ggml.c 325 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined _MSC_VER || defined(__MINGW32__)
  25. #if !defined(__MINGW32__)
  26. #include <Windows.h>
  27. #else
  28. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  29. #include <windows.h>
  30. #endif
  31. typedef volatile LONG atomic_int;
  32. typedef atomic_int atomic_bool;
  33. static void atomic_store(atomic_int* ptr, LONG val) {
  34. InterlockedExchange(ptr, val);
  35. }
  36. static LONG atomic_load(atomic_int* ptr) {
  37. return InterlockedCompareExchange(ptr, 0, 0);
  38. }
  39. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  40. return InterlockedExchangeAdd(ptr, inc);
  41. }
  42. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  43. return atomic_fetch_add(ptr, -(dec));
  44. }
  45. typedef HANDLE pthread_t;
  46. typedef DWORD thread_ret_t;
  47. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  48. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  49. if (handle == NULL)
  50. {
  51. return EAGAIN;
  52. }
  53. *out = handle;
  54. return 0;
  55. }
  56. static int pthread_join(pthread_t thread, void* unused) {
  57. return (int) WaitForSingleObject(thread, INFINITE);
  58. }
  59. static int sched_yield (void) {
  60. Sleep (0);
  61. return 0;
  62. }
  63. #else
  64. #include <pthread.h>
  65. #include <stdatomic.h>
  66. typedef void* thread_ret_t;
  67. #endif
  68. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  69. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  70. #ifndef __FMA__
  71. #define __FMA__
  72. #endif
  73. #ifndef __F16C__
  74. #define __F16C__
  75. #endif
  76. #ifndef __SSE3__
  77. #define __SSE3__
  78. #endif
  79. #endif
  80. #ifdef __HAIKU__
  81. #define static_assert(cond, msg) _Static_assert(cond, msg)
  82. #endif
  83. /*#define GGML_PERF*/
  84. #define GGML_DEBUG 0
  85. #define GGML_GELU_FP16
  86. #define GGML_SILU_FP16
  87. #define GGML_SOFT_MAX_UNROLL 4
  88. #define GGML_VEC_DOT_UNROLL 2
  89. #ifdef GGML_USE_ACCELERATE
  90. // uncomment to use vDSP for soft max computation
  91. // note: not sure if it is actually faster
  92. //#define GGML_SOFT_MAX_ACCELERATE
  93. #endif
  94. #if UINTPTR_MAX == 0xFFFFFFFF
  95. #define GGML_MEM_ALIGN 4
  96. #else
  97. #define GGML_MEM_ALIGN 16
  98. #endif
  99. #define UNUSED(x) (void)(x)
  100. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  101. #define GGML_ASSERT(x) \
  102. do { \
  103. if (!(x)) { \
  104. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  105. abort(); \
  106. } \
  107. } while (0)
  108. #ifdef GGML_USE_ACCELERATE
  109. #include <Accelerate/Accelerate.h>
  110. #elif GGML_USE_OPENBLAS
  111. #include <cblas.h>
  112. #endif
  113. #undef MIN
  114. #undef MAX
  115. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  116. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  117. // floating point type used to accumulate sums
  118. typedef double ggml_float;
  119. // 16-bit float
  120. // on Arm, we use __fp16
  121. // on x86, we use uint16_t
  122. #ifdef __ARM_NEON
  123. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  124. //
  125. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  126. //
  127. #include <arm_neon.h>
  128. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  129. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  130. #define GGML_FP16_TO_FP32(x) ((float) (x))
  131. #define GGML_FP32_TO_FP16(x) (x)
  132. #else
  133. #ifdef __wasm_simd128__
  134. #include <wasm_simd128.h>
  135. #else
  136. #ifdef __POWER9_VECTOR__
  137. #include <altivec.h>
  138. #undef bool
  139. #define bool _Bool
  140. #else
  141. #include <immintrin.h>
  142. #endif
  143. #endif
  144. #ifdef __F16C__
  145. #ifdef _MSC_VER
  146. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  147. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  148. #else
  149. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  150. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  151. #endif
  152. #elif defined(__POWER9_VECTOR__)
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  155. /* the inline asm below is about 12% faster than the lookup method */
  156. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  157. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  158. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  159. register float f;
  160. register double d;
  161. __asm__(
  162. "mtfprd %0,%2\n"
  163. "xscvhpdp %0,%0\n"
  164. "frsp %1,%0\n" :
  165. /* temp */ "=d"(d),
  166. /* out */ "=f"(f):
  167. /* in */ "r"(h));
  168. return f;
  169. }
  170. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  171. register double d;
  172. register ggml_fp16_t r;
  173. __asm__( /* xscvdphp can work on double or single precision */
  174. "xscvdphp %0,%2\n"
  175. "mffprd %1,%0\n" :
  176. /* temp */ "=d"(d),
  177. /* out */ "=r"(r):
  178. /* in */ "f"(f));
  179. return r;
  180. }
  181. #else
  182. // FP16 <-> FP32
  183. // ref: https://github.com/Maratyszcza/FP16
  184. static inline float fp32_from_bits(uint32_t w) {
  185. union {
  186. uint32_t as_bits;
  187. float as_value;
  188. } fp32;
  189. fp32.as_bits = w;
  190. return fp32.as_value;
  191. }
  192. static inline uint32_t fp32_to_bits(float f) {
  193. union {
  194. float as_value;
  195. uint32_t as_bits;
  196. } fp32;
  197. fp32.as_value = f;
  198. return fp32.as_bits;
  199. }
  200. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  201. const uint32_t w = (uint32_t) h << 16;
  202. const uint32_t sign = w & UINT32_C(0x80000000);
  203. const uint32_t two_w = w + w;
  204. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  205. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  206. const float exp_scale = 0x1.0p-112f;
  207. #else
  208. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  209. #endif
  210. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  211. const uint32_t magic_mask = UINT32_C(126) << 23;
  212. const float magic_bias = 0.5f;
  213. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  214. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  215. const uint32_t result = sign |
  216. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  217. return fp32_from_bits(result);
  218. }
  219. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  220. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  221. const float scale_to_inf = 0x1.0p+112f;
  222. const float scale_to_zero = 0x1.0p-110f;
  223. #else
  224. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  225. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  226. #endif
  227. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  228. const uint32_t w = fp32_to_bits(f);
  229. const uint32_t shl1_w = w + w;
  230. const uint32_t sign = w & UINT32_C(0x80000000);
  231. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  232. if (bias < UINT32_C(0x71000000)) {
  233. bias = UINT32_C(0x71000000);
  234. }
  235. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  236. const uint32_t bits = fp32_to_bits(base);
  237. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  238. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  239. const uint32_t nonsign = exp_bits + mantissa_bits;
  240. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  241. }
  242. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  243. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  244. #endif // __F16C__
  245. #endif // __ARM_NEON
  246. //
  247. // global data
  248. //
  249. // precomputed gelu table for f16 (128 KB)
  250. static ggml_fp16_t table_gelu_f16[1 << 16];
  251. // precomputed silu table for f16 (128 KB)
  252. static ggml_fp16_t table_silu_f16[1 << 16];
  253. // precomputed exp table for f16 (128 KB)
  254. static ggml_fp16_t table_exp_f16[1 << 16];
  255. // precomputed f32 table for f16 (256 KB)
  256. static float table_f32_f16[1 << 16];
  257. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  258. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  259. // This is also true for POWER9.
  260. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  261. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  262. uint16_t s;
  263. memcpy(&s, &f, sizeof(uint16_t));
  264. return table_f32_f16[s];
  265. }
  266. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  267. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  268. #endif
  269. // note: do not use these inside ggml.c
  270. // these are meant to be used via the ggml.h API
  271. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  272. return (float) GGML_FP16_TO_FP32(x);
  273. }
  274. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  275. return GGML_FP32_TO_FP16(x);
  276. }
  277. //
  278. // timing
  279. //
  280. #if defined(_MSC_VER) || defined(__MINGW32__)
  281. static int64_t timer_freq;
  282. void ggml_time_init(void) {
  283. LARGE_INTEGER frequency;
  284. QueryPerformanceFrequency(&frequency);
  285. timer_freq = frequency.QuadPart;
  286. }
  287. int64_t ggml_time_ms(void) {
  288. LARGE_INTEGER t;
  289. QueryPerformanceCounter(&t);
  290. return (t.QuadPart * 1000) / timer_freq;
  291. }
  292. int64_t ggml_time_us(void) {
  293. LARGE_INTEGER t;
  294. QueryPerformanceCounter(&t);
  295. return (t.QuadPart * 1000000) / timer_freq;
  296. }
  297. #else
  298. void ggml_time_init(void) {}
  299. int64_t ggml_time_ms(void) {
  300. struct timespec ts;
  301. clock_gettime(CLOCK_MONOTONIC, &ts);
  302. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  303. }
  304. int64_t ggml_time_us(void) {
  305. struct timespec ts;
  306. clock_gettime(CLOCK_MONOTONIC, &ts);
  307. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  308. }
  309. #endif
  310. int64_t ggml_cycles(void) {
  311. return clock();
  312. }
  313. int64_t ggml_cycles_per_ms(void) {
  314. return CLOCKS_PER_SEC/1000;
  315. }
  316. #ifdef GGML_PERF
  317. #define ggml_perf_time_ms() ggml_time_ms()
  318. #define ggml_perf_time_us() ggml_time_us()
  319. #define ggml_perf_cycles() ggml_cycles()
  320. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  321. #else
  322. #define ggml_perf_time_ms() 0
  323. #define ggml_perf_time_us() 0
  324. #define ggml_perf_cycles() 0
  325. #define ggml_perf_cycles_per_ms() 0
  326. #endif
  327. //
  328. // cache line
  329. //
  330. #if defined(__cpp_lib_hardware_interference_size)
  331. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  332. #else
  333. #if defined(__POWER9_VECTOR__)
  334. #define CACHE_LINE_SIZE 128
  335. #else
  336. #define CACHE_LINE_SIZE 64
  337. #endif
  338. #endif
  339. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  340. //
  341. // quantization
  342. //
  343. #define QK 32
  344. // AVX routines provided by GH user Const-me
  345. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  346. #if __AVX2__ || __AVX512F__
  347. // Unpack 32 4-bit fields into 32 bytes
  348. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  349. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  350. {
  351. // Load 16 bytes from memory
  352. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  353. // Expand bytes into uint16_t values
  354. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  355. // Unpack values into individual bytes
  356. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  357. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  358. __m256i low = _mm256_and_si256( lowMask, bytes );
  359. high = _mm256_slli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. return bytes;
  362. }
  363. static inline __m128i packNibbles( __m256i bytes )
  364. {
  365. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  366. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  367. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  368. __m256i low = _mm256_and_si256( lowByte, bytes );
  369. high = _mm256_srli_epi16( high, 4 );
  370. bytes = _mm256_or_si256( low, high );
  371. // Compress uint16_t lanes into bytes
  372. __m128i r0 = _mm256_castsi256_si128( bytes );
  373. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  374. return _mm_packus_epi16( r0, r1 );
  375. }
  376. #elif __AVX__
  377. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  378. {
  379. // Load 8 bytes from memory
  380. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  381. // Expand bytes into uint16_t values
  382. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  383. // Unpack values into individual bytes
  384. const __m128i lowMask = _mm_set1_epi8( 0xF );
  385. __m128i high = _mm_andnot_si128( lowMask, bytes );
  386. __m128i low = _mm_and_si128( lowMask, bytes );
  387. high = _mm_slli_epi16( high, 4 );
  388. bytes = _mm_or_si128( low, high );
  389. return bytes;
  390. }
  391. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  392. {
  393. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  394. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  395. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  396. __m128i low = _mm_and_si128( lowByte, bytes1 );
  397. high = _mm_srli_epi16( high, 4 );
  398. bytes1 = _mm_or_si128( low, high );
  399. high = _mm_andnot_si128( lowByte, bytes2 );
  400. low = _mm_and_si128( lowByte, bytes2 );
  401. high = _mm_srli_epi16( high, 4 );
  402. bytes2 = _mm_or_si128( low, high );
  403. return _mm_packus_epi16( bytes1, bytes2);
  404. }
  405. #endif
  406. // method 5
  407. // blocks of QK elements
  408. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  409. typedef struct {
  410. float d; // delta
  411. uint8_t qs[QK / 2]; // nibbles / quants
  412. } block_q4_0;
  413. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  414. // method 4
  415. // blocks of QK elements
  416. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  417. typedef struct {
  418. float d;
  419. float m;
  420. uint8_t qs[QK / 2]; // nibbles / quants
  421. } block_q4_1;
  422. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  423. // reference implementation for deterministic creation of model files
  424. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  425. assert(k % QK == 0);
  426. const int nb = k / QK;
  427. uint8_t pp[QK/2];
  428. for (int i = 0; i < nb; i++) {
  429. float amax = 0.0f; // absolute max
  430. for (int l = 0; l < QK; l++) {
  431. const float v = x[i*QK + l];
  432. amax = MAX(amax, fabsf(v));
  433. }
  434. const float d = amax / ((1 << 3) - 1);
  435. const float id = d ? 1.0f/d : 0.0f;
  436. y[i].d = d;
  437. for (int l = 0; l < QK; l += 2) {
  438. const float v0 = x[i*QK + l + 0]*id;
  439. const float v1 = x[i*QK + l + 1]*id;
  440. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  441. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  442. assert(vi0 < 16);
  443. assert(vi1 < 16);
  444. pp[l/2] = vi0 | (vi1 << 4);
  445. }
  446. memcpy(y[i].qs, pp, sizeof(pp));
  447. }
  448. }
  449. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  450. assert(k % QK == 0);
  451. const int nb = k / QK;
  452. block_q4_0 * restrict y = vy;
  453. #if defined(__POWER9_VECTOR__)
  454. const vector float v85 = vec_splats(8.5f);
  455. for (int i = 0; i < nb; i++) {
  456. float amax = 0.0f; // absolute max
  457. vector float srcv [8];
  458. vector float asrcv[8];
  459. vector float amaxv[8];
  460. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  461. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  462. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  463. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  464. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  465. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  466. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  467. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  468. amax = MAX(
  469. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  470. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  471. const float d = amax / ((1 << 3) - 1);
  472. const float id = d ? 1.0/d : 0.0;
  473. y[i].d = d;
  474. const vector float vid = vec_splats(id);
  475. uint8_t * restrict pb = y[i].qs;
  476. for (int l = 0; l < 8; l++) {
  477. const vector float vf = vec_madd(srcv[l], vid, v85);
  478. const vector signed int vi = vec_signed(vf);
  479. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  480. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  481. }
  482. }
  483. #elif __ARM_NEON
  484. for (int i = 0; i < nb; i++) {
  485. float32x4_t srcv [8];
  486. float32x4_t asrcv[8];
  487. float32x4_t amaxv[8];
  488. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  489. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  490. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  491. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  492. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  493. // absolute max
  494. const float amax = MAX(
  495. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  496. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  497. const float d = amax / ((1 << 3) - 1);
  498. const float id = d ? 1.0f/d : 0.0f;
  499. y[i].d = d;
  500. for (int l = 0; l < 8; l++) {
  501. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  502. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  503. const int32x4_t vi = vcvtq_s32_f32(vf);
  504. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  505. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  506. }
  507. }
  508. #elif defined(__AVX2__)
  509. for (int i = 0; i < nb; i++) {
  510. // Load elements into 4 AVX vectors
  511. __m256 v0 = _mm256_loadu_ps( x );
  512. __m256 v1 = _mm256_loadu_ps( x + 8 );
  513. __m256 v2 = _mm256_loadu_ps( x + 16 );
  514. __m256 v3 = _mm256_loadu_ps( x + 24 );
  515. x += 32;
  516. // Compute max(abs(e)) for the block
  517. const __m256 signBit = _mm256_set1_ps( -0.0f );
  518. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  519. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  520. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  521. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  522. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  523. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  524. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  525. const float maxScalar = _mm_cvtss_f32( max4 );
  526. // Quantize these floats
  527. const float d = maxScalar / 7.0f;
  528. y[i].d = d;
  529. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  530. const __m256 mul = _mm256_set1_ps( id );
  531. // Apply the multiplier
  532. v0 = _mm256_mul_ps( v0, mul );
  533. v1 = _mm256_mul_ps( v1, mul );
  534. v2 = _mm256_mul_ps( v2, mul );
  535. v3 = _mm256_mul_ps( v3, mul );
  536. // Round to nearest integer
  537. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  538. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  539. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  540. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  541. // Convert floats to integers
  542. __m256i i0 = _mm256_cvtps_epi32( v0 );
  543. __m256i i1 = _mm256_cvtps_epi32( v1 );
  544. __m256i i2 = _mm256_cvtps_epi32( v2 );
  545. __m256i i3 = _mm256_cvtps_epi32( v3 );
  546. // Convert int32 to int16
  547. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  548. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  549. // Convert int16 to int8
  550. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  551. // We got our precious signed bytes, but the order is now wrong
  552. // These AVX2 pack instructions process 16-byte pieces independently
  553. // The following instruction is fixing the order
  554. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  555. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  556. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  557. const __m256i off = _mm256_set1_epi8( 8 );
  558. i0 = _mm256_add_epi8( i0, off );
  559. // Compress the vector into 4 bit/value, and store
  560. __m128i res = packNibbles( i0 );
  561. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  562. }
  563. #elif defined(__AVX__)
  564. for (int i = 0; i < nb; i++) {
  565. // Load elements into 4 AVX vectors
  566. __m256 v0 = _mm256_loadu_ps( x );
  567. __m256 v1 = _mm256_loadu_ps( x + 8 );
  568. __m256 v2 = _mm256_loadu_ps( x + 16 );
  569. __m256 v3 = _mm256_loadu_ps( x + 24 );
  570. x += 32;
  571. // Compute max(abs(e)) for the block
  572. const __m256 signBit = _mm256_set1_ps( -0.0f );
  573. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  574. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  575. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  576. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  577. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  578. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  579. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  580. const float maxScalar = _mm_cvtss_f32( max4 );
  581. // Quantize these floats
  582. const float d = maxScalar / 7.0f;
  583. y[i].d = d;
  584. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  585. const __m256 mul = _mm256_set1_ps( id );
  586. // Apply the multiplier
  587. v0 = _mm256_mul_ps( v0, mul );
  588. v1 = _mm256_mul_ps( v1, mul );
  589. v2 = _mm256_mul_ps( v2, mul );
  590. v3 = _mm256_mul_ps( v3, mul );
  591. // Round to nearest integer
  592. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  593. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  594. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  595. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  596. // Convert floats to integers
  597. __m256i i0 = _mm256_cvtps_epi32( v0 );
  598. __m256i i1 = _mm256_cvtps_epi32( v1 );
  599. __m256i i2 = _mm256_cvtps_epi32( v2 );
  600. __m256i i3 = _mm256_cvtps_epi32( v3 );
  601. // Since we don't have in AVX some necessary functions,
  602. // we split the registers in half and call AVX2 analogs from SSE
  603. __m128i ni0 = _mm256_castsi256_si128( i0 );
  604. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  605. __m128i ni2 = _mm256_castsi256_si128( i1 );
  606. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  607. __m128i ni4 = _mm256_castsi256_si128( i2 );
  608. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  609. __m128i ni6 = _mm256_castsi256_si128( i3 );
  610. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  611. // Convert int32 to int16
  612. ni0 = _mm_packs_epi32( ni0, ni1 );
  613. ni2 = _mm_packs_epi32( ni2, ni3 );
  614. ni4 = _mm_packs_epi32( ni4, ni5 );
  615. ni6 = _mm_packs_epi32( ni6, ni7 );
  616. // Convert int16 to int8
  617. ni0 = _mm_packs_epi16( ni0, ni2 );
  618. ni4 = _mm_packs_epi16( ni4, ni6 );
  619. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  620. const __m128i off = _mm_set1_epi8( 8);
  621. ni0 = _mm_add_epi8( ni0, off );
  622. ni4 = _mm_add_epi8( ni4, off );
  623. // Compress the vector into 4 bit/value, and store
  624. __m128i res = packNibbles( ni0, ni4 );
  625. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  626. }
  627. #elif defined(__wasm_simd128__)
  628. for (int i = 0; i < nb; i++) {
  629. float amax = 0.0f; // absolute max
  630. v128_t srcv [8];
  631. v128_t asrcv[8];
  632. v128_t amaxv[8];
  633. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  634. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  635. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  636. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  637. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  638. amax = MAX(
  639. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  640. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  641. const float d = amax / ((1 << 3) - 1);
  642. const float id = d ? 1.0/d : 0.0;
  643. y[i].d = d;
  644. for (int l = 0; l < 8; l++) {
  645. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  646. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  647. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  648. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  649. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  650. }
  651. }
  652. #else
  653. // scalar
  654. quantize_row_q4_0_reference(x, y, k);
  655. #endif
  656. }
  657. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  658. assert(k % QK == 0);
  659. const int nb = k / QK;
  660. block_q4_1 * restrict y = vy;
  661. uint8_t pp[QK/2];
  662. for (int i = 0; i < nb; i++) {
  663. float min = FLT_MAX;
  664. float max = -FLT_MAX;
  665. for (int l = 0; l < QK; l++) {
  666. const float v = x[i*QK + l];
  667. if (v < min) min = v;
  668. if (v > max) max = v;
  669. }
  670. const float d = (max - min) / ((1 << 4) - 1);
  671. const float id = d ? 1.0f/d : 0.0f;
  672. y[i].d = d;
  673. y[i].m = min;
  674. for (int l = 0; l < QK; l += 2) {
  675. const float v0 = (x[i*QK + l + 0] - min)*id;
  676. const float v1 = (x[i*QK + l + 1] - min)*id;
  677. const uint8_t vi0 = roundf(v0);
  678. const uint8_t vi1 = roundf(v1);
  679. assert(vi0 < 16);
  680. assert(vi1 < 16);
  681. pp[l/2] = vi0 | (vi1 << 4);
  682. }
  683. memcpy(y[i].qs, pp, sizeof(pp));
  684. }
  685. }
  686. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  687. assert(k % QK == 0);
  688. const int nb = k / QK;
  689. block_q4_1 * restrict y = vy;
  690. #if defined(__AVX2__)
  691. for (int i = 0; i < nb; i++) {
  692. // Load elements into 4 AVX vectors
  693. __m256 v0 = _mm256_loadu_ps( x );
  694. __m256 v1 = _mm256_loadu_ps( x + 8 );
  695. __m256 v2 = _mm256_loadu_ps( x + 16 );
  696. __m256 v3 = _mm256_loadu_ps( x + 24 );
  697. x += 32;
  698. // Compute max for the block
  699. __m256 vmax;
  700. vmax = _mm256_max_ps( v0, v1 );
  701. vmax = _mm256_max_ps( vmax, v2 );
  702. vmax = _mm256_max_ps( vmax, v3 );
  703. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  704. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  705. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  706. const float maxScalar = _mm_cvtss_f32( max4 );
  707. // Compute min for the block
  708. __m256 vmin;
  709. vmin = _mm256_min_ps( v0, v1 );
  710. vmin = _mm256_min_ps( vmin, v2 );
  711. vmin = _mm256_min_ps( vmin, v3 );
  712. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  713. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  714. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  715. const float minScalar = _mm_cvtss_f32( min4 );
  716. // Quantize these floats
  717. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  718. const float id = d ? 1.0f/d : 0.0f;
  719. y[i].m = minScalar;
  720. y[i].d = d;
  721. // x = (x-min)*id
  722. const __m256 mul = _mm256_set1_ps( id );
  723. const __m256 off = _mm256_set1_ps( minScalar );
  724. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  725. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  726. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  727. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  728. // Round to nearest integer
  729. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  730. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  731. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  732. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  733. // Convert floats to integers
  734. __m256i i0 = _mm256_cvtps_epi32( v0 );
  735. __m256i i1 = _mm256_cvtps_epi32( v1 );
  736. __m256i i2 = _mm256_cvtps_epi32( v2 );
  737. __m256i i3 = _mm256_cvtps_epi32( v3 );
  738. // Convert int32 to int16
  739. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  740. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  741. // Convert int16 to int8
  742. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  743. // We got our precious signed bytes, but the order is now wrong
  744. // These AVX2 pack instructions process 16-byte pieces independently
  745. // The following instruction is fixing the order
  746. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  747. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  748. // Compress the vector into 4 bit/value, and store
  749. __m128i res = packNibbles( i0 );
  750. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  751. }
  752. #elif __ARM_NEON
  753. for (int i = 0; i < nb; i++) {
  754. float32x4_t srcv[8];
  755. float32x4_t minv[8];
  756. float32x4_t maxv[8];
  757. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  758. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  759. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  760. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  761. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  762. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  763. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  764. const float min = vminvq_f32(minv[0]);
  765. const float max = vmaxvq_f32(maxv[0]);
  766. const float d = (max - min) / ((1 << 4) - 1);
  767. const float id = d ? 1.0f/d : 0.0f;
  768. y[i].d = d;
  769. y[i].m = min;
  770. const float32x4_t minv0 = vdupq_n_f32(min);
  771. for (int l = 0; l < 8; l++) {
  772. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  773. const int32x4_t vi = vcvtq_s32_f32(v);
  774. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  775. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  776. }
  777. }
  778. #else
  779. // scalar
  780. quantize_row_q4_1_reference(x, vy, k);
  781. #endif
  782. }
  783. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  784. assert(k % QK == 0);
  785. const int nb = k / QK;
  786. const block_q4_0 * restrict x = vx;
  787. #if defined(__AVX2__)
  788. for (int i = 0; i < nb; i++) {
  789. // scale factor
  790. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  791. const uint8_t * restrict pp = x[i].qs;
  792. for (int l = 0; l < QK; l += 32) {
  793. // Load 32x4-bit integers into 32x8-bit integers
  794. __m256i vx8 = bytesFromNibbles(pp+l/2);
  795. // Subtract 8 from the integers
  796. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  797. // Convert to 16-bit int
  798. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  799. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  800. // Convert to 32-bit int -> float 32
  801. const __m256 vf[4] = {
  802. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  803. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  804. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  805. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  806. };
  807. // Scale and store
  808. for (int j = 0; j < 4; j++) {
  809. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  810. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  811. }
  812. }
  813. }
  814. #elif defined(__ARM_NEON)
  815. for (int i = 0; i < nb; i++) {
  816. const float32x4_t vd = vdupq_n_f32(x[i].d);
  817. const uint8_t * restrict pp = x[i].qs;
  818. for (int l = 0; l < QK; l += 16) {
  819. // Load 16x4-bit integers into 8x8-bit integers
  820. const uint8x8_t v8 = vld1_u8(pp + l/2);
  821. // Expand 4-bit qs to 8-bit bytes
  822. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  823. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  824. // Convert to signed 8-bit integers
  825. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  826. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  827. // Subtract 8 from each byte
  828. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  829. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  830. // Interleave and combine
  831. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  832. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  833. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  834. // convert to 2x int16x8_t
  835. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  836. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  837. // convert to 4x float32x4_t
  838. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  839. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  840. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  841. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  842. // Multiply by d
  843. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  844. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  845. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  846. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  847. // Store
  848. vst1q_f32(y + i*QK + l + 0, r0);
  849. vst1q_f32(y + i*QK + l + 4, r1);
  850. vst1q_f32(y + i*QK + l + 8, r2);
  851. vst1q_f32(y + i*QK + l + 12, r3);
  852. }
  853. }
  854. #else
  855. // scalar
  856. for (int i = 0; i < nb; i++) {
  857. const float d = x[i].d;
  858. const uint8_t * restrict pp = x[i].qs;
  859. for (int l = 0; l < QK; l += 2) {
  860. const uint8_t vi = pp[l/2];
  861. const int8_t vi0 = vi & 0xf;
  862. const int8_t vi1 = vi >> 4;
  863. const float v0 = (vi0 - 8)*d;
  864. const float v1 = (vi1 - 8)*d;
  865. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  866. y[i*QK + l + 0] = v0;
  867. y[i*QK + l + 1] = v1;
  868. assert(!isnan(y[i*QK + l + 0]));
  869. assert(!isnan(y[i*QK + l + 1]));
  870. }
  871. }
  872. #endif
  873. }
  874. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  875. assert(k % QK == 0);
  876. const int nb = k / QK;
  877. const block_q4_1 * restrict x = vx;
  878. #if defined(__AVX2__)
  879. for (int i = 0; i < nb; i++) {
  880. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  881. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  882. const uint8_t * restrict pp = x[i].qs;
  883. for (int l = 0; l < QK; l += 32) {
  884. // Load 32x4-bit integers into 32x8-bit integers
  885. __m256i vx8 = bytesFromNibbles(pp+l/2);
  886. // Convert to 16-bit int
  887. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  888. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  889. // Convert to 32-bit int -> float 32
  890. const __m256 vf[4] = {
  891. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  892. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  893. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  894. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  895. };
  896. // Scale, add m and store
  897. for (int j = 0; j < 4; j++) {
  898. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  899. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  900. }
  901. }
  902. }
  903. #elif defined(__ARM_NEON)
  904. for (int i = 0; i < nb; i++) {
  905. const float32x4_t vd = vdupq_n_f32(x[i].d);
  906. const float32x4_t vm = vdupq_n_f32(x[i].m);
  907. const uint8_t * restrict pp = x[i].qs;
  908. for (int l = 0; l < QK; l += 16) {
  909. // Load 16x4-bit integers into 8x8-bit integers
  910. const uint8x8_t v8 = vld1_u8(pp + l/2);
  911. // Expand 4-bit qs to 8-bit bytes
  912. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  913. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  914. // Interleave and combine
  915. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  916. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  917. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  918. // convert to 2x uint16x8_t
  919. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  920. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  921. // convert to 4x float32x4_t
  922. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  923. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  924. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  925. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  926. // multiply by d and add m
  927. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  928. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  929. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  930. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  931. // Store
  932. vst1q_f32(y + i*QK + l + 0, r0);
  933. vst1q_f32(y + i*QK + l + 4, r1);
  934. vst1q_f32(y + i*QK + l + 8, r2);
  935. vst1q_f32(y + i*QK + l + 12, r3);
  936. }
  937. }
  938. #else
  939. for (int i = 0; i < nb; i++) {
  940. const float d = x[i].d;
  941. const float m = x[i].m;
  942. const uint8_t * restrict pp = x[i].qs;
  943. for (int l = 0; l < QK; l += 2) {
  944. const uint8_t vi = pp[l/2];
  945. const int8_t vi0 = vi & 0xf;
  946. const int8_t vi1 = vi >> 4;
  947. const float v0 = vi0*d + m;
  948. const float v1 = vi1*d + m;
  949. y[i*QK + l + 0] = v0;
  950. y[i*QK + l + 1] = v1;
  951. assert(!isnan(y[i*QK + l + 0]));
  952. assert(!isnan(y[i*QK + l + 1]));
  953. }
  954. }
  955. #endif
  956. }
  957. //
  958. // simd mappings
  959. //
  960. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  961. // we then implement the fundamental computation operations below using only these macros
  962. // adding support for new architectures requires to define the corresponding SIMD macros
  963. //
  964. // GGML_F32_STEP / GGML_F16_STEP
  965. // number of elements to process in a single step
  966. //
  967. // GGML_F32_EPR / GGML_F16_EPR
  968. // number of elements to fit in a single register
  969. //
  970. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  971. #define GGML_SIMD
  972. // F32 NEON
  973. #define GGML_F32_STEP 16
  974. #define GGML_F32_EPR 4
  975. #define GGML_F32x4 float32x4_t
  976. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  977. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  978. #define GGML_F32x4_LOAD vld1q_f32
  979. #define GGML_F32x4_STORE vst1q_f32
  980. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  981. #define GGML_F32x4_ADD vaddq_f32
  982. #define GGML_F32x4_MUL vmulq_f32
  983. #if defined(__ARM_FEATURE_QRDMX)
  984. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  985. #else
  986. #define GGML_F32x4_REDUCE_ONE(x) \
  987. (vgetq_lane_f32(x, 0) + \
  988. vgetq_lane_f32(x, 1) + \
  989. vgetq_lane_f32(x, 2) + \
  990. vgetq_lane_f32(x, 3))
  991. #endif
  992. #define GGML_F32x4_REDUCE(res, x) \
  993. { \
  994. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  995. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  996. } \
  997. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  998. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  999. } \
  1000. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1001. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1002. } \
  1003. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1004. }
  1005. #define GGML_F32_VEC GGML_F32x4
  1006. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1007. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1008. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1009. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1010. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1011. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1012. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1013. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1014. // F16 NEON
  1015. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1016. #define GGML_F16_STEP 32
  1017. #define GGML_F16_EPR 8
  1018. #define GGML_F16x8 float16x8_t
  1019. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1020. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1021. #define GGML_F16x8_LOAD vld1q_f16
  1022. #define GGML_F16x8_STORE vst1q_f16
  1023. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1024. #define GGML_F16x8_ADD vaddq_f16
  1025. #define GGML_F16x8_MUL vmulq_f16
  1026. #define GGML_F16x8_REDUCE(res, x) \
  1027. { \
  1028. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1029. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1030. } \
  1031. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1032. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1033. } \
  1034. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1035. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1036. } \
  1037. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1038. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1039. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1040. }
  1041. #define GGML_F16_VEC GGML_F16x8
  1042. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1043. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1044. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1045. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1046. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1047. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1048. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1049. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1050. #else
  1051. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1052. // and take advantage of the vcvt_ functions to convert to/from FP16
  1053. #define GGML_F16_STEP 16
  1054. #define GGML_F16_EPR 4
  1055. #define GGML_F32Cx4 float32x4_t
  1056. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1057. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1058. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1059. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1060. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1061. #define GGML_F32Cx4_ADD vaddq_f32
  1062. #define GGML_F32Cx4_MUL vmulq_f32
  1063. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1064. #define GGML_F16_VEC GGML_F32Cx4
  1065. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1066. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1067. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1068. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1069. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1070. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1071. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1072. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1073. #endif
  1074. #elif defined(__AVX__)
  1075. #define GGML_SIMD
  1076. // F32 AVX
  1077. #define GGML_F32_STEP 32
  1078. #define GGML_F32_EPR 8
  1079. #define GGML_F32x8 __m256
  1080. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1081. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1082. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1083. #define GGML_F32x8_STORE _mm256_storeu_ps
  1084. #if defined(__FMA__)
  1085. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1086. #else
  1087. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1088. #endif
  1089. #define GGML_F32x8_ADD _mm256_add_ps
  1090. #define GGML_F32x8_MUL _mm256_mul_ps
  1091. #define GGML_F32x8_REDUCE(res, x) \
  1092. { \
  1093. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1094. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1095. } \
  1096. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1097. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1098. } \
  1099. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1100. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1101. } \
  1102. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1103. _mm256_extractf128_ps(x[0], 1)); \
  1104. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1105. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1106. }
  1107. // TODO: is this optimal ?
