  12306. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  12307. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  12308. } break;
  12309. case GGML_TYPE_Q4_1:
  12310. {
  12311. GGML_ASSERT(start % QK4_1 == 0);
  12312. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  12313. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  12314. } break;
  12315. case GGML_TYPE_Q5_0:
  12316. {
  12317. GGML_ASSERT(start % QK5_0 == 0);
  12318. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  12319. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  12320. } break;
  12321. case GGML_TYPE_Q5_1:
  12322. {
  12323. GGML_ASSERT(start % QK5_1 == 0);
  12324. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  12325. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  12326. } break;
  12327. case GGML_TYPE_Q8_0:
  12328. {
  12329. GGML_ASSERT(start % QK8_0 == 0);
  12330. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  12331. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  12332. } break;
  12333. default:
  12334. assert(false);
  12335. }
  12336. return result;
  12337. }
  12338. ////////////////////////////////////////////////////////////////////////////////
  12339. int ggml_cpu_has_avx(void) {
  12340. #if defined(__AVX__)
  12341. return 1;
  12342. #else
  12343. return 0;
  12344. #endif
  12345. }
  12346. int ggml_cpu_has_avx2(void) {
  12347. #if defined(__AVX2__)
  12348. return 1;
  12349. #else
  12350. return 0;
  12351. #endif
  12352. }
  12353. int ggml_cpu_has_avx512(void) {
  12354. #if defined(__AVX512F__)
  12355. return 1;
  12356. #else
  12357. return 0;
  12358. #endif
  12359. }
  12360. int ggml_cpu_has_avx512_vbmi(void) {
  12361. #if defined(__AVX512VBMI__)
  12362. return 1;
  12363. #else
  12364. return 0;
  12365. #endif
  12366. }
  12367. int ggml_cpu_has_avx512_vnni(void) {
  12368. #if defined(__AVX512VNNI__)
  12369. return 1;
  12370. #else
  12371. return 0;
  12372. #endif
  12373. }
  12374. int ggml_cpu_has_fma(void) {
  12375. #if defined(__FMA__)
  12376. return 1;
  12377. #else
  12378. return 0;
  12379. #endif
  12380. }
  12381. int ggml_cpu_has_neon(void) {
  12382. #if defined(__ARM_NEON)
  12383. return 1;
  12384. #else
  12385. return 0;
  12386. #endif
  12387. }
  12388. int ggml_cpu_has_arm_fma(void) {
  12389. #if defined(__ARM_FEATURE_FMA)
  12390. return 1;
  12391. #else
  12392. return 0;
  12393. #endif
  12394. }
  12395. int ggml_cpu_has_f16c(void) {
  12396. #if defined(__F16C__)
  12397. return 1;
  12398. #else
  12399. return 0;
  12400. #endif
  12401. }
  12402. int ggml_cpu_has_fp16_va(void) {
  12403. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  12404. return 1;
  12405. #else
  12406. return 0;
  12407. #endif
  12408. }
  12409. int ggml_cpu_has_wasm_simd(void) {
  12410. #if defined(__wasm_simd128__)
  12411. return 1;
  12412. #else
  12413. return 0;
  12414. #endif
  12415. }
  12416. int ggml_cpu_has_blas(void) {
  12417. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  12418. return 1;
  12419. #else
  12420. return 0;
  12421. #endif
  12422. }
  12423. int ggml_cpu_has_cublas(void) {
  12424. #if defined(GGML_USE_CUBLAS)
  12425. return 1;
  12426. #else
  12427. return 0;
  12428. #endif
  12429. }
  12430. int ggml_cpu_has_clblast(void) {
  12431. #if defined(GGML_USE_CLBLAST)
  12432. return 1;
  12433. #else
  12434. return 0;
  12435. #endif
  12436. }
  12437. int ggml_cpu_has_gpublas(void) {
  12438. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  12439. }
  12440. int ggml_cpu_has_sse3(void) {
  12441. #if defined(__SSE3__)
  12442. return 1;
  12443. #else
  12444. return 0;
  12445. #endif
  12446. }
  12447. int ggml_cpu_has_vsx(void) {
  12448. #if defined(__POWER9_VECTOR__)
  12449. return 1;
  12450. #else
  12451. return 0;
  12452. #endif
  12453. }
  12454. ////////////////////////////////////////////////////////////////////////////////