  1108. #define GGML_F32_VEC GGML_F32x8
  1109. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1110. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1111. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1112. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1113. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1114. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1115. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1116. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1117. // F16 AVX
  1118. #define GGML_F16_STEP 32
  1119. #define GGML_F16_EPR 8
  1120. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1121. #define GGML_F32Cx8 __m256
  1122. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1123. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1124. #if defined(__F16C__)
  1125. // the _mm256_cvt intrinsics require F16C
  1126. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1127. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1128. #else
  1129. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1130. float tmp[8];
  1131. for (int i = 0; i < 8; i++)
  1132. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1133. return _mm256_loadu_ps(tmp);
  1134. }
  1135. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1136. float arr[8];
  1137. _mm256_storeu_ps(arr, y);
  1138. for (int i = 0; i < 8; i++)
  1139. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1140. }
  1141. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1142. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1143. #endif
  1144. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1145. #define GGML_F32Cx8_ADD _mm256_add_ps
  1146. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1147. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1148. #define GGML_F16_VEC GGML_F32Cx8
  1149. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1150. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1151. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1152. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1153. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1154. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1155. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1156. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1157. #elif defined(__POWER9_VECTOR__)
  1158. #define GGML_SIMD
  1159. // F32 POWER9
  1160. #define GGML_F32_STEP 32
  1161. #define GGML_F32_EPR 4
  1162. #define GGML_F32x4 vector float
  1163. #define GGML_F32x4_ZERO 0.0f
  1164. #define GGML_F32x4_SET1 vec_splats
  1165. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1166. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1167. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1168. #define GGML_F32x4_ADD vec_add
  1169. #define GGML_F32x4_MUL vec_mul
  1170. #define GGML_F32x4_REDUCE(res, x) \
  1171. { \
  1172. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1173. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1174. } \
  1175. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1176. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1177. } \
  1178. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1179. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1180. } \
  1181. res = vec_extract(x[0], 0) + \
  1182. vec_extract(x[0], 1) + \
  1183. vec_extract(x[0], 2) + \
  1184. vec_extract(x[0], 3); \
  1185. }
  1186. #define GGML_F32_VEC GGML_F32x4
  1187. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1188. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1189. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1190. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1191. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1192. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1193. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1194. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1195. // F16 POWER9
  1196. #define GGML_F16_STEP GGML_F32_STEP
  1197. #define GGML_F16_EPR GGML_F32_EPR
  1198. #define GGML_F16_VEC GGML_F32x4
  1199. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1200. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1201. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1202. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1203. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1204. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1205. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1206. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1207. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1208. #define GGML_F16_VEC_STORE(p, r, i) \
  1209. if (i & 0x1) \
  1210. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1211. r[i - GGML_ENDIAN_BYTE(0)]), \
  1212. 0, p - GGML_F16_EPR)
  1213. #elif defined(__wasm_simd128__)
  1214. #define GGML_SIMD
  1215. // F32 WASM
  1216. #define GGML_F32_STEP 16
  1217. #define GGML_F32_EPR 4
  1218. #define GGML_F32x4 v128_t
  1219. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1220. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1221. #define GGML_F32x4_LOAD wasm_v128_load
  1222. #define GGML_F32x4_STORE wasm_v128_store
  1223. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1224. #define GGML_F32x4_ADD wasm_f32x4_add
  1225. #define GGML_F32x4_MUL wasm_f32x4_mul
  1226. #define GGML_F32x4_REDUCE(res, x) \
  1227. { \
  1228. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1229. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1230. } \
  1231. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1232. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1233. } \
  1234. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1235. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1236. } \
  1237. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1238. wasm_f32x4_extract_lane(x[0], 1) + \
  1239. wasm_f32x4_extract_lane(x[0], 2) + \
  1240. wasm_f32x4_extract_lane(x[0], 3); \
  1241. }
  1242. #define GGML_F32_VEC GGML_F32x4
  1243. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1244. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1245. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1246. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1247. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1248. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1249. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1250. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1251. // F16 WASM
  1252. #define GGML_F16_STEP 16
  1253. #define GGML_F16_EPR 4
  1254. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1255. float tmp[4];
  1256. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1257. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1258. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1259. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1260. return wasm_v128_load(tmp);
  1261. }
  1262. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1263. float tmp[4];
  1264. wasm_v128_store(tmp, x);
  1265. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1266. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1267. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1268. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1269. }
  1270. #define GGML_F16x4 v128_t
  1271. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1272. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1273. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1274. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1275. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1276. #define GGML_F16x4_ADD wasm_f32x4_add
  1277. #define GGML_F16x4_MUL wasm_f32x4_mul
  1278. #define GGML_F16x4_REDUCE(res, x) \
  1279. { \
  1280. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1281. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1282. } \
  1283. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1284. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1285. } \
  1286. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1287. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1288. } \
  1289. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1290. wasm_f32x4_extract_lane(x[0], 1) + \
  1291. wasm_f32x4_extract_lane(x[0], 2) + \
  1292. wasm_f32x4_extract_lane(x[0], 3); \
  1293. }
  1294. #define GGML_F16_VEC GGML_F16x4
  1295. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1296. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1297. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1298. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1299. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1300. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1301. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1302. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1303. #elif defined(__SSE3__)
  1304. #define GGML_SIMD
  1305. // F32 SSE
  1306. #define GGML_F32_STEP 32
  1307. #define GGML_F32_EPR 4
  1308. #define GGML_F32x4 __m128
  1309. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1310. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1311. #define GGML_F32x4_LOAD _mm_loadu_ps
  1312. #define GGML_F32x4_STORE _mm_storeu_ps
  1313. #if defined(__FMA__)
  1314. // TODO: Does this work?
  1315. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1316. #else
  1317. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1318. #endif
  1319. #define GGML_F32x4_ADD _mm_add_ps
  1320. #define GGML_F32x4_MUL _mm_mul_ps
  1321. #define GGML_F32x4_REDUCE(res, x) \
  1322. { \
  1323. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1324. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1325. } \
  1326. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1327. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1328. } \
  1329. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1330. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1331. } \
  1332. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1333. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1334. }
  1335. // TODO: is this optimal ?
  1336. #define GGML_F32_VEC GGML_F32x4
  1337. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1338. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1339. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1340. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1341. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1342. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1343. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1344. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1345. // F16 SSE
  1346. #define GGML_F16_STEP 32
  1347. #define GGML_F16_EPR 4
  1348. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1349. float tmp[4];
  1350. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1351. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1352. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1353. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1354. return _mm_loadu_ps(tmp);
  1355. }
  1356. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1357. float arr[4];
  1358. _mm_storeu_ps(arr, y);
  1359. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1360. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1361. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1362. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1363. }
  1364. #define GGML_F32Cx4 __m128
  1365. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1366. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1367. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1368. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1369. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1370. #define GGML_F32Cx4_ADD _mm_add_ps
  1371. #define GGML_F32Cx4_MUL _mm_mul_ps
  1372. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1373. #define GGML_F16_VEC GGML_F32Cx4
  1374. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1375. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1376. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1377. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1378. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1379. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1380. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1381. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1382. #endif
  1383. // GGML_F32_ARR / GGML_F16_ARR
  1384. // number of registers to use per step
  1385. #ifdef GGML_SIMD
  1386. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1387. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1388. #endif
  1389. //
  1390. // fundamental operations
  1391. //
  1392. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1393. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1394. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1395. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1396. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1397. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1398. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1399. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1400. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1401. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1402. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1403. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1404. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1405. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1406. #ifdef GGML_SIMD
  1407. float sumf = 0.0f;
  1408. const int np = (n & ~(GGML_F32_STEP - 1));
  1409. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1410. GGML_F32_VEC ax[GGML_F32_ARR];
  1411. GGML_F32_VEC ay[GGML_F32_ARR];
  1412. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1413. for (int j = 0; j < GGML_F32_ARR; j++) {
  1414. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1415. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1416. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1417. }
  1418. }
  1419. // reduce sum0..sum3 to sum0
  1420. GGML_F32_VEC_REDUCE(sumf, sum);
  1421. // leftovers
  1422. for (int i = np; i < n; ++i) {
  1423. sumf += x[i]*y[i];
  1424. }
  1425. #else
  1426. // scalar
  1427. ggml_float sumf = 0.0;
  1428. for (int i = 0; i < n; ++i) {
  1429. sumf += (ggml_float)(x[i]*y[i]);
  1430. }
  1431. #endif
  1432. *s = sumf;
  1433. }
  1434. #if __AVX512F__ && QK == 32
  1435. static inline __m512 dot_q4_0_oneblock_avx512(
  1436. __m512 acc,
  1437. const block_q4_0 * restrict x,
  1438. const block_q4_0 * restrict y,
  1439. int i
  1440. ) {
  1441. // Compute combined scale for the block
  1442. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1443. __m256i bx = bytesFromNibbles( x[i].qs );
  1444. __m256i by = bytesFromNibbles( y[i].qs );
  1445. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1446. const __m256i off = _mm256_set1_epi8( 8 );
  1447. bx = _mm256_sub_epi8( bx, off );
  1448. by = _mm256_sub_epi8( by, off );
  1449. // Sign-extend 16 signed bytes into int16_t
  1450. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1451. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1452. // Compute products of int16_t integers, add pairwise
  1453. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1454. // Convert int32_t to float
  1455. __m512 p = _mm512_cvtepi32_ps( i64 );
  1456. // Apply the scale, and accumulate
  1457. return _mm512_fmadd_ps( d, p, acc );
  1458. }
  1459. #endif
  1460. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1461. ggml_float sumf = 0.0;
  1462. #if defined(GGML_SIMD)
  1463. const int np = (n & ~(GGML_F16_STEP - 1));
  1464. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1465. GGML_F16_VEC ax[GGML_F16_ARR];
  1466. GGML_F16_VEC ay[GGML_F16_ARR];
  1467. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1468. for (int j = 0; j < GGML_F16_ARR; j++) {
  1469. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1470. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1471. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1472. }
  1473. }
  1474. // reduce sum0..sum3 to sum0
  1475. GGML_F16_VEC_REDUCE(sumf, sum);
  1476. // leftovers
  1477. for (int i = np; i < n; ++i) {
  1478. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1479. }
  1480. #else
  1481. for (int i = 0; i < n; ++i) {
  1482. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1483. }
  1484. #endif
  1485. *s = sumf;
  1486. }
  1487. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1488. const int nb = n / QK;
  1489. assert(n % QK == 0);
  1490. assert(nb % 2 == 0);
  1491. const block_q4_0 * restrict x = vx;
  1492. const block_q4_0 * restrict y = vy;
  1493. float sumf = 0.0;
  1494. #if defined(__ARM_NEON)
  1495. float sum0 = 0.0f;
  1496. float sum1 = 0.0f;
  1497. for (int i = 0; i < nb; i += 2) {
  1498. const block_q4_0 * restrict x0 = &x[i + 0];
  1499. const block_q4_0 * restrict y0 = &y[i + 0];
  1500. const block_q4_0 * restrict x1 = &x[i + 1];
  1501. const block_q4_0 * restrict y1 = &y[i + 1];
  1502. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1503. const int8x16_t s8b = vdupq_n_s8(0x8);
  1504. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1505. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1506. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1507. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1508. // 4-bit -> 8-bit
  1509. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1510. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1511. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1512. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1513. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1514. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1515. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1516. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1517. // sub 8
  1518. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1519. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1520. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1521. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1522. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1523. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1524. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1525. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1526. #if defined(__ARM_FEATURE_DOTPROD)
  1527. // dot product into int16x8_t
  1528. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1529. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1530. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1531. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1532. // scalar
  1533. #if defined(__ARM_FEATURE_QRDMX)
  1534. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1535. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1536. #else
  1537. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1538. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1539. #endif
  1540. #else
  1541. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1542. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1543. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1544. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1545. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1546. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1547. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1548. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1549. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1550. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1551. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1552. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1553. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1554. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1555. // scalar
  1556. #if defined(__ARM_FEATURE_QRDMX)
  1557. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1558. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1559. #else
  1560. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1561. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1562. #endif
  1563. #endif
  1564. }
  1565. sumf = sum0 + sum1;
  1566. #elif defined(__AVX512F__)
  1567. // Initialize accumulator with zeros
  1568. __m512 acc0 = _mm512_setzero_ps();
  1569. __m512 acc1 = _mm512_setzero_ps();
  1570. const int superblock_size = 8;
  1571. const int superblock_count = nb / superblock_size;
  1572. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1573. int i = superblock_ix * superblock_size;
  1574. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1575. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1576. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1577. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1578. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1579. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1580. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1581. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1582. }
  1583. // Remainders
  1584. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1585. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1586. }
  1587. // Horizontal sum of all lanes of the accumulator
  1588. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1589. #elif defined(__AVX2__)
  1590. // Initialize accumulator with zeros
  1591. __m256 acc = _mm256_setzero_ps();
  1592. /* Prepare the constants we will need during execution */
  1593. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1594. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1595. #define UNROLL_COUNT 8
  1596. // make sure we only unroll multiples of the block count
  1597. assert(nb % UNROLL_COUNT == 0);
  1598. // Main loop
  1599. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1600. // This loop will be unrolled by the compiler
  1601. for (int u=0;u<UNROLL_COUNT;u++) {
  1602. /* Compute combined scale for the block */
  1603. const __m256 scale = _mm256_mul_ps(
  1604. _mm256_broadcast_ss( &x[i+u].d ),
  1605. _mm256_broadcast_ss( &y[i+u].d ) );
  1606. /* get input from x
  1607. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1608. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1609. /* Load 16 bytes from memory */
  1610. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1611. /* Expand bytes into uint16_t values */
  1612. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1613. /* Unpack values into individual bytes */
  1614. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1615. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1616. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1617. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1618. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1619. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1620. /* get input from y
  1621. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1622. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1623. /* Load 16 bytes from memory */
  1624. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1625. /* Expand bytes into uint16_t values */
  1626. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1627. /* Unpack values into individual bytes */
  1628. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1629. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1630. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1631. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1632. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1633. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1634. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1635. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1636. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1637. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1638. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1639. /* Convert to vectore of 8 int32_t to 8 floats */
  1640. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1641. /* Multiply q with scale and accumulate */
  1642. acc = _mm256_fmadd_ps( scale, q, acc );
  1643. }
  1644. }
  1645. // Return horizontal sum of the acc vector
  1646. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1647. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1648. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1649. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1650. sumf = _mm_cvtss_f32( res );
  1651. #elif defined(__AVX__)
  1652. // Initialize accumulator with zeros
  1653. __m256 acc = _mm256_setzero_ps();
  1654. // Main loop
  1655. for (int i = 0; i < nb; ++i) {
  1656. // Compute combined scale for the block
  1657. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1658. __m128i i32[2];
  1659. for (int j = 0; j < 2; ++j) {
  1660. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1661. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1662. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1663. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1664. const __m128i off = _mm_set1_epi8( 8 );
  1665. bx = _mm_sub_epi8( bx, off );
  1666. by = _mm_sub_epi8( by, off );
  1667. // Get absolute values of x vectors
  1668. const __m128i ax = _mm_sign_epi8(bx, bx);
  1669. // Sign the values of the y vectors
  1670. const __m128i sy = _mm_sign_epi8(by, bx);
  1671. // Perform multiplication and create 16-bit values
  1672. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1673. const __m128i ones = _mm_set1_epi16(1);
  1674. i32[j] = _mm_madd_epi16(ones, dot);
  1675. }
  1676. // Convert int32_t to float
  1677. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1678. // Apply the scale, and accumulate
  1679. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1680. }
  1681. // Return horizontal sum of the acc vector
  1682. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1683. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1684. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1685. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1686. sumf = _mm_cvtss_f32( res );
  1687. #elif defined(__wasm_simd128__)
  1688. // wasm simd
  1689. float sum0 = 0.0f;
  1690. float sum1 = 0.0f;
  1691. for (int i = 0; i < nb; i += 2) {
  1692. const block_q4_0 * restrict x0 = &px[i + 0];
  1693. const block_q4_0 * restrict y0 = &py[i + 0];
  1694. const block_q4_0 * restrict x1 = &px[i + 1];
  1695. const block_q4_0 * restrict y1 = &py[i + 1];
  1696. const v128_t m4b = wasm_u8x16_splat(0xf);
  1697. const v128_t s8b = wasm_i8x16_splat(0x8);
  1698. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1699. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1700. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1701. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1702. // 4-bit -> 8-bit
  1703. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1704. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1705. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1706. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1707. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1708. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1709. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1710. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1711. // sub 8
  1712. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1713. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1714. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1715. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1716. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1717. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1718. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1719. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1720. // dot product into int16x8_t
  1721. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1722. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1723. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1724. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1725. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1726. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1727. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1728. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1729. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1730. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1731. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1732. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1733. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1734. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1735. sum0 += x0->d * y0->d * (
  1736. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1737. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1738. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1739. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1740. sum1 += x1->d * y1->d * (
  1741. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1742. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1743. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1744. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1745. }
  1746. sumf = sum0 + sum1;
  1747. #else
  1748. // scalar
  1749. for (int i = 0; i < nb; i++) {
  1750. const float d0 = x[i].d;
  1751. const float d1 = y[i].d;
  1752. const uint8_t * restrict p0 = x[i].qs;
  1753. const uint8_t * restrict p1 = y[i].qs;
  1754. for (int j = 0; j < QK/2; j++) {
  1755. const uint8_t v0 = p0[j];
  1756. const uint8_t v1 = p1[j];
  1757. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1758. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1759. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1760. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1761. sumf += f0*f2 + f1*f3;
  1762. }
  1763. }
  1764. #endif
  1765. *s = sumf;
  1766. }
  1767. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1768. const int nb = n / QK;
  1769. const block_q4_1 * restrict x = vx;
  1770. const block_q4_1 * restrict y = vy;
  1771. float sumf = 0.0;
  1772. #if defined(__AVX2__)
  1773. // Initialize accumulator with zeros
  1774. __m256 acc = _mm256_setzero_ps();
  1775. // Accumulator for constant offsets
  1776. float acc_offset = 0.0f;
  1777. // Main loop
  1778. for (int i = 0; i < nb; ++i) {
  1779. const float * d0 = &x[i].d;
  1780. const float * d1 = &y[i].d;
  1781. const float * m0 = &x[i].m;
  1782. const float * m1 = &y[i].m;
  1783. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1784. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1785. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1786. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1787. // Compute combined scale for the block
  1788. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1789. // Compute cross scales for the block
  1790. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1791. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1792. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1793. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1794. __m256i bx = bytesFromNibbles( x[i].qs );
  1795. __m256i by = bytesFromNibbles( y[i].qs );
  1796. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1797. // Sign-extend first 16 signed bytes into int16_t
  1798. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1799. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1800. // Compute products of int16_t integers, add pairwise
  1801. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1802. // Sign-extend last 16 signed bytes into int16_t vectors
  1803. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1804. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1805. // Accumulate products of int16_t integers
  1806. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1807. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1808. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1809. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1810. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1811. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1812. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1813. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1814. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1815. // Convert int32_t to float
  1816. __m256 p = _mm256_cvtepi32_ps( i32 );
  1817. // Apply the scale, and accumulate
  1818. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1819. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1820. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1821. // acc_offset += m0*m1 (for each entry in the block)
  1822. acc_offset += (*m0)*(*m1);
  1823. }
  1824. // Return horizontal sum of the acc vector
  1825. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1826. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1827. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1828. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1829. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1830. #elif defined(__ARM_NEON)
  1831. float sum00 = 0.0f;
  1832. float sum01 = 0.0f;
  1833. float sum10 = 0.0f;
  1834. float sum11 = 0.0f;
  1835. for (int i = 0; i < nb; ++i) {
  1836. const block_q4_1 * restrict x0 = &x[i + 0];
  1837. const block_q4_1 * restrict y0 = &y[i + 0];
  1838. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1839. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1840. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1841. // and with 0xf
  1842. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1843. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1844. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1845. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1846. // dot product into uint16x8_t
  1847. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1848. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1849. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1850. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1851. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1852. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1853. sum00 += x0->m*y0->m;
  1854. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1855. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1856. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1857. }
  1858. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1859. #else
  1860. // scalar
  1861. for (int i = 0; i < nb; i++) {
  1862. const float d0 = x[i].d;
  1863. const float d1 = y[i].d;
  1864. const float m0 = x[i].m;
  1865. const float m1 = y[i].m;
  1866. const uint8_t * restrict p0 = x[i].qs;
  1867. const uint8_t * restrict p1 = y[i].qs;
  1868. for (int j = 0; j < QK/2; j++) {
  1869. const uint8_t v0 = p0[j];
  1870. const uint8_t v1 = p1[j];
  1871. const float f0 = d0*(v0 & 0xf) + m0;
  1872. const float f1 = d0*(v0 >> 4) + m0;
  1873. const float f2 = d1*(v1 & 0xf) + m1;
  1874. const float f3 = d1*(v1 >> 4) + m1;
  1875. sumf += f0*f2 + f1*f3;
  1876. }
  1877. }
  1878. #endif
  1879. *s = sumf;
  1880. }
  1881. // compute GGML_VEC_DOT_UNROLL dot products at once
  1882. // xs - x row stride in bytes
  1883. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1884. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1885. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1886. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1887. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1888. }
  1889. #if defined(GGML_SIMD)
  1890. const int np = (n & ~(GGML_F16_STEP - 1));
  1891. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1892. GGML_F16_VEC ax[GGML_F16_ARR];
  1893. GGML_F16_VEC ay[GGML_F16_ARR];
  1894. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1895. for (int j = 0; j < GGML_F16_ARR; j++) {
  1896. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1897. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1898. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1899. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1900. }
  1901. }
  1902. }
  1903. // reduce sum0..sum3 to sum0
  1904. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1905. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1906. }
  1907. // leftovers
  1908. for (int i = np; i < n; ++i) {
  1909. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1910. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1911. }
  1912. }
  1913. #else
  1914. for (int i = 0; i < n; ++i) {
  1915. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1916. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1917. }
  1918. }
  1919. #endif
  1920. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1921. s[i] = sumf[i];
  1922. }
  1923. }
  1924. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1925. #if defined(GGML_SIMD)
  1926. const int np = (n & ~(GGML_F32_STEP - 1));
  1927. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1928. GGML_F32_VEC ax[GGML_F32_ARR];
  1929. GGML_F32_VEC ay[GGML_F32_ARR];
  1930. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1931. for (int j = 0; j < GGML_F32_ARR; j++) {
  1932. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1933. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1934. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1935. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1936. }
  1937. }
  1938. // leftovers
  1939. for (int i = np; i < n; ++i) {
  1940. y[i] += x[i]*v;
  1941. }
  1942. #else
  1943. // scalar
  1944. for (int i = 0; i < n; ++i) {
  1945. y[i] += x[i]*v;
  1946. }
  1947. #endif
  1948. }
  1949. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1950. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1951. #if defined(GGML_SIMD)
  1952. const int np = (n & ~(GGML_F32_STEP - 1));
  1953. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1954. GGML_F32_VEC ay[GGML_F32_ARR];
  1955. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1956. for (int j = 0; j < GGML_F32_ARR; j++) {
  1957. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1958. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1959. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1960. }
  1961. }
  1962. // leftovers
  1963. for (int i = np; i < n; ++i) {
  1964. y[i] *= v;
  1965. }
  1966. #else
  1967. // scalar
  1968. for (int i = 0; i < n; ++i) {
  1969. y[i] *= v;
  1970. }
  1971. #endif
  1972. }
  1973. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1974. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1975. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1976. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1977. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1978. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1979. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1980. static const float GELU_COEF_A = 0.044715f;
  1981. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1982. inline static float ggml_gelu_f32(float x) {
  1983. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1984. }
  1985. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1986. const uint16_t * i16 = (const uint16_t *) x;
  1987. for (int i = 0; i < n; ++i) {
  1988. y[i] = table_gelu_f16[i16[i]];
  1989. }
  1990. }
  1991. #ifdef GGML_GELU_FP16
  1992. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1993. uint16_t t;
  1994. for (int i = 0; i < n; ++i) {
  1995. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1996. memcpy(&t, &fp16, sizeof(uint16_t));
  1997. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1998. }
  1999. }
  2000. #else
  2001. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2002. for (int i = 0; i < n; ++i) {
  2003. y[i] = ggml_gelu_f32(x[i]);
  2004. }
  2005. }
  2006. #endif
  2007. // Sigmoid Linear Unit (SiLU) function
  2008. inline static float ggml_silu_f32(float x) {
  2009. return x/(1.0f + expf(-x));
  2010. }
  2011. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2012. const uint16_t * i16 = (const uint16_t *) x;
  2013. for (int i = 0; i < n; ++i) {
  2014. y[i] = table_silu_f16[i16[i]];
  2015. }
  2016. }
  2017. #ifdef GGML_SILU_FP16
  2018. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2019. uint16_t t;
  2020. for (int i = 0; i < n; ++i) {
  2021. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2022. memcpy(&t, &fp16, sizeof(uint16_t));
  2023. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2024. }
  2025. }
  2026. #else
  2027. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2028. for (int i = 0; i < n; ++i) {
  2029. y[i] = ggml_silu_f32(x[i]);
  2030. }
  2031. }
  2032. #endif
  2033. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2034. #ifndef GGML_USE_ACCELERATE
  2035. ggml_float sum = 0.0;
  2036. for (int i = 0; i < n; ++i) {
  2037. sum += (ggml_float)x[i];
  2038. }
  2039. *s = sum;
  2040. #else
  2041. vDSP_sve(x, 1, s, n);
  2042. #endif
  2043. }
  2044. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2045. #ifndef GGML_USE_ACCELERATE
  2046. float max = -INFINITY;
  2047. for (int i = 0; i < n; ++i) {
  2048. max = MAX(max, x[i]);
  2049. }
  2050. *s = max;
  2051. #else
  2052. vDSP_maxv(x, 1, s, n);
  2053. #endif
  2054. }
  2055. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2056. ggml_vec_norm_f32(n, s, x);
  2057. *s = 1.f/(*s);
  2058. }
  2059. //
  2060. // logging
  2061. //
  2062. #if (GGML_DEBUG >= 1)
  2063. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2064. #else
  2065. #define GGML_PRINT_DEBUG(...)
  2066. #endif
  2067. #if (GGML_DEBUG >= 5)
  2068. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2069. #else
  2070. #define GGML_PRINT_DEBUG_5(...)
  2071. #endif
  2072. #if (GGML_DEBUG >= 10)
  2073. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2074. #else
  2075. #define GGML_PRINT_DEBUG_10(...)
  2076. #endif
  2077. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2078. //
  2079. // data types
  2080. //
  2081. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2082. QK,
  2083. QK,
  2084. 1,
  2085. 1,
  2086. 1,
  2087. 1,
  2088. 1,
  2089. };
  2090. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2091. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2092. sizeof(block_q4_0),
  2093. sizeof(block_q4_1),
  2094. sizeof(int8_t ),
  2095. sizeof(int16_t),
  2096. sizeof(int32_t),
  2097. sizeof(ggml_fp16_t),
  2098. sizeof(float ),
  2099. };
  2100. // don't forget to update the array above when adding new types
  2101. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2102. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2103. "NONE",
  2104. "DUP",
  2105. "ADD",
  2106. "SUB",
  2107. "MUL",
  2108. "DIV",
  2109. "SQR",
  2110. "SQRT",
  2111. "SUM",
  2112. "MEAN",
  2113. "REPEAT",
  2114. "ABS",
  2115. "SGN",
  2116. "NEG",
  2117. "STEP",
  2118. "RELU",
  2119. "GELU",
  2120. "SILU",
  2121. "NORM",
  2122. "RMS_NORM",
  2123. "MUL_MAT",
  2124. "SCALE",
  2125. "CPY",
  2126. "RESHAPE",
  2127. "VIEW",
  2128. "PERMUTE",
  2129. "TRANSPOSE",
  2130. "GET_ROWS",
  2131. "DIAG_MASK_INF",
  2132. "SOFT_MAX",
  2133. "ROPE",
  2134. "CONV_1D_1S",
  2135. "CONV_1D_2S",
  2136. "FLASH_ATTN",
  2137. "FLASH_FF",
  2138. };
  2139. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2140. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2141. "none",
  2142. "x",
  2143. "x+y",
  2144. "x-y",
  2145. "x*y",
  2146. "x/y",
  2147. "x^2",
  2148. "√x",
  2149. "Σx",
  2150. "Σx/n",
  2151. "repeat(x)",
  2152. "abs(x)",
  2153. "sgn(x)",
  2154. "-x",
  2155. "step(x)",
  2156. "relu(x)",
  2157. "gelu(x)",
  2158. "silu(x)",
  2159. "norm(x)",
  2160. "rms_norm(x)",
  2161. "X*Y",
  2162. "x*v",
  2163. "x-\\>y",
  2164. "reshape(x)",
  2165. "view(x)",
  2166. "permute(x)",
  2167. "transpose(x)",
  2168. "get_rows(x)",
  2169. "diag_mask_inf(x)",
  2170. "soft_max(x)",
  2171. "rope(x)",
  2172. "conv_1d_1s(x)",
  2173. "conv_1d_2s(x)",
  2174. "flash_attn(x)",
  2175. "flash_ff(x)",
  2176. };
  2177. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2178. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2179. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2180. //
  2181. // ggml context
  2182. //
  2183. struct ggml_context {
  2184. size_t mem_size;
  2185. void * mem_buffer;
  2186. bool mem_buffer_owned;
  2187. bool no_alloc;
  2188. int n_objects;
  2189. struct ggml_object * objects_begin;
  2190. struct ggml_object * objects_end;
  2191. struct ggml_scratch scratch;
  2192. struct ggml_scratch scratch_save;
  2193. };
  2194. struct ggml_context_container {
  2195. bool used;
  2196. struct ggml_context context;
  2197. };
  2198. //
  2199. // compute types
  2200. //
  2201. enum ggml_task_type {
  2202. GGML_TASK_INIT = 0,
  2203. GGML_TASK_COMPUTE,
  2204. GGML_TASK_FINALIZE,
  2205. };
  2206. struct ggml_compute_params {
  2207. enum ggml_task_type type;
  2208. int ith, nth;
  2209. // work buffer for all threads
  2210. size_t wsize;
  2211. void * wdata;
  2212. };
  2213. //
  2214. // ggml state
  2215. //
  2216. struct ggml_state {
  2217. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2218. };
  2219. // global state
  2220. static struct ggml_state g_state;
  2221. static atomic_int g_state_barrier = 0;
  2222. // barrier via spin lock
  2223. inline static void ggml_critical_section_start(void) {
  2224. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2225. while (processing > 0) {
  2226. // wait for other threads to finish
  2227. atomic_fetch_sub(&g_state_barrier, 1);
  2228. sched_yield(); // TODO: reconsider this
  2229. processing = atomic_fetch_add(&g_state_barrier, 1);
  2230. }
  2231. }
  2232. // TODO: make this somehow automatically executed
  2233. // some sort of "sentry" mechanism
  2234. inline static void ggml_critical_section_end(void) {
  2235. atomic_fetch_sub(&g_state_barrier, 1);
  2236. }
  2237. ////////////////////////////////////////////////////////////////////////////////
  2238. void ggml_print_object(const struct ggml_object * obj) {
  2239. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2240. obj->offs, obj->size, (const void *) obj->next);
  2241. }
  2242. void ggml_print_objects(const struct ggml_context * ctx) {
  2243. struct ggml_object * obj = ctx->objects_begin;
  2244. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2245. while (obj != NULL) {
  2246. ggml_print_object(obj);
  2247. obj = obj->next;
  2248. }
  2249. GGML_PRINT("%s: --- end ---\n", __func__);
  2250. }
  2251. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2252. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2253. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2254. }
  2255. int ggml_nrows(const struct ggml_tensor * tensor) {
  2256. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2257. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2258. }
  2259. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2260. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2261. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2262. }
  2263. int ggml_blck_size(enum ggml_type type) {
  2264. return GGML_BLCK_SIZE[type];
  2265. }
  2266. size_t ggml_type_size(enum ggml_type type) {
  2267. return GGML_TYPE_SIZE[type];
  2268. }
  2269. float ggml_type_sizef(enum ggml_type type) {
  2270. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2271. }
  2272. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2273. return GGML_TYPE_SIZE[tensor->type];
  2274. }
  2275. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2276. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2277. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2278. }
  2279. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2280. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2281. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2282. }
  2283. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2284. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2285. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2286. }
  2287. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2288. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2289. return
  2290. (t0->ne[0] == t1->ne[0]) &&
  2291. (t0->ne[2] == t1->ne[2]) &&
  2292. (t0->ne[3] == t1->ne[3]);
  2293. }
  2294. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2295. return tensor->nb[0] > tensor->nb[1];
  2296. }
  2297. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2298. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2299. return
  2300. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2301. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2302. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2303. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2304. }
  2305. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2306. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2307. return
  2308. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2309. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2310. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2311. }
  2312. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2313. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2314. return
  2315. (t0->ne[0] == t1->ne[0] ) &&
  2316. (t0->ne[1] == t1->ne[1] ) &&
  2317. (t0->ne[2] == t1->ne[2] ) &&
  2318. (t0->ne[3] == t1->ne[3] );
  2319. }
  2320. // check if t1 can be represented as a repeatition of t0
  2321. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2322. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2323. return
  2324. (t1->ne[0]%t0->ne[0] == 0) &&
  2325. (t1->ne[1]%t0->ne[1] == 0) &&
  2326. (t1->ne[2]%t0->ne[2] == 0) &&
  2327. (t1->ne[3]%t0->ne[3] == 0);
  2328. }
  2329. static inline int ggml_up32(int n) {
  2330. return (n + 31) & ~31;
  2331. }
  2332. static inline int ggml_up64(int n) {
  2333. return (n + 63) & ~63;
  2334. }
  2335. static inline int ggml_up(int n, int m) {
  2336. // assert m is a power of 2
  2337. GGML_ASSERT((m & (m - 1)) == 0);
  2338. return (n + m - 1) & ~(m - 1);
  2339. }
  2340. // assert that pointer is aligned to GGML_MEM_ALIGN
  2341. #define ggml_assert_aligned(ptr) \
  2342. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2343. ////////////////////////////////////////////////////////////////////////////////
  2344. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2345. // make this function thread safe
  2346. ggml_critical_section_start();
  2347. static bool is_first_call = true;
  2348. if (is_first_call) {
  2349. // initialize time system (required on Windows)
  2350. ggml_time_init();
  2351. // initialize GELU, SILU and EXP F32 tables
  2352. {
  2353. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2354. ggml_fp16_t ii;
  2355. for (int i = 0; i < (1 << 16); ++i) {
  2356. uint16_t ui = i;
  2357. memcpy(&ii, &ui, sizeof(ii));
  2358. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2359. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2360. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2361. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2362. }
  2363. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2364. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2365. }
  2366. // initialize g_state
  2367. {
  2368. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2369. g_state = (struct ggml_state) {
  2370. /*.contexts =*/ { { 0 } },
  2371. };
  2372. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2373. g_state.contexts[i].used = false;
  2374. }
  2375. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2376. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2377. }
  2378. is_first_call = false;
  2379. }
  2380. // find non-used context in g_state
  2381. struct ggml_context * ctx = NULL;
  2382. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2383. if (!g_state.contexts[i].used) {
  2384. g_state.contexts[i].used = true;
  2385. ctx = &g_state.contexts[i].context;
  2386. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2387. break;
  2388. }
  2389. }
  2390. if (ctx == NULL) {
  2391. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2392. ggml_critical_section_end();
  2393. return NULL;
  2394. }
  2395. *ctx = (struct ggml_context) {
  2396. /*.mem_size =*/ params.mem_size,
  2397. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2398. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2399. /*.no_alloc =*/ params.no_alloc,
  2400. /*.n_objects =*/ 0,
  2401. /*.objects_begin =*/ NULL,
  2402. /*.objects_end =*/ NULL,
  2403. /*.scratch =*/ { 0, 0, NULL, },
  2404. /*.scratch_save =*/ { 0, 0, NULL, },
  2405. };
  2406. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2407. ggml_assert_aligned(ctx->mem_buffer);
  2408. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2409. ggml_critical_section_end();
  2410. return ctx;
  2411. }
  2412. void ggml_free(struct ggml_context * ctx) {
  2413. // make this function thread safe
  2414. ggml_critical_section_start();
  2415. bool found = false;
  2416. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2417. if (&g_state.contexts[i].context == ctx) {
  2418. g_state.contexts[i].used = false;
  2419. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2420. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2421. if (ctx->mem_buffer_owned) {
  2422. free(ctx->mem_buffer);
  2423. }
  2424. found = true;
  2425. break;
  2426. }
  2427. }
  2428. if (!found) {
  2429. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2430. }
  2431. ggml_critical_section_end();
  2432. }
  2433. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2434. return ctx->objects_end->offs + ctx->objects_end->size;
  2435. }
  2436. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2437. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2438. ctx->scratch = scratch;
  2439. return result;
  2440. }
  2441. ////////////////////////////////////////////////////////////////////////////////
  2442. struct ggml_tensor * ggml_new_tensor_impl(
  2443. struct ggml_context * ctx,
  2444. enum ggml_type type,
  2445. int n_dims,
  2446. const int64_t* ne,
  2447. void* data) {
  2448. // always insert objects at the end of the context's memory pool
  2449. struct ggml_object * obj_cur = ctx->objects_end;
  2450. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2451. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2452. const size_t cur_end = cur_offs + cur_size;
  2453. size_t size_needed = 0;
  2454. if (data == NULL && !ctx->no_alloc) {
  2455. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2456. for (int i = 1; i < n_dims; i++) {
  2457. size_needed *= ne[i];
  2458. }
  2459. // align to GGML_MEM_ALIGN
  2460. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2461. }
  2462. char * const mem_buffer = ctx->mem_buffer;
  2463. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2464. if (ctx->scratch.data == NULL || data != NULL) {
  2465. size_needed += sizeof(struct ggml_tensor);
  2466. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2467. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2468. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2469. assert(false);
  2470. return NULL;
  2471. }
  2472. *obj_new = (struct ggml_object) {
  2473. .offs = cur_end + GGML_OBJECT_SIZE,
  2474. .size = size_needed,
  2475. .next = NULL,
  2476. };
  2477. } else {
  2478. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2479. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2480. assert(false);
  2481. return NULL;
  2482. }
  2483. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2484. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2485. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2486. assert(false);
  2487. return NULL;
  2488. }
  2489. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2490. *obj_new = (struct ggml_object) {
  2491. .offs = cur_end + GGML_OBJECT_SIZE,
  2492. .size = sizeof(struct ggml_tensor),
  2493. .next = NULL,
  2494. };
  2495. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2496. ctx->scratch.offs += size_needed;
  2497. }
  2498. if (obj_cur != NULL) {
  2499. obj_cur->next = obj_new;
  2500. } else {
  2501. // this is the first object in this context
  2502. ctx->objects_begin = obj_new;
  2503. }
  2504. ctx->objects_end = obj_new;
  2505. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2506. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2507. ggml_assert_aligned(result);
  2508. *result = (struct ggml_tensor) {
  2509. /*.type =*/ type,
  2510. /*.n_dims =*/ n_dims,
  2511. /*.ne =*/ { 1, 1, 1, 1 },
  2512. /*.nb =*/ { 0, 0, 0, 0 },
  2513. /*.op =*/ GGML_OP_NONE,
  2514. /*.is_param =*/ false,
  2515. /*.grad =*/ NULL,
  2516. /*.src0 =*/ NULL,
  2517. /*.src1 =*/ NULL,
  2518. /*.opt =*/ { NULL },
  2519. /*.n_tasks =*/ 0,
  2520. /*.perf_runs =*/ 0,
  2521. /*.perf_cycles =*/ 0,
  2522. /*.perf_time_us =*/ 0,
  2523. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2524. /*.pad =*/ { 0 },
  2525. };
  2526. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2527. //ggml_assert_aligned(result->data);
  2528. for (int i = 0; i < n_dims; i++) {
  2529. result->ne[i] = ne[i];
  2530. }
  2531. result->nb[0] = GGML_TYPE_SIZE[type];
  2532. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2533. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2534. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2535. }
  2536. ctx->n_objects++;
  2537. return result;
  2538. }
  2539. struct ggml_tensor * ggml_new_tensor(
  2540. struct ggml_context * ctx,
  2541. enum ggml_type type,
  2542. int n_dims,
  2543. const int64_t * ne) {
  2544. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2545. }
  2546. struct ggml_tensor * ggml_new_tensor_1d(
  2547. struct ggml_context * ctx,
  2548. enum ggml_type type,
  2549. int64_t ne0) {
  2550. return ggml_new_tensor(ctx, type, 1, &ne0);
  2551. }
  2552. struct ggml_tensor * ggml_new_tensor_2d(
  2553. struct ggml_context * ctx,
  2554. enum ggml_type type,
  2555. int64_t ne0,
  2556. int64_t ne1) {
  2557. const int64_t ne[2] = { ne0, ne1 };
  2558. return ggml_new_tensor(ctx, type, 2, ne);
  2559. }
  2560. struct ggml_tensor * ggml_new_tensor_3d(
  2561. struct ggml_context * ctx,
  2562. enum ggml_type type,
  2563. int64_t ne0,
  2564. int64_t ne1,
  2565. int64_t ne2) {
  2566. const int64_t ne[3] = { ne0, ne1, ne2 };
  2567. return ggml_new_tensor(ctx, type, 3, ne);
  2568. }
  2569. struct ggml_tensor * ggml_new_tensor_4d(
  2570. struct ggml_context * ctx,
  2571. enum ggml_type type,
  2572. int64_t ne0,
  2573. int64_t ne1,
  2574. int64_t ne2,
  2575. int64_t ne3) {
  2576. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2577. return ggml_new_tensor(ctx, type, 4, ne);
  2578. }
  2579. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2580. ctx->scratch_save = ctx->scratch;
  2581. ctx->scratch.data = NULL;
  2582. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2583. ctx->scratch = ctx->scratch_save;
  2584. ggml_set_i32(result, value);
  2585. return result;
  2586. }
  2587. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2588. ctx->scratch_save = ctx->scratch;
  2589. ctx->scratch.data = NULL;
  2590. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2591. ctx->scratch = ctx->scratch_save;
  2592. ggml_set_f32(result, value);
  2593. return result;
  2594. }
  2595. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2596. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2597. }
  2598. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2599. memset(tensor->data, 0, ggml_nbytes(tensor));
  2600. return tensor;
  2601. }
  2602. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2603. const int n = ggml_nrows(tensor);
  2604. const int nc = tensor->ne[0];
  2605. const size_t n1 = tensor->nb[1];
  2606. char * const data = tensor->data;
  2607. switch (tensor->type) {
  2608. case GGML_TYPE_Q4_0:
  2609. {
  2610. GGML_ASSERT(false);
  2611. } break;
  2612. case GGML_TYPE_Q4_1:
  2613. {
  2614. GGML_ASSERT(false);
  2615. } break;
  2616. case GGML_TYPE_I8:
  2617. {
  2618. assert(tensor->nb[0] == sizeof(int8_t));
  2619. for (int i = 0; i < n; i++) {
  2620. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2621. }
  2622. } break;
  2623. case GGML_TYPE_I16:
  2624. {
  2625. assert(tensor->nb[0] == sizeof(int16_t));
  2626. for (int i = 0; i < n; i++) {
  2627. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2628. }
  2629. } break;
  2630. case GGML_TYPE_I32:
  2631. {
  2632. assert(tensor->nb[0] == sizeof(int32_t));
  2633. for (int i = 0; i < n; i++) {
  2634. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2635. }
  2636. } break;
  2637. case GGML_TYPE_F16:
  2638. {
  2639. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2640. for (int i = 0; i < n; i++) {
  2641. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2642. }
  2643. } break;
  2644. case GGML_TYPE_F32:
  2645. {
  2646. assert(tensor->nb[0] == sizeof(float));
  2647. for (int i = 0; i < n; i++) {
  2648. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2649. }
  2650. } break;
  2651. case GGML_TYPE_COUNT:
  2652. {
  2653. GGML_ASSERT(false);
  2654. } break;
  2655. }
  2656. return tensor;
  2657. }
  2658. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2659. const int n = ggml_nrows(tensor);
  2660. const int nc = tensor->ne[0];
  2661. const size_t n1 = tensor->nb[1];
  2662. char * const data = tensor->data;
  2663. switch (tensor->type) {
  2664. case GGML_TYPE_Q4_0:
  2665. {
  2666. GGML_ASSERT(false);
  2667. } break;
  2668. case GGML_TYPE_Q4_1:
  2669. {
  2670. GGML_ASSERT(false);
  2671. } break;
  2672. case GGML_TYPE_I8:
  2673. {
  2674. assert(tensor->nb[0] == sizeof(int8_t));
  2675. for (int i = 0; i < n; i++) {
  2676. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2677. }
  2678. } break;
  2679. case GGML_TYPE_I16:
  2680. {
  2681. assert(tensor->nb[0] == sizeof(int16_t));
  2682. for (int i = 0; i < n; i++) {
  2683. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2684. }
  2685. } break;
  2686. case GGML_TYPE_I32:
  2687. {
  2688. assert(tensor->nb[0] == sizeof(int32_t));
  2689. for (int i = 0; i < n; i++) {
  2690. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2691. }
  2692. } break;
  2693. case GGML_TYPE_F16:
  2694. {
  2695. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2696. for (int i = 0; i < n; i++) {
  2697. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2698. }
  2699. } break;
  2700. case GGML_TYPE_F32:
  2701. {
  2702. assert(tensor->nb[0] == sizeof(float));
  2703. for (int i = 0; i < n; i++) {
  2704. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2705. }
  2706. } break;
  2707. case GGML_TYPE_COUNT:
  2708. {
  2709. GGML_ASSERT(false);
  2710. } break;
  2711. }
  2712. return tensor;
  2713. }
  2714. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2715. switch (tensor->type) {
  2716. case GGML_TYPE_Q4_0:
  2717. {
  2718. GGML_ASSERT(false);
  2719. } break;
  2720. case GGML_TYPE_Q4_1:
  2721. {
  2722. GGML_ASSERT(false);
  2723. } break;
  2724. case GGML_TYPE_I8:
  2725. {
  2726. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2727. return ((int8_t *)(tensor->data))[i];
  2728. } break;
  2729. case GGML_TYPE_I16:
  2730. {
  2731. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2732. return ((int16_t *)(tensor->data))[i];
  2733. } break;
  2734. case GGML_TYPE_I32:
  2735. {
  2736. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2737. return ((int32_t *)(tensor->data))[i];
  2738. } break;
  2739. case GGML_TYPE_F16:
  2740. {
  2741. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2742. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2743. } break;
  2744. case GGML_TYPE_F32:
  2745. {
  2746. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2747. return ((float *)(tensor->data))[i];
  2748. } break;
  2749. case GGML_TYPE_COUNT:
  2750. {
  2751. GGML_ASSERT(false);
  2752. } break;
  2753. }
  2754. return 0.0f;
  2755. }
  2756. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2757. switch (tensor->type) {
  2758. case GGML_TYPE_Q4_0:
  2759. {
  2760. GGML_ASSERT(false);
  2761. } break;
  2762. case GGML_TYPE_Q4_1:
  2763. {
  2764. GGML_ASSERT(false);
  2765. } break;
  2766. case GGML_TYPE_I8:
  2767. {
  2768. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2769. ((int8_t *)(tensor->data))[i] = value;
  2770. } break;
  2771. case GGML_TYPE_I16:
  2772. {
  2773. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2774. ((int16_t *)(tensor->data))[i] = value;
  2775. } break;
  2776. case GGML_TYPE_I32:
  2777. {
  2778. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2779. ((int32_t *)(tensor->data))[i] = value;
  2780. } break;
  2781. case GGML_TYPE_F16:
  2782. {
  2783. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2784. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2785. } break;
  2786. case GGML_TYPE_F32:
  2787. {
  2788. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2789. ((float *)(tensor->data))[i] = value;
  2790. } break;
  2791. case GGML_TYPE_COUNT:
  2792. {
  2793. GGML_ASSERT(false);
  2794. } break;
  2795. }
  2796. }
  2797. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2798. switch (tensor->type) {
  2799. case GGML_TYPE_Q4_0:
  2800. {
  2801. GGML_ASSERT(false);
  2802. } break;
  2803. case GGML_TYPE_Q4_1:
  2804. {
  2805. GGML_ASSERT(false);
  2806. } break;
  2807. case GGML_TYPE_I8:
  2808. {
  2809. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2810. return ((int8_t *)(tensor->data))[i];
  2811. } break;
  2812. case GGML_TYPE_I16:
  2813. {
  2814. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2815. return ((int16_t *)(tensor->data))[i];
  2816. } break;
  2817. case GGML_TYPE_I32:
  2818. {
  2819. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2820. return ((int32_t *)(tensor->data))[i];
  2821. } break;
  2822. case GGML_TYPE_F16:
  2823. {
  2824. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2825. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2826. } break;
  2827. case GGML_TYPE_F32:
  2828. {
  2829. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2830. return ((float *)(tensor->data))[i];
  2831. } break;
  2832. case GGML_TYPE_COUNT:
  2833. {
  2834. GGML_ASSERT(false);
  2835. } break;
  2836. }
  2837. return 0.0f;
  2838. }
  2839. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2840. switch (tensor->type) {
  2841. case GGML_TYPE_Q4_0:
  2842. {
  2843. GGML_ASSERT(false);
  2844. } break;
  2845. case GGML_TYPE_Q4_1:
  2846. {
  2847. GGML_ASSERT(false);
  2848. } break;
  2849. case GGML_TYPE_I8:
  2850. {
  2851. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2852. ((int8_t *)(tensor->data))[i] = value;
  2853. } break;
  2854. case GGML_TYPE_I16:
  2855. {
  2856. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2857. ((int16_t *)(tensor->data))[i] = value;
  2858. } break;
  2859. case GGML_TYPE_I32:
  2860. {
  2861. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2862. ((int32_t *)(tensor->data))[i] = value;
  2863. } break;
  2864. case GGML_TYPE_F16:
  2865. {
  2866. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2867. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2868. } break;
  2869. case GGML_TYPE_F32:
  2870. {
  2871. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2872. ((float *)(tensor->data))[i] = value;
  2873. } break;
  2874. case GGML_TYPE_COUNT:
  2875. {
  2876. GGML_ASSERT(false);
  2877. } break;
  2878. }
  2879. }
  2880. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2881. return tensor->data;
  2882. }
  2883. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2884. assert(tensor->type == GGML_TYPE_F32);
  2885. return (float *)(tensor->data);
  2886. }
  2887. struct ggml_tensor * ggml_view_tensor(
  2888. struct ggml_context * ctx,
  2889. const struct ggml_tensor * src) {
  2890. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2891. result->nb[0] = src->nb[0];
  2892. result->nb[1] = src->nb[1];
  2893. result->nb[2] = src->nb[2];
  2894. result->nb[3] = src->nb[3];
  2895. return result;
  2896. }
  2897. ////////////////////////////////////////////////////////////////////////////////
  2898. // ggml_dup
  2899. struct ggml_tensor * ggml_dup_impl(
  2900. struct ggml_context * ctx,
  2901. struct ggml_tensor * a,
  2902. bool inplace) {
  2903. bool is_node = false;
  2904. if (!inplace && (a->grad)) {
  2905. is_node = true;
  2906. }
  2907. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2908. result->op = GGML_OP_DUP;
  2909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2910. result->src0 = a;
  2911. result->src1 = NULL;
  2912. return result;
  2913. }
  2914. struct ggml_tensor * ggml_dup(
  2915. struct ggml_context * ctx,
  2916. struct ggml_tensor * a) {
  2917. return ggml_dup_impl(ctx, a, false);
  2918. }
  2919. struct ggml_tensor * ggml_dup_inplace(
  2920. struct ggml_context * ctx,
  2921. struct ggml_tensor * a) {
  2922. return ggml_dup_impl(ctx, a, true);
  2923. }
  2924. // ggml_add
  2925. struct ggml_tensor * ggml_add_impl(
  2926. struct ggml_context * ctx,
  2927. struct ggml_tensor * a,
  2928. struct ggml_tensor * b,
  2929. bool inplace) {
  2930. GGML_ASSERT(ggml_are_same_shape(a, b));
  2931. bool is_node = false;
  2932. if (!inplace && (a->grad || b->grad)) {
  2933. is_node = true;
  2934. }
  2935. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2936. result->op = GGML_OP_ADD;
  2937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2938. result->src0 = a;
  2939. result->src1 = b;
  2940. return result;
  2941. }
  2942. struct ggml_tensor * ggml_add(
  2943. struct ggml_context * ctx,
  2944. struct ggml_tensor * a,
  2945. struct ggml_tensor * b) {
  2946. return ggml_add_impl(ctx, a, b, false);
  2947. }
  2948. struct ggml_tensor * ggml_add_inplace(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a,
  2951. struct ggml_tensor * b) {
  2952. return ggml_add_impl(ctx, a, b, true);
  2953. }
  2954. // ggml_sub
  2955. struct ggml_tensor * ggml_sub_impl(
  2956. struct ggml_context * ctx,
  2957. struct ggml_tensor * a,
  2958. struct ggml_tensor * b,
  2959. bool inplace) {
  2960. GGML_ASSERT(ggml_are_same_shape(a, b));
  2961. bool is_node = false;
  2962. if (!inplace && (a->grad || b->grad)) {
  2963. is_node = true;
  2964. }
  2965. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2966. result->op = GGML_OP_SUB;
  2967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2968. result->src0 = a;
  2969. result->src1 = b;
  2970. return result;
  2971. }
  2972. struct ggml_tensor * ggml_sub(
  2973. struct ggml_context * ctx,
  2974. struct ggml_tensor * a,
  2975. struct ggml_tensor * b) {
  2976. return ggml_sub_impl(ctx, a, b, false);
  2977. }
  2978. struct ggml_tensor * ggml_sub_inplace(
  2979. struct ggml_context * ctx,
  2980. struct ggml_tensor * a,
  2981. struct ggml_tensor * b) {
  2982. return ggml_sub_impl(ctx, a, b, true);
  2983. }
  2984. // ggml_mul
  2985. struct ggml_tensor * ggml_mul_impl(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a,
  2988. struct ggml_tensor * b,
  2989. bool inplace) {
  2990. GGML_ASSERT(ggml_are_same_shape(a, b));
  2991. bool is_node = false;
  2992. if (!inplace && (a->grad || b->grad)) {
  2993. is_node = true;
  2994. }
  2995. if (inplace) {
  2996. GGML_ASSERT(is_node == false);
  2997. }
  2998. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2999. result->op = GGML_OP_MUL;
  3000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3001. result->src0 = a;
  3002. result->src1 = b;
  3003. return result;
  3004. }
  3005. struct ggml_tensor * ggml_mul(
  3006. struct ggml_context * ctx,
  3007. struct ggml_tensor * a,
  3008. struct ggml_tensor * b) {
  3009. return ggml_mul_impl(ctx, a, b, false);
  3010. }
  3011. struct ggml_tensor * ggml_mul_inplace(
  3012. struct ggml_context * ctx,
  3013. struct ggml_tensor * a,
  3014. struct ggml_tensor * b) {
  3015. return ggml_mul_impl(ctx, a, b, true);
  3016. }
  3017. // ggml_div
  3018. struct ggml_tensor * ggml_div_impl(
  3019. struct ggml_context * ctx,
  3020. struct ggml_tensor * a,
  3021. struct ggml_tensor * b,
  3022. bool inplace) {
  3023. GGML_ASSERT(ggml_are_same_shape(a, b));
  3024. bool is_node = false;
  3025. if (!inplace && (a->grad || b->grad)) {
  3026. is_node = true;
  3027. }
  3028. if (inplace) {
  3029. GGML_ASSERT(is_node == false);
  3030. }
  3031. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3032. result->op = GGML_OP_DIV;
  3033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3034. result->src0 = a;
  3035. result->src1 = b;
  3036. return result;
  3037. }
  3038. struct ggml_tensor * ggml_div(
  3039. struct ggml_context * ctx,
  3040. struct ggml_tensor * a,
  3041. struct ggml_tensor * b) {
  3042. return ggml_div_impl(ctx, a, b, false);
  3043. }
  3044. struct ggml_tensor * ggml_div_inplace(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a,
  3047. struct ggml_tensor * b) {
  3048. return ggml_div_impl(ctx, a, b, true);
  3049. }
  3050. // ggml_sqr
  3051. struct ggml_tensor * ggml_sqr_impl(
  3052. struct ggml_context * ctx,
  3053. struct ggml_tensor * a,
  3054. bool inplace) {
  3055. bool is_node = false;
  3056. if (!inplace && (a->grad)) {
  3057. is_node = true;
  3058. }
  3059. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3060. result->op = GGML_OP_SQR;
  3061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3062. result->src0 = a;
  3063. result->src1 = NULL;
  3064. return result;
  3065. }
  3066. struct ggml_tensor * ggml_sqr(
  3067. struct ggml_context * ctx,
  3068. struct ggml_tensor * a) {
  3069. return ggml_sqr_impl(ctx, a, false);
  3070. }
  3071. struct ggml_tensor * ggml_sqr_inplace(
  3072. struct ggml_context * ctx,
  3073. struct ggml_tensor * a) {
  3074. return ggml_sqr_impl(ctx, a, true);
  3075. }
  3076. // ggml_sqrt
  3077. struct ggml_tensor * ggml_sqrt_impl(
  3078. struct ggml_context * ctx,
  3079. struct ggml_tensor * a,
  3080. bool inplace) {
  3081. bool is_node = false;
  3082. if (!inplace && (a->grad)) {
  3083. is_node = true;
  3084. }
  3085. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3086. result->op = GGML_OP_SQRT;
  3087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3088. result->src0 = a;
  3089. result->src1 = NULL;
  3090. return result;
  3091. }
  3092. struct ggml_tensor * ggml_sqrt(
  3093. struct ggml_context * ctx,
  3094. struct ggml_tensor * a) {
  3095. return ggml_sqrt_impl(ctx, a, false);
  3096. }
  3097. struct ggml_tensor * ggml_sqrt_inplace(
  3098. struct ggml_context * ctx,
  3099. struct ggml_tensor * a) {
  3100. return ggml_sqrt_impl(ctx, a, true);
  3101. }
  3102. // ggml_sum
  3103. struct ggml_tensor * ggml_sum(
  3104. struct ggml_context * ctx,
  3105. struct ggml_tensor * a) {
  3106. bool is_node = false;
  3107. if (a->grad) {
  3108. is_node = true;
  3109. }
  3110. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3111. result->op = GGML_OP_SUM;
  3112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3113. result->src0 = a;
  3114. result->src1 = NULL;
  3115. return result;
  3116. }
  3117. // ggml_mean
  3118. struct ggml_tensor * ggml_mean(
  3119. struct ggml_context * ctx,
  3120. struct ggml_tensor * a) {
  3121. bool is_node = false;
  3122. if (a->grad) {
  3123. GGML_ASSERT(false); // TODO: implement
  3124. is_node = true;
  3125. }
  3126. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3127. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3128. result->op = GGML_OP_MEAN;
  3129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3130. result->src0 = a;
  3131. result->src1 = NULL;
  3132. return result;
  3133. }
  3134. // ggml_repeat
  3135. struct ggml_tensor * ggml_repeat(
  3136. struct ggml_context * ctx,
  3137. struct ggml_tensor * a,
  3138. struct ggml_tensor * b) {
  3139. GGML_ASSERT(ggml_can_repeat(a, b));
  3140. bool is_node = false;
  3141. if (a->grad) {
  3142. is_node = true;
  3143. }
  3144. if (ggml_are_same_shape(a, b) && !is_node) {
  3145. return a;
  3146. }
  3147. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3148. result->op = GGML_OP_REPEAT;
  3149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3150. result->src0 = a;
  3151. result->src1 = b;
  3152. return result;
  3153. }
  3154. // ggml_abs
  3155. struct ggml_tensor * ggml_abs_impl(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a,
  3158. bool inplace) {
  3159. bool is_node = false;
  3160. if (!inplace && (a->grad)) {
  3161. is_node = true;
  3162. }
  3163. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3164. result->op = GGML_OP_ABS;
  3165. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3166. result->src0 = a;
  3167. result->src1 = NULL;
  3168. return result;
  3169. }
  3170. struct ggml_tensor * ggml_abs(
  3171. struct ggml_context * ctx,
  3172. struct ggml_tensor * a) {
  3173. return ggml_abs_impl(ctx, a, false);
  3174. }
  3175. struct ggml_tensor * ggml_abs_inplace(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a) {
  3178. return ggml_abs_impl(ctx, a, true);
  3179. }
  3180. // ggml_sgn
  3181. struct ggml_tensor * ggml_sgn_impl(
  3182. struct ggml_context * ctx,
  3183. struct ggml_tensor * a,
  3184. bool inplace) {
  3185. bool is_node = false;
  3186. if (!inplace && (a->grad)) {
  3187. is_node = true;
  3188. }
  3189. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3190. result->op = GGML_OP_SGN;
  3191. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3192. result->src0 = a;
  3193. result->src1 = NULL;
  3194. return result;
  3195. }
  3196. struct ggml_tensor * ggml_sgn(
  3197. struct ggml_context * ctx,
  3198. struct ggml_tensor * a) {
  3199. return ggml_sgn_impl(ctx, a, false);
  3200. }
  3201. struct ggml_tensor * ggml_sgn_inplace(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a) {
  3204. return ggml_sgn_impl(ctx, a, true);
  3205. }
  3206. // ggml_neg
  3207. struct ggml_tensor * ggml_neg_impl(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a,
  3210. bool inplace) {
  3211. bool is_node = false;
  3212. if (!inplace && (a->grad)) {
  3213. is_node = true;
  3214. }
  3215. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3216. result->op = GGML_OP_NEG;
  3217. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3218. result->src0 = a;
  3219. result->src1 = NULL;
  3220. return result;
  3221. }
  3222. struct ggml_tensor * ggml_neg(
  3223. struct ggml_context * ctx,
  3224. struct ggml_tensor * a) {
  3225. return ggml_neg_impl(ctx, a, false);
  3226. }
  3227. struct ggml_tensor * ggml_neg_inplace(
  3228. struct ggml_context * ctx,
  3229. struct ggml_tensor * a) {
  3230. return ggml_neg_impl(ctx, a, true);
  3231. }
  3232. // ggml_step
  3233. struct ggml_tensor * ggml_step_impl(
  3234. struct ggml_context * ctx,
  3235. struct ggml_tensor * a,
  3236. bool inplace) {
  3237. bool is_node = false;
  3238. if (!inplace && (a->grad)) {
  3239. is_node = true;
  3240. }
  3241. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3242. result->op = GGML_OP_STEP;
  3243. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3244. result->src0 = a;
  3245. result->src1 = NULL;
  3246. return result;
  3247. }
  3248. struct ggml_tensor * ggml_step(
  3249. struct ggml_context * ctx,
  3250. struct ggml_tensor * a) {
  3251. return ggml_step_impl(ctx, a, false);
  3252. }
  3253. struct ggml_tensor * ggml_step_inplace(
  3254. struct ggml_context * ctx,
  3255. struct ggml_tensor * a) {
  3256. return ggml_step_impl(ctx, a, true);
  3257. }
  3258. // ggml_relu
  3259. struct ggml_tensor * ggml_relu_impl(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. bool inplace) {
  3263. bool is_node = false;
  3264. if (!inplace && (a->grad)) {
  3265. is_node = true;
  3266. }
  3267. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3268. result->op = GGML_OP_RELU;
  3269. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3270. result->src0 = a;
  3271. result->src1 = NULL;
  3272. return result;
  3273. }
  3274. struct ggml_tensor * ggml_relu(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a) {
  3277. return ggml_relu_impl(ctx, a, false);
  3278. }
  3279. struct ggml_tensor * ggml_relu_inplace(
  3280. struct ggml_context * ctx,
  3281. struct ggml_tensor * a) {
  3282. return ggml_relu_impl(ctx, a, true);
  3283. }
  3284. // ggml_gelu
  3285. struct ggml_tensor * ggml_gelu_impl(
  3286. struct ggml_context * ctx,
  3287. struct ggml_tensor * a,
  3288. bool inplace) {
  3289. bool is_node = false;
  3290. if (!inplace && (a->grad)) {
  3291. is_node = true;
  3292. }
  3293. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3294. result->op = GGML_OP_GELU;
  3295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3296. result->src0 = a;
  3297. result->src1 = NULL;
  3298. return result;
  3299. }
  3300. struct ggml_tensor * ggml_gelu(
  3301. struct ggml_context * ctx,
  3302. struct ggml_tensor * a) {
  3303. return ggml_gelu_impl(ctx, a, false);
  3304. }
  3305. struct ggml_tensor * ggml_gelu_inplace(
  3306. struct ggml_context * ctx,
  3307. struct ggml_tensor * a) {
  3308. return ggml_gelu_impl(ctx, a, true);
  3309. }
  3310. // ggml_silu
  3311. struct ggml_tensor * ggml_silu_impl(
  3312. struct ggml_context * ctx,
  3313. struct ggml_tensor * a,
  3314. bool inplace) {
  3315. bool is_node = false;
  3316. if (!inplace && (a->grad)) {
  3317. is_node = true;
  3318. }
  3319. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3320. result->op = GGML_OP_SILU;
  3321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3322. result->src0 = a;
  3323. result->src1 = NULL;
  3324. return result;
  3325. }
  3326. struct ggml_tensor * ggml_silu(
  3327. struct ggml_context * ctx,
  3328. struct ggml_tensor * a) {
  3329. return ggml_silu_impl(ctx, a, false);
  3330. }
  3331. struct ggml_tensor * ggml_silu_inplace(
  3332. struct ggml_context * ctx,
  3333. struct ggml_tensor * a) {
  3334. return ggml_silu_impl(ctx, a, true);
  3335. }
  3336. // ggml_norm
  3337. struct ggml_tensor * ggml_norm_impl(
  3338. struct ggml_context * ctx,
  3339. struct ggml_tensor * a,
  3340. bool inplace) {
  3341. bool is_node = false;
  3342. if (!inplace && (a->grad)) {
  3343. GGML_ASSERT(false); // TODO: implement backward
  3344. is_node = true;
  3345. }
  3346. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3347. result->op = GGML_OP_NORM;
  3348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3349. result->src0 = a;
  3350. result->src1 = NULL; // TODO: maybe store epsilon here?
  3351. return result;
  3352. }
  3353. struct ggml_tensor * ggml_norm(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a) {
  3356. return ggml_norm_impl(ctx, a, false);
  3357. }
  3358. struct ggml_tensor * ggml_norm_inplace(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a) {
  3361. return ggml_norm_impl(ctx, a, true);
  3362. }
  3363. struct ggml_tensor * ggml_rms_norm_impl(
  3364. struct ggml_context * ctx,
  3365. struct ggml_tensor * a,
  3366. bool inplace) {
  3367. bool is_node = false;
  3368. if (!inplace && (a->grad)) {
  3369. GGML_ASSERT(false); // TODO: implement backward
  3370. is_node = true;
  3371. }
  3372. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3373. result->op = GGML_OP_RMS_NORM;
  3374. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3375. result->src0 = a;
  3376. result->src1 = NULL; // TODO: maybe store epsilon here?
  3377. return result;
  3378. }
  3379. struct ggml_tensor * ggml_rms_norm(
  3380. struct ggml_context * ctx,
  3381. struct ggml_tensor * a) {
  3382. return ggml_rms_norm_impl(ctx, a, false);
  3383. }
  3384. struct ggml_tensor * ggml_rms_norm_inplace(
  3385. struct ggml_context * ctx,
  3386. struct ggml_tensor * a) {
  3387. return ggml_rms_norm_impl(ctx, a, true);
  3388. }
  3389. // ggml_mul_mat
  3390. struct ggml_tensor * ggml_mul_mat(
  3391. struct ggml_context * ctx,
  3392. struct ggml_tensor * a,
  3393. struct ggml_tensor * b) {
  3394. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3395. GGML_ASSERT(!ggml_is_transposed(a));
  3396. bool is_node = false;
  3397. if (a->grad || b->grad) {
  3398. is_node = true;
  3399. }
  3400. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3401. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3402. result->op = GGML_OP_MUL_MAT;
  3403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3404. result->src0 = a;
  3405. result->src1 = b;
  3406. return result;
  3407. }
  3408. // ggml_scale
  3409. struct ggml_tensor * ggml_scale_impl(
  3410. struct ggml_context * ctx,
  3411. struct ggml_tensor * a,
  3412. struct ggml_tensor * b,
  3413. bool inplace) {
  3414. GGML_ASSERT(ggml_is_scalar(b));
  3415. GGML_ASSERT(ggml_is_padded_1d(a));
  3416. bool is_node = false;
  3417. if (!inplace && (a->grad || b->grad)) {
  3418. GGML_ASSERT(false); // TODO: implement backward
  3419. is_node = true;
  3420. }
  3421. // TODO: when implement backward, fix this:
  3422. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3423. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3424. result->op = GGML_OP_SCALE;
  3425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3426. result->src0 = a;
  3427. result->src1 = b;
  3428. return result;
  3429. }
  3430. struct ggml_tensor * ggml_scale(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. struct ggml_tensor * b) {
  3434. return ggml_scale_impl(ctx, a, b, false);
  3435. }
  3436. struct ggml_tensor * ggml_scale_inplace(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a,
  3439. struct ggml_tensor * b) {
  3440. return ggml_scale_impl(ctx, a, b, true);
  3441. }
  3442. // ggml_cpy
  3443. struct ggml_tensor * ggml_cpy_impl(
  3444. struct ggml_context * ctx,
  3445. struct ggml_tensor * a,
  3446. struct ggml_tensor * b,
  3447. bool inplace) {
  3448. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3449. bool is_node = false;
  3450. if (!inplace && (a->grad || b->grad)) {
  3451. GGML_ASSERT(false); // TODO: implement backward
  3452. is_node = true;
  3453. }
  3454. // make a view of the destination
  3455. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3456. result->op = GGML_OP_CPY;
  3457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3458. result->src0 = a;
  3459. result->src1 = b;
  3460. return result;
  3461. }
  3462. struct ggml_tensor * ggml_cpy(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a,
  3465. struct ggml_tensor * b) {
  3466. return ggml_cpy_impl(ctx, a, b, false);
  3467. }
  3468. struct ggml_tensor * ggml_cpy_inplace(
  3469. struct ggml_context * ctx,
  3470. struct ggml_tensor * a,
  3471. struct ggml_tensor * b) {
  3472. return ggml_cpy_impl(ctx, a, b, true);
  3473. }
  3474. // ggml_reshape
  3475. struct ggml_tensor * ggml_reshape(
  3476. struct ggml_context * ctx,
  3477. struct ggml_tensor * a,
  3478. struct ggml_tensor * b) {
  3479. GGML_ASSERT(ggml_is_contiguous(a));
  3480. GGML_ASSERT(ggml_is_contiguous(b));
  3481. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3482. bool is_node = false;
  3483. if (a->grad || b->grad) {
  3484. GGML_ASSERT(false); // TODO: implement backward
  3485. is_node = true;
  3486. }
  3487. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3488. result->op = GGML_OP_RESHAPE;
  3489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3490. result->src0 = a;
  3491. result->src1 = NULL;
  3492. return result;
  3493. }
  3494. struct ggml_tensor * ggml_reshape_2d(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. int64_t ne0,
  3498. int64_t ne1) {
  3499. GGML_ASSERT(ggml_is_contiguous(a));
  3500. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3501. bool is_node = false;
  3502. if (a->grad) {
  3503. GGML_ASSERT(false); // TODO: implement backward
  3504. is_node = true;
  3505. }
  3506. const int64_t ne[2] = { ne0, ne1 };
  3507. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3508. result->op = GGML_OP_RESHAPE;
  3509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3510. result->src0 = a;
  3511. result->src1 = NULL;
  3512. return result;
  3513. }
  3514. struct ggml_tensor * ggml_reshape_3d(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a,
  3517. int64_t ne0,
  3518. int64_t ne1,
  3519. int64_t ne2) {
  3520. GGML_ASSERT(ggml_is_contiguous(a));
  3521. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3522. bool is_node = false;
  3523. if (a->grad) {
  3524. GGML_ASSERT(false); // TODO: implement backward
  3525. is_node = true;
  3526. }
  3527. const int64_t ne[3] = { ne0, ne1, ne2 };
  3528. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3529. result->op = GGML_OP_RESHAPE;
  3530. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3531. result->src0 = a;
  3532. result->src1 = NULL;
  3533. return result;
  3534. }
  3535. // ggml_view_1d
  3536. struct ggml_tensor * ggml_view_1d(
  3537. struct ggml_context * ctx,
  3538. struct ggml_tensor * a,
  3539. int64_t ne0,
  3540. size_t offset) {
  3541. if (a->grad) {
  3542. GGML_ASSERT(false); // gradient propagation is not supported
  3543. }
  3544. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3545. result->op = GGML_OP_VIEW;
  3546. result->grad = NULL;
  3547. result->src0 = a;
  3548. result->src1 = NULL; // TODO: maybe store the offset here?
  3549. return result;
  3550. }
  3551. // ggml_view_2d
  3552. struct ggml_tensor * ggml_view_2d(
  3553. struct ggml_context * ctx,
  3554. struct ggml_tensor * a,
  3555. int64_t ne0,
  3556. int64_t ne1,
  3557. size_t nb1,
  3558. size_t offset) {
  3559. if (a->grad) {
  3560. GGML_ASSERT(false); // gradient propagation is not supported
  3561. }
  3562. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3563. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3564. result->nb[1] = nb1;
  3565. result->nb[2] = result->nb[1]*ne1;
  3566. result->nb[3] = result->nb[2];
  3567. result->op = GGML_OP_VIEW;
  3568. result->grad = NULL;
  3569. result->src0 = a;
  3570. result->src1 = NULL; // TODO: maybe store the offset here?
  3571. return result;
  3572. }
  3573. // ggml_view_3d
  3574. struct ggml_tensor * ggml_view_3d(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a,
  3577. int64_t ne0,
  3578. int64_t ne1,
  3579. int64_t ne2,
  3580. size_t nb1,
  3581. size_t nb2,
  3582. size_t offset) {
  3583. if (a->grad) {
  3584. GGML_ASSERT(false); // gradient propagation is not supported
  3585. }
  3586. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3587. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3588. result->nb[1] = nb1;
  3589. result->nb[2] = nb2;
  3590. result->nb[3] = result->nb[2]*ne2;
  3591. result->op = GGML_OP_VIEW;
  3592. result->grad = NULL;
  3593. result->src0 = a;
  3594. result->src1 = NULL; // TODO: maybe store the offset here?
  3595. return result;
  3596. }
  3597. // ggml_permute
  3598. struct ggml_tensor * ggml_permute(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a,
  3601. int axis0,
  3602. int axis1,
  3603. int axis2,
  3604. int axis3) {
  3605. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3606. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3607. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3608. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3609. GGML_ASSERT(axis0 != axis1);
  3610. GGML_ASSERT(axis0 != axis2);
  3611. GGML_ASSERT(axis0 != axis3);
  3612. GGML_ASSERT(axis1 != axis2);
  3613. GGML_ASSERT(axis1 != axis3);
  3614. GGML_ASSERT(axis2 != axis3);
  3615. bool is_node = false;
  3616. if (a->grad) {
  3617. GGML_ASSERT(false); // TODO: implement backward
  3618. is_node = true;
  3619. }
  3620. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3621. int ne[GGML_MAX_DIMS];
  3622. int nb[GGML_MAX_DIMS];
  3623. ne[axis0] = a->ne[0];
  3624. ne[axis1] = a->ne[1];
  3625. ne[axis2] = a->ne[2];
  3626. ne[axis3] = a->ne[3];
  3627. nb[axis0] = a->nb[0];
  3628. nb[axis1] = a->nb[1];
  3629. nb[axis2] = a->nb[2];
  3630. nb[axis3] = a->nb[3];
  3631. result->ne[0] = ne[0];
  3632. result->ne[1] = ne[1];
  3633. result->ne[2] = ne[2];
  3634. result->ne[3] = ne[3];
  3635. result->nb[0] = nb[0];
  3636. result->nb[1] = nb[1];
  3637. result->nb[2] = nb[2];
  3638. result->nb[3] = nb[3];
  3639. result->op = GGML_OP_PERMUTE;
  3640. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3641. result->src0 = a;
  3642. result->src1 = NULL; // TODO: maybe store the permutation here?
  3643. return result;
  3644. }
  3645. // ggml_transpose
  3646. struct ggml_tensor * ggml_transpose(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * a) {
  3649. bool is_node = false;
  3650. if (a->grad) {
  3651. GGML_ASSERT(false); // TODO: implement backward
  3652. is_node = true;
  3653. }
  3654. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3655. result->ne[0] = a->ne[1];
  3656. result->ne[1] = a->ne[0];
  3657. result->nb[0] = a->nb[1];
  3658. result->nb[1] = a->nb[0];
  3659. result->op = GGML_OP_TRANSPOSE;
  3660. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3661. result->src0 = a;
  3662. result->src1 = NULL;
  3663. return result;
  3664. }
  3665. // ggml_get_rows
  3666. struct ggml_tensor * ggml_get_rows(
  3667. struct ggml_context * ctx,
  3668. struct ggml_tensor * a,
  3669. struct ggml_tensor * b) {
  3670. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3671. bool is_node = false;
  3672. if (a->grad || b->grad) {
  3673. GGML_ASSERT(false); // TODO: implement backward
  3674. is_node = true;
  3675. }
  3676. // TODO: implement non F32 return
  3677. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3678. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3679. result->op = GGML_OP_GET_ROWS;
  3680. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3681. result->src0 = a;
  3682. result->src1 = b;
  3683. return result;
  3684. }
  3685. // ggml_diag_mask_inf
  3686. struct ggml_tensor * ggml_diag_mask_inf(
  3687. struct ggml_context * ctx,
  3688. struct ggml_tensor * a,
  3689. int n_past) {
  3690. bool is_node = false;
  3691. if (a->grad) {
  3692. GGML_ASSERT(false); // TODO: implement backward
  3693. is_node = true;
  3694. }
  3695. // TODO: when implement backward, fix this:
  3696. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3697. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3698. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3699. result->op = GGML_OP_DIAG_MASK_INF;
  3700. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3701. result->src0 = a;
  3702. result->src1 = b;
  3703. return result;
  3704. }
  3705. // ggml_soft_max
  3706. struct ggml_tensor * ggml_soft_max(
  3707. struct ggml_context * ctx,
  3708. struct ggml_tensor * a) {
  3709. bool is_node = false;
  3710. if (a->grad) {
  3711. GGML_ASSERT(false); // TODO: implement backward
  3712. is_node = true;
  3713. }
  3714. // TODO: when implement backward, fix this:
  3715. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3716. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3717. result->op = GGML_OP_SOFT_MAX;
  3718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3719. result->src0 = a;
  3720. result->src1 = NULL;
  3721. return result;
  3722. }
  3723. // ggml_rope
  3724. struct ggml_tensor * ggml_rope(
  3725. struct ggml_context * ctx,
  3726. struct ggml_tensor * a,
  3727. int n_past,
  3728. int n_dims,
  3729. int mode) {
  3730. GGML_ASSERT(n_past >= 0);
  3731. bool is_node = false;
  3732. if (a->grad) {
  3733. GGML_ASSERT(false); // TODO: implement backward
  3734. is_node = true;
  3735. }
  3736. // TODO: when implement backward, fix this:
  3737. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3738. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3739. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3740. ((int32_t *) b->data)[0] = n_past;
  3741. ((int32_t *) b->data)[1] = n_dims;
  3742. ((int32_t *) b->data)[2] = mode;
  3743. result->op = GGML_OP_ROPE;
  3744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3745. result->src0 = a;
  3746. result->src1 = b;
  3747. return result;
  3748. }
  3749. // ggml_conv_1d_1s
  3750. struct ggml_tensor * ggml_conv_1d_1s(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a,
  3753. struct ggml_tensor * b) {
  3754. GGML_ASSERT(ggml_is_matrix(b));
  3755. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3756. GGML_ASSERT(a->ne[3] == 1);
  3757. bool is_node = false;
  3758. if (a->grad || b->grad) {
  3759. GGML_ASSERT(false); // TODO: implement backward
  3760. is_node = true;
  3761. }
  3762. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3763. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3764. result->op = GGML_OP_CONV_1D_1S;
  3765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3766. result->src0 = a;
  3767. result->src1 = b;
  3768. return result;
  3769. }
  3770. // ggml_conv_1d_2s
  3771. struct ggml_tensor * ggml_conv_1d_2s(
  3772. struct ggml_context * ctx,
  3773. struct ggml_tensor * a,
  3774. struct ggml_tensor * b) {
  3775. GGML_ASSERT(ggml_is_matrix(b));
  3776. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3777. GGML_ASSERT(a->ne[3] == 1);
  3778. bool is_node = false;
  3779. if (a->grad || b->grad) {
  3780. GGML_ASSERT(false); // TODO: implement backward
  3781. is_node = true;
  3782. }
  3783. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3784. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3785. result->op = GGML_OP_CONV_1D_2S;
  3786. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3787. result->src0 = a;
  3788. result->src1 = b;
  3789. return result;
  3790. }
  3791. // ggml_flash_attn
  3792. struct ggml_tensor * ggml_flash_attn(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * q,
  3795. struct ggml_tensor * k,
  3796. struct ggml_tensor * v,
  3797. bool masked) {
  3798. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3799. // TODO: check if vT can be multiplied by (k*qT)
  3800. bool is_node = false;
  3801. if (q->grad || k->grad || v->grad) {
  3802. GGML_ASSERT(false); // TODO: implement backward
  3803. is_node = true;
  3804. }
  3805. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3806. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3807. result->op = GGML_OP_FLASH_ATTN;
  3808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3809. result->src0 = q;
  3810. result->src1 = k;
  3811. result->opt[0] = v;
  3812. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3813. return result;
  3814. }
  3815. // ggml_flash_ff
  3816. struct ggml_tensor * ggml_flash_ff(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a,
  3819. struct ggml_tensor * b0,
  3820. struct ggml_tensor * b1,
  3821. struct ggml_tensor * c0,
  3822. struct ggml_tensor * c1) {
  3823. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3824. // TODO: more checks
  3825. bool is_node = false;
  3826. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3827. GGML_ASSERT(false); // TODO: implement backward
  3828. is_node = true;
  3829. }
  3830. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3831. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3832. result->op = GGML_OP_FLASH_FF;
  3833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3834. result->src0 = a;
  3835. result->src1 = b0;
  3836. result->opt[0] = b1;
  3837. result->opt[1] = c0;
  3838. result->opt[2] = c1;
  3839. return result;
  3840. }
  3841. ////////////////////////////////////////////////////////////////////////////////
  3842. void ggml_set_param(
  3843. struct ggml_context * ctx,
  3844. struct ggml_tensor * tensor) {
  3845. tensor->is_param = true;
  3846. GGML_ASSERT(tensor->grad == NULL);
  3847. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3848. }
  3849. // ggml_compute_forward_dup
  3850. static void ggml_compute_forward_dup_f16(
  3851. const struct ggml_compute_params * params,
  3852. const struct ggml_tensor * src0,
  3853. struct ggml_tensor * dst) {
  3854. GGML_ASSERT(params->ith == 0);
  3855. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3856. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3857. return;
  3858. }
  3859. const int64_t ne00 = src0->ne[0];
  3860. const int64_t ne01 = src0->ne[1];
  3861. const int64_t ne02 = src0->ne[2];
  3862. const int64_t ne03 = src0->ne[3];
  3863. const size_t nb00 = src0->nb[0];
  3864. const size_t nb01 = src0->nb[1];
  3865. const size_t nb02 = src0->nb[2];
  3866. const size_t nb03 = src0->nb[3];
  3867. const size_t nb0 = dst->nb[0];
  3868. const size_t nb1 = dst->nb[1];
  3869. const size_t nb2 = dst->nb[2];
  3870. const size_t nb3 = dst->nb[3];
  3871. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3872. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3873. return;
  3874. }
  3875. if (src0->type == dst->type &&
  3876. src0->ne[0] == dst->ne[0] &&
  3877. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  3878. // copy by rows
  3879. const size_t rs = ne00*nb00;
  3880. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3881. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3882. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3883. memcpy(
  3884. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3885. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3886. rs);
  3887. }
  3888. }
  3889. }
  3890. return;
  3891. }
  3892. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  3893. // dst counters
  3894. int64_t i10 = 0;
  3895. int64_t i11 = 0;
  3896. int64_t i12 = 0;
  3897. int64_t i13 = 0;
  3898. if (dst->type == GGML_TYPE_F16) {
  3899. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3900. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3901. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3902. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3903. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3904. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3905. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  3906. if (++i10 == ne00) {
  3907. i10 = 0;
  3908. if (++i11 == ne01) {
  3909. i11 = 0;
  3910. if (++i12 == ne02) {
  3911. i12 = 0;
  3912. if (++i13 == ne03) {
  3913. i13 = 0;
  3914. }
  3915. }
  3916. }
  3917. }
  3918. }
  3919. }
  3920. }
  3921. }
  3922. } else if (dst->type == GGML_TYPE_F32) {
  3923. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3924. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3925. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3926. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3927. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3928. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3929. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  3930. if (++i10 == ne00) {
  3931. i10 = 0;
  3932. if (++i11 == ne01) {
  3933. i11 = 0;
  3934. if (++i12 == ne02) {
  3935. i12 = 0;
  3936. if (++i13 == ne03) {
  3937. i13 = 0;
  3938. }
  3939. }
  3940. }
  3941. }
  3942. }
  3943. }
  3944. }
  3945. }
  3946. } else {
  3947. GGML_ASSERT(false); // TODO: implement
  3948. }
  3949. }
  3950. static void ggml_compute_forward_dup_f32(
  3951. const struct ggml_compute_params * params,
  3952. const struct ggml_tensor * src0,
  3953. struct ggml_tensor * dst) {
  3954. GGML_ASSERT(params->ith == 0);
  3955. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3956. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3957. return;
  3958. }
  3959. const int64_t ne00 = src0->ne[0];
  3960. const int64_t ne01 = src0->ne[1];
  3961. const int64_t ne02 = src0->ne[2];
  3962. const int64_t ne03 = src0->ne[3];
  3963. const size_t nb00 = src0->nb[0];
  3964. const size_t nb01 = src0->nb[1];
  3965. const size_t nb02 = src0->nb[2];
  3966. const size_t nb03 = src0->nb[3];
  3967. const size_t nb0 = dst->nb[0];
  3968. const size_t nb1 = dst->nb[1];
  3969. const size_t nb2 = dst->nb[2];
  3970. const size_t nb3 = dst->nb[3];
  3971. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3972. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3973. return;
  3974. }
  3975. // dst counters
  3976. int64_t i10 = 0;
  3977. int64_t i11 = 0;
  3978. int64_t i12 = 0;
  3979. int64_t i13 = 0;
  3980. if (dst->type == GGML_TYPE_F32) {
  3981. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3982. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3983. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3984. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3985. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3986. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3987. memcpy(dst_ptr, src0_ptr, sizeof(float));
  3988. if (++i10 == dst->ne[0]) {
  3989. i10 = 0;
  3990. if (++i11 == dst->ne[1]) {
  3991. i11 = 0;
  3992. if (++i12 == dst->ne[2]) {
  3993. i12 = 0;
  3994. if (++i13 == dst->ne[3]) {
  3995. i13 = 0;
  3996. }
  3997. }
  3998. }
  3999. }
  4000. }
  4001. }
  4002. }
  4003. }
  4004. } else if (dst->type == GGML_TYPE_F16) {
  4005. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4006. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4007. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4008. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4009. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4010. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4011. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4012. if (++i10 == dst->ne[0]) {
  4013. i10 = 0;
  4014. if (++i11 == dst->ne[1]) {
  4015. i11 = 0;
  4016. if (++i12 == dst->ne[2]) {
  4017. i12 = 0;
  4018. if (++i13 == dst->ne[3]) {
  4019. i13 = 0;
  4020. }
  4021. }
  4022. }
  4023. }
  4024. }
  4025. }
  4026. }
  4027. }
  4028. } else {
  4029. GGML_ASSERT(false); // TODO: implement
  4030. }
  4031. }
  4032. static void ggml_compute_forward_dup(
  4033. const struct ggml_compute_params * params,
  4034. const struct ggml_tensor * src0,
  4035. struct ggml_tensor * dst) {
  4036. switch (src0->type) {
  4037. case GGML_TYPE_F16:
  4038. {
  4039. ggml_compute_forward_dup_f16(params, src0, dst);
  4040. } break;
  4041. case GGML_TYPE_F32:
  4042. {
  4043. ggml_compute_forward_dup_f32(params, src0, dst);
  4044. } break;
  4045. case GGML_TYPE_Q4_0:
  4046. case GGML_TYPE_Q4_1:
  4047. case GGML_TYPE_I8:
  4048. case GGML_TYPE_I16:
  4049. case GGML_TYPE_I32:
  4050. case GGML_TYPE_COUNT:
  4051. {
  4052. GGML_ASSERT(false);
  4053. } break;
  4054. }
  4055. }
  4056. // ggml_compute_forward_add
  4057. static void ggml_compute_forward_add_f32(
  4058. const struct ggml_compute_params * params,
  4059. const struct ggml_tensor * src0,
  4060. const struct ggml_tensor * src1,
  4061. struct ggml_tensor * dst) {
  4062. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4063. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4064. return;
  4065. }
  4066. const int ith = params->ith;
  4067. const int nth = params->nth;
  4068. const int n = ggml_nrows(src0);
  4069. const int nc = src0->ne[0];
  4070. const size_t nb00 = src0->nb[0];
  4071. const size_t nb01 = src0->nb[1];
  4072. const size_t nb10 = src1->nb[0];
  4073. const size_t nb11 = src1->nb[1];
  4074. const size_t nb0 = dst->nb[0];
  4075. const size_t nb1 = dst->nb[1];
  4076. GGML_ASSERT( nb0 == sizeof(float));
  4077. GGML_ASSERT(nb00 == sizeof(float));
  4078. if (nb10 == sizeof(float)) {
  4079. const int j0 = (n/nth)*ith;
  4080. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  4081. for (int j = j0; j < j1; j++) {
  4082. ggml_vec_add_f32(nc,
  4083. (float *) ((char *) dst->data + j*nb1),
  4084. (float *) ((char *) src0->data + j*nb01),
  4085. (float *) ((char *) src1->data + j*nb11));
  4086. }
  4087. } else {
  4088. // src1 is not contiguous
  4089. for (int j = ith; j < n; j += nth) {
  4090. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4091. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4092. for (int i = 0; i < nc; i++) {
  4093. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4094. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4095. }
  4096. }
  4097. }
  4098. }
  4099. static void ggml_compute_forward_add(
  4100. const struct ggml_compute_params * params,
  4101. const struct ggml_tensor * src0,
  4102. const struct ggml_tensor * src1,
  4103. struct ggml_tensor * dst) {
  4104. switch (src0->type) {
  4105. case GGML_TYPE_F32:
  4106. {
  4107. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4108. } break;
  4109. case GGML_TYPE_Q4_0:
  4110. case GGML_TYPE_Q4_1:
  4111. case GGML_TYPE_I8:
  4112. case GGML_TYPE_I16:
  4113. case GGML_TYPE_I32:
  4114. case GGML_TYPE_F16:
  4115. case GGML_TYPE_COUNT:
  4116. {
  4117. GGML_ASSERT(false);
  4118. } break;
  4119. }
  4120. }
  4121. // ggml_compute_forward_sub
  4122. static void ggml_compute_forward_sub_f32(
  4123. const struct ggml_compute_params * params,
  4124. const struct ggml_tensor * src0,
  4125. const struct ggml_tensor * src1,
  4126. struct ggml_tensor * dst) {
  4127. assert(params->ith == 0);
  4128. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4129. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4130. return;
  4131. }
  4132. const int n = ggml_nrows(src0);
  4133. const int nc = src0->ne[0];
  4134. assert( dst->nb[0] == sizeof(float));
  4135. assert(src0->nb[0] == sizeof(float));
  4136. assert(src1->nb[0] == sizeof(float));
  4137. for (int i = 0; i < n; i++) {
  4138. ggml_vec_sub_f32(nc,
  4139. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4140. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4141. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4142. }
  4143. }
  4144. static void ggml_compute_forward_sub(
  4145. const struct ggml_compute_params * params,
  4146. const struct ggml_tensor * src0,
  4147. const struct ggml_tensor * src1,
  4148. struct ggml_tensor * dst) {
  4149. switch (src0->type) {
  4150. case GGML_TYPE_F32:
  4151. {
  4152. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4153. } break;
  4154. case GGML_TYPE_Q4_0:
  4155. case GGML_TYPE_Q4_1:
  4156. case GGML_TYPE_I8:
  4157. case GGML_TYPE_I16:
  4158. case GGML_TYPE_I32:
  4159. case GGML_TYPE_F16:
  4160. case GGML_TYPE_COUNT:
  4161. {
  4162. GGML_ASSERT(false);
  4163. } break;
  4164. }
  4165. }
  4166. // ggml_compute_forward_mul
  4167. static void ggml_compute_forward_mul_f32(
  4168. const struct ggml_compute_params * params,
  4169. const struct ggml_tensor * src0,
  4170. const struct ggml_tensor * src1,
  4171. struct ggml_tensor * dst) {
  4172. assert(params->ith == 0);
  4173. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4175. return;
  4176. }
  4177. const int n = ggml_nrows(src0);
  4178. const int nc = src0->ne[0];
  4179. assert( dst->nb[0] == sizeof(float));
  4180. assert(src0->nb[0] == sizeof(float));
  4181. assert(src1->nb[0] == sizeof(float));
  4182. for (int i = 0; i < n; i++) {
  4183. ggml_vec_mul_f32(nc,
  4184. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4185. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4186. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4187. }
  4188. }
  4189. static void ggml_compute_forward_mul(
  4190. const struct ggml_compute_params * params,
  4191. const struct ggml_tensor * src0,
  4192. const struct ggml_tensor * src1,
  4193. struct ggml_tensor * dst) {
  4194. switch (src0->type) {
  4195. case GGML_TYPE_F32:
  4196. {
  4197. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4198. } break;
  4199. case GGML_TYPE_Q4_0:
  4200. case GGML_TYPE_Q4_1:
  4201. case GGML_TYPE_I8:
  4202. case GGML_TYPE_I16:
  4203. case GGML_TYPE_I32:
  4204. case GGML_TYPE_F16:
  4205. case GGML_TYPE_COUNT:
  4206. {
  4207. GGML_ASSERT(false);
  4208. } break;
  4209. }
  4210. }
  4211. // ggml_compute_forward_div
  4212. static void ggml_compute_forward_div_f32(
  4213. const struct ggml_compute_params * params,
  4214. const struct ggml_tensor * src0,
  4215. const struct ggml_tensor * src1,
  4216. struct ggml_tensor * dst) {
  4217. assert(params->ith == 0);
  4218. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4219. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4220. return;
  4221. }
  4222. const int n = ggml_nrows(src0);
  4223. const int nc = src0->ne[0];
  4224. assert( dst->nb[0] == sizeof(float));
  4225. assert(src0->nb[0] == sizeof(float));
  4226. assert(src1->nb[0] == sizeof(float));
  4227. for (int i = 0; i < n; i++) {
  4228. ggml_vec_div_f32(nc,
  4229. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4230. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4231. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4232. }
  4233. }
  4234. static void ggml_compute_forward_div(
  4235. const struct ggml_compute_params * params,
  4236. const struct ggml_tensor * src0,
  4237. const struct ggml_tensor * src1,
  4238. struct ggml_tensor * dst) {
  4239. switch (src0->type) {
  4240. case GGML_TYPE_F32:
  4241. {
  4242. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4243. } break;
  4244. case GGML_TYPE_Q4_0:
  4245. case GGML_TYPE_Q4_1:
  4246. case GGML_TYPE_I8:
  4247. case GGML_TYPE_I16:
  4248. case GGML_TYPE_I32:
  4249. case GGML_TYPE_F16:
  4250. case GGML_TYPE_COUNT:
  4251. {
  4252. GGML_ASSERT(false);
  4253. } break;
  4254. }
  4255. }
  4256. // ggml_compute_forward_sqr
  4257. static void ggml_compute_forward_sqr_f32(
  4258. const struct ggml_compute_params * params,
  4259. const struct ggml_tensor * src0,
  4260. struct ggml_tensor * dst) {
  4261. assert(params->ith == 0);
  4262. assert(ggml_are_same_shape(src0, dst));
  4263. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4264. return;
  4265. }
  4266. const int n = ggml_nrows(src0);
  4267. const int nc = src0->ne[0];
  4268. assert( dst->nb[0] == sizeof(float));
  4269. assert(src0->nb[0] == sizeof(float));
  4270. for (int i = 0; i < n; i++) {
  4271. ggml_vec_sqr_f32(nc,
  4272. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4273. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4274. }
  4275. }
  4276. static void ggml_compute_forward_sqr(
  4277. const struct ggml_compute_params * params,
  4278. const struct ggml_tensor * src0,
  4279. struct ggml_tensor * dst) {
  4280. switch (src0->type) {
  4281. case GGML_TYPE_F32:
  4282. {
  4283. ggml_compute_forward_sqr_f32(params, src0, dst);
  4284. } break;
  4285. case GGML_TYPE_Q4_0:
  4286. case GGML_TYPE_Q4_1:
  4287. case GGML_TYPE_I8:
  4288. case GGML_TYPE_I16:
  4289. case GGML_TYPE_I32:
  4290. case GGML_TYPE_F16:
  4291. case GGML_TYPE_COUNT:
  4292. {
  4293. GGML_ASSERT(false);
  4294. } break;
  4295. }
  4296. }
  4297. // ggml_compute_forward_sqrt
  4298. static void ggml_compute_forward_sqrt_f32(
  4299. const struct ggml_compute_params * params,
  4300. const struct ggml_tensor * src0,
  4301. struct ggml_tensor * dst) {
  4302. assert(params->ith == 0);
  4303. assert(ggml_are_same_shape(src0, dst));
  4304. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4305. return;
  4306. }
  4307. const int n = ggml_nrows(src0);
  4308. const int nc = src0->ne[0];
  4309. assert( dst->nb[0] == sizeof(float));
  4310. assert(src0->nb[0] == sizeof(float));
  4311. for (int i = 0; i < n; i++) {
  4312. ggml_vec_sqrt_f32(nc,
  4313. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4314. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4315. }
  4316. }
  4317. static void ggml_compute_forward_sqrt(
  4318. const struct ggml_compute_params * params,
  4319. const struct ggml_tensor * src0,
  4320. struct ggml_tensor * dst) {
  4321. switch (src0->type) {
  4322. case GGML_TYPE_F32:
  4323. {
  4324. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4325. } break;
  4326. case GGML_TYPE_Q4_0:
  4327. case GGML_TYPE_Q4_1:
  4328. case GGML_TYPE_I8:
  4329. case GGML_TYPE_I16:
  4330. case GGML_TYPE_I32:
  4331. case GGML_TYPE_F16:
  4332. case GGML_TYPE_COUNT:
  4333. {
  4334. GGML_ASSERT(false);
  4335. } break;
  4336. }
  4337. }
  4338. // ggml_compute_forward_sum
  4339. static void ggml_compute_forward_sum_f32(
  4340. const struct ggml_compute_params * params,
  4341. const struct ggml_tensor * src0,
  4342. struct ggml_tensor * dst) {
  4343. assert(params->ith == 0);
  4344. assert(ggml_is_scalar(dst));
  4345. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4346. return;
  4347. }
  4348. assert(ggml_is_scalar(dst));
  4349. assert(src0->nb[0] == sizeof(float));
  4350. const int64_t ne00 = src0->ne[0];
  4351. const int64_t ne01 = src0->ne[1];
  4352. const int64_t ne02 = src0->ne[2];
  4353. const int64_t ne03 = src0->ne[3];
  4354. const size_t nb01 = src0->nb[1];
  4355. const size_t nb02 = src0->nb[2];
  4356. const size_t nb03 = src0->nb[3];
  4357. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4358. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4359. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4360. ggml_vec_sum_f32(ne00,
  4361. (float *) (dst->data),
  4362. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4363. }
  4364. }
  4365. }
  4366. }
  4367. static void ggml_compute_forward_sum(
  4368. const struct ggml_compute_params * params,
  4369. const struct ggml_tensor * src0,
  4370. struct ggml_tensor * dst) {
  4371. switch (src0->type) {
  4372. case GGML_TYPE_F32:
  4373. {
  4374. ggml_compute_forward_sum_f32(params, src0, dst);
  4375. } break;
  4376. case GGML_TYPE_Q4_0:
  4377. case GGML_TYPE_Q4_1:
  4378. case GGML_TYPE_I8:
  4379. case GGML_TYPE_I16:
  4380. case GGML_TYPE_I32:
  4381. case GGML_TYPE_F16:
  4382. case GGML_TYPE_COUNT:
  4383. {
  4384. GGML_ASSERT(false);
  4385. } break;
  4386. }
  4387. }
  4388. // ggml_compute_forward_mean
  4389. static void ggml_compute_forward_mean_f32(
  4390. const struct ggml_compute_params * params,
  4391. const struct ggml_tensor * src0,
  4392. struct ggml_tensor * dst) {
  4393. assert(params->ith == 0);
  4394. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4395. return;
  4396. }
  4397. assert(src0->nb[0] == sizeof(float));
  4398. const int64_t ne00 = src0->ne[0];
  4399. const int64_t ne01 = src0->ne[1];
  4400. const int64_t ne02 = src0->ne[2];
  4401. const int64_t ne03 = src0->ne[3];
  4402. const size_t nb01 = src0->nb[1];
  4403. const size_t nb02 = src0->nb[2];
  4404. const size_t nb03 = src0->nb[3];
  4405. const int64_t ne0 = dst->ne[0];
  4406. const int64_t ne1 = dst->ne[1];
  4407. const int64_t ne2 = dst->ne[2];
  4408. const int64_t ne3 = dst->ne[3];
  4409. assert(ne0 == 1);
  4410. assert(ne1 == ne01);
  4411. assert(ne2 == ne02);
  4412. assert(ne3 == ne03);
  4413. UNUSED(ne0);
  4414. UNUSED(ne1);
  4415. UNUSED(ne2);
  4416. UNUSED(ne3);
  4417. const size_t nb1 = dst->nb[1];
  4418. const size_t nb2 = dst->nb[2];
  4419. const size_t nb3 = dst->nb[3];
  4420. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4421. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4422. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4423. ggml_vec_sum_f32(ne00,
  4424. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4425. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4426. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4427. }
  4428. }
  4429. }
  4430. }
  4431. static void ggml_compute_forward_mean(
  4432. const struct ggml_compute_params * params,
  4433. const struct ggml_tensor * src0,
  4434. struct ggml_tensor * dst) {
  4435. switch (src0->type) {
  4436. case GGML_TYPE_F32:
  4437. {
  4438. ggml_compute_forward_mean_f32(params, src0, dst);
  4439. } break;
  4440. case GGML_TYPE_Q4_0:
  4441. case GGML_TYPE_Q4_1:
  4442. case GGML_TYPE_I8:
  4443. case GGML_TYPE_I16:
  4444. case GGML_TYPE_I32:
  4445. case GGML_TYPE_F16:
  4446. case GGML_TYPE_COUNT:
  4447. {
  4448. GGML_ASSERT(false);
  4449. } break;
  4450. }
  4451. }
  4452. // ggml_compute_forward_repeat
  4453. static void ggml_compute_forward_repeat_f32(
  4454. const struct ggml_compute_params * params,
  4455. const struct ggml_tensor * src0,
  4456. struct ggml_tensor * dst) {
  4457. assert(params->ith == 0);
  4458. assert(ggml_can_repeat(src0, dst));
  4459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4460. return;
  4461. }
  4462. // TODO: implement support for rank > 2 tensors
  4463. assert(src0->ne[2] == 1);
  4464. assert(src0->ne[3] == 1);
  4465. assert( dst->ne[2] == 1);
  4466. assert( dst->ne[3] == 1);
  4467. const int nc = dst->ne[0];
  4468. const int nr = dst->ne[1];
  4469. const int nc0 = src0->ne[0];
  4470. const int nr0 = src0->ne[1];
  4471. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4472. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4473. // TODO: support for transposed / permuted tensors
  4474. assert( dst->nb[0] == sizeof(float));
  4475. assert(src0->nb[0] == sizeof(float));
  4476. // TODO: maybe this is not optimal?
  4477. for (int i = 0; i < nrr; i++) {
  4478. for (int j = 0; j < ncr; j++) {
  4479. for (int k = 0; k < nr0; k++) {
  4480. ggml_vec_cpy_f32(nc0,
  4481. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4482. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4483. }
  4484. }
  4485. }
  4486. }
  4487. static void ggml_compute_forward_repeat(
  4488. const struct ggml_compute_params * params,
  4489. const struct ggml_tensor * src0,
  4490. struct ggml_tensor * dst) {
  4491. switch (src0->type) {
  4492. case GGML_TYPE_F32:
  4493. {
  4494. ggml_compute_forward_repeat_f32(params, src0, dst);
  4495. } break;
  4496. case GGML_TYPE_Q4_0:
  4497. case GGML_TYPE_Q4_1:
  4498. case GGML_TYPE_I8:
  4499. case GGML_TYPE_I16:
  4500. case GGML_TYPE_I32:
  4501. case GGML_TYPE_F16:
  4502. case GGML_TYPE_COUNT:
  4503. {
  4504. GGML_ASSERT(false);
  4505. } break;
  4506. }
  4507. }
  4508. // ggml_compute_forward_abs
  4509. static void ggml_compute_forward_abs_f32(
  4510. const struct ggml_compute_params * params,
  4511. const struct ggml_tensor * src0,
  4512. struct ggml_tensor * dst) {
  4513. assert(params->ith == 0);
  4514. assert(ggml_are_same_shape(src0, dst));
  4515. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4516. return;
  4517. }
  4518. const int n = ggml_nrows(src0);
  4519. const int nc = src0->ne[0];
  4520. assert(dst->nb[0] == sizeof(float));
  4521. assert(src0->nb[0] == sizeof(float));
  4522. for (int i = 0; i < n; i++) {
  4523. ggml_vec_abs_f32(nc,
  4524. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4525. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4526. }
  4527. }
  4528. static void ggml_compute_forward_abs(
  4529. const struct ggml_compute_params * params,
  4530. const struct ggml_tensor * src0,
  4531. struct ggml_tensor * dst) {
  4532. switch (src0->type) {
  4533. case GGML_TYPE_F32:
  4534. {
  4535. ggml_compute_forward_abs_f32(params, src0, dst);
  4536. } break;
  4537. case GGML_TYPE_Q4_0:
  4538. case GGML_TYPE_Q4_1:
  4539. case GGML_TYPE_I8:
  4540. case GGML_TYPE_I16:
  4541. case GGML_TYPE_I32:
  4542. case GGML_TYPE_F16:
  4543. case GGML_TYPE_COUNT:
  4544. {
  4545. GGML_ASSERT(false);
  4546. } break;
  4547. }
  4548. }
  4549. // ggml_compute_forward_sgn
  4550. static void ggml_compute_forward_sgn_f32(
  4551. const struct ggml_compute_params * params,
  4552. const struct ggml_tensor * src0,
  4553. struct ggml_tensor * dst) {
  4554. assert(params->ith == 0);
  4555. assert(ggml_are_same_shape(src0, dst));
  4556. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4557. return;
  4558. }
  4559. const int n = ggml_nrows(src0);
  4560. const int nc = src0->ne[0];
  4561. assert(dst->nb[0] == sizeof(float));
  4562. assert(src0->nb[0] == sizeof(float));
  4563. for (int i = 0; i < n; i++) {
  4564. ggml_vec_sgn_f32(nc,
  4565. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4566. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4567. }
  4568. }
  4569. static void ggml_compute_forward_sgn(
  4570. const struct ggml_compute_params * params,
  4571. const struct ggml_tensor * src0,
  4572. struct ggml_tensor * dst) {
  4573. switch (src0->type) {
  4574. case GGML_TYPE_F32:
  4575. {
  4576. ggml_compute_forward_sgn_f32(params, src0, dst);
  4577. } break;
  4578. case GGML_TYPE_Q4_0:
  4579. case GGML_TYPE_Q4_1:
  4580. case GGML_TYPE_I8:
  4581. case GGML_TYPE_I16:
  4582. case GGML_TYPE_I32:
  4583. case GGML_TYPE_F16:
  4584. case GGML_TYPE_COUNT:
  4585. {
  4586. GGML_ASSERT(false);
  4587. } break;
  4588. }
  4589. }
  4590. // ggml_compute_forward_neg
  4591. static void ggml_compute_forward_neg_f32(
  4592. const struct ggml_compute_params * params,
  4593. const struct ggml_tensor * src0,
  4594. struct ggml_tensor * dst) {
  4595. assert(params->ith == 0);
  4596. assert(ggml_are_same_shape(src0, dst));
  4597. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4598. return;
  4599. }
  4600. const int n = ggml_nrows(src0);
  4601. const int nc = src0->ne[0];
  4602. assert(dst->nb[0] == sizeof(float));
  4603. assert(src0->nb[0] == sizeof(float));
  4604. for (int i = 0; i < n; i++) {
  4605. ggml_vec_neg_f32(nc,
  4606. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4607. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4608. }
  4609. }
  4610. static void ggml_compute_forward_neg(
  4611. const struct ggml_compute_params * params,
  4612. const struct ggml_tensor * src0,
  4613. struct ggml_tensor * dst) {
  4614. switch (src0->type) {
  4615. case GGML_TYPE_F32:
  4616. {
  4617. ggml_compute_forward_neg_f32(params, src0, dst);
  4618. } break;
  4619. case GGML_TYPE_Q4_0:
  4620. case GGML_TYPE_Q4_1:
  4621. case GGML_TYPE_I8:
  4622. case GGML_TYPE_I16:
  4623. case GGML_TYPE_I32:
  4624. case GGML_TYPE_F16:
  4625. case GGML_TYPE_COUNT:
  4626. {
  4627. GGML_ASSERT(false);
  4628. } break;
  4629. }
  4630. }
  4631. // ggml_compute_forward_step
  4632. static void ggml_compute_forward_step_f32(
  4633. const struct ggml_compute_params * params,
  4634. const struct ggml_tensor * src0,
  4635. struct ggml_tensor * dst) {
  4636. assert(params->ith == 0);
  4637. assert(ggml_are_same_shape(src0, dst));
  4638. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4639. return;
  4640. }
  4641. const int n = ggml_nrows(src0);
  4642. const int nc = src0->ne[0];
  4643. assert(dst->nb[0] == sizeof(float));
  4644. assert(src0->nb[0] == sizeof(float));
  4645. for (int i = 0; i < n; i++) {
  4646. ggml_vec_step_f32(nc,
  4647. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4648. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4649. }
  4650. }
  4651. static void ggml_compute_forward_step(
  4652. const struct ggml_compute_params * params,
  4653. const struct ggml_tensor * src0,
  4654. struct ggml_tensor * dst) {
  4655. switch (src0->type) {
  4656. case GGML_TYPE_F32:
  4657. {
  4658. ggml_compute_forward_step_f32(params, src0, dst);
  4659. } break;
  4660. case GGML_TYPE_Q4_0:
  4661. case GGML_TYPE_Q4_1:
  4662. case GGML_TYPE_I8:
  4663. case GGML_TYPE_I16:
  4664. case GGML_TYPE_I32:
  4665. case GGML_TYPE_F16:
  4666. case GGML_TYPE_COUNT:
  4667. {
  4668. GGML_ASSERT(false);
  4669. } break;
  4670. }
  4671. }
  4672. // ggml_compute_forward_relu
  4673. static void ggml_compute_forward_relu_f32(
  4674. const struct ggml_compute_params * params,
  4675. const struct ggml_tensor * src0,
  4676. struct ggml_tensor * dst) {
  4677. assert(params->ith == 0);
  4678. assert(ggml_are_same_shape(src0, dst));
  4679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4680. return;
  4681. }
  4682. const int n = ggml_nrows(src0);
  4683. const int nc = src0->ne[0];
  4684. assert(dst->nb[0] == sizeof(float));
  4685. assert(src0->nb[0] == sizeof(float));
  4686. for (int i = 0; i < n; i++) {
  4687. ggml_vec_relu_f32(nc,
  4688. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4689. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4690. }
  4691. }
  4692. static void ggml_compute_forward_relu(
  4693. const struct ggml_compute_params * params,
  4694. const struct ggml_tensor * src0,
  4695. struct ggml_tensor * dst) {
  4696. switch (src0->type) {
  4697. case GGML_TYPE_F32:
  4698. {
  4699. ggml_compute_forward_relu_f32(params, src0, dst);
  4700. } break;
  4701. case GGML_TYPE_Q4_0:
  4702. case GGML_TYPE_Q4_1:
  4703. case GGML_TYPE_I8:
  4704. case GGML_TYPE_I16:
  4705. case GGML_TYPE_I32:
  4706. case GGML_TYPE_F16:
  4707. case GGML_TYPE_COUNT:
  4708. {
  4709. GGML_ASSERT(false);
  4710. } break;
  4711. }
  4712. }
  4713. // ggml_compute_forward_gelu
  4714. static void ggml_compute_forward_gelu_f32(
  4715. const struct ggml_compute_params * params,
  4716. const struct ggml_tensor * src0,
  4717. struct ggml_tensor * dst) {
  4718. GGML_ASSERT(ggml_is_contiguous(src0));
  4719. GGML_ASSERT(ggml_is_contiguous(dst));
  4720. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4721. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4722. return;
  4723. }
  4724. const int ith = params->ith;
  4725. const int nth = params->nth;
  4726. const int nc = src0->ne[0];
  4727. const int nr = ggml_nrows(src0);
  4728. // rows per thread
  4729. const int dr = (nr + nth - 1)/nth;
  4730. // row range for this thread
  4731. const int ir0 = dr*ith;
  4732. const int ir1 = MIN(ir0 + dr, nr);
  4733. for (int i1 = ir0; i1 < ir1; i1++) {
  4734. ggml_vec_gelu_f32(nc,
  4735. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4736. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4737. #ifndef NDEBUG
  4738. for (int k = 0; k < nc; k++) {
  4739. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4740. UNUSED(x);
  4741. assert(!isnan(x));
  4742. assert(!isinf(x));
  4743. }
  4744. #endif
  4745. }
  4746. }
  4747. static void ggml_compute_forward_gelu(
  4748. const struct ggml_compute_params * params,
  4749. const struct ggml_tensor * src0,
  4750. struct ggml_tensor * dst) {
  4751. switch (src0->type) {
  4752. case GGML_TYPE_F32:
  4753. {
  4754. ggml_compute_forward_gelu_f32(params, src0, dst);
  4755. } break;
  4756. case GGML_TYPE_Q4_0:
  4757. case GGML_TYPE_Q4_1:
  4758. case GGML_TYPE_I8:
  4759. case GGML_TYPE_I16:
  4760. case GGML_TYPE_I32:
  4761. case GGML_TYPE_F16:
  4762. case GGML_TYPE_COUNT:
  4763. {
  4764. GGML_ASSERT(false);
  4765. } break;
  4766. }
  4767. //printf("XXXXXXXX gelu\n");
  4768. }
  4769. // ggml_compute_forward_silu
  4770. static void ggml_compute_forward_silu_f32(
  4771. const struct ggml_compute_params * params,
  4772. const struct ggml_tensor * src0,
  4773. struct ggml_tensor * dst) {
  4774. GGML_ASSERT(ggml_is_contiguous(src0));
  4775. GGML_ASSERT(ggml_is_contiguous(dst));
  4776. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4778. return;
  4779. }
  4780. const int ith = params->ith;
  4781. const int nth = params->nth;
  4782. const int nc = src0->ne[0];
  4783. const int nr = ggml_nrows(src0);
  4784. // rows per thread
  4785. const int dr = (nr + nth - 1)/nth;
  4786. // row range for this thread
  4787. const int ir0 = dr*ith;
  4788. const int ir1 = MIN(ir0 + dr, nr);
  4789. for (int i1 = ir0; i1 < ir1; i1++) {
  4790. ggml_vec_silu_f32(nc,
  4791. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4792. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4793. #ifndef NDEBUG
  4794. for (int k = 0; k < nc; k++) {
  4795. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4796. UNUSED(x);
  4797. assert(!isnan(x));
  4798. assert(!isinf(x));
  4799. }
  4800. #endif
  4801. }
  4802. }
  4803. static void ggml_compute_forward_silu(
  4804. const struct ggml_compute_params * params,
  4805. const struct ggml_tensor * src0,
  4806. struct ggml_tensor * dst) {
  4807. switch (src0->type) {
  4808. case GGML_TYPE_F32:
  4809. {
  4810. ggml_compute_forward_silu_f32(params, src0, dst);
  4811. } break;
  4812. case GGML_TYPE_Q4_0:
  4813. case GGML_TYPE_Q4_1:
  4814. case GGML_TYPE_I8:
  4815. case GGML_TYPE_I16:
  4816. case GGML_TYPE_I32:
  4817. case GGML_TYPE_F16:
  4818. case GGML_TYPE_COUNT:
  4819. {
  4820. GGML_ASSERT(false);
  4821. } break;
  4822. }
  4823. }
  4824. // ggml_compute_forward_norm
  4825. static void ggml_compute_forward_norm_f32(
  4826. const struct ggml_compute_params * params,
  4827. const struct ggml_tensor * src0,
  4828. struct ggml_tensor * dst) {
  4829. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4830. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4831. return;
  4832. }
  4833. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4834. const int ith = params->ith;
  4835. const int nth = params->nth;
  4836. const int64_t ne00 = src0->ne[0];
  4837. const int64_t ne01 = src0->ne[1];
  4838. const int64_t ne02 = src0->ne[2];
  4839. const int64_t ne03 = src0->ne[3];
  4840. const size_t nb01 = src0->nb[1];
  4841. const size_t nb02 = src0->nb[2];
  4842. const size_t nb03 = src0->nb[3];
  4843. const size_t nb1 = dst->nb[1];
  4844. const size_t nb2 = dst->nb[2];
  4845. const size_t nb3 = dst->nb[3];
  4846. const float eps = 1e-5f; // TODO: make this a parameter
  4847. // TODO: optimize
  4848. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4849. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4850. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4851. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4852. ggml_float sum = 0.0;
  4853. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4854. sum += (ggml_float)x[i00];
  4855. }
  4856. float mean = sum/ne00;
  4857. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4858. ggml_float sum2 = 0.0;
  4859. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4860. float v = x[i00] - mean;
  4861. y[i00] = v;
  4862. sum2 += (ggml_float)(v*v);
  4863. }
  4864. float variance = sum2/ne00;
  4865. const float scale = 1.0f/sqrtf(variance + eps);
  4866. ggml_vec_scale_f32(ne00, y, scale);
  4867. }
  4868. }
  4869. }
  4870. }
  4871. static void ggml_compute_forward_norm(
  4872. const struct ggml_compute_params * params,
  4873. const struct ggml_tensor * src0,
  4874. struct ggml_tensor * dst) {
  4875. switch (src0->type) {
  4876. case GGML_TYPE_F32:
  4877. {
  4878. ggml_compute_forward_norm_f32(params, src0, dst);
  4879. } break;
  4880. case GGML_TYPE_Q4_0:
  4881. case GGML_TYPE_Q4_1:
  4882. case GGML_TYPE_I8:
  4883. case GGML_TYPE_I16:
  4884. case GGML_TYPE_I32:
  4885. case GGML_TYPE_F16:
  4886. case GGML_TYPE_COUNT:
  4887. {
  4888. GGML_ASSERT(false);
  4889. } break;
  4890. }
  4891. }
  4892. static void ggml_compute_forward_rms_norm_f32(
  4893. const struct ggml_compute_params * params,
  4894. const struct ggml_tensor * src0,
  4895. struct ggml_tensor * dst) {
  4896. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4897. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4898. return;
  4899. }
  4900. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4901. const int ith = params->ith;
  4902. const int nth = params->nth;
  4903. const int64_t ne00 = src0->ne[0];
  4904. const int64_t ne01 = src0->ne[1];
  4905. const int64_t ne02 = src0->ne[2];
  4906. const int64_t ne03 = src0->ne[3];
  4907. const size_t nb01 = src0->nb[1];
  4908. const size_t nb02 = src0->nb[2];
  4909. const size_t nb03 = src0->nb[3];
  4910. const size_t nb1 = dst->nb[1];
  4911. const size_t nb2 = dst->nb[2];
  4912. const size_t nb3 = dst->nb[3];
  4913. const float eps = 1e-6f; // TODO: make this a parameter
  4914. // TODO: optimize
  4915. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4916. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4917. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4918. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4919. ggml_float sum = 0.0;
  4920. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4921. sum += (ggml_float)(x[i00] * x[i00]);
  4922. }
  4923. float mean = sum/ne00;
  4924. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4925. memcpy(y, x, ne00 * sizeof(float));
  4926. // for (int i00 = 0; i00 < ne00; i00++) {
  4927. // y[i00] = x[i00];
  4928. // }
  4929. const float scale = 1.0f/sqrtf(mean + eps);
  4930. ggml_vec_scale_f32(ne00, y, scale);
  4931. }
  4932. }
  4933. }
  4934. }
  4935. static void ggml_compute_forward_rms_norm(
  4936. const struct ggml_compute_params * params,
  4937. const struct ggml_tensor * src0,
  4938. struct ggml_tensor * dst) {
  4939. switch (src0->type) {
  4940. case GGML_TYPE_F32:
  4941. {
  4942. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4943. } break;
  4944. case GGML_TYPE_Q4_0:
  4945. case GGML_TYPE_Q4_1:
  4946. case GGML_TYPE_I8:
  4947. case GGML_TYPE_I16:
  4948. case GGML_TYPE_I32:
  4949. case GGML_TYPE_F16:
  4950. case GGML_TYPE_COUNT:
  4951. {
  4952. GGML_ASSERT(false);
  4953. } break;
  4954. }
  4955. }
  4956. // ggml_compute_forward_mul_mat
  4957. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4958. // helper function to determine if it is better to use BLAS or not
  4959. // for large matrices, BLAS is faster
  4960. static bool ggml_compute_forward_mul_mat_use_blas(
  4961. const struct ggml_tensor * src0,
  4962. const struct ggml_tensor * src1,
  4963. struct ggml_tensor * dst) {
  4964. //const int64_t ne00 = src0->ne[0];
  4965. //const int64_t ne01 = src0->ne[1];
  4966. const int64_t ne10 = src1->ne[0];
  4967. const int64_t ne0 = dst->ne[0];
  4968. const int64_t ne1 = dst->ne[1];
  4969. // TODO: find the optimal values for these
  4970. if (ggml_is_contiguous(src0) &&
  4971. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4972. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4973. return true;
  4974. }
  4975. return false;
  4976. }
  4977. #endif
  4978. static void ggml_compute_forward_mul_mat_f32(
  4979. const struct ggml_compute_params * params,
  4980. const struct ggml_tensor * src0,
  4981. const struct ggml_tensor * src1,
  4982. struct ggml_tensor * dst) {
  4983. int64_t t0 = ggml_perf_time_us();
  4984. UNUSED(t0);
  4985. const int64_t ne00 = src0->ne[0];
  4986. const int64_t ne01 = src0->ne[1];
  4987. const int64_t ne02 = src0->ne[2];
  4988. const int64_t ne03 = src0->ne[3];
  4989. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4990. const int64_t ne10 = src1->ne[0];
  4991. #endif
  4992. const int64_t ne11 = src1->ne[1];
  4993. #ifndef NDEBUG
  4994. const int64_t ne12 = src1->ne[2];
  4995. const int64_t ne13 = src1->ne[3];
  4996. const int64_t ne0 = dst->ne[0];
  4997. const int64_t ne1 = dst->ne[1];
  4998. const int64_t ne2 = dst->ne[2];
  4999. const int64_t ne3 = dst->ne[3];
  5000. const int nb00 = src0->nb[0];
  5001. #endif
  5002. const int nb01 = src0->nb[1];
  5003. const int nb02 = src0->nb[2];
  5004. const int nb03 = src0->nb[3];
  5005. #ifndef NDEBUG
  5006. const int nb10 = src1->nb[0];
  5007. #endif
  5008. const int nb11 = src1->nb[1];
  5009. const int nb12 = src1->nb[2];
  5010. const int nb13 = src1->nb[3];
  5011. const int nb0 = dst->nb[0];
  5012. const int nb1 = dst->nb[1];
  5013. const int nb2 = dst->nb[2];
  5014. const int nb3 = dst->nb[3];
  5015. const int ith = params->ith;
  5016. const int nth = params->nth;
  5017. assert(ne02 == ne12);
  5018. assert(ne03 == ne13);
  5019. assert(ne2 == ne12);
  5020. assert(ne3 == ne13);
  5021. // we don't support permuted src0 or src1
  5022. assert(nb00 == sizeof(float));
  5023. assert(nb10 == sizeof(float));
  5024. // dst cannot be transposed or permuted
  5025. assert(nb0 == sizeof(float));
  5026. assert(nb0 <= nb1);
  5027. assert(nb1 <= nb2);
  5028. assert(nb2 <= nb3);
  5029. assert(ne0 == ne01);
  5030. assert(ne1 == ne11);
  5031. assert(ne2 == ne02);
  5032. assert(ne3 == ne03);
  5033. // nb01 >= nb00 - src0 is not transposed
  5034. // compute by src0 rows
  5035. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5036. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5037. if (params->ith != 0) {
  5038. return;
  5039. }
  5040. if (params->type == GGML_TASK_INIT) {
  5041. return;
  5042. }
  5043. if (params->type == GGML_TASK_FINALIZE) {
  5044. return;
  5045. }
  5046. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5047. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5048. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5049. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5050. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5051. // zT = y * xT
  5052. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5053. ne11, ne01, ne10,
  5054. 1.0f, y, ne10,
  5055. x, ne10,
  5056. 0.0f, d, ne01);
  5057. }
  5058. }
  5059. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5060. return;
  5061. }
  5062. #endif
  5063. if (params->type == GGML_TASK_INIT) {
  5064. return;
  5065. }
  5066. if (params->type == GGML_TASK_FINALIZE) {
  5067. return;
  5068. }
  5069. // parallelize by src0 rows using ggml_vec_dot_f32
  5070. // total rows in src0
  5071. const int nr = ne01*ne02*ne03;
  5072. // rows per thread
  5073. const int dr = (nr + nth - 1)/nth;
  5074. // row range for this thread
  5075. const int ir0 = dr*ith;
  5076. const int ir1 = MIN(ir0 + dr, nr);
  5077. for (int ir = ir0; ir < ir1; ++ir) {
  5078. // src0 indices
  5079. const int i03 = ir/(ne02*ne01);
  5080. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5081. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5082. for (int64_t ic = 0; ic < ne11; ++ic) {
  5083. // src1 indices
  5084. const int i13 = i03;
  5085. const int i12 = i02;
  5086. const int i11 = ic;
  5087. // dst indices
  5088. const int i0 = i01;
  5089. const int i1 = i11;
  5090. const int i2 = i02;
  5091. const int i3 = i03;
  5092. ggml_vec_dot_f32(ne00,
  5093. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5094. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5095. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5096. }
  5097. }
  5098. //int64_t t1 = ggml_perf_time_us();
  5099. //static int64_t acc = 0;
  5100. //acc += t1 - t0;
  5101. //if (t1 - t0 > 10) {
  5102. // printf("\n");
  5103. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5104. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5105. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5106. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5107. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5108. //}
  5109. }
  5110. static void ggml_compute_forward_mul_mat_f16_f32(
  5111. const struct ggml_compute_params * params,
  5112. const struct ggml_tensor * src0,
  5113. const struct ggml_tensor * src1,
  5114. struct ggml_tensor * dst) {
  5115. int64_t t0 = ggml_perf_time_us();
  5116. UNUSED(t0);
  5117. const int64_t ne00 = src0->ne[0];
  5118. const int64_t ne01 = src0->ne[1];
  5119. const int64_t ne02 = src0->ne[2];
  5120. const int64_t ne03 = src0->ne[3];
  5121. const int64_t ne10 = src1->ne[0];
  5122. const int64_t ne11 = src1->ne[1];
  5123. const int64_t ne12 = src1->ne[2];
  5124. const int64_t ne13 = src1->ne[3];
  5125. const int64_t ne0 = dst->ne[0];
  5126. const int64_t ne1 = dst->ne[1];
  5127. const int64_t ne2 = dst->ne[2];
  5128. const int64_t ne3 = dst->ne[3];
  5129. //const int64_t ne = ne0*ne1*ne2*ne3;
  5130. const int nb00 = src0->nb[0];
  5131. const int nb01 = src0->nb[1];
  5132. const int nb02 = src0->nb[2];
  5133. const int nb03 = src0->nb[3];
  5134. const int nb10 = src1->nb[0];
  5135. const int nb11 = src1->nb[1];
  5136. const int nb12 = src1->nb[2];
  5137. const int nb13 = src1->nb[3];
  5138. const int nb0 = dst->nb[0];
  5139. const int nb1 = dst->nb[1];
  5140. const int nb2 = dst->nb[2];
  5141. const int nb3 = dst->nb[3];
  5142. const int ith = params->ith;
  5143. const int nth = params->nth;
  5144. GGML_ASSERT(ne02 == ne12);
  5145. GGML_ASSERT(ne03 == ne13);
  5146. GGML_ASSERT(ne2 == ne12);
  5147. GGML_ASSERT(ne3 == ne13);
  5148. // TODO: we don't support permuted src0
  5149. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5150. // dst cannot be transposed or permuted
  5151. GGML_ASSERT(nb0 == sizeof(float));
  5152. GGML_ASSERT(nb0 <= nb1);
  5153. GGML_ASSERT(nb1 <= nb2);
  5154. GGML_ASSERT(nb2 <= nb3);
  5155. GGML_ASSERT(ne0 == ne01);
  5156. GGML_ASSERT(ne1 == ne11);
  5157. GGML_ASSERT(ne2 == ne02);
  5158. GGML_ASSERT(ne3 == ne03);
  5159. // nb01 >= nb00 - src0 is not transposed
  5160. // compute by src0 rows
  5161. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5162. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5163. GGML_ASSERT(nb10 == sizeof(float));
  5164. if (params->ith != 0) {
  5165. return;
  5166. }
  5167. if (params->type == GGML_TASK_INIT) {
  5168. return;
  5169. }
  5170. if (params->type == GGML_TASK_FINALIZE) {
  5171. return;
  5172. }
  5173. float * const wdata = params->wdata;
  5174. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5175. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5176. {
  5177. size_t id = 0;
  5178. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5179. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5180. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5181. }
  5182. }
  5183. }
  5184. const float * x = wdata;
  5185. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5186. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5187. // zT = y * xT
  5188. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5189. ne11, ne01, ne10,
  5190. 1.0f, y, ne10,
  5191. x, ne10,
  5192. 0.0f, d, ne01);
  5193. }
  5194. }
  5195. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5196. return;
  5197. }
  5198. #endif
  5199. if (params->type == GGML_TASK_INIT) {
  5200. ggml_fp16_t * const wdata = params->wdata;
  5201. size_t id = 0;
  5202. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5203. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5204. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5205. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5206. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5207. }
  5208. }
  5209. }
  5210. }
  5211. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5212. return;
  5213. }
  5214. if (params->type == GGML_TASK_FINALIZE) {
  5215. return;
  5216. }
  5217. // fp16 -> half the size, so divide by 2
  5218. // TODO: do not support transposed src1
  5219. assert(nb10/2 == sizeof(ggml_fp16_t));
  5220. // parallelize by src0 rows using ggml_vec_dot_f16
  5221. // total rows in src0
  5222. const int nr = ne01*ne02*ne03;
  5223. // rows per thread
  5224. const int dr = (nr + nth - 1)/nth;
  5225. // row range for this thread
  5226. const int ir0 = dr*ith;
  5227. const int ir1 = MIN(ir0 + dr, nr);
  5228. ggml_fp16_t * wdata = params->wdata;
  5229. for (int ir = ir0; ir < ir1; ++ir) {
  5230. // src0 indices
  5231. const int i03 = ir/(ne02*ne01);
  5232. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5233. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5234. const int i13 = i03;
  5235. const int i12 = i02;
  5236. const int i0 = i01;
  5237. const int i2 = i02;
  5238. const int i3 = i03;
  5239. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5240. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5241. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5242. for (int64_t ic = 0; ic < ne11; ++ic) {
  5243. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5244. }
  5245. }
  5246. //int64_t t1 = ggml_time_us();
  5247. //static int64_t acc = 0;
  5248. //acc += t1 - t0;
  5249. //if (t1 - t0 > 10) {
  5250. // printf("\n");
  5251. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5252. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5253. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5254. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5255. //}
  5256. }
  5257. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5258. [GGML_TYPE_Q4_0] = {
  5259. .dequantize_row_q = dequantize_row_q4_0,
  5260. .quantize_row_q = quantize_row_q4_0,
  5261. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5262. .vec_dot_q = ggml_vec_dot_q4_0,
  5263. },
  5264. [GGML_TYPE_Q4_1] = {
  5265. .dequantize_row_q = dequantize_row_q4_1,
  5266. .quantize_row_q = quantize_row_q4_1,
  5267. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5268. .vec_dot_q = ggml_vec_dot_q4_1,
  5269. },
  5270. };
  5271. // For internal test use
  5272. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5273. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5274. return quantize_fns[i];
  5275. }
  5276. static void ggml_compute_forward_mul_mat_q_f32(
  5277. const struct ggml_compute_params * params,
  5278. const struct ggml_tensor * src0,
  5279. const struct ggml_tensor * src1,
  5280. struct ggml_tensor * dst) {
  5281. int64_t t0 = ggml_perf_time_us();
  5282. UNUSED(t0);
  5283. const int64_t ne00 = src0->ne[0];
  5284. const int64_t ne01 = src0->ne[1];
  5285. const int64_t ne02 = src0->ne[2];
  5286. const int64_t ne03 = src0->ne[3];
  5287. const int64_t ne10 = src1->ne[0];
  5288. const int64_t ne11 = src1->ne[1];
  5289. const int64_t ne12 = src1->ne[2];
  5290. const int64_t ne13 = src1->ne[3];
  5291. const int64_t ne0 = dst->ne[0];
  5292. const int64_t ne1 = dst->ne[1];
  5293. const int64_t ne2 = dst->ne[2];
  5294. const int64_t ne3 = dst->ne[3];
  5295. const int nb00 = src0->nb[0];
  5296. const int nb01 = src0->nb[1];
  5297. const int nb02 = src0->nb[2];
  5298. const int nb03 = src0->nb[3];
  5299. const int nb10 = src1->nb[0];
  5300. const int nb11 = src1->nb[1];
  5301. const int nb12 = src1->nb[2];
  5302. const int nb13 = src1->nb[3];
  5303. const int nb0 = dst->nb[0];
  5304. const int nb1 = dst->nb[1];
  5305. const int nb2 = dst->nb[2];
  5306. const int nb3 = dst->nb[3];
  5307. const int ith = params->ith;
  5308. const int nth = params->nth;
  5309. GGML_ASSERT(ne02 == ne12);
  5310. GGML_ASSERT(ne03 == ne13);
  5311. GGML_ASSERT(ne2 == ne12);
  5312. GGML_ASSERT(ne3 == ne13);
  5313. const enum ggml_type type = src0->type;
  5314. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5315. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5316. // we don't support permuted src0 or src1
  5317. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5318. GGML_ASSERT(nb10 == sizeof(float));
  5319. // dst cannot be transposed or permuted
  5320. GGML_ASSERT(nb0 == sizeof(float));
  5321. GGML_ASSERT(nb0 <= nb1);
  5322. GGML_ASSERT(nb1 <= nb2);
  5323. GGML_ASSERT(nb2 <= nb3);
  5324. GGML_ASSERT(ne0 == ne01);
  5325. GGML_ASSERT(ne1 == ne11);
  5326. GGML_ASSERT(ne2 == ne02);
  5327. GGML_ASSERT(ne3 == ne03);
  5328. // nb01 >= nb00 - src0 is not transposed
  5329. // compute by src0 rows
  5330. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5331. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5332. if (params->ith != 0) {
  5333. return;
  5334. }
  5335. if (params->type == GGML_TASK_INIT) {
  5336. return;
  5337. }
  5338. if (params->type == GGML_TASK_FINALIZE) {
  5339. return;
  5340. }
  5341. float * const wdata = params->wdata;
  5342. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5343. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5344. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5345. {
  5346. size_t id = 0;
  5347. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5348. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5349. id += ne00;
  5350. }
  5351. }
  5352. const float * x = wdata;
  5353. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5354. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5355. // zT = y * xT
  5356. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5357. ne11, ne01, ne10,
  5358. 1.0f, y, ne10,
  5359. x, ne10,
  5360. 0.0f, d, ne01);
  5361. }
  5362. }
  5363. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5364. return;
  5365. }
  5366. #endif
  5367. if (params->type == GGML_TASK_INIT) {
  5368. char * wdata = params->wdata;
  5369. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5370. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5371. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5372. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5373. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5374. wdata += row_size;
  5375. }
  5376. }
  5377. }
  5378. return;
  5379. }
  5380. if (params->type == GGML_TASK_FINALIZE) {
  5381. return;
  5382. }
  5383. // parallelize by src0 rows using ggml_vec_dot_q
  5384. // total rows in src0
  5385. const int nr = ne01*ne02*ne03;
  5386. // rows per thread
  5387. const int dr = (nr + nth - 1)/nth;
  5388. // row range for this thread
  5389. const int ir0 = dr*ith;
  5390. const int ir1 = MIN(ir0 + dr, nr);
  5391. void * wdata = params->wdata;
  5392. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5393. for (int ir = ir0; ir < ir1; ++ir) {
  5394. // src0 indices
  5395. const int i03 = ir/(ne02*ne01);
  5396. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5397. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5398. const int i13 = i03;
  5399. const int i12 = i02;
  5400. const int i0 = i01;
  5401. const int i2 = i02;
  5402. const int i3 = i03;
  5403. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5404. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5405. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5406. assert(ne00 % 32 == 0);
  5407. for (int64_t ic = 0; ic < ne11; ++ic) {
  5408. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5409. }
  5410. }
  5411. //int64_t t1 = ggml_time_us();
  5412. //static int64_t acc = 0;
  5413. //acc += t1 - t0;
  5414. //if (t1 - t0 > 10) {
  5415. // printf("\n");
  5416. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5417. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5418. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5419. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5420. //}
  5421. }
  5422. static void ggml_compute_forward_mul_mat(
  5423. const struct ggml_compute_params * params,
  5424. const struct ggml_tensor * src0,
  5425. const struct ggml_tensor * src1,
  5426. struct ggml_tensor * dst) {
  5427. switch (src0->type) {
  5428. case GGML_TYPE_Q4_0:
  5429. case GGML_TYPE_Q4_1:
  5430. {
  5431. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5432. } break;
  5433. case GGML_TYPE_F16:
  5434. {
  5435. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5436. } break;
  5437. case GGML_TYPE_F32:
  5438. {
  5439. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5440. } break;
  5441. case GGML_TYPE_I8:
  5442. case GGML_TYPE_I16:
  5443. case GGML_TYPE_I32:
  5444. case GGML_TYPE_COUNT:
  5445. {
  5446. GGML_ASSERT(false);
  5447. } break;
  5448. }
  5449. #if 0
  5450. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5451. static int first = 8;
  5452. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5453. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5454. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5455. if (first) {
  5456. --first;
  5457. } else {
  5458. for (int k = 0; k < dst->ne[1]; ++k) {
  5459. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5460. for (int i = 0; i < 16; ++i) {
  5461. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5462. }
  5463. printf("\n");
  5464. }
  5465. printf("\n");
  5466. }
  5467. printf("\n");
  5468. exit(0);
  5469. }
  5470. } else {
  5471. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5472. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5473. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5474. }
  5475. #endif
  5476. }
  5477. // ggml_compute_forward_scale
  5478. static void ggml_compute_forward_scale_f32(
  5479. const struct ggml_compute_params * params,
  5480. const struct ggml_tensor * src0,
  5481. const struct ggml_tensor * src1,
  5482. struct ggml_tensor * dst) {
  5483. GGML_ASSERT(ggml_is_contiguous(src0));
  5484. GGML_ASSERT(ggml_is_contiguous(dst));
  5485. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5486. GGML_ASSERT(ggml_is_scalar(src1));
  5487. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5488. return;
  5489. }
  5490. // scale factor
  5491. const float v = *(float *) src1->data;
  5492. const int ith = params->ith;
  5493. const int nth = params->nth;
  5494. const int nc = src0->ne[0];
  5495. const int nr = ggml_nrows(src0);
  5496. // rows per thread
  5497. const int dr = (nr + nth - 1)/nth;
  5498. // row range for this thread
  5499. const int ir0 = dr*ith;
  5500. const int ir1 = MIN(ir0 + dr, nr);
  5501. for (int i1 = ir0; i1 < ir1; i1++) {
  5502. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5503. }
  5504. }
  5505. static void ggml_compute_forward_scale(
  5506. const struct ggml_compute_params * params,
  5507. const struct ggml_tensor * src0,
  5508. const struct ggml_tensor * src1,
  5509. struct ggml_tensor * dst) {
  5510. switch (src0->type) {
  5511. case GGML_TYPE_F32:
  5512. {
  5513. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5514. } break;
  5515. case GGML_TYPE_Q4_0:
  5516. case GGML_TYPE_Q4_1:
  5517. case GGML_TYPE_I8:
  5518. case GGML_TYPE_I16:
  5519. case GGML_TYPE_I32:
  5520. case GGML_TYPE_F16:
  5521. case GGML_TYPE_COUNT:
  5522. {
  5523. GGML_ASSERT(false);
  5524. } break;
  5525. }
  5526. }
  5527. // ggml_compute_forward_cpy
  5528. static void ggml_compute_forward_cpy(
  5529. const struct ggml_compute_params * params,
  5530. const struct ggml_tensor * src0,
  5531. struct ggml_tensor * dst) {
  5532. ggml_compute_forward_dup(params, src0, dst);
  5533. }
  5534. // ggml_compute_forward_reshape
  5535. static void ggml_compute_forward_reshape(
  5536. const struct ggml_compute_params * params,
  5537. const struct ggml_tensor * src0,
  5538. struct ggml_tensor * dst) {
  5539. // NOP
  5540. UNUSED(params);
  5541. UNUSED(src0);
  5542. UNUSED(dst);
  5543. }
  5544. // ggml_compute_forward_view
  5545. static void ggml_compute_forward_view(
  5546. const struct ggml_compute_params * params,
  5547. const struct ggml_tensor * src0) {
  5548. // NOP
  5549. UNUSED(params);
  5550. UNUSED(src0);
  5551. }
  5552. // ggml_compute_forward_permute
  5553. static void ggml_compute_forward_permute(
  5554. const struct ggml_compute_params * params,
  5555. const struct ggml_tensor * src0) {
  5556. // NOP
  5557. UNUSED(params);
  5558. UNUSED(src0);
  5559. }
  5560. // ggml_compute_forward_transpose
  5561. static void ggml_compute_forward_transpose(
  5562. const struct ggml_compute_params * params,
  5563. const struct ggml_tensor * src0) {
  5564. // NOP
  5565. UNUSED(params);
  5566. UNUSED(src0);
  5567. }
  5568. // ggml_compute_forward_get_rows
  5569. static void ggml_compute_forward_get_rows_q(
  5570. const struct ggml_compute_params * params,
  5571. const struct ggml_tensor * src0,
  5572. const struct ggml_tensor * src1,
  5573. struct ggml_tensor * dst) {
  5574. assert(params->ith == 0);
  5575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5576. return;
  5577. }
  5578. const int nc = src0->ne[0];
  5579. const int nr = ggml_nelements(src1);
  5580. const enum ggml_type type = src0->type;
  5581. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5582. assert( dst->ne[0] == nc);
  5583. assert( dst->ne[1] == nr);
  5584. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5585. for (int i = 0; i < nr; ++i) {
  5586. const int r = ((int32_t *) src1->data)[i];
  5587. dequantize_row_q(
  5588. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5589. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5590. }
  5591. }
  5592. static void ggml_compute_forward_get_rows_f16(
  5593. const struct ggml_compute_params * params,
  5594. const struct ggml_tensor * src0,
  5595. const struct ggml_tensor * src1,
  5596. struct ggml_tensor * dst) {
  5597. assert(params->ith == 0);
  5598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5599. return;
  5600. }
  5601. const int nc = src0->ne[0];
  5602. const int nr = ggml_nelements(src1);
  5603. assert( dst->ne[0] == nc);
  5604. assert( dst->ne[1] == nr);
  5605. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5606. for (int i = 0; i < nr; ++i) {
  5607. const int r = ((int32_t *) src1->data)[i];
  5608. for (int j = 0; j < nc; ++j) {
  5609. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5610. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5611. }
  5612. }
  5613. }
  5614. static void ggml_compute_forward_get_rows_f32(
  5615. const struct ggml_compute_params * params,
  5616. const struct ggml_tensor * src0,
  5617. const struct ggml_tensor * src1,
  5618. struct ggml_tensor * dst) {
  5619. assert(params->ith == 0);
  5620. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5621. return;
  5622. }
  5623. const int nc = src0->ne[0];
  5624. const int nr = ggml_nelements(src1);
  5625. assert( dst->ne[0] == nc);
  5626. assert( dst->ne[1] == nr);
  5627. assert(src0->nb[0] == sizeof(float));
  5628. for (int i = 0; i < nr; ++i) {
  5629. const int r = ((int32_t *) src1->data)[i];
  5630. ggml_vec_cpy_f32(nc,
  5631. (float *) ((char *) dst->data + i*dst->nb[1]),
  5632. (float *) ((char *) src0->data + r*src0->nb[1]));
  5633. }
  5634. }
  5635. static void ggml_compute_forward_get_rows(
  5636. const struct ggml_compute_params * params,
  5637. const struct ggml_tensor * src0,
  5638. const struct ggml_tensor * src1,
  5639. struct ggml_tensor * dst) {
  5640. switch (src0->type) {
  5641. case GGML_TYPE_Q4_0:
  5642. case GGML_TYPE_Q4_1:
  5643. {
  5644. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5645. } break;
  5646. case GGML_TYPE_F16:
  5647. {
  5648. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5649. } break;
  5650. case GGML_TYPE_F32:
  5651. {
  5652. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5653. } break;
  5654. case GGML_TYPE_I8:
  5655. case GGML_TYPE_I16:
  5656. case GGML_TYPE_I32:
  5657. case GGML_TYPE_COUNT:
  5658. {
  5659. GGML_ASSERT(false);
  5660. } break;
  5661. }
  5662. //static bool first = true;
  5663. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5664. //if (first) {
  5665. // first = false;
  5666. //} else {
  5667. // for (int k = 0; k < dst->ne[1]; ++k) {
  5668. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5669. // for (int i = 0; i < 16; ++i) {
  5670. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5671. // }
  5672. // printf("\n");
  5673. // }
  5674. // printf("\n");
  5675. // }
  5676. // printf("\n");
  5677. // exit(0);
  5678. //}
  5679. }
  5680. // ggml_compute_forward_diag_mask_inf
  5681. static void ggml_compute_forward_diag_mask_inf_f32(
  5682. const struct ggml_compute_params * params,
  5683. const struct ggml_tensor * src0,
  5684. const struct ggml_tensor * src1,
  5685. struct ggml_tensor * dst) {
  5686. assert(params->ith == 0);
  5687. assert(src1->type == GGML_TYPE_I32);
  5688. assert(ggml_nelements(src1) == 1);
  5689. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5690. return;
  5691. }
  5692. const int n_past = ((int32_t *) src1->data)[0];
  5693. // TODO: handle transposed/permuted matrices
  5694. const int n = ggml_nrows(src0);
  5695. const int nc = src0->ne[0];
  5696. const int nr = src0->ne[1];
  5697. const int nz = n/nr;
  5698. assert( dst->nb[0] == sizeof(float));
  5699. assert(src0->nb[0] == sizeof(float));
  5700. for (int k = 0; k < nz; k++) {
  5701. for (int j = 0; j < nr; j++) {
  5702. for (int i = n_past; i < nc; i++) {
  5703. if (i > n_past + j) {
  5704. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5705. }
  5706. }
  5707. }
  5708. }
  5709. }
  5710. static void ggml_compute_forward_diag_mask_inf(
  5711. const struct ggml_compute_params * params,
  5712. const struct ggml_tensor * src0,
  5713. const struct ggml_tensor * src1,
  5714. struct ggml_tensor * dst) {
  5715. switch (src0->type) {
  5716. case GGML_TYPE_F32:
  5717. {
  5718. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5719. } break;
  5720. case GGML_TYPE_Q4_0:
  5721. case GGML_TYPE_Q4_1:
  5722. case GGML_TYPE_I8:
  5723. case GGML_TYPE_I16:
  5724. case GGML_TYPE_I32:
  5725. case GGML_TYPE_F16:
  5726. case GGML_TYPE_COUNT:
  5727. {
  5728. GGML_ASSERT(false);
  5729. } break;
  5730. }
  5731. }
  5732. // ggml_compute_forward_soft_max
  5733. static void ggml_compute_forward_soft_max_f32(
  5734. const struct ggml_compute_params * params,
  5735. const struct ggml_tensor * src0,
  5736. struct ggml_tensor * dst) {
  5737. GGML_ASSERT(ggml_is_contiguous(src0));
  5738. GGML_ASSERT(ggml_is_contiguous(dst));
  5739. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5740. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5741. return;
  5742. }
  5743. // TODO: handle transposed/permuted matrices
  5744. const int ith = params->ith;
  5745. const int nth = params->nth;
  5746. const int nc = src0->ne[0];
  5747. const int nr = ggml_nrows(src0);
  5748. // rows per thread
  5749. const int dr = (nr + nth - 1)/nth;
  5750. // row range for this thread
  5751. const int ir0 = dr*ith;
  5752. const int ir1 = MIN(ir0 + dr, nr);
  5753. for (int i1 = ir0; i1 < ir1; i1++) {
  5754. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5755. #ifndef NDEBUG
  5756. for (int i = 0; i < nc; ++i) {
  5757. //printf("p[%d] = %f\n", i, p[i]);
  5758. assert(!isnan(p[i]));
  5759. }
  5760. #endif
  5761. float max = -INFINITY;
  5762. ggml_vec_max_f32(nc, &max, p);
  5763. ggml_float sum = 0.0;
  5764. uint16_t scvt;
  5765. for (int i = 0; i < nc; i++) {
  5766. if (p[i] == -INFINITY) {
  5767. p[i] = 0.0f;
  5768. } else {
  5769. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5770. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5771. memcpy(&scvt, &s, sizeof(scvt));
  5772. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5773. sum += (ggml_float)val;
  5774. p[i] = val;
  5775. }
  5776. }
  5777. assert(sum > 0.0);
  5778. sum = 1.0/sum;
  5779. ggml_vec_scale_f32(nc, p, sum);
  5780. #ifndef NDEBUG
  5781. for (int i = 0; i < nc; ++i) {
  5782. assert(!isnan(p[i]));
  5783. assert(!isinf(p[i]));
  5784. }
  5785. #endif
  5786. }
  5787. }
  5788. static void ggml_compute_forward_soft_max(
  5789. const struct ggml_compute_params * params,
  5790. const struct ggml_tensor * src0,
  5791. struct ggml_tensor * dst) {
  5792. switch (src0->type) {
  5793. case GGML_TYPE_F32:
  5794. {
  5795. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5796. } break;
  5797. case GGML_TYPE_Q4_0:
  5798. case GGML_TYPE_Q4_1:
  5799. case GGML_TYPE_I8:
  5800. case GGML_TYPE_I16:
  5801. case GGML_TYPE_I32:
  5802. case GGML_TYPE_F16:
  5803. case GGML_TYPE_COUNT:
  5804. {
  5805. GGML_ASSERT(false);
  5806. } break;
  5807. }
  5808. }
  5809. // ggml_compute_forward_rope
  5810. static void ggml_compute_forward_rope_f32(
  5811. const struct ggml_compute_params * params,
  5812. const struct ggml_tensor * src0,
  5813. const struct ggml_tensor * src1,
  5814. struct ggml_tensor * dst) {
  5815. assert(src1->type == GGML_TYPE_I32);
  5816. assert(ggml_nelements(src1) == 3);
  5817. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5818. return;
  5819. }
  5820. const int n_past = ((int32_t *) src1->data)[0];
  5821. const int n_dims = ((int32_t *) src1->data)[1];
  5822. const int mode = ((int32_t *) src1->data)[2];
  5823. //const int64_t ne0 = src0->ne[0];
  5824. const int64_t ne1 = src0->ne[1];
  5825. const int64_t ne2 = src0->ne[2];
  5826. const int64_t ne3 = src0->ne[3];
  5827. const int nb0 = src0->nb[0];
  5828. const int nb1 = src0->nb[1];
  5829. const int nb2 = src0->nb[2];
  5830. const int nb3 = src0->nb[3];
  5831. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5832. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5833. assert(nb0 == sizeof(float));
  5834. const int ith = params->ith;
  5835. const int nth = params->nth;
  5836. const int nr = ggml_nrows(src0);
  5837. // rows per thread
  5838. const int dr = (nr + nth - 1)/nth;
  5839. // row range for this thread
  5840. const int ir0 = dr*ith;
  5841. const int ir1 = MIN(ir0 + dr, nr);
  5842. // row index used to determine which thread to use
  5843. int ir = 0;
  5844. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5845. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5846. const int p = (mode == 0 ? n_past + i2 : i2);
  5847. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5848. if (ir++ < ir0) continue;
  5849. if (ir > ir1) break;
  5850. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5851. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5852. const float cos_theta = cosf(p*theta);
  5853. const float sin_theta = sinf(p*theta);
  5854. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5855. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5856. const float x0 = src[0];
  5857. const float x1 = src[1];
  5858. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5859. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5860. }
  5861. }
  5862. }
  5863. }
  5864. }
  5865. static void ggml_compute_forward_rope_f16(
  5866. const struct ggml_compute_params * params,
  5867. const struct ggml_tensor * src0,
  5868. const struct ggml_tensor * src1,
  5869. struct ggml_tensor * dst) {
  5870. assert(src1->type == GGML_TYPE_I32);
  5871. assert(ggml_nelements(src1) == 3);
  5872. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5873. return;
  5874. }
  5875. const int n_past = ((int32_t *) src1->data)[0];
  5876. const int n_dims = ((int32_t *) src1->data)[1];
  5877. const int mode = ((int32_t *) src1->data)[2];
  5878. //const int64_t ne0 = src0->ne[0];
  5879. const int64_t ne1 = src0->ne[1];
  5880. const int64_t ne2 = src0->ne[2];
  5881. const int64_t ne3 = src0->ne[3];
  5882. const int nb0 = src0->nb[0];
  5883. const int nb1 = src0->nb[1];
  5884. const int nb2 = src0->nb[2];
  5885. const int nb3 = src0->nb[3];
  5886. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5887. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5888. assert(nb0 == sizeof(ggml_fp16_t));
  5889. const int ith = params->ith;
  5890. const int nth = params->nth;
  5891. const int nr = ggml_nrows(src0);
  5892. // rows per thread
  5893. const int dr = (nr + nth - 1)/nth;
  5894. // row range for this thread
  5895. const int ir0 = dr*ith;
  5896. const int ir1 = MIN(ir0 + dr, nr);
  5897. // row index used to determine which thread to use
  5898. int ir = 0;
  5899. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5900. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5901. const int p = (mode == 0 ? n_past + i2 : i2);
  5902. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5903. if (ir++ < ir0) continue;
  5904. if (ir > ir1) break;
  5905. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5906. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5907. const float cos_theta = cosf(p*theta);
  5908. const float sin_theta = sinf(p*theta);
  5909. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5910. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5911. const float x0 = ggml_fp16_to_fp32(src[0]);
  5912. const float x1 = ggml_fp16_to_fp32(src[1]);
  5913. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5914. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5915. }
  5916. }
  5917. }
  5918. }
  5919. }
  5920. static void ggml_compute_forward_rope(
  5921. const struct ggml_compute_params * params,
  5922. const struct ggml_tensor * src0,
  5923. const struct ggml_tensor * src1,
  5924. struct ggml_tensor * dst) {
  5925. switch (src0->type) {
  5926. case GGML_TYPE_F16:
  5927. {
  5928. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5929. } break;
  5930. case GGML_TYPE_F32:
  5931. {
  5932. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5933. } break;
  5934. case GGML_TYPE_Q4_0:
  5935. case GGML_TYPE_Q4_1:
  5936. case GGML_TYPE_I8:
  5937. case GGML_TYPE_I16:
  5938. case GGML_TYPE_I32:
  5939. case GGML_TYPE_COUNT:
  5940. {
  5941. GGML_ASSERT(false);
  5942. } break;
  5943. }
  5944. }
  5945. // ggml_compute_forward_conv_1d_1s
  5946. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5947. const struct ggml_compute_params * params,
  5948. const struct ggml_tensor * src0,
  5949. const struct ggml_tensor * src1,
  5950. struct ggml_tensor * dst) {
  5951. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5952. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5953. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5954. int64_t t0 = ggml_perf_time_us();
  5955. UNUSED(t0);
  5956. const int64_t ne00 = src0->ne[0];
  5957. const int64_t ne01 = src0->ne[1];
  5958. const int64_t ne02 = src0->ne[2];
  5959. //const int64_t ne03 = src0->ne[3];
  5960. const int64_t ne10 = src1->ne[0];
  5961. const int64_t ne11 = src1->ne[1];
  5962. //const int64_t ne12 = src1->ne[2];
  5963. //const int64_t ne13 = src1->ne[3];
  5964. //const int64_t ne0 = dst->ne[0];
  5965. //const int64_t ne1 = dst->ne[1];
  5966. //const int64_t ne2 = dst->ne[2];
  5967. //const int64_t ne3 = dst->ne[3];
  5968. //const int64_t ne = ne0*ne1*ne2*ne3;
  5969. const int nb00 = src0->nb[0];
  5970. const int nb01 = src0->nb[1];
  5971. const int nb02 = src0->nb[2];
  5972. //const int nb03 = src0->nb[3];
  5973. const int nb10 = src1->nb[0];
  5974. const int nb11 = src1->nb[1];
  5975. //const int nb12 = src1->nb[2];
  5976. //const int nb13 = src1->nb[3];
  5977. //const int nb0 = dst->nb[0];
  5978. const int nb1 = dst->nb[1];
  5979. //const int nb2 = dst->nb[2];
  5980. //const int nb3 = dst->nb[3];
  5981. const int ith = params->ith;
  5982. const int nth = params->nth;
  5983. const int nk = ne00;
  5984. const int nh = nk/2;
  5985. const int ew0 = ggml_up32(ne01);
  5986. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5987. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5988. GGML_ASSERT(nb10 == sizeof(float));
  5989. if (params->type == GGML_TASK_INIT) {
  5990. // TODO: fix this memset (wsize is overestimated)
  5991. memset(params->wdata, 0, params->wsize);
  5992. // prepare kernel data (src0)
  5993. {
  5994. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5995. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5996. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5997. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5998. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5999. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6000. dst_data[i00*ew0 + i01] = src[i00];
  6001. }
  6002. }
  6003. }
  6004. }
  6005. // prepare source data (src1)
  6006. {
  6007. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6008. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6009. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6010. ggml_fp16_t * dst_data = wdata;
  6011. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6012. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6013. }
  6014. }
  6015. }
  6016. return;
  6017. }
  6018. if (params->type == GGML_TASK_FINALIZE) {
  6019. return;
  6020. }
  6021. // total rows in dst
  6022. const int nr = ne02;
  6023. // rows per thread
  6024. const int dr = (nr + nth - 1)/nth;
  6025. // row range for this thread
  6026. const int ir0 = dr*ith;
  6027. const int ir1 = MIN(ir0 + dr, nr);
  6028. for (int i1 = ir0; i1 < ir1; i1++) {
  6029. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6030. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6031. dst_data[i0] = 0;
  6032. for (int k = -nh; k <= nh; k++) {
  6033. float v = 0.0f;
  6034. ggml_vec_dot_f16(ew0, &v,
  6035. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6036. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6037. dst_data[i0] += v;
  6038. }
  6039. }
  6040. }
  6041. }
  6042. static void ggml_compute_forward_conv_1d_1s_f32(
  6043. const struct ggml_compute_params * params,
  6044. const struct ggml_tensor * src0,
  6045. const struct ggml_tensor * src1,
  6046. struct ggml_tensor * dst) {
  6047. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6048. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6049. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6050. int64_t t0 = ggml_perf_time_us();
  6051. UNUSED(t0);
  6052. const int64_t ne00 = src0->ne[0];
  6053. const int64_t ne01 = src0->ne[1];
  6054. const int64_t ne02 = src0->ne[2];
  6055. //const int64_t ne03 = src0->ne[3];
  6056. const int64_t ne10 = src1->ne[0];
  6057. const int64_t ne11 = src1->ne[1];
  6058. //const int64_t ne12 = src1->ne[2];
  6059. //const int64_t ne13 = src1->ne[3];
  6060. //const int64_t ne0 = dst->ne[0];
  6061. //const int64_t ne1 = dst->ne[1];
  6062. //const int64_t ne2 = dst->ne[2];
  6063. //const int64_t ne3 = dst->ne[3];
  6064. //const int64_t ne = ne0*ne1*ne2*ne3;
  6065. const int nb00 = src0->nb[0];
  6066. const int nb01 = src0->nb[1];
  6067. const int nb02 = src0->nb[2];
  6068. //const int nb03 = src0->nb[3];
  6069. const int nb10 = src1->nb[0];
  6070. const int nb11 = src1->nb[1];
  6071. //const int nb12 = src1->nb[2];
  6072. //const int nb13 = src1->nb[3];
  6073. //const int nb0 = dst->nb[0];
  6074. const int nb1 = dst->nb[1];
  6075. //const int nb2 = dst->nb[2];
  6076. //const int nb3 = dst->nb[3];
  6077. const int ith = params->ith;
  6078. const int nth = params->nth;
  6079. const int nk = ne00;
  6080. const int nh = nk/2;
  6081. const int ew0 = ggml_up32(ne01);
  6082. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6083. GGML_ASSERT(nb00 == sizeof(float));
  6084. GGML_ASSERT(nb10 == sizeof(float));
  6085. if (params->type == GGML_TASK_INIT) {
  6086. // TODO: fix this memset (wsize is overestimated)
  6087. memset(params->wdata, 0, params->wsize);
  6088. // prepare kernel data (src0)
  6089. {
  6090. float * const wdata = (float *) params->wdata + 0;
  6091. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6092. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6093. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6094. float * dst_data = wdata + i02*ew0*ne00;
  6095. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6096. dst_data[i00*ew0 + i01] = src[i00];
  6097. }
  6098. }
  6099. }
  6100. }
  6101. // prepare source data (src1)
  6102. {
  6103. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6104. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6105. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6106. float * dst_data = wdata;
  6107. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6108. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6109. }
  6110. }
  6111. }
  6112. return;
  6113. }
  6114. if (params->type == GGML_TASK_FINALIZE) {
  6115. return;
  6116. }
  6117. // total rows in dst
  6118. const int nr = ne02;
  6119. // rows per thread
  6120. const int dr = (nr + nth - 1)/nth;
  6121. // row range for this thread
  6122. const int ir0 = dr*ith;
  6123. const int ir1 = MIN(ir0 + dr, nr);
  6124. for (int i1 = ir0; i1 < ir1; i1++) {
  6125. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6126. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6127. dst_data[i0] = 0;
  6128. for (int k = -nh; k <= nh; k++) {
  6129. float v = 0.0f;
  6130. ggml_vec_dot_f32(ew0, &v,
  6131. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6132. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6133. dst_data[i0] += v;
  6134. }
  6135. }
  6136. }
  6137. }
  6138. static void ggml_compute_forward_conv_1d_1s(
  6139. const struct ggml_compute_params * params,
  6140. const struct ggml_tensor * src0,
  6141. const struct ggml_tensor * src1,
  6142. struct ggml_tensor * dst) {
  6143. switch (src0->type) {
  6144. case GGML_TYPE_F16:
  6145. {
  6146. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6147. } break;
  6148. case GGML_TYPE_F32:
  6149. {
  6150. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6151. } break;
  6152. case GGML_TYPE_Q4_0:
  6153. case GGML_TYPE_Q4_1:
  6154. case GGML_TYPE_I8:
  6155. case GGML_TYPE_I16:
  6156. case GGML_TYPE_I32:
  6157. case GGML_TYPE_COUNT:
  6158. {
  6159. GGML_ASSERT(false);
  6160. } break;
  6161. }
  6162. }
  6163. // ggml_compute_forward_conv_1d_2s
  6164. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6165. const struct ggml_compute_params * params,
  6166. const struct ggml_tensor * src0,
  6167. const struct ggml_tensor * src1,
  6168. struct ggml_tensor * dst) {
  6169. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6170. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6171. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6172. int64_t t0 = ggml_perf_time_us();
  6173. UNUSED(t0);
  6174. const int64_t ne00 = src0->ne[0];
  6175. const int64_t ne01 = src0->ne[1];
  6176. const int64_t ne02 = src0->ne[2];
  6177. //const int64_t ne03 = src0->ne[3];
  6178. const int64_t ne10 = src1->ne[0];
  6179. const int64_t ne11 = src1->ne[1];
  6180. //const int64_t ne12 = src1->ne[2];
  6181. //const int64_t ne13 = src1->ne[3];
  6182. //const int64_t ne0 = dst->ne[0];
  6183. //const int64_t ne1 = dst->ne[1];
  6184. //const int64_t ne2 = dst->ne[2];
  6185. //const int64_t ne3 = dst->ne[3];
  6186. //const int64_t ne = ne0*ne1*ne2*ne3;
  6187. const int nb00 = src0->nb[0];
  6188. const int nb01 = src0->nb[1];
  6189. const int nb02 = src0->nb[2];
  6190. //const int nb03 = src0->nb[3];
  6191. const int nb10 = src1->nb[0];
  6192. const int nb11 = src1->nb[1];
  6193. //const int nb12 = src1->nb[2];
  6194. //const int nb13 = src1->nb[3];
  6195. //const int nb0 = dst->nb[0];
  6196. const int nb1 = dst->nb[1];
  6197. //const int nb2 = dst->nb[2];
  6198. //const int nb3 = dst->nb[3];
  6199. const int ith = params->ith;
  6200. const int nth = params->nth;
  6201. const int nk = ne00;
  6202. const int nh = nk/2;
  6203. const int ew0 = ggml_up32(ne01);
  6204. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6205. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6206. GGML_ASSERT(nb10 == sizeof(float));
  6207. if (params->type == GGML_TASK_INIT) {
  6208. // TODO: fix this memset (wsize is overestimated)
  6209. memset(params->wdata, 0, params->wsize);
  6210. // prepare kernel data (src0)
  6211. {
  6212. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6213. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6214. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6215. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6216. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6217. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6218. dst_data[i00*ew0 + i01] = src[i00];
  6219. }
  6220. }
  6221. }
  6222. }
  6223. // prepare source data (src1)
  6224. {
  6225. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6226. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6227. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6228. ggml_fp16_t * dst_data = wdata;
  6229. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6230. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6231. }
  6232. }
  6233. }
  6234. return;
  6235. }
  6236. if (params->type == GGML_TASK_FINALIZE) {
  6237. return;
  6238. }
  6239. // total rows in dst
  6240. const int nr = ne02;
  6241. // rows per thread
  6242. const int dr = (nr + nth - 1)/nth;
  6243. // row range for this thread
  6244. const int ir0 = dr*ith;
  6245. const int ir1 = MIN(ir0 + dr, nr);
  6246. for (int i1 = ir0; i1 < ir1; i1++) {
  6247. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6248. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6249. dst_data[i0/2] = 0;
  6250. for (int k = -nh; k <= nh; k++) {
  6251. float v = 0.0f;
  6252. ggml_vec_dot_f16(ew0, &v,
  6253. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6254. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6255. dst_data[i0/2] += v;
  6256. }
  6257. }
  6258. }
  6259. }
  6260. static void ggml_compute_forward_conv_1d_2s_f32(
  6261. const struct ggml_compute_params * params,
  6262. const struct ggml_tensor * src0,
  6263. const struct ggml_tensor * src1,
  6264. struct ggml_tensor * dst) {
  6265. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6266. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6267. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6268. int64_t t0 = ggml_perf_time_us();
  6269. UNUSED(t0);
  6270. const int64_t ne00 = src0->ne[0];
  6271. const int64_t ne01 = src0->ne[1];
  6272. const int64_t ne02 = src0->ne[2];
  6273. //const int64_t ne03 = src0->ne[3];
  6274. const int64_t ne10 = src1->ne[0];
  6275. const int64_t ne11 = src1->ne[1];
  6276. //const int64_t ne12 = src1->ne[2];
  6277. //const int64_t ne13 = src1->ne[3];
  6278. //const int64_t ne0 = dst->ne[0];
  6279. //const int64_t ne1 = dst->ne[1];
  6280. //const int64_t ne2 = dst->ne[2];
  6281. //const int64_t ne3 = dst->ne[3];
  6282. //const int64_t ne = ne0*ne1*ne2*ne3;
  6283. const int nb00 = src0->nb[0];
  6284. const int nb01 = src0->nb[1];
  6285. const int nb02 = src0->nb[2];
  6286. //const int nb03 = src0->nb[3];
  6287. const int nb10 = src1->nb[0];
  6288. const int nb11 = src1->nb[1];
  6289. //const int nb12 = src1->nb[2];
  6290. //const int nb13 = src1->nb[3];
  6291. //const int nb0 = dst->nb[0];
  6292. const int nb1 = dst->nb[1];
  6293. //const int nb2 = dst->nb[2];
  6294. //const int nb3 = dst->nb[3];
  6295. const int ith = params->ith;
  6296. const int nth = params->nth;
  6297. const int nk = ne00;
  6298. const int nh = nk/2;
  6299. const int ew0 = ggml_up32(ne01);
  6300. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6301. GGML_ASSERT(nb00 == sizeof(float));
  6302. GGML_ASSERT(nb10 == sizeof(float));
  6303. if (params->type == GGML_TASK_INIT) {
  6304. // TODO: fix this memset (wsize is overestimated)
  6305. memset(params->wdata, 0, params->wsize);
  6306. // prepare kernel data (src0)
  6307. {
  6308. float * const wdata = (float *) params->wdata + 0;
  6309. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6310. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6311. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6312. float * dst_data = wdata + i02*ew0*ne00;
  6313. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6314. dst_data[i00*ew0 + i01] = src[i00];
  6315. }
  6316. }
  6317. }
  6318. }
  6319. // prepare source data (src1)
  6320. {
  6321. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6322. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6323. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6324. float * dst_data = wdata;
  6325. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6326. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6327. }
  6328. }
  6329. }
  6330. return;
  6331. }
  6332. if (params->type == GGML_TASK_FINALIZE) {
  6333. return;
  6334. }
  6335. // total rows in dst
  6336. const int nr = ne02;
  6337. // rows per thread
  6338. const int dr = (nr + nth - 1)/nth;
  6339. // row range for this thread
  6340. const int ir0 = dr*ith;
  6341. const int ir1 = MIN(ir0 + dr, nr);
  6342. for (int i1 = ir0; i1 < ir1; i1++) {
  6343. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6344. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6345. dst_data[i0/2] = 0;
  6346. for (int k = -nh; k <= nh; k++) {
  6347. float v = 0.0f;
  6348. ggml_vec_dot_f32(ew0, &v,
  6349. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6350. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6351. dst_data[i0/2] += v;
  6352. }
  6353. }
  6354. }
  6355. }
  6356. static void ggml_compute_forward_conv_1d_2s(
  6357. const struct ggml_compute_params * params,
  6358. const struct ggml_tensor * src0,
  6359. const struct ggml_tensor * src1,
  6360. struct ggml_tensor * dst) {
  6361. switch (src0->type) {
  6362. case GGML_TYPE_F16:
  6363. {
  6364. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6365. } break;
  6366. case GGML_TYPE_F32:
  6367. {
  6368. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6369. } break;
  6370. case GGML_TYPE_Q4_0:
  6371. case GGML_TYPE_Q4_1:
  6372. case GGML_TYPE_I8:
  6373. case GGML_TYPE_I16:
  6374. case GGML_TYPE_I32:
  6375. case GGML_TYPE_COUNT:
  6376. {
  6377. GGML_ASSERT(false);
  6378. } break;
  6379. }
  6380. }
  6381. // ggml_compute_forward_flash_attn
  6382. static void ggml_compute_forward_flash_attn_f32(
  6383. const struct ggml_compute_params * params,
  6384. const struct ggml_tensor * q,
  6385. const struct ggml_tensor * k,
  6386. const struct ggml_tensor * v,
  6387. const bool masked,
  6388. struct ggml_tensor * dst) {
  6389. int64_t t0 = ggml_perf_time_us();
  6390. UNUSED(t0);
  6391. const int64_t neq0 = q->ne[0];
  6392. const int64_t neq1 = q->ne[1];
  6393. const int64_t neq2 = q->ne[2];
  6394. const int64_t neq3 = q->ne[3];
  6395. const int64_t nek0 = k->ne[0];
  6396. const int64_t nek1 = k->ne[1];
  6397. //const int64_t nek2 = k->ne[2];
  6398. //const int64_t nek3 = k->ne[3];
  6399. //const int64_t nev0 = v->ne[0];
  6400. const int64_t nev1 = v->ne[1];
  6401. //const int64_t nev2 = v->ne[2];
  6402. //const int64_t nev3 = v->ne[3];
  6403. const int64_t ne0 = dst->ne[0];
  6404. const int64_t ne1 = dst->ne[1];
  6405. //const int64_t ne2 = dst->ne[2];
  6406. //const int64_t ne3 = dst->ne[3];
  6407. const int nbk0 = k->nb[0];
  6408. const int nbk1 = k->nb[1];
  6409. const int nbk2 = k->nb[2];
  6410. const int nbk3 = k->nb[3];
  6411. const int nbq0 = q->nb[0];
  6412. const int nbq1 = q->nb[1];
  6413. const int nbq2 = q->nb[2];
  6414. const int nbq3 = q->nb[3];
  6415. const int nbv0 = v->nb[0];
  6416. const int nbv1 = v->nb[1];
  6417. const int nbv2 = v->nb[2];
  6418. const int nbv3 = v->nb[3];
  6419. const int nb0 = dst->nb[0];
  6420. const int nb1 = dst->nb[1];
  6421. const int nb2 = dst->nb[2];
  6422. const int nb3 = dst->nb[3];
  6423. const int ith = params->ith;
  6424. const int nth = params->nth;
  6425. const int64_t D = neq0;
  6426. const int64_t N = neq1;
  6427. const int64_t P = nek1 - N;
  6428. const int64_t M = P + N;
  6429. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6430. GGML_ASSERT(ne0 == D);
  6431. GGML_ASSERT(ne1 == N);
  6432. GGML_ASSERT(P >= 0);
  6433. GGML_ASSERT(nbq0 == sizeof(float));
  6434. GGML_ASSERT(nbk0 == sizeof(float));
  6435. GGML_ASSERT(nbv0 == sizeof(float));
  6436. GGML_ASSERT(neq0 == D);
  6437. GGML_ASSERT(nek0 == D);
  6438. GGML_ASSERT(nev1 == D);
  6439. GGML_ASSERT(neq1 == N);
  6440. GGML_ASSERT(nek1 == N + P);
  6441. GGML_ASSERT(nev1 == D);
  6442. // dst cannot be transposed or permuted
  6443. GGML_ASSERT(nb0 == sizeof(float));
  6444. GGML_ASSERT(nb0 <= nb1);
  6445. GGML_ASSERT(nb1 <= nb2);
  6446. GGML_ASSERT(nb2 <= nb3);
  6447. if (params->type == GGML_TASK_INIT) {
  6448. return;
  6449. }
  6450. if (params->type == GGML_TASK_FINALIZE) {
  6451. return;
  6452. }
  6453. // parallelize by q rows using ggml_vec_dot_f32
  6454. // total rows in q
  6455. const int nr = neq1*neq2*neq3;
  6456. // rows per thread
  6457. const int dr = (nr + nth - 1)/nth;
  6458. // row range for this thread
  6459. const int ir0 = dr*ith;
  6460. const int ir1 = MIN(ir0 + dr, nr);
  6461. const float scale = 1.0f/sqrtf(D);
  6462. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6463. for (int ir = ir0; ir < ir1; ++ir) {
  6464. // q indices
  6465. const int iq3 = ir/(neq2*neq1);
  6466. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6467. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6468. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6469. for (int i = M; i < Mup; ++i) {
  6470. S[i] = -INFINITY;
  6471. }
  6472. for (int64_t ic = 0; ic < nek1; ++ic) {
  6473. // k indices
  6474. const int ik3 = iq3;
  6475. const int ik2 = iq2;
  6476. const int ik1 = ic;
  6477. // S indices
  6478. const int i1 = ik1;
  6479. ggml_vec_dot_f32(neq0,
  6480. S + i1,
  6481. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6482. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6483. }
  6484. // scale
  6485. ggml_vec_scale_f32(nek1, S, scale);
  6486. if (masked) {
  6487. for (int64_t i = P; i < M; i++) {
  6488. if (i > P + iq1) {
  6489. S[i] = -INFINITY;
  6490. }
  6491. }
  6492. }
  6493. // softmax
  6494. {
  6495. float max = -INFINITY;
  6496. ggml_vec_max_f32(M, &max, S);
  6497. ggml_float sum = 0.0;
  6498. {
  6499. #ifdef GGML_SOFT_MAX_ACCELERATE
  6500. max = -max;
  6501. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6502. vvexpf(S, S, &Mup);
  6503. ggml_vec_sum_f32(Mup, &sum, S);
  6504. #else
  6505. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6506. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6507. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6508. float * SS = S + i;
  6509. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6510. if (SS[j] == -INFINITY) {
  6511. SS[j] = 0.0f;
  6512. } else {
  6513. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6514. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6515. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6516. sump[j] += (ggml_float)val;
  6517. SS[j] = val;
  6518. }
  6519. }
  6520. }
  6521. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6522. sum += sump[i];
  6523. }
  6524. #endif
  6525. }
  6526. assert(sum > 0.0);
  6527. sum = 1.0/sum;
  6528. ggml_vec_scale_f32(M, S, sum);
  6529. #ifndef NDEBUG
  6530. for (int i = 0; i < M; ++i) {
  6531. assert(!isnan(S[i]));
  6532. assert(!isinf(S[i]));
  6533. }
  6534. #endif
  6535. }
  6536. for (int64_t ic = 0; ic < nev1; ++ic) {
  6537. // dst indices
  6538. const int i1 = iq1;
  6539. const int i2 = iq2;
  6540. const int i3 = iq3;
  6541. ggml_vec_dot_f32(nek1,
  6542. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6543. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6544. S);
  6545. }
  6546. }
  6547. }
  6548. static void ggml_compute_forward_flash_attn_f16(
  6549. const struct ggml_compute_params * params,
  6550. const struct ggml_tensor * q,
  6551. const struct ggml_tensor * k,
  6552. const struct ggml_tensor * v,
  6553. const bool masked,
  6554. struct ggml_tensor * dst) {
  6555. int64_t t0 = ggml_perf_time_us();
  6556. UNUSED(t0);
  6557. const int64_t neq0 = q->ne[0];
  6558. const int64_t neq1 = q->ne[1];
  6559. const int64_t neq2 = q->ne[2];
  6560. const int64_t neq3 = q->ne[3];
  6561. const int64_t nek0 = k->ne[0];
  6562. const int64_t nek1 = k->ne[1];
  6563. //const int64_t nek2 = k->ne[2];
  6564. //const int64_t nek3 = k->ne[3];
  6565. //const int64_t nev0 = v->ne[0];
  6566. const int64_t nev1 = v->ne[1];
  6567. //const int64_t nev2 = v->ne[2];
  6568. //const int64_t nev3 = v->ne[3];
  6569. const int64_t ne0 = dst->ne[0];
  6570. const int64_t ne1 = dst->ne[1];
  6571. //const int64_t ne2 = dst->ne[2];
  6572. //const int64_t ne3 = dst->ne[3];
  6573. const int nbk0 = k->nb[0];
  6574. const int nbk1 = k->nb[1];
  6575. const int nbk2 = k->nb[2];
  6576. const int nbk3 = k->nb[3];
  6577. const int nbq0 = q->nb[0];
  6578. const int nbq1 = q->nb[1];
  6579. const int nbq2 = q->nb[2];
  6580. const int nbq3 = q->nb[3];
  6581. const int nbv0 = v->nb[0];
  6582. const int nbv1 = v->nb[1];
  6583. const int nbv2 = v->nb[2];
  6584. const int nbv3 = v->nb[3];
  6585. const int nb0 = dst->nb[0];
  6586. const int nb1 = dst->nb[1];
  6587. const int nb2 = dst->nb[2];
  6588. const int nb3 = dst->nb[3];
  6589. const int ith = params->ith;
  6590. const int nth = params->nth;
  6591. const int64_t D = neq0;
  6592. const int64_t N = neq1;
  6593. const int64_t P = nek1 - N;
  6594. const int64_t M = P + N;
  6595. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6596. GGML_ASSERT(ne0 == D);
  6597. GGML_ASSERT(ne1 == N);
  6598. GGML_ASSERT(P >= 0);
  6599. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6600. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6601. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6602. GGML_ASSERT(neq0 == D);
  6603. GGML_ASSERT(nek0 == D);
  6604. GGML_ASSERT(nev1 == D);
  6605. GGML_ASSERT(neq1 == N);
  6606. GGML_ASSERT(nek1 == N + P);
  6607. GGML_ASSERT(nev1 == D);
  6608. // dst cannot be transposed or permuted
  6609. GGML_ASSERT(nb0 == sizeof(float));
  6610. GGML_ASSERT(nb0 <= nb1);
  6611. GGML_ASSERT(nb1 <= nb2);
  6612. GGML_ASSERT(nb2 <= nb3);
  6613. if (params->type == GGML_TASK_INIT) {
  6614. return;
  6615. }
  6616. if (params->type == GGML_TASK_FINALIZE) {
  6617. return;
  6618. }
  6619. // parallelize by q rows using ggml_vec_dot_f32
  6620. // total rows in q
  6621. const int nr = neq1*neq2*neq3;
  6622. // rows per thread
  6623. const int dr = (nr + nth - 1)/nth;
  6624. // row range for this thread
  6625. const int ir0 = dr*ith;
  6626. const int ir1 = MIN(ir0 + dr, nr);
  6627. const float scale = 1.0f/sqrtf(D);
  6628. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6629. for (int ir = ir0; ir < ir1; ++ir) {
  6630. // q indices
  6631. const int iq3 = ir/(neq2*neq1);
  6632. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6633. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6634. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6635. for (int i = M; i < Mup; ++i) {
  6636. S[i] = -INFINITY;
  6637. }
  6638. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6639. for (int64_t ic = 0; ic < nek1; ++ic) {
  6640. // k indices
  6641. const int ik3 = iq3;
  6642. const int ik2 = iq2;
  6643. const int ik1 = ic;
  6644. // S indices
  6645. const int i1 = ik1;
  6646. ggml_vec_dot_f16(neq0,
  6647. S + i1,
  6648. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6649. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6650. }
  6651. } else {
  6652. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6653. // k indices
  6654. const int ik3 = iq3;
  6655. const int ik2 = iq2;
  6656. const int ik1 = ic;
  6657. // S indices
  6658. const int i1 = ik1;
  6659. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6660. S + i1,
  6661. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6662. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6663. }
  6664. }
  6665. // scale
  6666. ggml_vec_scale_f32(nek1, S, scale);
  6667. if (masked) {
  6668. for (int64_t i = P; i < M; i++) {
  6669. if (i > P + iq1) {
  6670. S[i] = -INFINITY;
  6671. }
  6672. }
  6673. }
  6674. // softmax
  6675. {
  6676. float max = -INFINITY;
  6677. ggml_vec_max_f32(M, &max, S);
  6678. ggml_float sum = 0.0;
  6679. {
  6680. #ifdef GGML_SOFT_MAX_ACCELERATE
  6681. max = -max;
  6682. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6683. vvexpf(S, S, &Mup);
  6684. ggml_vec_sum_f32(Mup, &sum, S);
  6685. #else
  6686. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6687. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6688. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6689. float * SS = S + i;
  6690. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6691. if (SS[j] == -INFINITY) {
  6692. SS[j] = 0.0f;
  6693. } else {
  6694. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6695. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6696. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6697. sump[j] += (ggml_float)val;
  6698. SS[j] = val;
  6699. }
  6700. }
  6701. }
  6702. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6703. sum += sump[i];
  6704. }
  6705. #endif
  6706. }
  6707. assert(sum > 0.0);
  6708. sum = 1.0/sum;
  6709. ggml_vec_scale_f32(M, S, sum);
  6710. #ifndef NDEBUG
  6711. for (int i = 0; i < M; ++i) {
  6712. assert(!isnan(S[i]));
  6713. assert(!isinf(S[i]));
  6714. }
  6715. #endif
  6716. }
  6717. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6718. for (int64_t i = 0; i < M; i++) {
  6719. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6720. }
  6721. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6722. for (int64_t ic = 0; ic < nev1; ++ic) {
  6723. // dst indices
  6724. const int i1 = iq1;
  6725. const int i2 = iq2;
  6726. const int i3 = iq3;
  6727. ggml_vec_dot_f16(nek1,
  6728. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6729. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6730. S16);
  6731. }
  6732. } else {
  6733. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6734. // dst indices
  6735. const int i1 = iq1;
  6736. const int i2 = iq2;
  6737. const int i3 = iq3;
  6738. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6739. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6740. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6741. S16);
  6742. }
  6743. }
  6744. }
  6745. }
  6746. static void ggml_compute_forward_flash_attn(
  6747. const struct ggml_compute_params * params,
  6748. const struct ggml_tensor * q,
  6749. const struct ggml_tensor * k,
  6750. const struct ggml_tensor * v,
  6751. const bool masked,
  6752. struct ggml_tensor * dst) {
  6753. switch (q->type) {
  6754. case GGML_TYPE_F16:
  6755. {
  6756. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6757. } break;
  6758. case GGML_TYPE_F32:
  6759. {
  6760. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6761. } break;
  6762. case GGML_TYPE_Q4_0:
  6763. case GGML_TYPE_Q4_1:
  6764. case GGML_TYPE_I8:
  6765. case GGML_TYPE_I16:
  6766. case GGML_TYPE_I32:
  6767. case GGML_TYPE_COUNT:
  6768. {
  6769. GGML_ASSERT(false);
  6770. } break;
  6771. }
  6772. }
  6773. // ggml_compute_forward_flash_ff
  6774. static void ggml_compute_forward_flash_ff_f16(
  6775. const struct ggml_compute_params * params,
  6776. const struct ggml_tensor * a, // F16
  6777. const struct ggml_tensor * b0, // F16 fc_w
  6778. const struct ggml_tensor * b1, // F32 fc_b
  6779. const struct ggml_tensor * c0, // F16 proj_w
  6780. const struct ggml_tensor * c1, // F32 proj_b
  6781. struct ggml_tensor * dst) {
  6782. int64_t t0 = ggml_perf_time_us();
  6783. UNUSED(t0);
  6784. const int64_t nea0 = a->ne[0];
  6785. const int64_t nea1 = a->ne[1];
  6786. const int64_t nea2 = a->ne[2];
  6787. const int64_t nea3 = a->ne[3];
  6788. const int64_t neb00 = b0->ne[0];
  6789. const int64_t neb01 = b0->ne[1];
  6790. //const int64_t neb02 = b0->ne[2];
  6791. //const int64_t neb03 = b0->ne[3];
  6792. const int64_t neb10 = b1->ne[0];
  6793. const int64_t neb11 = b1->ne[1];
  6794. //const int64_t neb12 = b1->ne[2];
  6795. //const int64_t neb13 = b1->ne[3];
  6796. const int64_t nec00 = c0->ne[0];
  6797. const int64_t nec01 = c0->ne[1];
  6798. //const int64_t nec02 = c0->ne[2];
  6799. //const int64_t nec03 = c0->ne[3];
  6800. const int64_t nec10 = c1->ne[0];
  6801. const int64_t nec11 = c1->ne[1];
  6802. //const int64_t nec12 = c1->ne[2];
  6803. //const int64_t nec13 = c1->ne[3];
  6804. const int64_t ne0 = dst->ne[0];
  6805. const int64_t ne1 = dst->ne[1];
  6806. const int64_t ne2 = dst->ne[2];
  6807. //const int64_t ne3 = dst->ne[3];
  6808. const int nba0 = a->nb[0];
  6809. const int nba1 = a->nb[1];
  6810. const int nba2 = a->nb[2];
  6811. const int nba3 = a->nb[3];
  6812. const int nbb00 = b0->nb[0];
  6813. const int nbb01 = b0->nb[1];
  6814. const int nbb02 = b0->nb[2];
  6815. const int nbb03 = b0->nb[3];
  6816. const int nbb10 = b1->nb[0];
  6817. //const int nbb11 = b1->nb[1];
  6818. //const int nbb12 = b1->nb[2];
  6819. //const int nbb13 = b1->nb[3];
  6820. const int nbc00 = c0->nb[0];
  6821. const int nbc01 = c0->nb[1];
  6822. const int nbc02 = c0->nb[2];
  6823. const int nbc03 = c0->nb[3];
  6824. const int nbc10 = c1->nb[0];
  6825. //const int nbc11 = c1->nb[1];
  6826. //const int nbc12 = c1->nb[2];
  6827. //const int nbc13 = c1->nb[3];
  6828. const int nb0 = dst->nb[0];
  6829. const int nb1 = dst->nb[1];
  6830. const int nb2 = dst->nb[2];
  6831. const int nb3 = dst->nb[3];
  6832. const int ith = params->ith;
  6833. const int nth = params->nth;
  6834. const int64_t D = nea0;
  6835. //const int64_t N = nea1;
  6836. const int64_t M = neb01;
  6837. GGML_ASSERT(ne0 == nea0);
  6838. GGML_ASSERT(ne1 == nea1);
  6839. GGML_ASSERT(ne2 == nea2);
  6840. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6841. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6842. GGML_ASSERT(nbb10 == sizeof(float));
  6843. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6844. GGML_ASSERT(nbc10 == sizeof(float));
  6845. GGML_ASSERT(neb00 == D);
  6846. GGML_ASSERT(neb01 == M);
  6847. GGML_ASSERT(neb10 == M);
  6848. GGML_ASSERT(neb11 == 1);
  6849. GGML_ASSERT(nec00 == M);
  6850. GGML_ASSERT(nec01 == D);
  6851. GGML_ASSERT(nec10 == D);
  6852. GGML_ASSERT(nec11 == 1);
  6853. // dst cannot be transposed or permuted
  6854. GGML_ASSERT(nb0 == sizeof(float));
  6855. GGML_ASSERT(nb0 <= nb1);
  6856. GGML_ASSERT(nb1 <= nb2);
  6857. GGML_ASSERT(nb2 <= nb3);
  6858. if (params->type == GGML_TASK_INIT) {
  6859. return;
  6860. }
  6861. if (params->type == GGML_TASK_FINALIZE) {
  6862. return;
  6863. }
  6864. // parallelize by a rows using ggml_vec_dot_f32
  6865. // total rows in a
  6866. const int nr = nea1*nea2*nea3;
  6867. // rows per thread
  6868. const int dr = (nr + nth - 1)/nth;
  6869. // row range for this thread
  6870. const int ir0 = dr*ith;
  6871. const int ir1 = MIN(ir0 + dr, nr);
  6872. for (int ir = ir0; ir < ir1; ++ir) {
  6873. // a indices
  6874. const int ia3 = ir/(nea2*nea1);
  6875. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6876. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6877. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6878. for (int64_t ic = 0; ic < neb01; ++ic) {
  6879. // b0 indices
  6880. const int ib03 = ia3;
  6881. const int ib02 = ia2;
  6882. const int ib01 = ic;
  6883. // S indices
  6884. const int i1 = ib01;
  6885. ggml_vec_dot_f16(nea0,
  6886. S + i1,
  6887. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6888. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6889. }
  6890. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6891. //ggml_vec_gelu_f32(neb01, S, S);
  6892. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6893. for (int64_t i = 0; i < M; i++) {
  6894. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6895. }
  6896. ggml_vec_gelu_f16(neb01, S16, S16);
  6897. {
  6898. // dst indices
  6899. const int i1 = ia1;
  6900. const int i2 = ia2;
  6901. const int i3 = ia3;
  6902. for (int64_t ic = 0; ic < nec01; ++ic) {
  6903. ggml_vec_dot_f16(neb01,
  6904. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6905. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6906. S16);
  6907. }
  6908. ggml_vec_add_f32(nec01,
  6909. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6910. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6911. (float *) c1->data);
  6912. }
  6913. }
  6914. }
  6915. static void ggml_compute_forward_flash_ff(
  6916. const struct ggml_compute_params * params,
  6917. const struct ggml_tensor * a,
  6918. const struct ggml_tensor * b0,
  6919. const struct ggml_tensor * b1,
  6920. const struct ggml_tensor * c0,
  6921. const struct ggml_tensor * c1,
  6922. struct ggml_tensor * dst) {
  6923. switch (b0->type) {
  6924. case GGML_TYPE_F16:
  6925. {
  6926. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6927. } break;
  6928. case GGML_TYPE_F32:
  6929. {
  6930. GGML_ASSERT(false); // TODO
  6931. } break;
  6932. case GGML_TYPE_Q4_0:
  6933. case GGML_TYPE_Q4_1:
  6934. case GGML_TYPE_I8:
  6935. case GGML_TYPE_I16:
  6936. case GGML_TYPE_I32:
  6937. case GGML_TYPE_COUNT:
  6938. {
  6939. GGML_ASSERT(false);
  6940. } break;
  6941. }
  6942. }
  6943. /////////////////////////////////
  6944. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6945. GGML_ASSERT(params);
  6946. switch (tensor->op) {
  6947. case GGML_OP_DUP:
  6948. {
  6949. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6950. } break;
  6951. case GGML_OP_ADD:
  6952. {
  6953. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6954. } break;
  6955. case GGML_OP_SUB:
  6956. {
  6957. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6958. } break;
  6959. case GGML_OP_MUL:
  6960. {
  6961. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6962. } break;
  6963. case GGML_OP_DIV:
  6964. {
  6965. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6966. } break;
  6967. case GGML_OP_SQR:
  6968. {
  6969. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6970. } break;
  6971. case GGML_OP_SQRT:
  6972. {
  6973. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6974. } break;
  6975. case GGML_OP_SUM:
  6976. {
  6977. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6978. } break;
  6979. case GGML_OP_MEAN:
  6980. {
  6981. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6982. } break;
  6983. case GGML_OP_REPEAT:
  6984. {
  6985. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6986. } break;
  6987. case GGML_OP_ABS:
  6988. {
  6989. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6990. } break;
  6991. case GGML_OP_SGN:
  6992. {
  6993. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6994. } break;
  6995. case GGML_OP_NEG:
  6996. {
  6997. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6998. } break;
  6999. case GGML_OP_STEP:
  7000. {
  7001. ggml_compute_forward_step(params, tensor->src0, tensor);
  7002. } break;
  7003. case GGML_OP_RELU:
  7004. {
  7005. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7006. } break;
  7007. case GGML_OP_GELU:
  7008. {
  7009. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7010. } break;
  7011. case GGML_OP_SILU:
  7012. {
  7013. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7014. } break;
  7015. case GGML_OP_NORM:
  7016. {
  7017. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7018. } break;
  7019. case GGML_OP_RMS_NORM:
  7020. {
  7021. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7022. } break;
  7023. case GGML_OP_MUL_MAT:
  7024. {
  7025. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7026. } break;
  7027. case GGML_OP_SCALE:
  7028. {
  7029. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7030. } break;
  7031. case GGML_OP_CPY:
  7032. {
  7033. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7034. } break;
  7035. case GGML_OP_RESHAPE:
  7036. {
  7037. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7038. } break;
  7039. case GGML_OP_VIEW:
  7040. {
  7041. ggml_compute_forward_view(params, tensor->src0);
  7042. } break;
  7043. case GGML_OP_PERMUTE:
  7044. {
  7045. ggml_compute_forward_permute(params, tensor->src0);
  7046. } break;
  7047. case GGML_OP_TRANSPOSE:
  7048. {
  7049. ggml_compute_forward_transpose(params, tensor->src0);
  7050. } break;
  7051. case GGML_OP_GET_ROWS:
  7052. {
  7053. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7054. } break;
  7055. case GGML_OP_DIAG_MASK_INF:
  7056. {
  7057. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7058. } break;
  7059. case GGML_OP_SOFT_MAX:
  7060. {
  7061. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7062. } break;
  7063. case GGML_OP_ROPE:
  7064. {
  7065. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7066. } break;
  7067. case GGML_OP_CONV_1D_1S:
  7068. {
  7069. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7070. } break;
  7071. case GGML_OP_CONV_1D_2S:
  7072. {
  7073. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7074. } break;
  7075. case GGML_OP_FLASH_ATTN:
  7076. {
  7077. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7078. GGML_ASSERT(t == 0 || t == 1);
  7079. bool masked = t != 0;
  7080. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7081. } break;
  7082. case GGML_OP_FLASH_FF:
  7083. {
  7084. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7085. } break;
  7086. case GGML_OP_NONE:
  7087. {
  7088. // nop
  7089. } break;
  7090. case GGML_OP_COUNT:
  7091. {
  7092. GGML_ASSERT(false);
  7093. } break;
  7094. }
  7095. }
  7096. ////////////////////////////////////////////////////////////////////////////////
  7097. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7098. struct ggml_tensor * src0 = tensor->src0;
  7099. struct ggml_tensor * src1 = tensor->src1;
  7100. switch (tensor->op) {
  7101. case GGML_OP_DUP:
  7102. {
  7103. if (src0->grad) {
  7104. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7105. }
  7106. } break;
  7107. case GGML_OP_ADD:
  7108. {
  7109. if (src0->grad) {
  7110. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7111. }
  7112. if (src1->grad) {
  7113. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7114. }
  7115. } break;
  7116. case GGML_OP_SUB:
  7117. {
  7118. if (src0->grad) {
  7119. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7120. }
  7121. if (src1->grad) {
  7122. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7123. }
  7124. } break;
  7125. case GGML_OP_MUL:
  7126. {
  7127. if (src0->grad) {
  7128. src0->grad =
  7129. ggml_add_impl(ctx,
  7130. src0->grad,
  7131. ggml_mul(ctx, src1, tensor->grad),
  7132. inplace);
  7133. }
  7134. if (src1->grad) {
  7135. src1->grad =
  7136. ggml_add_impl(ctx,
  7137. src1->grad,
  7138. ggml_mul(ctx, src0, tensor->grad),
  7139. inplace);
  7140. }
  7141. } break;
  7142. case GGML_OP_DIV:
  7143. {
  7144. if (src0->grad) {
  7145. src0->grad =
  7146. ggml_add_impl(ctx,
  7147. src0->grad,
  7148. ggml_div(ctx, tensor->grad, src1),
  7149. inplace);
  7150. }
  7151. if (src1->grad) {
  7152. src1->grad =
  7153. ggml_sub_impl(ctx,
  7154. src1->grad,
  7155. ggml_mul(ctx,
  7156. tensor->grad,
  7157. ggml_div(ctx, tensor, src1)),
  7158. inplace);
  7159. }
  7160. } break;
  7161. case GGML_OP_SQR:
  7162. {
  7163. if (src0->grad) {
  7164. src0->grad =
  7165. ggml_add_impl(ctx,
  7166. src0->grad,
  7167. ggml_mul(ctx,
  7168. ggml_mul(ctx, src0, tensor->grad),
  7169. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7170. inplace);
  7171. }
  7172. } break;
  7173. case GGML_OP_SQRT:
  7174. {
  7175. if (src0->grad) {
  7176. src0->grad =
  7177. ggml_add_impl(ctx,
  7178. src0->grad,
  7179. ggml_div(ctx,
  7180. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7181. tensor),
  7182. inplace);
  7183. }
  7184. } break;
  7185. case GGML_OP_SUM:
  7186. {
  7187. if (src0->grad) {
  7188. src0->grad =
  7189. ggml_add_impl(ctx,
  7190. src0->grad,
  7191. ggml_repeat(ctx, tensor->grad, src0->grad),
  7192. inplace);
  7193. }
  7194. } break;
  7195. case GGML_OP_MEAN:
  7196. {
  7197. GGML_ASSERT(false); // TODO: implement
  7198. } break;
  7199. case GGML_OP_REPEAT:
  7200. {
  7201. if (src0->grad) {
  7202. src0->grad =
  7203. ggml_add_impl(ctx,
  7204. src0->grad,
  7205. ggml_sum(ctx, tensor->grad),
  7206. inplace);
  7207. }
  7208. } break;
  7209. case GGML_OP_ABS:
  7210. {
  7211. if (src0->grad) {
  7212. src0->grad =
  7213. ggml_add_impl(ctx,
  7214. src0->grad,
  7215. ggml_mul(ctx,
  7216. ggml_sgn(ctx, src0),
  7217. tensor->grad),
  7218. inplace);
  7219. }
  7220. } break;
  7221. case GGML_OP_SGN:
  7222. {
  7223. if (src0->grad) {
  7224. // noop
  7225. }
  7226. } break;
  7227. case GGML_OP_NEG:
  7228. {
  7229. if (src0->grad) {
  7230. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7231. }
  7232. } break;
  7233. case GGML_OP_STEP:
  7234. {
  7235. if (src0->grad) {
  7236. // noop
  7237. }
  7238. } break;
  7239. case GGML_OP_RELU:
  7240. {
  7241. if (src0->grad) {
  7242. src0->grad = ggml_sub_impl(ctx,
  7243. src0->grad,
  7244. ggml_mul(ctx,
  7245. ggml_step(ctx, src0),
  7246. tensor->grad),
  7247. inplace);
  7248. }
  7249. } break;
  7250. case GGML_OP_GELU:
  7251. {
  7252. GGML_ASSERT(false); // TODO: not implemented
  7253. } break;
  7254. case GGML_OP_SILU:
  7255. {
  7256. GGML_ASSERT(false); // TODO: not implemented
  7257. } break;
  7258. case GGML_OP_NORM:
  7259. {
  7260. GGML_ASSERT(false); // TODO: not implemented
  7261. } break;
  7262. case GGML_OP_RMS_NORM:
  7263. {
  7264. GGML_ASSERT(false); // TODO: not implemented
  7265. } break;
  7266. case GGML_OP_MUL_MAT:
  7267. {
  7268. if (src0->grad) {
  7269. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7270. GGML_ASSERT(false);
  7271. }
  7272. if (src1->grad) {
  7273. src1->grad =
  7274. ggml_add_impl(ctx,
  7275. src1->grad,
  7276. // TODO: fix transpose, the node will break the graph connections
  7277. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7278. inplace);
  7279. }
  7280. } break;
  7281. case GGML_OP_SCALE:
  7282. {
  7283. GGML_ASSERT(false); // TODO: not implemented
  7284. } break;
  7285. case GGML_OP_CPY:
  7286. {
  7287. GGML_ASSERT(false); // TODO: not implemented
  7288. } break;
  7289. case GGML_OP_RESHAPE:
  7290. {
  7291. GGML_ASSERT(false); // TODO: not implemented
  7292. } break;
  7293. case GGML_OP_VIEW:
  7294. {
  7295. GGML_ASSERT(false); // not supported
  7296. } break;
  7297. case GGML_OP_PERMUTE:
  7298. {
  7299. GGML_ASSERT(false); // TODO: not implemented
  7300. } break;
  7301. case GGML_OP_TRANSPOSE:
  7302. {
  7303. GGML_ASSERT(false); // TODO: not implemented
  7304. } break;
  7305. case GGML_OP_GET_ROWS:
  7306. {
  7307. GGML_ASSERT(false); // TODO: not implemented
  7308. } break;
  7309. case GGML_OP_DIAG_MASK_INF:
  7310. {
  7311. GGML_ASSERT(false); // TODO: not implemented
  7312. } break;
  7313. case GGML_OP_SOFT_MAX:
  7314. {
  7315. GGML_ASSERT(false); // TODO: not implemented
  7316. } break;
  7317. case GGML_OP_ROPE:
  7318. {
  7319. GGML_ASSERT(false); // TODO: not implemented
  7320. } break;
  7321. case GGML_OP_CONV_1D_1S:
  7322. {
  7323. GGML_ASSERT(false); // TODO: not implemented
  7324. } break;
  7325. case GGML_OP_CONV_1D_2S:
  7326. {
  7327. GGML_ASSERT(false); // TODO: not implemented
  7328. } break;
  7329. case GGML_OP_FLASH_ATTN:
  7330. {
  7331. GGML_ASSERT(false); // not supported
  7332. } break;
  7333. case GGML_OP_FLASH_FF:
  7334. {
  7335. GGML_ASSERT(false); // not supported
  7336. } break;
  7337. case GGML_OP_NONE:
  7338. {
  7339. // nop
  7340. } break;
  7341. case GGML_OP_COUNT:
  7342. {
  7343. GGML_ASSERT(false);
  7344. } break;
  7345. }
  7346. }
  7347. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7348. if (node->grad == NULL) {
  7349. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7350. // it can also happen during forward pass, if the user performs computations with constants
  7351. if (node->op != GGML_OP_NONE) {
  7352. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7353. }
  7354. }
  7355. // check if already visited
  7356. for (int i = 0; i < cgraph->n_nodes; i++) {
  7357. if (cgraph->nodes[i] == node) {
  7358. return;
  7359. }
  7360. }
  7361. for (int i = 0; i < cgraph->n_leafs; i++) {
  7362. if (cgraph->leafs[i] == node) {
  7363. return;
  7364. }
  7365. }
  7366. if (node->src0) {
  7367. ggml_visit_parents(cgraph, node->src0);
  7368. }
  7369. if (node->src1) {
  7370. ggml_visit_parents(cgraph, node->src1);
  7371. }
  7372. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7373. if (node->opt[i]) {
  7374. ggml_visit_parents(cgraph, node->opt[i]);
  7375. }
  7376. }
  7377. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7378. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7379. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7380. cgraph->leafs[cgraph->n_leafs] = node;
  7381. cgraph->n_leafs++;
  7382. } else {
  7383. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7384. cgraph->nodes[cgraph->n_nodes] = node;
  7385. cgraph->grads[cgraph->n_nodes] = node->grad;
  7386. cgraph->n_nodes++;
  7387. }
  7388. }
  7389. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7390. if (!expand) {
  7391. cgraph->n_nodes = 0;
  7392. cgraph->n_leafs = 0;
  7393. }
  7394. const int n0 = cgraph->n_nodes;
  7395. UNUSED(n0);
  7396. ggml_visit_parents(cgraph, tensor);
  7397. const int n_new = cgraph->n_nodes - n0;
  7398. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7399. if (n_new > 0) {
  7400. // the last added node should always be starting point
  7401. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7402. }
  7403. }
  7404. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7405. ggml_build_forward_impl(cgraph, tensor, true);
  7406. }
  7407. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7408. struct ggml_cgraph result = {
  7409. /*.n_nodes =*/ 0,
  7410. /*.n_leafs =*/ 0,
  7411. /*.n_threads =*/ 0,
  7412. /*.work_size =*/ 0,
  7413. /*.work =*/ NULL,
  7414. /*.nodes =*/ { NULL },
  7415. /*.grads =*/ { NULL },
  7416. /*.leafs =*/ { NULL },
  7417. /*.perf_runs =*/ 0,
  7418. /*.perf_cycles =*/ 0,
  7419. /*.perf_time_us =*/ 0,
  7420. };
  7421. ggml_build_forward_impl(&result, tensor, false);
  7422. return result;
  7423. }
  7424. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7425. struct ggml_cgraph result = *gf;
  7426. GGML_ASSERT(gf->n_nodes > 0);
  7427. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7428. if (keep) {
  7429. for (int i = 0; i < gf->n_nodes; i++) {
  7430. struct ggml_tensor * node = gf->nodes[i];
  7431. if (node->grad) {
  7432. node->grad = ggml_dup_tensor(ctx, node);
  7433. gf->grads[i] = node->grad;
  7434. }
  7435. }
  7436. }
  7437. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7438. struct ggml_tensor * node = gf->nodes[i];
  7439. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7440. if (node->grad) {
  7441. ggml_compute_backward(ctx, node, keep);
  7442. }
  7443. }
  7444. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7445. struct ggml_tensor * node = gf->nodes[i];
  7446. if (node->is_param) {
  7447. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7448. ggml_build_forward_impl(&result, node->grad, true);
  7449. }
  7450. }
  7451. return result;
  7452. }
  7453. //
  7454. // thread data
  7455. //
  7456. // synchronization is done via busy loops
  7457. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7458. //
  7459. #ifdef __APPLE__
  7460. //#include <os/lock.h>
  7461. //
  7462. //typedef os_unfair_lock ggml_lock_t;
  7463. //
  7464. //#define ggml_lock_init(x) UNUSED(x)
  7465. //#define ggml_lock_destroy(x) UNUSED(x)
  7466. //#define ggml_lock_lock os_unfair_lock_lock
  7467. //#define ggml_lock_unlock os_unfair_lock_unlock
  7468. //
  7469. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7470. typedef int ggml_lock_t;
  7471. #define ggml_lock_init(x) UNUSED(x)
  7472. #define ggml_lock_destroy(x) UNUSED(x)
  7473. #define ggml_lock_lock(x) UNUSED(x)
  7474. #define ggml_lock_unlock(x) UNUSED(x)
  7475. #define GGML_LOCK_INITIALIZER 0
  7476. typedef pthread_t ggml_thread_t;
  7477. #define ggml_thread_create pthread_create
  7478. #define ggml_thread_join pthread_join
  7479. #else
  7480. //typedef pthread_spinlock_t ggml_lock_t;
  7481. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7482. //#define ggml_lock_destroy pthread_spin_destroy
  7483. //#define ggml_lock_lock pthread_spin_lock
  7484. //#define ggml_lock_unlock pthread_spin_unlock
  7485. typedef int ggml_lock_t;
  7486. #define ggml_lock_init(x) UNUSED(x)
  7487. #define ggml_lock_destroy(x) UNUSED(x)
  7488. #define ggml_lock_lock(x) UNUSED(x)
  7489. #define ggml_lock_unlock(x) UNUSED(x)
  7490. #define GGML_LOCK_INITIALIZER 0
  7491. typedef pthread_t ggml_thread_t;
  7492. #define ggml_thread_create pthread_create
  7493. #define ggml_thread_join pthread_join
  7494. #endif
  7495. struct ggml_compute_state_shared {
  7496. ggml_lock_t spin;
  7497. int n_threads;
  7498. // synchronization primitives
  7499. atomic_int n_ready;
  7500. atomic_bool has_work;
  7501. atomic_bool stop; // stop all threads
  7502. };
  7503. struct ggml_compute_state {
  7504. ggml_thread_t thrd;
  7505. struct ggml_compute_params params;
  7506. struct ggml_tensor * node;
  7507. struct ggml_compute_state_shared * shared;
  7508. };
  7509. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7510. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7511. const int n_threads = state->shared->n_threads;
  7512. while (true) {
  7513. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7514. atomic_store(&state->shared->has_work, false);
  7515. } else {
  7516. while (atomic_load(&state->shared->has_work)) {
  7517. if (atomic_load(&state->shared->stop)) {
  7518. return 0;
  7519. }
  7520. ggml_lock_lock (&state->shared->spin);
  7521. ggml_lock_unlock(&state->shared->spin);
  7522. }
  7523. }
  7524. atomic_fetch_sub(&state->shared->n_ready, 1);
  7525. // wait for work
  7526. while (!atomic_load(&state->shared->has_work)) {
  7527. if (atomic_load(&state->shared->stop)) {
  7528. return 0;
  7529. }
  7530. ggml_lock_lock (&state->shared->spin);
  7531. ggml_lock_unlock(&state->shared->spin);
  7532. }
  7533. // check if we should stop
  7534. if (atomic_load(&state->shared->stop)) {
  7535. break;
  7536. }
  7537. if (state->node) {
  7538. if (state->params.ith < state->params.nth) {
  7539. ggml_compute_forward(&state->params, state->node);
  7540. }
  7541. state->node = NULL;
  7542. } else {
  7543. break;
  7544. }
  7545. }
  7546. return 0;
  7547. }
  7548. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7549. const int n_threads = cgraph->n_threads;
  7550. struct ggml_compute_state_shared state_shared = {
  7551. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7552. /*.n_threads =*/ n_threads,
  7553. /*.n_ready =*/ 0,
  7554. /*.has_work =*/ false,
  7555. /*.stop =*/ false,
  7556. };
  7557. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7558. // create thread pool
  7559. if (n_threads > 1) {
  7560. ggml_lock_init(&state_shared.spin);
  7561. atomic_store(&state_shared.has_work, true);
  7562. for (int j = 0; j < n_threads - 1; j++) {
  7563. workers[j] = (struct ggml_compute_state) {
  7564. .thrd = 0,
  7565. .params = {
  7566. .type = GGML_TASK_COMPUTE,
  7567. .ith = j + 1,
  7568. .nth = n_threads,
  7569. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7570. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7571. },
  7572. .node = NULL,
  7573. .shared = &state_shared,
  7574. };
  7575. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7576. GGML_ASSERT(rc == 0);
  7577. UNUSED(rc);
  7578. }
  7579. }
  7580. // initialize tasks + work buffer
  7581. {
  7582. size_t work_size = 0;
  7583. // thread scheduling for the different operations
  7584. for (int i = 0; i < cgraph->n_nodes; i++) {
  7585. struct ggml_tensor * node = cgraph->nodes[i];
  7586. switch (node->op) {
  7587. case GGML_OP_DUP:
  7588. {
  7589. node->n_tasks = 1;
  7590. } break;
  7591. case GGML_OP_ADD:
  7592. {
  7593. node->n_tasks = n_threads;
  7594. } break;
  7595. case GGML_OP_SUB:
  7596. case GGML_OP_MUL:
  7597. case GGML_OP_DIV:
  7598. case GGML_OP_SQR:
  7599. case GGML_OP_SQRT:
  7600. case GGML_OP_SUM:
  7601. case GGML_OP_MEAN:
  7602. case GGML_OP_REPEAT:
  7603. case GGML_OP_ABS:
  7604. case GGML_OP_SGN:
  7605. case GGML_OP_NEG:
  7606. case GGML_OP_STEP:
  7607. case GGML_OP_RELU:
  7608. {
  7609. node->n_tasks = 1;
  7610. } break;
  7611. case GGML_OP_GELU:
  7612. {
  7613. node->n_tasks = n_threads;
  7614. } break;
  7615. case GGML_OP_SILU:
  7616. {
  7617. node->n_tasks = n_threads;
  7618. } break;
  7619. case GGML_OP_NORM:
  7620. case GGML_OP_RMS_NORM:
  7621. {
  7622. node->n_tasks = n_threads;
  7623. } break;
  7624. case GGML_OP_MUL_MAT:
  7625. {
  7626. node->n_tasks = n_threads;
  7627. // TODO: use different scheduling for different matrix sizes
  7628. //const int nr0 = ggml_nrows(node->src0);
  7629. //const int nr1 = ggml_nrows(node->src1);
  7630. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7631. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7632. size_t cur = 0;
  7633. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7634. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7635. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7636. node->n_tasks = 1; // TODO: this actually is doing nothing
  7637. // the threads are still spinning
  7638. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7639. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7640. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7641. //printf("cur = %zu\n", cur);
  7642. } else {
  7643. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7644. }
  7645. #else
  7646. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7647. #endif
  7648. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7649. cur = 0;
  7650. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7651. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7652. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7653. node->n_tasks = 1;
  7654. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7655. } else
  7656. #endif
  7657. {
  7658. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7659. }
  7660. } else {
  7661. GGML_ASSERT(false);
  7662. }
  7663. work_size = MAX(work_size, cur);
  7664. } break;
  7665. case GGML_OP_SCALE:
  7666. {
  7667. node->n_tasks = n_threads;
  7668. } break;
  7669. case GGML_OP_CPY:
  7670. case GGML_OP_RESHAPE:
  7671. case GGML_OP_VIEW:
  7672. case GGML_OP_PERMUTE:
  7673. case GGML_OP_TRANSPOSE:
  7674. case GGML_OP_GET_ROWS:
  7675. case GGML_OP_DIAG_MASK_INF:
  7676. {
  7677. node->n_tasks = 1;
  7678. } break;
  7679. case GGML_OP_SOFT_MAX:
  7680. {
  7681. node->n_tasks = n_threads;
  7682. } break;
  7683. case GGML_OP_ROPE:
  7684. {
  7685. node->n_tasks = n_threads;
  7686. } break;
  7687. case GGML_OP_CONV_1D_1S:
  7688. case GGML_OP_CONV_1D_2S:
  7689. {
  7690. node->n_tasks = n_threads;
  7691. GGML_ASSERT(node->src0->ne[3] == 1);
  7692. GGML_ASSERT(node->src1->ne[2] == 1);
  7693. GGML_ASSERT(node->src1->ne[3] == 1);
  7694. size_t cur = 0;
  7695. const int nk = node->src0->ne[0];
  7696. if (node->src0->type == GGML_TYPE_F16 &&
  7697. node->src1->type == GGML_TYPE_F32) {
  7698. cur = sizeof(ggml_fp16_t)*(
  7699. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7700. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7701. );
  7702. } else if (node->src0->type == GGML_TYPE_F32 &&
  7703. node->src1->type == GGML_TYPE_F32) {
  7704. cur = sizeof(float)*(
  7705. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7706. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7707. );
  7708. } else {
  7709. GGML_ASSERT(false);
  7710. }
  7711. work_size = MAX(work_size, cur);
  7712. } break;
  7713. case GGML_OP_FLASH_ATTN:
  7714. {
  7715. node->n_tasks = n_threads;
  7716. size_t cur = 0;
  7717. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7718. if (node->src1->type == GGML_TYPE_F32) {
  7719. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7720. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7721. }
  7722. if (node->src1->type == GGML_TYPE_F16) {
  7723. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7724. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7725. }
  7726. work_size = MAX(work_size, cur);
  7727. } break;
  7728. case GGML_OP_FLASH_FF:
  7729. {
  7730. node->n_tasks = n_threads;
  7731. size_t cur = 0;
  7732. if (node->src1->type == GGML_TYPE_F32) {
  7733. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7734. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7735. }
  7736. if (node->src1->type == GGML_TYPE_F16) {
  7737. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7738. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7739. }
  7740. work_size = MAX(work_size, cur);
  7741. } break;
  7742. case GGML_OP_NONE:
  7743. {
  7744. node->n_tasks = 1;
  7745. } break;
  7746. case GGML_OP_COUNT:
  7747. {
  7748. GGML_ASSERT(false);
  7749. } break;
  7750. }
  7751. }
  7752. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7753. GGML_ASSERT(false); // TODO: better handling
  7754. }
  7755. if (work_size > 0 && cgraph->work == NULL) {
  7756. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7757. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7758. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7759. }
  7760. }
  7761. const int64_t perf_start_cycles = ggml_perf_cycles();
  7762. const int64_t perf_start_time_us = ggml_perf_time_us();
  7763. for (int i = 0; i < cgraph->n_nodes; i++) {
  7764. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7765. struct ggml_tensor * node = cgraph->nodes[i];
  7766. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7767. //if (node->grad == NULL && node->perf_runs > 0) {
  7768. // continue;
  7769. //}
  7770. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7771. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7772. // INIT
  7773. struct ggml_compute_params params = {
  7774. /*.type =*/ GGML_TASK_INIT,
  7775. /*.ith =*/ 0,
  7776. /*.nth =*/ node->n_tasks,
  7777. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7778. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7779. };
  7780. ggml_compute_forward(&params, node);
  7781. // COMPUTE
  7782. if (node->n_tasks > 1) {
  7783. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7784. atomic_store(&state_shared.has_work, false);
  7785. }
  7786. while (atomic_load(&state_shared.has_work)) {
  7787. ggml_lock_lock (&state_shared.spin);
  7788. ggml_lock_unlock(&state_shared.spin);
  7789. }
  7790. // launch thread pool
  7791. for (int j = 0; j < n_threads - 1; j++) {
  7792. workers[j].params = (struct ggml_compute_params) {
  7793. .type = GGML_TASK_COMPUTE,
  7794. .ith = j + 1,
  7795. .nth = node->n_tasks,
  7796. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7797. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7798. };
  7799. workers[j].node = node;
  7800. }
  7801. atomic_fetch_sub(&state_shared.n_ready, 1);
  7802. while (atomic_load(&state_shared.n_ready) > 0) {
  7803. ggml_lock_lock (&state_shared.spin);
  7804. ggml_lock_unlock(&state_shared.spin);
  7805. }
  7806. atomic_store(&state_shared.has_work, true);
  7807. }
  7808. params.type = GGML_TASK_COMPUTE;
  7809. ggml_compute_forward(&params, node);
  7810. // wait for thread pool
  7811. if (node->n_tasks > 1) {
  7812. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7813. atomic_store(&state_shared.has_work, false);
  7814. }
  7815. while (atomic_load(&state_shared.has_work)) {
  7816. ggml_lock_lock (&state_shared.spin);
  7817. ggml_lock_unlock(&state_shared.spin);
  7818. }
  7819. atomic_fetch_sub(&state_shared.n_ready, 1);
  7820. while (atomic_load(&state_shared.n_ready) != 0) {
  7821. ggml_lock_lock (&state_shared.spin);
  7822. ggml_lock_unlock(&state_shared.spin);
  7823. }
  7824. }
  7825. // FINALIZE
  7826. if (node->n_tasks > 1) {
  7827. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7828. atomic_store(&state_shared.has_work, false);
  7829. }
  7830. while (atomic_load(&state_shared.has_work)) {
  7831. ggml_lock_lock (&state_shared.spin);
  7832. ggml_lock_unlock(&state_shared.spin);
  7833. }
  7834. // launch thread pool
  7835. for (int j = 0; j < n_threads - 1; j++) {
  7836. workers[j].params = (struct ggml_compute_params) {
  7837. .type = GGML_TASK_FINALIZE,
  7838. .ith = j + 1,
  7839. .nth = node->n_tasks,
  7840. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7841. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7842. };
  7843. workers[j].node = node;
  7844. }
  7845. atomic_fetch_sub(&state_shared.n_ready, 1);
  7846. while (atomic_load(&state_shared.n_ready) > 0) {
  7847. ggml_lock_lock (&state_shared.spin);
  7848. ggml_lock_unlock(&state_shared.spin);
  7849. }
  7850. atomic_store(&state_shared.has_work, true);
  7851. }
  7852. params.type = GGML_TASK_FINALIZE;
  7853. ggml_compute_forward(&params, node);
  7854. // wait for thread pool
  7855. if (node->n_tasks > 1) {
  7856. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7857. atomic_store(&state_shared.has_work, false);
  7858. }
  7859. while (atomic_load(&state_shared.has_work)) {
  7860. ggml_lock_lock (&state_shared.spin);
  7861. ggml_lock_unlock(&state_shared.spin);
  7862. }
  7863. atomic_fetch_sub(&state_shared.n_ready, 1);
  7864. while (atomic_load(&state_shared.n_ready) != 0) {
  7865. ggml_lock_lock (&state_shared.spin);
  7866. ggml_lock_unlock(&state_shared.spin);
  7867. }
  7868. }
  7869. // performance stats (node)
  7870. {
  7871. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7872. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7873. node->perf_runs++;
  7874. node->perf_cycles += perf_cycles_cur;
  7875. node->perf_time_us += perf_time_us_cur;
  7876. }
  7877. }
  7878. // join thread pool
  7879. if (n_threads > 1) {
  7880. atomic_store(&state_shared.stop, true);
  7881. atomic_store(&state_shared.has_work, true);
  7882. for (int j = 0; j < n_threads - 1; j++) {
  7883. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7884. GGML_ASSERT(rc == 0);
  7885. UNUSED(rc);
  7886. }
  7887. ggml_lock_destroy(&state_shared.spin);
  7888. }
  7889. // performance stats (graph)
  7890. {
  7891. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7892. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7893. cgraph->perf_runs++;
  7894. cgraph->perf_cycles += perf_cycles_cur;
  7895. cgraph->perf_time_us += perf_time_us_cur;
  7896. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7897. __func__, cgraph->perf_runs,
  7898. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7899. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7900. (double) perf_time_us_cur / 1000.0,
  7901. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7902. }
  7903. }
  7904. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7905. for (int i = 0; i < cgraph->n_nodes; i++) {
  7906. struct ggml_tensor * grad = cgraph->grads[i];
  7907. if (grad) {
  7908. ggml_set_zero(grad);
  7909. }
  7910. }
  7911. }
  7912. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7913. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7914. GGML_PRINT("=== GRAPH ===\n");
  7915. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7916. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7917. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7918. for (int i = 0; i < cgraph->n_nodes; i++) {
  7919. struct ggml_tensor * node = cgraph->nodes[i];
  7920. perf_total_per_op_us[node->op] += node->perf_time_us;
  7921. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7922. i,
  7923. node->ne[0], node->ne[1], node->ne[2],
  7924. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7925. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7926. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7927. (double) node->perf_time_us / 1000.0,
  7928. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7929. }
  7930. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7931. for (int i = 0; i < cgraph->n_leafs; i++) {
  7932. struct ggml_tensor * node = cgraph->leafs[i];
  7933. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  7934. i,
  7935. node->ne[0], node->ne[1],
  7936. GGML_OP_LABEL[node->op]);
  7937. }
  7938. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7939. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7940. }
  7941. GGML_PRINT("========================================\n");
  7942. }
  7943. // check if node is part of the graph
  7944. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7945. if (cgraph == NULL) {
  7946. return true;
  7947. }
  7948. for (int i = 0; i < cgraph->n_nodes; i++) {
  7949. if (cgraph->nodes[i] == node) {
  7950. return true;
  7951. }
  7952. }
  7953. return false;
  7954. }
  7955. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7956. for (int i = 0; i < cgraph->n_nodes; i++) {
  7957. struct ggml_tensor * parent = cgraph->nodes[i];
  7958. if (parent->grad == node) {
  7959. return parent;
  7960. }
  7961. }
  7962. return NULL;
  7963. }
  7964. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7965. char color[16];
  7966. FILE * fp = fopen(filename, "w");
  7967. GGML_ASSERT(fp);
  7968. fprintf(fp, "digraph G {\n");
  7969. fprintf(fp, " newrank = true;\n");
  7970. fprintf(fp, " rankdir = LR;\n");
  7971. for (int i = 0; i < gb->n_nodes; i++) {
  7972. struct ggml_tensor * node = gb->nodes[i];
  7973. if (ggml_graph_get_parent(gb, node) != NULL) {
  7974. continue;
  7975. }
  7976. if (node->is_param) {
  7977. snprintf(color, sizeof(color), "yellow");
  7978. } else if (node->grad) {
  7979. if (ggml_graph_find(gf, node)) {
  7980. snprintf(color, sizeof(color), "green");
  7981. } else {
  7982. snprintf(color, sizeof(color), "lightblue");
  7983. }
  7984. } else {
  7985. snprintf(color, sizeof(color), "white");
  7986. }
  7987. fprintf(fp, " \"%p\" [ \
  7988. style = filled; fillcolor = %s; shape = record; \
  7989. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  7990. (void *) node, color,
  7991. i, node->ne[0], node->ne[1],
  7992. GGML_OP_SYMBOL[node->op]);
  7993. if (node->grad) {
  7994. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7995. } else {
  7996. fprintf(fp, "\"; ]\n");
  7997. }
  7998. }
  7999. for (int i = 0; i < gb->n_leafs; i++) {
  8000. struct ggml_tensor * node = gb->leafs[i];
  8001. snprintf(color, sizeof(color), "pink");
  8002. if (ggml_nelements(node) == 1) {
  8003. fprintf(fp, " \"%p\" [ \
  8004. style = filled; fillcolor = %s; shape = record; \
  8005. label=\"<x>%.1e\"; ]\n",
  8006. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8007. } else {
  8008. fprintf(fp, " \"%p\" [ \
  8009. style = filled; fillcolor = %s; shape = record; \
  8010. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8011. (void *) node, color,
  8012. i, node->ne[0], node->ne[1]);
  8013. }
  8014. }
  8015. for (int i = 0; i < gb->n_nodes; i++) {
  8016. struct ggml_tensor * node = gb->nodes[i];
  8017. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8018. if (node->src0) {
  8019. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8020. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8021. parent0 ? (void *) parent0 : (void *) node->src0,
  8022. parent0 ? "g" : "x",
  8023. parent ? (void *) parent : (void *) node,
  8024. parent ? "g" : "x",
  8025. parent ? "empty" : "vee",
  8026. parent ? "dashed" : "solid");
  8027. }
  8028. if (node->src1) {
  8029. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8030. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8031. parent1 ? (void *) parent1 : (void *) node->src1,
  8032. parent1 ? "g" : "x",
  8033. parent ? (void *) parent : (void *) node,
  8034. parent ? "g" : "x",
  8035. parent ? "empty" : "vee",
  8036. parent ? "dashed" : "solid");
  8037. }
  8038. }
  8039. for (int i = 0; i < gb->n_leafs; i++) {
  8040. struct ggml_tensor * node = gb->leafs[i];
  8041. if (node->src0) {
  8042. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8043. (void *) node->src0, "x",
  8044. (void *) node, "x");
  8045. }
  8046. if (node->src1) {
  8047. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8048. (void *) node->src1, "x",
  8049. (void *) node, "x");
  8050. }
  8051. }
  8052. fprintf(fp, "}\n");
  8053. fclose(fp);
  8054. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8055. }
  8056. ////////////////////////////////////////////////////////////////////////////////
  8057. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8058. int i = 0;
  8059. for (int p = 0; p < np; ++p) {
  8060. const int64_t ne = ggml_nelements(ps[p]) ;
  8061. // TODO: add function to set tensor from array
  8062. for (int64_t j = 0; j < ne; ++j) {
  8063. ggml_set_f32_1d(ps[p], j, x[i++]);
  8064. }
  8065. }
  8066. }
  8067. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8068. int i = 0;
  8069. for (int p = 0; p < np; ++p) {
  8070. const int64_t ne = ggml_nelements(ps[p]) ;
  8071. // TODO: add function to get all elements at once
  8072. for (int64_t j = 0; j < ne; ++j) {
  8073. x[i++] = ggml_get_f32_1d(ps[p], j);
  8074. }
  8075. }
  8076. }
  8077. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8078. int i = 0;
  8079. for (int p = 0; p < np; ++p) {
  8080. const int64_t ne = ggml_nelements(ps[p]) ;
  8081. // TODO: add function to get all elements at once
  8082. for (int64_t j = 0; j < ne; ++j) {
  8083. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8084. }
  8085. }
  8086. }
  8087. //
  8088. // ADAM
  8089. //
  8090. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8091. //
  8092. static enum ggml_opt_result ggml_opt_adam(
  8093. struct ggml_context * ctx,
  8094. struct ggml_opt_params params,
  8095. struct ggml_tensor * f,
  8096. struct ggml_cgraph * gf,
  8097. struct ggml_cgraph * gb) {
  8098. GGML_ASSERT(ggml_is_scalar(f));
  8099. gf->n_threads = params.n_threads;
  8100. gb->n_threads = params.n_threads;
  8101. // these will store the parameters we want to optimize
  8102. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8103. int np = 0;
  8104. int nx = 0;
  8105. for (int i = 0; i < gf->n_nodes; ++i) {
  8106. if (gf->nodes[i]->is_param) {
  8107. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8108. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8109. ps[np++] = gf->nodes[i];
  8110. nx += ggml_nelements(gf->nodes[i]);
  8111. }
  8112. }
  8113. // constants
  8114. const float alpha = params.adam.alpha;
  8115. const float beta1 = params.adam.beta1;
  8116. const float beta2 = params.adam.beta2;
  8117. const float eps = params.adam.eps;
  8118. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8119. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8120. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8121. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8122. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8123. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8124. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8125. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8126. // initialize
  8127. ggml_vec_set_f32(nx, m, 0.0f);
  8128. ggml_vec_set_f32(nx, v, 0.0f);
  8129. // update view
  8130. ggml_opt_get_params(np, ps, x);
  8131. // compute the function value
  8132. ggml_graph_reset (gf);
  8133. ggml_set_f32 (f->grad, 1.0f);
  8134. ggml_graph_compute(ctx, gb);
  8135. float fx_prev = ggml_get_f32_1d(f, 0);
  8136. if (pf) {
  8137. pf[0] = fx_prev;
  8138. }
  8139. int n_no_improvement = 0;
  8140. float fx_best = fx_prev;
  8141. // run the optimizer
  8142. for (int t = 0; t < params.adam.n_iter; ++t) {
  8143. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8144. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8145. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8146. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8147. for (int i = 0; i < np; ++i) {
  8148. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8149. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8150. }
  8151. const int64_t t_start_wall = ggml_time_us();
  8152. const int64_t t_start_cpu = ggml_cycles();
  8153. UNUSED(t_start_wall);
  8154. UNUSED(t_start_cpu);
  8155. {
  8156. // update the gradient
  8157. ggml_opt_get_grad(np, ps, g1);
  8158. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8159. ggml_vec_scale_f32(nx, m, beta1);
  8160. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8161. // g2 = g1^2
  8162. ggml_vec_sqr_f32 (nx, g2, g1);
  8163. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8164. ggml_vec_scale_f32(nx, v, beta2);
  8165. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8166. // m^hat = m_t / (1 - beta1^t)
  8167. // v^hat = v_t / (1 - beta2^t)
  8168. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8169. ggml_vec_cpy_f32 (nx, mh, m);
  8170. ggml_vec_cpy_f32 (nx, vh, v);
  8171. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8172. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8173. ggml_vec_sqrt_f32 (nx, vh, vh);
  8174. ggml_vec_acc1_f32 (nx, vh, eps);
  8175. ggml_vec_div_f32 (nx, mh, mh, vh);
  8176. ggml_vec_sub_f32 (nx, x, x, mh);
  8177. // update the parameters
  8178. ggml_opt_set_params(np, ps, x);
  8179. }
  8180. ggml_graph_reset (gf);
  8181. ggml_set_f32 (f->grad, 1.0f);
  8182. ggml_graph_compute(ctx, gb);
  8183. const float fx = ggml_get_f32_1d(f, 0);
  8184. // check convergence
  8185. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8186. GGML_PRINT_DEBUG("converged\n");
  8187. return GGML_OPT_OK;
  8188. }
  8189. // delta-based convergence test
  8190. if (pf != NULL) {
  8191. // need at least params.past iterations to start checking for convergence
  8192. if (params.past <= t) {
  8193. const float rate = (pf[t%params.past] - fx)/fx;
  8194. if (fabsf(rate) < params.delta) {
  8195. return GGML_OPT_OK;
  8196. }
  8197. }
  8198. pf[t%params.past] = fx;
  8199. }
  8200. // check for improvement
  8201. if (params.max_no_improvement > 0) {
  8202. if (fx_best > fx) {
  8203. fx_best = fx;
  8204. n_no_improvement = 0;
  8205. } else {
  8206. ++n_no_improvement;
  8207. if (n_no_improvement >= params.max_no_improvement) {
  8208. return GGML_OPT_OK;
  8209. }
  8210. }
  8211. }
  8212. fx_prev = fx;
  8213. {
  8214. const int64_t t_end_cpu = ggml_cycles();
  8215. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8216. UNUSED(t_end_cpu);
  8217. const int64_t t_end_wall = ggml_time_us();
  8218. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8219. UNUSED(t_end_wall);
  8220. }
  8221. }
  8222. return GGML_OPT_DID_NOT_CONVERGE;
  8223. }
  8224. //
  8225. // L-BFGS
  8226. //
  8227. // the L-BFGS implementation below is based on the following implementation:
  8228. //
  8229. // https://github.com/chokkan/liblbfgs
  8230. //
  8231. struct ggml_lbfgs_iteration_data {
  8232. float alpha;
  8233. float ys;
  8234. float * s;
  8235. float * y;
  8236. };
  8237. static enum ggml_opt_result linesearch_backtracking(
  8238. struct ggml_context * ctx,
  8239. const struct ggml_opt_params * params,
  8240. int nx,
  8241. float * x,
  8242. float * fx,
  8243. float * g,
  8244. float * d,
  8245. float * step,
  8246. const float * xp,
  8247. struct ggml_tensor * f,
  8248. struct ggml_cgraph * gf,
  8249. struct ggml_cgraph * gb,
  8250. const int np,
  8251. struct ggml_tensor * ps[]) {
  8252. int count = 0;
  8253. float width = 0.0f;
  8254. float dg = 0.0f;
  8255. float finit = 0.0f;
  8256. float dginit = 0.0f;
  8257. float dgtest = 0.0f;
  8258. const float dec = 0.5f;
  8259. const float inc = 2.1f;
  8260. if (*step <= 0.f) {
  8261. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8262. }
  8263. // compute the initial gradient in the search direction
  8264. ggml_vec_dot_f32(nx, &dginit, g, d);
  8265. // make sure that d points to a descent direction
  8266. if (0 < dginit) {
  8267. return GGML_LINESEARCH_FAIL;
  8268. }
  8269. // initialize local variables
  8270. finit = *fx;
  8271. dgtest = params->lbfgs.ftol*dginit;
  8272. while (true) {
  8273. ggml_vec_cpy_f32(nx, x, xp);
  8274. ggml_vec_mad_f32(nx, x, d, *step);
  8275. // evaluate the function and gradient values
  8276. {
  8277. ggml_opt_set_params(np, ps, x);
  8278. ggml_graph_reset (gf);
  8279. ggml_set_f32 (f->grad, 1.0f);
  8280. ggml_graph_compute(ctx, gb);
  8281. ggml_opt_get_grad(np, ps, g);
  8282. *fx = ggml_get_f32_1d(f, 0);
  8283. }
  8284. ++count;
  8285. if (*fx > finit + (*step)*dgtest) {
  8286. width = dec;
  8287. } else {
  8288. // Armijo condition is satisfied
  8289. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8290. return count;
  8291. }
  8292. ggml_vec_dot_f32(nx, &dg, g, d);
  8293. // check the Wolfe condition
  8294. if (dg < params->lbfgs.wolfe * dginit) {
  8295. width = inc;
  8296. } else {
  8297. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8298. // regular Wolfe conditions
  8299. return count;
  8300. }
  8301. if(dg > -params->lbfgs.wolfe*dginit) {
  8302. width = dec;
  8303. } else {
  8304. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8305. return count;
  8306. }
  8307. return count;
  8308. }
  8309. }
  8310. if (*step < params->lbfgs.min_step) {
  8311. return GGML_LINESEARCH_MINIMUM_STEP;
  8312. }
  8313. if (*step > params->lbfgs.max_step) {
  8314. return GGML_LINESEARCH_MAXIMUM_STEP;
  8315. }
  8316. if (params->lbfgs.max_linesearch <= count) {
  8317. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8318. }
  8319. (*step) *= width;
  8320. }
  8321. return GGML_LINESEARCH_FAIL;
  8322. }
  8323. static enum ggml_opt_result ggml_opt_lbfgs(
  8324. struct ggml_context * ctx,
  8325. struct ggml_opt_params params,
  8326. struct ggml_tensor * f,
  8327. struct ggml_cgraph * gf,
  8328. struct ggml_cgraph * gb) {
  8329. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8330. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8331. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8332. return GGML_OPT_INVALID_WOLFE;
  8333. }
  8334. }
  8335. gf->n_threads = params.n_threads;
  8336. gb->n_threads = params.n_threads;
  8337. const int m = params.lbfgs.m;
  8338. // these will store the parameters we want to optimize
  8339. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8340. int np = 0;
  8341. int nx = 0;
  8342. for (int i = 0; i < gf->n_nodes; ++i) {
  8343. if (gf->nodes[i]->is_param) {
  8344. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8345. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8346. ps[np++] = gf->nodes[i];
  8347. nx += ggml_nelements(gf->nodes[i]);
  8348. }
  8349. }
  8350. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8351. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8352. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8353. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8354. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8355. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8356. float fx = 0.0f; // cost function value
  8357. float xnorm = 0.0f; // ||x||
  8358. float gnorm = 0.0f; // ||g||
  8359. float step = 0.0f;
  8360. // initialize x from the graph nodes
  8361. ggml_opt_get_params(np, ps, x);
  8362. // the L-BFGS memory
  8363. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8364. for (int i = 0; i < m; ++i) {
  8365. lm[i].alpha = 0.0f;
  8366. lm[i].ys = 0.0f;
  8367. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8368. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8369. }
  8370. // evaluate the function value and its gradient
  8371. {
  8372. ggml_opt_set_params(np, ps, x);
  8373. ggml_graph_reset (gf);
  8374. ggml_set_f32 (f->grad, 1.0f);
  8375. ggml_graph_compute(ctx, gb);
  8376. ggml_opt_get_grad(np, ps, g);
  8377. fx = ggml_get_f32_1d(f, 0);
  8378. }
  8379. if (pf) {
  8380. pf[0] = fx;
  8381. }
  8382. float fx_best = fx;
  8383. // search direction = -gradient
  8384. ggml_vec_neg_f32(nx, d, g);
  8385. // ||x||, ||g||
  8386. ggml_vec_norm_f32(nx, &xnorm, x);
  8387. ggml_vec_norm_f32(nx, &gnorm, g);
  8388. if (xnorm < 1.0f) {
  8389. xnorm = 1.0f;
  8390. }
  8391. // already optimized
  8392. if (gnorm/xnorm <= params.lbfgs.eps) {
  8393. return GGML_OPT_OK;
  8394. }
  8395. // initial step
  8396. ggml_vec_norm_inv_f32(nx, &step, d);
  8397. int j = 0;
  8398. int k = 1;
  8399. int ls = 0;
  8400. int end = 0;
  8401. int bound = 0;
  8402. int n_no_improvement = 0;
  8403. float ys = 0.0f;
  8404. float yy = 0.0f;
  8405. float beta = 0.0f;
  8406. while (true) {
  8407. // store the current position and gradient vectors
  8408. ggml_vec_cpy_f32(nx, xp, x);
  8409. ggml_vec_cpy_f32(nx, gp, g);
  8410. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8411. if (ls < 0) {
  8412. // linesearch failed - go back to the previous point and return
  8413. ggml_vec_cpy_f32(nx, x, xp);
  8414. ggml_vec_cpy_f32(nx, g, gp);
  8415. return ls;
  8416. }
  8417. ggml_vec_norm_f32(nx, &xnorm, x);
  8418. ggml_vec_norm_f32(nx, &gnorm, g);
  8419. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8420. if (xnorm < 1.0f) {
  8421. xnorm = 1.0f;
  8422. }
  8423. if (gnorm/xnorm <= params.lbfgs.eps) {
  8424. // converged
  8425. return GGML_OPT_OK;
  8426. }
  8427. // delta-based convergence test
  8428. if (pf != NULL) {
  8429. // need at least params.past iterations to start checking for convergence
  8430. if (params.past <= k) {
  8431. const float rate = (pf[k%params.past] - fx)/fx;
  8432. if (fabsf(rate) < params.delta) {
  8433. return GGML_OPT_OK;
  8434. }
  8435. }
  8436. pf[k%params.past] = fx;
  8437. }
  8438. // check for improvement
  8439. if (params.max_no_improvement > 0) {
  8440. if (fx < fx_best) {
  8441. fx_best = fx;
  8442. n_no_improvement = 0;
  8443. } else {
  8444. n_no_improvement++;
  8445. if (n_no_improvement >= params.max_no_improvement) {
  8446. return GGML_OPT_OK;
  8447. }
  8448. }
  8449. }
  8450. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8451. // reached the maximum number of iterations
  8452. return GGML_OPT_DID_NOT_CONVERGE;
  8453. }
  8454. // update vectors s and y:
  8455. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8456. // y_{k+1} = g_{k+1} - g_{k}.
  8457. //
  8458. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8459. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8460. // compute scalars ys and yy:
  8461. // ys = y^t \cdot s -> 1 / \rho.
  8462. // yy = y^t \cdot y.
  8463. //
  8464. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8465. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8466. lm[end].ys = ys;
  8467. // find new search direction
  8468. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8469. bound = (m <= k) ? m : k;
  8470. k++;
  8471. end = (end + 1)%m;
  8472. // initialize search direction with -g
  8473. ggml_vec_neg_f32(nx, d, g);
  8474. j = end;
  8475. for (int i = 0; i < bound; ++i) {
  8476. j = (j + m - 1) % m;
  8477. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8478. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8479. lm[j].alpha /= lm[j].ys;
  8480. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8481. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8482. }
  8483. ggml_vec_scale_f32(nx, d, ys/yy);
  8484. for (int i = 0; i < bound; ++i) {
  8485. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8486. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8487. beta /= lm[j].ys;
  8488. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8489. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8490. j = (j + 1)%m;
  8491. }
  8492. step = 1.0;
  8493. }
  8494. return GGML_OPT_DID_NOT_CONVERGE;
  8495. }
  8496. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8497. struct ggml_opt_params result;
  8498. switch (type) {
  8499. case GGML_OPT_ADAM:
  8500. {
  8501. result = (struct ggml_opt_params) {
  8502. .type = GGML_OPT_ADAM,
  8503. .n_threads = 1,
  8504. .past = 0,
  8505. .delta = 1e-5f,
  8506. .max_no_improvement = 100,
  8507. .print_forward_graph = true,
  8508. .print_backward_graph = true,
  8509. .adam = {
  8510. .n_iter = 10000,
  8511. .alpha = 0.001f,
  8512. .beta1 = 0.9f,
  8513. .beta2 = 0.999f,
  8514. .eps = 1e-8f,
  8515. .eps_f = 1e-5f,
  8516. .eps_g = 1e-3f,
  8517. },
  8518. };
  8519. } break;
  8520. case GGML_OPT_LBFGS:
  8521. {
  8522. result = (struct ggml_opt_params) {
  8523. .type = GGML_OPT_LBFGS,
  8524. .n_threads = 1,
  8525. .past = 0,
  8526. .delta = 1e-5f,
  8527. .max_no_improvement = 0,
  8528. .print_forward_graph = true,
  8529. .print_backward_graph = true,
  8530. .lbfgs = {
  8531. .m = 6,
  8532. .n_iter = 100,
  8533. .max_linesearch = 20,
  8534. .eps = 1e-5f,
  8535. .ftol = 1e-4f,
  8536. .wolfe = 0.9f,
  8537. .min_step = 1e-20f,
  8538. .max_step = 1e+20f,
  8539. .linesearch = GGML_LINESEARCH_DEFAULT,
  8540. },
  8541. };
  8542. } break;
  8543. }
  8544. return result;
  8545. }
  8546. enum ggml_opt_result ggml_opt(
  8547. struct ggml_context * ctx,
  8548. struct ggml_opt_params params,
  8549. struct ggml_tensor * f) {
  8550. bool free_ctx = false;
  8551. if (ctx == NULL) {
  8552. struct ggml_init_params params_ctx = {
  8553. .mem_size = 16*1024*1024,
  8554. .mem_buffer = NULL,
  8555. .no_alloc = false,
  8556. };
  8557. ctx = ggml_init(params_ctx);
  8558. if (ctx == NULL) {
  8559. return GGML_OPT_NO_CONTEXT;
  8560. }
  8561. free_ctx = true;
  8562. }
  8563. enum ggml_opt_result result = GGML_OPT_OK;
  8564. // build forward + backward compute graphs
  8565. struct ggml_cgraph gf = ggml_build_forward (f);
  8566. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8567. switch (params.type) {
  8568. case GGML_OPT_ADAM:
  8569. {
  8570. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8571. } break;
  8572. case GGML_OPT_LBFGS:
  8573. {
  8574. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8575. } break;
  8576. }
  8577. if (params.print_forward_graph) {
  8578. ggml_graph_print (&gf);
  8579. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8580. }
  8581. if (params.print_backward_graph) {
  8582. ggml_graph_print (&gb);
  8583. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8584. }
  8585. if (free_ctx) {
  8586. ggml_free(ctx);
  8587. }
  8588. return result;
  8589. }
  8590. ////////////////////////////////////////////////////////////////////////////////
  8591. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8592. assert(k % QK == 0);
  8593. const int nb = k / QK;
  8594. for (int j = 0; j < n; j += k) {
  8595. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8596. quantize_row_q4_0_reference(src + j, y, k);
  8597. for (int i = 0; i < nb; i++) {
  8598. for (int l = 0; l < QK; l += 2) {
  8599. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8600. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8601. hist[vi0]++;
  8602. hist[vi1]++;
  8603. }
  8604. }
  8605. }
  8606. return (n/QK*sizeof(block_q4_0));
  8607. }
  8608. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8609. assert(k % QK == 0);
  8610. const int nb = k / QK;
  8611. for (int j = 0; j < n; j += k) {
  8612. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8613. quantize_row_q4_1_reference(src + j, y, k);
  8614. for (int i = 0; i < nb; i++) {
  8615. for (int l = 0; l < QK; l += 2) {
  8616. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8617. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8618. hist[vi0]++;
  8619. hist[vi1]++;
  8620. }
  8621. }
  8622. }
  8623. return (n/QK*sizeof(block_q4_1));
  8624. }
  8625. ////////////////////////////////////////////////////////////////////////////////
  8626. int ggml_cpu_has_avx(void) {
  8627. #if defined(__AVX__)
  8628. return 1;
  8629. #else
  8630. return 0;
  8631. #endif
  8632. }
  8633. int ggml_cpu_has_avx2(void) {
  8634. #if defined(__AVX2__)
  8635. return 1;
  8636. #else
  8637. return 0;
  8638. #endif
  8639. }
  8640. int ggml_cpu_has_avx512(void) {
  8641. #if defined(__AVX512F__)
  8642. return 1;
  8643. #else
  8644. return 0;
  8645. #endif
  8646. }
  8647. int ggml_cpu_has_fma(void) {
  8648. #if defined(__FMA__)
  8649. return 1;
  8650. #else
  8651. return 0;
  8652. #endif
  8653. }
  8654. int ggml_cpu_has_neon(void) {
  8655. #if defined(__ARM_NEON)
  8656. return 1;
  8657. #else
  8658. return 0;
  8659. #endif
  8660. }
  8661. int ggml_cpu_has_arm_fma(void) {
  8662. #if defined(__ARM_FEATURE_FMA)
  8663. return 1;
  8664. #else
  8665. return 0;
  8666. #endif
  8667. }
  8668. int ggml_cpu_has_f16c(void) {
  8669. #if defined(__F16C__)
  8670. return 1;
  8671. #else
  8672. return 0;
  8673. #endif
  8674. }
  8675. int ggml_cpu_has_fp16_va(void) {
  8676. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8677. return 1;
  8678. #else
  8679. return 0;
  8680. #endif
  8681. }
  8682. int ggml_cpu_has_wasm_simd(void) {
  8683. #if defined(__wasm_simd128__)
  8684. return 1;
  8685. #else
  8686. return 0;
  8687. #endif
  8688. }
  8689. int ggml_cpu_has_blas(void) {
  8690. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8691. return 1;
  8692. #else
  8693. return 0;
  8694. #endif
  8695. }
  8696. int ggml_cpu_has_sse3(void) {
  8697. #if defined(__SSE3__)
  8698. return 1;
  8699. #else
  8700. return 0;
  8701. #endif
  8702. }
  8703. int ggml_cpu_has_vsx(void) {
  8704. #if defined(__POWER9_VECTOR__)
  8705. return 1;
  8706. #else
  8707. return 0;
  8708. #endif
  8709. }
  8710. ////////////////////////////////////////////////////////////////////////////////